WO2022147716A1 - 数据传输方法、装置、通信设备和存储介质 - Google Patents

数据传输方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2022147716A1
WO2022147716A1 PCT/CN2021/070666 CN2021070666W WO2022147716A1 WO 2022147716 A1 WO2022147716 A1 WO 2022147716A1 CN 2021070666 W CN2021070666 W CN 2021070666W WO 2022147716 A1 WO2022147716 A1 WO 2022147716A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
scheduling
rach
uplink
bwp
Prior art date
Application number
PCT/CN2021/070666
Other languages
English (en)
French (fr)
Inventor
林雪
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21916774.9A priority Critical patent/EP4236573A4/en
Priority to CN202180068390.4A priority patent/CN116250351A/zh
Priority to PCT/CN2021/070666 priority patent/WO2022147716A1/zh
Publication of WO2022147716A1 publication Critical patent/WO2022147716A1/zh
Priority to US18/319,128 priority patent/US20230292375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to the field of wireless communication, and in particular, to a data transmission method, apparatus, communication device and storage medium.
  • the RRC_INACTIVE state (ie, the inactive state) is a new radio resource control (Radio Resource Control, RRC) state introduced by a new radio interface (New Radio, NR) system from the perspective of energy saving.
  • RRC Radio Resource Control
  • Small Data Transmission SDT was introduced, and the small data transmission process corresponding to the small data transmission is an inactive data transmission process. Through the small data transmission process, the terminal device does not need to enter the RRC_CONNECTED state (ie, the connected state), and can complete data transmission in the inactive state, thereby reducing the power consumption and overhead of the terminal device.
  • RRC_CONNECTED ie, the connected state
  • the related art has not yet proposed a solution on how to configure the bandwidth for performing the small data transmission process.
  • the embodiments of the present application provide a data transmission method, apparatus, communication device, and storage medium.
  • the terminal device can implement a small data transmission process based on a random access channel (Random Access Channel, RACH) based on a determined target bandwidth.
  • RACH Random Access Channel
  • a data transmission method which is applied to a terminal device, and the method includes:
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • a data transmission method which is applied to a network device, and the method includes:
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • a data transmission apparatus which is applied in a terminal device, and the apparatus includes: a bandwidth determination module and a transmission module;
  • the bandwidth determination module is used to determine the target bandwidth for the RACH-based small data transmission process
  • the transmission module configured to perform the RACH-based small data transmission process with a network device on the target bandwidth
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • a data transmission apparatus which is applied in network equipment, and the apparatus includes: a transmission module;
  • the transmission module is configured to perform a RACH-based small data transmission process with the terminal device on the target bandwidth
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • a terminal device comprising: a processor and a transceiver connected to the processor; wherein,
  • the processor for determining a target bandwidth for the RACH-based small data transmission process
  • the transceiver configured to perform the RACH-based small data transmission process with a network device on the target bandwidth
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • a network device comprising: a processor and a transceiver connected to the processor; wherein,
  • the transceiver is used to perform a RACH-based small data transmission process with the terminal device on the target bandwidth;
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • a computer-readable storage medium having executable instructions stored in the readable storage medium, the executable instructions being loaded and executed by a processor to realize the data as described in the above-mentioned aspects transfer method.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a computer device, it is used to implement the data transmission described in the above aspect method.
  • a computer program product which, when running on a processor of a computer device, causes the computer device to execute the data transmission method described in the above aspects.
  • the terminal device Before the terminal device performs the RACH-based small data transmission process, the terminal device first determines the target bandwidth, and then implements the RACH-based small data transmission process on the target bandwidth, thereby providing an implementation method for determining the bandwidth for performing the small data transmission process .
  • FIG. 1 is a schematic diagram of a partial bandwidth provided by the related art
  • FIG. 2 is a schematic diagram of a random access process provided by the related art
  • FIG. 3 is a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a data transmission method provided by an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a data transmission method provided by an exemplary embodiment of the present application.
  • FIG. 6 is a schematic diagram of an initial downlink BWP provided by an exemplary embodiment of the present application.
  • FIG. 7 is a schematic diagram of a small data transmission process based on RACH provided by an exemplary embodiment of the present application.
  • FIG. 8 is a schematic diagram of a small data transmission process based on RACH provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic diagram of a small data transmission process based on RACH provided by an exemplary embodiment of the present application.
  • FIG. 10 is a flowchart of a data transmission method provided by an exemplary embodiment of the present application.
  • FIG. 11 is a schematic diagram of a small data transmission process based on RACH provided by an exemplary embodiment of the present application.
  • FIG. 12 is a schematic diagram of a small data transmission process based on RACH provided by an exemplary embodiment of the present application.
  • FIG. 13 is a schematic diagram of a small data transmission process based on RACH provided by an exemplary embodiment of the present application.
  • FIG. 14 is a structural block diagram of a data transmission apparatus provided by an exemplary embodiment of the present application.
  • FIG. 15 is a structural block diagram of a data transmission apparatus provided by an exemplary embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • a new RRC state ie RRC_INACTIVE state, is defined for the purpose of reducing air interface signaling, quickly restoring wireless connections, and quickly restoring data services.
  • RRC_INACTIVE state mobility is based on terminal device cell selection and reselection, there is a connection between the Core Network (CN) and NR, the UE access context exists on a certain network device, and the paging Triggered by a radio access network (Radio Access Network, RAN), the RAN-based paging area is managed by the RAN, and the network device side knows the location of the terminal device is based on the RAN-based paging area level.
  • CN Core Network
  • RAN Radio Access Network
  • BWP Bandwidth Part
  • BWP is a concept introduced in NR. Through BWP, an access bandwidth that is smaller than both the cell system bandwidth and the terminal capability is defined. All transmission and reception operations of the terminal equipment can be performed within this smaller bandwidth, so as to achieve more flexibility and flexibility. Efficient, lower power consumption terminal operation. Exemplarily, as shown in FIG. 1 , the terminal device can flexibly select BWPs with different bandwidths according to service requirements.
  • a terminal device In the downlink direction, a terminal device is configured with four downlink BWPs at most, and at any time, only one downlink BWP can be activated, and the terminal device receives downlink channels on the activated downlink BWP.
  • the terminal device In the uplink direction, the terminal device is configured with up to 4 uplink BWPs.
  • only one uplink BWP can be activated, and the terminal device receives the uplink channel on the activated uplink BWP; if the terminal device is configured with supplementary uplink (Supplementary Uplink) , SUL) carrier, four additional uplink BWPs can be configured, and at any time, only one uplink BWP can be activated, and the terminal device receives the uplink channel on the activated uplink BWP.
  • supplementary uplink Supplementary Uplink
  • SUL Supplemental Uplink
  • each downlink BWP contains at least one control resource set (Control Resource Set, CORESET), which is used for the reception and detection of physical downlink control channel (Physical Downlink Control Channel, PDCCH), that is, CORESET is used by terminal equipment to search for PDCCH. time-frequency range.
  • CORESET Control Resource Set
  • PDCCH Physical Downlink Control Channel
  • the CORESET can occupy continuous or non-consecutive frequency domain resources
  • the network device can use a bitmap in the RRC signaling to indicate the Physical Resource Block (PRB) occupied by the CORESET in the downlink BWP ), each bit (bit) in the bitmap indicates an RB group including 6 resource blocks (Resource Block, RB).
  • PRB Physical Resource Block
  • RB resource blocks
  • the duration parameter in the CORESET configuration is used to describe the time domain length of CORESET. Since CORESET itself does not have time domain location information, CORESET describes a time domain location that is indeterminate and can be floated by the duration parameter. Determined time domain area. Therefore, it is necessary for the network device to further specify the time domain area in which the terminal device receives the PDCCH by configuring the search space (Search Space).
  • search space Search Space
  • the above-mentioned uplink BWP and downlink BWP are terminal-specific BWPs (ie, UE-dedicated BWPs) configured using RRC dedicated signaling.
  • the terminal equipment is also configured with initial uplink BWPs (ie, initial UL BWPs) and initial downlink BWPs (ie, initial UL BWPs). initial DL BWP). Before the terminal equipment enters the connected state, it works on the initial upstream BWP or the initial downstream BWP.
  • the initial uplink BWP is configured in system information block 1 (System Information Block 1, SIB1), and the terminal device completes the preamble in the initial random access process on the initial uplink BWP, message 3 (ie Msg3) or message A (ie MsgA) transmission.
  • SIB1 System Information Block 1, SIB1
  • the initial downlink BWP includes CORESET#0, which is used for scheduling SIB1, other system information (Other System Information, OSI) or message 2 (ie Msg2), message 4 (ie Msg4) and other physical downlinks in the initial random access process Control channel (Physical Downlink Shared Channel, PDSCH) information.
  • the method for the terminal equipment to determine CORESET#0 in the initial downlink BWP is: when the terminal equipment completes the cell search, it obtains a synchronization signal block (Synchronization Signal Block, SSB) from the network equipment side, determines the frequency domain position of the SSB, and further passes through the SSB.
  • SSB Synchron Synchron Signal Block
  • the physical broadcast channel (Physical Broadcast Channel, PBCH) determines the frequency offset value of CORESET#0 relative to SSB, and determines CORESET#0 based on the frequency domain position of SSB and the frequency offset value of CORESET#0 relative to SSB.
  • PBCH Physical Broadcast Channel
  • the standard supports two methods for determining the initial downlink BWP. First, if the initial downlink BWP is not configured in the high-layer signaling, the terminal device uses the frequency domain range of CORESET#0 as the bandwidth of the initial downlink BWP. Second, if the initial downlink BWP is configured in the high-layer signaling (such as SIB1), the initial downlink BWP is determined according to the high-layer signaling configuration.
  • the significance of configuring the initial downlink BWP independently is that operations such as serving cell addition and cell handover can be better supported, and at the same time, large-bandwidth operations of terminal equipment can be supported.
  • the terminal device receives downlink messages sent by the network device on CORESET#0, such as random access response (Random Access Response, RAR), Contention Resolution (Contention Resolution) message, radio resource control establishment message (ie RRCSetup) or radio resource control release message (ie RRCRelease) or radio resource control reestablishment message (ie RRCReestablishment).
  • RAR Random Access Response
  • Contention Resolution Contention Resolution
  • RRCSetup radio resource control establishment message
  • ie RRCRelease radio resource control release message
  • RRCReestablishment radio resource control reestablishment
  • Small data transmission is a data transmission method configured for terminal devices in an inactive state. Through the small data transmission process, the terminal device can complete the data transmission without entering the connection state, thereby reducing the power consumption and overhead of the terminal device.
  • the small data transmission process includes: a small data transmission process based on a Configuration Grant (CG) and a small data transmission process based on RACH.
  • CG Configuration Grant
  • the present application provides the following solutions for the problem of how to configure the bandwidth for executing the small data transmission process.
  • FIG. 3 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: an access network 12 and a terminal device 14 .
  • the access network 12 includes several network devices 120 .
  • the network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base station, micro base station, relay station, access point and so on.
  • the names of devices with base station functions may be different.
  • eNodeBs or eNBs In LTE systems, they are called eNodeBs or eNBs; in 5G NR-U systems, they are called gNodeBs or gNBs.
  • the description of "base station” may change.
  • the above-mentioned apparatuses for providing a wireless communication function for the terminal device 14 are collectively referred to as network devices.
  • the terminal device 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS) , terminal device, etc.
  • the network device 120 and the terminal device 14 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the terminal device 14 supports performing the small data transmission process in an inactive state.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • CDMA wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution systems of NR systems LTE on unlicensed frequency bands (LTE-based access to Unlicensed spectrum, LTE-U) system, NR-U system, Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • FIG. 4 shows a flowchart of a data transmission method provided by an exemplary embodiment of the present application.
  • the method can be applied to the communication system as shown in Figure 3, and the method includes:
  • step 410 the terminal device determines a target bandwidth for the RACH-based small data transmission process.
