WO2022149646A1 - Esterified eco-friendly pva-lignin resin, preparation method therefor, and eco-friendly natural-fiber-reinforced composite obtained therefrom - Google Patents

Esterified eco-friendly pva-lignin resin, preparation method therefor, and eco-friendly natural-fiber-reinforced composite obtained therefrom Download PDF

Info

Publication number
WO2022149646A1
WO2022149646A1 PCT/KR2021/000535 KR2021000535W WO2022149646A1 WO 2022149646 A1 WO2022149646 A1 WO 2022149646A1 KR 2021000535 W KR2021000535 W KR 2021000535W WO 2022149646 A1 WO2022149646 A1 WO 2022149646A1
Authority
WO
WIPO (PCT)
Prior art keywords
eco
lignin
pva
friendly
resin
Prior art date
Application number
PCT/KR2021/000535
Other languages
French (fr)
Korean (ko)
Inventor
김재환
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Publication of WO2022149646A1 publication Critical patent/WO2022149646A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin

Definitions

  • the present invention relates to an esterified eco-friendly PVA-lignin resin, a manufacturing method thereof, and an eco-friendly natural fiber-reinforced composite obtained therefrom. More specifically, it relates to a method for producing an esterified lignin-based eco-friendly resin by mixing lignin and PVA, adding a crosslinking agent, and applying heat, and an eco-friendly natural fiber-reinforced composite using the resin.
  • the PVA-lignin resin of the present invention has excellent mechanical properties and adhesion to natural fibers while being environmentally friendly.
  • Eco-friendly fiber-reinforced composites are becoming increasingly important due to their potential to replace petroleum-based materials in an era where energy and the environment are important.
  • resins must also be eco-friendly.
  • As candidates for eco-friendly resins lignin, cardanol, vanilin, fatty acid, isosobide, tannin, and plant oil are thermosetting or thermoplastic. is used as a material.
  • lignin is an eco-friendly polymer that is produced the most in nature after cellulose, and is attracting attention as an eco-friendly material due to its sustainable resources, biodegradability, low price, and abundance.
  • lignin is mainly located between the cell wall and the adjacent cell wall.
  • Lignin a phenolic polymer
  • the thermosetting polymer using it has improved thermal and mechanical properties.
  • lignin has a free OH-group, has low solubility, and has a chemically complex structure, so it is not easy to make it into a thermoplastic polymer. Therefore, efforts are being made to improve the properties of lignin by modifying it.
  • lignin-based thermosetting polymers were prepared by allylation of kraft lignin and crosslinking with thiol-ene.
  • Polyvinyl alcohol (PVA) is often used to crosslink lignin to increase bonding strength, thermal stability, and mechanical strength.
  • PVA polyvinyl alcohol
  • eco-friendly fibers containing cellulose as a main component are used.
  • Cellulose is the most abundant organic material in nature, with about 150 billion tonnes of which is produced annually in nature.
  • Wood fibers are composed of macrofibers having a diameter of less than microns, which in turn are hierarchically composed of microfibers and nanofibers .
  • Cellulose is renewable, biodegradable, and has excellent thermal stability. In addition, it has various advantages such as low price and high strength.
  • Cellulose fibers are composed of microfibers called cellulose nanofibers (CNFs) of high crystalline quality. These highly crystalline cellulose nanofibers generally have a width of 5 to 200 nm and a length of several micrometers, and have unique physical and chemical properties.
  • CNF is very suitable for eco-friendly fiber-reinforced composites.
  • resin in order to manufacture such an eco-friendly fiber-reinforced composite, resin must also be an eco-friendly material.
  • Epoxy is widely used in fiber-reinforced composites because of its good mechanical properties and chemical and thermal stability.
  • commercial epoxies are not completely environmentally friendly, biodegradable, and expensive.
  • lignin-based resins developed through various modifications and functionalizations so far have disadvantages in that they have low mechanical properties and thermal stability for use in eco-friendly fiber-reinforced composites.
  • PVA-lignin resin has excellent eco-friendliness, but has problems in mechanical properties, adhesive strength, thermal stability and hydrophobicity still low, and therefore there is still a limit to use in natural fiber-reinforced composites.
  • the present invention is an economical, environmentally friendly, and easy mass production method, using citric acid (CA) as a crosslinking agent, adding it to the PVA-lignin compound and esterifying it,
  • An object of the present invention is to provide a method for manufacturing an esterified PVA-lignin eco-friendly resin with high mechanical properties and adhesive strength.
  • an object of the present invention is to provide an eco-friendly natural fiber-reinforced composite material obtained by using an esterified eco-friendly PVA-lignin resin.
  • the mixture and the crosslinking agent may be mixed in a weight ratio of 6:4 to 8:2.
  • the polyvinyl alcohol and the lignin may be mixed in a weight ratio of 6:4 to 7:3.
  • the object of the present invention is achieved by the environmentally friendly PVA-lignin resin produced by the above method.
  • the resin may have a tensile strength of 150 MPa or more, an elastic modulus of 5 GPa or more, a breaking strain of 6% or more, an adhesive strength of 20 MPa or more, and hydrophobicity.
  • the object of the present invention is achieved by a natural fiber-reinforced composite prepared by impregnating the composite made of natural fibers in the eco-friendly PVA-lignin resin prepared by the above method.
  • the present invention solves the disadvantages of the PVA-lignin resin, and in order to solve the problems of the prior art as described above, the PVA-lignin compound is esterified using a crosslinking agent such as citric acid to form a PVA-CA-lignin By strengthening the bond, the mechanical properties, adhesive strength, thermal stability, and hydrophobicity of e-PCL resin were improved.
  • the eco-friendly resin is esterified by applying temperature without using a catalyst, so it is economical, eco-friendly, and easy to mass-produce, so it will be used in more diverse fields.
  • 1 and 2 are FTIR spectra according to the citric acid crosslinking agent content of the e-PCL resin prepared according to Example 1 of the present invention and heating time to 180°C.
  • Example 3 is a tensile stress-strain curves according to the citric acid content of the e-PCL resin prepared according to Example 1 of the present invention.
  • Example 5 is a view showing the water contact angle results according to the citric acid content of the e-PCL resin prepared according to Example 1 of the present invention.
  • Example 7 shows the fractured cross-section of the e-PCL resin and CNF fiber-reinforced composite prepared according to Example 2 of the present invention.
  • the present invention relates to a method for producing an eco-friendly PVA-lignin resin.
  • the present invention comprises the steps of preparing hydrogenated PVA-lignin (H-PCL) by mixing polyvinyl alcohol (PVA) and lignin and then reacting with citric acid as a crosslinking agent; and preparing an esterified PVA-lignin (e-PCL) resin obtained by heating and esterifying the same.
  • H-PCL hydrogenated PVA-lignin
  • PVA polyvinyl alcohol
  • e-PCL esterified PVA-lignin
  • e-PCL is prepared by first mixing PVA-lignin and mixing a crosslinking agent such as citric acid to make H-PCL with hydrogen bonding, and esterification by raising the temperature to 160-200°C, preferably 180°C.
  • the present invention does not use any catalyst for esterification, and thus provides a manufacturing method that is economical, eco-friendly and easy to mass-produce.
  • the crosslinking agent (CA) represented in Scheme 1 is citric acid.
  • the eco-friendly resin prepared according to the present invention has a tensile strength of 150 MPa or more, preferably 200 MPa or more, more preferably 300 MPa or more, and an elastic modulus of 5 GPa or more, preferably 7 GPa or more, more preferably 10 GPa or more, the strain at break is 6% or more and 15% or less, and the adhesive strength is 20 MPa or more, preferably 30 MPa or more, more preferably 50 MPa or more.
  • the present invention provides a method of manufacturing an eco-friendly natural fiber-reinforced composite by impregnating a composite material made of natural fibers such as CNF in the esterified e-PCL resin, laminating it and drying it.
  • the method comprises the steps of wet spinning a cellulose nanofiber (CNF) suspension, followed by orientation, tensile, and drying to prepare a CNF filament (CLF), manufacturing a mat woven of the CLF; And after impregnating the mat with e-PCL resin, stacking 2 to 5 mats, drying at 60 to 100 ° C., and applying a pressure of 8 MPa and heat of 180 ° C to the dried mat to form and drying in a vacuum oven at 180° C. for 1 hour.
  • CNF cellulose nanofiber
  • CLF CNF filament
  • the flexural strength of the eco-friendly natural fiber-reinforced composite is 200 MPa or more, preferably 300 MPa or more, more preferably 500 MPa or more, and the elastic modulus is 20 GPa or more, preferably 30 GPa or more, more preferably 50 GPa or more. More than that.
  • a 10% (w/w) PVA solution, a 10% (w/w) lignin solution, and a 10% (w/w) citric acid solution were prepared, respectively, and stirred with ultrasonic waves.
  • the prepared 10% (w/w) PVA solution and lignin solution are mixed in a weight ratio of 65:35 and centrifuged to remove undissolved particles.
  • the PVA-CA-lignin thus prepared is called hydrogen-bonded H-PCL resin.
  • the hydrogen-bonded H-PCL resin is placed in a vacuum oven and heated at 180° C. for 1 hour to 12 hours to perform esterification.
  • the esterified PVA-CA-lignin is named 'e-PCL resin'.
  • FTIR spectroscopy was measured to confirm the ester bond of the prepared H-PCL and e-PCL resins.
  • 1 is an FTIR spectra of e-PCL according to the content of citric acid (CA).
  • 2 is an FTIR spectra of e-PCL as a function of esterification time.
  • 'PL' indicates a mixture of PVA and lignin.
  • the e-PCL resin shows a new peak of ester bonds at 1729 cm -1 . It can be seen that the 1701 cm -1 peak corresponding to the hydrogen bond between the COOH and -OH groups in the H-PCL resin shifted to a high wavenumber of 1729 cm -1 . On the other hand, it can be seen that the broad peak of H-PCL was changed to a sharp peak at 3418 cm -1 , which was caused by elongation of the -OH group. It can be seen that the strength of the ester bond increases as the content of citric acid increases. As a result of the FTIR spectral spectrum, it can be seen that a crosslinking was formed between PVA and lignin by the crosslinking agent of citric acid.
  • Table 3 shows a stress-strain diagram according to the citric acid content (10-40% (w/w)) of E-PCL.
  • Table 1 shows a comparison of the tensile strength of conventional PVA-lignin-based resins. The tensile strength was measured according to the conventional film tensile test method (ASTM D1938) after casting the resin into a film and drying it to make a specimen. In the e-PCL resin of the present invention, the tensile strength increases until the content of citric acid is 30% (w/w) and decreases thereafter. Because.
  • the tensile strength at 30% (w/w) of citric acid is 184 MPa, which is the best among lignin-based resins, and is about 4.5 times higher than that of PVA-lignin resin.
  • the modulus of elasticity, elongation at break, and toughness of e-PCL resin containing 30% citric acid are 2.6 times, 4 times, and 20 times greater than those of PVA-lignin resin, respectively.
  • Such a large toughness modulus is a very advantageous property for natural fiber reinforced composites as a resin that can absorb a lot of breaking energy.
  • WCA water contact angle
  • FIG. 6 shows the test results of the adhesion strength of e-PCL resin with CNF.
  • Adhesive strength test followed the conventional Lap Shear Joint (LSJ) test, and after applying resin to the 2 mm part from the tip of the 10 mm x 30 mm CNF film, overlapping the ends of the two CNF films, and obtaining a tensile test.
  • the joint strength is obtained by dividing the breaking load by the contact area of the two films.
  • the bonding strength of e-PCL resin with a citric acid content of 30 wt% is 31.9 MPa, which is 7.4 and 4.7 times greater than 4.3 MPa of PVA-lignin resin and 6.8 MPa of PVA-lignin resin esterified with malic acid, respectively. .
  • This indicates that e-PCL resin has excellent bonding strength with natural fibers containing cellulose as a main component.
  • An embodiment of manufacturing a natural fiber-reinforced composite using a CNF filament (CNF Long Filament, CLF) and an e-PCL resin follows a conventional fiber-reinforced composite manufacturing process.
  • CLF manufactures eco-friendly high-strength long fibers by wet spinning a CNF suspension in an alcohol-based aqueous solution and then aligning, stretching, and drying the nanocellulose in the same manner as in the prior art of the present applicant (Korean Patent No. 10-2063100).
  • the CLF prepared in this way has a tensile strength of 480 MPa and an elastic modulus of 40 GPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to: an esterified PVA-lignin resin obtained by mixing a PVA, lignin and a cross-linking agent and esterifying same through heat application; a natural fiber-reinforced composite using same; and an eco-friendly preparation method therefor. According to the present invention, provided is an eco-friendly resin and a natural-fiber-reinforced composite which have high tensile strength, modulus of elasticity, strain at break and adhesive strength, and excellent hydrophobicity.

