WO2022148296A1 - 柔性传动装置 - Google Patents

柔性传动装置 Download PDF

Info

Publication number
WO2022148296A1
WO2022148296A1 PCT/CN2021/143206 CN2021143206W WO2022148296A1 WO 2022148296 A1 WO2022148296 A1 WO 2022148296A1 CN 2021143206 W CN2021143206 W CN 2021143206W WO 2022148296 A1 WO2022148296 A1 WO 2022148296A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
flexible shaft
flexible
transmission device
receiving element
Prior art date
Application number
PCT/CN2021/143206
Other languages
English (en)
French (fr)
Inventor
唐智荣
余波
Original Assignee
丰凯医疗器械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丰凯医疗器械(上海)有限公司 filed Critical 丰凯医疗器械(上海)有限公司
Publication of WO2022148296A1 publication Critical patent/WO2022148296A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/10Means for transmitting linear movement in a flexible sheathing, e.g. "Bowden-mechanisms"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/10Means for transmitting linear movement in a flexible sheathing, e.g. "Bowden-mechanisms"
    • F16C1/20Construction of flexible members moved to and fro in the sheathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/26Construction of guiding-sheathings or guiding-tubes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters

Definitions

  • the present application relates to a transmission device, in particular to a flexible transmission device.
  • the pump body and the motor are far apart, and due to the characteristics of the system itself, a flexible shaft needs to be used as a transmission structure for circular motion.
  • the steel wire rope as the flexible motion receiving element, it is necessary to set up multiple layers of elastic sleeves outside the flexible shaft to form a concentric structure for support, and transmit the rotating power from the output end of the motor to the end of the pump body. : 1), the same is true for the aspect ratio of the multi-layer elastic sheath.
  • the length of the multi-layer elastic sheath and the length of the steel wire rope have certain matching requirements during assembly. It is necessary to reserve the coupling section of the set length, but the wire rope is It is difficult to control the length error in the manufacturing process. Therefore, all the error accumulation will be reserved for the assembly. The excessively long part of the wire rope is generally cut.
  • the wire rope is tightly wound by the core layer and the outer multi-strand steel wire and welded at the end. Once the structure is cut, it will cause the steel wire to loosen and break strands, and then the power transmission capacity of the steel wire rope will decrease. Therefore, it is necessary to design an adaptive transmission structure with active connection to meet the needs of use.
  • the technical problem to be solved by the present application is to provide a flexible transmission device, in which a motion transfer element is arranged between the flexible shaft and the moving element, so as to realize the adaptive connection between the flexible shaft and the moving element;
  • the redundant part of the flexible shaft is guided into the redundant accommodating space to avoid cutting, thereby avoiding damage to the flexible shaft.
  • the embodiments of the present application provide a flexible transmission device, which includes a flexible shaft, a motion transfer element and a motion receiving element, wherein the flexible shaft is covered with an elastic sleeve; The end portion is fixedly connected with the motion transfer element; the flexible shaft reserves a coupling section with a set length between the elastic sleeve layer and the motion transfer element; the motion transfer element is inserted in the In the first accommodating cavity of the motion receiving element, the rotational motion is transmitted to the motion receiving element; a second accommodating cavity is arranged in the deep part of the first accommodating cavity, and the second accommodating cavity accommodates the flexible shaft When the flexible shaft rotates, the motion adapter element drives the motion receiving element to rotate and simultaneously slides axially along the motion receiving element.
  • the motion transfer element includes a radial positioning unit and a motion transmission unit, the radial positioning unit is a cylinder; the motion transmission units are at least two groups, and the motion transmission units
  • the axial equidistant is arranged on the outer surface of the radial positioning unit; the end of the flexible shaft is coaxially and fixedly connected to the radial positioning unit, the radial positioning unit is coaxially arranged with the motion receiving element, and the The motion transmitting unit is radially inserted into the motion receiving element, the center of the radial positioning unit is provided with a central hole matching with the flexible shaft, and the end of the flexible shaft is provided in the central hole to be fixed.
  • the motion transmission units are in six groups or four groups, and the motion transmission units are symmetrically arranged on the outer surface of the radial positioning unit to form splines.
  • the motion transmission units are divided into two groups, and the motion transmission units are symmetrically arranged on the outer surface of the radial positioning unit to form two wings.
  • the motion receiving element is a cylinder
  • a center of one end of the motion receiving element is provided with a positioning groove matching with the radial positioning unit
  • the outer periphery of the positioning groove is provided with a positioning groove matching the movement
  • the depth of the insertion groove is 1.5-2.5 times the length of the motion adapter element, so that when the motion adapter element is inserted into the motion receiving element, the insertion groove A redundant space is left, and the axial length of the redundant space is greater than the axially contracted length of the flexible shaft when it rotates.