  • the terminal device determines a target bandwidth for the RACH-based small data transmission process before performing the RACH-based small data transmission process.
  • the target bandwidth includes: a target bandwidth used for uplink and a target bandwidth used for downlink.
  • the terminal device determines the target bandwidth used for the RACH-based small data transmission process according to the configuration of the high-level signaling by receiving high-level signaling, such as SIB1, sent by the network device.
  • high-level signaling such as SIB1
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • Small data transmission is a data transmission mode configured for a terminal device in an inactive state, and does not require an RRC connection to be established between the terminal device and the network device.
  • the terminal device For a terminal device with a small amount of data and a low transmission frequency, if the RRC connection with the network device is restored through the connection recovery process and then data transmission is performed, the terminal device needs to return to the inactive state after the data transmission is completed. power consumption is high. By performing the small data transmission process in the inactive state, the terminal device can avoid the transition of the RRC state, thereby reducing the power consumption of the terminal device.
  • the small data transmission process includes: a CG-based small data transmission process and a RACH-based small data transmission process.
  • the small data transmission process based on RACH is directed.
  • the RACH-based small data transmission process may be a 2-step RACH-based small data transmission process, or a 4-step RACH-based small data transmission process, which is not limited in this embodiment of the present application.
  • Step 420 On the target bandwidth, a small data transmission process based on RACH is performed between the terminal device and the network device.
  • the terminal device After the terminal device determines the target bandwidth, the terminal device and the network device perform the RACH-based small data transmission process on the target bandwidth.
  • the target bandwidth includes: a target bandwidth used for uplink and a target bandwidth used for downlink.
  • the terminal device performs uplink transmission on the target bandwidth used for uplink, and the network device performs uplink reception on the target bandwidth used for uplink; the terminal device performs downlink reception on the target bandwidth used for downlink, and the network device performs downlink on the target bandwidth used for downlink. send.
  • the terminal device before the terminal device performs the RACH-based small data transmission process, the terminal device first determines the target bandwidth, and then implements the RACH-based small data transmission process on the target bandwidth, thereby providing a An implementation of determining the bandwidth at which small data transfer procedures are performed.
  • the target bandwidth includes: initial uplink BWP and initial downlink BWP.
  • the initial uplink BWP and the initial downlink BWP are working bandwidths determined by the terminal equipment in the initial access process.
  • the terminal device determines the initial uplink BWP and the initial downlink BWP during the initial access process, and uses the initial uplink BWP and the initial downlink BWP to perform the RACH-based small data transmission process between the terminal device and the network device.
  • the target bandwidth includes: the first uplink BWP and the first downlink BWP.
  • the first uplink BWP and the first downlink BWP are configured for the terminal equipment and are dedicated to the BWPs of the RACH-based small data transmission process.
  • the first uplink BWP and the first downlink BWP are introduced, and using the newly introduced first uplink BWP and the first downlink BWP, the RACH-based execution between the terminal device and the network device is performed. small data transfer process.
  • the target bandwidth includes: initial uplink BWP and initial downlink BWP.
  • FIG. 5 shows a flowchart of a data transmission method provided by an exemplary implementation of the present application.
  • the method can be applied to the communication system as shown in Figure 3, and the method includes the following steps:
  • Step 510 the terminal device determines the initial uplink BWP and the initial downlink BWP as the target bandwidth, and the initial downlink BWP includes CORESET#0.
  • CORESET#0 is a set of control resources for carrying scheduling information of SIB1 or Remaining Minimum System Information (RMSI). As shown in FIG. 6 , CORESET#0 is included in the initial downlink BWP.
  • the initial uplink BWP and the initial downlink BWP are determined based on the SIB1 scheduled by CORESET#0. That is, after determining CORESET#0, the terminal device receives the SIB1 scheduled by CORESET#0, and determines the initial uplink BWP and the initial downlink BWP through the SIB1.
  • the process for the terminal device to determine CORESET#0 includes: when the terminal device completes the cell search, obtains the SSB from the network device side, determines the frequency domain location of the SSB, and further determines the relative position of the CORESET#0 relative to the SSB through the PBCH in the SSB.
  • the frequency offset value is based on the frequency domain position of the SSB and the frequency offset value of the CORESET#0 relative to the SSB, thereby determining the CORESET#0.
  • Step 520 On the target bandwidth, a small data transmission process based on RACH is performed between the terminal device and the network device.
  • the RACH-based small data transmission process includes: a four-step RACH-based small data transmission process and a two-step RACH-based small data transmission process.
  • a four-step RACH-based small data transmission process is performed between the terminal device and the network device.
  • the terminal device sends at least one of the preamble, message 3, retransmission of message 3, and uplink transmission dynamically scheduled by the network device to the network device; correspondingly, on the initial uplink BWP, The network device receives at least one of a preamble sent by the terminal device, a message 3, a retransmission of the message 3, and an uplink transmission dynamically scheduled by the network device.
  • the terminal device receives at least one of a random access response, a retransmission indication of message 3, and message 4.
  • the network device sends at least one of a random access response, a retransmission indication of message 3, and message 4 to the terminal device.
  • the terminal device after completing the transmission of message 4, the terminal device is still in an inactive state, and continuous uplink transmission or downlink transmission can be performed between the terminal device and the network device.
  • the bandwidth can be switched from CORESET#0 to a larger bandwidth.
  • the terminal device in response to message 4 including a contention conflict resolution message, and message 4 not including a radio resource control release message, receives resource scheduling on the initial downlink BWP, and the resource scheduling includes: uplink scheduling and downlink scheduling at least one of them.
  • the network device in response to the message 4 including the contention conflict resolution message and the message 4 not including the RRC release message, sends resource scheduling on the initial downlink BWP, and the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the initial downlink BWP further includes a first CORESET and/or a first search space
  • the first CORESET is a CORESET configured for the terminal device in the initial downlink BWP
  • the first search space is a CORESET in the initial downlink BWP.
  • the search space configured for end devices in BWP.
  • the terminal device receives resource scheduling on the first CORESET and/or the first search space, and the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the network device sends resource scheduling on the first CORESET and/or the first search space, and the resource scheduling includes uplink scheduling and downlink scheduling. at least one of them.
  • the network device configures the terminal device with a first CORESET dedicated to the small data transmission process; or, the network device configures the terminal device with a first search space dedicated to the small data transmission process; or, the network device configures the terminal device with a first search space dedicated to the small data transmission process.
  • the first CORESET and/or the first search space is determined based on the SIB1 scheduled by CORESET#0. That is, after determining CORESET#0, the terminal device receives the SIB1 scheduled by CORESET#0, and in addition to determining the initial uplink BWP and the initial downlink BWP through SIB1, also determines the first CORESET through SIB1; or, the first search space; or , the first CORESET and the first search space.
  • uplink scheduling and downlink scheduling belong to the same RACH-based small data transmission process.
  • the four-step RACH-based small data transmission process between the terminal device and the network device includes the following steps:
  • the terminal device sends a preamble on the initial uplink BWP.
  • the network device receives the preamble on the initial uplink BWP.
  • the network device sends a random access response on CORESET#0.
  • the terminal device receives the random access response on CORESET#0.
  • the terminal device sends message 3 on the initial uplink BWP.
  • the network device receives message 3 on the initial uplink BWP.
  • message 3 includes an RRC message and uplink data.
  • the network device sends message 4 on CORESET#0.
  • the terminal device receives message 4 on CORESET#0.
  • message 4 includes a contention conflict resolution message, but does not include a radio resource control release message.
  • the network device sends the uplink schedule on the initial downlink BWP.
  • the terminal device receives the uplink scheduling on the initial downlink BWP.
  • the network device sends the uplink schedule on the first CORESET and/or the first search space.
  • the terminal device receives the uplink scheduling on the first CORESET and/or the first search space.
  • the network device sends the downlink schedule on the initial downlink BWP.
  • the terminal device receives the downlink scheduling on the initial downlink BWP.
  • the network device sends the downlink schedule on the first CORESET and/or the first search space.
  • the terminal device receives the downlink scheduling on the first CORESET and/or the first search space.
  • the terminal device sends to the network device at least one of a preamble, message A payload, message 3, retransmission of message 3, and uplink transmission dynamically scheduled by the network device.
  • the network device receives at least one of the preamble, message A payload, message 3, retransmission of message 3 sent by the terminal device, and uplink transmission dynamically scheduled by the network device.
  • the terminal device receives at least one of the random access response, the retransmission indication of message 3, the message 4, and the message B sent by the network device.
  • the network device sends at least one of a random access response, a retransmission indication of message 3, message 4, and message B to the terminal device.
  • the network device if the network device only receives the preamble sent by the terminal device, but does not receive the message A payload, the network device sends a random access response to the terminal device, and the terminal device is in the After receiving the random access response, send message 3 to the network device, and when the network device successfully receives message 3, feed back message 4 to the terminal device; if the network device successfully receives the preamble sent by the terminal device and the load of message A Next, the network device feeds back message B to the terminal device. After the transmission of message 4 or message B is completed, the terminal device is still in an inactive state, and continuous uplink transmission or downlink transmission can be performed between the terminal device and the network device. In order to receive the uplink scheduling or downlink scheduling required for continuous uplink transmission or downlink transmission, the bandwidth can be switched from CORESET#0 to a larger bandwidth.
  • the terminal device in response to message B including a contention conflict resolution message, and message B not including a radio resource control release message, receives resource scheduling on the initial downlink BWP, and the resource scheduling includes: uplink scheduling and downlink scheduling At least one of; or, in response to message 4 including a contention conflict resolution message, and message 4 not including a radio resource control release message, the terminal device receives resource scheduling on the initial downlink BWP, and the resource scheduling includes: uplink scheduling and downlink scheduling at least one of.
  • the network device in response to message B including a contention conflict resolution message, and message B not including a radio resource control release message, the network device sends resource scheduling on the initial downlink BWP, and the resource scheduling includes: at least one of uplink scheduling and downlink scheduling; Or, in response to the message 4 including the contention conflict resolution message and the message 4 not including the RRC release message, the network device sends resource scheduling on the initial downlink BWP, and the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the terminal device is switched from CORESET#0 to the initial downlink BWP with a larger bandwidth, to receive subsequent resource scheduling.
  • the initial downlink BWP further includes a first CORESET and/or a first search space
  • the first CORESET is a CORESET configured for the terminal device in the initial downlink BWP
  • the first search space is a CORESET in the initial downlink BWP.
  • the search space configured for end devices in BWP.
  • the terminal device In response to message B including a contention conflict resolution message, and message B not including a radio resource control release message, the terminal device receives resource scheduling on the first CORESET and/or the first search space, and the resource scheduling includes: uplink scheduling and downlink scheduling. At least one; or, in response to message 4 including a contention conflict resolution message, and message 4 not including a radio resource control release message, the terminal device receives resource scheduling on the first CORESET and/or the first search space, and the resource scheduling includes: uplink At least one of scheduling and downlink scheduling.
  • the network device in response to the message B including the contention conflict resolution message, and the message B not including the radio resource control release message, the network device sends the resource scheduling on the first CORESET and/or the first search space, and the resource scheduling includes: uplink scheduling and downlink scheduling. at least one of scheduling; or, in response to message 4 including a contention conflict resolution message, and message 4 not including a radio resource control release message, the network device sends the resource scheduling on the first CORESET and/or the first search space, and the resource scheduling Including: at least one of uplink scheduling and downlink scheduling.
  • the network device configures the terminal device with a first CORESET dedicated to the small data transmission process; or, the network device configures the terminal device with a first search space dedicated to the small data transmission process; or, the network device configures the terminal device with a first search space dedicated to the small data transmission process.
  • message 4 or message B indicates that the contention resolution has been completed, and message 4 or message B does not indicate to terminate the small data transmission process, switch the terminal device from CORESET#0 to the first CORESET and/or the first CORESET with larger bandwidth on the search space to receive subsequent resource scheduling.
