WO2022147936A1 - 评价视点密度的方法、系统、处理设备和计算机存储介质 - Google Patents

评价视点密度的方法、系统、处理设备和计算机存储介质 Download PDF

Info

Publication number
WO2022147936A1
WO2022147936A1 PCT/CN2021/093426 CN2021093426W WO2022147936A1 WO 2022147936 A1 WO2022147936 A1 WO 2022147936A1 CN 2021093426 W CN2021093426 W CN 2021093426W WO 2022147936 A1 WO2022147936 A1 WO 2022147936A1
Authority
WO
WIPO (PCT)
Prior art keywords
viewpoint
viewpoints
image
crosstalk
display
Prior art date
Application number
PCT/CN2021/093426
Other languages
English (en)
French (fr)
Inventor
朱劲野
高健
杨军星
洪涛
刘静
于静
韩天洋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP21916986.9A priority Critical patent/EP4120679A4/en
Priority to US17/765,453 priority patent/US11812011B2/en
Publication of WO2022147936A1 publication Critical patent/WO2022147936A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/761Proximity, similarity or dissimilarity measures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/354Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying sequentially

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of smart display technologies, and in particular, relate to a method, a system, a processing device, and a computer storage medium for evaluating viewpoint density.
  • a naked-eye 3D display device is a display device that can see a 3D display screen without wearing an auxiliary tool.
  • the display principle of the naked-eye 3D display device is as follows: a lens cylinder or a parallax barrier is placed in front of the display panel of the display device, so that the display image seen by the left eye is different from the display image seen by the right eye, so that the display image has a 3D visual effect.
  • the naked-eye 3D display usually adopts super multi-view technology.
  • how to choose the appropriate number of viewpoints, or how to evaluate the pros and cons of the number of viewpoints of the current display screen becomes the glasses-free 3D technology and the production of 3D display devices. problems to be solved in the field.
  • An embodiment of the present disclosure provides a method for evaluating viewpoint density, including: acquiring the number of viewpoints on a display panel; comparing the image spot radius of each viewpoint and the image point interval between the viewpoint and adjacent viewpoints, and selecting a viewpoint As the reference viewpoint, calculate the crosstalk value between other viewpoints except the reference viewpoint and the reference viewpoint; according to the comparison between the image spot radius of each viewpoint and the image point interval between the viewpoint and adjacent viewpoints and the calculated crosstalk value between other viewpoints and the reference viewpoint, to evaluate the naked-eye stereoscopic display viewpoint density.
  • the light-emitting side of the display panel includes a plurality of grating arrays arranged along a set direction;
  • Spot radius (pupil diameter/(number of viewpoints*2*distance between human eye and grating array)+1.22*wavelength/length of each grating unit in grating array)*image distance;
  • each grating unit in the grating array * the distance from the human eye to the image point/the distance from the human eye to the grating array.
  • the method before selecting one viewpoint as the reference viewpoint, the method further includes: controlling the display panel to display the images of each viewpoint in sequence, and when displaying each viewpoint image, a method for displaying the current viewpoint image All sub-pixels display white images, all sub-pixels used to display images of other viewpoints display black images, and the brightness values of the light at each test angle corresponding to the current viewpoint image are sequentially obtained on the light-emitting side of the display panel, and all The white light luminance curve of the viewpoint.
  • the selecting a viewpoint as the reference viewpoint includes:
  • the optimal viewing angle is equal to 0° or the viewpoint that is greater than 0° and closest to 0° is selected as the reference viewpoint.
  • the calculating a crosstalk value between viewpoints other than the reference viewpoint and the reference viewpoint includes:
  • the determined luminance values of the reference viewpoint and the other viewpoints corresponding to the peaks of the reference viewpoint and the distance between the peaks of the other viewpoints and the peaks of the reference viewpoint calculate the relationship between the other viewpoint and the reference viewpoint. the crosstalk value between the reference viewpoints.
  • the crosstalk value between the other viewpoint and the reference viewpoint is proportional to the luminance value corresponding to the other viewpoint at the peak of the reference viewpoint, which is the same as the reference viewpoint at the reference viewpoint.
  • the corresponding luminance value at the peak of the viewpoint is inversely proportional to the distance between the peaks of the other viewpoints and the peak of the reference viewpoint.
  • the luminance value corresponding to the reference viewpoint at the peak of the reference viewpoint is Li
  • viewpoint j is at the peak of the reference viewpoint
  • the corresponding luminance value is Lj
  • i and j are both between 1 and N
  • i ⁇ j N is the number of viewpoints of the display panel
  • Dij the distance between the peak of viewpoint j and the peak of the reference viewpoint
  • the crosstalk value between viewpoint j and the reference viewpoint is: Lj/(Li*Dij).
  • the other viewpoints include viewpoints to the left of the reference viewpoint and viewpoints to the right of the reference viewpoint.
  • the method further includes:
  • the total crosstalk value is calculated according to the crosstalk value between the other viewpoints and the reference viewpoint and the crosstalk weight value.
  • the size of the image spot radius of each viewpoint and the image point interval between the viewpoint and the adjacent viewpoint, and the calculated crosstalk value between other viewpoints and the reference viewpoint to evaluate the viewpoint density of naked-eye stereoscopic display, including:
  • the size of the image spot radius of each viewpoint and the image point interval between the viewpoint and the adjacent viewpoint, and the calculated crosstalk value between other viewpoints and the reference viewpoint to evaluate the viewpoint density of naked-eye stereoscopic display, including:
  • the naked eye stereo is evaluated.
  • the display viewpoint density is excellent;
  • Embodiments of the present disclosure also provide a processing device, including: a processor and a memory storing a computer program that can be executed on the processor, wherein the processor implements the aforementioned evaluation viewpoint when executing the program The steps of the method of density.
  • Embodiments of the present disclosure also provide a system for evaluating viewpoint density, including: a display module, an optical testing device, and the aforementioned processing device, wherein: the display module includes a display panel and a system disposed on the display panel. The grating array on the light-emitting side; the optical testing device is used for measuring the brightness value of the light on the light-emitting side of the display panel.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where executable instructions are stored in the computer-readable storage medium, and when the executable instructions are executed by a processor, the evaluation viewpoint described in any one of the foregoing can be implemented The steps of the method of density.
  • FIG. 1 is a schematic flowchart of a schematic diagram of a display principle of a naked-eye 3D display device
  • FIG. 2 is a schematic flowchart of a method for evaluating viewpoint density according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the arrangement of sub-pixels on a display panel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the arrangement of the first group of sub-pixels corresponding to the display of the first viewpoint image
  • 5 is a schematic diagram of the relative position between the luminance meter and the display panel when measuring the luminance value
  • Fig. 6 is the brightness distribution curve superposition diagram corresponding to each viewpoint image of 28 viewpoint image display modules
  • Fig. 7 is the superposition diagram of the brightness distribution curve corresponding to each viewpoint image of 27 viewpoint image display modules
  • FIG. 8 is an overlay diagram of brightness distribution curves corresponding to each viewpoint image of the 16 viewpoint image display module
  • FIG. 10 is a schematic diagram of the secondary crosstalk simulation results of the 28-view and 27-view image display modules
  • FIG. 11 is a schematic diagram of a three-level crosstalk simulation result of the 28-view and 27-view image display modules
  • 12 is a schematic diagram of the simulation results of the four-level crosstalk of the 28-view and 27-view image display modules
  • FIG. 13 is a schematic diagram of a five-level crosstalk simulation result of the 28-view and 27-view image display modules
  • FIG. 14 is a schematic diagram of a six-level crosstalk simulation result of the 28-view and 27-view image display modules
  • FIG. 15 is a schematic structural diagram of a processing device according to an embodiment of the present disclosure.
  • the naked-eye 3D display usually adopts the super multi-view technology, that is, multiple viewpoints are set so that the user can see the 3D display at multiple positions.
  • the display panel 10 is provided with five viewpoints: viewpoint 1, viewpoint 2, viewpoint 3, viewpoint 4 and viewpoint 5.
  • the grating 11 located in front of the display panel 10 can make the The user's eyes see the display images corresponding to two adjacent viewpoints among the five viewpoints. For example, the user's left eye can see the display image corresponding to viewpoint 3, and the user's right eye can see the display image corresponding to viewpoint 2. At this time, the user can see the 3D display screen.
  • the number of viewpoints displayed in 3D continues to increase.
  • the number of viewpoints is too large, the pixels of adjacent viewpoint images are blurred, and the more the number of viewpoints, the more crosstalk is introduced. Therefore, how to select an appropriate number of viewpoints, or how to evaluate the pros and cons of the number of viewpoints of a current 3D display device, has become a problem to be solved in the field of glasses-free 3D technology and the manufacture of glasses-free 3D display devices.
  • Embodiments of the present disclosure provide a method, system, processing device, and computer storage medium for evaluating viewpoint density, by comparing the image spot radius of each viewpoint and the image spot interval between the viewpoint and adjacent viewpoints, and The calculated crosstalk value between other viewpoints and the reference viewpoint is used to evaluate the viewpoint density of the naked-eye stereoscopic display, which can realize the selection of an appropriate number of viewpoints when designing the naked-eye 3D display device, or can be used to evaluate the current naked-eye 3D display device. According to the advantages and disadvantages of the number of viewpoints, the optimal design of the number of viewpoints for the naked-eye 3D display device is realized, and the naked-eye 3D display effect is improved.
  • an embodiment of the present disclosure provides a method for evaluating viewpoint density, including steps 10 to 30 .
  • Step 10 Obtain the number of viewpoints of the display panel