Description

에스테르화된 친환경 PVA-리그닌 레진, 이의 제조 방법 및 이로부터 얻어지는 친환경 천연섬유강화 복합재Esterified eco-friendly PVA-lignin resin, manufacturing method thereof, and eco-friendly natural fiber-reinforced composite material obtained therefrom
본 발명은 에스테르화된 친환경 PVA-리그닌 레진, 이의 제조 방법 및 이로부터 얻어지는 친환경 천연섬유강화 복합재에 관한 것이다. 보다 상세하게는, 리그닌과 PVA를 혼합하고 가교제를 첨가하고 열을 가하여 에스테르화된 리그닌 기반 친환경 레진을 제조하는 방법과 상기 레진을 사용한 친환경 천연섬유강화 복합재에 관한 것이다. 특히, 본 발명의 PVA-리그닌 레진은 친환경성을 가지면서 기계적 물성과 천연 섬유와의 접착성이 우수하다.The present invention relates to an esterified eco-friendly PVA-lignin resin, a manufacturing method thereof, and an eco-friendly natural fiber-reinforced composite obtained therefrom. More specifically, it relates to a method for producing an esterified lignin-based eco-friendly resin by mixing lignin and PVA, adding a crosslinking agent, and applying heat, and an eco-friendly natural fiber-reinforced composite using the resin. In particular, the PVA-lignin resin of the present invention has excellent mechanical properties and adhesion to natural fibers while being environmentally friendly.
친환경 섬유강화 복합재는 에너지와 환경이 중요한 현 시대에 석유 기반 재료를 대체하는 가능성으로 인해 그 중요성이 점점 대두되고 있다. 특히 친환경 섬유강화 복합재를 만들기 위해서는 레진 역시 친환경이어야 한다. 친환경 레진의 후보로서 리그닌(lignin), 카르다놀(cardanol), 바닐린(vanilin), 지방산(fatty acid), 아이소소바이드(isosobide), 타닌(tannin), 식물성 오일(plant oil) 등이 열경화성 또는 열가소성 재료로 사용되고 있다. 이들 중 리그닌은 셀룰로오스 다음으로 자연에서 많이 생산되는 친환경 고분자로서 지속가능한 자원, 생분해성, 낮은 가격 그리고 풍부성으로 인해 친환경 소재로 각광을 받고 있다. Eco-friendly fiber-reinforced composites are becoming increasingly important due to their potential to replace petroleum-based materials in an era where energy and the environment are important. In particular, to make eco-friendly fiber-reinforced composites, resins must also be eco-friendly. As candidates for eco-friendly resins, lignin, cardanol, vanilin, fatty acid, isosobide, tannin, and plant oil are thermosetting or thermoplastic. is used as a material. Among them, lignin is an eco-friendly polymer that is produced the most in nature after cellulose, and is attracting attention as an eco-friendly material due to its sustainable resources, biodegradability, low price, and abundance.
나무의 세포벽(cell wall)을 보면 셀룰로오스가 주성분인 나무 섬유가 여러 각도로 적층이 되어 있고 세포벽과 인접 세포벽 사이에 리그닌이 주로 위치하고 있어서 세포벽들 사이를 충진하면서 헤미셀룰로오스와 함께 셀룰로오스 파이버를 결합시키는 역할을 하고 있다. 페놀 고분자인 리그닌은 세 개의 다른 방향족 알콜(aromatic alcohol) 단위를 갖는 화학구조를 이루는 복잡한 구조를 갖고 있다. 방향족 링의 강직성으로 인해 이를 사용한 열경화성 고분자는 열적, 기계적 성질이 향상된다. 하지만, 리그닌은 자유 수산기(free OH-group)를 갖고 있고 용해도가 낮으며 화학적으로 복잡한 구조를 갖고 있어서 열가소성 고분자로 만드는 것이 쉽지 않다. 따라서 리그닌을 개질하여 그 성질을 개선하는 노력을 기울이고 있다. If you look at the cell wall of wood, wood fibers, whose main component is cellulose, are stacked at various angles, and lignin is mainly located between the cell wall and the adjacent cell wall. are doing Lignin, a phenolic polymer, has a complex structure comprising three different aromatic alcohol units. Due to the stiffness of the aromatic ring, the thermosetting polymer using it has improved thermal and mechanical properties. However, lignin has a free OH-group, has low solubility, and has a chemically complex structure, so it is not easy to make it into a thermoplastic polymer. Therefore, efforts are being made to improve the properties of lignin by modifying it.
최근에 에폭시드(epoxide) 리그닌 그리고 리그닌을 다양하게 기능화하여 타닌과 유사한 특성을 갖는 리그닌 기반 레진을 만들어 접착성을 증가시키고 기계적 특성을 개선하기도 하였다. 또한, 크라프트 리그닌을 알릴화(allylation)하고 thiol-ene 가교화하여 리그닌 기반 열경화성 고분자를 만들었다. 리그닌을 가교화하는 데에는 PVA(polyvinyl alcohol)을 많이 사용하여 접합강도와 열적 안전성 그리고 기계적 강도를 증가시킨다. 이러한 리그닌-PVA 고분자는 열가소성, 열경화성, UV 차단, 항균성 재료로 사용된다. Recently, various functionalizations of epoxide lignin and lignin have been made to increase adhesion and improve mechanical properties by making lignin-based resins with properties similar to tannins. In addition, lignin-based thermosetting polymers were prepared by allylation of kraft lignin and crosslinking with thiol-ene. Polyvinyl alcohol (PVA) is often used to crosslink lignin to increase bonding strength, thermal stability, and mechanical strength. These lignin-PVA polymers are used as thermoplastic, thermosetting, UV-blocking, and antibacterial materials.
친환경 섬유강화 복합재에서 친환경 섬유는 셀룰로오스를 주성분으로 하는 것이 사용된다. 셀룰로오스는 자연에서 매년 약 1500억 톤이 생산되고 있으며 자연계에 존재하는 가장 풍부한 유기 물질이다. 목재 섬유는 마이크론 미만의 직경을 갖는 매크로파이버(macrofiber)로 구성되어 있으며 이것은 다시 마이크로파이버(microfiber) 및 나노파이버(nanofiber)로 계층적으로 구성되어 있다. 셀룰로오스는 재생가능하고 생분해가 가능하며 열적 안정성이 뛰어나다. 또한 싼 가격과 높은 강도 등 다양한 장점을 갖는다. 셀룰로오스 섬유는 고결정질의 셀룰로오스 나노섬유(Cellulose nanofiber, CNF)로 불리는 미세섬유로 구성되어 있다. 이러한 고결정질의 셀룰로오스 나노섬유는 일반적으로 5 ~ 200 nm의 너비와 수 마이크로미터의 길이를 가지며, 독특한 물리적 화학적 특성을 갖는다. 셀룰로오스는 최근, 약품, 코팅제, 직물, 적층 소재, 센서, 액추에이터, 유연전자, 유연 디스플레이 등 많은 분야에 폭넓은 영향을 주어 큰 관심을 받고 있다. 특히, 높은 기계적 물성과 친환경성으로 인해 CNF는 친환경 섬유강화 복합재에 아주 적합하다. In eco-friendly fiber-reinforced composites, eco-friendly fibers containing cellulose as a main component are used. Cellulose is the most abundant organic material in nature, with about 150 billion tonnes of which is produced annually in nature. Wood fibers are composed of macrofibers having a diameter of less than microns, which in turn are hierarchically composed of microfibers and nanofibers . Cellulose is renewable, biodegradable, and has excellent thermal stability. In addition, it has various advantages such as low price and high strength. Cellulose fibers are composed of microfibers called cellulose nanofibers (CNFs) of high crystalline quality. These highly crystalline cellulose nanofibers generally have a width of 5 to 200 nm and a length of several micrometers, and have unique physical and chemical properties. Cellulose has recently received great attention as it has a wide influence on many fields such as pharmaceuticals, coatings, textiles, laminated materials, sensors, actuators, flexible electronics, and flexible displays. In particular, due to its high mechanical properties and eco-friendliness, CNF is very suitable for eco-friendly fiber-reinforced composites.