  • the first CORESET and/or the first search space is determined based on the SIB1 scheduled by CORESET#0. That is, after determining CORESET#0, the terminal device receives the SIB1 scheduled by CORESET#0, and in addition to determining the initial uplink BWP and the initial downlink BWP through SIB1, also determines the first CORESET through SIB1; or, the first search space; or , the first CORESET and the first search space.
  • uplink scheduling and downlink scheduling belong to the same RACH-based small data transmission process.
  • the two-step RACH-based small data transmission process between the terminal device and the network device includes the following steps:
  • the terminal device sends the preamble and the message A payload on the initial uplink BWP.
  • the network device receives the preamble and the message A payload on the initial uplink BWP.
  • the payload of message A includes an RRC message and uplink data.
  • the network device sends message B on CORESET#0.
  • the terminal device receives message B on CORESET#0.
  • message B includes a contention conflict resolution message, but does not include a radio resource control release message.
  • the network device sends the uplink schedule on the initial downlink BWP.
  • the terminal device receives the uplink scheduling on the initial downlink BWP.
  • the network device sends the uplink schedule on the first CORESET and/or the first search space.
  • the terminal device receives the uplink scheduling on the first CORESET and/or the first search space.
  • the network device sends the downlink schedule on the initial downlink BWP.
  • the terminal device receives the downlink scheduling on the initial downlink BWP.
  • the network device sends the downlink schedule on the first CORESET and/or the first search space.
  • the terminal device receives the downlink scheduling on the first CORESET and/or the first search space.
  • the two-step RACH-based small data transmission process between the terminal device and the network device includes the following steps:
  • the terminal device sends the preamble and the message A payload on the initial uplink BWP.
  • the network device only receives the preamble on the initial uplink BWP, and fails to receive the message A payload.
  • the network device sends a random access response on CORESET#0.
  • the terminal device receives the random access response on CORESET#0.
  • the terminal device sends message 3 on the initial uplink BWP.
  • the network device receives message 3 on the initial uplink BWP.
  • message 3 includes an RRC message and uplink data.
  • the network device sends message 4 on CORESET#0.
  • the terminal device receives message 4 on CORESET#0.
  • message 4 includes a contention conflict resolution message, but does not include a radio resource control release message.
  • the network device sends the uplink schedule on the initial downlink BWP.
  • the terminal device receives the uplink scheduling on the initial downlink BWP.
  • the network device sends the uplink schedule on the first CORESET and/or the first search space.
  • the terminal device receives the uplink scheduling on the first CORESET and/or the first search space.
  • the network device sends the downlink schedule on the initial downlink BWP.
  • the terminal device receives the downlink scheduling on the initial downlink BWP.
  • the network device sends the downlink schedule on the first CORESET and/or the first search space.
  • the terminal device receives the downlink scheduling on the first CORESET and/or the first search space.
  • the terminal device in the process of small data transmission based on RACH, can first perform the random access procedure on the CORESET#0 in the initial uplink BWP and the initial downlink BWP, and then transfer the CORESET# 0 is switched to a larger initial downlink BWP, or, CORESET#0 is switched to a larger first CORESET and/or a first search space, so as to facilitate subsequent uplink and downlink scheduling and uplink and downlink transmission, thereby enhancing the The capability of data transfer during data transfer.
  • the target bandwidth includes: the first uplink BWP and the first downlink BWP.
  • FIG. 10 shows a flowchart of a data transmission method provided by an exemplary implementation of the present application.
  • the method can be applied to the communication system as shown in Figure 3, and the method includes the following steps:
  • Step 1010 the terminal device determines the first uplink BWP and the first downlink BWP as the target bandwidth.
  • the first uplink BWP and the first downlink BWP are configured for the terminal equipment and are dedicated to the BWPs of the RACH-based small data transmission process.
  • the first downlink BWP includes CORESET#0.
  • the first uplink BWP and the first downlink BWP are determined based on the SIB1 scheduled by CORESET#0. That is, after determining CORESET#0, the terminal device receives the SIB1 scheduled by CORESET#0, and determines the first uplink BWP and the first downlink BWP through the SIB1.
  • the process for the terminal device to determine CORESET#0 includes: when the terminal device completes the cell search, obtains the SSB from the network device side, determines the frequency domain location of the SSB, and further determines the relative position of the CORESET#0 relative to the SSB through the PBCH in the SSB.
  • the frequency offset value is based on the frequency domain position of the SSB and the frequency offset value of the CORESET#0 relative to the SSB, thereby determining the CORESET#0.
  • Step 1020 On the target bandwidth, a small data transmission process based on RACH is performed between the terminal device and the network device.
  • the RACH-based small data transmission process includes: a four-step RACH-based small data transmission process and a two-step RACH-based small data transmission process.
  • a four-step RACH-based small data transmission process is performed between the terminal device and the network device.
  • the terminal device sends to the network device at least one of a preamble, message 3, retransmission of message 3, and uplink transmission dynamically scheduled by the network device.
  • the network device receives at least one of a preamble sent by the terminal device, message 3, retransmission of message 3, and uplink transmission dynamically scheduled by the network device.
  • the terminal device receives at least one of a random access response, a retransmission indication of message 3, uplink scheduling, downlink scheduling, and message 4 sent by the network device.
  • the network device sends at least one of a random access response, a retransmission indication of message 3, uplink scheduling, downlink scheduling, and message 4 to the terminal device.
  • uplink scheduling and downlink scheduling belong to the same RACH-based small data transmission process.
  • the four-step RACH-based small data transmission process between the terminal device and the network device includes the following steps:
  • the terminal device sends a preamble on the first uplink BWP.
  • the network device receives the preamble on the first uplink BWP.
  • the network device sends a random access response on the first downlink BWP.
  • the terminal device receives the random access response on the first downlink BWP.
  • the terminal device sends message 3 on the first uplink BWP.
  • the network device receives message 3 on the first uplink BWP.
  • message 3 includes an RRC message and uplink data.
  • the network device sends message 4 on the first downlink BWP.
  • the terminal device receives message 4 on the first downlink BWP.
  • the network device sends the uplink schedule on the first downlink BWP.
  • the terminal device receives the uplink scheduling on the first downlink BWP.
  • the network device sends the downlink schedule on the first downlink BWP.
  • the terminal device receives the downlink scheduling on the first downlink BWP.
  • the terminal device sends to the network device at least one of a preamble, message A payload, message 3, retransmission of message 3, and uplink transmission dynamically scheduled by the network device.
  • the network device receives at least one of the preamble, message A payload, message 3, retransmission of message 3 and uplink transmission dynamically scheduled by the network device sent by the terminal device.
  • the terminal device receives at least one of a random access response, a retransmission indication of message 3, message 4, uplink scheduling, downlink scheduling, and message B sent by the network device.
  • the network device sends at least one of a random access response, a retransmission indication of message 3, message 4, uplink scheduling, downlink scheduling, and message B to the terminal device.
  • uplink scheduling and downlink scheduling belong to the same RACH-based small data transmission process.
  • the two-step RACH-based small data transmission process between the terminal device and the network device includes the following steps:
  • the terminal device sends the preamble and the message A payload on the first uplink BWP.
  • the network device receives the preamble and the message A payload on the first uplink BWP.
  • the payload of message A includes an RRC message and uplink data.
  • the network device sends message B on the first downlink BWP.
  • the terminal device receives the message B on the first downlink BWP.
  • the network device sends the uplink schedule on the first downlink BWP.
  • the terminal device receives the uplink scheduling on the first downlink BWP.
  • the network device sends the downlink schedule on the first downlink BWP.
  • the terminal device receives the downlink scheduling on the first downlink BWP.
  • the two-step RACH-based small data transmission process between the terminal device and the network device includes the following steps:
  • the terminal device sends the preamble and the message A payload on the first uplink BWP.
  • the network device only receives the preamble on the first uplink BWP, and fails to receive the message A payload.
  • the network device sends a random access response on the first downlink BWP.
  • the terminal device receives the random access response on the first downlink BWP.
  • the terminal device sends message 3 on the first uplink BWP.
  • the network device receives message 3 on the first uplink BWP.
  • message 3 includes an RRC message and uplink data.
  • the network device sends message 4 on the first downlink BWP.
  • the terminal device receives message 4 on the first downlink BWP.
  • the network device sends the uplink schedule on the first downlink BWP.
  • the terminal device receives the uplink scheduling on the first downlink BWP.
  • the network device sends the downlink schedule on the first downlink BWP.
  • the terminal device receives the downlink scheduling on the first downlink BWP.
  • the method provided in this embodiment configures the dedicated first uplink BWP and the first downlink BWP for the RACH-based small data transmission process, so that the terminal device and the network device can use the first uplink BWP and the first downlink BWP.
  • the small data transmission process based on RACH is implemented.
  • the steps performed by the terminal device can be independently implemented as a data transmission method on the terminal device side
  • the steps performed by the network device can be independently implemented as a data transmission method on the network device side.
  • FIG. 14 shows a structural block diagram of a data transmission apparatus provided by an exemplary embodiment of the present application.
  • the apparatus may be implemented as a terminal device, or be implemented as a part of the terminal device.
  • the apparatus includes: a bandwidth determination module 1401 and a transmission module 1402;
  • the bandwidth determination module 1401 is configured to determine the target bandwidth for the RACH-based small data transmission process
  • the transmission module 1402 is configured to perform the RACH-based small data transmission process with a network device on the target bandwidth;
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • the bandwidth determination module 1401 is configured to determine an initial uplink BWP and an initial downlink BWP as the target bandwidth, and the initial downlink BWP includes CORESET#0.
  • the RACH includes: a four-step RACH; the transmission module 1402 is configured to send a preamble, a message 3, and a repeat of the message 3 to the network device on the initial uplink BWP. at least one of transmission and uplink transmission dynamically scheduled by the network device.
  • the RACH includes: a four-step RACH; the transmission module 1402 is configured to receive, on the CORESET#0 in the initial downlink BWP, a random access message sent by the network device at least one of an incoming response, a retransmission indication of message 3, and message 4.
  • the transmission module 1402 is configured to receive on the initial downlink BWP in response to the message 4 including a contention conflict resolution message and the message 4 not including a radio resource control release message Resource scheduling, the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the initial downlink BWP further includes a first CORESET and/or a first search space
  • the first CORESET is the CORESET configured for the terminal device in the initial downlink BWP
  • the first search space is a search space configured for the terminal device in the initial downlink BWP
  • the transmission module 1402 is configured to receive on the first CORESET and/or the first search space in response to the message 4 including a contention conflict resolution message and the message 4 not including a radio resource control release message Resource scheduling, the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the RACH includes: a two-step RACH; the transmission module 1402 is configured to send, on the initial uplink BWP, a preamble, a message A payload, a message 3, and a message to the network device. At least one of retransmission of message 3 and uplink transmission dynamically scheduled by the network device.
  • the RACH includes: a two-step RACH; the transmission module 1402 is configured to receive, on the CORESET#0 in the initial downlink BWP, a random access sent by the network device at least one of the incoming response, the retransmission indication of message 3, the message 4, and the message B.
  • the transmission module 1402 is configured to receive on the initial downlink BWP in response to the message B including a contention conflict resolution message and the message B not including a radio resource control release message Resource scheduling, the resource scheduling includes: at least one of uplink scheduling and downlink scheduling; or, the transmission module 1402 is configured to respond that the message 4 includes a contention and conflict resolution message, and the message 4 does not include wireless
  • the resource control release message is used to receive resource scheduling on the initial downlink BWP, where the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the initial downlink BWP further includes a first CORESET and/or a first search space
  • the first CORESET is the CORESET configured for the terminal device in the initial downlink BWP
  • the first search space is a search space configured for the terminal device in the initial downlink BWP
  • the transmission module 1402 is configured to receive resource scheduling on the first CORESET and/or the first search space in response to the message B including a contention conflict resolution message and the message B not including a radio resource control release message , the resource scheduling includes: at least one of uplink scheduling and downlink scheduling; or, the transmission module 1402 is configured to respond that the message 4 includes a contention conflict resolution message, and the message 4 does not include radio resource control A release message is received, and resource scheduling is received on the first CORESET and/or the first search space, where the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the uplink scheduling and the downlink scheduling belong to the same RACH-based small data transmission process.