  • the display panel includes a plurality of sub-pixels distributed in a matrix. Taking a naked-eye 3D display screen with a 65-inch 8K high-definition display resolution as an example, a 28-viewpoint image display module and a 27-viewpoint image display module are designed respectively. and a 16-viewpoint image display module, and the viewpoint density evaluation is performed by the method for evaluating viewpoint density in the embodiment of the present disclosure.
  • the display panel includes 28 groups of sub-pixels corresponding to display images of 28 viewpoints, a first group of sub-pixels 1, a second group of sub-pixels 2, and a third group of sub-pixels.
  • the arrangement of the sub-pixels is not limited to the arrangement shown in FIG. 3 .
  • Step 20 Compare the image spot radius of each viewpoint and the size of the image point interval between the viewpoint and adjacent viewpoints, select one viewpoint as the reference viewpoint, and calculate the crosstalk value between other viewpoints except the reference viewpoint and the reference viewpoint ;
  • the image spot radius of each viewpoint when comparing the image spot radius of each viewpoint and the size of the image spot interval between the viewpoint and adjacent viewpoints, from viewpoint 1 to viewpoint N, the image spot radius of each viewpoint is equal to The size of the image point interval between the viewpoint and the adjacent viewpoints is compared one by one.
  • the image spot radius of viewpoint 1 is compared with the size of the image point interval between viewpoints 1 and 2; for viewpoint 2, the viewpoints are compared.
  • viewpoint (N-1) compare viewpoint (N- 1)
  • the size of the image point interval; for the viewpoint N compare the image spot radius of the viewpoint N with the size of the viewpoint (N-1) and the image point interval of the viewpoint N, where N is the number of viewpoints.
  • the light-emitting side of the display panel includes a plurality of grating arrays arranged along a set direction;
  • Spot radius (pupil diameter/(number of viewpoints*2*distance between human eye and grating array)+1.22*wavelength/length of each grating unit in grating array)*image distance;
  • each grating unit in the grating array * the distance from the human eye to the image point/the distance from the human eye to the grating array.
  • the grating array may be a grating structure such as a cylindrical lens grating array or a parallax barrier array.
  • the image spot radius of a viewpoint is less than or equal to the image spot interval between the viewpoint and the adjacent viewpoints, the image spot of the viewpoint is clear.
  • the image spot radius of a viewpoint is larger than the image spot of the viewpoint and the adjacent viewpoints When the interval, the image spot of the viewpoint is not clear.
  • the image spots of all viewpoints are clear; when one or more image spot radii of each viewpoint are larger than all.
  • the distance between the image points of the above-mentioned viewpoint and the adjacent viewpoints is determined, the image spots of one or more viewpoints are not clear.
  • the image points seen by the human eye can be presented in front of the screen or behind the screen. Therefore, the distance from the human eye to the image point may be less than or equal to the distance from the human eye to the screen, or may be greater than the distance from the human eye to the screen.
  • the position data of the image points seen by the human eye are directly obtained by the processor or the control system while the 3D view is output.
  • the method before selecting a viewpoint as the reference viewpoint, the method further includes:
  • the light-emitting side of the display panel sequentially acquires the brightness value of the light at each test angle corresponding to the current viewpoint image, and obtains the white light brightness curves of all viewpoints.
  • each viewpoint image corresponds to some sub-pixels on the display panel, and all viewpoint images correspond to all sub-pixels on the display panel.
  • all sub-pixels corresponding to the current viewpoint image display a white image, and all other sub-pixels display a black image.
  • the display panel is controlled to display images of each viewpoint respectively.
  • all sub-pixels corresponding to the viewpoint image display white images, and all sub-pixels corresponding to other viewpoint images display black images.
  • control the first group of sub-pixels 1 of the display panel when displaying the first viewpoint image, control the first group of sub-pixels 1 of the display panel to display a white image, and other sub-pixels to display a black image;
  • control the second group of sub-pixels 2 of the display panel when displaying the second viewpoint image, control the second group of sub-pixels 2 of the display panel to display a white image, and other sub-pixels to display a black image;
  • the third group of sub-pixels 3 of the display panel are controlled to display a white image, and other sub-pixels display a black image;
  • the fourth group of sub-pixels 4 of the display panel are controlled to display a white image, and other sub-pixels display a black image;
  • the 28th group of sub-pixels 28 of the display panel are controlled to display a white image, and the other sub-pixels display a black image.
  • optical testing equipment is used to measure the brightness values of light at different test angles ⁇ 1, ⁇ 2, .
  • the optical testing device may be a luminance meter, through which the luminance values of light at different test angles are obtained.
  • the interval step size can be set to test the brightness value of the light at multiple test angles, for example, the brightness value of the light is tested at an interval of 0.5 radians.
  • the luminance meter in order to improve the accuracy of evaluating the viewpoint density of naked-eye stereoscopic display, is moved in the same plane to measure the luminance values of light at different test angles on the same plane.
  • the luminance value of the light in different test angle directions obtained by the luminance meter on the same plane can improve the evaluation of the naked-eye stereoscopic display viewpoint. Density pros and cons of accuracy.
  • the brightness meter can be placed at a position where the light-emitting side of the display panel is a constant value from the ground, and the brightness meter can be moved on the same horizontal plane to test the brightness value of each viewpoint image at multiple test angles.
  • the luminance meter takes the center of the display panel as the center on the light-emitting side of the display panel, and takes the set distance for viewing the image as the radius and is located at the center of the display panel. At multiple test angles on an arc on the same horizontal plane, the luminance values of each viewpoint image at multiple test angles are tested.
  • the luminance meter measures the luminance value of light at positions equidistant from the center of the display screen in different test angle directions, which can improve the accuracy of evaluating the viewpoint density of naked-eye stereoscopic display.
  • the brightness value of light can be measured at the same angle. For example, as shown in Figure 5, taking the measurement position 0° corresponding to the center of the display panel as the reference, within the range of the stereoscopic viewing angle, move the luminance meter counterclockwise, and the radian angles are 5°, 10°, 15°, and 20° respectively. Measure the brightness value of the outgoing light at the corresponding position, and then take the measurement position corresponding to the center of the display panel as 0°, move the luminance meter clockwise, and the radian angles are -5°, -10°, -15°, respectively.
  • the brightness value can be measured at a smaller radian value interval, for example, the brightness value is measured in steps of 0.5 or 1 degree. Save the acquired luminance values at different test angles in the luminance meter.
  • the relative position between the brightness meter 20 and the display panel 10 is: the brightness meter 20 is located at the center (or also called the center) O of the display panel 10 as the center of the circle, so that the viewer watches the image
  • the optimal viewing distance R is the radius of the circular arc moving at different positions to measure the brightness of the light.
  • one luminance value may be tested sequentially at every 0.5° radian angle in the range of 30° to -30°, and 121 luminance values may be tested sequentially at 121 test angles for each viewpoint image.
  • the white light luminance distribution curves of the first viewpoint image at different test angles are generated , where Y1i is the brightness value of the light at the i-th test angle tested when the first viewpoint image is displayed;
  • the luminance value Y3i corresponding to the third viewpoint image obtained by the luminance meter and the test angles ⁇ 1, ⁇ 2, ⁇ 3, . is the brightness value of the light at the i-th test angle tested when the third viewpoint image is displayed;
  • a luminance distribution curve graph of the luminance value corresponding to each view point image with the test angle is obtained respectively;
  • the brightness distribution curves corresponding to the images are superimposed (that is, the brightness distribution curves corresponding to each viewpoint image are placed in the same rectangular coordinate system), and multiple brightness values corresponding to each viewpoint image are obtained from the superimposed brightness distribution curve.
  • Fig. 6 is an overlay diagram of the brightness distribution curve corresponding to each viewpoint image of the 28-viewpoint image display module
  • Fig. 7 is an overlay diagram of the brightness distribution curve corresponding to each viewpoint image of the 27-viewpoint image display module
  • Fig. 8 is a 16-viewpoint image display module An overlay of the brightness distribution curves corresponding to each viewpoint image in the group.
  • Each brightness peak corresponds to the best viewing angle on the light-emitting side of the display panel, that is, each brightness peak is the brightness value obtained at the best viewing angle (also called the viewing area) on the light-emitting side.
  • the optimal different viewing angles described in the present disclosure correspond one-to-one with different viewing areas on the light-emitting side of the display panel.
  • selecting a viewpoint as the reference viewpoint includes:
  • the best viewing angle (that is, the test angle corresponding to the brightness peak) is equal to 0°, or the viewpoint that is greater than 0° and closest to 0° is the reference viewpoint.
  • the test angle is defined as the included angle between the line connecting the test point to the center point of the screen and the vertical line drawn from the center point of the display screen.
  • the test point A is located on the display screen.
  • the vertical line drawn from the center point O that is, the test angle of test point A is 0°
  • the test angle ⁇ of test point B is the angle between line segment OB and line segment OA, that is, 10°.
  • Each viewpoint includes a main lobe view and a side lobe view.
  • the angle at which the light emitted by the light-emitting element strikes the corresponding microlens is the main lobe angle of view
  • the angle at which the light emitted by the light-emitting element strikes the microlens adjacent to the corresponding microlens is the side-lobe angle of view.
  • the 3D effect in the main lobe viewing angle area is the best. There may be a dark area between the main lobe viewing angle and the side lobe viewing angle.