그러나 이러한 친환경 섬유강화 복합재를 제조하기 위해서는 레진 역시 친환경 소재이어야 한다. 에폭시가 기계적 물성이 좋고 화학적, 열적 안정성이 좋아서 섬유강화 복합재에 많이 쓰인다. 그렇지만 상용 에폭시는 완전히 친환경적이지 않고 생분해성이 없으며 가격이 비싸다. However, in order to manufacture such an eco-friendly fiber-reinforced composite, resin must also be an eco-friendly material. Epoxy is widely used in fiber-reinforced composites because of its good mechanical properties and chemical and thermal stability. However, commercial epoxies are not completely environmentally friendly, biodegradable, and expensive.
상기한 바와 같이, 지금까지 다양한 개질과 기능화를 통해 개발한 리그닌 기반 레진은 친환경 섬유강화 복합재에 쓰이기에는 아직 기계적 물성과 열적 안정성이 낮은 단점이 있다. As described above, lignin-based resins developed through various modifications and functionalizations so far have disadvantages in that they have low mechanical properties and thermal stability for use in eco-friendly fiber-reinforced composites.
이에 대한 선행 기술로서, 본 발명자는 PVA-리그닌 기반 레진(문헌[Ko et al., J. Appl. Polym. Sci. 135, 46655, 2018], [Ko et al. J. Appl. Polym. Sci. 237, 48836, 2019])을 개발하였다. As a prior art to this, the present inventors have disclosed a PVA-lignin-based resin (Ko et al., J. Appl. Polym. Sci. 135 , 46655, 2018), [Ko et al. J. Appl. Polym. Sci. 237, 48836 , 2019]) was developed.
상기 선행 기술에 따르면, PVA-리그닌 레진은 친환경성은 우수하나, 기계적 물성, 접착 강도, 열적 안정성 그리고 소수성이 여전히 낮다는 문제가 있고 그로 인해 천연섬유 강화복합재에 사용하기에는 아직 한계가 있다. According to the prior art, PVA-lignin resin has excellent eco-friendliness, but has problems in mechanical properties, adhesive strength, thermal stability and hydrophobicity still low, and therefore there is still a limit to use in natural fiber-reinforced composites.
상기한 선행 기술의 문제점을 해소하기 위하여, 본 발명은 경제적이고 친환경적이며 대량생산이 용이한 방법으로, 가교제로 구연산(citric acid, CA)을 이용하고, 이를 PVA-리그닌 화합물에 가하고 에스테르 반응시킴으로써, 높은 기계적 물성, 접착강도의 에스테르화된 PVA-리그닌 친환경 레진을 제조하는 방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art, the present invention is an economical, environmentally friendly, and easy mass production method, using citric acid (CA) as a crosslinking agent, adding it to the PVA-lignin compound and esterifying it, An object of the present invention is to provide a method for manufacturing an esterified PVA-lignin eco-friendly resin with high mechanical properties and adhesive strength.
또한, 본 발명의 목적은 에스테르화된 친환경 PVA-리그닌 레진을 이용하여 얻는, 친환경 천연섬유 강화 복합재를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide an eco-friendly natural fiber-reinforced composite material obtained by using an esterified eco-friendly PVA-lignin resin.
상기한 과제는, 폴리비닐알코올과 리그닌을 혼합한 후, 상기 혼합물에 가교제를 첨가하여 반응시키는 단계; 및 상기 반응물을 160℃ 내지 200℃로 가열하여 에스테르화된 PVA-리그닌 레진을 제조하는 단계를 포함하는 친환경 PVA-리그닌 레진의 제조 방법에 의해 달성된다.The above-described task, after mixing polyvinyl alcohol and lignin, the step of reacting by adding a crosslinking agent to the mixture; and heating the reactant to 160° C. to 200° C. to prepare an esterified PVA-lignin resin.
바람직하게는, 상기 혼합물과 상기 가교제는 6:4 내지 8:2의 중량비로 혼합될 수 있다.Preferably, the mixture and the crosslinking agent may be mixed in a weight ratio of 6:4 to 8:2.
또한 바람직하게는, 상기 폴리비닐알코올과 상기 리그닌은 6:4 내지 7:3의 중량비로 혼합될 수 있다.Also preferably, the polyvinyl alcohol and the lignin may be mixed in a weight ratio of 6:4 to 7:3.
또한 본 발명의 과제는, 상기 방법으로 제조된 친환경 PVA-리그닌 레진에 의해 달성된다.In addition, the object of the present invention is achieved by the environmentally friendly PVA-lignin resin produced by the above method.
바람직하게는, 상기 레진은 인장강도가 150 MPa 이상, 탄성계수가 5 GPa 이상, 파단변형율이 6%이상, 접착강도가 20 MPa 이상, 그리고 소수성일 수 있다.Preferably, the resin may have a tensile strength of 150 MPa or more, an elastic modulus of 5 GPa or more, a breaking strain of 6% or more, an adhesive strength of 20 MPa or more, and hydrophobicity.
또한 본 발명의 과제는, 상기 방법으로 제조된 친환경 PVA-리그닌 레진에 천연섬유로 이루어진 복합재를 함침시켜 제조된 천연섬유 강화 복합재에 의해 달성된다.In addition, the object of the present invention is achieved by a natural fiber-reinforced composite prepared by impregnating the composite made of natural fibers in the eco-friendly PVA-lignin resin prepared by the above method.
지금까지의 리그닌 기반 친환경 레진은 기계적 물성, 접착 강도, 열적 안정성 그리고 소수성이 여전히 낮다는 문제가 있고 그로 인해 천연섬유 강화복합재에 사용하기에는 아직 한계가 있었던 것은, PVA-리그닌의 결합이 수소결합 수준으로 약하기 때문이다. 이에, 본 발명은 이러한 PVA-리그닌 레진의 단점을 해소하고, 상술한 바와 같은 선행 기술의 문제점을 해소하기 위하여, 구연산과 같은 가교제를 이용하여 PVA-리그닌 화합물을 에스테르 반응시킴으로써 PVA-CA-리그닌의 결합을 강화함으로써 e-PCL 레진의 기계적 물성, 접착강도, 열적 안정성, 소수성을 향상시켰다. Until now, lignin-based eco-friendly resins still have low mechanical properties, adhesive strength, thermal stability, and hydrophobicity, which has limited their use in natural fiber-reinforced composites. because it is weak. Accordingly, the present invention solves the disadvantages of the PVA-lignin resin, and in order to solve the problems of the prior art as described above, the PVA-lignin compound is esterified using a crosslinking agent such as citric acid to form a PVA-CA-lignin By strengthening the bond, the mechanical properties, adhesive strength, thermal stability, and hydrophobicity of e-PCL resin were improved.
이와 같이, 본 발명에서는 친환경 레진에 촉매를 사용하지 않고 온도를 가하여 에스테르화하므로 경제적이고 친환경적이며 대량생산이 용이한 방법이므로 더욱 다양한 분야에 사용될 것이다.As described above, in the present invention, the eco-friendly resin is esterified by applying temperature without using a catalyst, so it is economical, eco-friendly, and easy to mass-produce, so it will be used in more diverse fields.
도 1과 도 2는 본 발명의 실시예 1에 따라 제조된 e-PCL 레진의 구연산 가교제 함량과 180℃로 가열한 시간에 따른 FTIR 스펙트럼이다. 1 and 2 are FTIR spectra according to the citric acid crosslinking agent content of the e-PCL resin prepared according to Example 1 of the present invention and heating time to 180°C.