  • the first CORESET and/or the first search space is determined based on the SIB1 scheduled by the CORESET#0.
  • the initial uplink BWP and the initial downlink BWP are determined based on the SIB1 scheduled by the CORESET#0.
  • the bandwidth determination module 1401 is configured to determine the first uplink BWP and the first downlink BWP as the target bandwidth, the first uplink BWP and the first downlink BWP
  • the BWP is configured for the terminal device and is dedicated to the BWP based on the RACH-based small data transmission process.
  • the RACH includes: a four-step RACH; the transmission module 1402 is configured to send a preamble, a message 3, and a message of the message 3 to the network device on the first uplink BWP. At least one of retransmission and uplink transmission dynamically scheduled by the network device.
  • the RACH includes: a four-step RACH; the transmission module 1402 is configured to receive, on the first downlink BWP, a random access response, message 3 sent by the network device at least one of retransmission indication, uplink scheduling, downlink scheduling and message 4.
  • the RACH includes: a two-step RACH; the transmission module 1402 is configured to send a preamble, a message A payload, and a message 3 to the network device on the first uplink BWP , at least one of retransmission of message 3 and uplink transmission dynamically scheduled by the network device.
  • the RACH includes: a two-step RACH; the transmission module 1402 is configured to receive, on the first downlink BWP, a random access response, message 3 sent by the network device at least one of retransmission indication, message 4, uplink scheduling, downlink scheduling and message B.
  • the uplink scheduling and the downlink scheduling belong to the same RACH-based small data transmission process.
  • the first uplink BWP and the first downlink BWP are determined based on the SIB1 scheduled by CORESET#0.
  • FIG. 15 shows a structural block diagram of a data transmission apparatus provided by an exemplary embodiment of the present application.
  • the apparatus may be implemented as a network device, or may be implemented as a part of the network device, and the apparatus includes: a transmission module 1501;
  • the transmission module 1501 is configured to perform the RACH-based small data transmission process with the terminal device on the target bandwidth;
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • the target bandwidth includes: an initial uplink BWP and an initial downlink BWP, and the initial downlink BWP includes CORESET#0.
  • the RACH includes: a four-step RACH; the transmission module 1501 is configured to receive, on the initial uplink BWP, a preamble, a message 3, and a message 3 sent by the terminal device At least one of retransmission and uplink transmission dynamically scheduled by the network device.
  • the RACH includes: a four-step RACH; the transmission module 1501 is configured to send random access to the terminal device on the CORESET#0 in the initial downlink BWP At least one of a response, a retransmission indication of message 3, and message 4.
  • the transmission module 1501 is configured to send on the initial downlink BWP in response to the message 4 including a contention conflict resolution message and the message 4 not including a radio resource control release message Resource scheduling, the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the initial downlink BWP further includes a first CORESET and/or a first search space
  • the first CORESET is the CORESET configured for the terminal device in the initial downlink BWP
  • the first search space is a search space configured for the terminal device in the initial downlink BWP
  • the transmission module 1501 is configured to send on the first CORESET and/or the first search space in response to the message 4 including a contention conflict resolution message and the message 4 not including a radio resource control release message Resource scheduling, the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the RACH includes: a two-step RACH; the transmission module 1501 is configured to receive, on the initial uplink BWP, a preamble, a message A payload, and a message 3 sent by the terminal device , at least one of retransmission of message 3 and uplink transmission dynamically scheduled by the network device.
  • the RACH includes: a two-step RACH; the transmission module 1501 is configured to send random access to the terminal device on the CORESET#0 in the initial downlink BWP At least one of a response, a retransmission indication of message 3, message 4, and message B.
  • the transmission module 1501 is configured to send on the initial downlink BWP in response to the message B including a contention conflict resolution message and the message B not including a radio resource control release message Resource scheduling, the resource scheduling includes: at least one of uplink scheduling and downlink scheduling; or, the transmission module 1501 is configured to respond that the message 4 includes a contention and conflict resolution message, and the message 4 does not include wireless
  • the resource control release message is used to send resource scheduling on the initial downlink BWP, and the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the initial downlink BWP further includes a first CORESET and/or a first search space
  • the first CORESET is the CORESET configured for the terminal device in the initial downlink BWP
  • the first search space is a search space configured for the terminal device in the initial downlink BWP
  • the transmission module 1501 is configured to send resource scheduling on the first CORESET and/or the first search space in response to the message B including a contention conflict resolution message and the message B not including a radio resource control release message , the resource scheduling includes: at least one of uplink scheduling and downlink scheduling; or, the transmission module 1501 is configured to respond that the message 4 includes a contention conflict resolution message, and the message 4 does not include radio resource control A release message, sending resource scheduling on the first CORESET and/or the first search space, where the resource scheduling includes at least one of uplink scheduling and downlink scheduling.
  • the uplink scheduling and the downlink scheduling belong to the same RACH-based small data transmission process.
  • the first CORESET and/or the first search space is determined based on the 1SIB1 scheduled by the CORESET#0.
  • the initial uplink BWP and the initial downlink BWP are determined based on the SIB1 scheduled by the CORESET#0.
  • the target bandwidth includes: a first uplink BWP and a first downlink BWP, and the first uplink BWP and the first downlink BWP are configured for the terminal device and are dedicated to BWP for the RACH-based small data transmission process.
  • the RACH includes: a four-step RACH; the transmission module 1501 is configured to receive, on the first uplink BWP, a preamble, message 3, and message 3 sent by the terminal device at least one of the retransmission of the network device and the uplink transmission dynamically scheduled by the network device.
  • the RACH includes: a four-step RACH; the transmission module 1501 is configured to send, on the first downlink BWP, a random access response, a message 3 At least one of retransmission indication, uplink scheduling, downlink scheduling, and message 4.