  • the second accommodating cavity is cylindrical, the second accommodating cavity is coaxial with the first accommodating cavity, and the diameter of the second accommodating cavity is the diameter of the flexible shaft
  • the length of the redundant segment is 0.12%-0.15% of the length of the flexible shaft, and the depth of the second accommodating cavity is 1.5-2 times the length of the redundant segment.
  • the flexible shaft and the motion transfer element are connected by welding, gluing, screw fastening or interference pressing.
  • the diameter of the flexible shaft is in the range of 0.15mm-0.6mm, and the flexible shaft is formed by tightly winding the core layer and the multi-strand steel wires on the periphery of the core layer and welding at the ends.
  • it further includes a support casing disposed outside the flexible shaft, the elastic sleeve, the motion transfer element and the motion receiving element, the support casing A radial observation hole is arranged above the flexible shaft coupling section.
  • FIG. 1 is a schematic structural diagram of a flexible transmission device in an embodiment of the application.
  • FIG. 5 is a schematic diagram of the application of the flexible transmission device in the embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a flexible transmission device in an embodiment of the application
  • FIG. 2 is a partial cross-sectional view of the flexible transmission device in an embodiment of the application.
  • the flexible transmission device of the embodiment of the present application includes a flexible shaft 1, a motion transfer element 2 and a motion receiving element 3, the flexible shaft 1 is covered with an elastic sleeve layer 4, and the flexible The end of the shaft 1 is fixedly connected with the motion transfer element 2, and the flexible shaft 1 has a coupling section 11 with a set length reserved between the elastic sleeve layer 4 and the motion transfer element 2.
  • the motion transfer element 2 It is inserted into the first accommodating cavity 34 of the motion receiving element 3 to transmit the rotational motion to the motion receiving element 3 , a second accommodating cavity 35 is provided in the depth of the first accommodating cavity 34 , and the second accommodating cavity 35 accommodates the flexible shaft 1 passing through the redundant section 12 of the motion transfer element 2.
  • the motion transfer element 2 drives the motion receiving element 3 to rotate and simultaneously slides axially along the motion receiving element 3.
  • the motion transfer element 2 includes a radial positioning unit 21 and a motion transmission unit 22, and the radial positioning unit 21 is a cylinder; the motion transmission There are at least two groups of units 22, and the motion transmission units 22 are axially arranged at equal intervals on the outer surface of the radial positioning unit 21; the end of the flexible shaft 1 is coaxially fixedly connected to the radial positioning unit 21, The unit 21 is arranged coaxially with the motion receiving element 3 , and the motion transmitting unit 22 is radially inserted into the motion receiving element 3 .
  • the motion transmission units 22 are in six groups or four groups, and the motion transmission units 22 are symmetrically arranged on the outer surface of the radial positioning unit 21 to form splines. Due to the uncertainty of the length of the flexible shaft when it rotates at high speed, it is necessary to have a mechanism between the active element and the passive element during the power transmission process, which can not only ensure the reliable transmission of the rotational motion, but also have a certain degree of axial direction.
  • the commonly used structure is spline structure, which can be square spline or involute spline; the spline structure has the advantages of large transmission torque and high concentricity accuracy.
  • the flexible shaft transmission system is a miniature structure, the motion receiving element 3 is usually less than 3mm, and the processing accuracy of the spline structure is relatively high, which puts forward corresponding requirements for processing equipment, and increases the manufacturing cost.
  • the motion receiving element 3 Internal spline hole machining is more complicated. At the same time, higher requirements are also placed on the inspection and testing equipment, which increases the testing cost. The complexity of the spline structure will inevitably lead to an increase in the quality of the parts, the moment of inertia also increases, and high-speed rotation will generate vibration.
  • the motion transmission units 22 are symmetrically arranged on the outer surface of the radial positioning unit 21 to form two wings.
  • the middle radial positioning unit 21 is cylindrical, and the symmetrical motion transmission unit 22 forms two wings extending out.
  • the radial positioning unit 21 cooperates with the motion receiving element to achieve radial center positioning, and the motion transmission unit 22 is inserted to transmit torque.
  • the complexity of the structure is greatly reduced, the processing cost of components is greatly reduced, and the transmission accuracy and positioning accuracy are improved.
  • the noise is reduced to below 50 decibels, which improves the service life of the product.
  • the center of the radial positioning unit 21 is provided with a central hole 23 matching the flexible shaft 1, and the end of the flexible shaft 1 is fixed in the central hole 23;
  • the motion receiving element 3 is a cylinder, and the motion receiving element 3 is a cylinder.