  • the main reason for the side lobe viewing angle is that the light emitted by the light-emitting element is approximately 180°, the aperture of the microlens corresponding to the light-emitting element is limited, and the distance between the light-emitting element and the microlens is far, so the light emitted by the light-emitting element will hit the On the microlenses adjacent to their corresponding microlenses, a side lobe viewing angle is formed.
  • calculating the crosstalk value between other viewpoints except the reference viewpoint and the reference viewpoint includes:
  • the crosstalk value between the other viewpoints and the reference viewpoint is calculated according to the determined luminance values corresponding to the peaks of the reference viewpoint and the other viewpoints and the distances between the peaks of the other viewpoints and the peaks of the reference viewpoint.
  • the crosstalk value between the other viewpoints and the reference viewpoint is proportional to the luminance value corresponding to the other viewpoints at the peak of the reference viewpoint, and inversely proportional to the luminance value corresponding to the reference viewpoint at the peak of the reference viewpoint , and is inversely proportional to the distance between the peaks of other viewpoints and the peaks of the reference viewpoint.
  • the luminance value corresponding to the reference viewpoint at the peak of the reference viewpoint is Li
  • the luminance value corresponding to viewpoint j at the peak of the reference viewpoint is Lj
  • both i and j are at Between 1 and N, and i ⁇ j
  • N is the number of viewpoints of the display panel
  • the distance between the peak of viewpoint j and the peak of the reference viewpoint is Dij;
  • the crosstalk value between viewpoint j and the reference viewpoint is: Lj/(Li*Dij).
  • the embodiment of the present disclosure provides a method for calculating the crosstalk value between the viewpoint j and the reference viewpoint.
  • the calculation method is only used as an example, and the embodiment of the present disclosure does not limit how to calculate the crosstalk value between the viewpoint j and the reference viewpoint. .
  • viewpoint 16 is selected as the reference viewpoint, and the angle on the right side of viewpoint 16 to viewpoint 16 is calculated first.
  • Crosstalk since the main lobe viewing angle of viewpoint 17, viewpoint 18, viewpoint 19, viewpoint 20, viewpoint 21 and viewpoint 22 overlap with the main lobe viewpoint of viewpoint 16, therefore, viewpoint 17, viewpoint 18, viewpoint 19, viewpoint 20, View 21 and View 22 both have crosstalk to View 16.
  • the luminance value at the peak of viewpoint 16 is recorded as L16
  • the luminance values of viewpoint 17, viewpoint 18, viewpoint 19, viewpoint 20, viewpoint 21 and viewpoint 22 at the peak of viewpoint 16 are recorded as L17, L18, L19, L20, L21 and L22
  • the distances D1, D2 between the peaks of Viewpoint 17, Viewpoint 18, Viewpoint 19, Viewpoint 20, Viewpoint 21 and Viewpoint 22 and the peak of Viewpoint 16 at the optimum viewing distance position D3, D4, D5, D6,
  • the first-level crosstalk is L17/(L16*D1)
  • the second-level crosstalk is L18/(L16*D2)
  • the third-level crosstalk is L19/(L16*D3)
  • the fourth-level crosstalk is L20/(L16*D4)
  • the fifth-level crosstalk is L21/(L16*D5)
  • the sixth-level crosstalk is L22/(L16*D6)
  • the crosstalk between the viewpoints separated by three viewpoints to the reference viewpoint is the crosstalk between the viewpoints separated from the reference viewpoint and the reference viewpoint by the viewpoints separated by four viewpoints
  • the sixth-level crosstalk is the viewpoints separated from the reference viewpoint by five viewpoints.
  • each level of crosstalk from the viewpoint to the left of the viewpoint 16 to the viewpoint 16 is calculated.
  • an image display module designed with 27 viewpoints can also be calculated according to this method to obtain each level of crosstalk between the viewpoints on the left and right sides of the reference viewpoint to the reference viewpoint.
  • Step 30 Evaluate the naked-eye stereoscopic display viewpoint density according to the compared image spot radius of each viewpoint, the image point interval between the viewpoint and adjacent viewpoints, and the calculated crosstalk values between other viewpoints and the reference viewpoint.
  • the distance between adjacent viewpoints is very small, wherein the distance between adjacent viewpoints of 28 viewpoints is 0.3°, the distance between adjacent viewpoints of 27 viewpoints is 0.304°, and the distance between adjacent viewpoints of 16 viewpoints is 0.304°.
  • the distance between viewpoints is 0.4625°. The smaller the distance between viewpoints, the smoother the viewing, and the closer to the situation of countless viewpoints in the real world, but the adjacent image spots must be clearly distinguishable.
  • the conditions for clear images are: r ⁇ d (image spot radius ⁇ image point interval);
  • the design of 28 viewpoints and 27 viewpoints with minimum viewpoint intervals of 0.3° and 0.304° satisfies the condition of clear imaging and is the optimal design.
  • the crosstalk values of each level of 28 viewpoints and 27 viewpoints are calculated respectively. After comparison, the crosstalk values of the six levels of 28 viewpoints are all smaller than those of 27 viewpoints. Therefore, the 28 viewpoints are better than the 27 viewpoints.
  • the simulation is performed by optical software (light tools), as shown in FIG. 9 to FIG. 14 , the simulation results of the six-level crosstalk of 28 viewpoints and 27 viewpoints are consistent with the calculation results of the method for evaluating viewpoint density according to the embodiment of the present disclosure.
  • 16-view_S1 and 16-view_S2 in 11 represent two different 16-view designs.
  • the method further includes:
  • the crosstalk weight value of the first-level crosstalk is a1
  • the crosstalk weight value of the second-level crosstalk is a2
  • the crosstalk of the third-level crosstalk is a2.
  • the total crosstalk value on the right side first-level crosstalk*a1+second-level crosstalk*a2+third-level crosstalk*a3+four-level crosstalk*a4+fifth-level crosstalk*a5+six-level crosstalk*a6;
  • b1 is the crosstalk weight value of the total crosstalk value on the right side
  • b2 is the crosstalk weight value of the total crosstalk value on the left side
  • b1+b2 1.
  • b1 0.5
  • b2 0.5.
  • the evaluation Naked eye stereoscopic display viewpoint density including:
  • the evaluation Naked eye stereoscopic display viewpoint density including:
  • the naked eye stereo is evaluated.
  • the display viewpoint density is excellent;
  • the preset crosstalk threshold may be set in a one-to-one correspondence with each level of crosstalk described above.
  • Embodiments of the present disclosure also provide a processing device, which may include a processor and a memory storing a computer program that can be executed on the processor.
  • a processing device which may include a processor and a memory storing a computer program that can be executed on the processor.
  • the processor executes the computer program, the processor implements the method described in the present disclosure. The steps of the method for evaluating viewpoint density described in any preceding item.
  • the processing device 1500 may include: a processor 1510, a memory 1520, a bus system 1530, and a transceiver 1540, wherein the processor 1510, the memory 1520, and the transceiver 1540 pass through the bus
  • the system 1530 is connected, the memory 1520 is used for storing instructions, and the processor 1510 is used for executing the instructions stored in the memory 1520 to control the transceiver 1540 to transmit signals.
  • the transceiver 1540 may obtain the brightness values of the collected light corresponding to different test angles from the optical test equipment (such as a luminance meter) under the control of the processor 1510, and compare the image spot radius of each viewpoint with the After the size of the pixel interval between the viewpoint and the adjacent viewpoint and the crosstalk value between other viewpoints and the reference viewpoint are calculated, a notification is sent to other devices through the transceiver.
  • the optical test equipment such as a luminance meter
  • the processor 1510 may be a central processing unit (Central Processing Unit, CPU), and the processor 1510 may also be other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • Memory 1520 may include read-only memory and random access memory, and provides instructions and data to processor 1510 .
  • a portion of memory 1520 may also include non-volatile random access memory.
  • the memory 1520 may also store device type information.
  • bus system 1530 may also include a power bus, a control bus, a status signal bus, and the like.
  • bus system 1530 may also include a power bus, a control bus, a status signal bus, and the like.
  • the various buses are labeled as bus system 1530 in FIG. 15 .
  • the processing performed by the processing device may be accomplished by hardware integrated logic circuits in the processor 1510 or instructions in the form of software. That is, the method steps in the embodiments of the present disclosure may be embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media.
  • the storage medium is located in the memory 1520, and the processor 1510 reads the information in the memory 1520, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • Embodiments of the present disclosure also provide a system for evaluating viewpoint density, including a display module, an optical testing device, and a processing device.
  • the processing device may be the processing device 1500 as previously described.
  • the display module includes a display panel and a grating array arranged on the light-emitting side of the display panel for displaying images of each viewpoint in sequence; an optical testing device for measuring the brightness value of the light on the light-emitting side of the display panel.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where executable instructions are stored in the computer-readable storage medium, and when the executable instructions are executed by a processor, the evaluation viewpoint density provided by any of the foregoing embodiments of the present disclosure can be implemented
  • the method for evaluating the viewpoint density can be used to select an appropriate number of viewpoints when designing a naked-eye 3D display device, or to evaluate the pros and cons of the number of viewpoints of the current naked-eye 3D display device, so as to realize the improvement of the naked-eye 3D display device.
  • the optimal number of viewpoints is designed to improve the naked-eye 3D display effect.
  • the method for evaluating the viewpoint density by driving the system for evaluating the viewpoint density by executing the executable instruction is basically the same as the method for evaluating the viewpoint density provided by the above embodiments of the present disclosure, and details are not described herein.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or It can be connected integrally; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or It can be connected integrally; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Computer Hardware Design (AREA)
  • Medical Informatics (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种评价视点密度的方法、系统、处理设备和计算机存储介质,所述方法包括:获取显示面板的视点数目;比较每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小,并选择一个视点为基准视点,计算除所述基准视点以外的其他视点与所述基准视点之间的串扰值;根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与所述基准视点之间的串扰值,评价裸眼立体显示视点密度。

