JP2023502936A - マルチsim ue接続モード動作のための方法 - Google Patents

マルチsim ue接続モード動作のための方法 Download PDF

Info

Publication number
JP2023502936A
JP2023502936A JP2022528011A JP2022528011A JP2023502936A JP 2023502936 A JP2023502936 A JP 2023502936A JP 2022528011 A JP2022528011 A JP 2022528011A JP 2022528011 A JP2022528011 A JP 2022528011A JP 2023502936 A JP2023502936 A JP 2023502936A
Authority
JP
Japan
Prior art keywords
sim
wireless communication
communication device
network
rrc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022528011A
Other languages
English (en)
Other versions
JPWO2021097231A5 (ja
Inventor
アジャクプル、パスカル
マレー、ジョセフ
スターシニック、マイケル
ジロラモ、ロッコ ディ
チェン、チュオ
リー、チュアン
Original Assignee
インターデイジタル パテント ホールディングス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターデイジタル パテント ホールディングス インコーポレイテッド filed Critical インターデイジタル パテント ホールディングス インコーポレイテッド
Publication of JP2023502936A publication Critical patent/JP2023502936A/ja
Publication of JPWO2021097231A5 publication Critical patent/JPWO2021097231A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/005Multiple registrations, e.g. multihoming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Figure 2023502936000001
本明細書では、マルチ加入者識別モジュール(SIM)接続モード動作についての、方法及び装置が記載されている。一実施形態では、無線通信デバイスは、アクセス層インターフェースから、受信機会中に受信機チェーンへの要求アクセスを受信することができる。無線通信デバイスは、受信チェーンが受信機会中に利用可能であると判定することができる。無線通信デバイスは、アクセスが許可されていることを示す応答を送信して、アクセス層インターフェースに、受信機会中にダウンリンク伝送を受信させることができる。無線通信デバイスは、アクセス層インターフェースから、伝送機会中に伝送機チェーンの第2の要求を受信することができる。無線通信デバイスは、伝送機チェーンが伝送機会中に利用可能であると判定することができる。無線通信デバイスは、アクセスが許可されていることを示す第2の応答を送信して、アクセス層インターフェースが伝送機会中にアップリンク伝送を伝送することを可能にすることができる。
【選択図】図23