  • the center of one end of the receiving element 3 is provided with a positioning groove 31 that matches the radial positioning unit 21,
  • the outer periphery of the positioning groove 31 is provided with an insertion groove 32 that matches the motion transmission unit 22, and the insertion groove 32 communicates with the positioning groove 31 to form a first groove.
  • An accommodating cavity 34 .
  • the depth of the positioning slot 31 is greater than or equal to the depth of the insertion slot 32 , and the depth of the insertion slot 32 is greater than the axial length of the motion adapter element 2 .
  • the depth of the insertion slot 32 is 1.5-2.5 times the length of the motion adapter element 2, so that when the motion adapter element 2 is inserted into the motion receiving element 3, a redundant space 33 is left in the insertion groove 32, and the The axial length of the redundant space 33 is greater than the axially contracted length of the flexible shaft 1 when it rotates. It is ensured that there is enough redundant space 33 for the adaptive axial movement of the motion adapter element 2 without detaching from the motion receiving element 3 .
  • the second accommodating cavity 35 is cylindrical, the second accommodating cavity 35 is coaxial with the first accommodating cavity 34 , and the second accommodating cavity 35 is coaxial with the first accommodating cavity 34 .
  • the diameter of 35 is 2.5-3 times the diameter of the flexible shaft 1; the length of the redundant section 12 is 0.12%-0.15% of the length of the flexible shaft 1, and the depth of the second accommodating cavity 35 is the length of the redundant section 12. 1.5-2 times. It is ensured that the second accommodating cavity 35 has enough space to accommodate the redundant segment 12 .
  • the flexible shaft 1 and the motion transfer element 2 are connected by welding, gluing, screw fastening or interference pressing. Make sure the connection is firm.
  • the diameter of the flexible shaft 1 is in the range of 0.15mm-0.6mm, and the flexible shaft 1 is formed by the core layer and the multi-strand steel wires on the periphery of the core layer tightly wound and welded at the ends.
  • the flexible transmission device of the embodiment of the present application further includes a support housing 5 disposed outside the flexible shaft 1 , the elastic sleeve 4 , the motion transfer element 2 and the motion receiving element 3 . It is difficult to align the motion transmission unit 22 into the insertion slot 32, and it needs to be rotated and tried to be inserted repeatedly according to the hand feeling. Production of qualified products. Therefore, a radial viewing hole 51 is provided in the support housing 5 above the coupling section 11 of the flexible shaft 1 . During assembly, you can check the assembly status through the observation hole 51, observe the relative position of each component and the accuracy of matching dimensions, prevent assembly errors caused by blind assembly, and significantly reduce assembly time to less than half a minute.
  • the average assembly efficiency is increased by more than 10 times.
  • the pass rate has also improved to over 99%.
  • An observation window is provided at the observation hole 51, and the observation window is made of a transparent material. During the debugging process, the subtle changes of the flexible transmission device in the high-speed rotation process are observed through the observation window, which provides a reliable theoretical basis for the correctness of the design parameters.
  • the motion transfer element 2 and the motion receiving element 3 are plug-in movably connected, and a suitable length of redundant space 33 is reserved along the axial direction at the connection, and the flexible shaft 1 Axial shrinkage during high-speed rotation is absorbed by the redundant space 33 to avoid unacceptable consequences caused by the breakage of the flexible shaft 1 or the falling off of the connection point; a second accommodation for accommodating the redundant length 12 of the flexible shaft 1 is provided in the motion receiving element 3 Cavity 35, no need to cut the flexible shaft 1, to avoid the reduction of the mechanical properties of the flexible shaft 1 caused by cutting; to improve the service life of the flexible shaft 1 to avoid harm to the patient; to reduce the coupling section 11 between the elastic sheath 4 and the flexible shaft 1 It is difficult to adjust the length; the motion transmission mode is novel and the transmission is reliable; the structure is simple and the manufacturing cost is low; it is suitable for most long-distance flexible shaft transmission occasions.
  • the motion transfer element and the motion receiving element are plug-in movably connected, and an appropriate length of redundant space is reserved along the axial direction at the connection, and the flexible shaft is axially contracted when rotating at a high speed. Redundant space absorption to avoid unacceptable consequences caused by flexible shaft breaks or connection points falling off;
  • a second accommodating cavity for accommodating the redundant length of the flexible shaft is arranged in the motion receiving element, so that the flexible shaft does not need to be cut, so as to avoid the reduction of the mechanical properties of the flexible shaft caused by cutting; improve the service life of the flexible shaft and avoid injury to the patient; It reduces the difficulty of adjusting the length of the coupling section between the elastic sleeve layer and the flexible shaft; the motion transmission mode is novel and the transmission is reliable; the structure is simple and the manufacturing cost is low; it is suitable for most long-distance flexible shaft transmission occasions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Flexible Shafts (AREA)

