WO2022149536A1 - ガス製造装置およびガス製造方法 - Google Patents

ガス製造装置およびガス製造方法 Download PDF

Info

Publication number
WO2022149536A1
WO2022149536A1 PCT/JP2021/048697 JP2021048697W WO2022149536A1 WO 2022149536 A1 WO2022149536 A1 WO 2022149536A1 JP 2021048697 W JP2021048697 W JP 2021048697W WO 2022149536 A1 WO2022149536 A1 WO 2022149536A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reactor
reducing
reactors
reducing agent
Prior art date
Application number
PCT/JP2021/048697
Other languages
English (en)
French (fr)
Inventor
侃 戸野
友樹 中間
匡貴 中村
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US18/270,800 priority Critical patent/US20240059569A1/en
Priority to EP21917756.5A priority patent/EP4276066A1/en
Priority to JP2022517772A priority patent/JPWO2022149536A1/ja
Priority to CN202180089213.4A priority patent/CN116745020A/zh
Publication of WO2022149536A1 publication Critical patent/WO2022149536A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present invention relates to a gas production apparatus and a gas production method.
  • Patent Document 1 discloses a carbon dioxide reduction system including a chemical looping type reactor. This chemical looping type reactor has two reactors filled with a metal oxide catalyst, the first reaction for reducing carbon dioxide to carbon monoxide in one reactor and the other reaction. The second reaction of oxidizing hydrogen to water is carried out in a vessel.
  • an object of the present invention is to provide a gas production apparatus and a gas production method capable of continuously and stably and efficiently producing carbon valuables by using an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance. To provide.
  • the gas production apparatus of the present invention has an oxidizing gas supply unit that supplies an oxidizing gas containing carbon dioxide, and an oxidizing gas supply unit.
  • a reduction agent containing a metal oxide that produces carbon valuables by reduction of carbon dioxide and supplies a reducing gas containing a reducing agent that reduces the reducing agent in an oxidized state by contact with carbon dioxide.
  • Gas supply unit and A plurality of reactors connected to each of the oxidizing gas supply unit and the reducing gas supply unit, and the reducing agent contained in each of the reactors, and the oxidizing gas supplied to each of the reactors. It has a reaction unit that can switch between the reducing gas and the reducing gas.
  • the plurality of reactors include a first reactor and a second reactor to which the reducing gas is supplied when the oxidation gas is supplied to the first reactor, and the first reactor and the above-mentioned first reactor.
  • the number of at least one of the second reactors is 2 or more.
  • the number of the second reactors is 2 or more, and the reducing gas is configured to be continuously passed through the 2 or more second reactors. preferable.
  • the number of the second reactors is 2 or more, and the reducing gas is configured to pass in parallel with the 2 or more second reactors. preferable.
  • the number of the first reactors is two or more, and the oxidation gas is configured to be continuously passed through the two or more first reactors. preferable.
  • the number of the first reactors is two or more, and the oxidation gas is configured to pass in parallel with the two or more first reactors. preferable.
  • the number of the first reactor and the second reactor are both two or more, and the oxidation gas is continuously passed through the two or more first reactors.
  • the reducing gas is configured to continuously pass through the two or more second reactors.
  • the reducing agent it is preferable to use a first reducing agent and a second reducing agent different from the first reducing agent.
  • the oxidizing gas is continuously supplied in the order of the first reactor containing the first reducing agent and the first reactor containing the second reducing agent. And let it pass It is preferable that the reducing gas is continuously passed through the second reactor containing the second reducing agent and the second reactor containing the first reducing agent in this order.
  • the direction in which the oxidizing gas is passed through the reactor and the direction in which the reducing gas is passed through the reactor are the same.
  • the direction in which the oxidizing gas is passed through the reactor and the direction in which the reducing gas is passed through the reactor are opposite.
  • the gas production apparatus of the present invention further has a carbon monoxide removing unit for removing carbon monoxide from the oxidizing gas that has passed through the first reactor between the adjacent first reactors. Is preferable. (11) It is preferable that the gas production apparatus of the present invention further has a water removing unit for removing water from the reducing gas that has passed through the second reactor between the second reactors adjacent to each other.
  • the temperature of the reducing agent is set to a different temperature in at least one of the plurality of reactors.
  • at least one of the plurality of reactors has a different volume.
  • the supply amount of the oxidizing gas to the first reactor is P [mL / min]
  • the supply amount of the reducing gas to the second reactor is Q [mL / min]. Minutes]
  • the reducing agent preferably contains hydrogen.
  • the oxide gas is preferably exhaust gas discharged from the furnace.
  • a plurality of reactors containing a reducing agent containing a metal oxide that produces carbon valuables by reducing carbon dioxide, an oxidizing gas containing carbon dioxide, and the carbon dioxide prepare a reducing gas containing a reducing substance that reduces the reducing agent that has been oxidized by contact with.
  • the carbon dioxide is converted into the carbon valuable material by supplying the carbon dioxide to each of the reactors while switching between the oxidizing gas and the reducing gas, and then the oxidized reducing agent is reduced.
  • the reactor that supplies the oxidation gas is used as the first reactor and the reactor that supplies the reducing gas is used as the second reactor, at least one of the first reactor and the second reactor is used. It is characterized in that the number of is 2 or more.
  • the oxidizing gas is preferably exhaust gas discharged from the furnace.
  • FIG. 1 is a schematic view showing a first embodiment of a gas production system using the gas production apparatus of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the reactor used in the present invention.
  • FIG. 3 is a schematic diagram showing a method of switching the gas to be passed through the reactor in the first embodiment.
  • FIG. 4 is a schematic view showing a method of regenerating the reducing agent in the first embodiment.
  • FIG. 5 is a schematic diagram showing a method of replacing the reducing agent or overhauling the reactor in the first embodiment.
  • FIG. 6 is a schematic view showing the configuration of the reaction unit of the second embodiment.
  • FIG. 7 is a schematic diagram showing a method of switching the gas to be passed through the reactor in the second embodiment.
  • FIG. 1 is a schematic view showing a first embodiment of a gas production system using the gas production apparatus of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the reactor used in the present invention.
  • FIG. 8 is a schematic view showing the configuration of the reaction unit of the third embodiment.
  • FIG. 9 is a schematic diagram showing a method of switching the gas to be passed through the reactor in the third embodiment.
  • FIG. 10 is a schematic diagram showing another method of switching the gas to be passed through the reactor in the third embodiment.
  • FIG. 1 is a schematic view showing a first embodiment of a gas production system using the gas production apparatus of the present invention
  • FIG. 2 is a sectional view schematically showing a configuration of a reactor used in the present invention
  • FIG. 3 is a schematic diagram showing a method of switching the gas to be passed through the reactor in the first embodiment.
  • the gas production system 100 shown in FIG. 1 includes a furnace 20 that produces an exhaust gas (oxidizing gas) containing carbon dioxide, and a gas production apparatus 1 connected to the furnace 20 via a connection portion 2.
  • the upstream side with respect to the gas flow direction is also simply referred to as “upstream side”, and the downstream side is simply referred to as “downstream side”.
  • the furnace 20 is not particularly limited, but is, for example, a furnace attached to a steel mill, a smelter, or a thermal power plant, and preferably includes a combustion furnace, a blast furnace, a converter, and the like.
  • exhaust gas is generated (generated) when the contents are burned, melted, refined, or the like.
  • the contents include, for example, plastic waste, garbage, municipal waste (MSW), waste tires, biomass waste, and household waste (futon). , Paper), building materials, etc.
  • these wastes may contain 1 type alone or 2 or more types.
  • Exhaust gas usually contains carbon dioxide as well as other gas components such as nitrogen, oxygen, carbon monoxide, water vapor and methane.
  • concentration of carbon dioxide contained in the exhaust gas is not particularly limited, but is preferably 1% by volume or more, more preferably 5% by volume or more, in consideration of the production cost of the produced gas (efficiency of conversion to carbon monoxide).
  • carbon dioxide is contained in an amount of 5 to 15% by volume
  • nitrogen is contained in an amount of 60 to 70% by volume
  • oxygen is contained in an amount of 5 to 10% by volume
  • water vapor is contained in an amount of 15 to 25% by volume.
  • the exhaust gas from the blast furnace (blast furnace gas) is a gas generated when pig iron is produced in the blast furnace, and carbon dioxide is 10 to 15% by volume, nitrogen is 55 to 60% by volume, and carbon monoxide is 25 to 30% by volume.
  • Hydrogen is contained in 1-5% by volume.
  • the exhaust gas (converter gas) from the converter is a gas generated when steel is manufactured in the converter, and carbon dioxide is 15 to 20% by volume, carbon monoxide is 50 to 60% by volume, and nitrogen is. It contains 15 to 25% by volume and 1 to 5% by volume of hydrogen.
  • the raw material gas is not limited to the exhaust gas, and a pure gas containing 100% by volume of carbon dioxide may be used.
  • exhaust gas is used as the oxidizing gas, carbon dioxide conventionally emitted into the atmosphere can be effectively used, and the burden on the environment can be reduced.
  • exhaust gas containing carbon dioxide generated in a steel mill or a refinery is preferable.
  • the blast furnace gas or the linz-donaw gas the untreated gas discharged from the furnace may be used as it is, or for example, the treated gas after being treated to remove carbon monoxide or the like may be used. good.
  • the untreated blast furnace gas and the linz-Donaw gas each have a gas composition as described above, and the treated gas has a gas composition close to the gas composition shown in the exhaust gas from the combustion furnace.
  • any of the above gases gas before being supplied to the gas production apparatus 1 is referred to as exhaust gas.
  • the gas production apparatus 1 includes an exhaust gas (oxidized gas containing carbon dioxide) discharged from the furnace 20 and supplied via the connection portion 2, and a reducing agent containing a metal oxide that reduces carbon dioxide contained in the exhaust gas.
  • a produced gas synthetic gas
  • carbon monoxide will be described as an example of carbon monoxide.
  • the carbon valuables are not limited to carbon monoxide, and examples thereof include methane and methanol, which may be a single substance or a mixture of two or more thereof.
  • the type of carbon valuable material produced differs depending on the type of reducing agent described later.
  • the gas production apparatus 1 mainly includes a connection unit 2, a reducing gas supply unit 3, four reactors 4a to 4d, a gas line GL1 connecting the connection unit 2 and the reactors 4a to 4d, and reduction. It has a gas line GL2 connecting the gas supply unit 3 and the reactors 4a to 4d, and a gas line GL4 connected to the reactors 4a to 4d.
  • the connection unit 2 constitutes an exhaust gas supply unit (oxidation gas supply unit) that supplies exhaust gas to the reactors 4a to 4d.
  • a pump for transferring gas may be arranged at a predetermined position in the middle of the gas line GL1, the gas line GL2, and the gas line GL4. For example, when the pressure of the exhaust gas is adjusted to be relatively low by the compression unit 6 described later, the gas can be smoothly transferred in the gas production apparatus 1 by arranging the pump.
  • the gas line GL1 is connected to the connecting portion 2 at one end thereof.
  • the gas line GL1 is connected to the inlet ports of the reactors 4a to 4d at other ends via the first gas switching unit 8a provided in the reaction unit 4 and the four gas lines GL3a to GL3d, respectively.
  • the first gas switching unit 8a can be configured to include, for example, a branched gas line and a flow path opening / closing mechanism such as a valve provided in the middle of the branched gas line.
  • each of the reactors 4a to 4d is a multi-tube reactor (fixed) including a plurality of tubular bodies 41 each filled with a reducing agent 4R and a housing 42 containing the plurality of tubular bodies 41. It is composed of a layered reactor). According to such a multi-tube type reaction device, it is possible to sufficiently secure an opportunity for contact between the reducing agent 4R and the exhaust gas and the reducing gas. As a result, the production efficiency of the produced gas can be improved.
  • the reducing agent 4R of the present embodiment is preferably in the form of particles (granule), scales, pellets, or the like.
  • the filling efficiency into the tube 41 can be increased, and the contact area with the gas supplied into the tube 41 can be further increased.
  • the volume average particle diameter is not particularly limited, but is preferably 1 to 50 mm, more preferably 3 to 30 mm.
  • the contact area between the reducing agent 4R and the exhaust gas (carbon dioxide) can be further increased, and the conversion efficiency of carbon dioxide into carbon monoxide can be further improved.
  • the regeneration (reduction) of the reducing agent 4R with the reducing gas containing the reducing substance can be performed more efficiently. Since the particulate reducing agent 4R has a higher sphericity, it is preferably a molded product produced by rolling granulation.
  • the reducing agent 4R may be supported on a carrier.
  • the constituent material of the carrier may be any material that is not easily modified depending on the exhaust gas (oxidizing gas), reaction conditions, etc., and is not particularly limited, but is, for example, a carbon material (graphite, graphene, etc.), Mo 2 C, or the like. Examples include oxides such as carbides, zeolites, montmorillonites, ZrO 2 , TiO 2 , V 2 O 5 , MgO, CeO 2 , alumina (Al 2 O 3 ), silica (SiO 2 ), and composite oxides containing these. Be done.
  • zeolite, montmorillonite, SiO 2 , ZrO 2 , TiO 2 , V 2 O 5 , MgO, alumina (Al 2 O 3 ), silica (SiO 2 ) and composite oxides containing these are preferable.
  • a carrier composed of such a material is preferable in that it does not adversely affect the reaction of the reducing agent 4R and is excellent in the carrying capacity of the reducing agent 4R.
  • the carrier does not participate in the reaction of the reducing agent 4R, but merely supports (retains) the reducing agent 4R.
  • the metal oxide (oxygen carrier) contained in the reducing agent 4R is not particularly limited as long as it can reduce carbon dioxide, but contains at least one selected from the metal elements belonging to Group 3 to Group 12. It is preferable, and it is more preferable to contain at least one selected from the metal elements belonging to the 4th to 12th genera, among titanium, vanadium, iron, copper, zinc, nickel, manganese, chromium, cerium and the like. It is more preferable to contain at least one of the above, and a metal oxide or a composite oxide containing iron is particularly preferable. These metal oxides are useful because they have particularly good conversion efficiency of carbon dioxide to carbon monoxide.
  • metal oxide that converts carbon dioxide into carbon monoxide for example, iron oxide, cerium oxide, etc. are suitable.
  • metal oxide that converts carbon dioxide into methane for example, zirconia, alumina, titania, silica and the like supporting or containing at least one of nickel and ruthenium are suitable.
  • metal oxide that converts carbon dioxide into methanol for example, zirconia, alumina, silica, etc. that support or contain at least one of copper and zinc are suitable.
  • the tubular body (cylindrical molded body) 41 may be produced by the reducing agent 4R (metal oxide) itself.
  • a block-shaped, lattice-shaped (for example, net-shaped, honeycomb-shaped) molded body may be produced with the reducing agent 4R and arranged in the housing 42.
  • the reducing agent 4R as a filler may be omitted or may be used in combination.
  • a configuration in which a network body is produced with the reducing agent 4R and arranged in the housing 42 is preferable.
  • the volumes of the four reactors 4a to 4d are set to be substantially equal to each other, and are appropriately set according to the amount of exhaust gas to be treated (the size of the furnace 20 and the size of the gas production apparatus 1). Further, the volume of at least one of the four reactors 4a to 4d may be different depending on the types of exhaust gas and reducing gas, the performance of the reducing agent 4R, and the like.
  • a concentration adjusting unit 5 adjusts so as to increase the concentration of carbon dioxide contained in the exhaust gas (in other words, to concentrate carbon dioxide).
  • Exhaust gas also contains unnecessary gas components such as oxygen.
  • the concentration adjusting unit 5 is preferably configured by an oxygen removing device that removes oxygen contained in the exhaust gas.
  • an oxygen removing device that removes oxygen contained in the exhaust gas.
  • the amount of oxygen brought into the gas production apparatus 1 can be reduced (that is, the concentration of oxygen contained in the exhaust gas can be adjusted to be low). Therefore, the gas composition of the exhaust gas can be deviated from the explosion range, and the ignition of the exhaust gas can be prevented. It should be noted that, among the gas production apparatus 1, since the oxygen removing apparatus consumes a large amount of electric energy, it is effective to use electric power as renewable energy as described later.
  • the concentration of oxygen contained in the exhaust gas is preferably adjusted to less than 1% by volume, more preferably less than 0.5% by volume, and less than 0.1% by volume with respect to the entire exhaust gas. It is more preferable to adjust. This makes it possible to more reliably prevent the ignition of the exhaust gas.
  • Oxygen removal devices that remove oxygen contained in exhaust gas include low temperature separation type (deep cooling type) separators, pressure swing adsorption (PSA) type separators, membrane separation type separators, and temperature swing adsorption (TSA). It can be configured by using one or more of a type separator, a chemical absorption type separator, a chemical adsorption type separator and the like.
  • the concentration adjusting unit 5 may adjust the concentration of carbon dioxide to a high concentration by adding carbon dioxide to the exhaust gas.
  • the compression unit 6 raises the pressure of the exhaust gas before supplying it to the reactors 4a and 4b. This makes it possible to increase the amount of exhaust gas that can be processed at one time by the reactors 4a and 4b. Therefore, the conversion efficiency of carbon dioxide into carbon monoxide in the reactors 4a and 4b can be further improved.
  • the compression unit 6 includes, for example, a centrifugal compressor, a turbo compressor such as an axial flow compressor, a reciprocating compressor (recipro compressor), a diaphragm compressor, a single screw compressor, a twin screw compressor, and the like.
  • It can be composed of a scroll compressor, a rotary compressor, a rotary piston type compressor, a positive displacement compressor such as a slide vane type compressor, a roots blower (two-leaf blower) capable of supporting low pressure, a centrifugal blower, and the like.
  • the compression unit 6 is preferably configured by a centrifugal compressor from the viewpoint of easiness of increasing the scale of the gas production system 100, and from the viewpoint of reducing the production cost of the gas production system 100, it is preferable. It is preferable to use a reciprocating compressor.
  • the pressure of the exhaust gas after passing through the compression unit 6 is not particularly limited, but is preferably 0 to 1 MPaG, more preferably 0 to 0.5 MPaG, and preferably 0.01 to 0.5 MPaG. More preferred. In this case, the conversion efficiency of carbon dioxide into carbon monoxide in the reactors 4a to 4d can be further improved without increasing the pressure resistance of the gas production apparatus 1 more than necessary.
  • the fine component removing unit 7 removes fine components (trace amount of unnecessary gas components, etc.) contained in the exhaust gas.
  • the fine component removing unit 7 can be composed of, for example, a processor of at least one of a gas-liquid separator, a protector (guard reactor), and a scrubber (absorption tower).
  • the order in which they are arranged is arbitrary, but when using a combination of a gas-liquid separator and a protector, it is preferable to place the gas-liquid separator upstream of the protector. .. In this case, the efficiency of removing fine components from the exhaust gas can be further improved, and the usage period (life) of the protector can be extended.
  • the gas-liquid separator separates, for example, the condensed water (liquid) generated when the exhaust gas is compressed by the compression unit 6 from the exhaust gas. In this case, unnecessary gas components remaining in the exhaust gas are also dissolved and removed in the condensed water.
  • the gas-liquid separator can be composed of, for example, a simple container, a swirling flow separator, a centrifuge, a surface tension separator, or the like. Among these, the gas-liquid separator is preferably composed of a simple container because it has a simple structure and is inexpensive. In this case, a filter that allows the passage of gas but blocks the passage of liquid may be arranged at the gas-liquid interface in the container.
  • a liquid line may be connected to the bottom of the container and a valve may be provided in the middle thereof.
  • the condensed water stored in the container can be discharged to the outside of the gas production apparatus 1 via the liquid line by opening the valve.
  • the liquid line may be connected to the tank 30, which will be described later, to reuse the discharged condensed water.
  • the exhaust gas from which the condensed water has been removed by the gas-liquid separator can be configured to be supplied to the protector, for example.
  • the protector is provided with a substance that is a fine component contained in the exhaust gas and can capture a component (inactivating component) that reduces the activity of the reducing agent 4R by contact with the reducing agent 4R.
  • the substance in the protector reacts (captures) with the inactivating component to prevent the exhaust gas from reaching the reducing agent 4R in the reactors 4a to 4d.
  • it can be suppressed and protected (ie, prevent a decrease in activity). Therefore, it is possible to prevent or suppress the efficiency of conversion of carbon dioxide to carbon monoxide by the reducing agent 4R from being extremely lowered due to the adverse effect of the inactivating component.
  • Such a substance includes a substance having a composition contained in the reducing agent 4R and having a composition of reducing the activity of the reducing agent 4R by contact with an inactivating component, specifically, a metal oxide contained in the reducing agent 4R.
  • an inactivating component specifically, a metal oxide contained in the reducing agent 4R.
  • the same or similar metal oxides as can be used.
  • similar metal oxides have the same metal elements contained therein, but have different compositions, or different types of metal elements contained therein, but have the same group in the Periodic Table of the Elements. It refers to a certain metal oxide.
  • the inactivating component is preferably at least one selected from sulfur, mercury, sulfur compounds, halogen compounds, organic silicones, organic phosphorus and organic metal compounds, and at least one selected from sulfur and sulfur compounds. More preferably, it is a seed.
