WO2022147858A1 - 一种轮毂电机 - Google Patents

一种轮毂电机 Download PDF

Info

Publication number
WO2022147858A1
WO2022147858A1 PCT/CN2021/073777 CN2021073777W WO2022147858A1 WO 2022147858 A1 WO2022147858 A1 WO 2022147858A1 CN 2021073777 W CN2021073777 W CN 2021073777W WO 2022147858 A1 WO2022147858 A1 WO 2022147858A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
layer
magnet
wheel motor
magnets
Prior art date
Application number
PCT/CN2021/073777
Other languages
English (en)
French (fr)
Inventor
丁晨阳
张阳
姜龙滨
Original Assignee
光华临港工程应用技术研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光华临港工程应用技术研发(上海)有限公司 filed Critical 光华临港工程应用技术研发(上海)有限公司
Publication of WO2022147858A1 publication Critical patent/WO2022147858A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to the technical field of in-wheel motors, in particular to an in-wheel motor.
  • the power of traditional electric vehicles is the motor, and its driving force drives the hub of the car through the transmission device to realize the movement of the car; while the in-wheel motor integrates the motor and the hub of the car, which has the following advantages:
  • the first is high efficiency.
  • the hub motor eliminates the mechanical transmission and avoids the loss of energy on the mechanical transmission.
  • the second is to save space.
  • the in-wheel motor itself is the power unit and acts directly on the wheel, so the power unit and mechanical transmission device are not needed in the front cabin and chassis of the car, saving a lot of space.
  • the third is ease of control.
  • the whole vehicle can adopt a distributed control architecture, which can realize differential steering or even steering in situ, and can also use electromagnetic braking.
  • the fourth is modularization.
  • Each in-wheel motor can be made into a module to achieve large-scale mass production, which can avoid repeated development and shorten the development cycle of new models, which in turn will help reduce the development cost of electric vehicles.
  • Hall sensor is a sensor made according to the Hall effect, which has the advantages of being sensitive to magnetic field, simple in structure, small in size, wide in frequency response, large in output voltage change and long in service life.
  • Hall sensor arrays have not been used to measure the position and rotational speed of the magnets of the in-wheel motor with six degrees of freedom.
  • the purpose of the present invention is to provide an in-wheel motor to solve the above-mentioned problems in the background art.
  • an in-wheel motor comprising a magnet layer, a measuring system and a coil layer, wherein the magnet layer is a motor mover, the coil layer is a motor stator, and the coil layer is a coil
  • the coils of the coil array are arranged in a fishbone shape, the magnet layers are uniformly arranged by alternating periods of N-pole magnets and S-pole magnets, and the measurement system is composed of an array of Hall sensor groups.
  • the magnets on the same column and/or course of the magnet layer in the oblique angle direction are magnets of the same nature and are uniformly arranged; the magnets are uniformly arranged between each column and or between each course. If the magnet layer is expanded into a plane, in the oblique angle direction, the geometric centers of the magnets of the same nature in the same column and/or the same course are on a straight line.
  • the length of one pair of sides of the coil is greater than or equal to the distance between two columns or two rows of adjacent magnets with different polarities in the oblique angle direction; The distance between two columns or two columns of adjacent magnets of the same polarity in the direction.
  • the distance between two columns or two columns of adjacent same-polarity magnets of the magnet layer in the oblique angle direction is defined as ⁇
  • the length and width of the outer contour of a single coil of the coil layer are respectively defined as and n, m are integers, and the ring width of the coil ring is
  • an H-pole magnet is further included between the N-pole magnet and the S-pole magnet in the magnet layer, and the magnet layer is arranged in a Halbach array.
  • the Hall sensor group in the measurement system is divided into four groups, and the four areas of the Hall sensor group are distributed along the circumferential direction, each group of Hall sensor groups includes at least two Hall sensors, and each area corresponds to a The Hall sensor groups are grouped, and the Hall sensors in each area are evenly distributed along the circumferential direction.
  • the Hall sensor groups in the measurement system are divided into four groups, and the magnet layer covers the four groups of the Hall sensors in the measurement system during the movement.
  • the Hall sensor group in the measurement system is used to measure the displacement of the corresponding position of the coil layer in the forward and reverse directions of the magnet layer.
  • the herringbone coil arrangement of the coil layer is used to offset the neutral force, thereby superimposing the driving force.