Description

评价视点密度的方法、系统、处理设备和计算机存储介质 技术领域
本公开实施例涉及但不限于智能显示技术领域,尤其涉及一种评价视点密度的方法、系统、处理设备和计算机存储介质。
背景技术
裸眼3D显示装置为无需佩戴辅助工具即可看到3D显示画面的显示装置。裸眼3D显示装置的显示原理为:在显示装置的显示面板前放置透镜柱面或视差光栅,使得左眼看到的显示画面与右眼看到的显示画面不同,从而使显示画面产生3D的视觉效果。
目前,裸眼3D显示通常都采用超多视点(super multi view)技术,但是,如何选择合适的视点数目,或者,如何评价当前显示屏的视点数目的优劣,成为裸眼3D技术以及3D显示装置制作领域有待于解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种评价视点密度的方法,包括:获取显示面板的视点数目;比较每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小,并选择一个视点为基准视点,计算除所述基准视点以外的其他视点与所述基准视点之间的串扰值;根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与所述基准视点之间的串扰值,评价裸眼立体显示视点密度。
在示例性实施例中,所述显示面板的出光侧包括多个沿设定方向排列的光栅阵列;
根据如下公式,计算每个视点的像斑半径:
像斑半径=(瞳孔直径/(视点数*2*人眼到光栅阵列的距离)+1.22*波长/光栅阵列中每个光栅单元的长度)*像距;
根据如下公式,计算所述视点和相邻视点的像点间隔:
光栅阵列中每个光栅单元的长度*人眼到像点的距离/人眼到光栅阵列的距离。
在示例性实施例中,在所述选择一个视点为基准视点之前,所述方法还包括:控制显示面板依次显示每个视点的图像,在显示每一个视点图像时,用于显示当前视点图像的所有亚像素显示白色图像,用于显示其它视点图像的所有亚像素显示黑色图像,在所述显示面板的出光侧依次获取显示当前视点图像时对应的每个测试角度处光线的亮度值,得到所有视点的白光亮度曲线。
在示例性实施例中,所述选择一个视点为基准视点,包括:
在所述所有视点的白光亮度曲线中,选择在主瓣视角内,最佳观看角度等于0°或者,大于0°且最接近0°的视点为基准视点。
在示例性实施例中,所述计算除所述基准视点以外的其他视点与所述基准视点之间的串扰值,包括:
在所述所有视点的白光亮度曲线的主瓣视角内,确定所述基准视点与所述其他视点在所述基准视点的波峰处对应的亮度值,并确定所述其他视点的波峰与所述基准视点的波峰之间的距离;
根据确定的所述基准视点与所述其他视点在所述基准视点的波峰处对应的亮度值以及所述其他视点的波峰与所述基准视点的波峰之间的距离,计算所述其他视点与所述基准视点之间的串扰值。
在示例性实施例中,所述其他视点与所述基准视点之间的串扰值与所述其他视点在所述基准视点的波峰处对应的亮度值成正比,与所述基准视点在所述基准视点的波峰处对应的亮度值成反比,并与所述其他视点的波峰与所述基准视点的波峰之间的距离成反比。
在示例性实施例中,在所述所有视点的白光亮度曲线的主瓣视角内,所述基准视点在所述基准视点的波峰处对应的亮度值为Li,视点j在所述基准视点的波峰处对应的亮度值为Lj,i和j均在1至N之间,且i≠j,N为所述显示面板的视点数目,视点j的波峰与所述基准视点的波峰之间的距离为Dij;
视点j与所述基准视点之间的串扰值为:Lj/(Li*Dij)。
在示例性实施例中,所述其他视点包括位于所述基准视点左侧的视点,以及位于所述基准视点右侧的视点。
在示例性实施例中,所述方法还包括:
获取除所述基准视点以外的其他视点的串扰权重值;
根据其他视点与基准视点之间的串扰值以及所述串扰权重值,计算总串扰值。
在示例性实施例中,所述根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与所述基准视点之间的串扰值,评价裸眼立体显示视点密度,包括:
当每个视点的像斑半径均小于或等于所述视点和相邻视点的像点间隔,且计算出的总串扰值小于预设的总串扰阈值时,评价裸眼立体显示视点密度优良;
当每个视点的像斑半径中有一个或多个视点的像斑半径大于所述视点和相邻视点的像点间隔,或者计算出的总串扰值大于预设的总串扰阈值时,评价裸眼立体显示视点密度不良。
在示例性实施例中,所述根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与所述基准视点之间的串扰值,评价裸眼立体显示视点密度,包括:
当每个视点的像斑半径均小于或等于所述视点和相邻视点的像点间隔,且计算出的其他视点与基准视点之间的串扰值均小于预设的串扰阈值时,评价裸眼立体显示视点密度优良;
当每个视点的像斑半径中有一个或多个视点的像斑半径大于所述视点和 相邻视点的像点间隔,或者计算出的其他视点与基准视点之间的串扰值中有一个或多个大于预设的串扰阈值时,评价裸眼立体显示视点密度不良。
本公开实施例还提供了一种处理设备,包括:处理器以及存储有可在处理器上运行的计算机程序的存储器,其中,所述处理器执行所述程序时实现如前所述的评价视点密度的方法的步骤。
本公开实施例还提供了一种评价视点密度的系统,包括:显示模组、光学测试设备以及如前所述的处理设备,其中:所述显示模组包括显示面板和设置在所述显示面板出光侧的光栅阵列;所述光学测试设备,用于测量所述显示面板出光侧的光线的亮度值。
本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时可以实现如上述任一项所述的评价视点密度的方法的步骤。
在阅读并理解了附图和详细描述后,可以明白其他方面
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为裸眼3D显示装置的显示原理示意图的流程示意图;
图2为本公开实施例一种评价视点密度的方法的流程示意图;
图3为本公开实施例提供的显示面板上的亚像素排列示意图;
图4为显示第一视点图像时对应的第一组亚像素排列示意图;
图5为测量亮度值时亮度计与显示面板之间的相对位置示意图;
图6为28视点图像显示模组每个视点图像对应的亮度分布曲线叠加图;
图7为27视点图像显示模组每个视点图像对应的亮度分布曲线叠加图;
图8为16视点图像显示模组每个视点图像对应的亮度分布曲线叠加图;
图9为28视点和27视点图像显示模组的一级串扰模拟结果示意图;
图10为28视点和27视点图像显示模组的二级串扰模拟结果示意图;
图11为28视点和27视点图像显示模组的三级串扰模拟结果示意图;
图12为28视点和27视点图像显示模组的四级串扰模拟结果示意图;
图13为28视点和27视点图像显示模组的五级串扰模拟结果示意图;
图14为28视点和27视点图像显示模组的六级串扰模拟结果示意图;
图15为本公开实施例一种处理设备的结构示意图。
具体实施方式
下面结合附图和实施例对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
目前,裸眼3D显示通常都采用超多视点技术,即,设置多个视点以使用户在多个位置均可看到3D显示画面。如图1所示,显示面板10设置了视点1、视点2、视点3、视点4和视点5共五个视点,此时,位于显示面板10前的光栅11,可使位于某一位置处的用户的双眼看到五个视点中相邻的两个视点对应的显示画面,例如,用户的左眼可看到视点3对应的显示画面,用户的右眼可看到视点2对应的显示画面,此时,用户可看到3D显示画面。
随着屏幕分辨率的提升,3D显示的视点数不断增多,视点数越多,视点越密,观看就越平滑,反之会有跳变。但是,视点数太多时,相邻视点图像的像点模糊不清,且视点数越多,引入的串扰越多。因此,如何选择合适的视点数目,或者,如何评价当前3D显示装置的视点数目的优劣,成为裸眼3D技术以及裸眼3D显示装置制作领域有待于解决的问题。
本公开实施例提供了一种评价视点密度的方法、系统、处理设备和计算机存储介质,通过根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与所述基准视点之间的串扰值,评价裸眼立体显示视点密度,可以实现在设计裸眼3D显示装置时,选择合适的视点数目,或者,可以用于评价当前裸眼3D显示装置的视点数目的优劣,从而实现裸眼3D显示装置的最优视点数设计,提高裸眼3D显示效果。
如图2所示,本公开实施例提供了一种评价视点密度的方法,包括步骤10至步骤30。
步骤10:获取显示面板的视点数目;
在示例性实施例中,显示面板包括多个呈矩阵分布的亚像素,以65英寸8K高清显示分辨率的裸眼3D显示屏为例,分别设计28视点图像显示模组、27视点图像显示模组和16视点图像显示模组,并通过本公开实施例的评价视点密度的方法进行视点密度评估。
以28视点图像显示模组为例,如图3所示,显示面板包括对应分别用于显示28个视点图像的28组亚像素,第一组亚像素1、第二组亚像素2、第三组亚像素3,……,到第28组亚像素28。本实施例中,亚像素的排列方式不限于为图3所示的排列方式。
步骤20:比较每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小,并选择一个视点为基准视点,计算除基准视点以外的其他视点与基准视点之间的串扰值;