Description

(関連出願の相互参照)
本出願は、2019年11月13日に出願された米国仮特許出願第62/934,748号の利益を主張するものであり、その全体が参照により本明細書に組み込まれる。
マルチSIM UEは、2つ以上のSIM(加入者識別モジュール又はサービス識別モジュール)を有するUEである。これらのデバイスは、様々な場所で人気が高まっている。しかしながら、マルチSIM動作は、ユーザ体験に悪影響を与え、システム性能全体に悪影響を与える可能性があるUE挙動に関して多くの課題を提示する。したがって、マルチSIM動作のための改善された手順が必要とされている。
本概要は、簡略化された形態で概念の選択を導入するために提供され、これは「発明を実施するための形態」において以下に更に説明される。この概要は、特許請求される主題の主要な特徴又は本質的な特徴を特定することを意図するものではなく、また、特許請求される主題の範囲を限定するために使用されることを意図するものでもない。更に、特許請求される主題は、この開示のいずれかの部分に記載された、いずれか又は全ての欠点を解決する制限に限定されるものではない。
本明細書では、マルチ加入者識別モジュール(multi-subscriber identification module、SIM)接続モード動作についての、方法及び装置が記載されている。一実施形態によると、無線通信デバイスは、アクセス層インターフェースから、受信機会中に受信機チェーンへの要求アクセスを受信することができる。無線通信デバイスは、受信機チェーンが受信機会中に利用可能であると判定することができる。無線通信デバイスは、アクセスが許可されていることを示す応答を送信して、アクセス層インターフェースに、受信機会中にダウンリンク伝送を受信させることができる。無線通信デバイスは、アクセス層インターフェースから、伝送機会中に伝送機チェーンの第2の要求を受信することができる。無線通信デバイスは、伝送機チェーンが伝送機会中に利用可能であると判定することができる。無線通信デバイスは、アクセスが許可されていることを示す第2の応答を送信して、アクセス層インターフェースが伝送機会中にアップリンク伝送を伝送することを可能にすることができる。
前述の概要、及び以下の発明を実施するための形態は、添付の図面と併せて読むとよりよく理解される。本開示を説明するために、本開示の様々な態様が示されている。しかしながら、本開示は、論じられる特定の態様に限定されない。図面において、
NRにおけるUE状態機械及び状態遷移を示す。
NR/5GC、E-UTRA/EPCとE-UTRA/5GCとの間のUE状態機械及び状態遷移を示す。
マルチSim UE ASモデルを示す。
マルチSIM UE RRCを示す。
CプレーンにおけるマルチSIM UE中間ASを示す。
UプレーンにおけるマルチSIM UE中間ASを示す。
マルチSIM UE下部ASを示す。
マルチSIM MACを示す。
マルチSIM NAS-実施例1を示す。
マルチSIM NAS-実施例2を示す。
マルチSIM上部NASを示す。
マルチSIM下部NASを示す。
マルチSIM UE制御プレーンアーキテクチャを示す。
マルチSIM UEのサポートにおける高レベルエンドツーエンド制御プレーンアーキテクチャを示す。
マルチSIM UEレベルRRC状態機械を示す。
マルチSIM UEレベルNAS状態機械を示す。
RX/TXチェーンアービタとのRX/TXチェーンの動的共有を示す。
ASとRX/TXチェーンアービタとの間のインターフェース-オプション1を示す。
ASとRX/TXチェーンアービタとの間のインターフェース-オプション2を示す。
ASとRX/TXチェーンアービタとの間のインターフェース-オプション3を示す。
RX/TXチェーンの動的共有のためのシグナリング図-オブション1を示す。
RX/TXチェーンの動的共有のためのシグナリング図-オブション2を示す。
欠落したRXOP/TXOPとのRX/TXチェーンの動的共有のためのシグナリング図-オプション1を示す。
欠落したRXOP/TXOPとのRX/TXチェーンの動的共有のためのシグナリング図-オプション2を示す。
RRCサスペンドとの半静的共有のためのシグナリング図を示す。
RRCリリースとの半静的共有のためのシグナリング図を示す。
本明細書に記載及び特許請求される方法及び装置が具体化され得る例示的な通信システムの一実施形態を例示する。
例えば、無線送信/受信ユニット(wireless transmit/receive unit、WTRU)など、本明細書に例示される実施形態による、無線通信のために構成された例示的な装置又はデバイスのブロック図である。
一実施形態による、RAN及びコアネットワークのシステム図である。
一実施形態による、RAN及びコアネットワークのシステム図である。
一実施形態によるRAN及びコアネットワークのシステム図である。
図27A、図27C、図27D、及び図27Eに例示される通信ネットワークの1つ以上の装置が具体化され得る例示的なコンピューティングシステムのブロック図である。
本明細書に記載及び特許請求される方法及び装置が具体化され得る例示的な通信システムの一実施形態を例示する。
本明細書では、マルチ加入者識別モジュール(SIM)接続モード動作について、方法及び装置が記載されている。
以下の略語及び定義が本明細書で使用され得る。
3GPP 第3世代パートナーシッププロジェクト
5G 第5世代
5GS 5Gシステム
5G-S-TMSI 5G短縮一時モバイル加入者識別
AS アクセス層
BWP 帯域幅部分
BSR バッファステータスレポート
CORESET 制御リソースセット
CN コアネットワーク
CM 接続管理
CoMAC 共通MAC
CoNAS 共通NAS
CoRRC 共通RRC
C-RNTI セル無線ネットワーク一時識別子
CSI チャネル状態情報
CSI-RS チャネル状態情報参照信号
DCI ダウンリンク制御情報
DSSS デュアルSIMシングルスタンバイUE
DSDS デュアルSIMデュアルスタンバイ
DSDA デュアルSIMデュアルアクティブ
DeMAC 専用MAC
DeNAS 専用NAS
DeRRC 専用RRC
DRX 間欠受信
ECM EPS接続管理
eNB 進化型ノードB
EPS 進化型パケットシステム
E-UTRA 進化型UMTS地上無線アクセス
gNB NRノードB
HARQ ハイブリッド自動反復要求
ID 識別又は識別子
LCG 論理チャネルグループ
LCP 論理チャネル優先順位付け
LTE ロングタームエボリューション
MAC 媒体アクセス制御
MAC CE MAC制御要素
MNO モバイルネットワークオペレータ
Msg2 ランダムアクセス手順のメッセージ2
Msg3 ランダムアクセス手順のメッセージ3
NAS 非AS
NB ノードB
NR 新しい無線
TA ダウンリンクとアップリンクとの間のタイミングアドバンス
PDCCH 物理ダウンリンク制御チャネル
PDCP パケットデータ収束プロトコル
PDU プロトコルデータユニット
PHR パワーヘッドルーム
PHY 物理層
PLMN 公衆陸上移動体通信網
PRACH 物理ランダムアクセスチャネル
P-RNTI ページング無線ネットワーク一時識別子
PTAG 一次タイミングアドバンスグループ
PUCCH 物理アップリンク制御チャネル
PUSCH 物理アップリンク共有チャネル
QoS サービス品質
RA-RNTI ランダムアクセス無線ネットワーク一時識別子
RAR ランダムアクセス応答
RLC 無線リンク制御
RRC 無線リソース制御
RTT ラウンドトリップ時間
RXOP 受信機会
SDAP サービスデータ適応プロトコル
SDU サービスデータユニット
SIM 加入者識別モジュール又はサービス識別モジュール
SCell 二次セル
SpCell スペシャルセル
SDAP サービスデータ適応プロトコル
SI システム情報
SPS セミパーシステントスケジューリング
SR スケジューリング要求
SRS サウンディング基準信号
SSB 同期信号ブロック
STAG 二次タイミングアドバンスグループ
TAG タイミングアドバンスグループ
TXOP 伝送機会
RACH ランダムアクセスチャネル
RAN 無線アクセスネットワーク
RAT 無線アクセス技術
Req 要求
RLC 無線リンク制御
RNTI 無線ネットワーク一時識別子
RRC 無線リソース制御
Rsp 応答
RSU 路側機
RX 受信機又は受信
RXOP RX機会
TDM 時分割多重化
TX 伝送機又は伝送
TXOP TX機会
UCI アップリンク制御情報
UE ユーザ機器
UL アップリンク
UL-SCH アップリンク共有チャネル
UMTS ユニバーサル移動体通信システム
USIM ユニバーサルSIM
Uu UEをRANに接続するインターフェース
V2X Vehicle-to-X通信
マルチSIM UEは、2つ以上のSIMを有するUEである。デュアルSIM UEは、2つのSIMを有するUEである。マルチSIM及びデュアルSIMという用語は、本明細書では互換的に使用され得る。マルチUSIMデバイスは、異なる国で、ますます普及している。ユーザは、異なるサービスのために、1つのデバイスにおける個人及びビジネスサブスクリプションの両方を有するか、又は1つのデバイスに2つの個人サブスクリプションを有することができる(例えば、1つの個々のサブスクリプション及び1つの「ファミリーサークル」プランを使用する)。しかしながら、デバイス内のマルチUSIMのサポートは、3GPP仕様からのいかなるサポートも含まない実装固有の方法で現在取り扱われており、様々な実装及びUE挙動(例えば、パッシブデュアルSIM、デュアルSIMシングルスタンバイ、デュアルSIMデュアルスタンバイ、デュアルSIMデュアルアクティブなど)をもたらす。そのような状況は、UEベンダの複雑さの増大、ネットワークベンダ又はオペレータのための予期せぬUE挙動、及びユーザ体験の劣化を引き起こす可能性がある。
以下の用語は、本明細書で定義される。
パッシブデュアルSIM:デバイスは2つのSIMを含むが、両方のSIMが単一のトランシーバを共有するという仮定のもとに、任意の所与の時間で使用するために1つのみを選択することができる。この実装は、ネットワークベンダ又はオペレータのデバイスの複雑さ又は予想外のUE挙動に関して魅力的であり得るが、ユーザが2つのネットワークを介して任意の所与の時間に到達可能であるか、若しくは利用可能であることを可能にするためにか、又はユーザが同じ又は異なるオペレータに属する可能性のある2つのネットワークを介して同時通信を実行することを可能にするために、デュアルSIMデバイスの期待を満たすことはない。
デュアルSIMシングルスタンバイUE(Dual SIM Single Standby、DSSS):第1のシステムと能動的に通信している間に、UEは、他のシステムを時折チェックする(例えば、ページングチャネルを読み取るか、測定を実行するか、又はシステム情報を読み取る)必要がある。第2のシステム上のこの時折の活動は、UE実装、すなわち、シングルRx又はデュアルRxに応じて、いかなる性能影響も有していてもしなくてもよい。
デュアルSIMデュアルスタンバイ(Dual SIM Dual Standby、DSDS):両方のSIMをアイドルモードネットワーク接続に使用することができるが、無線接続がアクティブである場合、第2の接続は無効になる。パッシブの場合のように、DSDSデバイスのSIMは、単一のトランシーバを共有する。時間多重化により、2つの無線接続がアイドルモードに維持される。1つのSIMのネットワークで通話中である場合、第2のネットワークへの登録が維持されるが、それは、第2のSIMのネットワークへの無線接続を維持することはもはや可能ではないため、通話の持続時間にわたって接続が利用不可能である。
デュアルSIMデュアルアクティブ(Dual SIM Dual Active、DSDA):両方のSIMは、アイドルモード及び接続モードの両方で使用することができ、例えば、1つの通信は、音声サービスのためのものであり得、別の通信は、データサービスのためのものであり得る。通常、各SIMは専用トランシーバを有すると考えられ、これはモデムレベルでアイドルモード又は接続モード動作に相互依存性がないことを意味する。しかし、この場合でも、2つのシステムとの同時通信は、UEパフォーマンス及びネットワークパフォーマンスに影響を与える可能性がある課題を提示し、これらの課題のうちのいくつかは、マルチSIMデバイスのパワーバジェット及び能力バジェットを超えないような、UE電力制御及び能力調整を含む。
サービングSIM:アイドルモード動作又は接続モード動作のいずれかについてUEによって使用するために選択されたSIM。以下、サービングSIM及びSIMという用語は、互換的に使用され得る。
サービングRAN:アイドルモード動作又は接続モード動作のいずれかについてUEにサービスを提供するRAN。サービングRANは、サービングSIMと関連付けられている。
サービングPLMN:アイドルモード動作又は接続モード動作のいずれかについてUEにサービスを提供するPLMN。サービングPLMNは、サービングSIMと関連付けられている。
サービングネットワーク:アイドルモード動作又は接続モード動作のいずれかについてUEにサービスを提供するネットワーク。サービングネットワークは、サービングSIMと関連付けられている。ネットワークは、RAN又はPLMN又はそれらの組み合わせに関するものであり得る。
UE能力の時間領域多重化(Time Domain Multiplexing、TDM)又は時間領域におけるUE能力多重化という用語は、アイドルモード動作又は接続モード動作が同時に行われ得る、当該サービングネットワーク内のアイドルモード動作又は接続動作のサポートにおけるサービングネットワーク間の当該UE能力の共有を指す。時間領域多重化されるUE能力の例には、伝送機、受信機、伝送パワーバジェットなどが含まれ得る。
マルチSIM使用事例及び展開シナリオは、本明細書に記載されている。これらは、例示としてのみ提供されており、いかなる方法でも、本明細書に記載のソリューションの適用性を限定することを意味するものではないことに留意されたい。
使用事例1:ユーザは、米国からアジアまで海外に旅行しており、複数のUSIMカードをサポートするUEを有する。コスト削減の目的で、UEは、USIMがアクセスを共有する共通の無線及びベースバンドコンポーネントで実装される。結果として、1つのUSIMのみがいつでもアクティブであり得る。ユーザは、行き先国内を旅行中に、セルラサービスへのアクセスに到達すると、USIMを購入する。トラベルUSIMカードは、ローカル音声、テキスト、及び高速データのサービスを提供することができ、ホームUSIMカードは、主に、ユーザが旅行中に受信したい場合がある音声及びテキストを提供するために、使用される。
使用事例2:ビジネス及びパーソナルサブスクリプションサービスの両方を有し、同じデバイス上で両方のサービスを使用することを望むユーザの周囲の複数のUSIMセンターを利用する別の顕著な使用事例。ユーザは、オペレータ1を用いたUSIM1のサブスクリプションサービスを有する企業発行されたUEを有する一方、ユーザは、オペレータ2を用いたUSIM2のパーソナルサブスクリプションサービスを有する。ユーザは、日時又はサービスを使用するアプリケーションに応じて、USIM1又はUSIM2のいずれかへのサブスクリプションに従って、いずれかのサービス及びアクセスデータサービスから音声呼び出しを受信することができることを望む。
マルチSIM展開シナリオは、以下のサブシステムの各々に関して、以下の展開シナリオのうちのもう1つを含み得る。
コアネットワーク:a)両方のSIMが5GSであり、b)両方のSIMがEPSであり、c)SIM Aが5GS、及びSIM BがEPSである、d)SIM A及びSIM Bが同じオペレータに属する(MNO内の場合)、e)SIM A及びSIM Bが、2つの異なるオペレータに属する(MNO間のケース)。
無線アクセスネットワーク(Radio Access Network、RAN):a)SIM AがLTE、及びSIM BがLTEであり、b)SIM AがLTE、及びSIM BがNRであり、c)SIM AがNR、及びSIM BがNRである。
UE能力:a)シングルRX及びシングルTX、b)デュアルRX及びシングルTX、c)デュアルRX及びデュアルTX
AS状態組み合わせ:a):LTE IDLE及びNR IDLE又はINACTIVE、b):LTE CONNECTED及びNR IDLE又はINACTIVE、c):LTE IDLE及びNR CONNECTED、d)LTE CONNECTED及びNR CONNECTED、e):NR IDLE又はINACTIVE及びNR IDLE又はINACTIVE、f):NR CONNECTED、及びNR CONNECTED、g):NR IDLE又はINACTIVE及びNR CONNECTED、h):LTE IDLE及びLTE IDLE、i):LTE CONNECTED、及び LTE CONNECTED、j):LTE IDLE及びLTE CONNECTED。
図1は、NR100における例示的なUE状態機械及び状態遷移を示す。図1の例は、中断を伴う再開/解放中の、NR RRC_CONNECTED状態101へ/から、NR RRC_INACTIVE状態102へ/からの遷移、及び確立/解放中の、NR RRC_CONNECTED状態101へ/から、NR RRC_IDLE状態103へ/からの遷移を示す。解放中のNR RRC_INACTIVE状態102へ/から、NR RRC_IDLE状態103へ/からの遷移も示されている。
図2は、例示的なUE状態機械及びNR/5GC、E-UTRA/EPCとE-UTRA/5GCとの間の状態遷移200を示す。図2の例は、EUTRA RRC_CONNECTED状態201へ/から、EUTRA RRC_INACTIVE状態202へ/からの遷移を示し、確立/解放中の、EUTRA RRC_CONNECTED状態201へ/から、EUTRA RRC_IDLE状態203へ/からの遷移を示す。解放中の、EUTRA RRC_INACTIVE状態202へ/から、EUTRA RRC_IDLE状態203へ/からの遷移も示されている。
NR RRC_CONNECTED状態204へ/から、NR RRC_INACTIVE状態205へ/からの遷移、及び確立/解放中の、NR RRC_CONNECTED状態204へ/から、NR RRC_IDLE状態206へ/からの遷移。解放中の、NR RRC_INACTIVE状態205へ/から、NR RRC_IDLE状態206へ/からの遷移も示されている。
再選択中の、EUTRA RRC_INACTIVE状態202からNR RRC_IDLE状態206への遷移も示されている。再選択中のNR RRC_INACTIVE状態205からEUTRA RRC_IDLE状態206への遷移も示されている。再選択中の、EUTRA RRC_IDLE状態203へ/からNR RRC_IDLE状態206へ/からの遷移も示されている。
UE登録管理(Registration Management、RM)が本明細書に記載されている。UEは、ある特定の移動イベントの結果として、又は特定のタイマ(すなわち、周期的な登録更新タイマ又は非3GPP登録解除タイマ)の満了の結果として、最初にネットワークに登録するときに登録を実行する。
UEのRM状態は、RM-DEREGISTERED及びRM-REGISTEREDを含む。UE及びネットワークは、各RAT(すなわち、3GPP及び非3GPP)について別個のRM状態を維持する。
RM-DEREGISTERED状態では:UEは到達可能ではない。AMFは、あるUEコンテキストをキャッシュすることができる。UEは、初期登録手順を開始することによって、この状態を離れる。
RM-REGISTERED状態では:UEは、移動及びタイマ満了時に登録更新を実行する。UE又はAMFは、いつでも登録解除手順を実行することができる。AMFは、タイマ満了時に暗黙的な登録解除を実行することができる。
UE接続管理(Connection Management、CM)は、一般に、AMFとのUEのNAS接続の状態を指す。UE及びネットワークは、各RAT(すなわち、3GPP及び非3GPP)について別個のCM状態を維持し得る。
UEの登録管理(CM)状態は、CM-IDLE及びCM-CONNECTEDである。UE及びネットワークは、各RAT(すなわち、3GPP及び非3GPP)について別個のCM状態を維持する。
CM-IDLE状態では:N1を超えるAMFで確立されたNASシグナリング接続はない。
CM-CONNECTED状態では:UEはNAS接続を有する。これには、NG-RANにおけるRRC接続が必要である。UEは、RRC-Inactiveであり得、その場合、RANによって到達可能性が管理される。UEは、そのANシグナリング接続が解放されると、CM-IDLE状態に戻ることができる。
上記のように、デュアルSIM又はマルチSIM動作は、明細書で対処されていないと、ユーザ体験に悪影響を及ぼし、システム全体の性能に悪影響を与える可能性があるUE挙動に関して多くの課題を提示する。本明細書に記載のこの方法及び装置は、以下のようなマルチSIM動作の問題に対処する:
問題1:UE ASプロトコルアーキテクチャの強化:
処理オーバーヘッド及び電力消費を最小限に抑えるために、UEプロトコルアーキテクチャ(例えば、AS)及び状態機械の強化が必要である。例えば、アイドルモード手順のほとんど、例えば、数例挙げると、セル(再)選択及びキャンプすることは、特にマルチSIM MNO内展開シナリオの場合、UE処理オーバーヘッド及び電力消費を低減するために、調整から利益を得るであろう。
問題2:2つのRATからのUL伝送の潜在的な衝突:
この問題は、2つのPLMNとの同時アップリンク通信を維持するための、伝送機チェーン能力などのUE能力の時間領域多重化(Time Domain Multiplexing、TDM)による仕様への影響に対処する。例えば、シングルRX及びシングルTX、又はデュアルRX及びシングルTXを有するマルチSIMデバイスを考慮すると、UEがUSIM Bと関連付けられた3GPPシステムに一時的にアクセスすることができるように、USIM Aと関連付けられた3GPPシステムにおける継続的な接続の中断(又は解放)及び再開を可能にするTXチェーンのTDM使用を可能にする手順。UL伝送ギャップの結果としてのHARQタイミング処理、並びにMACタイマ及びRRCタイマなどのUEタイマの処理を含む関連するUE挙動も調査する必要がある。この問題は、列挙されたCN展開シナリオ、列挙されたRAN展開シナリオ、及び列挙された接続モード関連AS状態組み合わせをカバーする、本明細書で強調された、マルチSIM展開シナリオを有するPLMN間動作の文脈で理解されるべきである。
問題3:DLデータ受信の潜在的な衝突、例えば、両方のRATが、CONNECTEDにある。
問題は、2つのPLMNとの同時ダウンリンク通信を維持するための、受信機チェーンの時間領域多重化(TDM)による仕様への影響に対処する。例えば、シングルRX及びシングルTX、又はシングルRX及びシングルTXを有するマルチSIMデバイスを考慮すると、UEがUSIM Bと関連付けられた3GPPシステムに一時的にアクセスすることができるように、USIM Aと関連付けられた3GPPシステムにおける継続的な接続の中断(又は解放)及び再開を可能にするRXチェーンのTDM使用を可能にする手順。DL受信ギャップの結果としてのHARQタイミング処理、並びにMACタイマ及びRRCタイマなどのUEタイマの処理を含む関連するUE挙動も調査する必要がある。この問題は、列挙されたCN展開シナリオ、列挙されたRAN展開シナリオ、及び列挙された接続モード関連AS状態組み合わせをカバーする、本明細書で強調された、マルチSIM展開シナリオを有するPLMN間動作の文脈で理解されるべきである。
図3は、例示的なアクセス層(Access Stratum、AS)プロトコル300を示す。一実施形態によれば、マルチSIM UEのASプロトコルは、上部AS層301、中間AS層302、及び下部AS層303を含み得る。制御プレーンでは、上部AS層301は、RRC機能を実装することができる。下部AS層303は、MAC層及びPHY層の機能を実装することができる。下部AS層303は、UEのための共通MAC(CoMAC)と、サービングSIM(DeMAC)(すなわち、各サービングSIMに関連付けられたサービングネットワーク)ごとの専用MACと、を更に含み得る。CoMACは、DeMACエンティティを支援することができ、それらのアクションを解決することができ、サービングSIMと関連付けられたサービングネットワークを介する効率的な調整のためのロジック、例えば、UEのサービングSIMと関連付けられたサービングネットワークを介するトランシーバ又はパワーバジェットなどのUE能力の時間領域多重化のためのロジックを実施することができる。
NASは、上部NAS及び下部NASを含むことができ、上部NASは、UEのための共通NAS(Common NAS、CoNAS)と、サービングSIM(すなわち、各サービングSIMに関連付けられたサービングネットワーク)ごとのDeNASを有する専用NAS(Dedicated NAS、DeNAS)エンティティのセットと、を含み得る。CoNASは、DeNASエンティティを支援することができ、例えば、UE処理オーバーヘッド、電力消費を最小限に抑えるため、及び効率的な全体的なシステム性能のために、UEの効率的な動作を確実にするように、それらのアクションを調整することができる。
RRC層及びNAS層の両方に対して、SIMレベル状態機械に対する新しいUEレベル状態機械も提案されている。
RX/TXチェーンのTDM共有を有効にするためのAS手順については、本明細書に記載されている。本明細書には、RX/TXチェーンアービタへの要求の作成に基づいている、RX/TXチェーンの動的共有を実行するための方法が記載されており、アクセスは、先着順、USIM識別、又はアクセスが要求されているサービスの優先順位で許可され得る。
本明細書では、RRC接続を中断又は解放することに基づいている、RX/TXチェーンの半静的共有を実行するための方法が記載されており、各SIMは、専用RRC(dedicated RRC、DeRRC)層と関連付けられており、共通RRC(Common RRC、CoRRC)層は、どのDeRRCが所与の時間にアクティブであるべきかを判定することができる。
本明細書には、RX/TXチェーンを共有する効果を考慮するランダムアクセス手順を実行するための方法が記載されており、以下を含む。
RX/TXチェーンにアクセスできなかったことに従ってランダムアクセスリソース選択を実行するための機構、
ra-ResponseWindowの持続時間にわたって、RXチェーンへのアクセスを取得することが条件であるRARウィンドウの開始を適応させるための機構、及び
ra-ContentionResolutionTimerの持続時間にわたって、RXチェーンへのアクセスを取得することが条件である競合解決ウィンドウの開始を適応させるための機構。
本明細書には、RXOP/TXOPを喪失することに応答して、適応させるMACカウンタ及びタイマに基づいている、RX/TXチェーンの共有を実行するための方法が記載されており、以下を含む。
TXOPの喪失に応答して、禁止タイマの設定及び伝送カウンタのインクリメントを制御するための機構、及び
RXOPの喪失に応答して、DL監視を制御するために使用されるタイマを一時停止又は延長するための機構。
図4は、RRC400を示す。RRCは、共通RRC(CoRRC)エンティティ401及び専用RRC(DeRRC)エンティティ402のセットを含むことができ、1つのDeRRCエンティティは、サービングSIM(すなわち、各サービングSIMに関連付けられたサービングネットワーク)ごとである。CoRRC401は、DeRRC402エンティティを支援することができ、例えば、UE処理オーバーヘッド、電力消費を最小限に抑えるため、及び無線リソースの使用を含む効率的な全体的なシステム性能のために、UEの効率的な動作を確実にするように、それらのアクションを調整/解決することができる。CoRRC401は、サービングSIMと関連付けられたサービングネットワークを介する効率的な調整のためのロジック、例えば、UEのサービングSIMと関連付けられたサービングネットワークを介するトランシーバ又はパワーバジェットなどのUE能力の時間領域多重化のためのロジックを実施することができる。
一実施形態では、UE内のCoRRCエンティティ401は、例えば、共有伝送機、共有受信機、共有トランシーバ、共有パワーバジェット、共有共通増幅器、又は任意の他の伝送及び/又は受信共通ハードウェアのための、UEの多重化機能又は1つ以上の共有能力を実施することができる。
別の実施形態では、CoRRCエンティティ401は、UEのSIMと関連付けられたサービングネットワーク間で共有される、UEの1つ以上の能力の多重化において、UE又はネットワーク内の他のエンティティ、例えば、下位層AS内のエンティティを支援することができる。DeRRCは、例えば、同じSIMと関連付けられたサービングネットワーク内のキャリアアグリゲーション又はマルチコネクティビティのサポートにおいて、レガシーシステムに従ってRRCプロトコルアーキテクチャを実装することができる。例えば、所与のSIMのサービングネットワーク内のマルチコネクティビティの場合、このサービングネットワークと関連付けられたDeRRCは、例えば、マスターセルグループ対セカンダリセルグループのための各セルグループに対して1つのインスタンスを有する複数のインスタンスで構成され得る。
CoRRCエンティティ401は、RRC IDLE状態、RRC INACTIVE状態、又はRRC CONNECTED状態のうちの1つ以上の機能を実装することができる。同様に、DeRRCは、RRC IDLE状態、RRC INACTIVE状態、又はRRC CONNECTED状態のうちの1つ以上の機能を実装し得る。一実施形態では、CoRRCは、RRC IDLE又はRRC INACTIVE機能を実装し得るが、DeRRCは、RRC CONNECTED機能を実装し得、CoRRCは、例えばUE処理オーバーヘッド、電力消費を最小限に抑えるために、例えば、UE動作の効率的な動作のために、DeRRCエンティティと独立ネットワークを介するUEの共有能力の多重化との調整を確実にする。CoRRCは、UEのSIMの各々と関連付けられたサービングネットワークに関する状態とは対照的に、UEの全体的なRRC状態を反映するロジックを実装し得る。
ユーザプレーンでは、上位層が存在しても、存在しなくてもよい。例えば、AS上位層がユーザプレーンに存在する一実施形態では、この上位層は、SDAP機能を実装することができる。
図5は、CプレーンにおけるマルチSIM UE中間AS500を示す。図5の例は、制御プレーンにおいて、中間ASがPDCP層501及びRLC層502の機能を実装し得ることを示す。RLC502及びPDCP501は、サービングSIMごとに専用であり得る。
図6は、UプレーンにおけるマルチSIM UE中間AS600を示す。図6の例は、ユーザプレーンにおいて、中間ASがSDAP層601、PDCP層602、及びRLC層603の機能を実装し得ることを示す。SDAP601、RLC602、及びPDCP603は、各SIMに関連付けられたサービングネットワークごとに専用であり得る。
図7は、マルチSIM UE下部AS700を示す。図7は、下部ASがMAC層701及びPHY層702の機能を実装し得ることを示す。
図8は、マルチSIM MAC800を示す。図8は、MACが、共通MAC(CoMAC)エンティティ801、及びサービングSIMごとに1つのDeMACエンティティを有する専用MAC(DeMAC)エンティティのセット802を含み得ることを示す。
CoMAC801は、DeMAC802エンティティを支援することができ、例えば、UE処理オーバーヘッド、電力消費、及び無線リソースの使用を含む効率的な全体的なシステム性能を最小限に抑えるために、UEの効率的な動作を確実にするように、それらのアクションを調整することができる。一実施形態では、UE内のCoMACエンティティは、例えば、共有伝送機、共有受信機、共有トランシーバ、共有パワーバジェット、共有共通増幅器、又は任意の他の伝送及び/又は受信共通ハードウェアのための、UEの多重化機能又は1つ以上の共有能力を実施することができる。別の実施形態では、CoMACエンティティは、UEのSIMと関連付けられたサービングネットワーク間で共有される、UEの1つ以上の能力の多重化において、UE又はネットワーク内のいずれかの他のエンティティ、例えば、上位層AS内のエンティティを支援することができる。DeMACは、例えば、同じSIMと関連付けられたサービングネットワーク内のキャリアアグリゲーション又はマルチコネクティビティのサポートにおいて、レガシーシステムに従ってMACプロトコルアーキテクチャを実装することができる。例えば、所与のSIMのサービングネットワーク内のマルチコネクティビティの場合、このサービングネットワークと関連付けられたDeMACは、例えば、マスターセルグループ対セカンダリセルグループのための各セルグループに対して1つのインスタンスを有する複数のインスタンスで構成され得る。
図9は、例示的なマルチSIM NAS900を示す。図9は、マルチSIM UEの非アクセス層(Non-Access Stratum、NAS)プロトコルが、上部NAS901及び下部NAS902を含むようにモデル化され得ることを示す。
図10は、別の例示的なマルチSIM NAS1000を示す。この例では、NASは、共通NAS(CoNAS)1001、及びサービングSIMごとに1つのDeNASエンティティを有する専用NAS(DeNAS)エンティティのセット1002を含見うる。
図11は、マルチSIM上部NAS1100を示す。上部NAS1100は、CoNAS1101を含む。
図12は、マルチSIM下部NAS1200を示す。下部NAS1200は、DeNASエンティティ1201を含む。
CoNASは、DeNASエンティティを支援することができ、例えば、UE処理オーバーヘッド、電力消費、及び効率的な全体的なシステム性能を最小限に抑えるために、UEの効率的な動作を確実にするように、それらのアクションを調整することができる。一実施形態では、UE内のCoNASエンティティは、UEの1つ以上の共有能力の多重化機能、例えば、UE内の同時通信セッションの数を実装することができる。別の実施形態では、CoNASエンティティは、UEのSIMと関連付けられたサービングネットワーク間で共有される、UEの1つ以上の能力の多重化において、UE又はネットワーク内のいずれかの他のエンティティ、例えば、下部NAS又はAS内のエンティティを支援することができる。DeNASは、例えば、UEのSIMと関連付けられたサービングネットワークの各々の3GPP AS及び非3GPPアクセスのサポートにおいて、レガシーシステムに従ってNASプロトコルアーキテクチャを実装することができる。CoNASは、例えば、UEにおけるSIMと関連付けられたサービングネットワーク間のサービスの優先順位付けに対するユーザ選好の処理の調整を処理又は支援することができる。
CoNASは、NAS IDLE状態(例えば、CM IDLE又はECM IDLE)の1つ以上の機能、又は1つ以上の機能NAS CONNECTED状態(例えば、CM CONNECTED又はECM CONNECTED)の実装を実施又は支援することができる。同様に、DeNASは、NAS IDLE状態、又はNAS CONNECTED状態のうちの1つ以上の機能を実施することができる。例えば、一実施形態では、CoNASは、NAS IDLE状態における、PLMN選択、又はUE到達可能性などの機能の実装を実施又は支援することができる。同様に、CoNASは、UEが、UE内のSIMと関連付けられたサービングネットワークのいくつかに関してNAS CONNECTED状態にあるときに、ポリシー調整及びUE到達可能性の実装を実施又は支援することができる。CoNASは、UEのSIMの各々と関連付けられたサービングネットワークに関する状態とは対照的に、UEの全体的なNAS状態を反映するロジックを実装し得る。
一実施形態では、DeNASエンティティは、UEのSIMの各々と関連付けられ得る。DeNASエンティティは、1つ以上の登録管理(RM)状態(例えば、3GPPアクセスのRM状態及び非3GPPアクセスのRM状態)を維持することができる。DeNASエンティティはまた、1つ以上の接続管理(CM)状態(例えば、3GPPアクセスのCM状態及び非3GPPアクセスのCM状態)を維持することができる。上述のように、CoNASは、UEの利用可能なRATの各々に対してUEの全体的なNAS状態を反映するロジックを実装することができる。更に、CoNAS状態機械は、下部NASでDeNASエンティティから受信される要求及び指示によって駆動され得る。CoNAS状態機械及びその状態がどのようにして遷移するかを、以下に更に説明する。CoNASエンティティは、UEの利用可能なRAT(すなわち、非3GPP及び3GPP)の各々に対して別個の状態を維持することができる。各トランシーバに対して別個の状態が維持され得ることに留意されたい。言い換えれば、UEが2つの3GPPトランシーバを含む場合、UEは、各トランシーバのCoNAS状態を維持することができる。