  • the energization mode of the coil layer is one of two-phase electricity and three-phase electricity.
  • the fishbone coils of the coil layer are arranged in a stepped fitting arrangement on both sides of the coils.
  • the fishbone coils of the coil layer are arranged so that two sides of the coils are arranged side by side and symmetrically.
  • the Hall sensor model in the measurement system is HW-101A.
  • the number of arranged layers of the coil layers is at least one layer.
  • the invention realizes that when the in-wheel motor is used, the single-layer coil of the coil layer is used as the stator, the magnet array in the magnet layer is used as the mover, and the Hall sensor array is used as the measurement system by setting the magnet layer, the measuring system and the coil layer.
  • the magnet array can form a periodically arranged magnetic field in the space, relying on the energized coil to receive the reaction force of the Lorentz force in the magnetic field to drive the magnet mover to move, and the coil is arranged into a fishbone shape, the structure is more compact, and the centering force can be They cancel each other out, and the driving forces can be superimposed on each other.
  • the invention realizes no cable on the mover, any large stroke of the moving table, and uses a low-cost measurement system (Hall sensor array) to realize the positive and negative displacement measurement of the mover.
  • FIG. 1 is a schematic diagram of the overall three-dimensional structure of the present invention.
  • Fig. 2 is the overall front view structure schematic diagram of the present invention
  • Fig. 3 is the overall plan development schematic diagram of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a single coil in the coil layer of the present invention.
  • Embodiment 1 Please refer to Figures 1-4, the present invention provides a technical solution: an in-wheel motor, an in-wheel motor, including: a magnet layer 101, a measurement system 102 and a coil layer 103, the magnet layer 101 is the motor mover , the coil layer 103 is the stator of the motor, the coil layer 103 is arranged in a coil array, the coils in the coil layer 103 are arranged in a fishbone shape, and the fishbone shape can be a stepped mosaic arrangement in FIG. 1, or it can be arranged on both sides. Symmetrical arrangement.
  • the magnet layer 101 is composed of N-pole magnets and S-pole magnets that are alternately arranged in columns and rows to form a magnet array.
  • the magnet layer 101 also includes H-pole magnets between the N-pole magnets and the S-pole magnets.
  • the magnet layer 101 adopts Halbach Array arrangement.
  • the magnets on the same column and row of the magnet layer 101 in the oblique angle direction are magnets of the same nature and are evenly arranged; if the magnet layer 101 is spread out into a plane, In the oblique angle direction, the geometric centers of the magnets of the same nature on the same column and the same row are on a straight line, and are evenly arranged between each column and each row; the length of a pair of sides of the coil is greater than or equal to the oblique angle.
  • the distance between two columns or two columns of adjacent magnets of different polarity in the direction; the length of the other pair of sides of the coil is greater than or equal to two columns or two columns of adjacent magnets of the same polarity in the oblique direction column distance.
  • the geometric centers of the two N-pole magnets and the two S-pole magnets that are adjacent to each other up, down, left, and right form a square.
  • each of the N-pole magnets and the S-pole magnets is a cube of the same size.
  • the measurement system 102 is composed of an array of Hall sensor groups, and the slope of the coil broadside is the same as the slope of the magnet diagonal.
  • the coil broadside and the magnet diagonal are 45 degrees.
  • the magnet layer 101 is formed with a periodically arranged magnetic field
  • the Hall sensor group in the measurement system 102 is composed of Hall sensors
  • the Hall sensors are distributed in four areas, with at least two in each area; preferably, The Hall sensors in each area are evenly distributed along the circumferential phase, and are used for the displacement of the magnet to rotate forward and reverse after the coils of the magnet layer 101 and the coil layer 103 act.
  • the 103 herringbone coil arrangement is used to offset the neutral force so as to superimpose the driving force.
  • the Hall sensor model in the measurement system 102 is HW-101A
  • the magnet layer 101 covers four sets of Hall sensors in the measurement system 102 during the movement.
  • the number of arranged layers of the coil layers is at least one layer, and the number of arranged layers of the coil layers 103 may be single layer, two layers or three layers, etc., and the number of coil layers is not limited.
  • the in-wheel motor is mainly composed of three parts: the magnet layer 101, the measurement system 102 and the coil layer 103.