在一种示例性实施例中,在比较每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小时,从视点1至视点N,对每个视点的像斑半径与该视点和相邻视点的像点间隔的大小逐一进行比较,示例性的,对视点1,比较视点1的像斑半径与视点1和视点2的像点间隔的大小;对视点2,比较视点2的像斑半径与视点1和视点2的像点间隔的大小,并比较视点2的像斑半径与视点2和视点3的像点间隔的大小;对视点3,比较视点3的像斑半径与视点2和视点3的像点间隔的大小,并比较视点3的像斑半径与视点3和视点4的像点间隔的大小;……;对视点(N-1),比较视点(N-1)的像斑半径与视点(N-2)和视点(N-1)的像点间隔的大小,并比较视点(N-1)的像斑半径与视点(N-1)和视点N的像点间隔的大小;对视点N,比较视点N的像斑半径与视点(N-1)和视点N的像点间隔的大小,其中,N为视点个数。
在一种示例性实施例中,显示面板的出光侧包括多个沿设定方向排列的光栅阵列;
根据如下公式,计算每个视点的像斑半径:
像斑半径=(瞳孔直径/(视点数*2*人眼到光栅阵列的距离)+1.22*波长/光栅阵列中每个光栅单元的长度)*像距;
根据如下公式,计算所述视点和相邻视点的像点间隔:
光栅阵列中每个光栅单元的长度*人眼到像点的距离/人眼到光栅阵列的距离。
在一种示例性实施例中,光栅阵列可以为柱透镜光栅阵列或视差障光栅阵列等光栅结构。
当一个视点的像斑半径小于或等于该视点和相邻视点的像点间隔时,该视点的像斑是清晰的,反之,当一个视点的像斑半径大于该视点和相邻视点的像点间隔时,该视点的像斑是不清晰的。
当每个视点的像斑半径均小于或等于所述视点和相邻视点的像点间隔时,所有视点的像斑是清晰的;当每个视点的像斑半径中有一个或多个大于所述视点和相邻视点的像点间隔时,则存在一个或多个视点的像斑是不清晰的。
由于视差的原因,人眼看到的像点可以呈现在屏幕的前面,也可以呈现在屏幕的后面。因此,人眼到像点的距离可以小于或等于人眼到屏幕的距离,也可以大于人眼到屏幕的距离。
在一种示例性实施例中,在输出3D视图的同时通过处理器或者控制系统直接获得人眼看到的像点的位置数据。
在一种示例性实施例中,在选择一个视点为基准视点之前,该方法还包括:
控制显示面板依次显示每个视点的图像,在显示每一个视点图像时,用于显示当前视点图像的所有亚像素显示白色图像,用于显示其它视点图像的所有亚像素显示黑色图像,在所述显示面板的出光侧依次获取显示当前视点图像时对应的每个测试角度处光线的亮度值,得到所有视点的白光亮度曲线。
在一种示例性实施例中,每一个视点图像与显示面板上的部分亚像素对应,所有视点图像与显示面板上的所有亚像素对应。当控制显示面板显示某 一个视点图像时,与当前视点图像对应的所有亚像素显示白色图像,其他所有亚像素显示黑色图像。
控制显示面板分别显示每个视点的图像,当显示某一视点图像时,该视点图像对应的所有亚像素显示白色图像,其他视点图像对应的所有亚像素显示黑色图像。例如:参见图4,当显示第一视点图像时,控制显示面板的第一组亚像素1显示白色图像,其他亚像素显示黑色图像;
同理,当显示第二视点图像时,控制显示面板的第二组亚像素2显示白色图像,其他亚像素显示黑色图像;
当显示第三视点图像时,控制显示面板的第三组亚像素3显示白色图像,其他亚像素显示黑色图像;
当显示第四视点图像时,控制显示面板的第四组亚像素4显示白色图像,其他亚像素显示黑色图像;
……
当显示第28视点图像时,控制显示面板的第28组亚像素28显示白色图像,其他亚像素显示黑色图像。
在实际实施过程中,针对每个视点图像,采用光学测试设备在显示面板的出光侧依次测量不同测试角度α1,α2,…,αm处光线的亮度值。示例性的,光学测试设备可以为亮度计,通过亮度计获取不同测试角度处光线的亮度值。可以设定间隔步长来测试多个测试角度处光线的亮度值,例如每间隔0.5弧度角测试一次光线的亮度值。
在一种示例性实施例中,为了提高评价裸眼立体显示视点密度优劣的准确性,所述亮度计在同一平面内移动,以测量位于同一平面上不同测试角度处光线的亮度值。
在一种示例性实施例中,由于人的左右眼位于同一水平线上,相对于固定不动的显示面板,亮度计位于同一平面获取不同测试角度方向的光线的亮度值可以提高评估裸眼立体显示视点密度优劣的准确性。在实际实施过程中,可以将亮度计置于显示面板出光侧距地面为一恒定值的位置,亮度计可以在 同一水平面上移动,测试每一视点图像在多个测试角度处的亮度值。
在一种示例性实施例中,为了进一步提高评价裸眼立体显示视点密度优劣的准确性,亮度计在显示面板出光侧以显示面板的中心为圆心,以观看图像的设定距离为半径且位于同一水平面上的圆弧上的多个测试角度处,测试每一视点图像在多个测试角度处的亮度值。
理论上,由于光线在传播的过程中会有一定损耗,在同一测试角度方向上的不同位置光线的亮度值会有一定的偏差。距离光源越远的位置光线的亮度值越小,距离光线越近的位置光线的亮度值越大。本公开中,亮度计在不同测试角度方向距离显示屏中心等距的位置测量光线的亮度值,可以提高评价裸眼立体显示视点密度优劣的准确性。
在所述圆弧的不同位置对应不同测试角度,为了进一步提高评价裸眼立体显示视点密度优劣的准确性,可以间隔相同的角度测量光线的亮度值。例如,如图5所示,以显示面板的中央对应的测量位置0°为基准,在立体视角范围内,逆时针移动亮度计,在弧度角分别为5°,10°,15°,20°等对应的位置测量出射光线的亮度值,然后以显示面板的中央对应的测量位置为0°为基准,顺时针移动亮度计,在弧度角分别为-5°,-10°,-15°,-20°等对应的位置测量出射光线的亮度值。所述每间隔5°测量一次亮度值仅是一种示意,在实际实施过程中,可以间隔更小的弧度值测量一次亮度值,例如以0.5或1度为步长进行亮度值的测量。将获取的不同测试角度的亮度值保存在亮度计中。
如图5所示,测量亮度值时,亮度计20与显示面板10之间的相对位置为:亮度计20位于以显示面板10的中心(或者也称中央)O为圆心,以观看者观看图像的最佳观看距离R为半径的圆弧上不同位置移动测量光线的亮度。例如,可以依次在30°至-30°的范围内每间隔0.5°弧度角测试一个亮度值,针对每一视点图像依次在121个测试角度测试121个亮度值。
根据上述步骤中获取的亮度值Yji(j=1,2,3,……,28;i=1,2,3,……,121)以及每个亮度值Yji与测试角度的对应关系,生成亮度随测试角度变化的白光亮度分布曲线。
示例性的,根据亮度计获取的第一视点图像对应的亮度值Y1i和测试角 度α1,α2,α3,……,α121的对应关系,生成第一视点图像在不同测试角度处的白光亮度分布曲线,其中,Y1i为显示第一视点图像时测试的第i个测试角度处光线的亮度值;
根据亮度计获取的第二视点图像对应的亮度值Y2i和测试角度α1,α2,α3,…α121的对应关系,生成第二视点图像在不同测试角度处的白光亮度分布曲线,其中,Y2i为显示第二视点图像时测试的第i个测试角度处光线的亮度值;
根据亮度计获取的第三视点图像对应的亮度值Y3i和测试角度α1,α2,α3,……,α121的对应关系,生成第三视点图像在不同测试角度处的白光亮度分布曲线,其中,Y3i为显示第三视点图像时测试的第i个测试角度处光线的亮度值;
……
根据亮度计获取的第28视点图像对应的亮度Y28i和测试角度α1,α2,α3,……,α121的对应关系,生成第28视点图像在不同测试角度处的白光亮度分布曲线,其中,Y28i为显示第28视点图像时测试的第i个测试角度处光线的亮度值。
在一种示例性实施例中,为了更便捷地获取每个视区对应的亮度值中的亮度峰值,分别获取每一视点图像对应的亮度值随测试角度的亮度分布曲线图;将每个视点图像对应的亮度分布曲线图叠加(即每个视点图像对应的亮度分布曲线图置于同一直角坐标系),在叠加后的亮度分布曲线中获取每个视点图像对应的多个亮度值,该亮度值中存在多个亮度峰值,每一亮度峰值对应显示面板出光侧处的一个视区。
图6为28视点图像显示模组每个视点图像对应的亮度分布曲线叠加图,图7为27视点图像显示模组每个视点图像对应的亮度分布曲线叠加图,图8为16视点图像显示模组每个视点图像对应的亮度分布曲线叠加图。每一亮度峰值对应显示面板出光侧的最佳观看角度,即每一亮度峰值为在出光侧最佳观看角度处(也称视区处)获得的亮度值。本公开所述最佳不同观看角度与显示面板出光侧的不同视区一一对应。
在一种示例性实施例中,选择一个视点为基准视点,包括:
在所有视点的白光亮度曲线中,选择在主瓣视角内,最佳观看角度(即,亮度峰值对应的测试角度)等于0°或者,大于0°且最接近0°的视点为基准视点,本公开实施例中,测试角度定义为测试点至屏幕中心点的连线,与显示屏幕中心点引出的垂线之间的夹角,示例性的,如图5所示,测试点A位于显示屏幕中心点O引出的垂线上,即测试点A的测试角度为0°,测试点B的测试角度θ为线段OB与线段OA之间的夹角,即10°。
每个视点都包括主瓣视角和旁瓣视角。发光元件发出的光射到与其对应的微透镜上后出射的角度为主瓣视角,发光元件发出的光射到与其对应的微透镜相邻的微透镜上后出射的角度为旁瓣视角。其中,在主瓣视角区域的3D效果最佳。主瓣视角和旁瓣视角之间可以存在暗区。
造成旁瓣视角的原因主要是由于发光元件发出的光近似180°,而与发光元件对应的微透镜的口径有限,且发光元件与微透镜的距离较远,因而发光元件发出的光会射到与其对应的微透镜相邻的微透镜上,从而形成了旁瓣视角。
在一种示例性实施例中,计算除基准视点以外的其他视点与基准视点之间的串扰值,包括:
在所有视点的白光亮度曲线的主瓣视角内,确定基准视点与其他视点在基准视点的波峰处对应的亮度值,并确定其他视点的波峰与基准视点的波峰之间的距离;
根据确定的基准视点与其他视点在基准视点的波峰处对应的亮度值以及其他视点的波峰与基准视点的波峰之间的距离,计算其他视点与基准视点之间的串扰值。