  • the substance may be any substance whose activity is reduced by the same component as the inactivating component of the reducing agent 4R, and metal oxides such as iron oxide and zinc oxide are excellent in capturing the inactivating component. Is preferable.
  • the protector has a structure in which a mesh material is arranged in a housing and particles of the above substance are placed on the mesh material, a honeycomb-shaped filter member composed of the above-mentioned substance, or a cylindrical or particle-like protector.
  • the structure may be such that the molded body is arranged.
  • the protector is arranged between the compression unit 6 (gas-liquid separator) and the exhaust gas heating unit 10, it is necessary to improve the efficiency of removing inactivated components while preventing deterioration of the above substances due to heat. Can be done.
  • the exhaust gas heating unit 10 heats the exhaust gas before being supplied to the reactors 4a to 4d.
  • the exhaust gas heating unit 10 can be composed of, for example, an electric heater and a heat exchanger (economizer).
  • the heat exchanger bends a part of the pipes constituting the gas line GL4 (see below) for discharging the gas (mixed gas) after passing through the reactors 4a to 4d, and approaches the pipes constituting the gas line GL1. It is configured to be. According to this configuration, the heat of the high-temperature gas (mixed gas) after passing through the reactors 4a to 4d is used to heat the exhaust gas before being supplied to the reactors 4a to 4d by heat exchange. Can be effectively used.
  • Such heat exchangers include, for example, jacket type heat exchangers, immersion coil type heat exchangers, double tube heat exchangers, shell & tube heat exchangers, plate heat exchangers, spiral heat exchangers and the like. Can be configured. Further, in the exhaust gas heating unit 10, either the electric heater or the heat exchanger may be omitted. In the exhaust gas heating unit 10, a combustion furnace or the like can be used instead of the electric heater. However, if an electric heater is used, electric power (electrical energy) as renewable energy can be used as its power source, so that the burden on the environment can be reduced. As renewable energy, electric energy using at least one selected from solar power generation, wind power generation, hydroelectric power generation, wave power generation, tidal power generation, biomass power generation, geothermal power generation, solar heat and underground heat is used. It is possible.
  • the exhaust gas line is branched from the gas line GL1 and the gas is branched at the end thereof.
  • a vent portion provided outside the manufacturing apparatus 1 may be connected.
  • a valve is preferably provided in the middle of the exhaust gas line. If the pressure in the gas production apparatus 1 (gas line GL1) rises more than necessary, a part of the exhaust gas is discharged (released) from the vent portion via the exhaust gas line by opening the valve. be able to. This makes it possible to prevent damage to the gas production apparatus 1 due to an increase in pressure.
  • the gas line GL2 is connected to the reducing gas supply unit 3 at one end thereof.
  • the gas line GL2 is connected to the inlet ports of the reactors 4a to 4d, respectively, via the first gas switching unit 8a provided in the reaction unit 4 and the four gas lines GL3a to GL3d.
  • the reducing gas supply unit 3 supplies a reducing gas containing a reducing substance that reduces the reducing agent 4R oxidized by contact with carbon dioxide.
  • the reduced gas supply unit 3 of the present embodiment is composed of a hydrogen generator that generates hydrogen by electrolysis of water, and a tank (reduced gas raw material storage unit) outside the gas production apparatus 1 that stores water in this hydrogen generator. 30 is connected.
  • the reducing gas containing hydrogen (reducing substance) supplied from the hydrogen generator (reducing gas supply unit 3) passes through the gas line GL2 and is supplied to the reactors 4a to 4d.
  • the hydrogen generator a large amount of hydrogen can be generated relatively inexpensively and easily. Further, there is an advantage that the condensed water generated in the gas production apparatus 1 can be reused. It should be noted that, among the gas production apparatus 1, since the hydrogen generator consumes a large amount of electric energy, it is effective to use the electric power as the renewable energy as described above.
  • the hydrogen generator a device that generates by-product hydrogen can also be used.
  • the reducing gas containing by-product hydrogen is supplied to each of the reactors 4a to 4d.
  • the device for generating by-product hydrogen include a device for electrolyzing an aqueous sodium chloride solution, a device for steam reforming petroleum, a device for producing ammonia, and the like.
  • the gas line GL2 may be connected to the coke oven outside the gas production apparatus 1 via the connecting portion, and the exhaust gas from the coke oven may be used as the reducing gas.
  • the connecting portion constitutes the reducing gas supply portion.
  • a reducing gas heating unit 11 is provided in the middle of the gas line GL2.
  • the reducing gas heating unit 11 heats the reducing gas before being supplied to the reactors 4a to 4d.
  • the reduction (regeneration) reaction of the reducing agent 4R by the reducing gas in the reactors 4a to 4d can be further promoted.
  • the reducing gas heating unit 11 can be configured in the same manner as the exhaust gas heating unit 10.
  • the reduction gas heating unit 11 is preferably composed of only an electric heater, only a heat exchanger, and a combination of an electric heater and a heat exchanger, and is composed of only a heat exchanger and a combination of an electric heater and a heat exchanger. Is more preferable. If the reducing gas heating unit 11 is provided with a heat exchanger, the heat of the high-temperature gas (for example, a mixed gas) after passing through the reactors 4a to 4d is used before being supplied to the reactors 4a to 4d. Since the reducing gas is heated by heat exchange, the heat can be effectively used.
  • a mixed gas for example, a mixed gas
  • the reactor 4a containing the reducing agent 4R before oxidation is connected to the reactor 4a via the gas line GL3a.
  • the exhaust gas can be supplied, and the reducing gas can be supplied to the reactor 4b containing the oxidizing agent 4R via the gas line GL3b.
  • the reaction of the following formula 1 proceeds in the reactor 4a
  • the reaction of the following formula 2 proceeds in the reactor 4b.
  • the metal oxide contained in the reducing agent 4R is iron oxide (FeO x-1 ) is shown as an example.
  • Equation 1 CO 2 + FeO x-1 ⁇ CO + FeO x Equation 2: H 2 + FeO x ⁇ H 2 O + FeO x-1
  • the gas production apparatus 1 is a reducing agent heating unit that heats the reducing agent 4R when the reducing agent 4R is brought into contact with the exhaust gas or the reducing gas (that is, when the exhaust gas or the reducing gas reacts with the reducing agent 4R). It is preferable to further have (not shown in FIG. 1).
  • a reducing agent heating unit By providing such a reducing agent heating unit, the temperature in the reaction between the exhaust gas or the reducing gas and the reducing agent 4R is maintained at a high temperature, and the decrease in the conversion efficiency of carbon dioxide into carbon monoxide is suitably prevented or suppressed. , The regeneration of the reducing agent 4R by the reducing gas can be further promoted.
  • the reactions represented by the above formulas 1 and 2 may be exothermic reactions.
  • the gas production apparatus 1 has a reducing agent cooling unit that cools the reducing agent 4R instead of the reducing agent heating unit.
  • a reducing agent cooling unit By providing such a reducing agent cooling unit, deterioration of the reducing agent 4R is suitably prevented during the reaction between the exhaust gas or the reducing gas and the reducing agent 4R, and the conversion efficiency of carbon dioxide into carbon monoxide is improved. It is possible to suitably prevent or suppress the decrease and further promote the regeneration of the reducing agent 4R by the reducing gas. That is, it is preferable that the gas production apparatus 1 is provided with a reducing agent temperature control unit that adjusts the temperature of the reducing agent 4R depending on the type of the reducing agent 4R (exothermic reaction or endothermic reaction).
  • each of the reactors 4a to 4d may have a temperature control mechanism for adjusting the temperature of the reducing agent 4R.
  • Branch gas lines GL4a to GL4d are connected to the outlet ports of the reactors 4a to 4d, respectively, and merge at the second gas switching unit 8b to form the gas line GL4. Further, valves (not shown) are provided in the middle of the branched gas lines GL4a to GL4d, if necessary. For example, by adjusting the opening degree of the valve, the passing speed of the exhaust gas and the reducing gas passing through the reactors 4a to 4d (that is, the processing speed of the exhaust gas by the reducing agent 4R and the processing speed of the reducing agent 4R by the reducing gas) can be adjusted. Can be set.
  • the reactor 4 is composed of the reactors 4a to 4d, the first gas switching unit 8a, and the second gas switching unit 8b.
  • the gases mainly carbon monoxide and steam in this embodiment
  • the mixed gas merged
  • the mixed gas After the gas) is generated, it will pass through one gas line GL4. Therefore, if the flow path switching state (valve open / closed state) of the first gas switching unit 8a is changed and different reactions are performed in any of the reactors 4a to 4d, the mixed gas is continuously produced. Finally, the produced gas can also be produced continuously.
  • the gas production apparatus 1 gas production system 100 described above can continuously and stably produce carbon monoxide from carbon dioxide, which is industrially advantageous.
  • this concentration is too low, it tends to be difficult to obtain a produced gas containing carbon monoxide at a high concentration, although it depends on the performance of the gas purification unit 9 described later. On the other hand, even if the concentration exceeds the upper limit of this concentration, no further increase in the effect of further increasing the concentration of carbon monoxide contained in the finally obtained produced gas cannot be expected.
  • a product gas discharge unit 40 that discharges the product gas to the outside of the gas production device 1 is connected to the end of the gas line GL4 on the opposite side to the reactors 4a to 4d. Further, a gas refining unit 9 is provided in the middle of the gas line GL4.
  • the gas purification unit 9 purifies carbon monoxide from the mixed gas and recovers the produced gas containing a high concentration of carbon monoxide. If the carbon monoxide concentration in the mixed gas is sufficiently high, the gas purification unit 9 may be omitted.
  • the gas purification unit 9 can be composed of, for example, at least one of a cooler, a gas-liquid separator, a gas separator, a separation membrane, and a scrubber (absorption tower).
  • the order of arrangement thereof is arbitrary, but when a cooler, a gas-liquid separator, and a gas separator are used in combination, it is preferable to arrange them in this order. In this case, the efficiency of purifying carbon monoxide from the mixed gas can be further increased.
  • the cooler cools the mixed gas. As a result, condensed water (liquid) is generated.
  • a cooler has the same configuration as the reactors 4a to 4d (see FIG. 2), which is a jacket-type cooling device in which a jacket for passing a refrigerant is arranged around the pipe, and a mixed gas is introduced into the pipe body. It can be configured to include a multi-tube type cooling device, an air fin cooler, etc., which allow the refrigerant to pass around each of them.
  • the gas-liquid separator separates the condensed water generated when the mixed gas is cooled by the cooler from the mixed gas.
  • the condensed water has an advantage that unnecessary gas components (particularly carbon dioxide) remaining in the mixed gas can be dissolved and removed.
  • the gas-liquid separator can be configured in the same manner as the gas-liquid separator of the fine component removing unit 7, and can preferably be configured as a simple container.
  • a filter that allows the passage of gas but blocks the passage of liquid may be arranged at the gas-liquid interface in the container.
  • a liquid line may be connected to the bottom of the container and a valve may be provided in the middle thereof. According to such a configuration, the condensed water stored in the container can be discharged (released) to the outside of the gas production apparatus 1 via the liquid line by opening the valve.
  • a drain trap on the downstream side of the valve in the middle of the liquid line.
  • a valve malfunction detection function and a redundancy measure when the valve malfunctions may be provided.
  • the liquid line may be connected to the tank 30 described above to reuse the discharged condensed water.
  • Gas separators include, for example, a low temperature separation type (deep cooling type) separator, a pressure swing adsorption (PSA) type separator, a membrane separation type separator, a temperature swing adsorption (TSA) type separator, and a metal ion.
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • a valve may be provided between the gas-liquid separator of the gas line GL4 and the gas separator. In this case, the processing speed of the mixed gas (production speed of the produced gas) can be adjusted by adjusting the opening degree of the valve.
  • the concentration of carbon monoxide contained in the mixed gas discharged from the gas-liquid separator is 75 to 90% by volume with respect to the entire mixed gas. Therefore, in the field where a produced gas containing carbon monoxide at a relatively low concentration (75 to 90% by volume) can be used, carbon monoxide can be directly supplied to the next step without being purified from the mixed gas. That is, the gas separator can be omitted.
  • Such fields include, for example, the field of synthesizing valuable substances (eg, ethanol, etc.) by fermentation of the produced gas with microorganisms (eg, clostridium, etc.), the field of producing steel using the produced gas as a fuel or a reducing agent, and the like. Examples include the field of manufacturing electric devices and the field of synthesizing chemical products (phosgene, acetic acid, etc.) using carbon monoxide as a synthetic raw material.
  • the produced gas containing carbon monoxide at a high concentration is obtained by purifying carbon monoxide from the mixed gas.
  • Such fields include, for example, a field in which the produced gas is used as a reducing agent (blast furnace), a field in which the produced gas is used as a fuel to generate power by thermal power, a field in which a chemical product is produced using the produced gas as a raw material, and a field in which the produced gas is used as a fuel. Examples include the field of fuel cells used as fuel cells.
  • the reaction unit 4 of the present embodiment has four gas lines GL5a to GL5d connecting between the first gas switching unit 8a and the second gas switching unit 8b.
  • the reaction unit 4 of the present embodiment has four gas lines GL5a to GL5d connecting between the first gas switching unit 8a and the second gas switching unit 8b.
  • one reactor of the reactors 4a to 4d is subjected to exhaust gas (oxidation). Gas) can be supplied and passed through, while the reducing gas can be continuously supplied and passed through the remaining three reactors of the reactors 4a to 4d in this order.
  • one reactor to which the exhaust gas is supplied is the first reactor, and when the exhaust gas is supplied to the first reactor, the reducing gas is continuous.
  • the three reactors supplied in the above are the second reactors.
  • the exhaust gas (carbon dioxide) is supplied to the reactor (first reactor) 4a via the gas line GL3a, and the exhaust gas (1) passing through the reactor (first reactor) 4a.
  • Carbon oxide can be discharged via the gas line GL4a.
  • the reducing gas (hydrogen) is supplied to the reactor (first second reactor) 4b via the gas line GL3b, and then the reduction passing through the reactors 4b to 4d.
  • the gas (residual hydrogen) is supplied to the reactor (second second reactor) 4c via the gas line GL4b, the gas line GL5c and the gas line GL3c, and then the reducing gas (residual hydrogen) passing through the reactor is supplied. It is supplied to the reactor (third second reactor) 4d via the gas line GL4c, the gas line GL5d and the gas line GL3d, and the reduced gas (water) passing through the reactor is discharged via the gas line GL4d. be able to.
  • the exhaust gas is supplied to and passed through the reactor (first reactor) 4b, while the reactor (second reactor) 4c, 4d, 4a. In this order, the reducing gas can be continuously supplied and passed through.
  • the third turn shown in FIG. 3 (III) exhaust gas is supplied to and passed through the reactor (first reactor) 4c, while the reactors (second reactor) 4d, 4a, 4b. In this order, the reducing gas can be continuously supplied and passed through.
  • the fourth turn shown in FIG. 3 (IV) the exhaust gas is supplied to and passed through the reactor (first reactor) 4d, while the reactors (second reactor) 4a, 4b, 4c. In this order, the reducing gas can be continuously supplied and passed through.
  • the conversion from carbon dioxide to carbon monoxide can be continuously and stably performed by repeating a series of operations from the first turn to the fourth turn as one cycle and repeating a plurality of cycles.
  • a reducing agent 4R in which the reducing efficiency of the oxidized state by hydrogen (reducing substance) is lower than the conversion efficiency of carbon dioxide to carbon monoxide
  • the reducing gas can be continuously passed through three reactors, in other words, one reactor can be passed three times. Therefore, it is possible to prevent hydrogen (reducing gas) from being wasted.
  • the reducing agent 4R can be replaced or the reactor can be overhauled. Furthermore, by using three or more reactors, the number of redox cycles per unit time can be reduced compared to conventional configurations using two reactors, and thus for each reactor. The life of the reducing agent 4R can be extended. In other words, the life of the reducing agent 4R can be controlled by adjusting the number of reactors.
  • the reaction heat is obtained by heat exchange between the heating gas (heating medium), the process gas (exhaust gas or reducing gas), and the reducing agent 4R.
  • the heating gas heating medium
  • the process gas exhaust gas or reducing gas
  • the reducing agent 4R the reducing agent 4R.
  • the state of the reactor that is not used for normal operation is either the state in which the inert gas is passed, the state in which the passage of the gas is stopped (blocked), or the state in which the exhaust gas or the reduced gas is passed. May be.
  • a water removing unit for removing water from the reducing gas that has passed through the second reactor is installed between adjacent second reactors (in the middle of the gas lines GL5a to GL5d). You may. As a result, the content of water (water vapor) in the reducing gas that has passed through the second reactor in the previous stage and is supplied to the second reactor in the next stage can be reduced. As a result, it is possible to prevent or suppress a decrease in the reducing efficiency of the oxidizing agent 4R in the oxidized state.
  • the water removing unit can be configured by, for example, one of a heat exchanger, a packed tower filled with an absorbent or an adsorbent, a membrane separation module, and the like, either alone or in combination of two or more.
  • a heat exchanger water can be aggregated and physically separated by the temperature difference.
  • the packed column water can be chemically or physically separated by absorption or adsorption. In this case, if necessary, the absorbent material or the adsorbent material may be recycled and used.
  • the membrane separation module water can be membrane separated by the pressure difference.
  • the number of second reactors may be 2 or more (preferably 4 to 8) depending on the degree of difference between the efficiency of carbon dioxide conversion to carbon monoxide and the efficiency of hydrogen conversion to water. May be.
  • the number of second reactors through which the reducing gas is passed is set to 1, and the exhaust gas (
  • the number of first reactors through which (oxidizing gas) is continuously passed may be 2 or more (preferably 2 to 8). Further, the number of the first reactor and the number of the second reactor may be 2 or more (preferably 2 to 8), respectively.
  • carbon monoxide is emitted from the exhaust gas (oxidized gas) that has passed through the first reactors between the adjacent first reactors (in the middle of the gas lines GL5a to GL5d).
  • a carbon monoxide removing unit for removing the gas may be installed.
  • the content of carbon monoxide in the exhaust gas that has passed through the first reactor in the previous stage and is supplied to the first reactor in the latter stage can be reduced.
  • the carbon monoxide removing unit can be configured, for example, by using one of a packed tower filled with an absorbent or an adsorbent, a membrane separation module, a molecular sieve membrane, or the like, alone or in combination of two or more.
  • a packed column carbon monoxide can be chemically or physically separated by absorption or adsorption.
  • the absorbent material or the adsorbent material may be recycled and used.
  • the membrane separation module carbon monoxide can be membrane separated by the pressure difference.
  • carbon monoxide and carbon dioxide can be separated according to the molecular size (for example, the molecular radius).
  • the exhaust gas passes through the oxygen removing device (concentration adjusting unit 5). As a result, oxygen is removed from the exhaust gas, and the concentration of carbon dioxide contained in the exhaust gas increases. [4] Next, the exhaust gas passes through the compression unit 6. As a result, the pressure of the exhaust gas rises. [5] Next, the exhaust gas passes through the fine component removing unit 7. As a result, the condensed water generated when the exhaust gas is compressed by the compression unit 6 and the inactivating component that reduces the activity of the reducing agent 4R are removed from the exhaust gas.
  • the exhaust gas passes through the exhaust gas heating unit 10. This heats the exhaust gas.
  • the exhaust gas is supplied to the reactor (first reactor) 4a.
  • carbon dioxide in the exhaust gas is reduced to carbon monoxide by the reducing agent 4R.
  • the reducing agent 4R is oxidized.
  • the heating temperature of the exhaust gas in the above step [6] is preferably 300 to 1000 ° C, more preferably 450 to 950 ° C, further preferably 650 to 900 ° C, and 700 to 850 ° C. Is particularly preferred.
  • the heating temperature of the exhaust gas is set in the above range, for example, it is possible to prevent or suppress a rapid temperature drop of the reducing agent 4R due to an endothermic reaction when converting carbon dioxide into carbon monoxide.
  • the carbon dioxide reduction reaction can proceed more smoothly.
  • water (reduced gas raw material) is supplied from the tank 30 to the hydrogen generator (reduced gas supply unit 3) to generate hydrogen from the water.
  • the reducing gas containing hydrogen passes through the reducing gas heating unit 11. This heats the reducing gas.
  • the reducing gas is supplied to the reactor (first second reactor) 4b. In the reactor 4b, the reducing agent 4R in the oxidized state is reduced (regenerated) by the reducing gas (hydrogen).
  • the heating temperature of the reducing gas in the above step [9] is preferably 300 to 1000 ° C, more preferably 450 to 950 ° C, further preferably 650 to 900 ° C, and 700 to 850 ° C. It is particularly preferable to have. If the heating temperature of the reducing gas is set in the above range, for example, it is possible to prevent or suppress a rapid temperature drop of the reducing agent 4R due to a heat absorption reaction when reducing (regenerating) the reducing agent 4R in an oxidized state. The reduction reaction of the reducing agent 4R in the reactor 4b can proceed more smoothly.
  • the reducing gas (residual hydrogen) that has passed through the reactor 4b is supplied to the reactor (second second reactor) 4c.
  • the reducing agent 4R in the oxidized state is reduced (regenerated) by the reducing gas (residual hydrogen).
  • the reducing gas (residual hydrogen) that has passed through the reactor 4c is supplied to the reactor (third second reactor) 4d.
  • the reducing agent 4R in the oxidized state is reduced (regenerated) by the reducing gas (residual hydrogen).