  • Figures 1 and 2 are the overall structure diagram of the in-wheel motor and the front view of the in-wheel motor respectively.
  • the magnet layer 101 is composed of N-pole magnets and S-pole magnets that are alternately arranged in columns and rows.
  • the magnet layer 101 also includes H-pole magnets between the N-pole magnets and the S-pole magnets.
  • the magnet layer 101 is arranged in a Halbach array.
  • FIG. 3 is a schematic diagram of the in-wheel motor plane unfolding. In the figure, the annular in-wheel motor is displayed on a plane.
  • the magnet layer 101 is in the oblique direction.
  • the distance between two columns or two columns of the same polarity magnet is defined as ⁇ .
  • a magnet array can form a periodically arranged magnetic field in space.
  • FIG. 1 and FIG. 3 only schematically illustrate a magnet array, and do not limit the number, shape and array of magnets, such as hexagonal magnet shape, checkerboard-like arrangement , or the magnets in each row are the same (all are S or all are N), and the N and S staggered magnet arrays between rows are also within the scope of rights of this patent.
  • the Hall sensor group in the measurement system 102 is composed of Hall sensors.
  • the Hall sensors are distributed in four regions, and each region has at least two; preferably, the Hall sensors in each region are evenly distributed along the circumference.
  • the Hall sensor in each area can measure the displacement of the corresponding position on the mover in the forward and reverse directions of the magnet layer.
  • Hall sensors in multiple areas in the figure are arranged in rows and columns parallel to the x-axis and y-axis respectively (as shown in Figure 2), thus ensuring that the magnet array can always cover the complete four areas during the movement sensor.
  • the arrangement of sensors in multiple areas is not limited to this arrangement.
  • the rows and columns form a certain angle with the x-axis and the y-axis, other spacings are used, or the magnet array covers multiple
  • the arrangement of the four coils etc. is also within the scope of the claims of this patent.
  • FIG. 4 is a schematic diagram of a single coil in the coil layer 103.
  • the length and width of the outer contour rectangle of the coil are respectively defined as and n, m are integers, and the ring width of the coil ring is
  • the magnets on the same column and row of the magnet layer 101 in the oblique angle direction are homogenous magnets and are uniformly arranged; if the magnet layer 101 is expanded into a plane, in the oblique angle direction, the magnets on the same column and the same row are of the same nature.
  • the geometric center of the magnets is on a straight line, and the columns are evenly arranged between the columns and the columns; the length of a pair of sides of the coil is greater than or equal to the length of the two columns of adjacent magnets with different polarities in the oblique angle direction.
  • the length of the other opposite side of the coil is greater than or equal to the distance between two courses or two columns of adjacent magnets of the same polarity in the oblique angle direction.
  • the geometric centers of the two N-pole magnets and the two S-pole magnets that are adjacent to each other up, down, left, and right form a square.
  • each N-pole magnet and S-pole magnet are cubes of the same size, and the slope of the broad side of the coil is the same as the slope of the diagonal of the magnet.
  • the slope of the broad side of the coil and the diagonal of the magnet are 45 degrees optimal, so as to achieve the spreading of the coil in space (as shown in Figure 3).
  • the energization mode of the coil can be selected from two-phase, three-phase or multi-phase. After each group of coils is energized, a corresponding driving force will be generated to the magnet array.
  • the basic arrangement and shape of the coils are not limited to the one in this embodiment. For example, the shape of the coils may be oval, the basic arrangement may be more layers of coils, etc. belong to this embodiment.
  • the coil array in the figure is only for illustration, and does not limit the size of the stator and the number of coils.
  • FIG. 1 is only a simple illustration of the structure of the in-wheel motor, and is not a limitation.
  • the three-layer structure can be extended infinitely according to the existing structure, and the situation after the extension is also within the scope of rights of this patent; for another example, the magnet layer and the coil layer are not limited to the outermost magnet layer and the innermost coil layer.
  • the case where two layers exchange positions also belongs to this embodiment.
  • this embodiment satisfies the technical requirements mentioned above, that is, there is no cable on the mover, an arbitrarily large stroke of the moving table, and a low-cost measurement system (Hall sensor array) is used to realize the positive and negative displacement of the mover. Measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Linear Motors (AREA)