Abstract

一种柔性传动装置,包括柔性轴(1)、运动转接元件(2)和运动接受元件(3),柔性轴(1)外包覆有弹性套层(4),柔性轴(1)的端部与运动转接元件(2)固定连接,柔性轴(1)在弹性套层(4)与运动转接元件(2)之间预留有耦合段(11),运动转接元件(2)插接在运动接受元件(3)的第一容纳腔(34)中,第一容纳腔(34)的深处设有第二容纳腔(35),第二容纳腔(35)容纳柔性轴(1)穿出运动转接元件(2)的冗余段(12),柔性轴(1)旋转时,运动转接元件(2)带动运动接受元件(3)转动的同时沿运动接受元件(3)轴向滑动。该柔性传动装置实现了柔性轴与运动元件之间的自适应连接,避免切割,进而避免对柔性轴的破坏。

Description

柔性传动装置
相关申请的交叉引用
本申请要求享有于2021年1月11日提交的名称为“一种柔性传动装置”的中国专利申请202110032775.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及一种传动装置,尤其涉及一种柔性传动装置。
背景技术
在经皮跨瓣膜心室辅助系统中,泵体与电机间隔距离较远,而且由于系统本身的特点,需要采用柔性轴作为圆周运动的传递结构。
通常情况下,柔性轴与最终的运动元件之间采用刚性联接的方式传递动力,该方法比较简便可靠,制造和维护成本较低,是目前普遍被接收的连接方式,但该方法受到动力点到接受点之间距离长度以及旋转运动速度的限制,在高转速和远距离的情况下,由于柔性轴在运动状态下径向弯曲导致轴向长度缩短,以及随旋转速度的变化而造成长度收缩的变化,使得柔性轴由于轴向受力,导致柔性轴损坏或对应连接点脱落的现象,进而引起停机等严重后果。
同时,采用钢丝绳作为柔性运动接受元件,需要在柔性轴外设置多层弹性套层组成同心结构进行支撑,将旋转动力从电机输出端传递到泵体末端,由于钢丝绳的长径比巨大(接近2900∶1),同样多层弹性套层的长径比也是如此,在装配时多层弹性套层的长度与钢丝绳的长度有一定的匹配要求,需要预留设定长度的耦合段,但钢丝绳在制造过程中控制长度误差有一定的难度,因此,会将所有误差积累预留到装配,对钢丝绳过长的部分一般采用切割处理,钢丝绳采用由芯层和外围多股钢丝紧密缠绕并且 在末端焊接的结构,一旦切割后,将引起钢丝松散和断股,进而钢丝绳传递动力能力下降,严重时钢丝绳完全断裂,泵体停止转动,造成严重医疗事故。因此,需要设计一种活动连接的自适应传动结构来满足使用需求。
发明内容
本申请要解决的技术问题是提供一种柔性传动装置,柔性轴与运动元件之间设置运动转接元件,实现柔性轴与运动元件之间的自适应连接;运动元件设置冗余容纳空间,将柔性轴多余的部分,引导进入冗余容纳空间,避免切割,进而避免对柔性轴的破坏。
为解决上述技术问题,本申请的实施例提供一种柔性传动装置,包括柔性轴、运动转接元件和运动接受元件,其中,所述柔性轴外包覆有弹性套层;所述柔性轴的端部与所述运动转接元件固定连接;所述柔性轴在所述弹性套层与所述运动转接元件之间预留有设定长度的耦合段;所述运动转接元件插接在所述运动接受元件的第一容纳腔中,以将旋转运动传递到所述运动接受元件;所述第一容纳腔的深处设有第二容纳腔,所述第二容纳腔容纳柔性轴穿出所述运动转接元件的冗余段;所述柔性轴旋转时,所述运动转接元件带动所述运动接受元件转动的同时沿所述运动接受元件轴向滑动。
根据本申请实施例的一个方面,所述运动转接元件包括径向定位单元和运动传递单元,所述径向定位单元为圆柱体;所述运动传递单元至少为2组,所述运动传递单元轴向等间距设置在径向定位单元外表面;所述柔性轴的端部与所述径向定位单元同轴固定连接,所述径向定位单元与所述运动接受元件同轴设置,所述运动传递单元径向插入所述运动接受元件,所述径向定位单元中心设置有与所述柔性轴匹配的中心孔,所述柔性轴的端部设置在中心孔中固定。
根据本申请实施例的一个方面,所述运动传递单元为六组或者四组,所述运动传递单元对称设置在径向定位单元外表面形成花键。
根据本申请实施例的一个方面,所述运动传递单元为两组,所述运动传递单元对称设置在径向定位单元外表面形成两翼。
根据本申请实施例的一个方面,所述运动接受元件为圆柱体,所述运动接受元件一端中心设有与所述径向定位单元匹配的定位槽,所述定位槽外周设有与所述运动传递单元匹配的插入槽,所述插入槽与所述定位槽连通形成第一容纳腔,所述定位槽的深度大于等于所述插入槽的深度,所述插入槽的深度大于所述运动转接元件的轴向长度。
根据本申请实施例的一个方面,所述插入槽的深度为所述运动转接元件长度的1.5-2.5倍,使得所述运动转接元件插入所述运动接受元件中时,所述插入槽中留有冗余空间,所述冗余空间的轴向长度大于所述柔性轴旋转时的轴向收缩长度。