도 3은 본 발명의 실시예 1에 따라 제조된 e-PCL 레진의 구연산 함량에 따른 인장 응력-변형률 곡선들이다.3 is a tensile stress-strain curves according to the citric acid content of the e-PCL resin prepared according to Example 1 of the present invention.
도 4는 본 발명의 실시예 1에 따라 제조된 e-PCL 레진의 구연산 함량에 따른 열중량 분석 결과를 보이는 것이다.4 shows the thermogravimetric analysis results according to the citric acid content of the e-PCL resin prepared according to Example 1 of the present invention.
도 5는 본 발명의 실시예 1에 따라 제조된 e-PCL 레진의 구연산 함량에 따른 물접촉각 결과를 보이는 것이다.5 is a view showing the water contact angle results according to the citric acid content of the e-PCL resin prepared according to Example 1 of the present invention.
도 6은 본 발명의 실시예 1에 따라 제조된 e-PCL 레진과 CNF 필름의 접착강도 결과를 보이는 것이다.6 shows the results of the adhesion strength between the e-PCL resin and the CNF film prepared according to Example 1 of the present invention.
도 7은 본 발명의 실시예 2에 따라 제조된 e-PCL 레진과 CNF 섬유강화 복합재의 파단 단면을 나타내는 것이다.7 shows the fractured cross-section of the e-PCL resin and CNF fiber-reinforced composite prepared according to Example 2 of the present invention.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 하기의 정의를 가지며 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미에 부합된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다.All technical terms used in the present invention, unless otherwise defined, have the following definitions and have the meanings as commonly understood by one of ordinary skill in the art of the present invention. In addition, although preferred methods and samples are described herein, similar or equivalent ones are also included in the scope of the present invention.
용어 "약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.The term "about" means 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, means an amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length varying by 4, 3, 2 or 1%.
본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군을 포함하나, 임의의 다른 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, unless the context requires otherwise, the terms "comprises" and "comprising" include the steps or elements presented, or groups of steps or elements, but include any other step or element, or It is to be understood that a step or group of elements is meant to be implied not to be excluded.
본 발명은 친환경 PVA-리그닌 레진의 제조 방법에 관한 것이다. The present invention relates to a method for producing an eco-friendly PVA-lignin resin.
본 발명은, 아래 반응식 1에 나타낸 바와 같이, 폴리비닐알코올(PVA)과 리그닌을 혼합한 후 가교제인 구연산과 반응시켜서 수소화된 PVA-리그닌(H-PCL)을 제조하는 단계; 및 이를 가열하여 에스테르 반응시켜 얻어지는 에스테르화된 PVA-리그닌(e-PCL) 레진을 제조하는 단계를 포함한다.As shown in Scheme 1 below, the present invention comprises the steps of preparing hydrogenated PVA-lignin (H-PCL) by mixing polyvinyl alcohol (PVA) and lignin and then reacting with citric acid as a crosslinking agent; and preparing an esterified PVA-lignin (e-PCL) resin obtained by heating and esterifying the same.
[반응식 1][Scheme 1]
Figure PCTKR2021000535-appb-I000001
Figure PCTKR2021000535-appb-I000001
상기 식에서,In the above formula,
e-PCL은, 먼저 PVA-리그닌을 섞고 구연산과 같은 가교제를 섞어서 수소결합을 시킨 H-PCL을 만들고 온도를 160~200℃, 바람직하게는 180℃로 올림으로서 에스테르화시켜서 제조한다. 본 발명은 에스테르화에 어떤 촉매도 사용하지 않으므로 경제적이고 친환경적이며 대량생산이 용이한 제조 방법을 제공한다. e-PCL is prepared by first mixing PVA-lignin and mixing a crosslinking agent such as citric acid to make H-PCL with hydrogen bonding, and esterification by raising the temperature to 160-200°C, preferably 180°C. The present invention does not use any catalyst for esterification, and thus provides a manufacturing method that is economical, eco-friendly and easy to mass-produce.
상기 반응식 1에서 표시되는 가교제(CA)는 구연산이다.The crosslinking agent (CA) represented in Scheme 1 is citric acid.
본 발명에 따라 제조된 친환경 레진의 인장강도는 150 MPa 이상, 바람직하게는 200 MPa 이상, 더욱 바람직하게는 300 MPa 이상이며, 탄성계수는 5 GPa 이상, 바람직하게는 7 GPa 이상, 더욱 바람직하게는 10 GPa 이상이며, 파단변형율은 6% 이상, 15% 이하이며, 접착강도는 20 MPa 이상, 바람직하게는 30 MPa 이상, 더욱 바람직하게는 50 MPa 이상이다. The eco-friendly resin prepared according to the present invention has a tensile strength of 150 MPa or more, preferably 200 MPa or more, more preferably 300 MPa or more, and an elastic modulus of 5 GPa or more, preferably 7 GPa or more, more preferably 10 GPa or more, the strain at break is 6% or more and 15% or less, and the adhesive strength is 20 MPa or more, preferably 30 MPa or more, more preferably 50 MPa or more.
또한, 본 발명은 CNF와 같은 천연섬유로 이루어진 복합재료를 상기 에스테르화된 e-PCL 레진에 함침시키고, 이를 적층하고 건조시켜서 친환경 천연섬유 강화 복합재를 제조하는 방법을 제공한다.In addition, the present invention provides a method of manufacturing an eco-friendly natural fiber-reinforced composite by impregnating a composite material made of natural fibers such as CNF in the esterified e-PCL resin, laminating it and drying it.
구체적으로는 상기 방법은, 셀룰로오스 나노섬유(CNF) 현탁액을 습식방사한 후, 배향, 인장, 건조시켜, CNF 필라멘트(CLF)를 제조하는 단계, 상기 CLF를 직조한 매트를 제조하는 단계; 및 상기 매트를 e-PCL 레진에 함침한 후, 2~5장의 매트를 겹친 후, 60~100℃에서 건조하는 단계, 및 건조된 매트를 8 MPa의 압력과 180℃의 열을 가하여 성형을 하고 진공 오븐에서 180℃에 1 시간 건조하는 단계를 포함한다. Specifically, the method comprises the steps of wet spinning a cellulose nanofiber (CNF) suspension, followed by orientation, tensile, and drying to prepare a CNF filament (CLF), manufacturing a mat woven of the CLF; And after impregnating the mat with e-PCL resin, stacking 2 to 5 mats, drying at 60 to 100 ° C., and applying a pressure of 8 MPa and heat of 180 ° C to the dried mat to form and drying in a vacuum oven at 180° C. for 1 hour.
상기 친환경 천연섬유 강화복합재의 굽힘강도는 200 MPa 이상, 바람직하게는 300 MPa 이상, 더욱 바람직하게는 500 MPa 이상이며, 탄성계수는 20 GPa 이상, 바람직하게는 30 GPa 이상, 더욱 바람직하게는 50 GPa 이상이다.The flexural strength of the eco-friendly natural fiber-reinforced composite is 200 MPa or more, preferably 300 MPa or more, more preferably 500 MPa or more, and the elastic modulus is 20 GPa or more, preferably 30 GPa or more, more preferably 50 GPa or more. More than that.