Abstract

本发明公开了一种轮毂电机,包括磁体层、测量系统和线圈层,所述磁体层为电机动子,所述线圈层为电机定子,所述线圈层为线圈阵列排列而成,所述线圈阵列的线圈呈鱼骨状排列,所述磁体层由N极磁体和S极磁体交替周期均匀排布,所述测量系统由霍尔传感器组阵列排布构成;本发明依靠通电线圈在磁场中受到洛伦兹力的反力驱动磁体动子运动,通过线圈排列成鱼骨状,结构更加紧凑,对中力可以相互抵消,驱动力可以相互叠加,本发明实现了动子上无线缆、运动台的任意大行程、运用了低成本的测量系统(霍尔传感器阵列)实现了动子正逆位移测量。

Description

一种轮毂电机 技术领域
本发明涉及轮毂电机技术领域,具体为一种轮毂电机。
背景技术
传统电动汽车的动力是电机,其驱动力通过传动装置驱动汽车轮毂,实现汽车的行进;而轮毂电机将电机和汽车轮毂集成在一起,具有以下优点:第一是高效率。轮毂电机消除了机械传动,避免了机械传动上能量的损失。第二是省空间。轮毂电机本身就是动力装置,直接作用在车轮上,因此汽车前舱和底盘中不需要动力装置和机械传动装置,节省大量空间。第三是便于控制。整车可以采用分布式控制架构,可以实现差动转向乃至原地转向,还可以使用电磁制动。第四是模块化,每个轮毂电机可以做成一个模块,实现规模化量产,可以避免重复开发和缩短新车型的开发周期,这又会有利于降低电动汽车的开发费用。
霍尔传感器是根据霍尔效应制得的传感器,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点。现有技术尚没有采用霍尔传感器阵列来进行轮毂电机磁体位置及转速的六自由度测量。
发明内容
本发明的目的在于提供一种轮毂电机,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种轮毂电机,包括磁体层、测量系统和线圈层,所述磁体层为电机动子,所述线圈层为电机定子,所述线圈层为线圈阵列排列而成,所述线圈阵列的线圈呈鱼骨状排列,所述磁体层由N极磁体和S极磁体交替周期均匀排布,所述测量系统由霍尔传感器组阵列排布构成。
其中,所述磁体层在斜角方向上同一纵列和或横列上的磁体为同性磁体且均匀排布;各纵列之间和或各横列之间均匀排布。若将磁体层展开为一平面时,在斜角方向上,同一纵列和或同一横列上的同性磁体的几何中心在一条直线上。
其中,所述线圈的一对边长度大于等于在斜角方向上相邻的不同极性磁体的两纵列或两横列之间的距离;所述线圈的另一对边长度大于等于在斜角方向上相邻的同极性磁体的两横列或两纵列的距离。
其中,所述磁体层在斜角方向上相邻的同极性磁体的两横列或两纵列的距离定义为 λ,所述线圈层的单个线圈的外轮廓的长和宽分别定义为
Figure PCTCN2021073777-appb-000001
Figure PCTCN2021073777-appb-000002
n,m为整数,线圈环的环宽为
Figure PCTCN2021073777-appb-000003
其中,所述磁体层中所述N极磁体和所述S极磁体之间还包括H极磁体,所述磁体层采用Halbach阵列排布。
其中,所述测量系统中霍尔传感器组分成四组,且所述霍尔传感器组分四个区域沿周向分布,每组霍尔传感器组至少包括两个霍尔传感器,每个区域对应一组所述霍尔传感器组,每个区域的所述霍尔传感器沿圆周方向均匀分布。
其中,所述测量系统中霍尔传感器组分成四组,所述磁体层在运动的过程中覆盖所述测量系统中四组所述霍尔传感器。