在一种示例性实施例中,其他视点与基准视点之间的串扰值与其他视点在基准视点的波峰处对应的亮度值成正比,与基准视点在基准视点的波峰处对应的亮度值成反比,并与其他视点的波峰与基准视点的波峰之间的距离成反比。
在一种示例性实施例中,在主瓣视角内,基准视点在基准视点的波峰处 对应的亮度值为Li,视点j在基准视点的波峰处对应的亮度值为Lj,i和j均在1至N之间,且i≠j,N为显示面板的视点数目,视点j的波峰与基准视点的波峰之间的距离为Dij;
视点j与基准视点之间的串扰值为:Lj/(Li*Dij)。
本公开实施例给出了一种视点j与基准视点之间的串扰值的计算方法,该计算方法只是作为一个示例,本公开实施例对视点j与基准视点之间的串扰值如何计算不作限制。
以28视点为例,如图6所示,视点16的波峰对应的测试角度大于0°且最接近0°,因此,选择视点16为基准视点,先计算视点16右侧的视点对视点16的串扰,由于视点17、视点18、视点19、视点20、视点21和视点22的主瓣视角与视点16的主瓣视角有交叠区域,因此,视点17、视点18、视点19、视点20、视点21和视点22都对视点16有串扰。
在主瓣视角内,记录视点16的波峰处的亮度值为L16,并记录视点17、视点18、视点19、视点20、视点21和视点22在视点16的波峰处的亮度值分别为L17、L18、L19、L20、L21和L22,以及在最佳观看距离位置处,视点17、视点18、视点19、视点20、视点21和视点22的波峰与视点16的波峰之间的距离D1、D2、D3、D4、D5、D6,得到一级串扰为L17/(L16*D1),二级串扰为L18/(L16*D2),三级串扰为L19/(L16*D3),四级串扰为L20/(L16*D4),五级串扰为L21/(L16*D5),六级串扰为L22/(L16*D6),其中,一级串扰为与基准视点直接相邻的视点对基准视点的串扰,二级串扰为与基准视点之间间隔一个视点的视点对基准视点的串扰,三级串扰为与基准视点之间间隔两个视点的视点对基准视点的串扰,四级串扰为与基准视点之间间隔三个视点的视点对基准视点的串扰,五级串扰为与基准视点之间间隔四个视点的视点对基准视点的串扰,六级串扰为与基准视点之间间隔五个视点的视点对基准视点的串扰。
同理,计算出视点16左侧的视点对视点16的每级串扰。
同理,27视点设计的图像显示模组也可以按照该方法进行计算,得到基准视点左侧和右侧的视点对基准视点的每级串扰。
步骤30:根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与基准视点之间的串扰值,评价裸眼立体显示视点密度。
如图6至图8所示,主瓣视角内,相邻视点间距很小,其中,28视点的相邻视点间距为0.3°,27视点的相邻视点间距为0.304°,16视点的相邻视点间距为0.4625°,视点间距越小,观看越平滑,越接近真实世界无数个视点的情况,但是相邻像斑必须清晰可以分辨,成清晰像的条件为:r≤d(像斑半径≤像点间隔);
给出公式如下:
(瞳孔直径/(视点数*2*人眼到光栅阵列的距离)+1.22*波长/光栅阵列中每个光栅单元的长度)*像距≤光栅阵列中每个光栅单元的长度*人眼到像点的距离/人眼到光栅阵列的距离。
由公式得出,最小视点间隔为0.3°和0.304°的28视点和27视点设计满足成像清晰的条件,为优选设计。
分别计算28视点和27视点的每级串扰值,经过比较,28视点的六个级次的串扰值均小于27视点,因此,28视点优于27视点效果。
通过光学软件(light tools)进行模拟,如图9至图14所示,28视点与27视点六级串扰的模拟结果与本公开实施例的评价视点密度的方法的计算结果相符合,其中,图11中的16视点_S1和16视点_S2表示两种不同的16视点设计。
在一种示例性实施例中,所述方法还包括:
获取除基准视点以外的其他视点的串扰权重值;
根据其他视点与基准视点之间的串扰值以及串扰权重值,计算总串扰值。
示例性的,仍以上述28视点中视点16右侧的视点对视点16的串扰为例,假设一级串扰的串扰权重值为a1,二级串扰的串扰权重值为a2,三级串扰的串扰权重值为a3,四级串扰的串扰权重值为a4,五级串扰的串扰权重值为a5,六级串扰的串扰权重值为a6,其中,a6≥a5≥a4≥a3≥a2≥a1,且a1+a2+ a3+a4+a5+a6=1,则:
右侧总串扰值=一级串扰*a1+二级串扰*a2+三级串扰*a3+四级串扰*a4+五级串扰*a5+六级串扰*a6;
同理得到左侧总串扰值;
最好,计算得到总串扰值:总串扰值=b1*右侧总串扰值+b2*左侧总串扰值。其中,b1为右侧总串扰值的串扰权重值,b2为左侧总串扰值的串扰权重值,b1+b2=1。示例性的,b1=0.5,b2=0.5。
在一种示例性实施例中,根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与基准视点之间的串扰值,评价裸眼立体显示视点密度,包括:
当每个视点的像斑半径均小于或等于所述视点和相邻视点的像点间隔,且计算出的总串扰值小于预设的总串扰阈值时,评价裸眼立体显示视点密度优良;
当每个视点的像斑半径中有一个或多个视点的像斑半径大于所述视点和相邻视点的像点间隔,或者计算出的总串扰值大于预设的总串扰阈值时,评价裸眼立体显示视点密度不良。
在一种示例性实施例中,根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与基准视点之间的串扰值,评价裸眼立体显示视点密度,包括:
当每个视点的像斑半径均小于或等于所述视点和相邻视点的像点间隔,且计算出的其他视点与基准视点之间的串扰值均小于预设的串扰阈值时,评价裸眼立体显示视点密度优良;
当每个视点的像斑半径中有一个或多个大于所述视点和相邻视点的像点间隔,或者计算出的其他视点与基准视点之间的串扰值中有一个或多个大于预设的串扰阈值时,评价裸眼立体显示视点密度不良。
在一种示例性实施例中,预设的串扰阈值可以与上述每级串扰一一对应设置。
本公开实施例还提供了一种处理设备,所述处理设备可包括处理器以及存储有可在处理器上运行的计算机程序的存储器,所述处理器执行所述计算机程序时实现本公开中如前任一项所述的评价视点密度的方法的步骤。
如图15所示,在一个示例中,处理设备1500可包括:处理器1510、存储器1520、总线系统1530和收发器1540,其中,该处理器1510、该存储器1520和该收发器1540通过该总线系统1530相连,该存储器1520用于存储指令,该处理器1510用于执行该存储器1520存储的指令,以控制该收发器1540发送信号。示例性的,收发器1540可在处理器1510的控制下从光学测试设备(如亮度计)中获取采集的不同测试角度对应的光线的亮度值,并在比较出每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出其他视点与基准视点之间的串扰值后,通过收发器向其他设备发送通知。
应理解,处理器1510可以是中央处理单元(Central Processing Unit,CPU),处理器1510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器1520可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1520的一部分还可以包括非易失性随机存取存储器。例如,存储器1520还可以存储设备类型的信息。
总线系统1530除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图15中将各种总线都标为总线系统1530。
在实现过程中,处理设备所执行的处理可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。即本公开实施例的方法步骤可以体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等存储介质中。该存储介质位于存储器1520,处理器1510读取存储器1520中的信息,结合其硬件完成上述方法的步骤。 为避免重复,这里不再详细描述。
本公开实施例还提供了一种评价视点密度的系统,包括显示模组、光学测试设备和处理设备。所述处理设备可以是如前所述的处理设备1500。显示模组包括显示面板和设置在所述显示面板出光侧的光栅阵列,用于依次显示每个视点的图像;光学测试设备,用于测量显示面板出光侧的光线的亮度值。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有可执行指令,该可执行指令被处理器执行时可以实现本公开上述任一实施例提供的评价视点密度的方法,该评价视点密度的方法可以用于在设计裸眼3D显示装置时,选择合适的视点数目,或者,用于评价当前裸眼3D显示装置的视点数目的优劣,从而实现裸眼3D显示装置的最优视点数设计,提高裸眼3D显示效果。通过执行可执行指令驱动评价视点密度的系统进行视点密度评价的方法与本公开上述实施例提供的评价视点密度的方法基本相同,在此不做赘述。
在本公开实施例的描述中,需要理解的是,术语“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据理解上述术语在本公开中的含义。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一 个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (14)