  • the RACH includes: a two-step RACH; the transmission module 1501 is configured to receive, on the first uplink BWP, a preamble, a message A payload, and a message sent by the terminal device 3. At least one of retransmission of message 3 and uplink transmission dynamically scheduled by the network device.
  • the RACH includes: a two-step RACH; the transmission module 1501 is configured to send, on the first downlink BWP, a random access response, a message 3 At least one of retransmission indication, message 4, uplink scheduling, downlink scheduling, and message B.
  • the uplink scheduling and the downlink scheduling belong to the same RACH-based small data transmission process.
  • the first uplink BWP and the first downlink BWP are determined based on the SIB1 scheduled by CORESET#0.
  • FIG. 16 shows a schematic structural diagram of a communication device (terminal device or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be configured to store at least one instruction, and the processor 101 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • the processor and transceiver in the computer device involved in the embodiments of the present application may perform the steps performed by the terminal device in any of the methods shown in the above-mentioned FIG. 4 to FIG. 13 , It will not be repeated here.
  • the processor for determining a target bandwidth for the RACH-based small data transmission process
  • the transceiver configured to perform the RACH-based small data transmission process with a network device on the target bandwidth
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • the processor and transceiver in the computer device involved in the embodiments of the present application may perform the steps performed by the network device in any of the methods shown in the above-mentioned FIG. 4 to FIG. 13 , It will not be repeated here.
  • the computer device when the computer device is implemented as a network device,
  • the transceiver configured to perform a small data transmission process based on the random access channel RACH with the terminal device on the target bandwidth;
  • the small data transmission process is a data transmission process in which the terminal device is in an inactive state.
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the data transmission method executed by the communication device provided by the above-mentioned various method embodiments.
  • a chip is also provided, the chip includes a programmable logic circuit and/or program instructions, when the chip runs on a computer device, for implementing the data transmission method described in the above aspects .
  • a computer program product which when run on a processor of a computer device, causes the computer device to perform the data transmission method described in the above aspects.

Abstract

本申请公开了一种数据传输方法、装置、通信设备和存储介质,涉及无线通信领域。该方法应用于终端设备中,该方法包括:确定用于基于RACH的小数据传输过程的目标带宽;在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。在本申请实施例中,终端设备能够基于确定好的目标带宽,实现基于RACH的小数据传输过程。

Description

数据传输方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信领域,特别涉及一种数据传输方法、装置、通信设备和存储介质。
背景技术
RRC_INACTIVE态(即非激活态)是新空口(New Radio,NR)系统从节能角度考虑引入的新无线资源控制(Radio Resource Control,RRC)状态。
在R17中引入了小数据传输(Small Data Transmission,SDT),小数据传输对应的小数据传输过程是非激活态的数据传输过程。通过小数据传输过程,终端设备无需进入RRC_CONNECTED态(即连接态),在非激活态下即可完成数据的传输,从而减小终端设备的功耗和开销。
如何配置执行小数据传输过程的带宽,相关技术尚未提出解决方案。
发明内容
本申请实施例提供了一种数据传输方法、装置、通信设备和存储介质,终端设备能够基于确定好的目标带宽,实现基于随机接入信道(Random Access Channel,RACH)的小数据传输过程。所述技术方案如下:
根据本申请的一个方面,提供了一种数据传输方法,应用于终端设备中,所述方法包括:
确定用于基于RACH的小数据传输过程的目标带宽;
在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
根据本申请的一个方面,提供了一种数据传输方法,应用于网络设备中,所述方法包括:
在目标带宽上,与终端设备之间执行基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
根据本申请的一个方面,提供了一种数据传输装置,应用于终端设备中,所述装置包括:带宽确定模块和传输模块;
所述带宽确定模块,用于确定用于基于RACH的小数据传输过程的目标带宽;
所述传输模块,用于在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
根据本申请的一个方面,提供了一种数据传输装置,应用于网络设备中,所述装置包括:传输模块;
所述传输模块,用于在目标带宽上,与终端设备之间执行基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
根据本申请的一个方面,提供了一种终端设备,所述终端设备包括:处理器和与所述处理器相连的收发器;其中,
所述处理器,用于确定用于基于RACH的小数据传输过程的目标带宽;
所述收发器,用于在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括:处理器和与所述处理器相连的收发器;其中,
所述收发器,用于在目标带宽上,与终端设备之间执行基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如上述方面所述的数据传输方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的数据传输方法。
根据本申请的一个方面,提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述方面所述的数据传输方法。
本申请实施例提供的技术方案至少包括如下有益效果:
在终端设备执行基于RACH的小数据传输过程前,终端设备先确定目标带宽,再在目标带宽上实现基于RACH的小数据传输过程,从而提供了一种确定执行小数据传输过程的带宽的实现方式。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的部分带宽的示意图;
图2是相关技术提供的随机接入过程的示意图;
图3是本申请一个示例性实施例提供的通信系统的框图;
图4是本申请一个示例性实施例提供的数据传输方法的流程图;
图5是本申请一个示例性实施例提供的数据传输方法的流程图;
图6是本申请一个示例性实施例提供的初始下行BWP的示意图;
图7是本申请一个示例性实施例提供的基于RACH的小数据传输过程的示意图;
图8是本申请一个示例性实施例提供的基于RACH的小数据传输过程的示意图;
图9是本申请一个示例性实施例提供的基于RACH的小数据传输过程的示意图;
图10是本申请一个示例性实施例提供的数据传输方法的流程图;
图11是本申请一个示例性实施例提供的基于RACH的小数据传输过程的示意图;
图12是本申请一个示例性实施例提供的基于RACH的小数据传输过程的示意图;
图13是本申请一个示例性实施例提供的基于RACH的小数据传输过程的示意图;
图14是本申请一个示例性实施例提供的数据传输装置的结构框图;
图15是本申请一个示例性实施例提供的数据传输装置的结构框图;
图16是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
首先,对本申请实施例中涉及的名词进行简单介绍:
RRC状态:
NR中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的RRC状态,即RRC_INACTIVE态。
RRC_INACTIVE态(即非激活态):移动性为基于终端设备的小区选择重选,存在核心网(Core Network,CN)与NR之间的连接,UE接入上下文存在某个网络设备上,寻呼由无线接入网(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络设备侧知道终端设备的位置是基于RAN的寻呼区域级别的。
部分带宽(Bandwidth Part,BWP):
BWP是在NR中引入的概念,通过BWP定义一个比小区系统带宽和终端能力都小的接入带宽,终端设备的所有收发操作都可以在这个较小的带宽内进行,从而实现更灵活,更高效,耗电量更低的终端操作。示例性的,如图1所示,终端设备可以根据业务需求,在不同带宽的BWP中进行灵活选择。
在下行方向上,终端设备最多被配置4个下行BWP,在任意一个时刻,只能激活一个下行BWP,终端设备在激活的下行BWP上接收下行信道。在上行方向上,终端设备最多被配置4个上行BWP,在任意一个时刻,只能激活一个上行BWP,终端设备在激活的上行BWP上接收上行信道;如果终端设备被配置了补充上行(Supplementary Uplink,SUL)载波,则可以再额外配置4个上行BWP,在任意一个时刻,只能激活一个上行BWP,终端设备在激活的上行BWP上接收上行信道。
对于下行BWP,每个下行BWP内至少包含一个控制资源集(Control Resource Set,CORESET),用于物理下行控制信道(Physical Downlink Control Channel,PDCCH)的接收和检测,即CORESET是终端设备搜索PDCCH的时频范围。
在一个下行BWP内,CORESET可以占用连续的或非连续的频域资源,网络设备可以在RRC信令中采用位图(bitmap)指示CORESET在下行BWP中占用的物理资源块(Physical Resource Block,PRB),位图中的每个比特(bit)指示一个包含6个资源块(Resource Block,RB)的RB组。
此外,CORESET配置中的持续时间(duration)参数用于描述CORESET的时域长度,由于CORESET本身不带有时域位置的信息,所以CORESET描述的是一个时域位置不定,可以浮动的,由duration参数确定的时域区域。因此,需要网络设备通过配置搜索空间(Search Space),进一步规定终端设备接收PDCCH 的时域区域。
上述提到的上行BWP以及下行BWP是使用RRC专用信令配置的终端专用BWP(即UE-dedicated BWP),另外,终端设备还配置有初始上行BWP(即initial UL BWP)以及初始下行BWP(即initial DL BWP)。在终端设备进入连接态前,在初始上行BWP或初始下行BWP上工作。
初始上行BWP在系统信息块1(System Information Block 1,SIB1)中配置,终端设备在初始上行BWP上完成初始随机接入过程中前导码(preamble),消息3(即Msg3)或消息A(即MsgA)的发送。
初始下行BWP包括CORESET#0,CORESET#0用于调度SIB1,其他系统信息(Other System Information,OSI)或消息2(即Msg2),消息4(即Msg4)等初始随机接入过程中的物理下行控制信道(Physical Downlink Shared Channel,PDSCH)信息。终端设备在初始下行BWP中确定CORESET#0的方法为:终端设备在完成小区搜索时,从网络设备侧获取同步信号块(Synchronization Signal Block,SSB),确定SSB的频域位置,进一步通过SSB中的物理广播信道(Physical Broadcast Channel,PBCH)确定CORESET#0相对于SSB的频率偏移值,基于SSB的频域位置与CORESET#0相对于SSB的频率偏移值,从而确定CORESET#0。
标准中支持两种初始下行BWP的确定方式。第一种,如果高层信令未配置初始下行BWP,则终端设备将CORESET#0的频域范围作为初始下行BWP的带宽。第二种,如果高层信令(如SIB1)配置了初始下行BWP,则根据高层信令配置确定初始下行BWP。单独配置初始下行BWP的意义在于可以更好地支持服务小区添加和小区切换等操作,同时支持终端设备的大带宽操作。
如图2所示,对于单独配置初始下行BWP的情况,在随机接入过程中,终端设备在CORESET#0上接收网络设备发送的下行消息,如随机接入响应(Random Access Response,RAR)、竞争解决(Contention Resolution)消息、无线资源控制建立消息(即RRCSetup)或无线资源控制释放消息(即RRCRelease)或无线资源控制重建消息(即RRCReestablishment)。在接收到RRCSetup或RRCRelease或RRCReestablishment后,终端设备在初始下行BWP上工作。
小数据传输(Small Data Transmission,SDT):
小数据传输是为处于非激活态的终端设备配置的一种数据传输方式。通小数据传输过程,终端设备无需进入连接态,即可完成数据的传输,从而减小终端设备的功耗和开销。
可选的,小数据传输过程包括:基于配置授权(Configured Grant,CG)的小数据传输过程和基于RACH的小数据传输过程。