其中,所述测量系统中霍尔传感器组用于测出所述线圈层对应位置在所述磁体层正逆两个方向上的位移。
其中,所述线圈层鱼骨状线圈排列用于将中力进行抵消,从而叠加驱动力。
其中,所述线圈层的通电方式为两相电和三相电中的一种。
其中,所述线圈层鱼骨状线圈排列为线圈两边阶梯状的嵌合排布。
其中,所述线圈层鱼骨状线圈排列为线圈两边并列对称排布。
其中,所述测量系统中霍尔传感器型号为HW-101A。
其中,所述线圈层排列层数至少为一层。
与现有技术相比,本发明的有益效果是:
本发明通过设置的磁体层、测量系统以及线圈层,实现了在轮毂电机使用时,通过线圈层的单层线圈作为定子,磁体层中磁体阵列作为动子,并由霍尔传感器阵列作为测量系统,磁体阵列可以在空间内形成周期排布的磁场,依靠通电线圈在磁场中受到洛伦兹力的反力驱动磁体动子运动,通过线圈排列成鱼骨状,结构更加紧凑,对中力可以相互抵消,驱动力可以相互叠加,本发明实现了动子上无线缆、运动台的任意大行程、运用了低成本的测量系统(霍尔传感器阵列)实现了动子正逆位移测量。
附图说明
图1为本发明整体立体结构示意图;
图2为本发明整体主视结构示意图;
图3为本发明整体平面展开示意图;
图4为本发明线圈层中单线圈结构示意图。
图中:101-磁体层;102-测量系统;103-线圈层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:请参阅图1-4,本发明提供一种技术方案:一种轮毂电机,一 种轮毂电机,包括:磁体层101、测量系统102和线圈层103,磁体层101为电机动子,线圈层103为电机定子,线圈层103为线圈阵列排列而成,线圈层103中线圈排列呈鱼骨状,鱼骨状可以为图1中阶梯状的嵌合排布,也可以是两边并列对称排布。磁体层101由N极磁体和S极磁体在纵列和横列交替周期排布,从而形成磁体阵列,磁体层101中N极磁体和S极磁体之间还包括H极磁体,磁体层101采用Halbach阵列排布。将环形的轮毂电机展在平面上看,优选的,磁体层101在斜角方向上同一纵列和横列上的磁体为同性磁体且均匀排布;若将磁体层101展开为一平面时,在斜角方向上,同一纵列和同一横列上的同性磁体的几何中心在一条直线上,各纵列之间和各横列之间均匀排布;所述线圈的一对边长度大于等于在斜角方向上相邻的不同极性磁体的两纵列或两横列之间的距离;所述线圈的另一对边长度大于等于在斜角方向上相邻的同极性磁体的两横列或两纵列的距离。将环形的轮毂电机展在平面上看,本实施例中,上下左右相邻的2个N极磁体和2个S极磁体的几何中心形成正方形。较优地,各N极磁体和S极磁体为大小相同的正方体。测量系统102为霍尔传感器组阵列排布构成,线圈宽边的斜率和磁体对角线的斜率相同,优选的,线圈宽边的斜率和磁体对角线的斜率以45度为最优(如图3所示),磁体层101形成有周期排布的磁场,测量系统102中霍尔传感器组由霍尔传感器构成,霍尔传感器分四个区域分布,每个区域至少两个;优选的,每个区域的霍尔传感器沿周相均匀分布,用于磁体层101与线圈层103线圈作用后,产生使磁体正逆转动的位移,线圈层103的通电方式为两相或者三相,线圈层103鱼骨状线圈排列用于将中力进行抵消,从而叠加驱动力,测量系统102中霍尔传感器型号为HW-101A,磁体层101在运动的过程中覆盖测量系统102中四组霍尔传感器,线圈层排列层数至少为一层,线圈层103的排列层数可以为单层、两层或者三层等不做线圈层数限制。