  • the reducing gas that has passed through the reactor 4b and the reducing gas that has passed through the reactor 4c may be heated to the above temperatures, if necessary.
  • the gas line switching timing (that is, the switching timing between the exhaust gas supplied to the reactors 4a to 4d and the reducing gas) in the first gas switching unit 8a is any one of the conditions I: the reactors 4a to 4d. It is preferable that a predetermined amount of exhaust gas is supplied to one reactor, or condition II: the conversion efficiency of carbon dioxide to carbon monoxide falls below a predetermined value. As a result, the reactors 4a to 4d are switched before the efficiency of converting carbon dioxide to carbon monoxide is significantly reduced, so that the concentration of carbon monoxide contained in the mixed gas is increased and stabilized. be able to.
  • gas concentration sensors may be arranged near the inlet and outlet ports of the reactors 4a to 4d, respectively. Based on the detected value of this gas concentration sensor, the conversion efficiency of carbon dioxide to carbon monoxide can be calculated.
  • the amount of exhaust gas supplied to the reactor (first reactor) that supplies the exhaust gas among the reactors 4a to 4d and the reaction is preferable to set the amount of the reduced gas to be supplied as close as possible to the three reactors (second reactors) that supply the reduced gas among the vessels 4a to 4d.
  • P / Q is , 0.7 to 1.1 is preferable, and 0.85 to 1.05 is more preferable.
  • the amount of exhaust gas supplied P is too large, the amount of carbon dioxide emitted from the reactors 4a to 4d increases without being converted to carbon monoxide, depending on the amount of the reducing agent 4R in the reactors 4a to 4d. Tend to do.
  • the predetermined amount under the above condition I is preferably 0.01 to 3 mol of carbon dioxide per 1 mol of the metal element having the largest mass ratio in the reducing agent 4R, and 0.1 to 2.5. More preferably, it is in the amount of moles.
  • the predetermined value under the above condition II is preferably 50 to 100%, more preferably 60 to 100%, and further preferably 70 to 100%.
  • the upper limit of the predetermined value may be 95% or less, or 90% or less.
  • the reactors 4a to 4d can be switched before the efficiency of carbon dioxide conversion to carbon monoxide drops significantly, and as a result, the mixed gas containing a high concentration of carbon monoxide is stable. Therefore, it is also possible to produce a produced gas containing a high concentration of carbon monoxide.
  • the supply amount Q of the reducing gas (reducing substance) is preferably 0.1 to 3 mol, and 0.15 mol, per 1 mol of the metal element having the largest mass ratio in the reducing agent 4R. More preferably, the amount is ⁇ 2.5 mol. Even if the supply amount Q of the reducing gas is increased beyond the upper limit value, no further increase in the effect of reducing the reducing agent 4R in the oxidized state cannot be expected. On the other hand, if the supply amount Q of the reducing gas is too small, the reduction of the reducing agent 4R may be insufficient depending on the amount of hydrogen contained in the reducing gas. Further, the pressure of the reducing gas supplied to the reactors 4a to 4d may be atmospheric pressure or may be pressurized (similar to the exhaust gas).
  • the gases that have passed through the reactors 4a to 4d merge to form a mixed gas.
  • the temperature of the mixed gas is usually 600-650 ° C. If the temperature of the mixed gas at this point is in the above range, it means that the temperature in the reactors 4a to 4d is sufficiently maintained at a high temperature, and the conversion of carbon dioxide to carbon monoxide by the reducing agent 4R. Alternatively, it can be determined that the reduction of the reducing agent 4R with the reducing gas is proceeding efficiently.
  • the mixed gas is cooled to 100 to 300 ° C. by the time it reaches the gas purification unit 9.
  • the mixed gas passes through the gas refining unit 9.
  • the generated condensed water and carbon dioxide dissolved in the condensed water are removed.
  • carbon monoxide is purified from the mixed gas, and a produced gas containing a high concentration of carbon monoxide is obtained.
  • the temperature of the obtained produced gas is 20 to 50 ° C.
  • the downstream side of the gas refining unit 9 may be used as necessary. A cooler or a heater may be installed.
  • the produced gas is discharged from the generated gas discharging unit 40 to the outside of the gas manufacturing apparatus 1, and is used for the next step.
  • the reactor 4a, the reactor 4b, the reactor 4c, and the reactor 4d are switched in this order and used as the first reactor, but the order in which they are used as the first reactor is arbitrary.
  • the reactors 4a to 4d can be switched and used as follows. First, in the first turn, the reactor 4a is used as the first reactor to pass the exhaust gas, and the reactor 4b, the reactor 4c, and the reactor 4d are used as the second reactor, and the reducing gas is passed in this order.
  • the reactor 4d is used as the first reactor to pass the exhaust gas, and the reactor 4a, the reactor 4b, and the reactor 4c are used as the second reactor, and the reducing gas is passed in this order.
  • the reactor 4c is used as the first reactor to pass the exhaust gas, and the reactor 4d, the reactor 4a, and the reactor 4b are used as the second reactor, and the reducing gas is passed in this order.
  • the reactor 4b is used as the first reactor to pass the exhaust gas, and the reactor 4c, the reactor 4d, and the reactor 4a are used as the second reactor, and the reducing gas is passed in this order.
  • a produced gas containing carbon monoxide can be produced from the exhaust gas discharged from the furnace containing carbon dioxide.
  • a gas production method of the present embodiment I: a plurality of reactors containing a reducing agent containing a metal oxide that produces carbon monoxide (carbon valuable resource) by reducing carbon dioxide, and an exhaust gas containing carbon dioxide (oxidation). Gas) and a reducing gas containing hydrogen (reducing substance) that reduces the reducing agent that has been oxidized by contact with carbon dioxide are prepared.
  • the reactor that supplies the exhaust gas from the reactors 4a to 4d is used as the first reactor when reducing the oxidized reducing agent 4R.
  • the reactor that supplies the reducing gas among 4a to 4d is the second reactor, the number of at least one of the first reactor and the second reactor is 2 or more.
  • the produced gas produced by using the gas production apparatus 1 and the gas production system 100 usually has a carbon monoxide concentration of 60% by volume or more, preferably 75% by volume or more, and more preferably 90% by volume or more. ..
  • the generated gas as described above can be used in fields where valuable substances (eg, ethanol, etc.) are synthesized by fermentation with microorganisms (eg, clostridium, etc.), fields in which steel is produced by using it as a fuel or reducing agent, and electrical devices.
  • fields to manufacture chemicals phosgen, acetic acid, etc.
  • fields to be used as reducing agents blast furnace
  • fields to be used as fuel to generate electricity by thermal power fields to be used as fuel It can be used in the field of fuel cells and the like.
  • FIG. 6 is a schematic diagram showing the configuration of the reaction unit of the second embodiment
  • FIG. 7 is a schematic diagram showing a method of switching the gas to be passed through the reactor in the second embodiment.
  • the gas production system of the second embodiment will be described, but the differences from the gas production system of the first embodiment will be mainly described, and the same matters will be omitted.
  • the configuration of the reaction unit is different, and other than that, it is the same as the gas production system of the first embodiment.
  • the second gas switching unit 8b and the gas lines GL5a to GL5d are omitted.
  • the branched gas lines GL4a to GL4d merge to form one gas line GL4.
  • exhaust gas oxidized gas
  • the reducing gas can be supplied and passed through the remaining three reactors 4a to 4d in parallel.
  • one reactor to which the exhaust gas is supplied is the first reactor, and when the exhaust gas is supplied to the first reactor, the reducing gas is parallel.
  • the three reactors supplied in the above are the second reactors.
  • the exhaust gas (carbon dioxide) is supplied to the reactor (first reactor) 4a via the gas line GL3a, and the exhaust gas (1) passing through the reactor (first reactor) 4a.
  • Carbon oxide can be discharged via the gas line GL4a.
  • the reducing gas hydrogen
  • the reducing gas is supplied in parallel from the gas lines GL3b to CL3d to the reactors 4b to 4d, respectively, and the reducing gas (water) passing through the reducing gas (water) is discharged via the gas lines GL4b to GL4d. be able to.
  • the exhaust gas is supplied to and passed through the reactor (first reactor) 4b, while the reactors (second reactor) 4a, 4c, 4d. Can be supplied with a reducing gas in parallel and passed through.
  • exhaust gas is supplied to and passed through the reactor (first reactor) 4c, while the reactors (second reactor) 4a, 4b, 4d. Can be supplied with a reducing gas in parallel and passed through.
  • the exhaust gas is supplied to and passed through the reactor (first reactor) 4d, while the reactors (second reactor) 4a, 4b, 4c. Can be supplied with a reducing gas in parallel and passed through.
  • the conversion from carbon dioxide to carbon monoxide can be continuously and stably performed by repeating a series of operations from the first turn to the fourth turn as one cycle and repeating a plurality of cycles.
  • a reducing agent 4R in which the reducing efficiency of the oxidized state by hydrogen (reducing substance) is lower than the conversion efficiency of carbon dioxide to carbon monoxide if the reducing gas is passed through one reactor only once, The reducing agent 4R in an oxidized state may not be sufficiently reduced.
  • the reducing gas is passed through three reactors in parallel, in other words, in a steady operating state, the same amount of reducing gas as the exhaust gas is passed over three times as long. It can be passed through one reactor. Therefore, the reducing agent 4R in the oxidized state can be sufficiently reduced by hydrogen (reducing gas).
  • the reducing agent 4R can be replaced or the reactor can be overhauled. Furthermore, by using three or more reactors, the number of redox cycles per unit time can be reduced compared to conventional configurations using two reactors, and thus for each reactor. The life of the reducing agent 4R can be extended. In other words, the life of the reducing agent 4R can be controlled to some extent by adjusting the number of reactors.
  • the reaction heat is obtained by heat exchange between the heating gas (heating medium), the process gas (exhaust gas or reducing gas), and the reducing agent 4R.
  • the heating gas heating medium
  • the process gas exhaust gas or reducing gas
  • the reducing agent 4R the reducing agent 4R.
  • the state of the reactor that is not used for normal operation is either the state in which the inert gas is passed, the state in which the passage of the gas is stopped (blocked), or the state in which the exhaust gas or the reduced gas is passed. May be.
  • the number of second reactors may be 2 or more (preferably 4 to 8) depending on the degree of difference between the efficiency of carbon dioxide conversion to carbon monoxide and the efficiency of hydrogen conversion to water. May be.
  • the number of second reactors through which the reducing gas is passed is set to 1, and the exhaust gas (oxidized gas) is used. ) May pass in parallel to 2 or more (preferably 2 to 8).
  • the number of the first reactor and the number of the second reactor may be 2 or more (preferably 2 to 8), respectively. Also in the case of this embodiment, it is preferable to set the supply amount P of the exhaust gas to the first reactor / the supply amount Q of the reducing gas to the second reactor within the above range. Therefore, the supply amount of the reducing gas to one second reactor of the reducing gas supplied in parallel is adjusted to about Q / 3.
  • FIG. 8 is a schematic diagram showing the configuration of the reaction unit of the third embodiment
  • FIG. 9 is a schematic diagram showing a method of switching the gas to be passed through the reactor in the third embodiment
  • FIG. 10 is a schematic diagram showing a method of switching the gas to be passed through the reactor.
  • 3 is a schematic diagram showing another method of switching the gas to be passed through the reactor in the third embodiment.
  • the gas production system of the third embodiment will be described, but the differences from the gas production systems of the first and second embodiments will be mainly described, and the same matters will be omitted.
  • the configuration of the reaction unit is different, and other than that, it is the same as the gas production system of the first embodiment.
  • the reaction unit 4 shown in FIG. 8 has a configuration in which two reactors connected in series are set as one set and two sets are connected in parallel. Specifically, the upper reactor 4a is connected to the first gas switching unit 8a via the gas line GL3a, and is connected to the third gas switching unit 8c via the gas line GL4a. Further, the lower reactor 4b is connected to the third gas switching unit 8c via the gas line GL3b, and is connected to the second gas switching unit 8b via the gas line GL4b. Further, the first gas switching unit 8a and the third gas switching unit 8c are connected by a gas line GL6a, and the third gas switching unit 8c and the second gas switching unit 8b are connected by a gas line GL6b. The first gas switching unit 8a and the second gas switching unit 8b are connected by a gas line GL5a.
  • the reactor 4a contains a reducing agent (first reducing agent) 4Ra
  • the reactor 4b contains a reducing agent (second reducing agent) 4Rb different from the reducing agent 4Ra.
  • the reactors 4a and 4b on the left side can be used.
  • Exhaust gas oxidizing gas
  • reducing gas can be supplied and passed through the reactors 4a and 4b on the right side.
  • two reactors to which the exhaust gas is continuously supplied are the first reactors, and when the exhaust gas is supplied to the first reactor, the reducing gas is used.
  • the second reactor is the two reactors that are continuously supplied with.
  • exhaust gas carbon dioxide
  • the reactor (first reactor) 4a on the left side via the gas line GL3a.
  • the exhaust gas (carbon dioxide and carbon monoxide) that has passed therethrough is continuously supplied to the left reactor (first reactor) 4b via the gas line GL4a and the gas line GL3b, and then this is supplied.
  • the passed exhaust gas (carbon monoxide) can be discharged via the gas line GL4b.
  • the reducing gas (hydrogen) is supplied to the reactor (second reactor) 4b on the right side via the gas lines GL6a and GL3b, and then the reducing gas (hydrogen and water) passing through the reactor is supplied to the gas line GL4b. It is continuously supplied to the reactor (first reactor) 4a on the right side via the gas line GL5a and the gas line GL3a, and then the reducing gas (water) passing through the reactor is continuously supplied via the gas line GL4a and the gas line GL6b. Can be discharged.
  • the reducing agent 4R includes, for example, a reducing agent 4Ra and a reducing agent 4Rb having a higher efficiency of converting carbon dioxide into carbon monoxide (carbon valuable resource) and a lower efficiency of converting hydrogen into water than the reducing agent 4Ra.
  • a reducing agent 4Ra and a reducing agent 4Rb having a higher efficiency of converting carbon dioxide into carbon monoxide (carbon valuable resource) and a lower efficiency of converting hydrogen into water than the reducing agent 4Ra.
  • the reducing gas comes into contact with the reducing agent 4Rb, which has a low reducing efficiency in the oxidized state by hydrogen (reducing substance), and then contacts the reducing agent 4Ra, which has a high efficiency of converting hydrogen into water.
  • both the exhaust gas and the reducing gas are configured to come into contact with the reducing agent having high activity after being in contact with the reducing agent having low activity, thereby converting carbon dioxide into carbon monoxide and hydrogen.
  • the conversion efficiency to water can be further improved.
  • a reducing agent 4Ra having a low activity but a long life can be used in combination with a reducing agent 4Rb having a high activity but a short life.
  • either one of the reducing agent 4Ra and the reducing agent 4Rb must be selected and used.
  • the reactor 4a in the previous stage filled with the reducing agent 4Ra having low activity a certain part of carbon dioxide was converted into carbon monoxide, and then the reducing agent 4Rb having high activity was filled. The remaining carbon dioxide can be converted to carbon monoxide in the subsequent reactor 4b. Therefore, the frequency of contact of carbon dioxide with the active sites of each reducing agent (particularly, the reducing agent 4Rb having a short life) can be reduced, and the life of the reducing agent 4R as a whole can be extended.
  • reducing agent 4R for example, a reducing agent 4Ra having high activity but easily producing a by-product and a reducing agent 4Rb capable of converting the by-product into a carbon valuable resource can be used in combination.
  • the reducing agent 4Ra is usually used, but in this case, it is necessary to separate and remove the produced by-products by some means.
  • the reactor 4a in the previous stage is filled with the reducing agent 4Rb that can convert the by-product into a carbon valuable resource even if the reducing agent 4Ra that easily produces a by-product is used.
  • the selectivity and conversion rate of the entire reaction unit 4 can be improved.
  • reducing agent 4R for example, two types of reducing agents 4Ra and 4Rb having different optimum reaction temperatures can be used in combination. In the conventional configuration using two reactors, such reducing agents 4Ra and 4Rb having different optimum reaction temperatures cannot be used in combination. On the other hand, in the present embodiment, reducing agents 4Ra and 4Rb having different optimum reaction temperatures can be used in combination.
  • reducing agent 4R for example, a reducing agent 4Rb having a high activity but a high pressure loss and a reducing agent 4Rb having a low activity but a low pressure loss can be used in combination.
  • a reducing agent 4Ra and the reducing agent 4Rb must be selected and used.
  • the reaction unit 4 as a whole can be set to an arbitrary pressure loss and an arbitrary conversion efficiency.
  • the direction in which the exhaust gas is passed through the reactors 4a and 4b and the direction in which the reducing gas is passed through the reactors 4a and 4b are the same direction.
  • the valve switching operation is facilitated and the supply amount of exhaust gas or reducing gas that does not contribute to the reaction is minimized as compared with the case where the above two directions are opposite directions (countercurrent). Therefore, the conversion efficiency of carbon dioxide to carbon monoxide or the regeneration efficiency of the reducing agent 4R (4Ra, 4Rb) in the oxidized state can be improved.
  • the exhaust gas (carbon dioxide) is supplied to the reactor (first reactor) 4a on the left side via the gas line GL3a, and then the exhaust gas (carbon dioxide and carbon monoxide) passing through the reactor (first reactor) 4a. Is continuously supplied to the left reactor (first reactor) 4b via the gas line GL4a and the gas line GL3b, and then the exhaust gas (carbon monoxide) passing through the reactor is continuously supplied to the left reactor (first reactor) 4b via the gas line GL4b. Can be discharged.
  • the reducing gas (hydrogen) is supplied to the reactor (second reactor) 4b on the right side via the gas line GL6a, the gas line GL6b and the gas line GL4b, and then the reducing gas (hydrogen and water) passing through the reactor (second reactor) 4b.
  • the exhaust gas comes into contact with the reducing agent 4Ra having a low conversion efficiency of carbon dioxide into carbon monoxide, and then contacts the reducing agent 4Rb having a high conversion efficiency of carbon dioxide into carbon monoxide.
  • the reducing gas comes into contact with the reducing agent 4Rb, which has a low reducing efficiency in the oxidized state by hydrogen (reducing substance), and then contacts the reducing agent 4Ra, which has a high efficiency of converting hydrogen into water.
  • both the exhaust gas and the reducing gas are configured to come into contact with the reducing agent having high activity after being in contact with the reducing agent having low activity, so that the conversion efficiency of carbon dioxide to carbon monoxide and hydrogen are used.
  • the reduction efficiency of the oxidized state can be further increased. Further, in the configuration shown in FIG. 10, the direction in which the exhaust gas is passed through the reactors 4a and 4b and the direction in which the reducing gas is passed through the reactors 4a and 4b are opposite directions. With this configuration, the conversion efficiency of carbon dioxide to carbon monoxide or the regeneration efficiency of the oxidizing agent 4R (4Ra, 4Rb) in the oxidized state is improved as compared with the case where the above two directions are the same direction (parallel flow). Easy to make.
  • the reducing agent 4R When the reducing agent 4R is used in combination with the reducing agent 4R and the reducing agent 4Rb, which has a higher conversion efficiency of carbon dioxide to carbon monoxide than the reducing agent 4Ra and a low reducing efficiency of the oxidized state by hydrogen, reduction is performed.
  • the agent 4Ra include, for example, a metal oxide containing at least one of copper and iron
  • specific examples of the reducing agent 4Rb include, for example, a metal oxide containing cerium.
  • the reducing agent (first reducing agent) 4Ra and the reducing agent (second reducing agent) are interposed between the reactor 4b and the second gas switching unit 8b via the third gas switching unit.
  • a reactor containing a third reducing agent different from 4Rb may be arranged.
  • the third reducing agent for example, one having a higher conversion efficiency of carbon dioxide to carbon monoxide (carbon valuable resource) than the reducing agent 4Rb and a lower reducing efficiency of the oxidized state by hydrogen (reducing substance) is selected.
  • two or more different reducing agents can be housed in different reactors and used.
  • the present invention is not limited thereto.
  • the gas production apparatus of the present invention may have any other additional configuration with respect to the above embodiment, and may be replaced with any configuration exhibiting the same function, and a part thereof.
  • the configuration of may be omitted.
  • any desired step may be added to the above embodiment.
  • any configuration of the first to third embodiments may be combined.
  • a gas containing hydrogen as a reducing gas has been described as a representative, but the reducing gas includes a hydrocarbon (for example, methane, ethane, acetylene, etc.) as a reducing substance instead of hydrogen or together with hydrogen. And a gas containing at least one selected from ammonia can also be used.
  • the heat exchanger having the configuration of exchanging heat between the exhaust gas (oxidizing gas) or the reducing gas before being supplied to the reactor and the mixed gas has been described, but the heat exchanger is discharged from each reactor.
  • a heat exchanger having a configuration that exchanges heat with the gas before being mixed gas may be adopted.
  • Example 1 For the reaction section shown in FIG. 1, which comprises four reactors packed with CeO 2 particles as the reducing agent 4R, carbon dioxide gas (oxidizing gas) and hydrogen gas (reducing gas) were used by the method shown in FIG. A simulation was performed to produce carbon monoxide gas from carbon dioxide gas. The amount of carbon dioxide gas supplied to the reactor P / the amount of hydrogen gas supplied to the second reactor Q was set to 1.
  • Example 2 and Comparative Example 2 A simulation of producing carbon monoxide gas from carbon dioxide gas was performed in the same manner as in Example 1 and Comparative Example 1 except that CuZnO 2 particles were used instead of CeO 2 particles. As a result of the simulation, the utilization rate of hydrogen gas was 45% in Example 2 and 28% in Comparative Example 2.
  • the present invention it is possible to continuously and stably generate carbon valuable resources efficiently by using an oxidizing gas containing carbon dioxide and a reducing gas containing a reducing substance. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)