本申请针对如何配置执行小数据传输过程的带宽的问题,提供有如下的方案。
图3示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和终端设备14。
接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR-U系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本申请实施例中,上述为终端设备14提供无线通信功能的装置统称为网络设备。
终端设备14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。网络设备120与终端设备14之间通过某种空口技术互相通信,例如Uu接口。可选的,终端设备14支持在非激活态执行小数据传输过程。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle, V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本申请实施例也可以应用于这些通信系统。
图4示出了本申请一个示例性实施例提供的数据传输方法的流程图。该方法可以应用于如图3示出的通信系统中,该方法包括:
步骤410,终端设备确定用于基于RACH的小数据传输过程的目标带宽。
终端设备在执行基于RACH的小数据传输过程之前,确定用于基于RACH的小数据传输过程的目标带宽。可选的,目标带宽包括:上行所用的目标带宽以及下行所用的目标带宽。
可选的,终端设备通过接收网络设备发送的高层信令,如SIB1,根据高层信令的配置,确定用于基于RACH的小数据传输过程的目标带宽。
其中,小数据传输过程是终端设备处于非激活态的数据传输过程。
小数据传输是为处于非激活态的终端设备配置的一种数据传输方式,不需要终端设备与网络设备之间建立RRC连接。对于数据量小且传输频率低的终端设备来说,若通过连接恢复过程,恢复与网络设备之间的RRC连接之后再进行数据传输,则数据传输完成后又需要回到非激活态,终端设备的功耗较大。通过进行非激活态下的小数据传输过程,终端设备能够避免进行RRC状态的转换,从而减少终端设备的功耗。
可选的,小数据传输过程包括:基于CG的小数据传输过程和基于RACH的小数据传输过程。在本申请实施例中,针对的是基于RACH的小数据传输过程。其中,基于RACH的小数据传输过程可以是基于2步RACH的小数据传输过程,也可以是基于4步RACH的小数据传输过程,本申请实施例对此不进行限制。
步骤420,在目标带宽上,终端设备与网络设备之间执行基于RACH的小数据传输过程。
在终端设备确定目标带宽之后,终端设备与网络设备在目标带宽上,执行基于RACH的小数据传输过程。
可选的,目标带宽包括:上行所用的目标带宽以及下行所用的目标带宽。终端设备在上行所用的目标带宽上进行上行发送,网络设备在上行所用的目标带宽上进行上行接收;终端设备在下行所用的目标带宽上进行下行接收,网络设备在下行所用的目标带宽上进行下行发送。
综上所述,本实施例提供的方法,在终端设备执行基于RACH的小数据传输过程前,终端设备先确定目标带宽,再在目标带宽上实现基于RACH的小数据传输过程,从而提供了一种确定执行小数据传输过程的带宽的实现方式。
在基于图4的可选实施例中,目标带宽存在如下2种不同的方案。
1)目标带宽包括:初始上行BWP以及初始下行BWP。
其中,初始上行BWP以及初始下行BWP是终端设备在初始接入过程中确定的工作带宽。
也即,终端设备在初始接入过程中确定初始上行BWP以及初始下行BWP,利用初始上行BWP以及初始下行BWP,终端设备与网络设备之间执行基于RACH的小数据传输过程。
2)目标带宽包括:第一上行BWP以及第一下行BWP。
其中,第一上行BWP与第一下行BWP是为终端设备配置的,专用于基于RACH的小数据传输过程的BWP。
也即,为基于RACH的小数据传输过程,引入了第一上行BWP以及第一下行BWP,利用新引入的第一上行BWP以及第一下行BWP,终端设备与网络设备之间执行基于RACH的小数据传输过程。
下面,针对上述两种目标带宽的不同的方案,分别进行示例性的说明。
1)目标带宽包括:初始上行BWP以及初始下行BWP。
基于图4的一个可选实施例,请参考图5,其示出了本申请一个示例性实施提供的数据传输方法的流程图。该方法可以应用于如图3示出的通信系统中,该方法包括如下步骤:
步骤510,终端设备将初始上行BWP以及初始下行BWP,确定为目标带宽,初始下行BWP包括CORESET#0。
初始上行BWP以及初始下行BWP是终端设备在初始接入过程中确定的工作带宽。CORESET#0是一组用于承载SIB1或称剩余最小系统信息(Remaining Minimum System Information,RMSI)的调度信息的控制资源的集合。如图6所示,初始下行BWP中包括CORESET#0。
可选的,初始上行BWP以及初始下行BWP是基于CORESET#0调度的SIB1确定的。也即,终端设备在确定CORESET#0后,接收CORESET#0调度的SIB1,通过SIB1确定初始上行BWP以及初始下行BWP。
可选的,终端设备确定CORESET#0的过程包括:终端设备在完成小区搜索时,从网络设备侧获取SSB,确定SSB的频域位置,进一步通过SSB中的PBCH确定CORESET#0相对于SSB的频率偏移值,基于SSB的频域位置与CORESET#0相对于SSB的频率偏移值,从而确定CORESET#0。
步骤520,在目标带宽上,终端设备与网络设备之间执行基于RACH的小数据传输过程。
可选的,基于RACH的小数据传输过程包括:基于四步RACH的小数据传输过程和基于两步RACH的小数据传输过程。
一、在目标带宽上,终端设备与网络设备之间执行基于四步RACH的小数据传输过程。
可选的,在初始上行BWP上,终端设备向网络设备发送前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种;相应的,在初始上行BWP上,网络设备接收终端设备发送的前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
可选的,在初始下行BWP中的CORESET#0上,终端设备接收随机接入响应、消息3的重传指示以及消息4中的至少一种。相应的,在初始下行BWP中的CORESET#0上,网络设备向终端设备发送随机接入响应、消息3的重传指示以及消息4中的至少一种。
可以理解的是,在完成消息4的传输之后,终端设备仍处于非激活态,终端设备与网络设备之间可以进行连续的上行传输或下行传输。为了接收连续的上行传输或下行传输所需的上行调度或下行调度,可以将带宽由CORESET#0切换到更大的带宽上。
在一种可能的实现方式中,响应于消息4包括竞争冲突解决消息,且消息4不包括无线资源控制释放消息,终端设备在初始下行BWP上接收资源调度,资源调度包括:上行调度和下行调度中的至少一种。相应的,响应于消息4包括竞争冲突解决消息,且消息4不包括无线资源控制释放消息,网络设备在初始下行BWP上发送资源调度,资源调度包括:上行调度和下行调度中的至少一种。
也即,在消息4指示已完成竞争解决,且消息4未指示终止小数据传输过程的情况下,将终端设备由CORESET#0切换到带宽更大的初始下行BWP上,以接收后续的资源调度。
在另一种可能的实现方式中,初始下行BWP还包括第一CORESET和/或第一搜索空间,第一CORESET是在初始下行BWP中为终端设备配置的CORESET,第一搜索空间是在初始下行BWP中为终端设备配置的搜索空间。
响应于消息4包括竞争冲突解决消息,且消息4不包括无线资源控制释放消息,终端设备在第一CORESET和/或第一搜索空间上接收资源调度,资源调度包括上行调度和下行调度中的至少一种。相应的,响应于消息4包括竞争冲突解决消息,且消息4不包括无线资源控制释放消息,网络设备在第一CORESET和/或第一搜索空间上发送资源调度,资源调度包括上行调度和下行调度中的至少一种。
也即,网络设备为终端设备配置专用于小数据传输过程的第一CORESET;或,网络设备为终端设备配置专用于小数据传输过程的第一搜索空间;或,网络设备为终端设备配置专用于小数据传输过程的第一CORESET和第一搜索空间。在消息4指示已完成竞争解决,且消息4未指示终止小数据传输过程的情况下,将终端设备由CORESET#0切换到带宽更大的第一CORESET和/或第一搜索空间上,以接收后续的资源调度。
可选的,第一CORESET和/或第一搜索空间是基于CORESET#0调度的SIB1确定的。也即,终端设备在确定CORESET#0后,接收CORESET#0调度的SIB1,除了通过SIB1确定初始上行BWP以及初始下行BWP之外,还通过SIB1确定第一CORESET;或,第一搜索空间;或,第一CORESET和第一搜索空间。
可选的,上行调度和下行调度属于同一基于RACH的小数据传输过程。
示例性的,如图7所示,终端设备与网络设备之间执行基于四步RACH的小数据传输过程包括如下步骤:
S11,终端设备在初始上行BWP上发送前导码。
相应的,网络设备在初始上行BWP上接收前导码。
S12,网络设备在CORESET#0上发送随机接入响应。
相应的,终端设备在CORESET#0上接收随机接入响应。
S13,终端设备在初始上行BWP上发送消息3。
相应的,网络设备在初始上行BWP上接收消息3。
可选的,消息3包括RRC消息以及上行数据。
S14,网络设备在CORESET#0上发送消息4。
相应的,终端设备在CORESET#0上接收消息4。
可选的,消息4包括竞争冲突解决消息,不包括无线资源控制释放消息。
S15,网络设备在初始下行BWP上发送上行调度。
相应的,终端设备在初始下行BWP上接收上行调度。
在另一种实现方式中,网络设备在第一CORESET和/或第一搜索空间上发送上行调度。相应的,终端设备在第一CORESET和/或第一搜索空间上接收上行调度。
S16,网络设备在初始下行BWP上发送下行调度。
相应的,终端设备在初始下行BWP上接收下行调度。
在另一种实现方式中,网络设备在第一CORESET和/或第一搜索空间上发送下行调度。相应的,终端设备在第一CORESET和/或第一搜索空间上接收下行调度。
二、在目标带宽上,终端设备与网络设备之间执行基于两步RACH的小数据传输过程。
可选的,在初始上行BWP上,终端设备向网络设备发送前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。相应的,在初始上行BWP上,网络设备接收终端设备发送的前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
可选的,在初始下行BWP中的CORESET#0上,终端设备接收网络设备发送的随机接入响应、消息3的重传指示、消息4以及消息B中的至少一种。相应的,在初始下行BWP中的CORESET#0上,网络设备向终端设备发送随机接入响应、消息3的重传指示、消息4以及消息B中的至少一种。
可以理解的是,在两步RACH中,若网络设备只接收到了终端设备发送的前导码,而未接收到消息A负载的情况下,则网络设备向终端设备发送随机接入响应,终端设备在接收随机接入响应之后,向网络设备发送消息3,网络设备在成功接收消息3的情况下,向终端设备反馈消息4;若网络设备成功接收到了终端设备发送的前导码以及消息A负载的情况下,则网络设备向终端设备反馈消息B。在完成消息4或消息B的传输之后,终端设备仍处于非激活态,终端设备与网络设备之间可以进行连续的上行传输或下行传输。为了接收连续的上行传输或下行传输所需的上行调度或下行调度,可以将带宽由CORESET#0切换到更大的带宽上。
在一种可能的实现方式中,响应于消息B包括竞争冲突解决消息,且消息B不包括无线资源控制释放消息,终端设备在初始下行BWP上接收资源调度,资源调度包括:上行调度和下行调度中的至少一种;或,响应于消息4包括竞争冲突解决消息,且消息4不包括无线资源控制释放消息,终端设备在初始下行BWP上接收资源调度,资源调度包括:上行调度和下行调度中的至少一种。相应的,响应于消息B包括竞争冲突解决消息,且消息B不包括无线资源控制释放消息,网络设备在初始下行BWP上发送资源调度,资源调度包括:上行调度和下行调度中的至少一种;或,响应于消息4包括竞争冲突解决消息,且消息4不包括无线资源控制释放消息,网络设备在初始下行BWP上发送资源调度,资源调度包括:上行调度和下行调度中的至少一种。
也即,在消息4或消息B指示已完成竞争解决,且消息4或消息B未指示终止小数据传输过程的情况下,将终端设备由CORESET#0切换到带宽更大的初始下行BWP上,以接收后续的资源调度。
在另一种可能的实现方式中,初始下行BWP还包括第一CORESET和/或第一搜索空间,第一CORESET是在初始下行BWP中为终端设备配置的CORESET,第一搜索空间是在初始下行BWP中为终端设备配置的搜索空间。
响应于消息B包括竞争冲突解决消息,且消息B不包括无线资源控制释放消息,终端设备在第一CORESET和/或第一搜索空间上接收资源调度,资源调度包括:上行调度和下行调度中的至少一种;或,响应于消息4包括竞争冲突解决消息,且消息4不包括无线资源控制释放消息,终端设备在第一CORESET和/或第一搜索空间上接收资源调度,资源调度包括:上行调度和下行调度中的至少一种。相应的,响应于消息B包括竞争冲突解决消息,且消息B不包括无线资源控制释放消息,网络设备在第一CORESET和/或第一搜索空间上发送资源调度,资源调度包括:上行调度和下行调度中的至少一种;或,响应于消息4包括竞争冲突解决消息,且消息4不包括无线资源控制释放消息,网络设备在第一CORESET和/或第一搜索空间上发送资源调度,资源调度包括:上行调度和下行调度中的至少一种。
也即,网络设备为终端设备配置专用于小数据传输过程的第一CORESET;或,网络设备为终端设备配置专用于小数据传输过程的第一搜索空间;或,网络设备为终端设备配置专用于小数据传输过程的第一CORESET和第一搜索空间。在消息4或消息B指示已完成竞争解决,且消息4或消息B未指示终止小数据传输过程的情况下,将终端设备由CORESET#0切换到带宽更大的第一CORESET和/或第一搜索空间上,以接收后续的资源调度。
可选的,第一CORESET和/或第一搜索空间是基于CORESET#0调度的SIB1确定的。也即,终端设备在确定CORESET#0后,接收CORESET#0调度的SIB1,除了通过SIB1确定初始上行BWP以及初始下行BWP之外,还通过SIB1确定第一CORESET;或,第一搜索空间;或,第一CORESET和第一搜索空间。
可选的,上行调度和下行调度属于同一基于RACH的小数据传输过程。
示例性的,如图8所示,终端设备与网络设备之间执行基于两步RACH的小数据传输过程包括如下步骤:
S21,终端设备在初始上行BWP上发送前导码和消息A负载。
相应的,网络设备在初始上行BWP上接收前导码和消息A负载。
可选的,消息A负载包括RRC消息以及上行数据。
S22,网络设备在CORESET#0上发送消息B。
相应的,终端设备在CORESET#0上接收消息B。
可选的,消息B包括竞争冲突解决消息,不包括无线资源控制释放消息。
S23,网络设备在初始下行BWP上发送上行调度。
相应的,终端设备在初始下行BWP上接收上行调度。
在另一种实现方式中,网络设备在第一CORESET和/或第一搜索空间上发送上行调度。相应的,终端设备在第一CORESET和/或第一搜索空间上接收上行调度。
S24,网络设备在初始下行BWP上发送下行调度。
相应的,终端设备在初始下行BWP上接收下行调度。
在另一种实现方式中,网络设备在第一CORESET和/或第一搜索空间上发送下行调度。相应的,终端设备在第一CORESET和/或第一搜索空间上接收下行调度。
示例性的,如图9所示,终端设备与网络设备之间执行基于两步RACH的小数据传输过程包括如下步骤:
S31,终端设备在初始上行BWP上发送前导码和消息A负载。
相应的,网络设备在初始上行BWP上只接收到了前导码,未成功接收到消息A负载。
S32,网络设备在CORESET#0上发送随机接入响应。
相应的,终端设备在CORESET#0上接收随机接入响应。
S33,终端设备在初始上行BWP上发送消息3。
相应的,网络设备在初始上行BWP上接收消息3。
可选的,消息3包括RRC消息以及上行数据。
S34,网络设备在CORESET#0上发送消息4。
相应的,终端设备在CORESET#0上接收消息4。
可选的,消息4包括竞争冲突解决消息,不包括无线资源控制释放消息。
S35,网络设备在初始下行BWP上发送上行调度。
相应的,终端设备在初始下行BWP上接收上行调度。
在另一种实现方式中,网络设备在第一CORESET和/或第一搜索空间上发送上行调度。相应的,终端设备在第一CORESET和/或第一搜索空间上接收上行调度。
S36,网络设备在初始下行BWP上发送下行调度。
相应的,终端设备在初始下行BWP上接收下行调度。
在另一种实现方式中,网络设备在第一CORESET和/或第一搜索空间上发送下行调度。相应的,终端设备在第一CORESET和/或第一搜索空间上接收下行调度。
综上所述,本实施例提供的方法,在基于RACH的小数据传输过程中,终端设备可以先在初始上行BWP以及初始下行BWP中的CORESET#0上执行随机接入流程,再将CORESET#0切换至更大的初始下行BWP上,或者,将CORESET#0切换至更大的第一CORESET和/或第一搜索空间上,以便于进行后续的上下行调度以及上下行传输,从而增强小数据传输过程中数据传输的能力。
2)目标带宽包括:第一上行BWP以及第一下行BWP。