  1. 一种评价视点密度的方法,包括:
    获取显示面板的视点数目;
    比较每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小,并选择一个视点为基准视点,计算除所述基准视点以外的其他视点与所述基准视点之间的串扰值;
    根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与所述基准视点之间的串扰值,评价裸眼立体显示视点密度。
  2. 根据权利要求1所述的方法,其中,所述显示面板的出光侧包括多个沿设定方向排列的光栅阵列;
    根据如下公式,计算每个视点的像斑半径:
    像斑半径=(瞳孔直径/(视点数*2*人眼到光栅阵列的距离)+1.22*波长/光栅阵列中每个光栅单元的长度)*像距;
    根据如下公式,计算所述视点和相邻视点的像点间隔:
    光栅阵列中每个光栅单元的长度*人眼到像点的距离/人眼到光栅阵列的距离。
  3. 根据权利要求1所述的方法,在所述选择一个视点为基准视点之前,所述方法还包括:
    控制显示面板依次显示每个视点的图像,在显示每一个视点图像时,用于显示当前视点图像的所有亚像素显示白色图像,用于显示其它视点图像的所有亚像素显示黑色图像,在所述显示面板的出光侧依次获取显示当前视点图像时对应的每个测试角度处光线的亮度值,得到所有视点的白光亮度曲线。
  4. 根据权利要求3所述的方法,其中,所述选择一个视点为基准视点,包括:
    在所述所有视点的白光亮度曲线中,选择在主瓣视角内,最佳观看角度等于0°或者,大于0°且最接近0°的视点为基准视点。
  5. 根据权利要求3所述的方法,其中,所述计算除所述基准视点以外的其他视点与所述基准视点之间的串扰值,包括:
    在所述所有视点的白光亮度曲线的主瓣视角内,确定所述基准视点与所述其他视点在所述基准视点的波峰处对应的亮度值,并确定所述其他视点的波峰与所述基准视点的波峰之间的距离;
    根据确定的所述基准视点与所述其他视点在所述基准视点的波峰处对应的亮度值以及所述其他视点的波峰与所述基准视点的波峰之间的距离,计算所述其他视点与所述基准视点之间的串扰值。
  6. 根据权利要求5所述的方法,其中,所述其他视点与所述基准视点之间的串扰值与所述其他视点在所述基准视点的波峰处对应的亮度值成正比,与所述基准视点在所述基准视点的波峰处对应的亮度值成反比,并与所述其他视点的波峰与所述基准视点的波峰之间的距离成反比。
  7. 根据权利要求6所述的方法,其中,在所述所有视点的白光亮度曲线的主瓣视角内,所述基准视点在所述基准视点的波峰处对应的亮度值为Li,视点j在所述基准视点的波峰处对应的亮度值为Lj,i和j均在1至N之间,且i≠j,N为所述显示面板的视点数目,视点j的波峰与所述基准视点的波峰之间的距离为Dij;
    视点j与所述基准视点之间的串扰值为:Lj/(Li*Dij)。
  8. 根据权利要求5所述的方法,其中,所述其他视点包括位于所述基准视点左侧的视点,以及位于所述基准视点右侧的视点。
  9. 根据权利要求1所述的方法,所述方法还包括:
    获取除所述基准视点以外的其他视点的串扰权重值;
    根据其他视点与基准视点之间的串扰值以及所述串扰权重值,计算总串扰值。
  10. 根据权利要求9所述的方法,其中,所述根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与所述基准视点之间的串扰值,评价裸眼立体显示视点密度,包括:
    当每个视点的像斑半径均小于或等于所述视点和相邻视点的像点间隔,且计算出的总串扰值小于预设的总串扰阈值时,评价裸眼立体显示视点密度优良;
    当每个视点的像斑半径中有一个或多个视点的像斑半径大于所述视点和相邻视点的像点间隔,或者计算出的总串扰值大于预设的总串扰阈值时,评价裸眼立体显示视点密度不良。
  11. 根据权利要求1所述的方法,其中,所述根据比较出的每个视点的像斑半径与所述视点和相邻视点的像点间隔的大小以及计算出的其他视点与所述基准视点之间的串扰值,评价裸眼立体显示视点密度,包括:
    当每个视点的像斑半径均小于或等于所述视点和相邻视点的像点间隔,且计算出的其他视点与基准视点之间的串扰值均小于预设的串扰阈值时,评价裸眼立体显示视点密度优良;
    当每个视点的像斑半径中有一个或多个视点的像斑半径大于所述视点和相邻视点的像点间隔,或者计算出的其他视点与基准视点之间的串扰值中有一个或多个大于预设的串扰阈值时,评价裸眼立体显示视点密度不良。
  12. 一种处理设备,包括:处理器以及存储有可在处理器上运行的计算机程序的存储器,其中,所述处理器执行所述计算机程序时实现如权利要求1至11中任一项所述的评价视点密度的方法的步骤。
  13. 一种评价视点密度的系统,包括:显示模组、光学测试设备以及如权利要求12所述的处理设备,其中:
    所述显示模组包括显示面板和设置在所述显示面板出光侧的光栅阵列;
    所述光学测试设备,用于测量所述显示面板出光侧的光线的亮度值。
  14. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1至11中任一项所述的评价 视点密度的方法的步骤。
PCT/CN2021/093426 2021-01-05 2021-05-12 评价视点密度的方法、系统、处理设备和计算机存储介质 WO2022147936A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21916986.9A EP4120679A4 (en) 2021-01-05 2021-05-12 POINT OF VIEW DENSITY EVALUATION METHOD AND SYSTEM, AND PROCESSING DEVICE AND COMPUTER RECORDING MEDIUM
US17/765,453 US11812011B2 (en) 2021-01-05 2021-05-12 Method and system for evaluating viewpoint density, processing device, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110006814.6 2021-01-05
CN202110006814.6A CN114727103A (zh) 2021-01-05 2021-01-05 评价视点密度的方法、系统、处理设备和计算机存储介质