이하, 실시예를 통해 본 발명을 구체적으로 설명하지만, 이러한 실시예는 본 발명을 좀더 명확하게 이해하기 위하여 지시되는 것일 뿐, 본 발명의 범위를 제한하는 목적으로 제시하는 것은 아니며, 본 발명은 후술하는 특허청구범위의 기술적 사상의 범위 내에서 정해질 것이다.Hereinafter, the present invention will be described in detail by way of Examples, but these Examples are only indicated for a more clear understanding of the present invention, and are not presented for the purpose of limiting the scope of the present invention, and the present invention will be described later It will be determined within the scope of the technical spirit of the claims.
[실시예][Example]
실시예 1: 에스테르화된 PVA-CA-리그닌 레진Example 1: Esterified PVA-CA-lignin resin
10 %(w/w)의 PVA 용액과 10 %(w/w) 리그닌 용액, 10 %(w/w)의 구연산 용액을 각각 만들어서 초음파로 교반을 한다. 제조된 10 %(w/w) PVA 용액과 리그닌 용액을 65:35의 중량비로 섞고 원심분리하여 용해되지 않은 입자들을 제거한다. 제조된 PVA-리그닌 혼합 용액과 구연산(CA) 용액을 다양한 비율(중량비)(90:10, 80:20, 70:30, 65:35, 60:40)로 섞고 온도 영향을 배제하기 위하여 얼음 중탕에서 균질기로 섞어준다. 이렇게 제조된 PVA-CA-리그닌은 수소결합된 H-PCL 레진이라 명명한다. A 10% (w/w) PVA solution, a 10% (w/w) lignin solution, and a 10% (w/w) citric acid solution were prepared, respectively, and stirred with ultrasonic waves. The prepared 10% (w/w) PVA solution and lignin solution are mixed in a weight ratio of 65:35 and centrifuged to remove undissolved particles. Mix the prepared PVA-lignin mixed solution and citric acid (CA) solution in various ratios (weight ratio) (90:10, 80:20, 70:30, 65:35, 60:40) and take an ice bath to exclude the effect of temperature. Mix with a homogenizer. The PVA-CA-lignin thus prepared is called hydrogen-bonded H-PCL resin.
수소결합된 H-PCL 레진을 진공오븐에 넣고 180℃에서 1시간 내지 12시간 동안 가열하여 에스테르화를 진행한다. 에스테르화된 PVA-CA-리그닌을 'e-PCL 레진'이라 명명한다. The hydrogen-bonded H-PCL resin is placed in a vacuum oven and heated at 180° C. for 1 hour to 12 hours to perform esterification. The esterified PVA-CA-lignin is named 'e-PCL resin'.
제조된 H-PCL, e-PCL 레진의 에스테르 결합을 확인하기 위하여 FTIR 분광을 측정하였다. 도 1은 구연산(CA)의 함량에 따른 e-PCL의 FTIR 스펙트라이다. 도 2는 에스테르화 시간에 따른 e-PCL의 FTIR 스펙트라이다. 도 2의 설명에서 'PL'로 표시 된 것은 PVA와 리그닌의 혼합물을 나타낸다. FTIR spectroscopy was measured to confirm the ester bond of the prepared H-PCL and e-PCL resins. 1 is an FTIR spectra of e-PCL according to the content of citric acid (CA). 2 is an FTIR spectra of e-PCL as a function of esterification time. In the description of FIG. 2, 'PL' indicates a mixture of PVA and lignin.
e-PCL 레진은 1729 cm-1에서 에스테르 결합의 새로운 피크를 나타낸다. H-PCL 레진에서 COOH와 -OH 그룹간의 수소결합에 해당하는 1701 cm-1 피크가 1729 cm-1의 높은 파동수(wavenumber)로 이동한 것을 볼 수 있다. 한편, H-PCL의 넓은 피크가 3418 cm-1에서 날카로운 피크로 바뀐 것을 볼 수 있는데 이는 -OH 그룹의 연신에 의해 발생했다. 구연산의 함량이 늘어남에 따라 에스테르 결합의 강도가 늘어남을 볼 수 있다. FTIR 분광 스펙트럼 결과, 구연산의 가교제에 의해 PVA와 리그닌 사이에 가교가 형성되었음을 알 수 있다. The e-PCL resin shows a new peak of ester bonds at 1729 cm -1 . It can be seen that the 1701 cm -1 peak corresponding to the hydrogen bond between the COOH and -OH groups in the H-PCL resin shifted to a high wavenumber of 1729 cm -1 . On the other hand, it can be seen that the broad peak of H-PCL was changed to a sharp peak at 3418 cm -1 , which was caused by elongation of the -OH group. It can be seen that the strength of the ester bond increases as the content of citric acid increases. As a result of the FTIR spectral spectrum, it can be seen that a crosslinking was formed between PVA and lignin by the crosslinking agent of citric acid.
도 3은 E-PCL의 구연산 함량(10~40%(w/w))에 따른 응력-변형율 선도를 나타낸다. 기존에 PVA-리그닌 기반 레진의 인장강도를 비교하면 표 1과 같다. 인장강도는 레진을 필름으로 캐스팅한 후 건조시켜서 시편을 만들고 통상적인 필름 인장시험 방법(ASTM D1938)에 따라서 측정하였다. 본 발명의 e-PCL 레진에서 구연산의 함량이 30 %(w/w)까지는 인장강도가 증가하고 그 이후는 감소하는데 이는 구연산과 PVA-리그닌의 과다한 가교결합으로 에스테르화가 지나치게 일어나서 레진이 취성이 생겼기 때문이다. 구연산 30 %(w/w)에서 인장강도가 184 MPa로 리그닌 기반 레진들 중에서 가장 우수하며, PVA-리그닌 레진 보다는 약 4.5배 높은 것을 알 수 있다. 뿐만 아니라 구연산 30%의 e-PCL 레진은 탄성계수와 파단연신율과 인성계수가 PVA-리그닌 레진보다 각각 2.6배, 4배, 20배 큰 것을 알 수 있다. 이렇게 인성계수가 큰 것은 파괴에너지를 많이 흡수할 수 있는 레진으로서 천연섬유 강화 복합재에서 매우 유리한 특성이다. 3 shows a stress-strain diagram according to the citric acid content (10-40% (w/w)) of E-PCL. Table 1 shows a comparison of the tensile strength of conventional PVA-lignin-based resins. The tensile strength was measured according to the conventional film tensile test method (ASTM D1938) after casting the resin into a film and drying it to make a specimen. In the e-PCL resin of the present invention, the tensile strength increases until the content of citric acid is 30% (w/w) and decreases thereafter. Because. It can be seen that the tensile strength at 30% (w/w) of citric acid is 184 MPa, which is the best among lignin-based resins, and is about 4.5 times higher than that of PVA-lignin resin. In addition, it can be seen that the modulus of elasticity, elongation at break, and toughness of e-PCL resin containing 30% citric acid are 2.6 times, 4 times, and 20 times greater than those of PVA-lignin resin, respectively. Such a large toughness modulus is a very advantageous property for natural fiber reinforced composites as a resin that can absorb a lot of breaking energy.
레진resin 인장강도
(MPa)
The tensile strength
(MPa)
탄성계수
(GPa)
modulus of elasticity
(GPa)
파단연신율
(%)
Elongation at break
(%)
인성계수
(KJ/m3)
toughness coefficient
(KJ/m 3 )
참고문헌references
PVA-리그닌PVA-lignin 41.141.1 2.482.48 2.52.5 600.1600.1 1One
에스테르화 PVA- 말산-리그닌Esterified PVA-Malic Acid-Lignin 48.548.5 2.42.4 2.72.7 787.3787.3 22
PEO-리그닌PEO-lignin 6.26.2 0.280.28 22.022.0 33
Epoxy-리그닌Epoxy-lignin 67.567.5 2.522.52 4.94.9 44
e-PCL (CA 30 %)e-PCL (CA 30%) 184184 6.526.52 9.99.9 12,170.012,170.0 실시예 1Example 1
1. H.-U Ko, L. Zhai, J.H. Park, J.Y. Lee, D. Kim, J. Kim, J. Appl. Polym. Sci., 135, 46655, 2018. 2. H.-U Ko, J.W. Kim, H.C. Kim, L. Zhai, J. Kim, J. Appl. Polym. Sci., 237, 48836, 2019.1. H.-U Ko, L. Zhai, JH Park, JY Lee, D. Kim, J. Kim, J. Appl. Polym. Sci., 135, 46655, 2. 2018. 2. H.-U Ko, JW Kim, HC Kim, L. Zhai, J. Kim, J. Appl. Polym. Sci., 237, 48836, 2019.