基于图4的一个可选实施例,请参考图10,其示出了本申请一个示例性实施提供的数据传输方法的流程图。该方法可以应用于如图3示出的通信系统中,该方法包括如下步骤:
步骤1010,终端设备将第一上行BWP以及第一下行BWP,确定为目标带宽。
其中,第一上行BWP与第一下行BWP是为终端设备配置的,专用于基于RACH的小数据传输过程的BWP。可选的,第一下行BWP中包括CORESET#0。
可选的,第一上行BWP以及第一下行BWP是基于CORESET#0调度的SIB1确定的。也即,终端设备在确定CORESET#0后,接收CORESET#0调度的SIB1,通过SIB1确定第一上行BWP以及第一下行BWP。
可选的,终端设备确定CORESET#0的过程包括:终端设备在完成小区搜索时,从网络设备侧获取SSB,确定SSB的频域位置,进一步通过SSB中的PBCH确定CORESET#0相对于SSB的频率偏移值,基于SSB的频域位置与CORESET#0相对于SSB的频率偏移值,从而确定CORESET#0。
步骤1020,在目标带宽上,终端设备与网络设备之间执行基于RACH的小数据传输过程。
可选的,基于RACH的小数据传输过程包括:基于四步RACH的小数据传输过程和基于两步RACH 的小数据传输过程。
一、在目标带宽上,终端设备与网络设备之间执行基于四步RACH的小数据传输过程。
可选的,在第一上行BWP上,终端设备向网络设备发送前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。相应的,在第一上行BWP上,网络设备接收终端设备发送的前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
可选的,在第一下行BWP上,终端设备接收网络设备发送的随机接入响应、消息3的重传指示、上行调度、下行调度以及消息4中的至少一种。相应的,在第一下行BWP上,网络设备向终端设备发送随机接入响应、消息3的重传指示、上行调度、下行调度以及消息4中的至少一种。
可选的,上行调度和下行调度属于同一基于RACH的小数据传输过程。
示例性的,如图11所示,终端设备与网络设备之间执行基于四步RACH的小数据传输过程包括如下步骤:
S41,终端设备在第一上行BWP上发送前导码。
相应的,网络设备在第一上行BWP上接收前导码。
S42,网络设备在第一下行BWP上发送随机接入响应。
相应的,终端设备在第一下行BWP上接收随机接入响应。
S43,终端设备在第一上行BWP上发送消息3。
相应的,网络设备在第一上行BWP上接收消息3。
可选的,消息3包括RRC消息以及上行数据。
S44,网络设备第一下行BWP上发送消息4。
相应的,终端设备在第一下行BWP上接收消息4。
S45,网络设备在第一下行BWP上发送上行调度。
相应的,终端设备在第一下行BWP上接收上行调度。
S46,网络设备在第一下行BWP上发送下行调度。
相应的,终端设备在第一下行BWP上接收下行调度。
二、在目标带宽上,终端设备与网络设备之间执行基于两步RACH的小数据传输过程。
可选的,在第一上行BWP上,终端设备向网络设备发送前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。相应的,在第一上行BWP上,网络设备接收终端设备发送的前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
可选的,在第一下行BWP上,终端设备接收网络设备发送的随机接入响应、消息3的重传指示、消息4、上行调度、下行调度以及消息B中的至少一种。相应的,在第一下行BWP上,网络设备向终端设备发送随机接入响应、消息3的重传指示、消息4、上行调度、下行调度以及消息B中的至少一种。
可选的,上行调度和下行调度属于同一基于RACH的小数据传输过程。
示例性的,如图12所示,终端设备与网络设备之间执行基于两步RACH的小数据传输过程包括如下步骤:
S51,终端设备在第一上行BWP上发送前导码和消息A负载。
相应的,网络设备在第一上行BWP上接收前导码和消息A负载。
可选的,消息A负载包括RRC消息以及上行数据。
S52,网络设备在第一下行BWP上发送消息B。
相应的,终端设备在第一下行BWP上接收消息B。
S53,网络设备在第一下行BWP上发送上行调度。
相应的,终端设备在第一下行BWP上接收上行调度。
S54,网络设备在第一下行BWP上发送下行调度。
相应的,终端设备在第一下行BWP上接收下行调度。
示例性的,如图13所示,终端设备与网络设备之间执行基于两步RACH的小数据传输过程包括如下步骤:
S61,终端设备在第一上行BWP上发送前导码和消息A负载。
相应的,网络设备在第一上行BWP上只接收到了前导码,未成功接收到消息A负载。
S62,网络设备在第一下行BWP上发送随机接入响应。
相应的,终端设备在第一下行BWP上接收随机接入响应。
S63,终端设备在第一上行BWP上发送消息3。
相应的,网络设备在第一上行BWP上接收消息3。
可选的,消息3包括RRC消息以及上行数据。
S64,网络设备在第一下行BWP上发送消息4。
相应的,终端设备在第一下行BWP上接收消息4。
S65,网络设备在第一下行BWP上发送上行调度。
相应的,终端设备在第一下行BWP上接收上行调度。
S66,网络设备在第一下行BWP上发送下行调度。
相应的,终端设备在第一下行BWP上接收下行调度。
综上所述,本实施例提供的方法,为基于RACH的小数据传输过程,配置专用的第一上行BWP以及第一下行BWP,从而终端设备与网络设备可以在第一上行BWP以及第一下行BWP上,实现基于RACH的小数据传输过程。
需要说明的是,上述方法实施例可以分别单独实施,也可以组合实施,本申请对此不进行限制。
在上述各个实施例中,由终端设备执行的步骤可以单独实现成为终端设备一侧的数据传输方法,由网络设备执行的步骤可以单独实现成为网络设备一侧的数据传输方法。
图14示出了本申请一个示例性实施例提供的数据传输装置的结构框图,该装置可以实现成为终端设备,或者,实现成为终端设备中的一部分,该装置包括:带宽确定模块1401和传输模块1402;
所述带宽确定模块1401,用于确定用于基于RACH的小数据传输过程的目标带宽;
所述传输模块1402,用于在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
在一个可选的实施例中,所述带宽确定模块1401,用于将初始上行BWP以及初始下行BWP,确定为所述目标带宽,所述初始下行BWP包括CORESET#0。
在一个可选的实施例中,所述RACH包括:四步RACH;所述传输模块1402,用于在所述初始上行BWP上,向所述网络设备发送前导码、消息3、消息3的重传以及所述网络设备动态调度的上行传输中的至少一种。
在一个可选的实施例中,所述RACH包括:四步RACH;所述传输模块1402,用于在所述初始下行BWP中的所述CORESET#0上,接收所述网络设备发送的随机接入响应、消息3的重传指示以及消息4中的至少一种。
在一个可选的实施例中,所述传输模块1402,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
在一个可选的实施例中,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
所述传输模块1402,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或所述第一搜索空间上接收资源调度,所述资源调度包括上行调度和下行调度中的至少一种。
在一个可选的实施例中,所述RACH包括:两步RACH;所述传输模块1402,用于在所述初始上行BWP上,向所述网络设备发送前导码、消息A负载、消息3、消息3的重传以及所述网络设备动态调度的上行传输中的至少一种。
在一个可选的实施例中,所述RACH包括:两步RACH;所述传输模块1402,用于在所述初始下行BWP中的所述CORESET#0上,接收所述网络设备发送的随机接入响应、消息3的重传指示、消息4以及消息B中的至少一种。
在一个可选的实施例中,所述传输模块1402,用于响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;或,所述传输模块1402,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
在一个可选的实施例中,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
所述传输模块1402,用于响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;或,所述传输模块1402,用于响应于所述消息4包括竞争冲突解决消息,且所 述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
在一个可选的实施例中,所述上行调度和所述下行调度属于同一所述基于RACH的小数据传输过程。
在一个可选的实施例中,所述第一CORESET和/或第一搜索空间是基于所述CORESET#0调度的SIB1确定的。
在一个可选的实施例中,所述初始上行BWP以及所述初始下行BWP是基于所述CORESET#0调度的SIB1确定的。
在一个可选的实施例中,所述带宽确定模块1401,用于将第一上行BWP以及第一下行BWP,确定为所述目标带宽,所述第一上行BWP与所述第一下行BWP是为所述终端设备配置的,专用于所述基于RACH的小数据传输过程的BWP。
在一个可选的实施例中,所述RACH包括:四步RACH;所述传输模块1402,用于在所述第一上行BWP上,向所述网络设备发送前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
在一个可选的实施例中,所述RACH包括:四步RACH;所述传输模块1402,用于在所述第一下行BWP上,接收所述网络设备发送的随机接入响应、消息3的重传指示、上行调度、下行调度以及消息4中的至少一种。
在一个可选的实施例中,所述RACH包括:两步RACH;所述传输模块1402,用于在所述第一上行BWP上,向所述网络设备发送前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
在一个可选的实施例中,所述RACH包括:两步RACH;所述传输模块1402,用于在所述第一下行BWP上,接收所述网络设备发送的随机接入响应、消息3的重传指示、消息4、上行调度、下行调度以及消息B中的至少一种。
在一个可选的实施例中,所述上行调度和下行调度属于同一所述基于RACH的小数据传输过程。
在一个可选的实施例中,所述第一上行BWP以及所述第一下行BWP是基于CORESET#0调度的SIB1确定的。
图15示出了本申请一个示例性实施例提供的数据传输装置的结构框图,该装置可以实现成为网络设备,或者,实现成为网络设备中的一部分,该装置包括:传输模块1501;
所述传输模块1501,用于在目标带宽上,与终端设备之间执行基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
在一个可选的实施例中,所述目标带宽包括:初始上行BWP以及初始下行BWP,所述初始下行BWP包括CORESET#0。
在一个可选的实施例中,所述RACH包括:四步RACH;所述传输模块1501,用于在所述初始上行BWP上,接收所述终端设备发送的前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
在一个可选的实施例中,所述RACH包括:四步RACH;所述传输模块1501,用于在所述初始下行BWP中的所述CORESET#0上,向所述终端设备发送随机接入响应、消息3的重传指示以及消息4中的至少一种。
在一个可选的实施例中,所述传输模块1501,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
在一个可选的实施例中,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
所述传输模块1501,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或所述第一搜索空间上发送资源调度,所述资源调度包括上行调度和下行调度中的至少一种。
在一个可选的实施例中,所述RACH包括:两步RACH;所述传输模块1501,用于在所述初始上行BWP上,接收所述终端设备发送的前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
在一个可选的实施例中,所述RACH包括:两步RACH;所述传输模块1501,用于在所述初始下行BWP中的所述CORESET#0上,向所述终端设备发送随机接入响应、消息3的重传指示、消息4以及消息B中的至少一种。
在一个可选的实施例中,所述传输模块1501,用于响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;或,所述传输模块1501,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
在一个可选的实施例中,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
所述传输模块1501,用于响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;或,所述传输模块1501,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
在一个可选的实施例中,所述上行调度和所述下行调度属于同一所述基于RACH的小数据传输过程。
在一个可选的实施例中,所述第一CORESET和/或第一搜索空间是基于所述CORESET#0调度的1SIB1确定的。
在一个可选的实施例中,所述初始上行BWP以及所述初始下行BWP是基于所述CORESET#0调度的SIB1确定的。
在一个可选的实施例中,所述目标带宽包括:第一上行BWP以及第一下行BWP,所述第一上行BWP与所述第一下行BWP是为所述终端设备配置的,专用于所述基于RACH的小数据传输过程的BWP。
在一个可选的实施例中,所述RACH包括:四步RACH;所述传输模块1501,用于在所述第一上行BWP上,接收所述终端设备发送的前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
在一个可选的实施例中,所述RACH包括:四步RACH;所述传输模块1501,用于在所述第一下行BWP上,向所述终端设备发送随机接入响应、消息3的重传指示、上行调度、下行调度以及消息4中的至少一种。
在一个可选的实施例中,所述RACH包括:两步RACH;所述传输模块1501,用于在所述第一上行BWP上,接收所述终端设备发送的前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
在一个可选的实施例中,所述RACH包括:两步RACH;所述传输模块1501,用于在所述第一下行BWP上,向所述终端设备发送随机接入响应、消息3的重传指示、消息4、上行调度、下行调度以及消息B中的至少一种。
在一个可选的实施例中,所述上行调度和下行调度属于同一所述基于RACH的小数据传输过程。
在一个可选的实施例中,所述第一上行BWP以及所述第一下行BWP是基于CORESET#0调度的SIB1确定的。
图16示出了本申请一个示例性实施例提供的通信设备(终端设备或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
其中,当计算机设备实现为终端设备时,本申请实施例涉及的计算机设备中的处理器和收发器,可以执行上述图4至图13任一所示的方法中,由终端设备执行的步骤,此处不再赘述。
在一种可能的实现方式中,当计算机设备实现为终端设备时,
所述处理器,用于确定用于基于RACH的小数据传输过程的目标带宽;
所述收发器,用于在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
其中,当计算机设备实现为网络设备时,本申请实施例涉及的计算机设备中的处理器和收发器,可以执行上述图4至图13任一所示的方法中,由网络设备执行的步骤,此处不再赘述。
在一种可能的实现方式中,当计算机设备实现为网络设备时,
所述收发器,用于在目标带宽上,与终端设备之间执行基于随机接入信道RACH的小数据传输过程;
其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的数据传输方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的数据传输方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得计算机设备执行上述方面所述的数据传输方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (83)

  1. 一种数据传输方法,其特征在于,应用于终端设备中,所述方法包括:
    确定用于基于随机接入信道RACH的小数据传输过程的目标带宽;
    在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;
    其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