在实施例1中,轮毂电机主要由磁体层101、测量系统102和线圈层103 三个部分组成,图1、图2分别是轮毂电机整体结构图与轮毂电机主视图。其中磁体层101由N极磁体和S极磁体在纵列和横列交替周期排布,磁体层101中N极磁体和S极磁体之间还包括H极磁体,磁体层101采用Halbach阵列排布。图3为轮毂电机平面展开示意图,该图将环形的轮毂电机展在平面上看,磁体层101在斜角方向上,较优地,本实施例中磁体层101倾斜45度方向上,相邻的同极性磁体的两横列或两纵列的距离定义为λ。这样的磁体阵列可在空间形成一个周期排布的磁场。要在此说明的是,图1与图3中只是示意性的画出了一种磁体阵列,并非限制磁体的数量、形状和阵列方式,例如六边形的磁体形状,棋盘式的排布方式,或每行磁体相同(都为S或都为N),行与行之间N、S交错的磁体阵列等也都在本专利的权利范围内。测量系统102中霍尔传感器组由霍尔传感器构成。霍尔传感器分四个区域分布,每个区域至少两个;优选的,每个区域的霍尔传感器沿周相均匀分布。每个区域的霍尔传感器可测出动子上对应位置在磁体层正逆两个方向上的位移。图中的多个区域的霍尔传感器按与x轴和y轴分别平行的行列排布(如图2中所示),从而保证了磁体阵列在运动的过程中总能覆盖完整的四个区域的传感器。同样要进行说明的是,多个区域的传感器在进行排列时并非只限制在这一种排布方式,例如行列与x轴y轴分别成一定的夹角、采用其他的间距或磁体阵列覆盖多于四个线圈等的排布方式也都在本专利的权利要求范围内。图4是线圈层103中单独一个线圈的示意图,线圈的外轮廓矩形的长和宽分别定义为
Figure PCTCN2021073777-appb-000004
Figure PCTCN2021073777-appb-000005
n,m为整数,线圈环的环宽为
Figure PCTCN2021073777-appb-000006
磁体层101在斜角方向上同一纵列和横列上的磁体为同性磁体且均匀排布;若将磁体层101展开为一平面时,在斜角方向上,同一纵列和同一横列上的同性磁体的几何中心在一条直线上,各纵列之 间和各横列之间均匀排布;所述线圈的一对边长度大于等于在斜角方向上相邻的不同极性磁体的两纵列之间或两横列之间的距离;所述线圈的另一对边长度大于等于在斜角方向上相邻的同极性磁体的两横列之间或两纵列之间的距离。将环形的轮毂电机展在平面上看,本实施例中,上下左右相邻的2个N极磁体和2个S极磁体的几何中心形成正方形。较优地,各N极磁体和S极磁体为大小相同的正方体,线圈宽边的斜率和磁体对角线的斜率相同,优选的,线圈宽边的斜率和磁体对角线的斜率依45度最优,从而达到线圈在空间的铺展(如图3中所示)。这样的排布方式使得磁体阵列与通电线圈作用后,产生使磁体正逆转动的位移。线圈的通电方式可以选用两相、三相或者多相,每组线圈通电后将会对磁体阵列产生相应的驱动力。同样需要进行说明的是,线圈的基本排布方式和形状并非只限制在本实施例中的这一种,例如线圈形状可以是椭圆形、基本排布方式可以是采用更多层的线圈等都属于本实施例。除此之外,图中的线圈阵列仅为示意,并不限制定子的尺寸和线圈数量,通过扩展线圈阵列和传感器阵列从而获得任意大行程的情况也属于本实施例。图1仅仅是对于轮毂电机结构的简单示意,并非限制。例如三层结构可以按现有结构无限往外延展,延展后的情况也在本专利的权利范围内;再例如,磁体层与线圈层也不局限在磁体层在最外、线圈层在最内,两层交换位置的情况也属于本实施例。