図13は、UE1300内のNAS及びASプロトコルスタックの高レベル図を示す。NAS1301は、共通NAS1302及び専用NAS1303を含み得る。RRC1304は、共通RRC1305及び専用RRC1304を含み得る。
図14は、ネットワークNAS及びASプロトコルスタック1400に対するUEの高レベル図を示す。図14の例は、UE1401が、共通NAS1411及び専用NAS1410を含むNAS1410を含み得ることを示す。UE1401は、共通RRC1421及び専用RRC1420を含むRRC1420を含むことができる。
図14の例はまた、2つのPLMN、すなわち、PLMN A1402及びPLMN B1403も示す。PLMN A1402は、共通RRC1432及び専用RRC1433を含むRRC1431を含む基地局1430を含み得る。PLMN A1402は、共通NAS1442及び専用NAS1443を含むNAS1441を含むCN1440を含み得る。
PLMN B1403は、共通RRC1452及び専用RRC1453を含むRRC1451を含む基地局1450を含み得る。PLMN B1403は、共通NAS1462及び専用NAS1463を含むNAS1461を含むCN1460を含み得る。
図13に示されるようなマルチSIM UE制御プレーンアーキテクチャの使用は、ネットワークが、例えば、図14に例示するように、共通NAS対専用NASの分割又は共通RRC対専用RRCの分割を伴う同様のアーキテクチャを実装することを必要としないことに留意されたい。
RRC状態機械が本明細書に記載されている。RRC状態は、サービングSIMに関連して、又はサービングSIMと関連付けられたサービングネットワークと同等に関連して説明され得る。そのようなRRC状態は、SIMレベルRRC状態(すなわち、サービングSIMの範囲内のRRC状態)として表すことができる。同様に、RRC状態は、全体として、すなわち、個々のSIMレベルRRC状態の組み合わせとして、UEに関連して説明され得る。そのようなRRC状態は、UEレベルRRC状態として表すことができる。
図15は、例示的なRRC状態機械1500を示す。図15の例は、UEレベル全体のRRC状態機械を示し、RRCアーキテクチャは図4に示されるとおりである。図15にキャプチャされたRRC状態の各々は、図4に示すように、CoRRC又はDeRRCに関するものであり得る。マルチSIM UEのRRC状態機械は、マルチSIM動作モードの結果として、電力消費の任意の増加を低減し、UEバッテリ寿命の短縮を回避するように設計され得る。動作のマルチSIM省電力モードを導入することが提案されている。マルチSIMモードUEは、マルチSIM省電力モードで動作するように設計され得るか、又はUE構成(例えば、GUIを介して)、UE能力、又はユーザ選好に基づいて、そのようなモードで動作するように設計され得る。UEは、ネットワークとシグナリングを交換して、マルチSIM省電力モードで動作し得るかどうかを判定することができる。
UEレベルRRC状態は、以下のように説明される。
FULL RRC IDLE1501:この状態では、UEは、UE内のSIMの各々について、すなわち、UEにおけるSIMの各々について、又は代替的に使用のために選択されたUEにおけるSIMの各々について、SIMレベルRRC IDLE状態にあり得、UEは、PLMN選択を実行し、セルにキャンプオンしたが、UEがキャンプオンしたセルのいずれかにおいて、RRC接続を有しない。以下、「UEにおけるSIM」又は「使用のために選択されたUEにおけるSIM」又は「サービングSIM」という用語は、互換的に使用され得る。UEは、この状態からMIXED_RRC_IDLE_CONNECTED1506状態に遷移することができる。例えば、UEがUEにおけるSIMのうちの1つについてSIMレベルRRC_CONNECTEDに遷移するときに、UEは、FULL RRC IDLE1501からMIXED_RRC_IDLE_CONNECTED1506状態に遷移する。FULL RRC_IDLE状態1501では、UEは、PLMN選択のための「低減電力」サポート、「低減電力」セル再選択、及び「低減電力」セルキャンプなどの「低減電力」アイドルモード動作を実行することができる。「低減電力」という用語及び「マルチSIM省電力」モードという用語は、本明細書では互換的に使用され得る。低減電力動作に加えて、FULL_RRC_IDLE状態1501は、以下のように更に説明され得る。
SIM固有DRXは、上位層によって構成され得る。更に、UE固有DRXは、上位層によって構成され得る。この場合、UEは、SIM固有DRX又はUE固有DRXをネットワークに提供することができる。
ネットワーク構成に基づくUE制御モビリティ、又はUE能力、ユーザ選好、及びネットワーク構成に基づく低減電力UE制御モビリティ、
各サービングSIMのUEは、以下を実行することができる。
UEにおけるSIMと関連付けられたサービングネットワークの各々に対して少なくとも1つのP-RNTIを維持する。更に、UEは、サービングネットワークが関連付けられているSIMに関係なく、サービングネットワークを介して共通P-RNTIを維持することができ、
DCIを介してP-RNTIで伝送されるショートメッセージを監視し、
少なくとも1つの5G-S-TMSI、すなわちUEにおけるSIMと関連付けられたサービングネットワークの各々について、少なくとも1つの5G-S-TMSIを維持し、
5G-S-TMSIを使用してCNページングのページングチャネルを監視しページングの監視は、マルチSIM非省電力モード又はマルチSIM省電力モードを使用して実行され得、
他のSIMに対するUE動作及びSIMレベル状態を考慮して、必要に応じて隣接するセル測定及びセル(再)選択を実行し、セル測定及びセル(再)選択は、マルチSIM非省電力モード又はマルチSIM省電力モードを使用して実行することができ、
システム情報を取得し、SI要求(構成された場合)を送信することができる。システム情報の取得又はSI要求の伝送は、マルチSIM非省電力モード又はマルチSIM省電力モードを使用して実行され得る。
FULL RRC INACTIVE1502:この状態では、UEは、UEにおけるSIMの各々についてSIMレベルRRC INACTIVE状態にある。FULL RRC_INACTICE状態1502では、UEは、PLMN選択のための「低減電力」サポート、「低減電力」セル再選択、及び「低減電力」セルキャンプなどの「低減電力」アイドルモード動作を実行することができる。低減電力動作に加えて、FULL_RRC_INACTIVE状態1502は、以下のように更に説明することができる。
SIM固有DRXは、上位層によって構成され得る。更に、UE固有DRXは、上位層によって構成され得る。この場合、UEは、SIM固有DRX又はUE固有DRXをネットワークに提供することができる。
ネットワーク構成に基づくUE制御モビリティ、又はUE能力、ユーザ選好、及びネットワーク構成に基づく低減電力UE制御モビリティ、
UEは、専用UE非アクティブASコンテキスト、及び共通UE非アクティブASコンテキスト、すなわち、DeRRC及びCoRRCの両方に関連するコンテキストを記憶する。
サービングSIM又はサービングネットワークごとに、RANベースの通知領域がRRC層によって構成される、
各サービングSIMのUEは、以下を実行することができる。
UEにおけるSIMと関連付けられたサービングネットワークの各々に対して少なくとも1つのP-RNTIを維持する。更に、UEは、サービングネットワークが関連付けられているSIMに関係なく、例えばRAN共有ケースにおいて、サービングネットワークを介して共通のP-RNTIを維持することができ、
DCIを介してP-RNTIで伝送されるショートメッセージを監視し、
少なくとも1つの5G-S-TMSI、すなわちUEにおけるSIMと関連付けられたサービングネットワークの各々について、少なくとも1つの5G-S-TMSIを維持し、
5G-S-TMSIを使用して、いずれかで、CNページングのページングチャネルを監視し、ページングの監視は、マルチSIM非省電力モード又はマルチSIM省電力モードを使用して実行され得る。
隣接するセル測定及びセル(再)選択を実行し、セル測定及びセル(再)選択は、マルチSIM非省電力モード又はマルチSIM省電力モードを使用して実行することができ、
RANベースの通知領域更新を、周期的に、かつ構成されたRANベースの通知領域の外側に移動するときに実行する。RANベースの通知領域更新は、マルチSIM非省電力モード又はマルチSIM省電力モードを使用して実行することができ、
システム情報を取得し、SI要求(構成された場合)を送信することができる。システム情報の取得又はSI要求の伝送は、マルチSIM非省電力モード又はマルチSIM省電力モードを使用して実行され得る。
UEは、この状態からMIXED_RRC_INACTIVE_CONNECTED1504又はMIXED RRC_IDLE_INACTIVE1505に遷移することができる。本文書の残りについて、UEレベル状態遷移は、一度に1つのSIMレベル状態遷移に関して説明されることに留意されたい。
MIXED_RRC_INACTIVE_CONNECTED1504への遷移:UEが、UEにおけるSIMのうちの1つについてSIMレベルRRC_CONNECTEDに遷移するときに、UEは、FULL_RRC_INACTIVE1502からこの状態に遷移することができる。
MIXED_RRC_IDLE_INACTIVE1505への遷移:UEが、UEにおけるSIMのうちの1つについてSIMレベルRRC_IDLEに遷移するときに、UEは、FULL_RRC_INACTIVE1502からこの状態に遷移することができる。
FULL RRC CONNECTED1503:この状態では、UEは、UE内のSIMの各々についてSIMレベルRRC_CONNECTED状態にある。この状態では、UEは、専用ASコンテキスト及び共通ASコンテキストを記憶し、共通ASコンテキストは、UE内のSIMと関連付けられたサービングネットワークを介するコンテキスト情報に関する。UEは、この状態からMIXED RRC_IDLE_CONNECTED状態1506又はMIXED_RRC_INACTIVE_CONNECTED状態1504に遷移することができる。
MIXED_RRC_IDLE_CONNECTED状態1506への遷移:UEが、UEにおけるSIMのうちの1つについてSIMレベルRRC_IDLEに遷移するときに、UEは、FULL_RRC_CONNECTED状態1503からこの状態に遷移し得る。UEは、例えば、ネットワーク構成、又はUE選好設定に基づいて、マルチSIM省電力モード又はマルチSIM非省電力モードに固有のRRC_IDLEモード手順を実行することができる。
MIXED_RRC_INACTIVE_CONNECTED状態1504への遷移:UEがUEにおけるSIMのうちの1つについて、SIMレベルRRC_INACTIVEに遷移するときに、UEは、FULL_RRC_CONNECTED状態1503からこの状態に遷移し得る。UEは、例えば、ネットワーク構成、又はUE選好設定に基づいて、マルチSIM省電力モード又はマルチSIM非省電力モードに固有のRRC_INACTIVEモード手順を実行することができる。
MIXED RRC IDLE_CONNECTED1506:この状態では、UEは、1つ以上のSIMについてSIMレベルRRC_IDLE状態にあり、1つ以上のSIMについてSIMレベルRRC_CONNECTED状態にあり、UEにおけるSIMはRRC_INACTIVE状態にない。RRC_IDLE状態のSIMの場合、UEは、本文書に記載されるように、例えば、ネットワーク構成、又はUE選好設定に基づいて、マルチSIM省電力モード又はマルチSIM非省電力モードに固有のRRC_IDLEモード手順を実行することができる。UEは、この状態からFULL_RRC_CONNECTED状態1503、FULL_RRC_IDLE状態1501、MIXED RRC_IDLE_INACTIVE状態1505、又はMIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507に遷移し得る。
FULL_RRC_CONNECTED状態1503への遷移:UEがSIMレベルRRC_IDLE状態にあった唯一のSIMについて、UEがSIMレベルRRC_CONNECTEDに遷移するときに、UEは、MIXED_RRC_IDLE_CONNECTED状態1506からこの状態に遷移し得る。
FULL_RRC_IDLE状態1501への遷移:UEがSIMレベルRRC_CONNECTEDにあった唯一のSIMについて、UEがSIMレベルRRC_IDLEに遷移するときに、UEは、MIXED_RRC_IDLE_CONNECTED状態1506からこの状態に遷移し得る。
MIXED RRC_IDLE_INACTIVE状態1505への遷移:UEがSIMレベルRRC_CONNECTED状態にあった唯一のSIMについて、UEがSIMレベルRRC_INACTIVE状態に遷移するときに、UEは、MIXED_RRC_IDLE_CONNECTED状態1506からこの状態に遷移し得る。
MIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507への遷移:UEがSIMレベルRRC_CONNECTED状態にあったSIMのうちの1つについて、UEがSIMレベルRRC_INACTIVE状態に遷移するときに、UEは、MIXED_RRC_IDLE_CONNECTED状態1506からこの状態に遷移し得る。
MIXED RRC INACTIVE_CONNECTED1504:この状態では、UEは、1つ以上のSIMについてSIMレベルRRC_INACTIVE状態であり、1つ以上のSIMについてSIMレベルRRC_CONNECTED状態にあり、SIMはRRC_IDLE状態にない。RRC_INACTIVE状態のSIMの場合、UEは、本文書に記載されているように、例えば、ネットワーク構成、又はUE選好設定に基づいて、マルチSIM省電力モード又はマルチSIM非省電力モードに固有のRRC_INACTIVEモード手順を実行することができる。UEは、この状態からFULL_RRC_CONNECTED状態1503、FULL_RRC_INACTIVE状態1502、MIXED_RRC_IDLE_INACTIVE状態1505、MIXED_RRC_IDLE_CONNECTED状態1506、又はMIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507に遷移し得る。
FULL_RRC_CONNECTED状態1503への遷移:UEがSIMレベルRRC_INACTIVE状態にあった唯一のSIMについて、UEがSIMレベルRRC_CONNECTED状態に遷移するときに、UEは、MIXED_RRC_INACTIVE_CONNECTED状態1504からこの状態に遷移し得る。
FULL_RRC_INACTIVE状態1502への遷移:UEがSIMレベルRRC_CONNECTED状態にあった唯一のSIMについて、UEがSIMレベルRRC_INACTIVE状態に遷移するときに、UEは、MIXED_RRC_INACTIVE_CONNECTED状態1504からこの状態に遷移し得る。
MIXED_RRC_IDLE_INACTIVE状態1505への遷移:UEがSIMレベルRRC_CONNECTED状態にあった唯一のSIMについて、UEがSIMレベルRRC_INACTIVE状態に遷移するときに、UEは、MIXED_RRC_INACTIVE_CONNECTED状態1504からこの状態に遷移し得る。
MIXED_RRC_IDLE_CONNECTED状態1506への遷移:UEがSIMレベルRRC_INACTIVE状態にあった唯一のSIMについて、UEがSIMレベルRRC_IDLE状態に遷移するときに、UEは、MIXED_RRC_INACTIVE_CONNECTED状態1504からこの状態に遷移し得る。
MIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507への遷移:UEがSIMレベルRRC_CONNECTED状態にあったSIMのうちの1つについて、又はUEがRRC_INACTIVE状態にあったSIMのうちの1つについて、UEがSIMレベルRRC_IDLE状態に遷移するときに、UEは、MIXED_RRC_INACTIVE_CONNECTED状態1504からこの状態に遷移し得る。
MIXED RRC IDLE_INACTIVE1505:この状態では、UEは、1つ以上のSIMについてSIMレベルRRC_IDLE状態にあり、1つ以上のSIMについてSIMレベルRRC_INACTIVE状態にあり、SIMはRRC_CONNECTED状態にない。UEは、本文書に記載されるように、例えば、ネットワーク構成、又はUE選好設定に基づいて、マルチSIM省電力モード又はマルチSIM非省電力モードに固有のRRC_IDLEモード手順又はRRC_INACTIVEモード手順を実行することができる。UEは、この状態からFULL_RRC_IDLE状態1501、MIXED_RRC_IDLE_CONNECTED状態1506、MIXED_RRC_INACTIVE_CONNECTED1507、又はMIXED_RRC_IDLE_INACTIVE_CONNECTED状態に遷移し得る。
FULL_RRC_IDLE状態1501への遷移:UEがSIMレベルRRC_INACTIVE状態にあった唯一のSIMについて、UEがSIMレベルRRC_IDLE状態に遷移するときに、UEは、MIXED_RRC_IDLE_INACTIVE状態1505からこの状態に遷移し得る。
MIXED_RRC_IDLE_CONNECTED状態1506への遷移:UEがSIMレベルRRC_INACTIVE状態にあった唯一のSIMについて、UEがSIMレベルRRC_CONNECTED状態に遷移するときに、UEは、MIXED_RRC_IDLE_INACTIVE状態1505からこの状態に遷移し得る。
MIXED_RRC_INACTIVE_CONNECTED状態1504への遷移:UEがSIMレベルRRC_IDLE状態にあった唯一のSIMについて、UEがSIMレベルRRC_CONNECTED状態に遷移するときに、UEは、MIXED_RRC_IDLE_INACTIVE状態1505からこの状態に遷移し得る。
MIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507への遷移:UEがSIMレベルRRC_INACTIVE状態にあったSIMのうちの1つについて、又はUEがSIMレベルRRC_IDLE状態にあったSIMのうちの1つについて、UEがSIMレベルRRC_CONNECTED状態に遷移するときに、UEは、MIXED_RRC_IDLE_INACTIVE状態1505からこの状態に遷移し得る。
MIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507:この状態では、UEは、1つ以上のSIMについてSIMレベルRRC_IDLE状態にあり、1つ以上のSIMについてSIMレベルRRC_INACTIVE状態にあり、及び1つ以上のSIMについてSIMレベルRRC_CONNECTED状態にある。UEは、本文書に記載されるように、例えば、ネットワーク構成、又はUE選好設定に基づいて、マルチSIM省電力モード又はマルチSIM非省電力モードに固有のRRC_IDLEモード手順又はRRC_INACTIVEモード手順を実行することができる。UEは、この状態から上記の混合RRC状態のうちの1つに遷移し得る。例えば、UEは、この状態からMIXED RRC_INACTIVE_CONNECTED状態1504、MIXED RRC_IDLE_CONNECTED状態1506、又はMIXED RRC_IDLE_INACTIVE状態1505に遷移し得る。
MIXED RRC_INACTIVE_CONNECTED状態1504への遷移:UEがSIMレベルRRC_IDLE状態にあった唯一のSIMについて、UEがSIMレベルRRC_CONNECTED状態に遷移するときに、UEは、MIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507からこの状態に遷移し得る。
MIXED RRC_IDLE_CONNECTED状態1506への遷移:UEがSIMレベルRRC_INACTIVE状態にあった唯一のSIMについて、UEがSIMレベルRRC_CONNECTED状態に遷移するときに、又はUEがSIMレベルRRC_INACTIVEにあった唯一のSIMについて、UEがSIMレベルRRC_IDLE状態に遷移するときに、UEは、MIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507からこの状態に遷移し得る。
MIXED RRC_IDLE_INACTIVE状態1505への遷移:UEがSIMレベルRRC_CONNECTED状態にあった唯一のSIMについて、UEがSIMレベルRRC_INACTIVE状態に遷移するときに、又はUEがSIMレベルRRC_CONNECTEDにあった唯一のSIMについて、UEがSIMレベルRRC_IDLE状態に遷移するときに、又はUEがSIMレベルRRC_CONNECTED状態にあった唯一のSIMについて、UEがSIMレベルRRC_IDLE状態に遷移するときに、UEは、MIXED_RRC_IDLE_INACTIVE_CONNECTED状態1507からこの状態に遷移し得る。
図16は、UEレベルCoNAS状態機械1600を示す。マルチSIM UEのCoNAS状態機械は、マルチSIM動作モードの結果として、電力消費の任意の増加を低減し、UEバッテリ寿命の短縮を回避するように設計され得る。CoNAS状態機械は、FULL RM-DEREGISTERED1601、SINGLE RMーREGISTERED1602、及びMULTIPLE RM-REGISTERED状態1603を有し得る。状態は、CoNASエンティティがDeNASエンティティ間で実行する必要があるアービトレーションの量によって、一般に区別されるか、又は特徴付けられ得る。CoNASエンティティによって実行されるアービトレーションは、各DeNASエンティティが、NASシグナリングを送信又は受信するためにトランシーバを使用することが許可されている場合に関連する。1つのCoNAS状態機械は、各トランシーバのCoNASによって維持され得る。
省電力モード(Power Saving Mode、PSM)及び拡張アイドルモードDRXパラメータは、登録手順において、UEによってネットワークに提案することができる。DeNASエンティティは、値がネットワークに提供される前に、値をCoNASエンティティに提供することができ、CoNASは、新しい値を提案するか、又は値を承認することができる。例えば、CoNASエンティティは、DeNAS状態がより長い期間CM-IDLEであり得る可能性を高めるために、より長い周期的登録タイマ又は短縮アクティブタイマを提案することができる。代替的に、CoNASエンティティは、DeNASエンティティが同時に機能を実行することを要求する状況を回避するために、他のDeNASエンティティのタイマとより良好に調整されたタイマを提案することができる。
CoNAS状態機械の状態を以下に説明する。上述のように、これらの状態は、単一のRAT(すなわち、非3GPP又は3GPP)に関連する。
FULL RM-DEREGISTERED1601:この状態では、全てのDeNASエンティティのRM状態の全てが、関連付けられたRAT(すなわち、3GPP又は非3GPP)についてRM-DEREGISTEREDである。FULL RM-DEREGISTERED状態は、以下のように更に特徴付けられ得る。
この状態にある間は、CoNASエンティティは、関連付けられたRATで登録要求を送信する許可のために、任意のDeNASエンティティから要求を受信することができる。CoNASエンティティは、典型的には、他のDeNAS状態機械のRM状態が、関連付けられたRATについて現在、RM REGISTEREDでないため、この要求を許可することができ、したがって、NAS機能のアービトレーションは必要ない。
CoNASエンティティは、今、関連付けられたRATでRM-REGISTEREDであるという、DeNASエンティティからの指標を受信すると、SINGLE RM-REGISTERED状態1602に遷移し得る。この遷移は、図16のステップ1に示されている。
SINGLE RM-REGISTERED1602:この状態では、1つのDeNASエンティティのみのRM状態は、関連付けられたRAT(すなわち、3GPP又は非3GPP)でRM-REGISTEREDであり、残りは、関連付けられたRATでRM-DEREGISTEREDである。この状態では、CoNASエンティティは、第2のDeNASエンティティと関連付けられているRM状態機械が、関連付けられたRATに関する登録を開始することを望むことを示すまで、任意のアービトレーション機能を実行する必要はない。SINGLE RM-REGISTERED状態1602は、以下のように更に特徴付けられ得る。
この状態にある間は、CoNASエンティティは、NASメッセージ要求(例えば、モビリティ登録更新、周期的な登録更新、サービス要求、又はUE構成更新)を送信する許可のために、関連付けられたRATでRM-REGISTEREDである、DeNASエンティティからの要求を受信することができる。CoNASエンティティは、典型的には、他のDeNAS状態機械のRM状態が、関連付けられたRATで現在、RM REGISTEREDでないため、この要求を許可することができ、したがって、NAS機能のアービトレーションは必要ない。
この状態にある間は、CoNASエンティティは、DeNASエンティティから要求を受信することができ、そのRM状態は、関連付けられたRATで初期登録要求を送信する許可のために、関連付けられたRATでRM-DEREGISTEREDである。CoNASエンティティは、DeNASに、要求を送信することが許容される時間を示すことができ、CoNASは、他のDeNASエンティティ(RM-REGISTEREDであるRM状態機械を有し得る)に、関連付けられたRATで新しいNASアクティビティを同時に開始するべきではないことを示すことができる。
DeNASエンティティが、異なるDeNASエンティティが、関連付けられたRATを特定の時間に使用することができるという通知を受信することができる場合、DeNASは、ANシグナリング接続を解放することができ、したがって、DeNASのCM状態をCM-IDLEに遷移させることができることに留意されたい。
関連付けられたRATでRM-REGISTEREDであったDeNASエンティティが、今、関連付けられたRATでRM-DEREGISTEREDであることを示す場合、CoNASエンティティは、FULL RM-DEREGISTERED状態1601に遷移し得る。この遷移は、図16のステップ2に示されている。
関連付けられたRATでRM-REGISTEREDでなかったDeNASエンティティが、今、関連付けられたRATでRM-REGISTEREDであることを示す場合、CoNASエンティティは、MULTIPLE RM-REGISTERED状態1603に遷移し得る。この遷移は、図16のステップ3に示されている。
CoNASエンティティが、DeNASエンティティに、いくつかの動作(例えば、周期的な登録更新)を実行することができることを通知する場合、CoNASエンティティはまた、DeNASエンティティに、DeNASエンティティが特定の動作を実行することのみを許可され、追加のアクティビティを実行する(例えば、PDUセッションを確立し、ULデータを送信するか、又はダウンリンクデータを受信する)ことを許可されていないことを、DeNASエンティティに示すことができることに留意されたい。DeNASエンティティは、いくつかのより高い優先度のアクティビティを実行することを待機しているため、CoNASエンティティは、これをDeNAS層に示すことができる。したがって、DeNASは、周期的登録更新を実行する場合、ネットワークに、周期的登録更新を実行しているが、この時点で他の動作を実行する(すなわち、DLデータデータを受信する)ことができないことを示すことができる。UEは、周期的な登録中に、0のPSMアクティブタイマ値を提供することによって、この状態を示すことができる。したがって、再び直ちにCM-IDLEに入っていることを示す。
MULTIPLE RM-REGISTERED1603:この状態では、少なくとも2つのDeNASエンティティは、関連付けられたRATでRM-REGISTEREDである。この状態では、CoNASエンティティは、関連付けられたRATでRM-REGISTEREDである少なくとも1つの状態機械を有するDeNASエンティティのNAS機能間でアービトレーションを実行する必要がある。MULTIPLE RM-REGISTERED1603状態は、以下のように更に説明され得る。
この状態にある間は、CoNASエンティティは、NASメッセージ要求(例えば、モビリティ登録更新、周期的な登録更新、サービス要求、又はUE構成更新)を送信する許可のために、関連付けられたRATでRM-REGISTEREDである、RM状態機械を有する、DeNASエンティティからの要求を受信することができる。CoNASエンティティは、要求するDeNASエンティティに、関連付けられたRATで要求を送信することが許容可能である時間を示すことができ、他のDeNASエンティティに、関連付けられたRATで任意の新しいNASアクティビティを同時に開始するべきではないことを示すことができる。
周期的な登録更新を送信するための、DeNASエンティティからCoNASエンティティへの要求は、周期的な登録更新タイマの間近に迫った満了に基づき得ることに留意されたい。
モビリティ登録更新を送信するための、DeNASエンティティからCoNASエンティティへの要求は、モビリティイベントに基づき得ることに留意されたい。
代替的に、DeNASエンティティは、CoNASエンティティが、周期的な登録更新が必要とされるときを検出することができるように、周期的登録更新タイマ(又は非3GPP登録解除タイマ)をCoNASエンティティに提供することができる。
代替的に、DeNASエンティティは、CoNASエンティティが、モビリティ登録更新が必要とされるときを検出することができるように、登録領域をCoNASエンティティに提供することができる。
DeNASエンティティが、異なるDeNASエンティティが、関連付けられたRATを特定の時間に使用することができるという通知を受信することができる場合、DeNASは、ANシグナリング接続を解放することができ、したがって、DeNASのCM状態をCM-IDLEに遷移させることができることに留意されたい。
この状態にある間は、CoNASエンティティは、DeNASエンティティから要求を受信することができ、そのRM状態は、登録要求を送信する許可のために、関連付けられたRATでRM-DEREGISTEREDである。CoNASエンティティは、DeNASに、関連付けられたRATで要求を送信することが許容される時間を示すことができ、CoNASは、他のDeNASエンティティ(RM-REGISTEREDであるRM状態機械を有し得る)に、関連付けられたRATで新しいNASアクティビティを同時に開始するべきではないことを示すことができる。
DeNASエンティティが、異なるDeNASエンティティが、関連付けられたRATを特定の時間に使用することができるという通知を受信することができる場合、DeNASは、ANシグナリング接続を解放することができ、したがって、DeNASのCM状態をCM-IDLEに遷移させることができることに留意されたい。
関連付けられたRATでRM-REGISTEREDである、RM状態機械を有するDeNASエンティティが、CoNASエンティティに、関連付けられたRATでRM-DEREGISTEREDであることを示す場合、CoNASエンティティは、関連付けられたRATでRM-REGISTEREDである、RM状態機械を有する1つのDeNASエンティティのみがある場合、SINGLE RM-REGISTERED状態1602に遷移することができる。この遷移は、図16のステップ4に示されている。
CoNASエンティティが、DeNASエンティティに、いくつかの動作(例えば、周期的な登録更新)を実行することができることを知らせる場合、CoNASエンティティはまた、DeNASエンティティに、DeNASエンティティが特定の動作を実行することのみを許可され、追加のアクティビティを実行する(例えば、PDUセッションを確立し、ULデータを送信するか、又はダウンリンクデータを受信する)ことを許可されていないことを、DeNASエンティティに示すことができることに留意されたい。DeNASエンティティは、いくつかのより高い優先度のアクティビティを実行することを待機しているため、CoNASエンティティは、これをDeNAS層に示すことができる。したがって、DeNASは、周期的登録更新を実行する場合、ネットワークに、周期的登録更新を実行しているが、この時点で他の動作を実行する(すなわち、DLデータデータを受信する)ことができないことを示すことができる。UEは、周期的な登録中に、0のPSMアクティブタイマ値を提供することによって、この状態を示すことができる。したがって、直ちにCM-IDLEに入ることを示す。
RX/TXチェーンのTDM共有を可能にするための手順は、別の実施形態に従って本明細書で説明される。シングルRX及びシングルTXチェーン又はデュアルRX及びシングルTXチェーンを備えたマルチSIMデバイス用の複数のPLMNとの同時UL/DL通信を維持するために、本明細書では、TDM方式でのRX/TXチェーンの共有を可能にするためのAS手順が提案される。UEの内部及び/又はUEとネットワークとの間のAS層でのシグナリングは、複数のPLMNとの通信を調整するために使用される。例示の目的で、本明細書では、UEが2つのSIM、すなわち、SIM1及びSIM2で構成されているシナリオが考慮されているが、本明細書に記載のソリューションは、2つを超えるSIMが構成されている構成に拡張され得る。
様々なクラスのソリューションが想定され得、ソリューションのタイプは、RX/TXチェーンの数、第2のPLMNを用いたUL/DL伝送に対応するための、第1のPLMNを用いたUL/DL通信において必要なギャップの長さ、及び/又はPLMNのネットワークノード間の調整レベルに依存している。
第1のPLMNを用いたUL/DL伝送における短いギャップ(例えば、10~100ms)又は極小ギャップ(例えば、<10ms)が、第2のPLMNを用いたUL/DL伝送に対応するために必要とされるシナリオでは、RX/TXチェーンの動的共有を可能にするソリューションのクラスが使用され得る。これらのソリューションにおける更なる最適化は、複数のPLMNのネットワークノード間の調整が可能である場合(例えば、MNO内又はRAN共有展開)に得ることができる。
第1のPLMNを用いたUL/DL伝送における長いギャップ(例えば、>100ms)が、第2のPLMNを用いたUL/DL伝送に対応するために必要であるシナリオでは、RX/TXチェーンの準静的共有を可能にするソリューションのクラスが使用され得る。このクラスのソリューションはまた、第2のPLMNを用いたUL/DL伝送が、耐性が遅い場合、又は複数のPLMNのネットワークノード間の調整が可能ではない場合(例えば、MNO間展開)などの他のシナリオに適用され得る。
図17は、RX/TXチェーンアービタ1700とのRX/TXチェーンの動的共有を示す。1つのクラスのソリューションでは、RX/TXチェーンアービタ1702は、共有RX/TXチェーンへのTDMアクセスを可能にするために使用される。RXOP又はTXOPの前に、AS(例えば、専用AS1701又は専用AS1702)によって、RX/TXチェーンアービタ1702に、共有RX/TXチェーンにアクセスする要求が行われる。RX/TXチェーンアービタ1702は、ASに、共有RX/TXチェーンへのアクセスが許可されたかどうかを示す応答を提供することができる。以下、RX/TXチェーンアービタという用語及びアービタ機能という用語は、互換的に使用され得る。一実施形態では、アービタ機能は、RRC層、MAC層、又はPHY層によって実装され得る。別の実施形態では、アービタ機能は、NAS層によって実装され得る。
RX/TXチェーンへのアクセスは、RX/TXチェーンアービタ1702によって先着順で許可され得る。代替的に、USIM識別子、アクセスが要求されているサービスの優先度、アクセスが要求されているMAC手順などに基づいて優先され得る。