Abstract

ガス製造装置1は、COを含む排ガスを供給する接続部2と、COの還元によりCOを生成する金属酸化物を含む還元剤4Rであって、COとの接触により酸化状態とされた還元剤4Rを還元するHを含む還元ガスを供給する還元ガス供給部3と、接続部2および還元ガス供給部3のそれぞれに接続された複数の反応器4a~4dと、各反応器4a~4d内に収容された還元剤4Rとを備え、各反応器4a~4dに供給する排ガスと還元ガスとを切換可能な反応部4とを有し、複数の反応器4a~4dは、第1反応器と、第1反応器に排ガスが供給されるときに、還元ガスが供給される第2反応器とを含み、第1反応器および第2反応器のうちの少なくとも一方の数が2以上である。

Description

ガス製造装置およびガス製造方法
 本発明は、ガス製造装置およびガス製造方法に関する。
 近年、温室効果ガスの一種である二酸化炭素(CO)は、その大気中の濃度が上昇を続けている。大気中の二酸化炭素の濃度の上昇は、地球温暖化を助長する。したがって、大気中に放出される二酸化炭素を回収することは重要であり、さらに回収した二酸化炭素を有価物質に変換して再利用できれば、炭素循環社会を実現することができる。
 また、地球規模の施策としても、気候変動に関する国際連合枠組条約の京都議定書にもあるように、地球温暖化の原因となる二酸化炭素について、先進国における削減率を、1990年を基準として各国別に定め、共同で約束期間内に削減目標値を達成することが定められている。
 その削減目標を達成するため、製鉄所、精錬所または火力発電所から発生した二酸化炭素を含む排気ガスも対象となっており、これらの業界における二酸化炭素の削減に関して、様々な技術改良が行われている。かかる技術の一例としては、CO回収・貯留(CCS)が挙げられる。しかしながら、この技術では、貯留という物理的な限界があり、根本的な解決策とはなっていない。
 例えば、特許文献1には、ケミカルルーピング型反応装置を備える二酸化炭素還元システムが開示されている。このケミカルルーピング型反応装置は、金属酸化物触媒が充填された2つの反応器を有しており、一方の反応器にて二酸化炭素を一酸化炭素に還元する第1の反応と、他方の反応器にて水素を水に酸化する第2の反応とを行う。
国際公開第2019/163968号
 しかしながら、工業的により効率よく二酸化炭素から一酸化炭素(炭素有価物)を製造するには、更なる改良の余地が残されている。
 そこで、本発明の目的は、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを使用して、連続かつ安定して、効率よく炭素有価物を生成し得るガス製造装置およびガス製造方法を提供することにある。
 このような目的は、下記の本発明により達成される。
 (1) 本発明のガス製造装置は、二酸化炭素を含む酸化ガスを供給する酸化ガス供給部と、
 前記二酸化炭素の還元により炭素有価物を生成する金属酸化物を含む還元剤であって、前記二酸化炭素との接触により酸化状態とされた還元剤を還元する還元物質を含む還元ガスを供給する還元ガス供給部と、
 前記酸化ガス供給部および前記還元ガス供給部のそれぞれに接続された複数の反応器と、各前記反応器内に収容された前記還元剤とを備え、各前記反応器に供給する前記酸化ガスと前記還元ガスとを切換可能な反応部とを有し、
 前記複数の反応器は、第1反応器と、前記第1反応器に前記酸化ガスが供給されるときに、前記還元ガスが供給される第2反応器とを含み、前記第1反応器および前記第2反応器のうちの少なくとも一方の数が2以上であることを特徴とする。
 (2) 本発明のガス製造装置では、前記第2反応器の数が2以上であり、前記還元ガスを前記2以上の第2反応器に連続して通過させるように構成されていることが好ましい。
 (3) 本発明のガス製造装置では、前記第2反応器の数が2以上であり、前記還元ガスを前記2以上の第2反応器に並行して通過させるように構成されていることが好ましい。
 (4) 本発明のガス製造装置では、前記第1反応器の数が2以上であり、前記酸化ガスを前記2以上の第1反応器に連続して通過させるように構成されていることが好ましい。
 (5) 本発明のガス製造装置では、前記第1反応器の数が2以上であり、前記酸化ガスを前記2以上の第1反応器に並行して通過させるように構成されていることが好ましい。
 (6) 本発明のガス製造装置は、前記第1反応器および前記第2反応器の数がいずれも2以上であり、前記酸化ガスを前記2以上の第1反応器に連続して通過させ、前記還元ガスを前記2以上の第2反応器に連続して通過させるように構成され、
 前記還元剤として、第1還元剤と、該第1還元剤と異なる第2還元剤とを使用することが好ましい。
 (7) 本発明のガス製造装置は、前記酸化ガスを、前記第1還元剤が収容された前記第1反応器、前記第2還元剤が収容された前記第1反応器の順で連続して通過させ、
 前記還元ガスを、前記第2還元剤が収容された前記第2反応器、前記第1還元剤が収容された前記第2反応器の順で連続して通過させることが好ましい。
 (8) 本発明のガス製造装置では、前記酸化ガスを前記反応器に通過させる方向と、前記還元ガスを前記反応器に通過させる方向とが同一方向であることが好ましい。
 (9) 本発明のガス製造装置では、前記酸化ガスを前記反応器に通過させる方向と、前記還元ガスを前記反応器に通過させる方向とが反対方向であることが好ましい。
 (10) 本発明のガス製造装置は、さらに、隣り合う前記第1反応器同士の間に、前記第1反応器を通過した前記酸化ガスから一酸化炭素を除去する一酸化炭素除去部を有することが好ましい。
 (11) 本発明のガス製造装置は、さらに、隣り合う前記第2反応器同士の間に、前記第2反応器を通過した前記還元ガスから水を除去する水除去部を有することが好ましい。
 (12) 本発明のガス製造装置では、前記複数の反応器のうちの少なくとも1つにおいて、前記還元剤の温度が異なる温度に設定されることが好ましい。
 (13) 本発明のガス製造装置では、前記複数の反応器のうちの少なくとも1つにおいて、容積が異なることが好ましい。
 (14) 本発明のガス製造装置では、前記第1反応器への前記酸化ガスの供給量P[mL/分]とし、前記第2反応器への前記還元ガスの供給量をQ[mL/分]としたとき、P/Qが0.7~1.1なる関係を満足することが好ましい。
 (15) 本発明のガス製造装置では、前記還元剤は、水素を含有することが好ましい。
 (16) 本発明のガス製造装置では、前記酸化ガスは、炉から排出される排ガスであることが好ましい。
 (17) 本発明のガス製造方法は、二酸化炭素の還元により炭素有価物を生成する金属酸化物を含む還元剤を収容した複数の反応器と、前記二酸化炭素を含む酸化ガスと、前記二酸化炭素との接触により酸化状態とされた還元剤を還元する還元物質を含む還元ガスとを準備し、
 前記酸化ガスと前記還元ガスとを切り換えつつ各前記反応器に供給して、前記二酸化炭素を前記炭素有価物に変換した後、前記酸化された還元剤を還元するに際して、
 前記酸化ガスを供給する前記反応器を第1反応器とし、前記還元ガスを供給する前記反応器を第2反応器としたとき、前記第1反応器および前記第2反応器のうちの少なくとも一方の数を2以上とすることを特徴とする。
 (18) 本発明のガス製造方法では、前記酸化ガスは、炉から排出される排ガスであることが好ましい。
 本発明によれば、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを使用して、連続かつ安定して、効率よく炭素有価物を生成することができる。
図1は、本発明のガス製造装置を使用したガス製造システムの第1実施形態を示す概略図である。 図2は、本発明で使用される反応器の構成を模式的に示す断面図である。 図3は、第1実施形態において反応器に通過させるガスを切り換える方法を示す概略図である。 図4は、第1実施形態において還元剤の再生を行う方法を示す概略図である。 図5は、第1実施形態において還元剤の入替または反応器のオーバーホールを行う方法を示す概略図である。 図6は、第2実施形態の反応部の構成を示す概略図である。 図7は、第2実施形態において反応器に通過させるガスを切り換える方法を示す概略図である。 図8は、第3実施形態の反応部の構成を示す概略図である。 図9は、第3実施形態において反応器に通過させるガスを切り換える方法を示す概略図である。 図10は、第3実施形態において反応器に通過させるガスを切り換える他の方法を示す概略図である。
 以下、本発明のガス製造装置およびガス製造方法について、添付図面に示す好適実施形態に基づいて詳細に説明する。
 <第1実施形態>
 まず、ガス製造システムの第1実施形態について説明する。
 図1は、本発明のガス製造装置を使用したガス製造システムの第1実施形態を示す概略図であり、図2は、本発明で使用される反応器の構成を模式的に示す断面図であり、図3は、第1実施形態において反応器に通過させるガスを切り換える方法を示す概略図である。
 図1に示すガス製造システム100は、二酸化炭素を含む排ガス(酸化ガス)を生成する炉20と、接続部2を介して炉20に接続されたガス製造装置1とを備えている。
 なお、本明細書中では、ガスの流れ方向に対して上流側を単に「上流側」、下流側を単に「下流側」とも記載する。
 炉20としては、特に限定されないが、例えば、製鉄所、精錬所または火力発電所に付属する炉であり、好ましくは燃焼炉、高炉、転炉等が挙げられる。炉20では、内容物の燃焼、溶融、精錬等の際に、排ガスが生成(発生)する。
 ゴミ焼却場にける燃焼炉(焼却炉)の場合、内容物(廃棄物)としては、例えば、プラスチック廃棄物、生ゴミ、都市廃棄物(MSW)、廃棄タイヤ、バイオマス廃棄物、家庭ゴミ(布団、紙類)、建築部材等が挙げられる。なお、これらの廃棄物は、1種を単独で含んでいても、2種以上を含んでいてもよい。
 排ガスは、通常、二酸化炭素に加えて、窒素、酸素、一酸化炭素、水蒸気、メタン等の他のガス成分を含む。排ガス中に含まれる二酸化炭素の濃度は、特に限定されないが、生成ガスの製造コスト(一酸化炭素への変換効率)を考慮すると、1体積%以上が好ましく、5体積%以上がより好ましい。
 ゴミ焼却場にける燃焼炉からの排ガスの場合、二酸化炭素が5~15体積%、窒素が60~70体積%、酸素が5~10体積%、水蒸気が15~25体積%で含まれる。
 高炉からの排ガス(高炉ガス)は、高炉において銑鉄を製造する際に発生するガスであり、二酸化炭素が10~15体積%、窒素が55~60体積%、一酸化炭素が25~30体積%、水素が1~5体積%で含まれる。
 また、転炉からの排ガス(転炉ガス)は、転炉において鋼を製造する際に発生するガスであり、二酸化炭素が15~20体積%、一酸化炭素が50~60体積%、窒素が15~25体積%、水素が1~5体積%で含まれる。
 なお、原料ガスには、排ガスに限らず、二酸化炭素を100体積%で含む純ガスを使用してもよい。
 ただし、酸化ガスとして排ガスを使用すれば、従来、大気中に排出していた二酸化炭素を有効利用することができ、環境への負荷を低減することができる。これらの中でも、炭素循環という観点からは、製鉄所または精錬所で発生した二酸化炭素を含む排ガスが好ましい。
 また、高炉ガスや転炉ガスは、炉から排出された未処理のガスをそのまま使用してもよく、例えば、一酸化炭素等を除去する処理を施した後の処理済みガスを使用してもよい。未処理の高炉ガスおよび転炉ガスは、それぞれ上述のようなガス組成であり、処理済みガスは、燃焼炉からの排ガスで示したガス組成に近いガス組成となる。本明細書では、以上のようなガス(ガス製造装置1に供給される前のガス)をいずれも排ガスと呼ぶ。
 <全体構成>
 ガス製造装置1は、炉20から排出され、接続部2を介して供給される排ガス(二酸化炭素を含む酸化ガス)と、排ガス中に含まれる二酸化炭素を還元する金属酸化物を含む還元剤とを接触させて、一酸化炭素を含む生成ガス(合成ガス)を製造する。
 なお、本明細書では、炭素有価物の一例として、一酸化炭素を代表に説明する。なお、炭素有価物としては、一酸化炭素に限定されず、例えば、メタン、メタノール等が挙げられ、これらの単独物であってもよく、2種以上の混合物であってもよい。後述する還元剤の種類に応じて、生成する炭素有価物の種類が異なってくる。
 ガス製造装置1は、主に、接続部2と、還元ガス供給部3と、4つの反応器4a~4dと、接続部2と各反応器4a~4dとを接続するガスラインGL1と、還元ガス供給部3と各反応器4a~4dとを接続するガスラインGL2と、各反応器4a~4dに接続されたガスラインGL4とを有している。
 本実施形態では、接続部2が、排ガスを反応器4a~4dに供給する排ガス供給部(酸化ガス供給部)を構成している。
 なお、必要に応じて、ガスラインGL1、ガスラインGL2およびガスラインGL4の途中の所定の箇所には、ガスを移送するためのポンプを配置してもよい。例えば、後述する圧縮部6で排ガスの圧力を比較的低く調整する場合には、ポンプを配置することにより、ガス製造装置1内でガスを円滑に移送することができる。
 ガスラインGL1は、その一端部において接続部2に接続されている。一方、ガスラインGL1は、その他端部において、反応部4が備える第1ガス切換部8aおよび4つのガスラインGL3a~GL3dを介して、それぞれ反応器4a~4dの入口ポートに接続されている。
 かかる構成により、炉20から接続部2を介して供給された排ガスは、ガスラインGL1を通過して、各反応器4a~4dに供給される。
 第1ガス切換部8aは、例えば、分岐ガスラインと、この分岐ガスラインの途中に設けられたバルブのような流路開閉機構とを含んで構成することができる。
 各反応器4a~4dは、図2に示すように、還元剤4Rをそれぞれ充填した複数の管体41と、複数の管体41を収納したハウジング42とを備える多管式の反応装置(固定層式の反応装置)で構成されている。かかる多管式の反応装置によれば、還元剤4Rと排ガスおよび還元ガスとの接触の機会を十分に確保することができる。その結果、生成ガスの製造効率を高めることができる。
 本実施形態の還元剤4Rは、例えば、粒子状(顆粒状)、鱗片状、ペレット状等であることが好ましい。かかる形状の還元剤4Rであれば、管体41への充填効率を高めることができ、管体41内に供給されるガスとの接触面積をより増大させることができる。
 還元剤4Rが粒子状である場合、その体積平均粒径は、特に限定されないが、1~50mmであることが好ましく、3~30mmであることがより好ましい。この場合、還元剤4Rと排ガス(二酸化炭素)との接触面積をさらに高め、二酸化炭素の一酸化炭素への変換効率をより向上させることができる。同様に、還元物質を含む還元ガスによる還元剤4Rの再生(還元)もより効率よく行うことができる。
 粒子状の還元剤4Rは、より球形度が高まることから、転動造粒により製造された成形体であることが好ましい。
 また、還元剤4Rは、担体に担持させるようにしてもよい。担体の構成材料としては、排ガス(酸化ガス)や反応条件等に応じて変性し難いものであればよく、特に限定されないが、例えば、炭素材料(グラファイト、グラフェン等)、MoCのような炭化物、ゼオライト、モンモリロナイト、ZrO、TiO、V、MgO、CeO、アルミナ(Al)、シリカ(SiO)のような酸化物およびこれらを含む複合酸化物等が挙げられる。これらの中でも、ゼオライト、モンモリロナイト、SiO、ZrO、TiO、V、MgO、アルミナ(Al)、シリカ(SiO)およびこれらを含む複合酸化物が好ましい。かかる材料で構成される担体は、還元剤4Rの反応に悪影響を及ぼさず、還元剤4Rの担持能に優れる点で好ましい。ここで、担体は、還元剤4Rの反応には関与せず、還元剤4Rを単に支持(保持)する。かかる形態の一例としては、担体の表面の少なくとも一部を還元剤4Rで被覆する構成が挙げられる。
 還元剤4Rに含まれる金属酸化物(酸素キャリア)は、二酸化炭素を還元することができれば、特に限定されないが、第3族~第12族に属する金属元素から選択される少なくとも1種を含有することが好ましく、第4族~第12属に属する金属元素から選択される少なくとも1種を含有することがより好ましく、チタニウム、バナジウム、鉄、銅、亜鉛、ニッケル、マンガン、クロミウムおよびセリウム等のうちの少なくとも1種を含有することがさらに好ましく、鉄を含有する金属酸化物または複合酸化物が特に好ましい。これらの金属酸化物は、二酸化炭素の一酸化炭素への変換効率が特に良好なため有用である。
 なお、二酸化炭素を一酸化炭素に変換する金属酸化物としては、例えば、酸化鉄、酸化セリウム等が好適である。二酸化炭素をメタンに変換する金属酸化物としては、例えば、ニッケルおよびルテニウムのうちの少なくとも一方を担持または含有するジルコニア、アルミナ、チタニア、シリカ等が好適である。二酸化炭素をメタノールに変換する金属酸化物としては、例えば、銅および亜鉛のうちの少なくとも一方を担持または含有するジルコニア、アルミナ、シリカ等が好適である。
 また、各反応器4a~4dにおいて、還元剤4R(金属酸化物)自体で管体(円筒状の成形体)41を作製してもよい。さらに、還元剤4Rで、ブロック状、格子状(例えば、網状、ハニカム状)等の成形体を作製し、ハウジング42内に配置するようにしてもよい。これらの場合、充填剤としての還元剤4Rは省略するようにしてもよいし、併用してもよい。
 これらの中では、還元剤4Rで網状体を作製し、ハウジング42内に配置する構成が好ましい。かかる構成の場合、各反応器4a~4d内で排ガスおよび還元ガスの通過抵抗が高まるのを防止しつつ、還元剤4Rと排ガスおよび還元ガスとの接触の機会を十分に確保することもできる。
 なお、4つの反応器4a~4dの容積は、互いにほぼ等しく設定され、処理する排ガスの量(炉20のサイズやガス製造装置1のサイズ)に応じて、適宜設定される。また、4つの反応器4a~4dのうちの少なくとも1つの容積は、排ガスおよび還元ガスの種類、還元剤4Rの性能等に応じて異ならせてもよい。
 ガスラインGL1の途中には、接続部2側から順に、濃度調整部5と、圧縮部6と、微成分除去部7と、排ガス加熱部(酸化ガス加熱部)10とが設けられている。
 濃度調整部5は、排ガス中に含まれる二酸化炭素の濃度を高める(換言すれば、二酸化炭素を濃縮する)ように調整する。排ガスは、酸素等の不要ガス成分も含む。濃度調整部5で排ガス中に含まれる二酸化炭素の濃度を高めることにより、排ガス中に含まれる不要ガス成分の濃度を相対的に低くすることができる。このため、還元剤4Rによる二酸化炭素の一酸化炭素への変換効率に、不要ガス成分が悪影響を及ぼすのを防止または抑制することができる。
 濃度調整部5は、排ガス中に含まれる酸素を除去する酸素除去装置により構成することが好ましい。これにより、ガス製造装置1に持ち込まれる酸素の量を低減すること(すなわち、排ガス中に含まれる酸素の濃度を低くなるように調整すること)ができる。このため、排ガスのガス組成を爆発範囲から乖離させ、排ガスの引火を未然に防止することができる。なお、ガス製造装置1の中でも、酸素除去装置での電気エネルギーの消費が大きいため、後述するような再生可能エネルギーとしての電力を使用することが有効である。
 この場合、排ガス中に含まれる酸素の濃度を、排ガス全体に対して1体積%未満に調整することが好ましく、0.5体積%未満に調整することがより好ましく、0.1体積%未満に調整することがさらに好ましい。これにより、排ガスの引火をより確実に防止することができる。