综上,本实施例满足了前面所述的技术要求,即动子上无线缆、运动台的任意大行程、运用了低成本的测量系统(霍尔传感器阵列)实现了动子正逆位移测量。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系 列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种轮毂电机,包括磁体层(101)、测量系统(102)和线圈层(103),其特征在于:所述磁体层(101)为电机动子,所述线圈层(103)为电机定子,所述线圈层(103)为线圈阵列排列而成,所述线圈阵列的线圈呈鱼骨状排列,所述磁体层(101)由N极磁体和S极磁体交替周期均匀排布,所述测量系统(102)由霍尔传感器组阵列排布构成。
  2. 根据权利要求1所述的一种轮毂电机,其特征在于:所述磁体层(101)在斜角方向上同一纵列和或横列上的磁体为同性磁体且均匀排布;各纵列之间和或各横列之间均匀排布。
  3. 根据权利要求1或2所述的一种轮毂电机,其特征在于:所述线圈的一对边长度大于等于在斜角方向上相邻的不同极性磁体的两纵列或两横列之间的距离;所述线圈的另一对边长度大于等于在斜角方向上相邻的同极性磁体的两横列或两纵列的距离。
  4. 根据权利要求3所述的一种轮毂电机,其特征在于:所述磁体层(101)在斜角方向上相邻的同极性磁体的两横列或两纵列的距离定义为λ,所述线圈层(103)的单个线圈的外轮廓的长和宽分别定义为
    Figure PCTCN2021073777-appb-100001
    Figure PCTCN2021073777-appb-100002
    n,m为整数,线圈环的环宽为
    Figure PCTCN2021073777-appb-100003
  5. 根据权利要求1所述的一种轮毂电机,其特征在于:所述磁体层(101)中所述N极磁体和所述S极磁体之间还包括H极磁体,所述磁体层(101)采用Halbach阵列排布。
  6. 根据权利要求1所述的一种轮毂电机,其特征在于:所述测量系统(102)中霍尔传感器组分成四组,且所述霍尔传感器组分四个区域沿周向分布,每组霍尔传感器组至少包括两个霍尔传感器,每个区域对应一组所述霍尔传感器组,每个区域的所述霍尔传感器沿圆周方向均匀分布。
  7. 根据权利要求1或6所述的一种轮毂电机,其特征在于:所述测量系统(102)中霍尔传感器组分成四组,所述磁体层(101)在运动的过程中覆盖所述测量系统(102)中四组所述霍尔传感器。
  8. 根据权利要求1所述的一种轮毂电机,其特征在于:所述线圈层(103)的通电方式为两相电和三相电中的一种。
  9. 根据权利要求1所述的一种轮毂电机,其特征在于:所述线圈层(103)鱼骨状线圈排列为线圈两边阶梯状的嵌合排布。
  10. 根据权利要求1所述的一种轮毂电机,其特征在于:所述线圈层(103)鱼骨状线圈排列为线圈两边并列对称排布。
PCT/CN2021/073777 2021-01-11 2021-01-26 一种轮毂电机 WO2022147858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110029277.7A CN112713685B (zh) 2021-01-11 2021-01-11 一种轮毂电机
CN202110029277.7 2021-01-11