ASによってRX/TXチェーンアービタ1702に提供される要求は、RX/TXチェーンへのアクセスが所望される時間及びアクセスが望まれる期間を示し得、例えば、開始時間及び持続時間、開始時間及び終了時間などである。要求はまた、アクセスの優先順位の指標を含み得る。ASは、構成されたCORESET、探索空間、SPS構成、DRX構成などに基づいてRXOPが発生するときを判定することができる。ASは、動的又は構成された許可、PUCCH機会、RACH機会などに基づいてTXOPが発生するときを判定することができる。
ASへのRX/TXチェーンアービタ1702によって提供される応答は、アクセスが許可されたかどうかを示し、例えば、TRUEがアクセスが許可されたことを示し、FALSEがアクセスが許可されなかったことを示すブールフラグ。
共有RX/TXチェーンへのアクセスが許可される場合、DLがRXOP中に監視されるか、又はULがTXOP中に伝送される。共有RX/TXチェーンへのアクセスが許可されない場合、AS手順は、欠落したRXOP/TXOPを考慮に入れるように適応され得る。
RX/TXチェーンへのアクセスがトラフィックパターン及び/又はAS構成に基づいて事前判定され得るシナリオでは、明示的な要求/応答は、各アクセス試行に対して提供されない場合がある。代わりに、RX/TXチェーンアービタは、関連情報が提供され得、このようなイベントが発生したときに、欠落したRXOP/TXOPの指標は、もたらされる専用ASに提供され得る。
欠落したRXOP/TXOPの指標はまた、ネットワークに提供され得る。指標は、欠落したRXOP/TXOPの発生を進行させるTXOP中にネットワークに提供されて、ネットワークが、欠落したRXOP/TXOPに対処するためにプロアクティブアクションを行うことを可能にすることができる。代替的に、UEは、その後のTXOP中に指標を提供して、ネットワークが、欠落したRXOP/TXOPにリアクティブアクションを行うことを可能にすることができる。また、別の代替例では、欠落したRXOP/TXOPの明示的な指標を提供することと関連付けられたシグナリングオーバーヘッドを低減するために、UEは、RX/TXチェーンへのアクセスのためのスケジュールをネットワークに提供することができ、そのため、ネットワークは、欠落したRXOP/TXOPが発生し得るときを予測することができる。
RX/TXチェーンアービタは、プリエンプションをサポートすることができる。例えば、アクセスが優先度ベースであるシナリオでは、RX/TXチェーンアービタは、より高い優先度アクセスによって保留中又は進行中のアクセスを中断することを可能にし得る。そのような中断が発生すると、RX/TXチェーンアービタ1702は、中断された専用ASに指標を提供して、それに応じて中断を処理することができる。
ASとRX/TXチェーンアービタ1702との間のインターフェースは、1つ以上のAS層で提供され得る。
図18は、ASとRX/TXチェーンアービタとの間のインターフェース1800を示す。各SIMは、専用AS(例えば、専用AS1801及び専用AS1802)及び各専用ASのMAC層と関連付けられており、すなわち、DeMACは、RX/TXチェーンアービタ1802とインターフェース接続し、これは、CoMAC内で実現されて、共有RX/TXチェーンへのアクセスを要求することができる。MACの内部のシグナリングは、欠落したRXOP/TXOPの指標がRX/TXチェーンアービタから受信されたときにMAC手順の挙動を適応させるために使用され得る。
図19は、別の実施形態による、ASとRX/TXチェーンアービタとの間の例示的なインターフェースを示す。図19の例では、各専用AS(例えば、専用AS1901及び専用AS1903)のPHY層は、RX/TXチェーンアービタ1902とインターフェース接続して、共有RX/TXチェーンへのアクセスを要求する。PHYは、共有RX/TXチェーンへのアクセスが許可されない場合、MACに、欠落したRXOP/TXOP指標1910を提供することができ、MAC手順は、欠落したRXOP/TXOPを考慮に入れるように適応される。代替的に、RX/TXチェーンへのアクセスが許可されたという指標が、代わりに提供され得る。更に別の代替案では、両方のタイプの指標が提供され得る。
図20は、別の実施形態によるASとRX/TXチェーンアービタとの間の別の例示的なインターフェース2000を示す。図20の例では、各専用AS(例えば、専用AS2001及び専用AS2002)のPHY層又はMAC層は、RX/TXチェーンアービタ2003、2004とインターフェース接続して、共有RX/TXチェーンへのアクセスを要求する。この例では、各専用ASのPHY層は、RX/TXチェーンアービタ2003、2004とインターフェース接続して、共有RXチェーン及びMACへのアクセスを要求し、例えば、HARQエンティティは、RX/TXチェーンアービタとインターフェース接続して、TXチェーンへのアクセスを要求する。
図21は、RX/TXチェーンアービタを使用したRX/TXチェーンの動的共有のための例示的なシグナリング図2100を示す。シグナリング図のステップを説明するために使用されるテキストでは、表記ASXは、SIM Xと関連付けられたASを指すために使用され、gNBYという用語は、PLMN Yと関連付けられたgNBを指すために使用される。
図21を参照すると、ASは、RXチェーンへのアクセスを要求することができる(ステップ1)。RX/TXチェーンアービタは、RXが、要求されたRXOP中に利用可能であると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ2)。ASは、要求されたRXOP中に、gNBからのDL伝送を受信することができる(ステップ3)。ASは、TXチェーンへのアクセスを要求することができる(ステップ4)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能であると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ5)。ASは、要求されたTXOP中に、ULをgNBに伝送することができる(ステップ6)。ASは、TXチェーンへのアクセスを要求することができる(ステップ7)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ8)。ASは、要求されたTXOP中に、ULをgNBに伝送することができる(ステップ9)。
図22は、RX/TXチェーンアービタを使用したRX/TXチェーンの動的共有のための例示的なシグナリング図2200を示し、各専用ASのPHY層は、RX/TXチェーンアービタとインターフェース接続する。図22を参照すると、ASのPHYは、RXチェーンへのアクセスを要求することができる(ステップ1)。RX/TXチェーンアービタは、RXが、要求されたRXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ2)。ASのPHYは、要求されたRXOP中にgNBからのDL伝送を受信することができる(ステップ3)。ASのPHYは、受信されたMAC PDUを、ASのMACに送信することができる(ステップ4)。ASのMACは、MAC PDUを、ASのPHYに送信することができる(ステップ5)。ASのMACは、UL許可を、ASのPHYに送信することができる(ステップ6)。ASのPHYは、TXチェーンへのアクセスを要求することができる(ステップ7)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ8)。ASのPHYは、要求されたTXOP中に、ULをgNBに伝送することができる(ステップ9)。ASのMACは、MAC PDUを、ASのPHYに送信することができる(ステップ10)。ASのMACは、UL許可を、ASのPHYに送信することができる(ステップ11)。ASのPHYは、TXチェーンへのアクセスを要求することができる(ステップ12)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ13)。ASのPHYは、要求されたTXOP中に、ULをgNBに伝送することができる(ステップ14)。
図23は、欠落したRXOP及びTXOPが発生する場合の、RX/TXチェーンアービタを使用したRX/TXチェーンの動的共有のためのシグナリング図2300を示す。図23を参照すると、ASは、RXチェーンへのアクセスを要求することができる(ステップ1)。RX/TXチェーンアービタは、RXが、要求されたRXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ2)。ASは、RXチェーンへのアクセスを要求することができる(ステップ3)。RX/TXチェーンアービタは、RXが、要求されたRXOP中に利用可能でない可能性があると判定することができ、アクセスが許可されなかったことを示す応答を提供することができる(ステップ4)。ASは、AS手順を適応させて、欠落したRXOPを考慮する(ステップ5)。ASは、要求されたRXOP中にgNBからのDL伝送を受信することができる(ステップ6)。ASは、RXチェーンへのアクセスを要求することができる(ステップ7)。RX/TXチェーンアービタは、RXが、要求されたRXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ8)。ASは、要求されたRXOP中にgNBからのDL伝送を受信することができる(ステップ9)。ASは、TXチェーンへのアクセスを要求することができる(ステップ10)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ11)。ASは、TXチェーンへのアクセスを要求することができる(ステップ12)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能でない可能性があると判定することができ、アクセスが許可されなかったことを示す応答を提供することができる(ステップ13)。ASは、AS手順を適応させて、欠落したTXOPを考慮する(ステップ14)。ASは、要求されたTXOP中に、ULをgNBに伝送することができる(ステップ15)。ASは、TXチェーンへのアクセスを要求することができる(ステップ16)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ17)。ASは、要求されたTXOP中に、ULをgNBに伝送することができる(ステップ18)。
図24は、欠落したRXOP及びTXOPが発生した場合の、RX/TXチェーンアービタを使用したRX/TXチェーンの動的共有のためのシグナリング図2400を示し、各専用ASのPHY層は、RX/TXチェーンアービタとインターフェース接続する。図24を参照すると、ASのPHYは、RXチェーンへのアクセスを要求することができる(ステップ1)。RX/TXチェーンアービタは、RXが、要求されたRXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ2)。ASのPHYは、RXチェーンへのアクセスを要求することができる(ステップ3)。RX/TXチェーンアービタは、RXが、要求されたRXOP中に利用可能でない可能性があると判定することができ、アクセスが許可されなかったことを示す応答を提供することができる(ステップ4)。ASのPHYは、ASのMACに欠落したRXOP指標を提供することができる(ステップ5)。ASのMACは、MAC手順を適応させて、欠落したRXOPを考慮する(ステップ6)。ASのPHYは、要求されたRXOP中にgNBからのDL伝送を受信することができる(ステップ7)。ASのPHYは、受信されたMAC PDUを、ASのMACに送信することができる(ステップ8)。ASのPHYは、RXチェーンへのアクセスを要求することができる(ステップ9)。RX/TXチェーンアービタは、RXが、要求されたRXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ10)。ASのPHYは、要求されたRXOP中にgNBからのDL伝送を受信することができる(ステップ11)。ASのPHYは、受信されたMAC PDUを、ASのMACに送信することができる(ステップ12)。ASのMACは、MAC PDUを、ASのPHYに送信することができる(ステップ13)。ASのMACは、UL許可を、ASのPHYに送信することができる(ステップ14)。ASのPHYは、TXチェーンへのアクセスを要求することができる(ステップ15)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ16)。ASのMACは、MAC PDUを、ASのPHYに送信することができる(ステップ17)。ASのMACは、UL許可を、ASのPHYに送信することができる(ステップ18)。ASのPHYは、TXチェーンへのアクセスを要求することができる(ステップ19)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能ではない可能性があると判定することができ、アクセスが許可されなかったことを示す応答を提供することができる(ステップ20)ASのPHYは、欠落したTXOP指標を、ASのMACに提供することができる(ステップ21)ASのMACは、MAC手順を適応させて、欠落したTXOPを考慮する(ステップ22)ASのPHYは、要求されたTXOP中に、ULをgNBに伝送することができる(ステップ23)ASのMACは、MAC PDUを、ASのPHYに送信することができる(ステップ24)。ASのMACは、UL許可を、ASのPHYに送信することができる(ステップ25)。ASのPHYは、TXチェーンへのアクセスを要求することができる(ステップ26)。RX/TXチェーンアービタは、TXが、要求されたTXOP中に利用可能であり得ると判定することができ、アクセスが許可されたことを示す応答を提供することができる(ステップ27)。ASのPHYは、要求されたTXOP中に、ULをgNBに伝送することができる(ステップ28)。
RX/TXチェーンの半静的共有は、別のクラスのソリューションにおいて本明細書に記載されている。RX/TXチェーンの半静的共有は、RRC接続を中断又は解放することによって達成され得る。
ソリューションの一実施形態では、各SIMはDeRRCと関連付けられ、CoRRCは所与の時間にどのDeRRCがアクティブであるべきかを判定することができる。どのDeRRCがアクティブであるべきかの判定は、より高い上位層からのRRC設定要求の確立理由、AS接続のために構成された論理チャネル又は無線ベアラのQoS又は優先度、現在AS接続によって実行される手順、例えば、ランダムアクセス、ビーム障害検出及び回復に基づき得る。
図25は、RRC中断が、RX/TXチェーン2500の半静的共有を可能にするために使用される手順を示す。図25を参照すると、上位層(例えば、NAS)は、RRC接続がSIM1に対して確立されることを要求することができる(ステップ1)。SIM1のDeRRCは、新しいRRC接続を確立することを要求することができる(ステップ2)。CoRRCは、RRC接続を確立することができると判定することができる(ステップ3)。CoRRCは、要求が許可されたことを示す応答を提供することができる(ステップ4)。SIM1のDeRRCは、gNBとのRRC接続を確立することができる(ステップ5)。DeRRCは、gNBとのUL/DL通信を実行することができる(ステップ6)。上位層(例えば、NAS)は、RRC接続がSIM2に対して確立されることを要求することができる(ステップ7)。SIM2のDeRRCは、新しいRRC接続を確立することを要求することができる(ステップ8)。CoRRCは、SIM2のRRC接続を確立する場合がある前にSIM1のRRC接続を中断する必要があると判定することができる(ステップ9)。CoRRCは、RRC接続を中断する必要があることを示す、SIM1のDeRRCへの応答を提供することができる(ステップ10)。SIM1の専用サブレイヤは、RRC接続を中断することができる(ステップ11)。CoRRCは、新しいRRC接続を確立する要求が許可されたことを示す、SIM2のDeRRCに対する応答を提供することができる(ステップ12)。SIM2のDeRRCは、gNBとのRRC接続を確立する(ステップ13)。DeRRCは、gNBとのUL/DL通信を実行することができる(ステップ14)。
図26は、ソリューションRRC解放の別の態様が、RX/TXチェーンの半静的共有を可能にするために使用され得る例示的な手順2600を示す。図26を参照すると、上位層(例えば、NAS)は、RRC接続がSIM1に対して確立されることを要求することができる(ステップ1)。SIM1のDeRRCは、新しいRRC接続を確立することを要求することができる(ステップ2)。CoRRCは、RRC接続を確立することができると判定することができる(ステップ3)。CoRRCは、要求が許可されたことを示す応答を提供することができる(ステップ4)。SIM1のDeRRCは、gNBとのRRC接続を確立する(ステップ5)DeRRCは、gNBとのUL/DL通信を実行することができる(ステップ6)。上位層(例えば、NAS)は、RRC接続がSIM2に対して確立されることを要求することができる(ステップ7)。SIM2のDeRRCは、新しいRRC接続を確立することを要求することができる(ステップ8)。CoRRCは、SIM2のRRC接続を確立する場合がある前にSIM1のRRC接続を解放する必要があると判定することができる(ステップ9)。CoRRCは、SIM1のRRC接続を解放する必要があることを示す、SIM1のDeRRCへの応答を提供することができる(ステップ10)。SIM1の専用サブレイヤは、RRC接続を解放することができる(ステップ11)。SIM1の専用サブレイヤは、RRC接続が解放されたことを上位層に通知することができる(ステップ12)。CoRRCは、新しいRRC接続を確立する要求が許可されたことを示す、SIM2のDeRRCに対する応答を提供することができる(ステップ13)。SIM2のDeRRCは、gNBとのRRC接続を確立することができる(ステップ14)。DeRRCは、gNBとのUL/DL通信を実行することができる(ステップ15)。
MAC上でRX/TXチェーンを共有する効果が、本明細書に記載されている。本明細書に記載のソリューションは、全体的なMAC動作、具体的には、タイマ及びカウンタに依存するMAC手順に適用されて、それらの挙動を制御する。そのようなMAC手順には、ランダムアクセス、アップリンクタイムアライメントのメンテナンス、UL/DL HARQ動作、スケジューリング要求、バッファステータス報告、パワーヘッドルーム報告、不連続受信、SCellのアクティブ化/非アクティブ化、帯域幅部分動作、及びビーム障害検出及び回復が含まれるが、これらに限定されない。欠落したRXOP/TXOPは、これらのMAC手順に対する不必要かつ意図しない効果をもたらす可能性がある。欠落したRXOP/TXOPの知識をもって、これらのMAC手順は、RX/TXチェーンの共有が必要ではない場合の動作と同様に動作することができる。
MAC手順に対する効果に関して、RX/TXチェーンを共有する影響は、UL及びDLについて考慮される。MAC手順に応じて、欠落したRXOP及びTXOPの両方を考慮することができるか、又は欠落したRXOP又はTXOPのみを考慮することができる。アクセスが共有RXチェーン及びTXチェーンにどのように要求されるかは、異なり得る。
UEは、TXチェーンの共有を実行することができ、これによれば、共有TXチェーンへのアクセスが許可されない場合、伝送は実行されない。伝送前に共有TXチェーンへのアクセスが要求されると、アクセスが許可されたかどうかに関する指標がMACエンティティに提供される。別段の指定がない限り、MACエンティティは、アクセス要求結果に関係なく伝送が実行されたことを考慮する。アクセス要求が実行されない伝送の場合、アクセス要求は、許可されていると考えられる。
欠落したRXOP/TXOPのNWを通知することが、本明細書に記載されている。欠落したRXOP/TXOPの事前判定が可能であるシナリオでは、UEは、ネットワークに、欠落し得るRXOP/TXOPを通知する指標を伝送することができ、それによって、MAC挙動の適応が、ネットワークとUEとの間で調整されることを可能にする。MAC挙動が適応される方法は、所定の/事前構成され得、UEからの指標は、適応が発生し得るときにトリガするために使用され得る。代替的に、指標は、UEがMAC挙動をどのように適応させることができるかをネットワークに通知する情報で構成され得る。更に別の代替例では、MAC手順が適応される方法は、ネットワークとUEとの間で交渉することができる。
欠落したRXOPの事前判定が可能ではないが、TXチェーンは、欠落したRXOPが発生したときに利用可能であるシナリオでは、動的許可を介してスケジュールされたULリソースが利用可能ではない場合、欠落したRXOPの指標は、(例えば、構成された許可又はPUCCHを介して)事前に構成されるULリソースを使用して伝送され得る。
MACカウンタ及びタイマに対する効果が、本明細書に記載されている。RX/TXチェーンを共有することは、RXOP及びTXOPの喪失をもたらす可能性があり、これにより、伝送の成功を達成するためにより長い期間をもたらす。MAC手順は、手順の障害を宣言する前に、手順が完了する機会の数及び/又は期間を考慮する。RX/TXチェーンが共有されているときに手順を適切に実行するために、欠落したRXOP及びTXOPを考慮する必要がある。
例えば、ランダムアクセス、スケジューリング要求、及びビーム障害検出及び回復などの手順は、カウンタを使用して、手順の障害を宣言する前に、成功しない試行がどれくらい発生すべきかを制御する。そのようなカウンタをインクリメントすることは、障害を早期に宣言することを避けるために、欠落したRXOP及びTXOPを考慮するべきである。
既存のMAC手順は、PHYがMAC PDU又はUCI(例えば、SR)に対するUL送信を実行するように指示されるときに、UL伝送が発生すると仮定する。特定のMAC手順を用いたMAC CE及びUCIの伝送頻度を制限するために、禁止タイマは、禁止タイマが満了するまで、MAC CE又はUCIの再伝送を防止するように設定される。MAC CE又はUCIが伝送される頻度を適切に制御するために、及び必要に応じて伝送が発生することを確実にするために、これらの禁止タイマの設定は、欠落したTXOPを考慮する必要があり、例えば、TXOPが欠落しているため、伝送が発生しなかった場合、タイマは設定されるべきではない。
タイマは、UEがランダムアクセス及びDRXなどの手順のDLを監視するときを制御するために使用され得る。RXチェーンへのアクセスが許可されないシナリオでは、DLの監視は、不必要な電力消費をもたらし得、実行されるべきではない。したがって、そのようなタイマが稼働している間、DLを監視するべきかどうかを判定する場合に、欠落したRXOPを考慮すべきである。更に、いくつかのシナリオでは、欠落したRXOPを考慮してタイマを延長することが適切であり得る。UE及びgNBによって維持されたタイマが同期されることを確実にするために、UEは、gNBに、タイマが延長されることを示す指標を提供することができる。代替的に、UEは、タイマが延長されることを要求する指標を提供し、次いで、ネットワークは、DLにおいて指標を提供して、要求が許可されたかどうかを確認することができる。
喪失したTXOPによる効果が、本明細書に記載されている。MAC手順は、欠落したTXOPのため、UL伝送を実行することができない場合に、考慮に入れるべきである。例えば、共有TXチェーンへのアクセスが、HARQエンティティに示されたアップリンク許可に対応する持続時間にわたって許可されない場合、MAC PDUは生成されるべきではない。
ランダムアクセス手順及びランダムアクセスリソース選択などの特定のMAC手順に対する効果が、本明細書で説明される。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように、本明細書で提案されている。
PRACH機会を選択した後、MACエンティティは、選択されたPRACH機会に対応する持続期間にわたってTXチェーンへのアクセスを要求することができる。アクセスが許可されない場合、MACエンティティは、次の利用可能なPRACH機会を選択することができ、次の利用可能なPRACH機会に対応する持続期間にわたってTXチェーンへのアクセスを要求することができる。このプロセスは、選択されたPRACH機会のうちの1つに対応する持続時間にわたってTXチェーンへのアクセスが許可されるか、又はTXチェーンへのアクセスが全てのPRACH機会に対して失敗するまで繰り返され得る。TXチェーンへのアクセスが全てのPRACH機会に対して失敗する場合、ランダムアクセスリソース選択手順が繰り返される。MACエンティティは、バックオフ時間後までランダムアクセスリソース選択手順を実行することを遅延させることができ、バックオフ時間は、TXチェーンがビジーと見なされる持続時間以上であり得、すなわち、TXチェーンがアイドルであるまで、ランダムアクセスリソース選択手順が実行されない。代替的に、一定の、又はランダムに選択されたバックオフ時間を使用することができる。手順は、失敗したRXチェーンアクセス要求の数又は連続した失敗したRXチェーンアクセス要求の数をカウントするために定義され得る。カウントは、構成された持続時間にわたって判定され得、持続時間は、構成オプションとして無限大を含み得る。(連続した)失敗したRXチェーンアクセス要求のカウントが、構成された閾値を超える場合、ランダムアクセス手順は、正常に完了しないと見なされ、MACエンティティは、ランダムアクセス問題を上位層に示すことができる。
この挙動を実装するために、手順は次のように実行され得る。
1)ra-AssociationPeriodIndex及びsi-RequestPeriodが構成される場合、
2)構成される場合、及びTXチェーンへのアクセスが許可された場合に、ra-ssb-OccasionMaskIndexによって与えられた制限によって許可されたsi-RequestPeriodのra-AssociationPeriodIndexによって与えられた関連期間において、選択されたSSBに対応するPRACH機会から、次の利用可能なPRACH機会を判定し(MACエンティティは、選択されたSSBに対応するPRACH機会の中から、同じ確率でランダムにPRACH機会を選択することができる)。
1)それ以外の場合、SSBが上記に選択されている場合、
2)PDCCHによって構成又は示される場合、及びTXチェーンへのアクセスが許可される場合、ra-ssb-OccasionMaskIndexによって与えられた制限によって許可された、選択されたSSBに対応するPRACH機会から、次の利用可能なPRACH機会を判定する(MACエンティティは、選択されたSSBに対応する連続するPRACH機会の中から、同じ確率でランダムにPRACH機会を選択することができ、MACエンティティは、選択されたSSBに対応する次の利用可能なPRACH機会を判定するときに、測定ギャップの可能な発生を考慮に入れることができる)。
1)それ以外の場合、CSI-RSが上記に選択されている場合、
2)選択されたCSI-RSと関連付けられた無競合ランダムアクセスリソースがない場合、
3)選択されたCSI-RSと疑似コロケーションされている、candidateBeamRSListのSSBに対応して、構成される場合、及びTXチェーンへのアクセスが許可される場合、ra-ssb-OccasionMaskIndexによって与えられた制限によって許可された、PRACH機会から次の利用可能なPRACH機会を判定する(MACエンティティは、選択されたCSI-RSと疑似コロケーションされているSSBに対応して、PRACH機会の中から、同じ確率でランダムにPRACH機会を選択することができ、MACエンティティは、選択されたCSI-RSと疑似コロケーションされているSSBに対応する次の利用可能なPRACH機会を判定するときに、測定ギャップの可能な発生を考慮に入れることができる)。
2)それ以外の場合、
3)選択されたCSI-RSに対応し、TXチェーンへのアクセスが許可されるra-OccasionListのPRACH機会から次の利用可能なPRACH機会を判定する(MACエンティティは、選択されたCSI-RSに対応する、同時であるが異なるサブキャリアで発生するPRACH機会の中から、同じ確率でランダムにPRACH機会を選択することができ、MACエンティティは、選択されたCSI-RSに対応する次の利用可能なPRACH機会を判定するときに、測定ギャップの可能な発生を考慮に入れることができる。
1)PRACH機会が判定される場合、
2)ランダムアクセスプリアンブル伝送手順を実行する。
1)それ以外の場合、
2)NUM_FAILED_RX_CHAIN_ACCESS_REQUESTS>MAX_FAILED_TX_CHAIN_ACCESS_REQUESTS、
3)ランダムアクセスリソース選択がSpCellためのものである場合、
4)上位層に、ランダムアクセス問題を示す。
4)このランダムアクセス手順がSI要求についてトリガされた場合、
5)ランダムアクセス手順が正常に完了していないと見なす。
3)それ以外の場合、ランダムアクセスプリアンブルがSCell上で伝送される場合、
4)ランダムアクセス手順が正常に完了していないと見なす。
2)ランダムアクセス手順が完了していない場合、
3)TXチェーンへのアクセスが許可されない持続時間以上であるバックオフ時間を選択する。
3)バックオフ時間後にランダムアクセスリソース選択手順を実行する。
選択されたPRACH機会のTXチェーンにアクセスできないことに起因するランダムアクセスリソース選択手順の繰り返される障害を回避するために、ランダムアクセスリソース選択手順の失敗した試行中に選択されたSSB又はCSI-RSは、手順の後続の試行で選択するためのオプションとして除外され得る。代替的に、ランダムアクセスリソース選択手順の後続の試行は、TXチェーンが別のDeRRCによって使用されなくなるまで遅延され得る。
ランダムアクセスプリアンブル伝送
以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように、本明細書で提案されている。
ランダムアクセスリソース選択手順中に要求を作成する代替として、ランダムアクセスプリアンブル伝送手順中にTXチェーンへのアクセスを要求することができる。アクセスが許可されない場合、MACエンティティは、ランダムアクセスリソース選択手順に戻り、PREAMBLE_POWER_RAMPING_COUNTERもPREAMBLE_TRANSMISSION_COUNTERもインクリメントされない。
MACエンティティは、各ランダムアクセスプリアンブルについて、
1)選択されたPRACH機会に対応する持続時間にわたるTXチェーンへのアクセスが許可される場合、
2)PREAMBLE_TRANSMISSION_COUNTERが、1より大きい場合、
2)電力ランピングカウンタを中断する通知が、下位層から受信されていない場合、
2)選択されたSSB又はCSI-RSが、最後のランダムアクセスプリアンブル伝送の選択から変更されない場合、
3)PREAMBLE_POWER_RAMPING_COUNTERを1インクリメントする。
2)DELTA_PREAMBLEの値を選択し、
2)PREAMBLE_RECEIVED_TARGET_POWERをプpreambleReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_POWER_RAMPING_COUNTER-1) × PREAMBLE_POWER_RAMPING_STEPに設定し、
2)ビーム障害回復要求の無競合ランダムアクセスプリアンブルを除いて、ランダムアクセスプリアンブルが伝送されるPRACH機会と関連付けられたRA-RNTIを計算し、
2)RA-RNTI(利用可能な場合)、PREAMBLE_INDEX、及びPREAMBLE_RECEIVED_TARGET_POWERに対応する、選択されたPRACH機会を使用して、ランダムアクセスプリアンブルを伝送するように物理層に指示する。
1)それ以外の場合、
2)ランダムアクセスリソース選択手順を実行する。
ランダムアクセス応答受信
以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように、本明細書で提案されている。
RARウィンドウの開始は、ra-ResponseWindowの持続時間にわたってRXチェーンへのアクセスを取得することが条件である。アクセスが許可されない場合、ランダムアクセス応答受信は、成功しなかったと見なされ、MACエンティティはランダムアクセスリソース選択手順を実行する。MACエンティティは、バックオフ時間後までランダムアクセスリソース選択手順を実行することを遅延させることができ、バックオフ時間は、RXチェーンがビジーと見なされる持続時間以上であり得、すなわち、RXチェーンがアイドルであるまで、ランダムアクセスリソース選択手順が実行されない。代替的に、一定の、又はランダムに選択されたバックオフ時間を使用することができる。
この挙動を実装するために、手順は次のように定義され得、
1)ビーム障害回復要求のための無競合ランダムアクセスプリアンブルが、MACエンティティによって伝送された場合、
2)ランダムアクセスプリアンブル伝送の終了から第1のPDCCH機会で開始するBeamFailureRecoveryConfigで構成されたra-ResponseWindowに対応する持続時間にわたるRXチェーンへのアクセスが許可される場合、
3)ランダムアクセスプリアンブル伝送の終了から、第1のPDCCH機会で、BeamFailureRecoveryConfigで構成されたra-ResponseWindowを開始し、
3)ra-ResponseWindowが実行されている間に、C-RNTIによって識別されたSpCellのrecoverySearchSpaceIdによって示される探索空間上のPDCCH伝送を監視する。
1)それ以外の場合、
2)ランダムアクセスプリアンブル伝送の終了から第1のPDCCH機会で開始するRACH-ConfigCommonで構成されたra-ResponseWindowに対応する持続時間にわたるRXチェーンへのアクセスが許可される場合、
3)ランダムアクセスプリアンブル伝送の終了から、第1のPDCCH機会で、RACH-ConfigCommonで構成されたra-ResponseWindowを開始し、
3)ra-ResponseWindowが実行されている間に、RA-RNTIによって識別されたランダムアクセス応答のためのSpCellのPDCCHを監視する。
1)BeamFailureRecoveryConfigで構成されたra-ResponseWindowが満了し、C-RNTIにアドレス指定されたrecoverySearchSpaceIdによって示される探索空間上のPDCCH伝送が、プリアンブルが伝送されたサービングセル上で受信されていない場合、又は
1)RACH-ConfigCommonで構成されたra-ResponseWindowが満了し、伝送されたPREAMBLE_INDEXと一致するランダムアクセスプリアンブル識別子を含むランダムアクセス応答が受信されていない場合、又は
1)RXチェーンへのアクセスが許可されなかった場合、
2)ランダムアクセス応答受信が成功しなかったと見なし、
2)PREAMBLE_TRANSMISSION_COUNTERを1インクリメントし、
2)PREAMBLE_TRANSMISSION_COUNTER=preambleTransMax+1である場合、
3)ランダムアクセスプリアンブルがSpCell上で伝送される場合、
4)上位層にランダムアクセス問題を示し、
4)このランダムアクセス手順がSI要求についてトリガされた場合、
5)ランダムアクセス手順が正常に完了していないと見なす。
3)それ以外の場合、ランダムアクセスプリアンブルがSCell上で伝送される場合、
4)ランダムアクセス手順が正常に完了していないと見なす。
2)ランダムアクセス手順が完了していない場合、
3)RXチェーンへのアクセスが許可された場合、
4)0とPREAMBLE_BACKOFFとの間の均一な分布に従ってランダムバックオフ時間を選択し、
3)それ以外の場合、
4)RXチェーンへのアクセスが許可されない持続時間に対応するバックオフ時間を選択する。
3)無競合ランダムアクセスリソースを選択する基準が、バックオフ時間中に満たされる場合、
3)RXチェーンがIdleと見なされ、
4)ランダムアクセスリソース選択手順を実行し、
3)それ以外の場合、
4)バックオフ時間後にランダムアクセスリソース選択手順を実行する。