3. T. Jayaramudu, H.-U Ko, H.C. Kim, J.W. Kim, E.S. Choi, J. Kim, Compos. Pt B, 156, 43-50, 2019.3. T. Jayaramudu, H.-U Ko, HC Kim, JW Kim, ES Choi, J. Kim, Compos. Pt B, 156, 43-50, 2019.
4. J. Sun, C. Wang, J. Chee, C. Yeo, D. Yuan, H. Li, L. P. Stubbs, C. He, Macromol. Mater. Eng. 301, 328, 2016.4. J. Sun, C. Wang, J. Chee, C. Yeo, D. Yuan, H. Li, LP Stubbs, C. He, Macromol. Mater. Eng. 301 , 328, 2016.
도 4는 e-PCL 레진의 열중량분석 그래프를 나타낸다. 구연산 가교제의 함량이 10 %(w/w)에서 40 %(w/w)로 증가할수록 분해 온도가 올라감을 알 수 있는데 이는 에스테르화의 정도가 올라갔기 때문이다. 그 중에서도 구연산 함량이 30 %(w/w)일 때 가장 높은 분해 온도(260℃)를 나타낸다. 이는 고분자 망의 C-O, C=O와 같은 그룹들이 분해되면서 형성되었던 에스테르 가교가 끊어졌기 때문이다. 310~550℃에서의 마지막 분해는 탄화에 의한 것이다. 4 shows a thermogravimetric analysis graph of the e-PCL resin. It can be seen that the decomposition temperature increases as the content of the citric acid crosslinking agent increases from 10% (w/w) to 40% (w/w), because the degree of esterification increases. Among them, the highest decomposition temperature (260° C.) when the citric acid content is 30% (w/w). This is because the ester bridge that was formed as groups such as C-O and C=O in the polymer network was broken was broken. The final decomposition at 310-550 °C is by carbonization.
도 5는 e-PCL의 구연산 함량에 따른 물 접촉각(WCA)을 나타낸다. PVA-리그닌 레진을 에스테르화 함에 따라 WCA가 증가하였는데, 특히 구연산 함량이 30 %(w/w)일 때 가장 높은 104.4°의 WCA를 보인다. 이는 종전에 말산(malaic acid)을 첨가하여 에스테르화한 PVA-리그닌 레진이 57°의 WCA를 나타내어 친수성을 보인 것과 비교해 e-PCL 레진이 소수성을 가짐을 나타낸다. 이는 천연섬유 강화복합재를 실제 활용하는데 매우 유리한 특성이다. 5 shows the water contact angle (WCA) according to the citric acid content of e-PCL. As the PVA-lignin resin was esterified, WCA increased. In particular, when the citric acid content was 30% (w/w), the highest WCA of 104.4° was shown. This indicates that the e-PCL resin has hydrophobicity compared to the previously esterified PVA-lignin resin with the addition of malic acid, which exhibited a WCA of 57° and hydrophilicity. This is a very advantageous property to actually use the natural fiber reinforced composite material.
도 6은 e-PCL 레진의 CNF와의 접착강도실험 결과를 나타낸다. 접착강도실험은 통상적인 Lap Shear Joint(LSJ) 실험을 따랐으며, 10mm x 30 mm의 CNF 필름의 끝에서 2 mm 부분에 레진을 바르고 두 개의 CNF 필름의 끝단을 겹쳐서 붙인 후, 인장시험으로 구한다. 파단 하중을 두 필름의 접촉면적으로 나누어 접합강도를 구한다. 구연산 함량 30 wt%인 e-PCL 레진의 접합강도는 31.9 MPa로서 이는 PVA-리그닌 레진의 4.3 MPa, 말산을 첨가하여 에스테르화한 PVA-리그닌 레진의 6.8 MPa 보다 각각 7.4배, 4.7배 큰 값이다. 이로서 e-PCL 레진은 셀룰로오스를 주성분으로 하는 천연섬유와 접합강도가 매우 우수함을 나타낸다. 6 shows the test results of the adhesion strength of e-PCL resin with CNF. Adhesive strength test followed the conventional Lap Shear Joint (LSJ) test, and after applying resin to the 2 mm part from the tip of the 10 mm x 30 mm CNF film, overlapping the ends of the two CNF films, and obtaining a tensile test. The joint strength is obtained by dividing the breaking load by the contact area of the two films. The bonding strength of e-PCL resin with a citric acid content of 30 wt% is 31.9 MPa, which is 7.4 and 4.7 times greater than 4.3 MPa of PVA-lignin resin and 6.8 MPa of PVA-lignin resin esterified with malic acid, respectively. . This indicates that e-PCL resin has excellent bonding strength with natural fibers containing cellulose as a main component.
실시예 2: 천연섬유 강화 복합재Example 2: Natural Fiber Reinforced Composite
CNF 필라멘트(CNF Long Filament, CLF)와 e-PCL 레진을 사용하여 천연섬유 강화 복합재를 제조하는 실시예는 통상적인 섬유강화 복합재 제조 과정을 따른다. CLF는 본 출원인의 선행기술(한국등록특허 제10-2063100호)과 같은 방법으로 CNF 현탁액을 알코올계 수용액에 습식 방사한 후 나노셀룰로오스를 배향, 인장, 건조하여 친환경 고강도 장섬유를 제조한다. 이렇게 제조한 CLF는 인장강도 480 MPa, 탄성계수 40 GPa에 이른다. 상기 CLF를 직조하여 매트를 만들고 e-PCL 레진을 함침하여 3장을 겹친 후 60~100℃에서 건조 후 핫프레스에 놓고 8 MPa의 압력과 180℃의 열을 가하여 성형을 하고 진공 오븐에서 180℃에 1 시간 건조하여 에스테르화를 마무리한다. 이렇게 제조한 CLF 섬유강화 e-PCL 레진 복합재는 굽힘강도 230 MPa, 탄성계수 23.5 GPa의 기계적 강도를 보인다. 한편 복합재 표면에서의 WCA은 93.8도로 소수성을 보인다. 도 7은 제조한 CLF 섬유강화 e-PCL 레진 복합재의 파단 단면을 나타내는 SEM 이미지이다. CLF들 사이에 e-PCL 레진에 채워져 있음을 보인다. An embodiment of manufacturing a natural fiber-reinforced composite using a CNF filament (CNF Long Filament, CLF) and an e-PCL resin follows a conventional fiber-reinforced composite manufacturing process. CLF manufactures eco-friendly high-strength long fibers by wet spinning a CNF suspension in an alcohol-based aqueous solution and then aligning, stretching, and drying the nanocellulose in the same manner as in the prior art of the present applicant (Korean Patent No. 10-2063100). The CLF prepared in this way has a tensile strength of 480 MPa and an elastic modulus of 40 GPa. Weaving the CLF to make a mat, impregnating with e-PCL resin, stacking 3 sheets, drying at 60-100 ° C, placing it on a hot press, applying a pressure of 8 MPa and heat of 180 ° C. to finish the esterification by drying for 1 hour. The CLF fiber-reinforced e-PCL resin composite prepared in this way showed a mechanical strength of 230 MPa in bending strength and 23.5 GPa of elastic modulus. On the other hand, the WCA on the surface of the composite showed hydrophobicity at 93.8 degrees. 7 is a SEM image showing the fracture cross-section of the manufactured CLF fiber-reinforced e-PCL resin composite. It is shown that the e-PCL resin is filled between the CLFs.
이상 본 발명을 도시된 예를 중심으로 하여 설명하였으나 이는 예시에 지나지 아니하며 본 발명은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 자명한 다양한 변형 및 균등한 기타의 실시 예를 수행할 수 있다는 사실을 이해하여야 한다. The present invention has been described above based on the illustrated example, but this is only an example, and the present invention can perform various modifications and equivalent other embodiments that are obvious to those of ordinary skill in the art of the present invention. You have to understand the facts.