 排ガス中に含まれる酸素を除去する酸素除去装置は、低温分離方式(深冷方式)の分離器、圧力スイング吸着(PSA)方式の分離器、膜分離方式の分離器、温度スイング吸着(TSA)方式の分離器、化学吸収方式の分離器、化学吸着方式の分離器等のうちの1種または2種以上を用いて構成することができる。
 なお、濃度調整部5では、排ガス中に二酸化炭素を追加することにより、二酸化炭素が高濃度になるように調整してもよい。
 圧縮部6は、反応器4a、4bに供給する前の排ガスの圧力を上昇させる。これにより、反応器4a、4bで一度に処理可能な排ガスの量を増大させることができる。このため、反応器4a、4bにおける二酸化炭素の一酸化炭素への変換効率をより向上させることができる。
 かかる圧縮部6は、例えば、遠心式圧縮機、軸流式圧縮機のようなターボ圧縮機、往復動圧縮機(レシプロ圧縮機)、ダイアフラム式圧縮機、シングルスクリュー圧縮機、ツインスクリュー圧縮機、スクロール圧縮機、ロータリー圧縮機、ロータリーピストン型圧縮機、スライドベーン型圧縮機のような容積圧縮機、低圧に対応可能なルーツブロワー(二葉送風機)、遠心式のブロワー等で構成することができる。
 これらの中でも、圧縮部6は、ガス製造システム100の大規模化の容易性の観点からは、遠心式圧縮機で構成することが好ましく、ガス製造システム100の製造コストを低減する観点からは、往復動圧縮機で構成することが好ましい。
 圧縮部6を通過した後の排ガスの圧力は、特に限定されないが、0~1MPaGであることが好ましく、0~0.5MPaGであることがより好ましく、0.01~0.5MPaGであることがさらに好ましい。この場合、ガス製造装置1の耐圧性を必要以上に高めることなく、反応器4a~4dにおける二酸化炭素の一酸化炭素への変換効率をさらに向上させることができる。
 微成分除去部7は、排ガス中に含まれる微成分(微量な不要ガス成分等)を除去する。
 かかる微成分除去部7は、例えば、気液分離器、保護器(ガードリアクター)およびスクラバー(吸収塔)のうちの少なくとも1種の処理器で構成することができる。
 複数の処理器を使用する場合、それらの配置順序は任意であるが、気液分離器と保護器とを組み合わせて使用する場合、気液分離器を保護器より上流側に配置するのが好ましい。この場合、排ガス中からの微成分の除去効率をより高めることができるとともに、保護器の使用期間(寿命)を延長することができる。
 気液分離器は、例えば、圧縮部6で排ガスを圧縮した際に生じる凝縮水(液体)を排ガスから分離する。この場合、凝縮水中には、排ガス中に残存する不要ガス成分等も溶解して除去される。
 気液分離器は、例えば、単なる容器、旋回流式分離器、遠心分離器、表面張力式分離器等で構成することができる。これらの中でも、気液分離器は、構成が単純であり、安価であること等から、単なる容器で構成することが好ましい。この場合、容器内の気液界面には、気体の通過は許容するが、液体の通過を阻止するフィルタを配置するようにしてもよい。
 また、この場合、容器の底部には、液体ラインを接続し、その途中にバルブを設けるようにしてもよい。かかる構成によれば、容器内に貯留された凝縮水は、バルブを開放することにより、液体ラインを介して、ガス製造装置1外に排出することができる。
 なお、液体ラインを後述するタンク30に接続して、排出する凝縮水を再利用するようにしてもよい。
 気液分離器で凝縮水が除去された排ガスは、例えば、保護器に供給するように構成することができる。
 かかる保護器は、排ガス中に含まれる微成分であって、還元剤4Rとの接触により還元剤4Rの活性を低下させる成分(不活化成分)を捕捉可能な物質を備えていることが好ましい。
 かかる構成によれば、排ガスが保護器を通過する際に、保護器内の物質が不活化成分と反応(捕捉)することにより、反応器4a~4d内の還元剤4Rに到達するのを阻止または抑制して保護すること(すなわち、活性の低下を防止すること)ができる。このため、還元剤4Rによる二酸化炭素の一酸化炭素への変換効率が、不活化成分の悪影響により極端に低下するのを防止または抑制することができる。
 かかる物質には、還元剤4Rに含まれる組成であって、不活化成分との接触により還元剤4Rの活性を低下させる組成を有する物質、具体的には、還元剤4Rに含まれる金属酸化物と同一または類似の金属酸化物を使用することができる。ここで、類似の金属酸化物とは、それに含まれる金属元素は同一であるが、組成が異なる金属酸化物、またはそれに含まれる金属元素の種類は異なるが、元素周期律表における族が同一である金属酸化物のことを言う。
 また、不活化成分としては、硫黄、水銀、硫黄化合物、ハロゲン化合物、有機シリコーン、有機リンおよび有機金属化合物から選択される少なくとも1種であることが好ましく、硫黄および硫黄化合物から選択される少なくとも1種であることがより好ましい。かかる不活化成分を予め除去しておけば、還元剤4Rの活性が急激に低下するのを効果的に防止することができる。
 なお、上記物質は、還元剤4Rの不活化成分と同一の成分により活性が低下する物質であればよく、酸化鉄、酸化亜鉛のような金属酸化物が上記不活化成分の捕捉能に優れる点で好ましい。
 保護器は、ハウジング内に網材を配置し、上記物質の粒子を網材上に載置する構成、ハウジング内に、上記物質で構成されたハニカム状のフィルタ部材や、円筒状または粒子状の成形体を配置する構成等とすることができる。
 特に、保護器を圧縮部6(気液分離器)と排ガス加熱部10との間に配置する場合には、上記物質の熱による劣化を防止しつつ、不活化成分の除去効率を向上させることができる。
 排ガス加熱部10は、反応器4a~4dに供給する前の排ガスを加熱する。排ガス加熱部10で反応前(還元前)の排ガスを予め加熱しておくことにより、反応器4a~4dにおいて、還元剤4Rによる二酸化炭素の一酸化炭素への変換(還元)反応をより促進することができる。
 排ガス加熱部10は、例えば、電熱器と、熱交換器(エコノマイザ)とで構成することができる。
 熱交換器は、反応器4a~4dを通過した後のガス(混合ガス)を排出するガスラインGL4(後述参照)を構成する一部の配管を屈曲させ、ガスラインGL1を構成する配管に接近させて構成されている。かかる構成によれば、反応器4a~4dを通過した後の高温のガス(混合ガス)の熱を利用して、反応器4a~4dに供給する前の排ガスを熱交換により加熱するため、熱の有効利用を図ることができる。
 かかる熱交換器は、例えば、ジャケット式熱交換器、浸漬コイル式熱交換器、二重管式熱交換器、シェル&チューブ式熱交換器、プレート式熱交換器、スパイラル式熱交換器等として構成することができる。
 また、排ガス加熱部10では、電熱器および熱交換器のいずれか一方を省略してもよい。
 排ガス加熱部10では、電熱器に代えて、燃焼炉等を使用することもできる。ただし、電熱器を使用すれば、その動力源として、再生可能エネルギーとしての電力(電気エネルギー)を使用できるため、環境への負荷を低減することができる。
 再生可能エネルギーとしては、太陽光発電、風カ発電、水力発電、波力発電、潮力発電、バイオマス発電、地熱発電、太陽熱および地中熱から選択される少なくとも1つを利用した電気エネルギーが使用可能である。
 また、排ガス加熱部10の上流側(例えば、微成分除去部7の途中である気液分離器と保護器との間)において、ガスラインGL1から排気ガスラインを分岐させ、その端部にガス製造装置1外に設けられたベント部を接続してもよい。
 この場合、排気ガスラインの途中には、好ましくはバルブが設けられる。
 仮に、ガス製造装置1(ガスラインGL1)内の圧力が必要以上に上昇した場合には、バルブを開放することにより、排気ガスラインを介してベント部から排ガスの一部を排出(放出)することができる。これにより、ガス製造装置1の圧力の上昇による破損を未然に防止することができる。
 ガスラインGL2は、その一端部において還元ガス供給部3に接続されている。一方、ガスラインGL2は、反応部4が備える第1ガス切換部8aおよび4つのガスラインGL3a~GL3dを介して、それぞれ反応器4a~4dの入口ポートに接続されている。
 還元ガス供給部3は、二酸化炭素との接触により酸化された還元剤4Rを還元する還元物質を含む還元ガスを供給する。本実施形態の還元ガス供給部3は、水の電気分解により水素を発生させる水素発生装置で構成され、この水素発生装置に水を貯留したガス製造装置1外のタンク(還元ガス原料貯留部)30が接続されている。かかる構成により、水素発生装置(還元ガス供給部3)から供給された水素(還元物質)を含む還元ガスが、ガスラインGL2を通過して、各反応器4a~4dに供給される。
 水素発生装置によれば、多量の水素を比較的安価かつ簡便に生成することができる。また、ガス製造装置1内で発生する凝縮水を再利用できるという利点もある。なお、ガス製造装置1の中でも、水素発生装置での電気エネルギーの消費が大きいため、上述したような再生可能エネルギーとしての電力を使用することが有効である。
 なお、水素発生装置には、副生水素を発生する装置を使用することもできる。この場合、副生水素を含む還元ガスが各反応器4a~4dに供給される。副生水素を発生する装置としては、例えば、塩化ナトリウム水溶液を電気分解する装置、石油を水蒸気改質する装置、アンモニアを製造する装置等が挙げられる。
 また、ガス製造装置1外のコークス炉に接続部を介してガスラインGL2を接続し、コークス炉からの排ガスを還元ガスとして使用するようにしてもよい。この場合、接続部が還元ガス供給部を構成する。コークス炉からの排ガスは、水素およびメタンを主成分とし、水素を50~60体積%で含むためである。
 ガスラインGL2の途中には、還元ガス加熱部11が設けられている。この還元ガス加熱部11は、反応器4a~4dに供給する前の還元ガスを加熱する。還元ガス加熱部11で反応前(酸化前)の還元ガスを予め加熱しておくことにより、反応器4a~4dにおける還元ガスによる還元剤4Rの還元(再生)反応をより促進することができる。
 還元ガス加熱部11は、上記排ガス加熱部10と同様にして構成することができる。還元ガス加熱部11は、電熱器のみ、熱交換器のみ、電熱器と熱交換器との組み合わせで構成することが好ましく、熱交換器のみ、電熱器と熱交換器との組み合わせで構成することがより好ましい。
 還元ガス加熱部11が熱交換器を備えれば、反応器4a~4dを通過した後の高温のガス(例えば、混合ガス)の熱を利用して、反応器4a~4dに供給する前の還元ガスを熱交換により加熱するため、熱の有効利用を図ることができる。
 以上のような構成によれば、第1ガス切換部8aにおいてガスライン(流路)を切り換えることにより、例えば、酸化前の還元剤4Rが収容された反応器4aに、ガスラインGL3aを介して排ガスを供給し、酸化後の還元剤4Rが収容された反応器4bに、ガスラインGL3bを介して還元ガスを供給することができる。このとき、反応器4aでは下記式1の反応が進行し、反応器4bでは下記式2の反応が進行する。
 なお、下記式1および式2では、還元剤4Rに含まれる金属酸化物が酸化鉄(FeOx-1)である場合を一例として示している。
  式1: CO + FeOx-1  → CO + FeO
  式2: H + FeO → HO + FeOx-1
 その後、第1ガス切換部8aにおいてガスラインを上記と反対に切り換えることにより、反応器4aでは上記式2の反応を進行させ、反応器4bでは上記式1の反応を進行させることができる。
 なお、上記式1および式2に示す反応は、いずれも吸熱反応である。このため、ガス製造装置1は、還元剤4Rに排ガスまたは還元ガスを接触させる際(すなわち、排ガスまたは還元ガスと還元剤4Rとの反応の際)に、還元剤4Rを加熱する還元剤加熱部(図1中、図示せず。)をさらに有することが好ましい。
 かかる還元剤加熱部を設けることにより、排ガスまたは還元ガスと還元剤4Rとの反応における温度を高温に維持して、二酸化炭素の一酸化炭素への変換効率の低下を好適に防止または抑制するとともに、還元ガスによる還元剤4Rの再生をさらに促進することができる。
 ただし、還元剤4Rの種類によっては、上記式1および式2に示す反応が発熱反応となる場合がある。この場合、ガス製造装置1は、還元剤加熱部に代えて、還元剤4Rを冷却する還元剤冷却部を有することが好ましい。かかる還元剤冷却部を設けることにより、排ガスまたは還元ガスと還元剤4Rとの反応の際に、還元剤4Rが劣化するのを好適に阻止して、二酸化炭素の一酸化炭素への変換効率の低下を好適に防止または抑制するとともに、還元ガスによる還元剤4Rの再生をさらに促進することができる。
 つまり、ガス製造装置1には、還元剤4Rの種類(発熱反応または吸熱反応)の違いによって、還元剤4Rの温度を調整する還元剤温調部を設けることが好ましい。
 本実施形態では、4つの反応器4a~4dを使用する。このため、4つの反応器4a~4dのうちの少なくとも1つにおいて、排ガスおよび還元ガスの種類、還元剤4Rの性能等に応じて、還元剤4Rの温度が異なる温度に設定するようにしてもよい。
 これにより、二酸化炭素の一酸化炭素への変換効率をより向上させるとともに、還元物質を含む還元ガスによる還元剤4Rの再生(還元)もより効率よく行うことができる。
 なお、反応器4a~4d毎に、還元剤4Rの温度を調整する温調機構を有してもよい。
 反応器4a~4dの出口ポートには、それぞれ分岐ガスラインGL4a~GL4dが接続され、第2ガス切換部8bにおいて合流して、ガスラインGL4を構成している。また、分岐ガスラインGL4a~GL4dの途中には、必要に応じて、それぞれバルブ(図示せず。)が設けられる。
 例えば、バルブの開度を調整することにより、反応器4a~4dを通過する排ガスおよび還元ガスの通過速度(すなわち、還元剤4Rによる排ガスの処理速度および還元ガスによる還元剤4Rの処理速度)を設定することができる。
 本実施形態では、反応器4a~4d、第1ガス切換部8aおよび第2ガス切換部8bにより、反応部4が構成されている。
 かかる構成により、反応器4a~4dのそれぞれを通過したガス(本実施形態では、主に、一酸化炭素および水蒸気)は、第2ガス切換部8bにおいて合流することにより混合され、混合ガス(合流ガス)が生成された後、1つのガスラインGL4を通過するようになる。
 このため、第1ガス切換部8aの流路切換状態(バルブの開閉状態)を変更して、反応器4a~4dの任意の反応器で異なる反応を行えば、混合ガスを連続して製造することができ、最終的には、生成ガスも連続して製造することもできる。また、反応器4a~4dにおいて所定のタイミングで酸化反応と還元反応とを繰り返し行うため、混合ガス中に含まれる一酸化炭素の濃度を安定化させ、結果として、生成ガス中に含まれる一酸化炭素の濃度を安定化させることもできる。
 したがって、上述したガス製造装置1(ガス製造システム100)は、二酸化炭素から一酸化炭素を連続かつ安定して製造することができ、工業的に有利である。
 これに対して、反応器4a~4dのそれぞれを通過したガスを合流させない場合、供給するガスを切り換える際には、第1ガス切換部8aを遮断する(バルブを一旦閉じる)必要が生じ、各反応器4a~4dをバッチ式とせざるを得ない。このため、一酸化炭素の製造時間が長時間となり、変換効率が悪く、工業的に不利である。
 また、各反応器4a~4dから排出されるガスの成分が、供給するガスを切り換える度に異なってしまう。このため、各反応器4a~4dから排出されたガスの後処理工程が複雑になってしまう。
 ここで、混合ガス中に含まれる一酸化炭素の濃度は、通常、特定の範囲(混合ガス全体に対して所定の体積%)に調整するのが好ましい。この濃度が低過ぎると、後述するガス精製部9の性能にもよるが、一酸化炭素を高濃度で含む生成ガスを得るのが難しくなる傾向がある。一方、この濃度の上限値を超えて高くしても、最終的に得られる生成ガス中に含まれる一酸化炭素の濃度をさらに高める効果のそれ以上の増大が期待できない。
 ガスラインGL4の反応器4a~4dと反対側の端部には、生成ガスをガス製造装置1外に排出する生成ガス排出部40が接続されている。
 また、ガスラインGL4の途中には、ガス精製部9が設けられている。
 ガス精製部9では、混合ガスから一酸化炭素を精製して、高濃度の一酸化炭素を含む生成ガスを回収する。なお、混合ガス中の一酸化炭素濃度が十分に高い場合には、ガス精製部9を省略してもよい。
 かかるガス精製部9は、例えば、冷却器、気液分離器、ガス分離器、分離膜およびスクラバー(吸収塔)のうちの少なくとも1種の処理器で構成することができる。
 複数の処理器を使用する場合、それらの配置順序は任意であるが、冷却器と気液分離器とガス分離器とを組み合わせて使用する場合、この順で配置するのが好ましい。この場合、混合ガスからの一酸化炭素の精製効率をより高めることができる。
 冷却器は、混合ガスを冷却する。これにより、凝縮水(液体)が生成する。
 かかる冷却器は、配管の周囲に冷媒を通過させるためのジャケットを配置したジャケット式の冷却装置、反応器4a~4dと同様の構成(図2参照)とし、管体内に混合ガスを、管体の周囲に冷媒をそれぞれ通過させる多管式の冷却装置、エアフィンクーラー等を含んで構成することができる。
 気液分離器は、冷却器で混合ガスを冷却する際に生じる凝縮水を混合ガスから分離する。このとき、凝縮水には、混合ガス中に残存する不要ガス成分(特に、二酸化炭素)を溶解して除去することができるという利点がある。
 気液分離器は、微成分除去部7の気液分離器と同様に構成することができ、好ましくは単なる容器で構成することができる。この場合、容器内の気液界面には、気体の通過は許容するが、液体の通過を阻止するフィルタを配置するようにしてもよい。
 また、この場合、容器の底部には、液体ラインを接続し、その途中にバルブを設けるようにしてもよい。かかる構成によれば、容器内に貯留された凝縮水は、バルブを開放することにより、液体ラインを介して、ガス製造装置1外に排出(放出)することができる。
 さらに、液体ラインの途中のバルブより下流側には、ドレイントラップを設けることが好ましい。これにより、仮に、バルブが誤作動して、液体ラインに一酸化炭素や水素が流出しても、ドレイントラップに貯留され、ガス製造装置1外に排出されるのを未然に防止することができる。このドレイントラップに代えて、あるいは、ドレイントラップとともに、バルブの誤作動検知機能、バルブが誤作動した際の冗長化対策を施してもよい。
 なお、液体ラインを上述したタンク30に接続して、排出する凝縮水を再利用するようにしてもよい。
 ガス分離器は、例えば、低温分離方式(深冷方式)の分離器、圧力スイング吸着(PSA)方式の分離器、膜分離方式の分離器、温度スイング吸着(TSA)方式の分離器、金属イオン(例えば、銅イオン)と有機配位子(例えば、5-アジドイソフタル酸)とを複合化した多孔性配位高分子(Porous Coordination Polymer:PCP)を用いた分離器、アミン吸収を利用した分離器等のうちの1種または2種以上を用いて構成することができる。
 また、ガスラインGL4の気液分離器とガス分離器との間には、バルブを設けるようにしてもよい。この場合、バルブの開度を調整することにより、混合ガスの処理速度(生成ガスの製造速度)を調節することができる。