TXチェーンを共有する場合にMsg3のHARQを使用することを容易にするために、ランダムアクセス応答受信が成功したと見なされ、RARがUL許可を含む場合、MACエンティティは、多重化及びアセンブリエンティティから伝送するMAC PDUを取得し、RAR UL許可に対応する持続時間にわたるTXチェーンへのアクセスが許可されるか否かにかかわらず、Msg3バッファに記憶すべきである。
競合解決を本明細書に記載する。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように、本明細書で提案されている。
競合解決ウィンドウの開始は、ra-ContentionResolutionTimerの持続時間にわたってRXチェーンへのアクセスを取得することを条件とする。アクセスが許可されない場合、競合解決は、成功しなかったと見なされ、MACエンティティは、ランダムアクセスリソース選択手順を実行する。MACエンティティは、バックオフ時間後までランダムアクセスリソース選択手順を実行することを遅延させることができ、バックオフ時間は、RXチェーンがビジーと見なされる持続時間以上であり得、すなわち、RXチェーンがアイドルであるまで、ランダムアクセスリソース選択手順が実行されない。代替的に、一定の、又はランダムに選択されたバックオフ時間を使用することができる。
HARQがMsg3に使用されることに留意されたい。したがって、ra-ContentionResolutionTimerが満了する前にgNBによってMsg3が受信されない場合、DCIを使用して再伝送をスケジュールすることができる。TXチェーンを共有する場合にMsg3のHARQを使用することを容易にするために、ContentionResolutionTimerが実行されている間のra-ContentionResolutionTimerの開始及びPDCCHの監視は、RAR UL許可又はDCIを介してスケジュールされた再伝送に対応する持続時間にわたってTXチェーンへのアクセスを取得することを条件とする。
この挙動を実装するために、手順は次のように定義され得、
1)Msg3(再)伝送の終了後の第1のシンボルにおけるra-ContentionResolutionTimerに対応する持続時間にわたるRXチェーンへのアクセスが許可される場合、
2)ra-ContentionResolutionTimerを開始し、Msg3伝送の終了後の第1のシンボルにおける各HARQ再伝送でra-ContentionResolutionTimerを再開し、
2)ra-ContentionResolutionTimerが実行されている間に、測定ギャップの可能性のある発生に関係なく、PDCCHを監視し、
1)ra-ContentionResolutionTimerが満了する場合、又は
1)RXチェーンへのアクセスが許可されなかった場合、
2)TEMPORARY_C-RNTIを廃棄し、
2)競合解決が成功しなかったと見なす。
1)競合解決が成功しなかったと見なされる場合、
2)Msg3バッファ内のMAC PDUの伝送に使用されるHARQバッファをフラッシュし、
2)PREAMBLE_TRANSMISSION_COUNTERを1インクリメントし、
2)PREAMBLE_TRANSMISSION_COUNTER=preambleTransMax+1である場合、
3)上位層にランダムアクセス問題を示す。
3)このランダムアクセス手順がSI要求についてトリガされた場合、
4)ランダムアクセス手順が正常に完了していないと見なす。
2)ランダムアクセス手順が完了していない場合、
3)RXチェーンへのアクセスが許可された場合、
4)0とPREAMBLE_BACKOFFとの間の均一な分布に従ってランダムバックオフ時間を選択し、
3)それ以外の場合、
4)RXチェーンへのアクセスが許可されない持続時間に対応するバックオフ時間を選択する。
3)無競合ランダムアクセスリソースを選択する基準が、バックオフ時間中に満たされる場合、
3)RXチェーンがIdleと見なされ、
4)ランダムアクセスリソース選択手順を実行し、
3)それ以外の場合、
4)バックオフ時間後にランダムアクセスリソース選択手順を実行する。
アップリンクタイムアライメントのメンテナンスが、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
欠落したRXOPは、タイミングアドバンスコマンドMAC CEを欠落させる可能性があり、MACエンティティに、timeAlignmentTimerの満了に不必要と関連付けられたアクションを実行させることができる。timeAlignmentTimerが、欠落したRXOP中に満了するシナリオについて、timeAlignmentTimerは、欠落したRXOPの期間、延長され得、それにより、タイミングアドバンスコマンドMAC CEを伝送する追加の機会をネットワークに提供する。
この挙動を実装するために、手順は次のように定義され得、
1)timeAlignmentTimerが満了する場合、
2)満了が、欠落したRXOP中に生じる場合、
3)欠落したRXOPに対応する持続時間、timeAlignmentTimerを延長する。
2)それ以外の場合、
3)timeAlignmentTimerがPTAGと関連付けられている場合、
4)全てのサービングセルについて全てのHARQバッファをフラッシュし、
4)構成される場合、全てのサービングセルについてPUCCHを解放するようにRRCに通知し、
4)構成される場合、全てのサービングセルについてSRSを解放するようにRRCに通知し、
4)任意の構成されたダウンリンク割り当て及び構成されたアップリンク許可をクリアし、
4)半永続的CSIレポートについて任意のPUSCHリソースをクリアし、
4)全ての実行されているtimeAlignmentTimersが満了したと見なし、
4)全てのTAGのNTAを維持する。
3)timeAlignmentTimerがSTAGと関連付けられている場合、このTAGに属する全てのサービングセルについて、
4)全てのHARQバッファをフラッシュし、
4)構成される場合、PUCCHを解放するようにRRCに通知し、
4)構成される場合、SRSを解放するようにRRCに通知し、
4)任意の構成されたダウンリンク割り当て及び構成されたアップリンク許可をクリアし、
4)半永続的CSIレポートについて任意のPUSCHリソースをクリアし、
4)このTAGのNTAを維持する。
HARQ動作及び論理チャネル優先順位付けが、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
TXチェーンへのアクセスが、HARQエンティティに示されたアップリンク許可に対応する持続時間にわたって許可されない場合、MAC PDUは生成され得ない。
この挙動を実装するために、HARQエンティティ手順のステップは、TXチェーンにアクセスすることを条件とし得、手順は、以下のように定義され得る。
各アップリンク許可について、HARQエンティティは、
1)この許可に対応する持続時間にわたるTXチェーンへのアクセスが許可される場合、
2)<HARQエンティティ手順のステップ>
代替的に、HARQエンティティ手順のステップは、変更されないままであり得、MACエンティティがHARQエンティティのMAC PDUを生成しない場合に対応するLCP手順のステップは、以下のように定義され得る。
以下の条件が満たされる場合、MACエンティティは、HARQエンティティのMAC PDUを生成しない場合があり、
TXチェーンへのアクセスが、HARQエンティティに示されたアップリンク許可に対応する持続時間にわたって許可されない、又は
MACエンティティが、値が真のskipUplinkTxDynamicで構成されており、HARQエンティティに示された許可が、C-RNTIにアドレス指定されたか、又はHARQエンティティに示された許可が、構成されたアップリンク許可であり、
このPUSCH伝送には、非周期的CSIが要求されない、及び
MAC PDUが、ゼロMAC SDUを含み、
MAC PDUが、周期的BSRのみを含み、任意のLCGに利用可能なデータがないか、又はMAC PDUは、パディングBSRのみを含む。
スケジューリング要求が、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
手順は、失敗したTXチェーンアクセス要求の数又は連続した失敗したTXチェーンアクセス要求の数をカウントするために定義され得る。カウントは、構成された持続時間にわたって判定され得、持続時間は、構成オプションとして無限大を含み得る。(連続した)失敗したTXチェーンアクセス要求のカウントが、構成された閾値を超える場合、ランダムアクセス手順が開始される。
この挙動を実装するために、手順は次のように定義され得、
1)MACエンティティが、保留中SRのために構成された有効なPUCCHリソースを有しない場合、又は
1)NUM_FAILED_TX_CHAIN_ACCESS_REQUESTS>MAX_FAILED_TX_CHAIN_ACCESS_REQUESTS、
2)SpCell上でランダムアクセス手順を開始し、保留中のSRをキャンセルする。
TXチェーンにアクセスすることができない結果として、不必要に、後続のSR伝送を遅延させ、誤ってsr-TransMaxに到達することを回避するために、SR_COUNTERは、インクリメントのみされるべきであり、sr_ProhibitTimerは、TXチェーンへのアクセスが許可される場合にのみ開始されるべきである。
この挙動を実装するために、手順は次のように定義され得、
2)SR伝送機会のためのPUCCHリソースが、UL-SCHリソースと重複しない場合、
3)SR_COUNTER<sr-TransMaxである場合、
4)SRのための1つの有効なPUCCHリソース上でSRを信号伝達するように物理層に指示し、
4)TXチェーンへのアクセスが許可される場合、
5)SR_COUNTERを1インクリメントし、
5)sr-ProhibitTimerを開始する。
バッファステータス報告が、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
ULリソースがBSR MAC CEに対応することができるかどうかをチェックするとき、MACエンティティはまた、TXチェーンへのアクセスが、ULリソースに対応する持続時間にわたって許可されるかどうかをチェックする。アクセスが許可されない場合、BSR MAC CEは生成されず、タイマperiodicBSR-Timer及びretxBSR-Timerは(再)開始されない。更に、レギュラーBSRがトリガされたときにアクセスが許可されない場合、及びlogicalChannelSR-DelayTimerが実行されていない場合、スケジューリング要求がトリガされる。
この挙動を実装するために、手順は次のように定義され得、
1)バッファステータス報告手順が、少なくとも1つのBSRがトリガされ、キャンセルされていないと判定することができる場合、
2)UL-SCHリソースが新しい伝送に利用可能であり、UL-SCHリソースが、論理チャネル優先順位付けの結果として、BSR MAC CEに加えてそのサブヘッダに対応することができる場合、
2)TXチェーンへのアクセスが、ULリソースに対応する持続時間にわたって許可される場合、
3)多重化及びアセンブリ手順に、BSR MAC CEを生成するように指示し、
3)全ての生成されたBSRが、長い又は短い短縮BSRである場合を除いて、periodicBSR-Timerを開始又は再開し、
3)retxBSR-Timerを開始又は再開する。
2)レギュラーBSRがトリガされ、logicalChannelSR-DelayTimerが実行されていない場合、
3)新しい伝送に利用可能なUL-SCHリソースがない場合、又は
3)MACエンティティが、構成されたアップリンク許可で構成されており、レギュラーBSRが、logicalChannelSR-Maskが偽に設定される論理チャネルに対してトリガされた場合、又は
3)新しい伝送に利用可能なUL-SCHリソースが、BSRをトリガした論理チャネルのために構成されたLCPマッピング制限を満たさない場合、又は
3)TXチェーンへのアクセスが、ULリソースに対応する持続時間にわたって許可されない場合、
4)スケジューリング要求をトリガする。
パワーヘッドルーム報告が、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
ULリソースがPHRのMAC CEに対応することができるかどうかをチェックするとき、MACエンティティはまた、TXチェーンへのアクセスが、ULリソースに対応する持続時間にわたって許可されるかどうかをチェックする。アクセスが許可されない場合、PHR MAC CEは生成されず、トリガされたPHRはキャンセルされず、タイマ、phr-PeriodicTimer及びphr-ProhibitTimerは(再)開始されない。
この挙動を実装するために、手順は次のように定義され得、
MACエンティティが新しい伝送のために割り当てられたULリソースを有する場合、MACエンティティは、
1)最後のMACリセット以降の新しい伝送に割り当てられた第1のULリソースである場合、
2)phr-PeriodicTimerを開始し、
1)パワーヘッドルーム報告手順が、少なくとも1つのPHRがトリガされ、キャンセルされていないと判定することができる場合、
1)割り当てられたULリソースが、LCPの結果として、MACエンティティが伝送するように構成されているPHRのMAC CEに加えてそのサブヘッダに対応することができる場合、
1)TXチェーンへのアクセスが、ULリソースに対応する持続時間にわたって許可される場合、
2)値が真のmultiplePHRが構成されている場合、
3)任意のMACエンティティと関連付けられた構成されたアップリンクを有する各アクティブ化されたサービングセルについて、
4)対応するアップリンクキャリアのタイプ1又はタイプ3のパワーヘッドルームの値を取得し、
4)このMACエンティティが、このサービングセルでの伝送のために割り当てられたULリソースを有する場合、又は
4)他のMACエンティティが、構成された場合、このサービングセル上での伝送のために割り当てられたULリソースを有し、phr-ModeOtherCGが、上位層によって真に設定される場合、
5)物理層から、対応するPCMAX,f,cフィールドの値を取得する。
3)値が真のphr-Type2OtherCellが構成される場合、
4)他のMACエンティティがE-UTRA MACエンティティである場合、
5)他のMACエンティティ(すなわち、E-UTRA MACエンティティ)のSpCellのタイプ2パワーヘッドルームの値を取得し、
5)phr-ModeOtherCGが上位層によって真に設定される場合、
6)物理層から、他のMACエンティティ(すなわち、E-UTRA MACエンティティ)のSpCellの対応するPCMAX,f,cフィールドの値を取得する。
3)多重化及びアセンブリ手順に、物理層によって報告された値に基づいて、複数のエントリPHR MAC CEを生成及び伝送するように指示する。
2)それ以外の場合(すなわち、単一のエントリPHR形式が使用される)、
3)PCellの対応するアップリンクキャリアの物理層から、タイプ1パワーヘッドルームの値を取得し、
3)物理層から、対応するPCMAX,f,cフィールドの値を取得し、
3)多重化及びアセンブリ手順に、物理層によって報告された値に基づいて、単一のエントリPHR MAC CEを生成及び伝送するように指示する。
2)phr-PeriodicTimerを開始又は再開し、
2)phr-ProhibitTimerを開始又は再開し、
2)全てのトリガされたPHRをキャンセルする。
不連続受信(DRX)が、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
MACエンティティは、drx-onDurationTimerの期間にわたってDRXサイクルの開始時にRXチェーンへのアクセスを要求することができる。アクセスが許可される場合、通常のDRX動作が行われ、例えば、drx-onDurationTimerを開始し、PDCCHを監視する、など。アクセスが許可されない場合、drx-onDurationTimerが開始されず、MACエンティティはDRXに入る。代替的に、MACエンティティは、drx-onDurationTimerを、欠落したRXOPに対応する期間、延長することができる。
drx-InactivityTimerは、PDCCHの最後の成功した復号から、MACエンティティがPDCCHを正常に復号するのを待機する期間である。drx-InactivityTimerが満了する前にPDCCHが正常に復号されない場合、MACエンティティはDRXに入る。MACエンティティは、PDCCHの成功した復号後にdrx-InactivityTimerを開始又は再開する。drx-InactivityTimerが(再)開始されると、MACエンティティは、drx-InactivityTimerの期間にわたってRXチェーンへのアクセスを要求することができる。アクセスが許可される場合、通常のDRX動作が行われる。アクセスが許可されない場合、drx-InactivityTimerは停止され、MACエンティティはDRXに入る。代替的に、MACエンティティは、drx-InactivityTimerを、欠落したRXOPに対応する期間、延長又は一時停止することができる。
drx-HARQ-RTT-TimerDLは、PDCCHがDL伝送を示すか、又はMAC PDUが、構成されたダウンリンク割り当てで受信される場合に開始される。このタイマが開始されると、MACエンティティは、drx-HARQ-RTT-TimerDLの期間にわたってRXチェーンへのアクセスを要求することができる。drx-HARQ-RTT-TimerDLの満了時に、アクセスが許可されているか否かにかかわらず、対応するHARQプロセスのデータが正常に復号されなかった場合、drx-RetransmissionTimerDLが開始される。このタイマが開始されると、MACエンティティは、drx-RetransmissionTimerDLの期間にわたってRXチェーンへのアクセスを要求することができる。アクセスが許可される場合、通常のDRX動作が行われる。アクセスが許可されない場合、drx-RetransmissionTimerDLは停止され、MACエンティティはDRXに入る。代替的に、MACエンティティは、欠落したRXOPに対応する期間、drx-RetransmissionTimerDLを拡張又は一時停止することができる。
TXチェーンを共有する場合にHARQを使用することを容易にするために、欠落したTXOPのため、MAC PDUが、構成された/ダイナミックアップリンク許可で伝送されないシナリオについて、対応するHARQプロセスのdrx-HARQ-RTT-TimerULが依然として開始される。また、drx-HARQ-RTT-TimerULの満了時に、drx-RetransmissionTimerULが開始される。
欠落したRXOPのため、DRXタイマが一時停止/延長されると、TXチェーンが利用可能である場合、指標をgNBに伝送して、アクションに通知することができる。
SCellのアクティブ化/非アクティブ化が、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
実行されている場合、SCellをスケジューリングするサービングセルについて、所与のSCellのsCellDeactivationTimerが、欠落したRXOP中に一時停止され得る。
欠落したTXOPのため、MAC PDUが、構成された/動的アップリンク許可で伝送されない場合、SCellと関連付けられたsCellDeactivationTimerを再開するべきである。
帯域幅部分動作が、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
欠落したRXOPは、DL割り当て及びUL許可を欠落させ、bwp-InactivityTimerをリセットしないようにすることができ、これは誤ったBWPスイッチにつながる可能性がある。bwp-InactivityTimerが、欠落したRXOP中に満了するシナリオでは、bwp-InactivityTimerは、欠落したRXOPの期間、延長され得、それによって、bwp-InactivityTimerの再開をトリガする追加の機会をネットワークに提供する。
この挙動を実装するために、手順は次のように定義され得、
2)アクティブDL BWPと関連付けられたbwp-InactivityTimerが満了する場合、
3)満了が、欠落したRXOP中に生じる場合、
4)bwp-InactivityTimerを、欠落したRXOPに対応する時間、延長する。
3)それ以外の場合、
4)defaultDownlinkBWP-Idが構成されている場合、
5)defaultDownlinkBWP-Idによって示されるBWPへのBWP切り替えを実行する。
4)それ以外の場合、
5)initialDownlinkBWPへのBWP切り替えを実行する。
ビーム障害検出及び回復が、本明細書に記載されている。以下の手順は、RX/TXチェーンを共有する効果を考慮に入れるように本明細書で提案されている。
実行されている場合、beamFailureDetectionTimerは、欠落したRXOPに対応する期間、延長又は一時停止され得る。
この挙動を実装するために、手順は、以下を含むように定義され得る。
1)欠落したRXOPの指標が受信され、beamFailureDetectionTimerが実行されている場合、
2)欠落したRXOPの期間、beamFailureDetectionTimerを延長する。
下位層が、欠落したRXOP中にビーム障害インスタンス指標を生成しない場合があると想定され得る場合、手順に対する更なる修正は必要とされない場合がある。しかしながら、これを想定することができない場合、欠落したRXOP中に下位層から受信したビーム障害インスタンス指標が無視されるように、手順を更に修正することができる。
この挙動を実装するために、手順は次のように修正され得る。
1)ビーム障害インスタンス指標が、欠落したと見なされないRXOP中に下位層から受信された場合、
2)beamFailureDetectionTimerを開始又は再開し、
2)BFI_COUNTERを1インクリメントし、
2)BFI_COUNTER>=beamFailureInstanceMaxCountである場合、
3)SpCell上でランダムアクセス手順を開始する。
本明細書に記載のTX又はRX能力共有のためのスキームのいずれにおいても、UEのTX能力は、伝送機の数、伝送パワーバジェット、アップリンク(UpLink、UL)多重入力多重出力(Multiple Input Multiple Output、MIMO)能力、ULキャリアアグリゲーション(Carrier Aggregation、CA)能力、UL帯域幅部分(BandWitdh Part、BWP)動作能力のうちの1つ以上を含み得る。同様に、UEのRX能力は、受信機の数、ダウンリンク(DownLink、DL)MIMO能力、DL CA能力、DL帯域幅部分(BWP)動作能力のうちの1つ以上を含み得る。UEは、複数のネットワークのうちの1つ以上に、これらの能力のうちの1つ以上を信号伝達することができる。更に、UEは、これらの能力の変化を、複数のネットワークのうちの1つ以上に信号伝達することができる。例えば、ネットワークからデュアル接続受信を実行する2つの受信機を有するUEは、UEの受信機のうちの1つが別のネットワークからの受信のために再割り当てされる場合、その受信能力が1つの受信機に制限されていることをネットワークに示し得る。
第3世代パートナーシッププロジェクト(3GPP)は、サービスのコーディング、セキュリティ、及び品質の作業を含む、無線アクセス、コアトランスポートネットワーク、及びサービス能力を含む移動体通信ネットワーク技術の技術規格を開発する。最近の無線アクセス技術(radio access technology、RAT)標準には、WCDMA(一般に3Gと呼ばれる)、LTE(一般に4Gと呼ばれる)、及びLTE-Advanced標準が含まれる。3GPPは、「5G」とも呼ばれる新しい無線(New Radio、NR)と呼ばれる次世代のセルラー技術の標準化に取り組み始めた。3GPP NR標準開発は、次世代無線アクセス技術(新しいRAT)の定義を含むと予想され、これは、6GHz未満の新しいフレキシブル無線アクセスの提供、及び6GHzを超える新しいウルトラモバイルブロードバンド無線アクセスの提供を含むと予想される。フレキシブル無線アクセスは、6GHz未満の新しいスペクトルにおける新しい非後方互換性無線アクセスからなると予想され、同じスペクトルで一緒に多重化されて、分岐要件を有する一連の広範な3GPP NR使用事例に対処することができる異なる動作モードを含むことが予想される。ウルトラモバイルブロードバンドは、例えば屋内用途及びホットスポットのためのウルトラモバイルブロードバンドアクセスの機会を提供し得るセンチメートル波及びミリ波スペクトルを含むと予想される。特に、ウルトラモバイルブロードバンドは、センチメートル波及びミリ波固有のデザイン最適化を用いて、6GHz未満のフレキシブル無線アクセスと共通のデザインフレームワークを共有することが予想される。
3GPPは、NRがサポートすることが予想される様々な使用事例を識別し、データ転送速度、待ち時間、及びモビリティのための多種多様なユーザ経験要件をもたらす。使用事例としては、以下の一般的なカテゴリ、すなわち、拡張されたモバイルブロードバンド(例えば、過密領域のブロードバンドアクセス、屋内超高速ブロードバンドアクセス、クラウド内のブロードバンドアクセス、あらゆる場所で50Mbps以上、超低コストブロードバンドアクセス、自動車内のモバイルブロードバンド)、クリティカル通信、大規模マシンタイプ通信、ネットワーク運用(例えば、ネットワークスライシング、ルーティング、マイグレーション及び相互作用、並びにエネルギー節約)、車車間通信(Vehicle-to-Vehicle Communication、V2V)、路車間通信(Vehicle-to-Infrastructure Communication、V2I)、ネットワーク通信(Vehicle-to-Network Communication、V2N)、歩車間通信(Vehicle-to-Pedestrian Communication、V2P)、及び他のエンティティとの車両通信のいずれかを含み得る拡張車車間路車間(enhanced vehicle-to-everything、eV2X)通信を含み得る。これらのカテゴリにおける特定のサービス及びアプリケーションには、数例を挙げると、例えば、監視及びセンサネットワーク、デバイスリモート制御、双方向リモートコントロール、パーソナルクラウドコンピューティング、ビデオストリーミング、無線クラウドベースのオフィス、第1応答者接続性、自動車用ecall、災害警告、リアルタイムゲーミング、マルチパーソンビデオ通話、自律運転、拡張現実、タッチインターネット、及び仮想現実が含まれる。これらの使用事例などの全てが本明細書で企図される。
図27Aは、本明細書に記載及び特許請求される方法及び装置が具体化され得る例示的な通信システム100の一実施形態を例示する。示されるように、例示的な通信システム100は、無線伝送/受信ユニット(WTRU)102a、102b、102c、102d、102e、102f、及び/又は102g(一般的又は集合的に、WTRU102と称され得る)、無線アクセスネットワーク(RAN)103/104/105/103b/104b/105b、コアネットワーク106/107/109、公衆交換電話網(public switched telephone network、PSTN)108、インターネット110、他のネットワーク112、及びV2Xサーバ(又はProSe機能及びサーバ)113を含むことができるが、開示された実施形態は、任意の数のWTRU、基地局、ネットワーク、及び/又はネットワーク要素を企図することが理解されよう。WTRU102a、102b、102c、102d、102e、102f、102gの各々は、無線環境において動作し、及び/又は通信するように構成された任意のタイプの装置又はデバイスであり得る。各WTRU102a、102b、102c、102d、102e、102f、102gは、携帯無線通信装置として図27A~図27Eに示されているが、多種多様な使用事例が5G無線通信について企図され、各WTRUは、ほんの一例として、ユーザ機器(user equipment、UE)、移動局、固定又はモバイル加入者ユニット、ページャ、携帯電話、パーソナルデジタルアシスタント(personal digital assistant、PDA)、スマートフォン、ラップトップ、タブレット、ネットブック、ノートブックコンピュータ、パーソナルコンピュータ、無線センサ、家電製品、スマートウォッチ又はスマートクロージングなどのウェアラブルデバイス、医療又はeヘルスデバイス、ロボット、産業機器、ドローン、車、トラック、電車、飛行機などの車両などを含む、無線信号を伝送及び/又は受信するように構成された任意のタイプの装置若しくはデバイスを含むか、又は任意のタイプの装置又はデバイスにおいて具体化され得ることが理解される。
通信システム100はまた、基地局114a、及び基地局114bを含み得る。基地局114aは、コアネットワーク106/107/109、インターネット110、及び/又は他のネットワーク112などの、1つ以上の通信ネットワークへのアクセスを容易にするために、WTRU102a、102b、102cのうちの少なくとも1つと無線でインターフェース接続するように構成された任意のタイプのデバイスであり得る。基地局114bは、コアネットワーク106/107/109、インターネット110、他のネットワーク112、及び/又はV2Xサーバ(又はProSe機能及びサーバ)113などの1つ以上の通信ネットワークへのアクセスを容易にするために、RRH(リモート無線ヘッド)118a、118b、TRP(伝送及び受信点)119a、119b、及び/又はRSU(路側機)120a及び120bのうちの少なくとも1つと有線で及び/又は無線でインターフェース接続するように構成された任意のタイプのデバイスであり得る。RRH118a、118bは、コアネットワーク106/107/109、インターネット110、及び/又は他のネットワーク112などの、1つ以上の通信ネットワークへのアクセスを容易にするために、WTRU102cのうちの少なくとも1つと無線でインターフェース接続するように構成された任意のタイプのデバイスであり得る。TRP119a、119bは、コアネットワーク106/107/109、インターネット110、及び/又は他のネットワーク112などの、1つ以上の通信ネットワークへのアクセスを容易にするために、WTRU102dのうちの少なくとも1つと無線でインターフェース接続するように構成された任意のタイプのデバイスであり得る。RSU120a、120bは、コアネットワーク106/107/109、インターネット110、他のネットワーク112、及び/又はV2Xサーバ(ProSe機能及びサーバ)113など、1つ以上の通信ネットワークへのアクセスを容易にするために、WTRU102e又は102fのうちの少なくとも1つと無線でインターフェース接続するように構成された任意のタイプのデバイスであり得る。例として、基地局114a、114bは、基地トランシーバ局(base transceiver station、BTS)、ノードB、eNodeB、ホームノードB、ホームeNodeB、サイトコントローラ、アクセスポイント(access point、AP)、無線ルータなどであってもよい。基地局114a、114bは各々単一の要素として示されているが、基地局114a、114bは、任意の数の相互接続された基地局及び/又はネットワーク要素を含み得ることが理解されるであろう。
基地局114aは、基地局コントローラ(base station controller、BSC)、無線ネットワークコントローラ(radio network controller、RNC)、中継ノードなどの他の基地局及び/又はネットワーク要素(図示せず)も含み得るRAN103/104/105の一部であり得る。基地局114bは、基地局コントローラ(BSC)、無線ネットワークコントローラ(RNC)、中継ノードなどの他の基地局及び/又はネットワーク要素(図示せず)も含み得る、RAN103b/104b/105bの一部であり得る。基地局114aは、セル(図示せず)と称され得る、特定の地理的領域内で無線信号を伝送及び/又は受信するように構成され得る。基地局114bは、セル(図示せず)と称され得る、特定の地理的領域内で有線及び/又は無線信号を伝送及び/又は受信するように構成され得る。セルは更にセルセクタに分割され得る。例えば、基地局114aと関連付けられたセルは、3つのセクタに分割され得る。したがって、一実施形態では、基地局114aは、3つのトランシーバ、例えば、セルのセクタごとに1つのトランシーバを含み得る。一実施形態では、基地局114aは、多重入力多重出力(MIMO)技術を用い得、したがって、セルの各セクタに対して複数のトランシーバを利用し得る。
基地局114aは、エアインターフェース115/116/117を介してWTRU102a、102b、102cのうちの1つ以上と通信し得、これは、任意の好適な無線通信リンク(例えば、無線周波数(radio frequency、RF)、マイクロ波、赤外線(infrared、IR)、紫外線(ultraviolet、UV)、可視光、センチメートル波、ミリ波、など)であり得る。エアインターフェース115/116/117は、任意の好適な無線アクセス技術(RAT)を使用して確立され得る。
基地局114bは、有線又はエアインターフェース115b/116b/117bを介してRRH118a、118b、TRP119a、119b、及び/又はRSU120a及び120bのうちの1つ以上と通信し得、これは、任意の好適な有線(例えば、ケーブル、光ファイバなど)又は無線通信リンク(例えば、無線周波数(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、可視光、センチメートル波、ミリ波など)であり得る。エアインターフェース115b/116b/117bは、任意の好適な無線アクセス技術(RAT)を使用して確立され得る。
RRH118a、118b、TRP119a、119b、及び/又はRSU120a、120bは、エアインターフェース115c/116c/117cを介してWTRU102c、102d、102e、102fのうちの1つ以上と通信し得、これは、任意の好適な無線通信リンク(例えば、無線周波数(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、可視光、センチメートル波、ミリ波など)であり得る。エアインターフェース115c/116c/117cは、任意の好適な無線アクセス技術(RAT)を使用して確立され得る。
WTRU102a、102b、102c、102d、102e、102f、及び/又は102gは、エアインターフェース115d/116d/117d(図示せず)を介して互いに通信し得、これは、任意の好適な無線通信リンク(例えば、無線周波数(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、可視光、センチメートル波、ミリ波など)であり得る。エアインターフェース115d/116d/117dは、任意の好適な無線アクセス技術(RAT)を使用して確立され得る。
より具体的には、上記のように、通信システム100は、複数のアクセスシステムであり得、CDMA、TDMA、FDMA、OFDMA、SC-FDMAなどの1つ以上のチャネルアクセススキームを用いることができる。例えば、RAN103/104/105の基地局114a、及びWTRU102a、102b、102c、又はRAN103b/104b/105bのRRH118a、118b、TRP119a、119b、及びRSU120a、120b、並びにWTRU102c、102d、102e、102fは、ユニバーサル移動体通信システム(Universal Mobile Telecommunications System、UMTS)、地上無線アクセス(Terrestrial Radio Access、UTRA)などの無線技術を実装し得、これは、広帯域CDMA(wideband CDMA、WCDMA)を使用してそれぞれエアインターフェース115/116/117又は115c/116c/117cを確立し得る。WCDMAは、高速パケットアクセス(High-Speed Packet Access、HSPA)及び/又は進化型HSPA(HSPA+)などの通信プロトコルを含み得る。HSPAは、高速ダウンリンクパケットアクセス(High-Speed Downlink Packet Access、HSDPA)及び/又は高速アップリンクパケットアクセス(High-Speed Uplink Packet Access、HSUPA)を含み得る。