根据本申请实施例的一个方面,所述第二容纳腔呈圆柱形,所述第二容纳腔与所述第一容纳腔同轴设置,所述第二容纳腔的直径为所述柔性轴直径的2.5-3倍;所述冗余段的长度为所述柔性轴长度的0.12%-0.15%,所述第二容纳腔的深度为所述冗余段长度的1.5-2倍。
根据本申请实施例的一个方面,所述柔性轴与所述运动转接元件通过焊接、粘接、螺钉紧固或过盈压入的方式连接。
根据本申请实施例的一个方面,所述柔性轴的直径范围为0.15mm-0.6mm,所述柔性轴由芯层和芯层外围的多股钢丝紧密缠绕并且在端部焊接而成。
根据本申请实施例的一个方面,还包括设置在所述柔性轴、所述弹性套层、所述运动转接元件和所述运动接受元件外部的支撑壳体,所述支撑壳体在所述柔性轴耦合段上方设置有径向的观察孔。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中,通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,相同或相似的附图标记表示相同或相似的特征。
图1为本申请实施例中柔性传动装置结构示意图;
图2为本申请实施例中柔性传动装置部分剖视图;
图3为本申请实施例中柔性传动装置拆分图;
图4为本申请实施例中采用另一结构运动转接元件的柔性传动装置拆分图;
图5为本申请实施例中柔性传动装置应用示意图。
图中:1、柔性轴;2、运动转接元件;3、运动接受元件;4、弹性套层;5、支撑壳体;11、耦合段;12、冗余段;21、径向定位单元;22、运动传递单元;23、中心孔;31、定位槽;32、插入槽;33、冗余空间;34、第一容纳腔;35、第二容纳腔;51、观察孔。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。下面的详细描述中公开了许多具体细节,以便全面理解本申请。但是,对于本领域技术人员来说,很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
下面结合附图和实施例对本申请作进一步的描述。
图1为本申请实施例中柔性传动装置结构示意图;图2为本申请实施例中柔性传动装置部分剖视图。
请参见图1和图2,本申请实施例的柔性传动装置,包括柔性轴1、运动转接元件2和运动接受元件3,所述柔性轴1外包覆有弹性套层4,所述柔性轴1的端部与运动转接元件2固定连接,所述柔性轴1在弹性套层4与运动转接元件2之间预留有设定长度的耦合段11,所述运动转接元件2插接在运动接受元件3的第一容纳腔34中,以将旋转运动传递到运动接受元件3,所述第一容纳腔34的深处设有第二容纳腔35,所述第二容纳腔35容纳柔性轴1穿出运动转接元件2的冗余段12,所述柔性轴1旋转时,所述运动转接元件2带动运动接受元件3转动的同时沿运动接受元件3轴向 滑动。
请同时参见图3和图4,本申请实施例的柔性传动装置,运动转接元件2包括径向定位单元21和运动传递单元22,所述径向定位单元21为圆柱体;所述运动传递单元22至少为两组,所运动传递单元22轴向等间距设置在径向定位单元21外表面;所述柔性轴1的端部与径向定位单元21同轴固定连接,所述径向定位单元21与运动接受元件3同轴设置,所述运动传递单元22径向插入运动接受元件3。
较优地,运动传递单元22为六组或者四组,所运动传递单元22对称设置在径向定位单元21外表面形成花键。由于柔性轴在高速旋转时,其长度的不确定性,需要在动力传递过程中,在主动元件与被动元件之间存在一个既能保证旋转运动被可靠传递,又可以在轴向方向有一定的位移,以适应柔性轴的长度变化,一般常用的结构为花键结构,花键结构可以为方形花键或者渐开线花键;花键结构具有传递力矩大,同心度精度高等优点。
由于花键结构的配合面很多,任何一处配合不当都会导致装配失败,因此,对花键的加工精度提出了极高的要求,另外,花键装配后接触面多,会增加轴向自适应调节的阻力。同时,在具体使用时,转速在10000转/分钟以上,甚至50000转/分钟,要求旋转部件的转动惯量越小越好,同轴度误差越小越好。而柔性轴传动系统为微型结构,运动接收元件3通常小于3mm,花键结构加工精度比较高,对加工设备提出相应的要求,制造成本提高,在渐开线花键中,运动接收元件3的内花键孔加工更为复杂。同时,对检验检测设备也提出较高的要求,提高了检测成本,花键结构的复杂性必然带来零件质量的增加,转动惯量也增大,高速旋转会产生振动。