 本実施形態では、気液分離器から排出される混合ガス中に含まれる一酸化炭素の濃度は、混合ガス全体に対して75~90体積%となっている。
 したがって、比較的低い濃度(75~90体積%)で一酸化炭素を含む生成ガスを利用可能な分野では、混合ガスから一酸化炭素を精製することなく、そのまま次工程に供給することができる。すなわち、ガス分離器を省略することができる。
 かかる分野としては、例えば、生成ガスから微生物(例えば、クロストリジウム等)による発酵により有価物質(例えば、エタノール等)を合成する分野、生成ガスを燃料または還元剤として使用して鉄鋼を製造する分野、電気デバイスを製造する分野、一酸化炭素を合成原料とする化学品(ホスゲン、酢酸等)を合成する分野等が挙げられる。
 一方、比較的高い濃度(90体積%超)で一酸化炭素を含む生成ガスを利用する必要がある分野では、混合ガスから一酸化炭素を精製して、高濃度で一酸化炭素を含む生成ガスを得る。
 かかる分野としては、例えば、生成ガスを還元剤として使用する分野(高炉)、生成ガスを燃料として使用して火力により発電する分野、生成ガスを原料として化学品を製造する分野、生成ガスを燃料として使用する燃料電池の分野等が挙げられる。
 また、本実施形態の反応部4は、第1ガス切換部8aと第2ガス切換部8bとの間を接続する4つのガスラインGL5a~GL5dを有している。
 かかる構成により、第1ガス切換部8aと第2ガス切換部8bとにおいてガスライン(流路)の切換を行うことにより、例えば、反応器4a~4dの1つの反応器には、排ガス(酸化ガス)を供給して通過させ、一方、反応器4a~4dの残りの3つの反応器には、この順で還元ガスを連続して供給して通過させることができる。
 本実施形態では、複数の反応器4a~4dのうち、排ガスが供給される1つの反応器が第1反応器であり、第1反応器に排ガスが供給されるときに、還元ガスが連続して供給される3つの反応器が第2反応器である。
 具体的には、図3(I)に示す1ターン目では、排ガス(二酸化炭素)をガスラインGL3aを介して、反応器(第1反応器)4aに供給し、これを通過した排ガス(一酸化炭素)をガスラインGL4aを介して、排出することができる。
 一方、残りの反応器4b~4dには、まず、還元ガス(水素)をガスラインGL3bを介して、反応器(1番目の第2反応器)4bに供給し、次いで、これを通過した還元ガス(残水素)をガスラインGL4b、ガスラインGL5cおよびガスラインGL3cを介して、反応器(2番目の第2反応器)4cに供給し、その後、これを通過した還元ガス(残水素)をガスラインGL4c、ガスラインGL5dおよびガスラインGL3dを介して、反応器(3番目の第2反応器)4dに供給し、これを通過した還元ガス(水)をガスラインGL4dを介して、排出することができる。
 次に、図3(II)に示す2ターン目では、反応器(第1反応器)4bには、排ガスを供給して通過させ、一方、反応器(第2反応器)4c、4d、4aには、この順で還元ガスを連続して供給し、通過させることができる。
 次に、図3(III)に示す3ターン目では、反応器(第1反応器)4cには、排ガスを供給して通過させ、一方、反応器(第2反応器)4d、4a、4bには、この順で還元ガスを連続して供給し、通過させることができる。
 次に、図3(IV)に示す4ターン目では、反応器(第1反応器)4dには、排ガスを供給して通過させ、一方、反応器(第2反応器)4a、4b、4cには、この順で還元ガスを連続して供給し、通過させることができる。
 本実施形態では、1ターン目~4ターン目の一連の操作を1サイクルとして、複数サイクル繰り返すことにより、二酸化炭素から一酸化炭素への変換を連続かつ安定して行うことができる。
 例えば、二酸化炭素の一酸化炭素への変換効率より、水素(還元物質)による酸化状態の還元効率が低い還元剤4Rを使用する場合、還元ガスを1つの反応器に1回のみ通過させると、酸化状態の還元剤4Rの還元に使用しきれなかった水素(残水素)が無駄になる。これに対して、本実施形態では、還元ガスを連続して3つの反応器に通過させること、換言すれば、1つの反応器に3回通過させるができる。このため、水素(還元ガス)が無駄になるのを防止することができる。
 また、3以上の反応器を使用することにより、排ガスおよび還元ガスを通過させない反応器を設けることができる。このため、生成ガス(一酸化炭素)を製造するための通常運転を継続しつつ、通常運転に使用されていない反応器に対して、他の操作を行うことができる。
 例えば、二酸化炭素から一酸化炭素(炭素有価物)に変換する際に、還元剤4Rの表面に炭素が堆積して変換効率が低下する場合がある。このとき、図4に示すように、通常運転に使用されていない反応器に酸素を供給する操作を行えば、還元剤4Rの表面に堆積した炭素を燃焼により除去して、還元剤4Rを再生することができる。
 この場合、反応器に酸素を供給する前後において、反応器内に不活性ガス(例えば、窒素ガス)をパージするようにしてもよい。これにより、還元ガスと酸素とが不本意に接触して爆発的に反応することを防止することができる。
 また、図5に示すように、通常運転に使用されていない反応器を降温させた後、還元剤4Rの入替や反応器のオーバーホールを行うこともできる。
 さらに、3以上の反応器を使用することにより、2つの反応器を使用する従来の構成と比較して、単位時間当たりの酸化還元サイクルの回数を低減させることができ、よって、反応器毎に還元剤4Rの長寿命化を図ることができる。換言すれば、反応器の数を調整することにより、還元剤4Rの寿命を制御することができる。
 さらに、反応器を熱交換型の反応器で構成する場合、加熱用ガス(加熱用媒体)とプロセスガス(排ガスまたは還元ガス)および還元剤4Rとの熱交換により反応熱を得ることになる。しかしながら、2つの反応器を使用する従来の構成では、排ガスと還元ガスとを交互に入れ替える必要があるため、反応温度を調整し難いという問題がある。
 これに対して、3以上の反応器を使用することにより、通常運転に使用されない反応器を設けることができるので、この反応器において加熱用ガスの温度を制御することにより、排ガスまたは還元ガスを供給するのに先立って、二酸化炭素の一酸化炭素への変換反応での最適な温度、または、酸化状態の還元剤4Rの還元反応での最適な温度に適切に調整し易い。なお、通常運転に使用されない反応器の状態は、不活性ガスを通過させている状態、ガスの通過を停止(遮断)している状態、排ガスまたは還元ガスを通過させている状態のいずれであってもよい。
 また、本実施形態では、隣り合う第2反応器同士の間(ガスラインGL5a~GL5dの途中)には、第2反応器を通過した還元ガスから水を除去する水除去部を設置するようにしてもよい。これにより、前段の第2反応器を通過し、次段の第2反応器に供給される還元ガス中の水(水蒸気)の含有量を少なくすることができる。その結果、酸化状態の還元剤4Rの還元効率が低下するのを防止または抑制することができる。
 水除去部は、例えば、熱交換器、吸収材または吸着材を充填した充填塔、膜分離モジュール等のうちの1種を単独または2種以上を組み合わせて構成することができる。熱交換器によれば、温度差により水を凝集させて物理的に分離することができる。充填塔によれば、吸収または吸着により水を化学的または物理的に分離することができる。この場合、必要に応じて、吸収材または吸着材を再生して使用するようにしてもよい。また、膜分離モジュールによれば、圧力差により水を膜分離することができる。
 なお、二酸化炭素の一酸化炭素への変換効率と水素の水への変換効率との差の程度に応じて、第2反応器の数を2としてもよく、4以上(好ましくは4~8)としてもよい。
 一方、例えば、二酸化炭素の一酸化炭素への変換効率より、水素による酸化状態の還元効率が高い還元剤4Rを使用する場合、還元ガスを通過させる第2反応器の数を1とし、排ガス(酸化ガス)を連続して通過させる第1反応器の数を2以上(好ましくは2~8)としてもよい。
 また、第1反応器および第2反応器の数を、それぞれ2以上(好ましくは2~8)としてもよい。
 なお、第1反応器および/または第2反応器の数を2以上とする場合、その設置数を適切に設定すれば、反応器に供給するプロセスガスの圧力(フィード圧)が不要に高まることを防止することができる。
 第1反応器の数を2以上とする場合、隣り合う第1反応器同士の間(ガスラインGL5a~GL5dの途中)には、第1反応器を通過した排ガス(酸化ガス)から一酸化炭素を除去する一酸化炭素除去部を設置するようにしてもよい。これにより、前段の第1反応器を通過し、後段の第1反応器に供給される排ガス中の一酸化炭素の含有量を少なくすることができる。これにより、二酸化炭素の変換生成物である一酸化炭素の含有量が少なくなることで、後段の第1反応器における二酸化炭素の一酸化炭素への変換効率が低下するのを防止することができる。
 一酸化炭素除去部は、例えば、吸収材または吸着材を充填した充填塔、膜分離モジュール、分子篩膜等のうちの1種を単独または2種以上を組み合わせて構成することができる。充填塔によれば、吸収または吸着により一酸化炭素を化学的または物理的に分離することができる。この場合、必要に応じて、吸収材または吸着材を再生して使用するようにしてもよい。膜分離モジュールによれば、圧力差により一酸化炭素を膜分離することができる。また、分子篩膜によれば、一酸化炭素と二酸化炭素との分子サイズ(例えば、分子半径)に応じて分離することができる。
 次に、ガス製造システム100の使用方法(作用)について説明する。
 [1]まず、第1ガス切換部8aにおいてガスライン(流路)を切り換えることにより、接続部2と反応器4aとを連通し、還元ガス供給部3と反応器4bとを連通する。また、反応器4bと反応器4cおよび反応器4dとを順に連通する。
 [2]次に、この状態で、炉20から接続部2を介して排ガスの供給を開始する。
 炉20から供給される排ガスは、通常、50~300℃の高温であるが、濃度調整部5に至るまでに、30~50℃にまで冷却される。
 [3]次に、排ガスは、酸素除去装置(濃度調整部5)を通過する。これにより、排ガスから酸素が除去され、排ガス中に含まれる二酸化炭素の濃度が上昇する。
 [4]次に、排ガスは、圧縮部6を通過する。これにより、排ガスの圧力が上昇する。
 [5]次に、排ガスは、微成分除去部7を通過する。これにより、圧縮部6で排ガスを圧縮した際に生じる凝縮水や、還元剤4Rの活性を低下させる不活化成分が排ガスから除去される。
 [6]次に、排ガスは、排ガス加熱部10を通過する。これにより、排ガスが加熱される。
 [7]次に、排ガスは、反応器(第1反応器)4aに供給される。反応器4aでは、還元剤4Rにより排ガス中の二酸化炭素が一酸化炭素に還元される。このとき、還元剤4Rは、酸化される。
 上記工程[6]における排ガスの加熱温度は、300~1000℃であることが好ましく、450~950℃であることがより好ましく、650~900℃であることがさらに好ましく、700~850℃であることが特に好ましい。排ガスの加熱温度を上記範囲に設定すれば、例えば、二酸化炭素を一酸化炭素へ変換する際の吸熱反応による還元剤4Rの急激な温度低下を防止または抑制することができるため、反応器4aにおける二酸化炭素の還元反応をより円滑に進行させることができる。
 [8]上記工程[2]~[7]と並行して、タンク30から水(還元ガス原料)を水素発生装置(還元ガス供給部3)に供給し、水から水素を生成する。
 [9]次に、水素を含む還元ガスは、還元ガス加熱部11を通過する。これにより、還元ガスが加熱される。
 [10]次に、還元ガスは、反応器(1番目の第2反応器)4bに供給される。反応器4bでは、還元ガス(水素)により酸化状態の還元剤4Rが還元(再生)される。
 上記工程[9]における還元ガスの加熱温度は、300~1000℃であることが好ましく、450~950℃であることがより好ましく、650~900℃であることがさらに好ましく、700~850℃であることが特に好ましい。還元ガスの加熱温度を上記範囲に設定すれば、例えば、酸化状態の還元剤4Rを還元(再生)する際の吸熱反応による還元剤4Rの急激な温度低下を防止または抑制することができるため、反応器4bにおける還元剤4Rの還元反応をより円滑に進行させることができる。
 [11]次に、反応器4bを通過した還元ガス(残水素)は、反応器(2番目の第2反応器)4cに供給される。反応器4cでは、還元ガス(残水素)により酸化状態の還元剤4Rが還元(再生)される。
 同様に、反応器4cを通過した還元ガス(残水素)は、反応器(3番目の第2反応器)4dに供給される。反応器4dでは、還元ガス(残水素)により酸化状態の還元剤4Rが還元(再生)される。
 なお、反応器4bを通過した還元ガスおよび反応器4cを通過した還元ガスは、それぞれ必要に応じて、上記温度に加熱するようにしてもよい。
 本実施形態において、第1ガス切換部8aにおいてガスラインの切り換えタイミング(すなわち、反応器4a~4dに供給する排ガスと還元ガスとの切り換えタイミング)は、条件I:反応器4a~4dのいずれか1つの反応器へ所定の量の排ガスを供給したとき、または条件II:二酸化炭素の一酸化炭素への変換効率が所定の値を下回ったときとすることが好ましい。これにより、二酸化炭素の一酸化炭素への変換効率が大きく低下する前に、反応器4a~4dの切り換えを行うため、混合ガス中に含まれる一酸化炭素の濃度を増大させ、かつ安定化させることができる。
 なお、条件IIの検出には、反応器4a~4dの入口および出口ポート付近にそれぞれガス濃度センサを配置しておけばよい。このガス濃度センサの検出値に基づいて、二酸化炭素の一酸化炭素への変換効率を計算により求めることができる。
 また、混合ガス中に含まれる一酸化炭素の濃度をより安定化させる観点から、反応器4a~4dのうちの排ガスを供給する反応器(第1反応器)への排ガスの供給量と、反応器4a~4dのうちの還元ガスを供給する3つの反応器(第2反応器)への還元ガスの供給量とは、できる限り近くなるように設定することが好ましい。具体的には、第1反応器への排ガスの供給量をP[mL/分]とし、第2反応器への還元ガスの供給量をQ[mL/分]としたとき、P/Qは、0.7~1.1なる関係を満足することが好ましく、0.85~1.05なる関係を満足することがより好ましい。排ガスの供給量Pが多過ぎると、反応器4a~4d内の還元剤4Rの量によっては、一酸化炭素に変換されることなく、反応器4a~4dから排出される二酸化炭素の量が増加する傾向がある。
 上記条件Iにおける所定の量は、還元剤4Rに占める質量の割合が最も多い金属元素1モル当たり、二酸化炭素が0.01~3モルの量であることが好ましく、0.1~2.5モルの量であることがより好ましい。
 また、上記条件IIにおける所定の値は、50~100%であることが好ましく、60~100%であることがより好ましく、70~100%であることがさらに好ましい。なお、所定値の上限は、95%以下であってもよく、90%以下であってもよい。
 いずれの場合も、二酸化炭素の一酸化炭素への変換効率が極端に低下する前に、反応器4a~4dの切り換えが可能であり、結果として、一酸化炭素を高濃度で含む混合ガスを安定して得ることができ、よって、一酸化炭素を高濃度で含む生成ガスを製造することもできる。
 なお、還元ガス(還元物質)の供給量Qは、還元剤4Rに占める質量の割合が最も多い金属元素1モル当たり、水素が0.1~3モルの量であることが好ましく、0.15~2.5モルの量であることがより好ましい。還元ガスの供給量Qを上限値を超えて多くしても、酸化状態の還元剤4Rを還元する効果のそれ以上の増大が期待できない。一方、還元ガスの供給量Qが少な過ぎると、還元ガス中に含まれる水素の量によっては、還元剤4Rの還元が不十分になる場合がある。
 また、反応器4a~4dに供給する還元ガスの圧力は、大気圧であってもよく、加圧(排ガスと同程度)であってもよい。
 [12]次に、反応器4a~4dを通過したガスは、合流して混合ガスが生成される。この時点で、混合ガスの温度は、通常、600~650℃である。この時点での混合ガスの温度が上記範囲であれば、反応器4a~4d内の温度が十分に高温に維持されていることを意味し、還元剤4Rによる二酸化炭素の一酸化炭素への変換や、還元ガスによる還元剤4Rの還元が効率よく進行していると判断することができる。
 [13]次に、混合ガスは、ガス精製部9に至るまでに、100~300℃にまで冷却される。
 [14]次に、混合ガスは、ガス精製部9を通過する。これにより、例えば、生成された凝縮水および凝縮水に溶解する二酸化炭素等が除去される。その結果、混合ガスから一酸化炭素が精製され、一酸化炭素を高濃度で含む生成ガスが得られる。
 なお、得られる生成ガスの温度は、20~50℃である。
 また、ガス製造装置1外に排出される最終的な生成ガスの温度は、通常、後段プロセスの要求温度に応じて決定されるため、ガス精製部9の下流側には、必要に応じて、冷却器または加熱器を設置するようにしてもよい。
 [15]次に、生成ガスは、生成ガス排出部40からガス製造装置1外に排出され、次工程に供される。
 本実施形態では、反応器4a、反応器4b、反応器4c、反応器4dを、この順に、切り替えて第1反応器として利用する例について説明したが、第1反応器として利用する順序は任意である。
 例えば、反応器4a~4dを、次のようにして、切り替えて使用することができる。
 まず、1ターン目では、反応器4aを第1反応器として排ガスを通過させ、反応器4b、反応器4c、反応器4dを第2反応器として、この順に還元ガスを通過させる。
 次いで、2ターン目では、反応器4dを第1反応器として排ガスを通過させ、反応器4a、反応器4b、反応器4cを第2反応器として、この順に還元ガスを通過させる。
 次いで、3ターン目では、反応器4cを第1反応器として排ガスを通過させ、反応器4d、反応器4a、反応器4bを第2反応器として、この順に還元ガスを通過させる。
 次いで、4ターン目では、反応器4bを第1反応器として排ガスを通過させ、反応器4c、反応器4d、反応器4aを第2反応器として、この順に還元ガスを通過させる。
 以上のようなガス製造装置1、ガス製造システム100を使用して、二酸化炭素を含む炉から排出される排ガスから、一酸化炭素を含む生成ガスを製造することができる。
 <ガス製造方法>
 本実施形態のガス製造方法は、I:二酸化炭素の還元により一酸化炭素(炭素有価物)を生成する金属酸化物を含む還元剤を収容した複数の反応器と、二酸化炭素を含む排ガス(酸化ガス)と、二酸化炭素との接触により酸化状態とされた還元剤を還元する水素(還元物質)を含む還元ガスとを準備し、II:排ガスと還元ガスとを切り換えつつ各反応器4a~4dに供給して、二酸化炭素を一酸化炭素に変換した後、酸化された還元剤4Rを還元するに際して、反応器4a~4dのうちの排ガスを供給する反応器を第1反応器とし、反応器4a~4dのうちの還元ガスを供給する反応器を第2反応器としたとき、第1反応器および第2反応器のうちの少なくとも一方の数を2以上とする。
 還元剤4Rの二酸化炭素の一酸化炭素への変換効率と、水素による酸化状態の還元剤4Rの還元効率との差の程度、反応器のメンテナンスの必要性の程度、二酸化炭素の一酸化炭素への変換反応での最適な温度と、酸化状態の還元剤4Rの還元反応での最適な温度との差の程度等に応じて、第1反応器および第2反応器の数を設定することにより、連続かつ安定して、効率よく一酸化炭素(炭素有価物)を生成することができる。