Publications (1)

Publication Number Publication Date
WO2022147858A1 true WO2022147858A1 (zh) 2022-07-14

Family

ID=75548755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073777 WO2022147858A1 (zh) 2021-01-11 2021-01-26 一种轮毂电机

Country Status (2)

Country Link
CN (1) CN112713685B (zh)
WO (1) WO2022147858A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841910B2 (en) * 2002-10-02 2005-01-11 Quadrant Technology Corp. Magnetic coupling using halbach type magnet array
CN101610054A (zh) * 2009-07-21 2009-12-23 清华大学 采用三维永磁阵列的平面电机
CN202424462U (zh) * 2012-01-19 2012-09-05 天津清源电动车辆有限责任公司 基于Halbach阵列的电动汽车轮毂永磁电机
CN108199534A (zh) * 2018-02-05 2018-06-22 姜春辉 一种筒式单气隙外转子电机
CN112054649A (zh) * 2020-09-18 2020-12-08 复旦大学 一种磁悬浮运动台

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236069A (en) * 1992-07-02 1993-08-17 Peng, Huan-Yau Braking device for indoor exercise bicycles
DE102009005957A1 (de) * 2009-01-23 2010-07-29 Avantis Ltd. Verfahren zur Herstellung eines ein Polrad umfassendes Magnetsystems
CN101769981B (zh) * 2009-12-15 2012-02-15 清华大学 一种采用线性霍尔阵列的永磁平面电机寻相检测方法
CN105811730B (zh) * 2014-12-30 2018-06-29 上海微电子装备(集团)股份有限公司 一种六自由度直线电机
CN208738984U (zh) * 2018-02-05 2019-04-12 姜春辉 一种筒式单气隙外转子电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841910B2 (en) * 2002-10-02 2005-01-11 Quadrant Technology Corp. Magnetic coupling using halbach type magnet array
CN101610054A (zh) * 2009-07-21 2009-12-23 清华大学 采用三维永磁阵列的平面电机
CN202424462U (zh) * 2012-01-19 2012-09-05 天津清源电动车辆有限责任公司 基于Halbach阵列的电动汽车轮毂永磁电机
CN108199534A (zh) * 2018-02-05 2018-06-22 姜春辉 一种筒式单气隙外转子电机
CN112054649A (zh) * 2020-09-18 2020-12-08 复旦大学 一种磁悬浮运动台

Also Published As

Publication number Publication date
CN112713685B (zh) 2022-07-12
CN112713685A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
JP4505524B2 (ja) 動力装置
CN102047529B (zh) 具有可逆发电机-电动机操作的电磁装置
KR101082929B1 (ko) Ac 모터
CN108429420A (zh) 一种非对称双三相弧线永磁同步电机
CN107852082A (zh) 用于在位移装置上可控制地移动一个或多个可移动台的方法和系统
WO2014090112A1 (zh) 一种六自由度磁悬浮工件台
CN1630170A (zh) 轴隙马达
CN101253673A (zh) 具有悬浮和横向力能力的无铁芯磁性直线马达
CN103490572A (zh) 一种三自由度磁悬浮开关磁阻电机
WO2017122814A1 (ja) 相互結合複合型モータ、相互結合複合型発電機および相互結合複合型リニアモータ
CN103378711A (zh) 双机械端口磁导谐波式电磁齿轮复合永磁电机
WO2015101156A1 (zh) 磁阵列以及磁浮平面电机
CN101741289B (zh) 短行程多自由度磁悬浮平面电机
WO2013078860A1 (zh) 同心式绕组结构永磁同步平面电机
CN112054649A (zh) 一种磁悬浮运动台
WO2022147858A1 (zh) 一种轮毂电机
CN102175235B (zh) 球形压电定子式陀螺仪
CN110474517B (zh) 一种转子及悬浮转子电机
CN101599677B (zh) 复合电流驱动九相平面电机、直线-旋转电机及其驱动器
CN1623268A (zh) 具有同心环形部件的旋转电机
CN103780040A (zh) 外转子磁桥式横向磁通永磁同步电机
CN1267129A (zh) 多相交流机组控制器
CN106936337A (zh) 磁浮平面旋转电机及光刻装置
JP7441860B2 (ja) 環状軸方向磁束モータ
CN113346638A (zh) 一种三相并行磁路电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)