一実施形態では、基地局114a及びWTRU102a、102b、102c、又はRAN103b/104b/105bのRRH118a、118b、TRP119a、119b、及び/又はRSU120b、120b、並びにWTRU102c、102dは、進化型UMTS地上無線アクセス(Evolved UMTS Terrestrial Radio Access、E-UTRA)などの無線技術を実装し得、これは、ロングタームエボリューション(Long Term Evolution、LTE)及び/又はLTE-Advanced(LTE-A)を使用して、それぞれエアインターフェース115/116/117又は115c/116c/117cを確立し得る。将来、エアインターフェース115/116/117は、3GPP NR技術を実装し得る。LTE及びLTE-A技術には、LTE D2D及びV2X技術及びインターフェース(サイドリンク通信など)が含まれる。3GPP NR技術は、NR V2X技術及びインターフェース(サイドリンク通信など)を含む。
一実施形態では、RAN103/104/105の基地局114a、及びWTRU102a、102b、102c、又はRAN103b/104b/105bのRRH118a、118b、TRP119a、119b、及び/又はRSU120a、120b、並びにWTRU102c、102d、102e、102fは、IEEE802.16(例えば、(ワイマックス(Worldwide Interoperability for Microwave Access、WiMAX)、CDMA2000、CDMA2000 1x、CDMA2000 EV-DO、暫定規格2000(IS-2000)、暫定規格95(IS-95)、暫定規格856(IS-856)、汎欧州デジタル移動電話方式(Global System for Mobile communications、GSM)、GSM Evolution(Enhanced Data rates for GSM Evolution、EDGE)、GSM EDGE(GERAN)などの無線技術を実装し得る。
図27Aの基地局114cは、例えば、無線ルータ、ホームノードB、ホームeNodeB、又はアクセスポイントであってもよく、事業所、家庭、車両、キャンパスなどの局所的エリアにおける無線接続を容易にするために、任意の好適なRATを利用することができる。一実施形態では、基地局114c及びWTRU102eは、IEEE802.11などの無線技術を実装して、無線ローカルエリアネットワーク(wireless local area network、WLAN)を確立し得る。一実施形態では、基地局114c及びWTRU102dは、IEEE802.15などの無線技術を実装して、無線パーソナルエリアネットワーク(wireless personal area network、WPAN)を確立することができる。更に別の実施形態では、基地局114c及びWTRU102eは、セルラベースのRAT(例えば、WCDMA、CDMA2000、GSM、LTE、LTE-Aなど)を利用して、ピコセル又はフェムトセルを確立することができる。図27Aに示すように、基地局114bは、インターネット110への直接接続を有し得る。したがって、基地局114cは、コアネットワーク106/107/109を介してインターネット110にアクセスする必要がない場合がある。
RAN103/104/105及びRAN103b/104b/105bは、コアネットワーク106/107/109と通信し得、これは、音声、データ、アプリケーション、及び/又はボイスオーバインターネットプロトコル(voice over internet protocol、VoIP)サービスをWTRU102a、102b、102c、102dのうちの1つ以上に提供するように構成された、任意のタイプのネットワークであり得る。例えば、コアネットワーク106/107/109は、呼制御、請求サービス、モバイルロケーションベースのサービス、プリペイド発呼、インターネット接続性、動画配信などを提供し得、及び/又はユーザ認証など、高レベルセキュリティ機能を実行し得る。
図27Aには示されていないが、RAN103/104/105及び/又はRAN103b/104b/105b及び/又はコアネットワーク106/107/109は、RAN103/104/105及び/若しくはRAN103b/104b/105bと同じRAT、又は異なるRATを採用する他のRANと直接又は間接的に通信し得ることが理解されよう。例えば、E-UTRA無線技術を利用し得るRAN103/104/105及び/又はRAN103b/104b/105bに接続されることに加えて、コアネットワーク106/107/109はまた、GSM無線技術を用いて別のRAN(図示せず)と通信し得る。
コアネットワーク106/107/109はまた、PSTN108、インターネット110、及び/又は他のネットワーク112にアクセスするために、WTRU102a、102b、102c、102d、102eのためのゲートウェイとして機能し得る。PSTN108は、基本電話サービス(plain old telephone service、POTS)を提供する公衆交換電話網を含み得る。インターネット110は、TCP/IPインターネットプロトコルスイートの伝送制御プロトコル(transmission control protocol、TCP)、ユーザデータグラムプロトコル(datagram protocol、UDP)、及びインターネットプロトコル(internet protocol、IP)などの共通通信プロトコルを使用する、相互接続されたコンピュータネットワーク及びデバイスのグローバルシステムを含み得る。ネットワーク112は、他のサービスプロバイダによって所有及び/又は操作される、有線又は無線通信ネットワークを含み得る。例えば、ネットワーク112は、RAN103/104/105及び/若しくはRAN103b/104b/105bと同じRAT、又は異なるRATを採用し得る、1つ以上のRANに接続された別のコアネットワークを含み得る。
通信システム100におけるWTRU102a、102b、102c、102dのいくつか又は全ては、マルチモード能力を含んでもよく、例えば、WTRU102a、102b、102c、102d及び102eは、異なる無線リンクを介して異なる無線ネットワークと通信するための複数のトランシーバを含み得る。例えば、図27Aに示されるWTRU102eは、セルラベースの無線技術を用いることができる基地局114a、及びIEEE802無線技術を用いることができる基地局114cと通信するように構成され得る。
図27Bは、例えば、WTRU102など、本明細書に例示される実施形態による、無線通信のために構成された例示的な装置又はデバイスのブロック図である。図27Bに示すように、例示的なWTRU102は、プロセッサ118、トランシーバ120、送/受信要素122、スピーカ/マイクロフォン124、キーパッド126、ディスプレイ/タッチパッド/インジケータ128、非リムーバブルメモリ130、リムーバブルメモリ132、電源134、全地球測位システム(global positioning system、GPS)チップセット136、及び/又は他の周辺機器138を含み得る。WTRU102は、一実施形態との一貫性を有しながら、前述の要素の任意の部分的組み合わせを含み得ることが理解されよう。また、実施形態は、とりわけ、トランシーバステーション(BTS)、ノードB、サイトコントローラ、アクセスポイント(AP)、ホームノードB、進化型ホームノードB(evolved home node-B、eNodeB)、ホーム進化型ノードB(home evolved node-B、HeNB)、ホーム進化型ノードBゲートウェイ、及びプロキシノードなどに限定されない、基地局114a及び114b、及び/又は基地局114a及び114bが表し得るノードが、図27Bに描写され、本明細書に記載された要素のいくつか又は全てを含み得ることを企図している。
プロセッサ118は、汎用プロセッサ、専用プロセッサ、従来のプロセッサ、デジタル信号プロセッサ(digital signal processor、DSP)、複数のマイクロプロセッサ、DSPコアに関連付けられた1つ以上のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(Application Specific Integrated Circuit、ASIC)、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array、FPGA)回路、任意の他のタイプの集積回路(integrated circuit、IC)、状態機械などであり得る。プロセッサ118は、信号コーディング、データ処理、電力制御、入力/出力処理、及び/又はWTRU102が無線環境で動作することを可能にする任意の他の機能を実行し得る。プロセッサ118は、送/受信要素122に結合され得るトランシーバ120に結合され得る。図27Bは、プロセッサ118及びトランシーバ120を別個のコンポーネントとして示すが、プロセッサ118及びトランシーバ120は、電子パッケージ又はチップにおいて一緒に統合され得ることが理解されよう。
送/受信要素122は、エアインターフェース115/116/117を介して、基地局(例えば、基地局114a)に信号を伝送するか、又は基地局(例えば、基地局114a)から信号を受信するように構成され得る。例えば、一実施形態では、送/受信要素122は、RF信号を伝送及び/又は受信するように構成されたアンテナであり得る。一実施形態では、送/受信要素122は、例えば、IR、UV又は可視光信号を送信及び/又は受信するように構成されたエミッタ/検出器であり得る。更に別の実施形態では、送/受信要素122は、RF信号及び光信号の両方を伝送及び/又は受信するように構成され得る。送/受信要素122は、無線信号の任意の組み合わせを送信及び/又は受信するように構成され得ることが理解されよう。
加えて、送/受信要素122は、単一の要素として図27Bに描写されているが、WTRU102は、任意の数の送/受信要素122を含み得る。より具体的には、WTRU102は、MIMO技術を採用し得る。したがって、一実施形態では、WTRU102は、エアインターフェース115/116/117を介して無線信号を伝送及び受信するための2つ以上の送/受信要素122(例えば、多重アンテナ)を含み得る。
トランシーバ120は、送/受信要素122によって送信される信号を変調し、送/受信要素122によって受信される信号を復調するように構成され得る。上記のように、WTRU102は、マルチモード能力を有し得る。したがって、トランシーバ120は、例えばUTRA及びIEEE802.11などの複数のRATを介してWTRU102が通信することを可能にするための複数のトランシーバを含み得る。
WTRU102のプロセッサ118は、スピーカ/マイクロフォン124、キーパッド126、及び/又はディスプレイ/タッチパッド/インジケータ128(例えば、液晶表示(liquid crystal display、LCD)ディスプレイユニット若しくは有機発光ダイオード(organic light-emitting diode、OLED)ディスプレイユニット)に結合され得、それらからユーザ入力データを受信し得る。プロセッサ118はまた、ユーザデータをスピーカ/マイクロフォン124、キーパッド126、及び/又はディスプレイ/タッチパッド/インジケータ128に出力し得る。更に、プロセッサ118は、非リムーバブルメモリ130及び/又はリムーバブルメモリ132などの任意のタイプの好適なメモリから情報にアクセスし、当該メモリにデータを記憶し得る。非リムーバブルメモリ130は、ランダムアクセスメモリ(random-access memory、RAM)、読み取り専用メモリ(read-only memory、ROM)、ハードディスク又は任意の他のタイプのメモリ記憶デバイスを含み得る。リムーバブルメモリ132は、加入者識別モジュール(SIM)カード、メモリスティック、セキュアデジタル(secure digital、SD)メモリカードなどを含み得る。一実施形態では、プロセッサ118は、サーバ又はホームコンピュータ(図示せず)上など、WTRU102上に物理的に配置されていないメモリから情報にアクセスし、当該メモリにデータを記憶し得る。
プロセッサ118は、電源134から電力を受信し得、WTRU102における他のコンポーネントに電力を分配し、かつ/又は制御するように構成され得る。電源134は、WTRU102に電力を供給するための任意の好適なデバイスであり得る。例えば、電源134は、1つ以上の乾式セル電池、太陽電池、燃料電池などを含み得る。
プロセッサ118はまた、GPSチップセット136に結合され得、これは、WTRU102の現在の場所に関する場所情報(例えば、経度及び緯度)を提供するように構成され得る。GPSチップセット136からの情報に加えて又はその代わりに、WTRU102は、基地局(例えば、基地局114a、114b)からエアインターフェース115/116/117を介して場所情報を受信し、かつ/又は2つ以上の近くの基地局から受信されている信号のタイミングに基づいて、その場所を決定し得る。WTRU102は、一実施形態との一貫性を有しながら、任意の好適な場所決定方法によって場所情報を取得し得ることが理解されよう。
プロセッサ118は、他の周辺機器138に更に結合され得、これは、追加の特徴、機能、及び/又は有線若しくは無線接続を提供する1つ以上のソフトウェア及び/又はハードウェアモジュールを含み得る。例えば、周辺機器138は、加速度計、生体認証(例えば、指紋認証)センサ、電子コンパス、衛星トランシーバ、デジタルカメラ(写真又は動画用)、ユニバーサルシリアルバス(universal serial bus、USB)ポート、又は他の相互接続インターフェース、振動デバイス、テレビトランシーバ、ハンズフリーヘッドセット、Bluetooth(登録商標)モジュール、周波数変調(FM)無線ユニット、デジタル音楽プレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュールなどの様々なセンサを含み得る。
WTRU102は、センサ、家電製品、スマートウォッチ若しくはスマートクロージングなどのウェアラブルデバイス、医療若しくはeヘルスデバイス、ロボット、産業機器、ドローン、車、トラック、列車、又は航空機などの車両などの他の装置又はデバイスで具体化され得る。WTRU102は、周辺機器138のうちの1つを含み得る相互接続インターフェースなどの1つ以上の相互接続インターフェースを介して、そのような装置又はデバイスの他の構成要素、モジュール、又はシステムに接続することができる。
図27Cは、一実施形態によるRAN103及びコアネットワーク106のシステム図である。上記のように、RAN103は、UTRA無線技術を用いて、エアインターフェース115を介してWTRU102a、102b、102cと通信し得る。RAN103はまた、コアネットワーク106と通信し得る。図27Cに示すように、RAN103は、ノードB140a、140b、140cを含むことができ、これらは各々、エアインターフェース115を介してWTRU102a、102b、102cと通信するための1つ以上のトランシーバを含み得る。ノードB140a、140b、140cは各々、RAN103内の特定のセル(図示せず)と関連付けられ得る。RAN103はまた、RNC142a、142bを含み得る。RAN103は、一実施形態との一貫性を保ちながら、任意の数のノードB及びRNCを含み得ることが理解されよう。
図27Cに示されるように、ノードB140a、140bは、RNC142aと通信することができる。更に、ノードB140cは、RNC142bと通信することができる。ノードB140a、140b、140cは、Iubインターフェースを介してそれぞれのRNC142a、142bと通信し得る。RNC142a、142bは、Iurインターフェースを介して互いに通信することができる。RNC142a、142bの各々は、それが接続されるそれぞれのノードB140a、140b、140cを制御するように構成され得る。加えて、RNC142a、142bの各々は、外部ループ電力制御、ロード制御、アドミッション制御、パケットスケジューリング、ハンドオーバ制御、マクロダイバーシティ、セキュリティ機能、データ暗号化などの他の機能を実行又は支持するように構成され得る。
図27Cに示されるコアネットワーク106は、メディアゲートウェイ(media gateway、MGW)144、モバイルスイッチングセンタ(mobile switching center、MSC)146、サービングGPRSサポートノード(serving GPRS support node、SGSN)148、及び/又はゲートウェイGPRSサポートノード(gateway GPRS support node、GGSN)150を含み得る。前述の要素の各々は、コアネットワーク106の一部として描写されているが、これらの要素のいずれも、コアネットワークオペレータ以外のエンティティによって所有及び/又は操作され得ることが理解されよう。
RAN103内のRNC142aは、IuCSインターフェースを介してコアネットワーク106内のMSC146に接続され得る。MSC146は、MGW144に接続され得る。MSC146及びMGW144は、WTRU102a、102b、102cと従来の地上回線通信デバイスとの間の通信を容易にするために、PSTN108などの回路交換ネットワークへのアクセスをWTRU102a、102b、102cに提供し得る。
RAN103内のRNC142aはまた、IuPSインターフェースを介してコアネットワーク106内のSGSN148に接続され得る。SGSN148は、GGSN150に接続され得る。SGSN148及びGGSN150は、WTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にするために、インターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cに提供し得る。
上記のように、コアネットワーク106はまた、他のサービスプロバイダによって所有及び/又は操作される他の有線又は無線ネットワークを含み得るネットワーク112に接続され得る。
図27Dは、一実施形態によるRAN104及びコアネットワーク107のシステム図である。上記のように、RAN104は、E-UTRA無線技術を用いて、エアインターフェース116を介してWTRU102a、102b、及び102cと通信し得る。RAN104はまた、コアネットワーク107と通信し得る。
RAN104は、eNode-B160a、160b、160cを含み得るが、RAN104は、一実施形態との一貫性を有しながら、任意の数のeNode-Bを含み得ることが理解されよう。eNode-B160a、160b、160cは各々、エアインターフェース116を介してWTRU102a、102b、102cと通信するための1つ以上のトランシーバを含み得る。一実施形態では、eNode-B160a、160b、160cは、MIMO技術を実装し得る。したがって、eNode-B160aは、例えば、複数のアンテナを使用して、WTRU102aに無線信号を伝送し、WTRU102aから無線信号を受信することができる。
eNode-B160a、160b及び160cの各々は、特定のセル(図示せず)と関連付けられ得、アップリンク及び/又はダウンリンクにおいて、無線リソース管理決定、ハンドオーバ決定、ユーザのスケジューリングなどを処理するように構成され得る。図27Dに示されるように、eNode-B160a、160b、160cは、X2インターフェースを介して互いに通信し得る。
図27Dに示されるコアネットワーク107は、モビリティ管理ゲートウェイ(mobility management gateway、MME)162、サービングゲートウェイ164、及びパケットデータネットワーク(packet data network、PDN)ゲートウェイ166を含み得る。前述の要素の各々は、コアネットワーク107の一部として描写されているが、これらの要素のいずれも、コアネットワークオペレータ以外のエンティティによって所有及び/又は操作され得ることが理解されよう。
MME162は、S1インターフェースを介して、RAN104内のeNode-B160a、160b及び160cの各々に接続され得、制御ノードとして機能し得る。例えば、MME162は、WTRU102a、102b、102c、ベアラアクティブ化/非アクティブ化のユーザを認証し、WTRU102a、102b、102cの初期アタッチ中に特定のサービングゲートウェイを選択する役割を果たし得る。MME162はまた、RAN104と、GSM及び/又はWCDMAなどの他の無線技術を用いる他のRAN(図示せず)との間の交換のための制御プレーン機能を提供し得る。
サービングゲートウェイ164は、S1インターフェースを介してRAN104におけるeNode-B160a、160b、160cの各々に接続され得る。サービングゲートウェイ164は、一般に、ユーザデータパケットを、WTRU102a、102b、102cに/WTRU102a、102b、102cからルーティング及び転送し得る。サービングゲートウェイ164は、eNodeB間ハンドオーバ中にユーザプレーンをアンカリングすること、ダウンリンクデータがWTRU102a、102b、102cに利用可能であるときにページングをトリガすること、WTRU102a、102b、102cのコンテキストを管理及び記憶することなど、他の機能を実行し得る。
サービングゲートウェイ164は、PDNゲートウェイ166に接続され得、PDNゲートウェイ166は、インターネット110など、パケット交換ネットワークへのアクセスをWTRU102a、102b、102cに提供して、WTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にし得る。
コアネットワーク107は、他のネットワークとの通信を容易にし得る。例えば、コアネットワーク107は、PSTN108など、回線交換ネットワークへのアクセスをWTRU102a、102b、102cに提供して、WTRU102a、102b、102cと従来の固定電話回線通信デバイスとの間の通信を容易にし得る。例えば、コアネットワーク107は、コアネットワーク107とPSTN108との間のインターフェースとして機能するIPゲートウェイ(例えば、IPマルチメディアサブシステム(IP multimedia subsystem、IMS)サーバ)を含むか、又はそれと通信し得る。加えて、コアネットワーク107は、他のネットワーク112へのアクセスをWTRU102a、102b、102cに提供し得、他のネットワーク112は、他のサービスプロバイダによって所有及び/又は操作される他の有線及び/又は無線ネットワークを含み得る。
図27Eは、一実施形態によるRAN105及びコアネットワーク109のシステム図である。RAN105は、IEEE802.16無線技術を採用して、エアインターフェース117を介してWTRU102a、102b、及び102cと通信するアクセスサービスネットワーク(access service network、ASN)であり得る。以下で更に説明するように、WTRU102a、102b、102c、RAN105、及びコアネットワーク109の異なる機能エンティティ間の通信リンクは、基準点として定義され得る。
図27Eに示されるように、RAN105は、基地局180a、180b、180c、及びASNゲートウェイ182を含むことができるが、RAN105は、実施形態との一貫性を有しながら、任意の数の基地局及びASNゲートウェイを含み得ることが理解されよう。基地局180a、180b、180cは各々、RAN105内の特定のセルと関連付けられ得、エアインターフェース117を介してWTRU102a、102b、102cと通信するための1つ以上のトランシーバを含み得る。一実施形態では、基地局180a、180b、180cは、MIMO技術を実装し得る。したがって、基地局180aは、例えば、複数のアンテナを使用して、WTRU102aに無線信号を伝送し、WTRU102aから無線信号を受信することができる。基地局180a、180b、180cはまた、ハンドオフトリガ、トンネル確立、無線リソース管理、トラフィック分類、サービス品質(quality of service、QoS)ポリシー施行などのモビリティ管理機能を提供することができる。ASNゲートウェイ182は、トラフィックアグリゲーションポイントとして機能し得、ページング、加入者プロファイルのキャッシング、コアネットワーク109へのルーティングなどの役割を果たし得る。
WTRU102a、102b、102cとRAN105との間のエアインターフェース117は、IEEE802.16仕様を実装するR1基準点として定義され得る。加えて、WTRU102a、102b、及び102cの各々は、コアネットワーク109との論理インターフェース(図示せず)を確立することができる。WTRU102a、102b、102cとコアネットワーク109との間の論理インターフェースは、認証、承認、IPホスト構成管理、及び/又はモビリティ管理に使用され得るR2基準点として定義され得る。
基地局180a、180b、及び180cの各々の間の通信リンクは、WTRUハンドオーバ及び基地局間のデータの転送を容易にするためのプロトコルを含むR8基準点として定義され得る。基地局180a、180b、180cとASNゲートウェイ182との間の通信リンクは、R6基準点として定義され得る。R6基準点は、WTRU102a、102b、102cの各々と関連付けられたモビリティイベントに基づいてモビリティ管理を容易にするためのプロトコルを含み得る。
図27Eに示すように、RAN105は、コアネットワーク109に接続され得る。RAN105とコアネットワーク109との間の通信リンクは、例えば、データ転送及びモビリティ管理能力を容易にするためのプロトコルを含むR3基準点として定義され得る。コアネットワーク109は、モバイルIPホームエージェント(mobile IP home agent、MIP-HA)184、認証、承認、アカウンティング(authentication,authorization,accounting、AAA)サーバ186、及びゲートウェイ188を含み得る。前述の要素の各々は、コアネットワーク109の一部として描写されているが、これらの要素のいずれも、コアネットワークオペレータ以外のエンティティによって所有及び/又は操作され得ることが理解されよう。
MIP-HAは、IPアドレス管理の役割を果たし得、WTRU102a、102b、及び102cが、異なるASN及び/又は異なるコアネットワーク間でローミングすることを可能にし得る。MIP-HA184は、WTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にするために、インターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cに提供し得る。AAAサーバ186は、ユーザ認証、及びユーザサービスをサポートする役割を果たし得ことができる。ゲートウェイ188は、他のネットワークと相互作用することを容易にし得る。例えば、ゲートウェイ188は、PSTN108など、回線交換ネットワークへのアクセスをWTRU102a、102b、102cに提供して、WTRU102a、102b、102cと従来の固定電話回線通信デバイスとの間の通信を容易にし得る。加えて、ゲートウェイ188は、他のネットワーク112へのアクセスをWTRU102a、102b、102cに提供し得、他のネットワーク112は、他のサービスプロバイダによって所有及び/又は操作される他の有線及び/又は無線ネットワークを含み得る。
図27Eには示されていないが、RAN105は他のASNに接続され得、コアネットワーク109は他のコアネットワークに接続され得ることが理解されよう。RAN105と他のASNとの間の通信リンクは、RAN105と他のASNとの間のWTRU102a、102b、102cのモビリティを調整するためのプロトコルを含み得るR4基準点として定義され得る。コアネットワーク109と他のコアネットワークとの間の通信リンクは、ホームコアネットワークとアクセスされたコアネットワークとの間の相互作用を容易にするためのプロトコルを含み得るR5基準として定義され得る。
本明細書に記載され、図27A、図27C、図27D、及び図27Eに示されるコアネットワークエンティティは、特定の既存の3GPP仕様においてそれらのエンティティに与えられる名前によって識別されるが、将来のそれらのエンティティ及び機能は、他の名前によって識別され得、将来の3GPP NR仕様を含む、3GPPによって公開された将来の仕様において、特定のエンティティ又は機能が組み合わされ得ることが理解される。したがって、図27A、図27B、図27C、図27D、及び図27Eに記載及び例示される特定のネットワークエンティティ及び機能は、ほんの一例として提供されており、本明細書に開示及び特許請求される主題は、現在定義されているか又は将来定義されているかにかかわらず、任意の同様の通信システムで具体化又は実装され得ることが理解される。
図27Fは、RAN103/104/105、コアネットワーク106/107/109、PSTN108、インターネット110、又は他のネットワーク112内の特定のノード又は機能エンティティなどの、図27A、図27C、図27D、及び図27Eに例示される通信ネットワークの1つ以上の装置が具体化され得る、例示的なコンピューティングシステム90のブロック図である。コンピューティングシステム90は、コンピュータ又はサーバを含み得、主にコンピュータ可読命令によって制御され得、これは、ソフトウェアの形態であり得るか、又はそのようなソフトウェアが格納又はアクセスされるあらゆる手段であり得る。そのようなコンピュータ可読命令は、プロセッサ91内で実行されて、コンピューティングシステム90を作業させることができる。プロセッサ91は、汎用プロセッサ、専用プロセッサ、従来のプロセッサ、デジタル信号プロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアに関連付けられた1つ以上のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)回路、任意の他のタイプの集積回路(IC)、状態機械などであり得る。プロセッサ91は、信号コーディング、データ処理、電力制御、入力/出力処理、及び/又はコンピューティングシステム90が通信ネットワークで動作することを可能にする任意の他の機能を実行し得る。コプロセッサ81は、メインプロセッサ91とは異なる任意選択のプロセッサであり、追加の機能を実行し得るか、又はプロセッサ91を支援し得る。プロセッサ91及び/又はコプロセッサ81は、本明細書に開示される方法及び装置に関連するデータを受信、生成、及び処理することができる。
動作中、プロセッサ91は、命令をフェッチ、復号、及び実行し、コンピューティングシステムのメインデータ転送経路、システムバス80を介して他のリソースに情報を伝送する。そのようなシステムバスは、コンピューティングシステム90内の構成要素を接続し、データ交換のための媒体を定義する。システムバス80は、典型的には、データを送信するためのデータライン、アドレスを送信するためのアドレスライン、及び割り込みを送信し、システムバスを動作させるための制御ラインを含む。そのようなシステムバス80の例は、PCI(周辺構成要素相互接続)バスである。
システムバス80に結合されたメモリは、ランダムアクセスメモリ(RAM)82及び読み取り専用メモリ(ROM)93を含む。そのようなメモリは、情報が記憶及び取り出されることを可能にする回路を含む。ROM93は一般に、容易に修正することができない記憶されたデータを含む。RAM82に記憶されたデータは、プロセッサ91又は他のハードウェアデバイスによって読み取られるか、又は変更され得る。RAM82及び/又はROM93へのアクセスは、メモリコントローラ92によって制御され得る。メモリコントローラ92は、命令が実行されると、仮想アドレスを物理アドレスに変換するアドレス変換機能を提供することができる。メモリコントローラ92はまた、システム内のプロセスを分離し、システムプロセスをユーザプロセスから分離するメモリ保護機能を提供し得る。したがって、第1のモードで実行されるプログラムは、それ自体のプロセス仮想アドレス空間によってマッピングされたメモリのみにアクセスすることができ、プロセス間のメモリ共有が設定されていない限り、別のプロセスの仮想アドレス空間内のメモリにアクセスすることができない。
加えて、コンピューティングシステム90は、プリンタ94、キーボード84、マウス95、及びディスクドライブ85などの、プロセッサ91から周辺機器に命令を通信する役割を果たす周辺機器コントローラ83を含み得る。
ディスプレイコントローラ96によって制御されるディスプレイ86は、コンピューティングシステム90によって生成された視覚的出力を表示するために使用される。そのような視覚的出力は、テキスト、グラフィック、アニメーショングラフィック、及び動画を含み得る。視覚的出力は、グラフィカルユーザインターフェース(graphical user interface、GUI)の形態で提供され得る。ディスプレイ86は、CRTベースのビデオディスプレイ、LCDベースのフラットパネルディスプレイ、ガスプラズマベースのフラットパネルディスプレイ、又はタッチパネルで実装され得る。ディスプレイコントローラ96は、ディスプレイ86に送信されるビデオ信号を生成するために必要な電子部品を含む。
更に、コンピューティングシステム90は、例えば、コンピューティングシステム90を、図27A、27B、27C、27D、及び27EのRAN103/104/105、コアネットワーク106/107/109、PSTN108、インターネット110、又は他のネットワーク112に接続するために使用され得る、例えばネットワークアダプタ97などの通信回路を含み得、コンピューティングシステム90が、それらのネットワークの他のノード又は機能的エンティティと通信することを可能にすることができる。通信回路は、単独で、又はプロセッサ91と組み合わせて、本明細書に記載の特定の装置、ノード、又は機能エンティティの伝送及び受信ステップを実行するために使用され得る。
図27Gは、本明細書に記載及び特許請求される方法及び装置が具体化され得る例示的な通信システム111の一実施形態を例示する。示されるように、例示的な通信システム111は、無線伝送/受信ユニット(WTRU)A、B、C、D、E、F、基地局、V2Xサーバ、並びにRSU A及びBを含み得るが、開示された実施形態は、任意の数のWTRU、基地局、ネットワーク、及び/又はネットワーク要素を企図することが理解されよう。1つ又はいくつかのWTRU A、B、C、D、Eは、ネットワークの範囲外(例えば、図において、破線として示されるセルカバレッジ境界の外)であり得る。WTRU A、B、CはV2Xグループを形成し、このときWTRU Aはグループリードであり、WTRU B及びCはグループメンバーである。WTRU A、B、C、D、E、Fは、Uuインターフェース又はサイドリンク(PC5)インターフェースを介して通信することができる。
本明細書に記載の装置、システム、方法、及びプロセスのいずれか又は全ては、コンピュータ可読記憶媒体上に記憶されたコンピュータ実行可能命令(例えば、プログラムコード)の形態で具体化され得、その命令は、プロセッサ118又は91などのプロセッサによって実行されるときに、プロセッサに、本明細書に記載のシステム、方法、及びプロセスを実行及び/又は実装させることが理解される。具体的には、本明細書に記載のステップ、動作、又は機能のいずれかは、無線及び/又は有線ネットワーク通信のために構成された装置又はコンピューティングシステムのプロセッサ上で実行される、そのようなコンピュータ実行可能命令の形態で実装され得る。コンピュータ可読記憶媒体は、任意の非一時的な(例えば、有形又は物理的)方法又は技術で実装される、情報を記憶するための、揮発性及び不揮発性、リムーバブル及び非リムーバブルな媒体を含むが、そのようなコンピュータ可読記憶媒体は、信号を含まない。コンピュータ可読記憶媒体には、RAM、ROM、EEPROM、フラッシュメモリ、又は他のメモリ技術、CD-ROM、デジタル多用途ディスク(digital versatile disks、DVD)又は他の光ディスク記憶、磁気カセット、磁気テープ、磁気ディスク記憶装置、若しくは他の磁気記憶デバイス、又は所望の情報を記憶するために使用され得、コンピューティングシステムによってアクセスされ得る任意の他の有形若しくは物理媒体が含まれる。