Claims (6)

  1. 폴리비닐알코올과 리그닌을 혼합한 후, 상기 혼합물에 가교제를 첨가하여 반응시키는 단계; 및After mixing polyvinyl alcohol and lignin, reacting by adding a crosslinking agent to the mixture; and
    상기 반응물을 160℃ 내지 200℃로 가열하여 에스테르화된 PVA-리그닌 레진을 제조하는 단계를 포함하는 친환경 PVA-리그닌 레진의 제조 방법.A method for producing an eco-friendly PVA-lignin resin comprising the step of heating the reactant to 160°C to 200°C to prepare an esterified PVA-lignin resin.
  2. 제1항에 있어서, 상기 혼합물과 상기 가교제는 6:4 내지 8:2의 중량비로 혼합된 것을 특징으로 하는 친환경 PVA-리그닌 레진의 제조 방법. The method of claim 1, wherein the mixture and the crosslinking agent are mixed in a weight ratio of 6:4 to 8:2.
  3. 제1항에 있어서, 상기 폴리비닐알코올과 상기 리그닌은 6:4 내지 7:3의 중량비로 혼합되는 것을 특징으로 하는 친환경 PVA-리그닌 레진의 제조 방법. The method of claim 1, wherein the polyvinyl alcohol and the lignin are mixed in a weight ratio of 6:4 to 7:3.
  4. 제1항 내지 제3항 중 어느 한 항의 방법으로 제조된 친환경 PVA-리그닌 레진.An environmentally friendly PVA-lignin resin prepared by the method of any one of claims 1 to 3.
  5. 제2항에 있어서, 상기 레진은 인장강도가 150 MPa 이상, 탄성계수가 5 GPa 이상, 파단변형율이 6%이상, 접착강도가 20 MPa 이상, 그리고 소수성인 것을 특징으로 하는 친환경 PVA-리그닌 레진.The eco-friendly PVA-lignin resin according to claim 2, wherein the resin has a tensile strength of 150 MPa or more, an elastic modulus of 5 GPa or more, a breaking strain of 6% or more, an adhesive strength of 20 MPa or more, and hydrophobicity.
  6. 제1항 내지 제3항 중 어느 한 항의 방법으로 제조된 친환경 PVA-리그닌 레진에 천연섬유로 이루어진 복합재를 함침시켜 제조된 천연섬유 강화 복합재. A natural fiber-reinforced composite manufactured by impregnating a composite made of natural fibers into an eco-friendly PVA-lignin resin manufactured by the method of any one of claims 1 to 3.
PCT/KR2021/000535 2021-01-08 2021-01-14 Esterified eco-friendly pva-lignin resin, preparation method therefor, and eco-friendly natural-fiber-reinforced composite obtained therefrom WO2022149646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0002589 2021-01-08
KR1020210002589A KR102434379B1 (en) 2021-01-08 2021-01-08 Esterified PVA-lignin Eco-friendly Resin, Fabrication Method Thereof and Eco-friendly Natural Fiber-reinforced Composite Comprising the Same