为解决花键装配要求高的问题,考虑减少运动传递单元22的数量,将运动传递单元22设置为三组,简化了结构,传递力矩满足要求,装配较为方便,但运动接收元件3内孔加工较为复杂,加工精度不易控制,而且,该结构径向定位精度问题同样存在,同轴度误差使得部件在以40000转/分钟及以上的高速旋转时产生非常明显的高频振动和噪音,噪音超过60分贝。长期使用容易造成零部件的损坏。
更优地,运动传递单元22为两组,所运动传递单元22对称设置在径 向定位单元21外表面形成两翼。运动转接元件,中间径向定位单元21呈圆柱状,对称的运动传递单元22形成两翼伸出。装配时,径向定位单元21与运动接收元件配合,实现径向中心定位,运动传递单元22插入,传递扭矩。大大降低了结构的复杂性,部件加工成本大幅降低,并且提高了传动精度、定位精度,在40000转/分钟工作时,噪音降至50分贝以下,提高了产品的使用寿命。
具体地,径向定位单元21中心设置有与柔性轴1匹配的中心孔23,所述柔性轴1的端部设置在中心孔23中固定;所述运动接受元件3为圆柱体,所述运动接受元件3一端中心设有与径向定位单元21匹配的定位槽31,所述定位槽31外周设有与运动传递单元22匹配的插入槽32,所述插入槽32与定位槽31连通形成第一容纳腔34。所述定位槽31的深度大于等于插入槽32的深度,所述插入槽32的深度大于运动转接元件2的轴向长度。
优选地,插入槽32的深度为运动转接元件2长度的1.5-2.5倍,使得所述运动转接元件2插入运动接受元件3中时,插入槽32中留有冗余空间33,所述冗余空间33的轴向长度大于柔性轴1旋转时的轴向收缩长度。保证有足够的冗余空间33供运动转接元件2自适应的轴向移动,而不脱离运动接受元件3。
请继续参见图2和图4,本申请实施例的柔性传动装置,第二容纳腔35呈圆柱形,所述第二容纳腔35与第一容纳腔34同轴设置,所述第二容纳腔35的直径为柔性轴1直径的2.5-3倍;所述冗余段12的长度为柔性轴1长度的0.12%-0.15%,所述第二容纳腔35的深度为冗余段12长度的1.5-2倍。保证第二容纳腔35有足够的空间容纳冗余段12。
优选地,柔性轴1与运动转接元件2通过焊接、粘接、螺钉紧固或过盈压入的方式连接。保证连接的牢固。
优选地,柔性轴1的直径范围为0.15mm-0.6mm,所述柔性轴1由芯层和芯层外围的多股钢丝紧密缠绕并且在端部焊接而成。
请同时参见图5,本申请实施例的柔性传动装置,还包括设置在柔性轴1、弹性套层4、运动转接元件2和运动接受元件3外部的支撑壳体5。运动传递单元22对位进入插入槽32比较困难,需要凭手感反复旋转和试 插入,为保证合格率,装配工作时需要非常小心谨慎,装配耗时10分钟以上,尽管如此,还会导致大量不合格品的产生。因此,在支撑壳体5在柔性轴1耦合段11上方设置有径向的观察孔51。装配时可以通过观察孔51查看装配状态,观察各元件的相对位置和配合尺寸的精度,防止盲装配造成装配误差,装配工时显著减少,降至半分钟以内,装配平均效率提高10倍以上,装配合格率也提高至99%以上。在观察孔51处设置观察窗,观察窗由透明材质制成。在调试过程中,通过观察窗观察柔性传动装置在高速旋转过程中的细微变化,对设计参数的正确性提供可靠的理论依据。
综上所述,根据本申请实施例的柔性传动装置,运动转接元件2和运动接受元件3插入式活动连接,在连接处沿轴向方向预留合适长度的冗余空间33,柔性轴1在高速旋转时产生轴向收缩由冗余空间33吸收,避免柔性轴1断裂或连接点脱落而造成不可接受的后果;在运动接受元件3中设置容纳柔性轴1冗余长度12的第二容纳腔35,无需切割柔性轴1,避免切割引起柔性轴1机械特性降低的结果;提高柔性轴1的使用寿命,避免对病人的造成伤害;降低弹性套层4与柔性轴1之间耦合段11长度的调整难度;运动传递方式新颖,传动可靠;结构简单,制造成本较低;适合大部分长距离柔性轴1传动的场合。
因此,本申请的实施例对比现有技术具有至少如下的有益效果:
根据本申请实施例的柔性传动装置,运动转接元件和运动接受元件插入式活动连接,在连接处沿轴向方向预留合适长度的冗余空间,柔性轴在高速旋转时产生轴向收缩由冗余空间吸收,避免柔性轴断裂或连接点脱落而造成不可接受的后果;
并且,在运动接受元件中设置容纳柔性轴冗余长度的第二容纳腔,无需切割柔性轴,避免切割引起柔性轴机械特性降低的结果;提高柔性轴的使用寿命,避免对病人的造成伤害;降低弹性套层与柔性轴之间耦合段长度的调整难度;运动传递方式新颖,传动可靠;结构简单,制造成本较低;适合大部分长距离柔性轴传动的场合。
虽然本申请已以较佳实施例揭示如上,然其并非用以限定本申请,任何本领域技术人员,在不脱离本申请的精神和范围内,当可作些许的修改 和完善,因此本申请的保护范围当以权利要求书所界定的为准。