Claims (20)

  1. プロセッサと、メモリと、を含む無線通信デバイスであって、前記無線通信デバイスは、前記無線通信デバイスの前記プロセッサによって実行されるときに、前記無線通信デバイスに、
    ダウンリンク情報を判定することであって、前記ダウンリンク情報は、第1の受信(RX)機会(RXOP)、第1のRX能力、第2のRXOP、又は第2のRX能力のうちの1つ以上を示す、判定すること、
    アップリンク情報を判定することであって、前記アップリンク情報は、第1の伝送(TX)機会(TXOP)、第1のTX能力、第2のTXOP、又は第2のTX能力のうちの1つ以上を示す、判定すること、
    前記ダウンリンク情報又は前記アップリンク情報に基づいて、
    第1の加入者識別モジュール(SIM)の第1のネットワークとの第1の接続、又は
    第2のSIMの第2のネットワークとの第2の接続のうちの1つ以上を確立すること、及び
    前記第1のネットワークからの第1の受信、前記第1のネットワークへの第1の伝送、前記第2のネットワークからの第2の受信、又は前記第2のネットワークへの第2の伝送のうちの1つ以上を実行することを行わせる、前記無線通信デバイスの前記メモリに記憶されたコンピュータ実行可能命令を更に含む、無線通信デバイス。
  2. 前記コンピュータ実行可能命令は、前記無線通信デバイスの前記プロセッサによって実行されるときに、前記無線通信デバイスに、
    前記第1のネットワークに、前記判定された第1のRXOP若しくは第1のRX能力を信号伝達すること、又は
    前記第2のネットワークに、前記判定された第2のRXOP若しくは第2のRX能力を信号伝達することと、を更に行わせる、請求項1に記載の無線通信デバイス。
  3. 前記無線通信デバイスは、無線リソース制御(RRC)層、媒体アクセス制御(MAC)層、及び物理(PHY)層を含み、前記アップリンク情報の前記判定又は前記ダウンリンク情報の前記判定は、アービタ機能によって実行され、前記アービタ機能は、前記RRC層、前記MAC層、前記PHY層、前記NAS層、又はそれらの組み合わせによって実装される、請求項1に記載の無線通信デバイス。
  4. 前記第1のRX能力は、前記第1のネットワークからの受信のための数若しくは受信機、ダウンリンク(DL)多重入力多重出力(MIMO)能力、DLキャリアアグリゲーション(CA)能力、又はDL帯域幅部分(BWP)動作能力を含み、
    前記第2のRX能力は、前記第2のネットワークからの受信のためのいくつかの受信機、DL MIMO能力、DL CA能力、又はDL BWP動作能力を含み、
    前記第1のTX能力は、前記第1のネットワークへの伝送のためのいくつかの伝送機、アップリンク(UL)MIMO能力、UL CA能力、UL BWP動作能力、又は前記第1のネットワークへの伝送に割り当てられたパワーバジェットを含み、
    前記第2のTX能力は、前記第2のネットワークへの伝送のためのいくつかの伝送機、UL MIMO能力、UL CA能力、UL BWP動作能力、又は前記第2のネットワークへの伝送に割り当てられたパワーバジェットを含む、請求項1に記載の無線通信デバイス。
  5. 前記第1のネットワーク及び前記第2のネットワークにわたって共有される受信機チェーン又は伝送機チェーンは、前記第1の伝送、前記第2の伝送、前記第1の受信、又は前記第2の受信を実行する、請求項1に記載の無線通信デバイス。
  6. 前記無線通信デバイスは、媒体アクセス制御(MAC)層を含み、前記受信機チェーン又は伝送器チェーンの前記共有は、前記RXOP又はTXOPの喪失に応答して、1つ以上のMACカウンタ又はタイマを適応させることに基づいている、請求項5に記載の無線通信デバイス。
  7. ランダムアクセス競合解決ウィンドウの開始は、受信機チェーン又は伝送機チェーンへのアクセスが条件とされている、請求項1に記載の無線通信デバイス。
  8. ランダムアクセス応答(RAR)ウィンドウの開始は、受信機チェーン又は伝送チェーンへのアクセスが条件とされている、請求項1に記載の無線通信デバイス。
  9. 前記無線通信デバイスは、媒体アクセス制御(MAC)層を含み、前記コンピュータ実行可能命令は、前記無線通信デバイスの前記プロセッサによって実行されるときに、前記無線通信デバイスに、
    前記第1のネットワーク又は第2のネットワークに、前記第1のRXOP、前記第1のTXOP、前記第2のRXOP、又は前記第2のTXOPが欠落したという指標を送信して、MAC層インターフェースの挙動の適応を引き起こすことを更に行わせる、請求項1に記載の無線通信デバイス。
  10. 前記指標は、適応されたMAC挙動のタイプを示す情報を提供する、請求項9に記載の無線通信デバイス。
  11. 前記適応されたMAC挙動のタイプは、
    前記第1のRXOP、前記第1のTXOP、前記第2のRXOP、又は前記第2のTXOPの喪失に応答して、1つ以上のMACカウンタを適応させることであって、前記適応された1つ以上のMACカウンタは、早期に障害を宣言することを回避するようにインクリメントされる、適応させることを含む、請求項10に無線通信デバイス。
  12. 前記適応されたMAC挙動のタイプは、
    前記第1のRXOP、前記第1のTXOP、前記第2のRXOP、又は前記第2のTXOPの喪失に応答して、1つ以上のMACタイマを適応させることであって、前記適応された1つ以上のMACタイマは、早期に障害を宣言することを回避するように延長される、適応させることを含む、請求項10に無線通信デバイス。
  13. 前記適応されたMAC挙動のタイプは、
    バックオフ時間後まで、ランダムアクセスリソース選択手順を実行することを遅延させることであって、前記バックオフ時間は、伝送機チェーンがビジーである期間と同じか、又はそれよりも大きい、遅延させることを含む、請求項10に無線通信デバイス。
  14. 前記コンピュータ実行可能命令は、前記無線通信デバイスの前記プロセッサによって実行されるときに、前記無線通信デバイスに、
    いくつかのTXOP又はRXOP欠落が閾値を超えるときに、伝送障害又は受信障害の指標を、1つ以上の上位層に送信することを更に行わせる、請求項9に無線通信デバイス。
  15. 前記無線通信デバイスは、媒体アクセス制御(MAC)層を含み、前記MAC層は、共通MAC層インターフェース及び専用MAC層インターフェースを含み、前記専用MAC層インターフェースは、前記第1のSIM又は前記第2のSIMと関連付けられており、前記共通MAC層インターフェースは、前記第1のSIM及び前記第2のSIMの両方にわたって共有される、請求項1に記載の無線通信デバイス。
  16. 前記無線通信デバイスは、共通非アクセス層(NAS)インターフェース及び専用NASインターフェースを含み、前記専用NASインターフェースは、前記第1のSIM又は前記第2のSIMと関連付けられており、前記共通NASインターフェースは、前記第1のSIM及び前記第2のSIMの両方にわたって共有される、請求項1に記載の無線通信デバイス。
  17. 前記無線通信デバイスは、無線リソース制御(RRC)インターフェース及び専用RRCインターフェースを含み、前記専用RRCインターフェースは、前記第1のSIM又は前記第2のSIMと関連付けられており、前記共通RRCインターフェースは、前記第1のSIM及び前記第2のSIMの両方にわたって共有される、請求項1に記載の無線通信デバイス。
  18. 前記コンピュータ実行可能命令は、前記無線通信デバイスの前記プロセッサによって実行されるときに、前記無線通信デバイスに、
    前記第1の接続を中断又は解放して、前記第2の接続を継続するように通信を引き起こすこと、又は
    前記第2の接続を中断又は解放して、前記第1の接続を継続するように通信を引き起こすことを更に行わせる、請求項1に記載の無線通信デバイス。
  19. 無線通信デバイスにおける使用のための方法であって、
    ダウンリンク情報を判定することであって、前記ダウンリンク情報は、第1の受信(RX)機会(RXOP)、第1のRX能力、第2のRXOP、又は第2のRX能力のうちの1つ以上を示す、判定すること、
    アップリンク情報を判定することであって、前記アップリンク情報は、第1の伝送(TX)機会(TXOP)、第1のTX能力、第2のTXOP、又は第2のTX能力のうちの1つ以上を示す、判定すること、
    前記ダウンリンク情報又は前記アップリンク情報に基づいて、
    第1の加入者識別モジュール(SIM)の第1のネットワークとの第1の接続、又は
    第2のSIMの第2のネットワークとの第2の接続のうちの1つ以上を確立すること、及び
    前記第1のネットワークからの第1の受信、前記第1のネットワークへの第1の伝送、前記第2のネットワークからの第2の受信、又は前記第2のネットワークへの第2の伝送のうちの1つ以上を実行することを含む、方法。
  20. 前記第1のネットワーク及び前記第2のネットワークにわたって共有される受信機チェーン又は伝送機チェーンは、前記第1の伝送、前記第2の伝送、前記第1の受信、又は前記第2の受信を実行し、
    前記無線通信デバイスは、媒体アクセス制御(MAC)層を含み、前記受信機チェーン又は伝送器チェーンの前記共有は、前記RXOP又はTXOPの喪失に応答して、1つ以上のMACカウンタ又はタイマを適応させることに基づいている、請求項19に記載の方法。