Publications (1)

Publication Number Publication Date
WO2022149646A1 true WO2022149646A1 (en) 2022-07-14

Family

ID=82357490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000535 WO2022149646A1 (en) 2021-01-08 2021-01-14 Esterified eco-friendly pva-lignin resin, preparation method therefor, and eco-friendly natural-fiber-reinforced composite obtained therefrom

Country Status (2)

Country Link
KR (1) KR102434379B1 (en)
WO (1) WO2022149646A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467759A (en) * 2013-07-17 2013-12-25 东北林业大学 Preparation method of industrial alkali lignin/polyvinyl alcohol cross-linked thin film
CN104497341A (en) * 2015-01-08 2015-04-08 江南大学 Preparation method of photo-crosslinked PVA (polyvinyl alcohol)/lignin composite membrane
US20160002467A1 (en) * 2013-02-11 2016-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoplastic polymer compounds with low-molecular lignins, method for the production thereof, moulded articles and also uses
CN110240774A (en) * 2019-06-21 2019-09-17 华南理工大学 A kind of high-intensity wood quality/polyvinyl alcohol composite antibacterial hydrogel and preparation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160002467A1 (en) * 2013-02-11 2016-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoplastic polymer compounds with low-molecular lignins, method for the production thereof, moulded articles and also uses
CN103467759A (en) * 2013-07-17 2013-12-25 东北林业大学 Preparation method of industrial alkali lignin/polyvinyl alcohol cross-linked thin film
CN104497341A (en) * 2015-01-08 2015-04-08 江南大学 Preparation method of photo-crosslinked PVA (polyvinyl alcohol)/lignin composite membrane
CN110240774A (en) * 2019-06-21 2019-09-17 华南理工大学 A kind of high-intensity wood quality/polyvinyl alcohol composite antibacterial hydrogel and preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KO HYUN-U, ET AL.: "Esterified PVA-lignin resin by maleic acid applicable for natural fiber reinforced composites", J. APPL. POLYM. SCI., vol. 137, no. 26, 27 December 2019 (2019-12-27), XP055949767, DOI: 10.1002/app.48836 *

Also Published As

Publication number Publication date
KR102434379B1 (en) 2022-08-19
KR20220100299A (en) 2022-07-15

Similar Documents

Publication Publication Date Title
Costa et al. Mechanical properties of composites with graphene oxide functionalization of either epoxy matrix or curaua fiber reinforcement
Xu et al. Preparation of a strong, mildew-resistant, and flame-retardant biomimetic multifunctional soy protein adhesive via the construction of an organic-inorganic hybrid multiple-bonding structure
KR101985849B1 (en) Carbon fiber prepreg or carbon fiber - reinforced plastic, and materials including the same
Adhikari et al. Effect of functionalized metal oxides addition on the mechanical, thermal and swelling behaviour of polyester/jute composites
CN110644290A (en) Film sheet comprising cellulose microfine fiber layer
CN108795018B (en) Preparation method of polyurethane/cellulose multifunctional shape memory polymer material
KR101677099B1 (en) multi-layered composite using nanofibrillated cellulose and thermoplastic matrix polymer
JP6868876B2 (en) Aramid epoxy resin and its manufacturing method
CN110172228B (en) Lignin epoxy resin/carbon fiber reinforced anti-aging composite material
DE1931515A1 (en) Process for the production of reinforced laminates
JP2011178157A (en) Environment-friendly fire-resistant biocomposite and method of manufacturing the same
Zhou et al. Functionalized aramid nanofibers prepared by polymerization induced self-assembly for simultaneously reinforcing and toughening of epoxy and carbon fiber/epoxy multiscale composite
KR101714910B1 (en) Porous single polymer fibre composite and method for preparing porous single polymer fibre composite
AU607378B2 (en) Sizing for carbon fiber
Tong et al. Influence of alkali treatment on physico-chemical properties of Malaysian bamboo fiber: A preliminary study
WO2022149646A1 (en) Esterified eco-friendly pva-lignin resin, preparation method therefor, and eco-friendly natural-fiber-reinforced composite obtained therefrom
Chen et al. Poly (p-phenylenebenzobisoxazole) nanofiber layered composite films with high thermomechanical performance
Zhu et al. Effect of silane coupling agent on the properties of recycled carbon fibers reinforced bio-based epoxy composites
JP2018150635A (en) Composite fiber, composition for fiber-reinforced composite material having composite fiber, and fiber-reinforced composite material
CN110258118B (en) Water-soluble temperature-resistant carbon fiber sizing agent and preparation method thereof
Hemanth et al. Physico‐mechanical, and thermal properties of sisal/hemp/Kevlar fibers, fly ash and Titanium Carbide nanoparticles reinforced bioepoxy composites
CN113480707B (en) Aramid fiber water-soluble epoxy resin surface sizing agent and preparation and application thereof
CN110820350A (en) Method for improving mechanical properties of aramid nano-fiber through covalent bond crosslinking
WO2019142986A1 (en) Cellulose nanofiber-based eco-friendly high-strength long fiber and manufacturing method therefor
CN114213760A (en) Hemp-coconut shell hybrid polypropylene composite material and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917809

Country of ref document: EP

Kind code of ref document: A1