Claims (20)

  1. 一种柔性传动装置,包括柔性轴、运动转接元件和运动接受元件,其中,所述柔性轴外包覆有弹性套层;所述柔性轴的端部与所述运动转接元件固定连接;所述柔性轴在所述弹性套层与所述运动转接元件之间预留有设定长度的耦合段;所述运动转接元件插接在所述运动接受元件的第一容纳腔中,以将旋转运动传递到所述运动接受元件;所述第一容纳腔的深处设有第二容纳腔,所述第二容纳腔容纳所述柔性轴穿出所述运动转接元件的冗余段;所述柔性轴旋转时,所述运动转接元件带动所述运动接受元件转动的同时沿所述运动接受元件轴向滑动。
  2. 如权利要求1所述的柔性传动装置,其中,所述运动转接元件包括径向定位单元和运动传递单元,所述径向定位单元为圆柱体;所述运动传递单元至少为两组,所述运动传递单元轴向等间距设置在所述径向定位单元外表面;所述柔性轴的端部与所述径向定位单元同轴固定连接,所述径向定位单元与所述运动接受元件同轴设置,所述运动传递单元径向插入所述运动接受元件。
  3. 如权利要求2所述的柔性传动装置,其中,所述径向定位单元中心设置有与所述柔性轴匹配的中心孔,所述柔性轴的端部设置在所述中心孔中固定。
  4. 如权利要求3所述的柔性传动装置,其中,所述运动传递单元为四组,所述运动传递单元对称设置在所述径向定位单元外表面形成花键。
  5. 如权利要求3所述的柔性传动装置,其中,所述运动传递单元为六组,所述运动传递单元对称设置在所述径向定位单元外表面形成花键。
  6. 如权利要求3所述的柔性传动装置,其中,所述运动传递单元为两组,所述运动传递单元对称设置在所述径向定位单元外表面形成两翼。
  7. 如权利要求3所述的柔性传动装置,其中,所述运动接受元件为圆 柱体,所述运动接受元件一端中心设有与所述径向定位单元匹配的定位槽,所述定位槽外周设有与所述运动传递单元匹配的插入槽,所述插入槽与所述定位槽连通形成第一容纳腔。
  8. 如权利要求7所述的柔性传动装置,其中,所述定位槽的深度大于等于所述插入槽的深度,所述插入槽的深度大于所述运动转接元件的轴向长度。
  9. 如权利要求8所述的柔性传动装置,其中,所述插入槽的深度为所述运动转接元件长度的1.5-2.5倍,使得所述运动转接元件插入所述运动接受元件中时,所述插入槽中留有冗余空间。
  10. 如权利要求9所述的柔性传动装置,其中,所述冗余空间的轴向长度大于所述柔性轴旋转时的轴向收缩长度。
  11. 如权利要求1所述的柔性传动装置,其中,所述第二容纳腔呈圆柱形,所述第二容纳腔与所述第一容纳腔同轴设置,所述第二容纳腔的直径为所述柔性轴直径的2.5-3倍。
  12. 如权利要求11所述的柔性传动装置,其中,所述冗余段的长度为所述柔性轴长度的0.12%-0.15%。
  13. 如权利要求12所述的柔性传动装置,其中,所述第二容纳腔的深度为所述冗余段长度的1.5-2倍。
  14. 如权利要求1所述的柔性传动装置,其中,所述柔性轴与所述运动转接元件通过焊接或粘接的方式连接。
  15. 如权利要求14所述的柔性传动装置,其中,所述柔性轴与所述运动转接元件通过螺钉紧固或过盈压入的方式连接。
  16. 如权利要求1所述的柔性传动装置,其中,所述柔性轴的直径范围为0.15mm-0.6mm,
  17. 如权利要求16所述的柔性传动装置,其中,所述柔性轴由芯层和芯层外围的多股钢丝紧密缠绕并且在端部焊接而成。
  18. 如权利要求1所述的柔性传动装置,还包括设置在所述柔性轴、所述弹性套层、所述运动转接元件和所述运动接受元件外部的支撑壳体,所述支撑壳体在柔性轴耦合段上方设置有径向的观察孔。
  19. 如权利要求1所述的柔性传动装置,其中,所述观察孔处设有观察窗。
  20. 如权利要求1所述的柔性传动装置,其中,所述观察窗由透明材质制成。
PCT/CN2021/143206 2021-01-11 2021-12-30 柔性传动装置 WO2022148296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110032775.7A CN114754059B (zh) 2021-01-11 2021-01-11 一种柔性传动装置
CN202110032775.7 2021-01-11

Publications (1)

Publication Number Publication Date
WO2022148296A1 true WO2022148296A1 (zh) 2022-07-14

Family

ID=82326168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143206 WO2022148296A1 (zh) 2021-01-11 2021-12-30 柔性传动装置