 <製造物>
 上記ガス製造装置1、ガス製造システム100を使用して製造された生成ガスは、通常、一酸化炭素の濃度が60体積%以上、好ましくは75体積%以上、より好ましくは90体積%以上である。
 また、上述したような生成ガスは、微生物(例えば、クロストリジウム等)による発酵により有価物質(例えば、エタノール等)を合成する分野、燃料または還元剤として使用して鉄鋼を製造する分野、電気デバイスを製造する分野、一酸化炭素を合成原料とする化学品(ホスゲン、酢酸等)を製造する分野、還元剤として使用する分野(高炉)、燃料として使用して火力により発電する分野、燃料として使用する燃料電池の分野等において使用することができる。
 <第2実施形態>
 次に、ガス製造システムの第2実施形態について説明する。
 図6は、第2実施形態の反応部の構成を示す概略図であり、図7は、第2実施形態において反応器に通過させるガスを切り換える方法を示す概略図である。
 以下、第2実施形態のガス製造システムについて説明するが、第1実施形態のガス製造システムとの相違点について中心に説明し、同様の事項については、その説明を省略する。
 第2実施形態のガス製造システムでは、反応部の構成が異なり、それ以外は、第1実施形態のガス製造システムと同様である。
 図6に示す反応部4は、第2ガス切換部8bおよびガスラインGL5a~GL5dが省略されている。
 そして、分岐ガスラインGL4a~GL4dは、合流して1つのガスラインGL4を形成している。
 かかる構成により、第1ガス切換部8aにおいてガスライン(流路)の切換を行うことにより、例えば、反応器4a~4dの1つの反応器には、排ガス(酸化ガス)を供給して通過させ、一方、反応器4a~4dの残りの3つの反応器には、それぞれ還元ガスを並行して供給して通過させることができる。
 本実施形態では、複数の反応器4a~4dのうち、排ガスが供給される1つの反応器が第1反応器であり、第1反応器に排ガスが供給されるときに、還元ガスが並行して供給される3つの反応器が第2反応器である。
 具体的には、図7(I)に示す1ターン目では、排ガス(二酸化炭素)をガスラインGL3aを介して、反応器(第1反応器)4aに供給し、これを通過した排ガス(一酸化炭素)をガスラインGL4aを介して、排出することができる。
 一方、反応器4b~4dには、それぞれガスラインGL3b~CL3dから還元ガス(水素)を並行して供給し、これを通過した還元ガス(水)をガスラインGL4b~GL4dを介して、排出することができる。
 次に、図7(II)に示す2ターン目では、反応器(第1反応器)4bには、排ガスを供給して通過させ、一方、反応器(第2反応器)4a、4c、4dには、還元ガスを並行して供給し、通過させることができる。
 次に、図7(III)に示す3ターン目では、反応器(第1反応器)4cには、排ガスを供給して通過させ、一方、反応器(第2反応器)4a、4b、4dには、還元ガスを並行して供給し、通過させることができる。
 次に、図7(IV)に示す4ターン目では、反応器(第1反応器)4dには、排ガスを供給して通過させ、一方、反応器(第2反応器)4a、4b、4cには、還元ガスを並行して供給し、通過させることができる。
 本実施形態では、1ターン目~4ターン目の一連の操作を1サイクルとして、複数サイクル繰り返すことにより、二酸化炭素から一酸化炭素への変換を連続かつ安定して行うことができる。
 例えば、二酸化炭素の一酸化炭素への変換効率より、水素(還元物質)による酸化状態の還元効率が低い還元剤4Rを使用する場合、還元ガスを1つの反応器に1回のみ通過させると、酸化状態の還元剤4Rを十分に還元されない場合がある。これに対して、本実施形態では、還元ガスを並行して3つの反応器に通過させること、換言すれば、定常の稼働状態では、排ガスと同当量の還元ガスを3倍の時間をかけて1つの反応器を通過させることができる。よって、水素(還元ガス)による酸化状態の還元剤4Rの還元を十分に行うことができる。
 また、3以上の反応器を使用することにより、排ガスおよび還元ガスを通過させない反応器を設けることができる。このため、生成ガス(一酸化炭素)を製造するための通常運転を継続しつつ、通常運転に使用されていない反応器に対して、他の操作を行うことができる。
 例えば、二酸化炭素から一酸化炭素(炭素有価物)に変換する際に、還元剤4Rの表面に炭素が堆積して変換効率が低下する場合がある。このとき、通常運転に使用されていない反応器に酸素を供給する操作を行えば、還元剤4Rの表面に堆積した炭素を燃焼により除去して、還元剤4Rを再生することができる。
 この場合、反応器に酸素を供給する前後において、反応器内に不活性ガス(例えば、窒素ガス)をパージするようにしてもよい。これにより、還元ガスと酸素とが不本意に接触して爆発的に反応することを防止することができる。
 また、通常運転に使用されていない反応器を降温させた後、還元剤4Rの入替や反応器のオーバーホールを行うこともできる。
 さらに、3以上の反応器を使用することにより、2つの反応器を使用する従来の構成と比較して、単位時間当たりの酸化還元サイクルの回数を低減させることができ、よって、反応器毎に還元剤4Rの長寿命化を図ることができる。換言すれば、反応器の数を調整することにより、還元剤4Rの寿命をある程度制御することができる。
 さらに、反応器を熱交換型の反応器で構成する場合、加熱用ガス(加熱用媒体)とプロセスガス(排ガスまたは還元ガス)および還元剤4Rとの熱交換により反応熱を得ることになる。しかしながら、2つの反応器を使用する従来の構成では、排ガスと還元ガスとを交互に入れ替える必要があるため、反応温度を調整し難いという問題がある。
 これに対して、3以上の反応器を使用することにより、通常運転に使用されない反応器を設けることができるので、この反応器において加熱用ガスの温度を制御することにより、排ガスまたは還元ガスを供給するのに先立って、二酸化炭素の一酸化炭素への変換反応での最適な温度、または、酸化状態の還元剤4Rの還元反応での最適な温度に適切に調整し易い。なお、通常運転に使用されない反応器の状態は、不活性ガスを通過させている状態、ガスの通過を停止(遮断)している状態、排ガスまたは還元ガスを通過させている状態のいずれであってもよい。
 なお、二酸化炭素の一酸化炭素への変換効率と水素の水への変換効率との差の程度に応じて、第2反応器の数を2としてもよく、4以上(好ましくは4~8)としてもよい。
 一方、二酸化炭素の一酸化炭素への変換効率より、水素の水への変換効率が高い還元剤4Rを使用する場合、還元ガスを通過させる第2反応器の数を1とし、排ガス(酸化ガス)を並行して通過させる第1反応器の数を2以上(好ましくは2~8)としてもよい。
 また、第1反応器および第2反応器の数を、それぞれ2以上(好ましくは2~8)としてもよい。
 本実施形態の場合も、第1反応器への排ガスの供給量P/第2反応器への還元ガスの供給量Qを上記範囲に設定することが好ましい。
 したがって、並行して供給される還元ガスの1つの第2反応器への還元ガスの供給量は、Q/3程度に調整される。
 <第3実施形態>
 次に、ガス製造システムの第3実施形態について説明する。
 図8は、第3実施形態の反応部の構成を示す概略図であり、図9は、第3実施形態において反応器に通過させるガスを切り換える方法を示す概略図であり、図10は、第3実施形態において反応器に通過させるガスを切り換える他の方法を示す概略図である。
 以下、第3実施形態のガス製造システムについて説明するが、第1および第2実施形態のガス製造システムとの相違点について中心に説明し、同様の事項については、その説明を省略する。
 第3実施形態のガス製造システムでは、反応部の構成が異なり、それ以外は、第1実施形態のガス製造システムと同様である。
 図8に示す反応部4は、直列に接続された2つの反応器を一組として、これを二組並列に接続した構成となっている。
 具体的には、上側の反応器4aは、ガスラインGL3aを介して第1ガス切換部8aに接続され、ガスラインGL4aを介して第3ガス切換部8cに接続されている。また、下側の反応器4bは、ガスラインGL3bを介して第3ガス切換部8cに接続され、ガスラインGL4bを介して第2ガス切換部8bに接続されている。
 また、第1ガス切換部8aと第3ガス切換部8cとの間は、ガスラインGL6aで接続され、第3ガス切換部8cと第2ガス切換部8bとの間は、ガスラインGL6bで接続され、第1ガス切換部8aと第2ガス切換部8bとの間は、ガスラインGL5aで接続されている。
 かかる構成において、反応器4aには、還元剤(第1還元剤)4Raが収容され、反応器4bには、還元剤4Raと異なる還元剤(第2還元剤)4Rbが収容されている。
 かかる構成により、第1ガス切換部8a、第2ガス切換部8bおよび第3ガス切換部8cにおいてガスライン(流路)の切換を行うことにより、例えば、左側の反応器4a、4bには、排ガス(酸化ガス)を供給して通過させ、一方、右側の反応器4a、4bには、還元ガスを供給して通過させることができる。
 本実施形態では、複数の反応器4a、4bのうち、排ガスが連続して供給される2つの反応器が第1反応器であり、第1反応器に排ガスが供給されるときに、還元ガスが連続して供給される2つの反応器が第2反応器である。
 具体的には、図8の基本図に基づいた一態様として図9に示すように、排ガス(二酸化炭素)をガスラインGL3aを介して、左側の反応器(第1反応器)4aに供給し、次いで、これを通過した排ガス(二酸化炭素および一酸化炭素)をガスラインGL4aおよびガスラインGL3bを介して、左側の反応器(第1反応器)4bに連続して供給し、その後、これを通過した排ガス(一酸化炭素)をガスラインGL4bを介して、排出することができる。
 一方、還元ガス(水素)をガスラインGL6aおよびGL3bを介して、右側の反応器(第2反応器)4bに供給し、次いで、これを通過した還元ガス(水素および水)をガスラインGL4b、ガスラインGL5aおよびガスラインGL3aを介して、右側の反応器(第1反応器)4aに連続して供給し、その後、これを通過した還元ガス(水)をガスラインGL4aおよびガスラインGL6bを介して、排出することができる。
 還元剤4Rとしては、例えば、還元剤4Raと、この還元剤4Raより二酸化炭素の一酸化炭素(炭素有価物)への変換効率が高く、かつ、水素の水への変換効率が低い還元剤4Rbとを組み合わせて使用することができる。
 かかる構成によれば、排ガスは、二酸化炭素の一酸化炭素への変換効率が低い還元剤4Raに接触した後、二酸化炭素の一酸化炭素への変換効率が高い還元剤4Rbに接触する。一方、還元ガスは、水素(還元物質)による酸化状態の還元効率が低い還元剤4Rbに接触した後、水素の水への変換効率が高い還元剤4Raに接触する。
 このように、排ガスおよび還元ガスのいずれも、活性の低い還元剤に接触した後、活性の高い還元剤に接触するように構成することにより、二酸化炭素の一酸化炭素への変換効率および水素の水への変換効率をより高めることができる。
 また、還元剤4Rとしては、例えば、活性は低いが寿命が長い還元剤4Raと、活性は高いが寿命が短い還元剤4Rbとを組み合わせて使用することができる。
 2つの反応器を使用する従来の構成では、還元剤4Raおよび還元剤4Rbのいずれか一方を選択して使用せざるを得ない。
 これに対して、本実施形態では、活性が低い還元剤4Raを充填した前段の反応器4aで、二酸化炭素のある程度の部分を一酸化炭素に変換した後、活性の高い還元剤4Rbを充填した後段の反応器4bで、残りの二酸化炭素を一酸化炭素に変換することができる。このため、各還元剤(特に、寿命の短い還元剤4Rb)の活性点への二酸化炭素が接触する頻度を低減し、還元剤4R全体としての長寿命化を図ることができる。
 また、還元剤4Rとしては、例えば、活性が高いが副生成物を生成し易い還元剤4Raと、副生成物を炭素有価物に変換可能な還元剤4Rbとを組み合わせて使用することができる。
 2つの反応器を使用する従来の構成では、通常、還元剤4Raが使用されるが、この場合、生成した副生成物を何らかの手段により分離して除去する必要がある。
 これに対して、本実施形態では、前段の反応器4aでは、副生成物を生成し易い還元剤4Raを使用しても、副生成物を炭素有価物に変換可能な還元剤4Rbを充填した反応器4bを後段に設けることにより、反応部4全体での選択率および転化率を向上することができる。
 また、還元剤4Rとしては、例えば、最適な反応温度が異なる2種類の還元剤4Ra、4Rbを組み合わせて使用することができる。
 2つの反応器を使用する従来の構成では、このような最適な反応温度が異なる還元剤4Ra、4Rbを組み合わせて使用することができない。
 これに対して、本実施形態では、最適な反応温度が異なる還元剤4Ra、4Rbを組み合わせて使用することができる。
 また、還元剤4Rとしては、例えば、活性が高いが圧力損失が高い4Raと、活性が低いが圧力損失も低い還元剤4Rbとを組み合わせて用いることができる。
 2つの反応器を使用する従来の構成では、還元剤4Raおよび還元剤4Rbのいずれか一方を選択して使用せざるを得ない。
 これに対して、本実施形態では、還元剤4Raおよび還元剤4Rbを組み合わせて使用することにより、反応部4全体として、任意の圧力損失および任意の変換効率に設定することができる。
 また、図9に示す構成では、排ガスを反応器4a、4bに通過させる方向と、還元ガスを反応器4a、4bに通過させる方向とが同一方向である。かかる構成により、上記2つの方向を反対方向(向流)とする場合に比較して、バルブの切換操作が容易となること、反応に寄与しない排ガスまたは還元ガスの供給量を最小限にすることで、二酸化炭素の一酸化炭素への変換効率または酸化状態の還元剤4R(4Ra、4Rb)の再生効率を向上させることができる。
 図10に示すように、排ガス(二酸化炭素)をガスラインGL3aを介して、左側の反応器(第1反応器)4aに供給し、次いで、これを通過した排ガス(二酸化炭素および一酸化炭素)をガスラインGL4aおよびガスラインGL3bを介して、左側の反応器(第1反応器)4bに連続して供給し、その後、これを通過した排ガス(一酸化炭素)をガスラインGL4bを介して、排出することができる。
 一方、還元ガス(水素)をガスラインGL6a、ガスラインGL6bおよびガスラインGL4bを介して、右側の反応器(第2反応器)4bに供給し、次いで、これを通過した還元ガス(水素および水)をガスラインGL3bおよびガスラインGL4aを介して、右側の反応器(第1反応器)4aに連続して供給し、その後、これを通過した還元ガス(水)をガスラインGL3aおよびガスラインGL5aを介して、排出することができる。
 かかる構成によっても、排ガスは、二酸化炭素の一酸化炭素への変換効率が低い還元剤4Raに接触した後、二酸化炭素の一酸化炭素への変換効率が高い還元剤4Rbに接触する。一方、還元ガスは、水素(還元物質)による酸化状態の還元効率が低い還元剤4Rbに接触した後、水素の水への変換効率が高い還元剤4Raに接触する。
 このように、排ガスおよび還元ガスのいずれも、活性の低い還元剤に接触した後、活性の高い還元剤に接触するように構成することにより、二酸化炭素の一酸化炭素への変換効率および水素による酸化状態の還元効率をより高まることができる。
 また、図10に示す構成では、排ガスを反応器4a、4bに通過させる方向と、還元ガスを反応器4a、4bに通過させる方向とが反対方向である。かかる構成により、上記2つの方向を同一方向(並流)とする場合に比較して、二酸化炭素の一酸化炭素への変換効率または酸化状態の還元剤4R(4Ra、4Rb)の再生効率を向上させ易い。
 還元剤4Rとして、還元剤4Raと、還元剤4Raより二酸化炭素の一酸化炭素への変換効率が高く、かつ、水素による酸化状態の還元効率が低い還元剤4Rbとを組み合わせて使用する場合、還元剤4Raの具体例としては、例えば、銅および鉄の少なくとも一方を含む金属酸化物等が挙げられ、還元剤4Rbの具体例としては、例えば、セリウムを含む金属酸化物等が挙げられる。
 なお、本実施形態では、反応器4bと第2ガス切換部8bとの間には、第3ガス切換部を介して、還元剤(第1還元剤)4Raおよび還元剤(第2還元剤)4Rbと異なる第3還元剤を収納する反応器を配置するようにしてもよい。第3還元剤には、例えば、還元剤4Rbより二酸化炭素の一酸化炭素(炭素有価物)への変換効率が高く、かつ、水素(還元物質)による酸化状態の還元効率が低いものが選択される。
 すなわち、本実施形態では、2種以上の異なる還元剤を異なる反応器に収容して使用することができる。
 以上、本発明のガス製造装置およびガス製造方法について説明したが、本発明は、これらに限定されるものではない。
 例えば、本発明のガス製造装置は、上記実施形態に対して、他の任意の追加の構成を有していてもよく、同様の機能を発揮する任意の構成と置換されていてよく、一部の構成が省略されていてもよい。
 また、本発明のガス製造方法は、上記実施形態に対して、任意の目的の工程が追加されていてもよい。
 また、上記第1~第3実施形態の任意の構成を組み合わせるようにしてもよい。
 また、上記実施形態では、還元ガスとして水素を含むガスを代表に説明したが、還元ガスには、還元物質として、水素に代えてまたは水素とともに、炭化水素(例えば、メタン、エタン、アセチレン等)およびアンモニアから選択される少なくとも1種を含むガスを使用することもできる。
 また、上記実施形態では、反応器に供給する前の排ガス(酸化ガス)または還元ガスと、混合ガスとの間で熱交換する構成の熱交換器について説明したが、各反応器から排出され、混合ガスとされる前のガスと熱交換する構成の熱交換器を採用するようにしてもよい。
 以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
 (実施例1)
 還元剤4RとしてCeO粒子を充填した4つの反応器を備える図1に示す反応部について、図3に示す方法で、二酸化炭素ガス(酸化ガス)および水素ガス(還元ガス)を使用して、二酸化炭素ガスから一酸化炭素ガスを製造するシミュレーションを行った。
 なお、反応器への二酸化炭素ガスの供給量P/第2反応器への水素ガスの供給量Qを1に設定した。
 (比較例1)
 還元剤4RとしてCeO粒子を充填した2つの反応器を備える反応部について、二酸化炭素ガス(酸化ガス)を供給する第1反応器と水素ガス(還元ガス)を供給する第2反応器とに交互に切り替えて使用して、二酸化炭素から一酸化炭素を製造するシミュレーションを行った。
 1つの反応器に、二酸化炭素ガスと水素ガスとを繰り返して、4回ずつ通過させるものとした。また、反応器への二酸化炭素ガスの供給量P/第2反応器への水素ガスの供給量Qを1に設定した。
 シミュレーションの結果、水素ガスの利用率は、実施例1で30%、比較例1で20%であった。
 (実施例2および比較例2)
 CeO粒子に代えて、CuZnO粒子を使用した以外は、実施例1および比較例1と同様にして、二酸化炭素ガスから一酸化炭素ガスを製造するシミュレーションを行った。
 シミュレーションの結果、水素ガスの利用率は、実施例2で45%、比較例2で28%であった。
 本発明によれば、二酸化炭素を含む酸化ガスと還元物質を含む還元ガスとを使用して、連続かつ安定して、効率よく炭素有価物を生成することができる。したがって、本発明は、産業上の利用可能性を有する。