JP2022528011A 2019-11-13 2020-11-13 マルチsim ue接続モード動作のための方法 Pending JP2023502936A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962934748P 2019-11-13 2019-11-13
US62/934,748 2019-11-13
PCT/US2020/060444 WO2021097231A1 (en) 2019-11-13 2020-11-13 Methods for multi-sim ue connected mode operation

Publications (2)

Publication Number Publication Date
JP2023502936A true JP2023502936A (ja) 2023-01-26
JPWO2021097231A5 JPWO2021097231A5 (ja) 2023-11-21

Family

ID=73793802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022528011A Pending JP2023502936A (ja) 2019-11-13 2020-11-13 マルチsim ue接続モード動作のための方法

Country Status (6)

Country Link
US (1) US20220418020A1 (ja)
EP (1) EP4059243A1 (ja)
JP (1) JP2023502936A (ja)
CN (1) CN114868411A (ja)
BR (1) BR112022009424A2 (ja)
WO (1) WO2021097231A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11812314B2 (en) * 2020-05-20 2023-11-07 Qualcomm Incorporated Dynamic switching between carrier aggregation and multi-connectivity
US20230117026A1 (en) * 2021-10-19 2023-04-20 Qualcomm Incorporated Subscriber identification module prioritization techniques based on service priority and quality of service parameters
WO2024044930A1 (en) * 2022-08-30 2024-03-07 Qualcomm Incorporated Data transmission on a multi-subscriber identity module device based on data path link metrics

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030110344A1 (en) * 1996-09-18 2003-06-12 Andre Szczepanek Communications systems, apparatus and methods
US7676673B2 (en) * 2006-04-28 2010-03-09 Bae Systems Information And Electronic Systems Integration Inc. Multi-level secure (MLS) information network
US8862178B2 (en) * 2010-02-24 2014-10-14 Qualcomm Incorporated Methods and systems for managing participation in multiple wireless networks
EP3525531B1 (en) * 2010-12-30 2024-06-12 Telefonaktiebolaget LM Ericsson (publ) Multi sim management
US9468010B2 (en) * 2013-12-20 2016-10-11 Qualcomm Incorporated Apparatus and methods for facilitating tune-away operations in wireless communications systems
US10142818B2 (en) * 2014-05-30 2018-11-27 Apple Inc. Methods and apparatus to reuse wireless circuitry for multiple subscriber identities in a wireless communication device
US9913316B2 (en) * 2016-03-30 2018-03-06 Qualcomm Incorporated Connected discontinuous reception (CDRX) management in multi-subscriber identity module (SIM) wireless communication devices
EP3466191A4 (en) * 2016-05-26 2020-02-26 Qualcomm Incorporated METHOD FOR IMPROVING SUBSCRIPTION DATA FLOW AFTER DETACHMENT ON A DSDS TELEPHONE
US10034320B2 (en) * 2016-09-15 2018-07-24 Qualcomm Incorporated System and methods for performing an adaptive access procedure on a multi-SIM wireless communication device
US10517003B2 (en) * 2016-12-28 2019-12-24 Qualcomm Incorporated Systems and methods for maintaining service on multiple SIMs in a wireless communication device operating in a multi-SIM multi-standby (MSMS) mode

Also Published As

Publication number Publication date
WO2021097231A1 (en) 2021-05-20
CN114868411A (zh) 2022-08-05
EP4059243A1 (en) 2022-09-21
BR112022009424A2 (pt) 2022-08-09
US20220418020A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP7455820B2 (ja) Nr-u lbt mac手順
JP7319962B2 (ja) 新無線におけるコネクテッドモードのモビリティ
JP6956227B2 (ja) 許可不要動作
US11564170B2 (en) Wake up signals operation
KR102438085B1 (ko) 무선 시스템에서의 보충 업링크
US20220394583A1 (en) Conditional mobility with multi-connectivity
CN111543117B (zh) 在不活动状态中运行双连接
US20230171738A1 (en) Sidelink enhancements resource allocation assistance information
US20230007624A1 (en) System information acquisition and paging for user equipment with multiple universal subscriber identity modules
KR20240095341A (ko) 사이드링크 무선 링크 모니터링 및 무선 링크 실패 결정 방법
KR20210077670A (ko) 유니캐스트 및/또는 멀티캐스트 링크 확립 및 유지보수를 위한 l2 프로시저
JP2021523632A (ja) チャネル化および帯域幅パート(bwp)
JP2021523634A (ja) 新無線アンライセンスサービングセルを用いたチャネルアクセス
WO2017196611A1 (en) Devices and methods for power efficient d2d communications for wearables/iot
JP2017529759A (ja) デバイスツーデバイス(d2d)プリエンプションおよびアクセス制御
JP2023502936A (ja) マルチsim ue接続モード動作のための方法
US20240224379A1 (en) Nr v2x sidelink power saving for unicast and/or groupcast
WO2022031809A1 (en) Idle/inactive mobility for small data transmission
US20240172325A1 (en) Method and apparatuses for nr sidelink discontinuous reception
US20230189059A1 (en) Methods and apparatus directed to non-access stratum procedures in connection with layer 2 relaying
CN115702598A (zh) 用于休眠辅助小区组(scg)的功率节省的方法和装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113