Country Status (2)

Country Link
CN (1) CN114754059B (zh)
WO (1) WO2022148296A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB128566A (en) * 1918-03-02 1919-09-04 Oscar Sperling Improvements in Attachments for Flexible Shafts.
GB306163A (en) * 1927-10-17 1929-02-18 Westminster Tool And Electric Improvements in handles of tools driven by flexible shafts
EP0347389A2 (en) * 1988-06-14 1989-12-20 TECAFLEX INTERNATIONAL S.p.A. A flexible-shaft transmission particularly for tachometric instruments for motor vehicles or like applications
JPH07289551A (ja) * 1994-04-27 1995-11-07 Toshiba Corp 超音波診断装置
CN101283924A (zh) * 2007-04-13 2008-10-15 Tyco医疗健康集团 动力外科器械
JP2010078054A (ja) * 2008-09-26 2010-04-08 Sakamoto Seisakusho:Kk フレキシブルホースユニットの保護装置
CN103767759A (zh) * 2014-01-28 2014-05-07 重庆西山科技有限公司 医用磨削刀具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2646277C (en) * 2006-03-23 2016-01-12 The Penn State Research Foundation Heart assist device with expandable impeller pump
EP2607712B1 (de) * 2011-12-22 2016-07-13 ECP Entwicklungsgesellschaft mbH Pumpengehäuse mit einem Innenraum zur Aufnahme eines Pumpenrotors
EP2868289A1 (de) * 2013-11-01 2015-05-06 ECP Entwicklungsgesellschaft mbH Flexibler Katheter mit einer Antriebswelle
CN206092669U (zh) * 2016-10-14 2017-04-12 江铃控股有限公司 一种带外套管保护结构的双拉索式电子驻车拉索
CN109431572B (zh) * 2018-11-20 2023-12-08 宁波华科润生物科技有限公司 一种医用可偏转磨头
CN111375097B (zh) * 2018-12-29 2022-05-20 上海微创心力医疗科技有限公司 导管泵
EP3698820A1 (en) * 2019-02-22 2020-08-26 ECP Entwicklungsgesellschaft mbH Catheter device with a drive shaft cover

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB128566A (en) * 1918-03-02 1919-09-04 Oscar Sperling Improvements in Attachments for Flexible Shafts.
GB306163A (en) * 1927-10-17 1929-02-18 Westminster Tool And Electric Improvements in handles of tools driven by flexible shafts
EP0347389A2 (en) * 1988-06-14 1989-12-20 TECAFLEX INTERNATIONAL S.p.A. A flexible-shaft transmission particularly for tachometric instruments for motor vehicles or like applications
JPH07289551A (ja) * 1994-04-27 1995-11-07 Toshiba Corp 超音波診断装置
CN101283924A (zh) * 2007-04-13 2008-10-15 Tyco医疗健康集团 动力外科器械
JP2010078054A (ja) * 2008-09-26 2010-04-08 Sakamoto Seisakusho:Kk フレキシブルホースユニットの保護装置
CN103767759A (zh) * 2014-01-28 2014-05-07 重庆西山科技有限公司 医用磨削刀具

Also Published As

Publication number Publication date
CN114754059A (zh) 2022-07-15
CN114754059B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
KR102123935B1 (ko) 로봇
US20130068060A1 (en) Flexspline protective structure and robot arm mechanism using same
US20150060187A1 (en) Steering apparatus
CN103029125A (zh) 机器人
CN105358870B (zh) 将被驱动构件紧固于波动齿轮装置单元的紧固方法及波动齿轮装置单元
WO2022148296A1 (zh) 柔性传动装置
CN107976124B (zh) 一种适用于小型导弹的电动舵机
CN111005988A (zh) 一种具有力感知功能的谐波减速器
JPH034030A (ja) 回転弾性継手
CN113070901A (zh) 一种用于机器人的一体化柔性关节
CN115741660A (zh) 一种双关节多自由度机械臂及其驱动方法
CN117838328A (zh) 一种同步传动装置、主手组件及手术机器人
WO2010107082A1 (ja) 発電機
EP1429163A2 (en) Fiber optic rotary flex joint
CN114732450B (zh) 手术器械
CN105583851B (zh) 一种利用钢丝传动锥形盘输出式旋转关节
CN208804195U (zh) 一种万向传动齿轮结构
CN111203866B (zh) 一种无刷外转子舵机以及机器人
CN210565880U (zh) 一种安全联轴器
CN110397683B (zh) 一种安全联轴器
CN107351059A (zh) 一种二自由度解耦的并联机构
CN209539939U (zh) 一种无级变速器
CN113894837A (zh) 一种关节动力单元及应用其的机械臂
CN214274215U (zh) 一种可容纳柔性轴冗余段的柔性传动结构
CN208179523U (zh) 一种高精度广角机械臂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917335

Country of ref document: EP

Kind code of ref document: A1