Publications (1)

Publication Number Publication Date
WO2022147936A1 true WO2022147936A1 (zh) 2022-07-14

Family

ID=82234533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093426 WO2022147936A1 (zh) 2021-01-05 2021-05-12 评价视点密度的方法、系统、处理设备和计算机存储介质

Country Status (4)

Country Link
US (1) US11812011B2 (zh)
EP (1) EP4120679A4 (zh)
CN (1) CN114727103A (zh)
WO (1) WO2022147936A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248999A (ja) * 2006-03-17 2007-09-27 Epson Imaging Devices Corp 液晶装置及び電子機器
CN102497563A (zh) * 2011-12-02 2012-06-13 深圳超多维光电子有限公司 跟踪式裸眼立体显示控制方法、显示控制装置和显示系统
CN103698929A (zh) * 2012-09-27 2014-04-02 Nlt科技股份有限公司 液晶显示元件、图像显示装置、驱动图像显示装置的方法和便携式设备
CN105915894A (zh) * 2016-05-10 2016-08-31 康佳集团股份有限公司 一种裸眼立体电视的3d串扰值测量方法
CN106254851A (zh) * 2016-08-30 2016-12-21 南京巨鲨显示科技有限公司 一种降低多视点裸眼3d显示器串扰的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098286B1 (ko) * 2018-05-31 2020-04-07 한국과학기술연구원 무안경식 3차원 영상표시장치
CN114902125B (zh) * 2020-11-09 2024-01-09 京东方科技集团股份有限公司 显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248999A (ja) * 2006-03-17 2007-09-27 Epson Imaging Devices Corp 液晶装置及び電子機器
CN102497563A (zh) * 2011-12-02 2012-06-13 深圳超多维光电子有限公司 跟踪式裸眼立体显示控制方法、显示控制装置和显示系统
CN103698929A (zh) * 2012-09-27 2014-04-02 Nlt科技股份有限公司 液晶显示元件、图像显示装置、驱动图像显示装置的方法和便携式设备
CN105915894A (zh) * 2016-05-10 2016-08-31 康佳集团股份有限公司 一种裸眼立体电视的3d串扰值测量方法
CN106254851A (zh) * 2016-08-30 2016-12-21 南京巨鲨显示科技有限公司 一种降低多视点裸眼3d显示器串扰的方法

Also Published As

Publication number Publication date
US20230188700A1 (en) 2023-06-15
EP4120679A4 (en) 2023-10-04
US11812011B2 (en) 2023-11-07
CN114727103A (zh) 2022-07-08
EP4120679A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
US9961341B2 (en) Method and device for evaluating crosstalk in naked-eye stereoscopic display
EP3046325B1 (en) High density multi-view image display system and method with active sub-pixel rendering
US10237541B2 (en) Stereoscopic image display device, image processing device, and stereoscopic image processing method with reduced 3D moire
CN108008540B (zh) 一种三维显示系统
CN102884397B (zh) 结构光测量方法以及系统
KR101953112B1 (ko) 자동 입체 디스플레이 및 3d 이미지를 표시하는 방법
JP6677385B2 (ja) 立体表示装置及び視差画像補正方法
JP5924046B2 (ja) 表示装置および方法、情報処理装置および方法、並びにプログラム
JP4937424B1 (ja) 立体画像表示装置および方法
US20160219260A1 (en) Stereoscopic display device and parallax image correcting method
TW201333533A (zh) 用於模擬自動立體顯示裝置的顯示設備及方法
KR101570311B1 (ko) 입체 디스플레이 장치
CN104914586A (zh) 集成成像显示设备
CN101491108A (zh) 用于三维图像处理的装置、方法和计算机程序产品
CN105258673A (zh) 一种基于双目合成孔径聚焦图像的目标测距方法、装置
US20120019516A1 (en) Multi-view display system and method using color consistent selective sub-pixel rendering
TW201618546A (zh) 3d影像顯示裝置
US20160323570A1 (en) Three-dimensional image display device and driving method thereof
US20140192047A1 (en) Stereoscopic image display device, image processing device, and image processing method
WO2022147936A1 (zh) 评价视点密度的方法、系统、处理设备和计算机存储介质
US20160165217A1 (en) System and method for measuring viewing zone characteristics of autostereoscopic 3d image display
JP2010233158A (ja) プログラム、情報記憶媒体及び画像生成装置
KR101961014B1 (ko) 무안경방식 입체 디스플레이 시스템
KR101836180B1 (ko) 입체영상 표시장치의 광학 특성 평가 시스템 및 그 방법
CN115136227A (zh) 显示装置及其显示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021916986

Country of ref document: EP

Effective date: 20221013

NENP Non-entry into the national phase

Ref country code: DE