Claims (18)

  1.  二酸化炭素を含む酸化ガスを供給する酸化ガス供給部と、
     前記二酸化炭素の還元により炭素有価物を生成する金属酸化物を含む還元剤であって、前記二酸化炭素との接触により酸化状態とされた還元剤を還元する還元物質を含む還元ガスを供給する還元ガス供給部と、
     前記酸化ガス供給部および前記還元ガス供給部のそれぞれに接続された複数の反応器と、各前記反応器内に収容された前記還元剤とを備え、各前記反応器に供給する前記酸化ガスと前記還元ガスとを切換可能な反応部とを有し、
     前記複数の反応器は、第1反応器と、前記第1反応器に前記酸化ガスが供給されるときに、前記還元ガスが供給される第2反応器とを含み、前記第1反応器および前記第2反応器のうちの少なくとも一方の数が2以上であることを特徴とするガス製造装置。
  2.  前記第2反応器の数が2以上であり、前記還元ガスを前記2以上の第2反応器に連続して通過させるように構成されている請求項1に記載のガス製造装置。
  3.  前記第2反応器の数が2以上であり、前記還元ガスを前記2以上の第2反応器に並行して通過させるように構成されている請求項1に記載のガス製造装置。
  4.  前記第1反応器の数が2以上であり、前記酸化ガスを前記2以上の第1反応器に連続して通過させるように構成されている請求項1~3のいずれか1項に記載のガス製造装置。
  5.  前記第1反応器の数が2以上であり、前記酸化ガスを前記2以上の第1反応器に並行して通過させるように構成されている請求項1~3のいずれか1項に記載のガス製造装置。
  6.  前記第1反応器および前記第2反応器の数がいずれも2以上であり、前記酸化ガスを前記2以上の第1反応器に連続して通過させ、前記還元ガスを前記2以上の第2反応器に連続して通過させるように構成され、
     前記還元剤として、第1還元剤と、該第1還元剤と異なる第2還元剤とを使用する請求項1に記載のガス製造装置。
  7.  前記酸化ガスを、前記第1還元剤が収容された前記第1反応器、前記第2還元剤が収容された前記第1反応器の順で連続して通過させ、
     前記還元ガスを、前記第2還元剤が収容された前記第2反応器、前記第1還元剤が収容された前記第2反応器の順で連続して通過させる請求項6に記載のガス製造装置。
  8.  前記酸化ガスを前記反応器に通過させる方向と、前記還元ガスを前記反応器に通過させる方向とが同一方向である請求項6または7に記載のガス製造装置。
  9.  前記酸化ガスを前記反応器に通過させる方向と、前記還元ガスを前記反応器に通過させる方向とが反対方向である請求項6または7に記載のガス製造装置。
  10.  さらに、隣り合う前記第1反応器同士の間に、前記第1反応器を通過した前記酸化ガスから一酸化炭素を除去する一酸化炭素除去部を有する請求項4~9のいずれか1項に記載のガス製造装置。
  11.  さらに、隣り合う前記第2反応器同士の間に、前記第2反応器を通過した前記還元ガスから水を除去する水除去部を有する請求項2~10のいずれか1項に記載のガス製造装置。
  12.  前記複数の反応器のうちの少なくとも1つにおいて、前記還元剤の温度が異なる温度に設定される請求項1~11のいずれか1項に記載のガス製造装置。
  13.  前記複数の反応器のうちの少なくとも1つにおいて、容積が異なる請求項1~12のいずれか1項に記載のガス製造装置。
  14.  前記第1反応器への前記酸化ガスの供給量P[mL/分]とし、前記第2反応器への前記還元ガスの供給量をQ[mL/分]としたとき、P/Qが0.7~1.1なる関係を満足する請求項1~13のいずれか1項に記載のガス製造装置。
  15.  前記還元剤は、水素を含有する請求項1~14のいずれか1項に記載のガス製造装置。
  16.  前記酸化ガスは、炉から排出される排ガスである請求項1~15のいずれか1項に記載のガス製造装置。
  17.  二酸化炭素の還元により炭素有価物を生成する金属酸化物を含む還元剤を収容した複数の反応器と、前記二酸化炭素を含む酸化ガスと、前記二酸化炭素との接触により酸化状態とされた還元剤を還元する還元物質を含む還元ガスとを準備し、
     前記酸化ガスと前記還元ガスとを切り換えつつ各前記反応器に供給して、前記二酸化炭素を前記炭素有価物に変換した後、前記酸化された還元剤を還元するに際して、
     前記酸化ガスを供給する前記反応器を第1反応器とし、前記還元ガスを供給する前記反応器を第2反応器としたとき、前記第1反応器および前記第2反応器のうちの少なくとも一方の数を2以上とすることを特徴とするガス製造方法。
  18.  前記酸化ガスは、炉から排出される排ガスである請求項17に記載のガス製造方法。
PCT/JP2021/048697 2021-01-05 2021-12-27 ガス製造装置およびガス製造方法 WO2022149536A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/270,800 US20240059569A1 (en) 2021-01-05 2021-12-27 Gas production device and gas production method
EP21917756.5A EP4276066A1 (en) 2021-01-05 2021-12-27 Gas production device and gas production method
JP2022517772A JPWO2022149536A1 (ja) 2021-01-05 2021-12-27
CN202180089213.4A CN116745020A (zh) 2021-01-05 2021-12-27 气体制造装置和气体制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-000608 2021-01-05
JP2021000608 2021-01-05

Publications (1)

Publication Number Publication Date
WO2022149536A1 true WO2022149536A1 (ja) 2022-07-14

Family

ID=82357957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048697 WO2022149536A1 (ja) 2021-01-05 2021-12-27 ガス製造装置およびガス製造方法

Country Status (5)

Country Link
US (1) US20240059569A1 (ja)
EP (1) EP4276066A1 (ja)
JP (1) JPWO2022149536A1 (ja)
CN (1) CN116745020A (ja)
WO (1) WO2022149536A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057162A1 (ja) * 2010-10-26 2012-05-03 三井金属鉱業株式会社 一酸化炭素の製造方法及び製造装置
JP2015016467A (ja) * 2013-06-21 2015-01-29 アルストム テクノロジー リミテッドALSTOM Technology Ltd 二酸化炭素ガス精製ユニットとのケミカルルーピング統合
WO2019163968A1 (ja) 2018-02-22 2019-08-29 積水化学工業株式会社 二酸化炭素還元システム、及び二酸化炭素還元方法
KR20200055939A (ko) * 2018-11-14 2020-05-22 전북대학교산학협력단 케미컬 루핑 연소에 의한 일산화탄소의 제조방법
JP6843490B1 (ja) * 2020-08-04 2021-03-17 積水化学工業株式会社 ガス製造装置、ガス製造システム、製鉄システム、化学品製造システムおよびガス製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057162A1 (ja) * 2010-10-26 2012-05-03 三井金属鉱業株式会社 一酸化炭素の製造方法及び製造装置
JP2015016467A (ja) * 2013-06-21 2015-01-29 アルストム テクノロジー リミテッドALSTOM Technology Ltd 二酸化炭素ガス精製ユニットとのケミカルルーピング統合
WO2019163968A1 (ja) 2018-02-22 2019-08-29 積水化学工業株式会社 二酸化炭素還元システム、及び二酸化炭素還元方法
KR20200055939A (ko) * 2018-11-14 2020-05-22 전북대학교산학협력단 케미컬 루핑 연소에 의한 일산화탄소의 제조방법
JP6843490B1 (ja) * 2020-08-04 2021-03-17 積水化学工業株式会社 ガス製造装置、ガス製造システム、製鉄システム、化学品製造システムおよびガス製造方法

Also Published As

Publication number Publication date
CN116745020A (zh) 2023-09-12
US20240059569A1 (en) 2024-02-22
EP4276066A1 (en) 2023-11-15
JPWO2022149536A1 (ja) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2022029886A1 (ja) ガス製造装置、ガス製造システム、製鉄システム、化学品製造システムおよびガス製造方法
JP7497243B2 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029887A1 (ja) 製鉄システムおよび製鉄方法
JP2021054704A (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2022149536A1 (ja) ガス製造装置およびガス製造方法
WO2022029881A1 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
JP6843489B1 (ja) 製鉄システムおよび製鉄方法
WO2022029882A1 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2023100834A1 (ja) ガス製造装置
JP7497242B2 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2023100833A1 (ja) ガス製造装置
WO2004015035A1 (ja) ガス化ガス用のcos処理装置とcos処理方法
WO2022029884A1 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2023120504A1 (ja) 酸素キャリア、酸素キャリアの製造方法、ガスの製造方法及びガス製造装置
WO2022029888A1 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2023286721A1 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029880A1 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2023286722A1 (ja) 反応器、ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029885A1 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2023100835A1 (ja) オレフィン系化合物の製造装置
JP2023091958A (ja) ガス製造装置
JP2021054707A (ja) ガス製造装置、ガス製造システムおよびガス製造方法
WO2022029883A1 (ja) ガス製造装置、ガス製造システムおよびガス製造方法
JP2023091959A (ja) ガス組成調整器および炭素有価物の製造装置
JP2023141390A (ja) 炭素有価物の製造装置、炭素有価物の製造方法、炭素有価物の製造システムおよびポリマーの製造システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022517772

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270800

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180089213.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202317051982

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021917756

Country of ref document: EP

Effective date: 20230807