  2. 根据权利要求1所述的方法,其特征在于,所述确定用于基于RACH的小数据传输过程的目标带宽,包括:
    将初始上行部分带宽BWP以及初始下行BWP,确定为所述目标带宽,所述初始下行BWP包括资源控制集CORESET#0。
  3. 根据权利要求2所述的方法,其特征在于,所述RACH包括:四步RACH;所述在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程,包括:
    在所述初始上行BWP上,向所述网络设备发送前导码、消息3、消息3的重传以及所述网络设备动态调度的上行传输中的至少一种。
  4. 根据权利要求2所述的方法,其特征在于,所述RACH包括:四步RACH;所述在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程,包括:
    在所述初始下行BWP中的所述CORESET#0上,接收所述网络设备发送的随机接入响应、消息3的重传指示以及消息4中的至少一种。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  6. 根据权利要求4所述的方法,其特征在于,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
    所述方法还包括:
    响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或所述第一搜索空间上接收资源调度,所述资源调度包括上行调度和下行调度中的至少一种。
  7. 根据权利要求2所述的方法,其特征在于,所述RACH包括:两步RACH;所述在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程,包括:
    在所述初始上行BWP上,向所述网络设备发送前导码、消息A负载、消息3、消息3的重传以及所述网络设备动态调度的上行传输中的至少一种。
  8. 根据权利要求2所述的方法,其特征在于,所述RACH包括:两步RACH;所述在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程,包括:
    在所述初始下行BWP中的所述CORESET#0上,接收所述网络设备发送的随机接入响应、消息3的重传指示、消息4以及消息B中的至少一种。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;
    或,
    响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  10. 根据权利要求8所述的方法,其特征在于,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
    所述方法还包括:
    响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;
    或,
    响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  11. 根据权利要求5或6或9或10任一所述的方法,其特征在于,
    所述上行调度和所述下行调度属于同一所述基于RACH的小数据传输过程。
  12. 根据权利要求6或10所述的方法,其特征在于,
    所述第一CORESET和/或第一搜索空间是基于所述CORESET#0调度的系统信息块1SIB1确定的。
  13. 根据权利要求2至12任一所述的方法,其特征在于,
    所述初始上行BWP以及所述初始下行BWP是基于所述CORESET#0调度的SIB1确定的。
  14. 根据权利要求1所述的方法,其特征在于,所述确定用于基于RACH的小数据传输过程的目标带宽,包括:
    将第一上行BWP以及第一下行BWP,确定为所述目标带宽,所述第一上行BWP与所述第一下行BWP是为所述终端设备配置的,专用于所述基于RACH的小数据传输过程的BWP。
  15. 根据权利要求14所述的方法,其特征在于,所述RACH包括:四步RACH;所述在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程,包括:
    在所述第一上行BWP上,向所述网络设备发送前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  16. 根据权利要求14所述的方法,其特征在于,所述RACH包括:四步RACH;所述在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程,包括:
    在所述第一下行BWP上,接收所述网络设备发送的随机接入响应、消息3的重传指示、上行调度、下行调度以及消息4中的至少一种。
  17. 根据权利要求14所述的方法,其特征在于,所述RACH包括:两步RACH;所述在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程,包括:
    在所述第一上行BWP上,向所述网络设备发送前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  18. 根据权利要求14所述的方法,其特征在于,所述RACH包括:两步RACH;所述在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程,包括:
    在所述第一下行BWP上,接收所述网络设备发送的随机接入响应、消息3的重传指示、消息4、上行调度、下行调度以及消息B中的至少一种。
  19. 根据权利要求16或18所述的方法,其特征在于,
    所述上行调度和下行调度属于同一所述基于RACH的小数据传输过程。
  20. 根据权利要求14至19任一所述的方法,其特征在于,
    所述第一上行BWP以及所述第一下行BWP是基于CORESET#0调度的SIB1确定的。
  21. 一种数据传输方法,其特征在于,应用于网络设备中,所述方法包括:
    在目标带宽上,与终端设备之间执行基于随机接入信道RACH的小数据传输过程;
    其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
  22. 根据权利要求21所述的方法,其特征在于,
    所述目标带宽包括:初始上行部分带宽BWP以及初始下行BWP,所述初始下行BWP包括资源控制集CORESET#0。
  23. 根据权利要求22所述的方法,其特征在于,所述RACH包括:四步RACH;所述在所述目标带宽上,与终端设备之间执行基于RACH的小数据传输过程,包括:
    在所述初始上行BWP上,接收所述终端设备发送的前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  24. 根据权利要求22所述的方法,其特征在于,所述RACH包括:四步RACH;所述在所述目标带宽上,与终端设备之间执行基于RACH的小数据传输过程,包括:
    在所述初始下行BWP中的所述CORESET#0上,向所述终端设备发送随机接入响应、消息3的重传指示以及消息4中的至少一种。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  26. 根据权利要求24所述的方法,其特征在于,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
    所述方法还包括:
    响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或所述第一搜索空间上发送资源调度,所述资源调度包括上行调度和下行调度中的至少一种。
  27. 根据权利要求22所述的方法,其特征在于,所述RACH包括:两步RACH;所述在所述目标带宽上,与终端设备之间执行基于RACH的小数据传输过程,包括:
    在所述初始上行BWP上,接收所述终端设备发送的前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  28. 根据权利要求22所述的方法,其特征在于,所述RACH包括:两步RACH;所述在所述目标带宽上,与终端设备之间执行基于RACH的小数据传输过程,包括:
    在所述初始下行BWP中的所述CORESET#0上,向所述终端设备发送随机接入响应、消息3的重传指示、消息4以及消息B中的至少一种。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;
    或,
    响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  30. 根据权利要求28所述的方法,其特征在于,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
    所述方法还包括:
    响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;
    或,
    响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  31. 根据权利要求25或26或29或30任一所述的方法,其特征在于,
    所述上行调度和所述下行调度属于同一所述基于RACH的小数据传输过程。
  32. 根据权利要求26或30所述的方法,其特征在于,
    所述第一CORESET和/或第一搜索空间是基于所述CORESET#0调度的系统信息块1SIB1确定的。
  33. 根据权利要求22至32任一所述的方法,其特征在于,
    所述初始上行BWP以及所述初始下行BWP是基于所述CORESET#0调度的SIB1确定的。
  34. 根据权利要求21所述的方法,其特征在于,
    所述目标带宽包括:第一上行BWP以及第一下行BWP,所述第一上行BWP与所述第一下行BWP是为所述终端设备配置的,专用于所述基于RACH的小数据传输过程的BWP。
  35. 根据权利要求34所述的方法,其特征在于,所述RACH包括:四步RACH;所述在所述目标带宽上,与终端设备之间执行基于RACH的小数据传输过程,包括:
    在所述第一上行BWP上,接收所述终端设备发送的前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  36. 根据权利要求34所述的方法,其特征在于,所述RACH包括:四步RACH;所述在所述目标带宽上,与终端设备之间执行基于RACH的小数据传输过程,包括:
    在所述第一下行BWP上,向所述终端设备发送随机接入响应、消息3的重传指示、上行调度、下行调度以及消息4中的至少一种。
  37. 根据权利要求34所述的方法,其特征在于,所述RACH包括:两步RACH;所述在所述目标带宽上,与终端设备之间执行基于RACH的小数据传输过程,包括:
    在所述第一上行BWP上,接收所述终端设备发送的前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  38. 根据权利要求34所述的方法,其特征在于,所述RACH包括:两步RACH;所述在所述目标带宽上,与终端设备之间执行基于RACH的小数据传输过程,包括:
    在所述第一下行BWP上,向所述终端设备发送随机接入响应、消息3的重传指示、消息4、上行调度、下行调度以及消息B中的至少一种。
  39. 根据权利要求36或38所述的方法,其特征在于,
    所述上行调度和下行调度属于同一所述基于RACH的小数据传输过程。
  40. 根据权利要求34至39任一所述的方法,其特征在于,
    所述第一上行BWP以及所述第一下行BWP是基于CORESET#0调度的SIB1确定的。
  41. 一种数据传输装置,其特征在于,应用于终端设备中,所述装置包括:带宽确定模块和传输模块;
    所述带宽确定模块,用于确定用于基于随机接入信道RACH的小数据传输过程的目标带宽;
    所述传输模块,用于在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;
    其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
  42. 根据权利要求41所述的装置,其特征在于,
    所述带宽确定模块,用于将初始上行部分带宽BWP以及初始下行BWP,确定为所述目标带宽,所述初始下行BWP包括资源控制集CORESET#0。
  43. 根据权利要求42所述的装置,其特征在于,所述RACH包括:四步RACH;
    所述传输模块,用于在所述初始上行BWP上,向所述网络设备发送前导码、消息3、消息3的重传以及所述网络设备动态调度的上行传输中的至少一种。
  44. 根据权利要求42所述的装置,其特征在于,所述RACH包括:四步RACH;
    所述传输模块,用于在所述初始下行BWP中的所述CORESET#0上,接收所述网络设备发送的随机接入响应、消息3的重传指示以及消息4中的至少一种。
  45. 根据权利要求44所述的装置,其特征在于,
    所述传输模块,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  46. 根据权利要求44所述的装置,其特征在于,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
    所述传输模块,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或所述第一搜索空间上接收资源调度,所述资源调度包括上行调度和下行调度中的至少一种。
  47. 根据权利要求42所述的装置,其特征在于,所述RACH包括:两步RACH;
    所述传输模块,用于在所述初始上行BWP上,向所述网络设备发送前导码、消息A负载、消息3、消息3的重传以及所述网络设备动态调度的上行传输中的至少一种。
  48. 根据权利要求42所述的装置,其特征在于,所述RACH包括:两步RACH;
    所述传输模块,用于在所述初始下行BWP中的所述CORESET#0上,接收所述网络设备发送的随机接入响应、消息3的重传指示、消息4以及消息B中的至少一种。
  49. 根据权利要求48所述的装置,其特征在于,
    所述传输模块,用于响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;
    或,
    所述传输模块,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  50. 根据权利要求48所述的装置,其特征在于,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
    所述传输模块,用于响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;
    或,
    所述传输模块,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上接收资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  51. 根据权利要求45或46或49或50任一所述的装置,其特征在于,
    所述上行调度和所述下行调度属于同一所述基于RACH的小数据传输过程。
  52. 根据权利要求46或50所述的装置,其特征在于,
    所述第一CORESET和/或第一搜索空间是基于所述CORESET#0调度的系统信息块1SIB1确定的。
  53. 根据权利要求42至52任一所述的装置,其特征在于,
    所述初始上行BWP以及所述初始下行BWP是基于所述CORESET#0调度的SIB1确定的。
  54. 根据权利要求41所述的装置,其特征在于,
    所述带宽确定模块,用于将第一上行BWP以及第一下行BWP,确定为所述目标带宽,所述第一上行 BWP与所述第一下行BWP是为所述终端设备配置的,专用于所述基于RACH的小数据传输过程的BWP。
  55. 根据权利要求44所述的装置,其特征在于,所述RACH包括:四步RACH;
    所述传输模块,用于在所述第一上行BWP上,向所述网络设备发送前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  56. 根据权利要求44所述的装置,其特征在于,所述RACH包括:四步RACH;
    所述传输模块,用于在所述第一下行BWP上,接收所述网络设备发送的随机接入响应、消息3的重传指示、上行调度、下行调度以及消息4中的至少一种。
  57. 根据权利要求44所述的装置,其特征在于,所述RACH包括:两步RACH;
    所述传输模块,用于在所述第一上行BWP上,向所述网络设备发送前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  58. 根据权利要求44所述的装置,其特征在于,所述RACH包括:两步RACH;
    所述传输模块,用于在所述第一下行BWP上,接收所述网络设备发送的随机接入响应、消息3的重传指示、消息4、上行调度、下行调度以及消息B中的至少一种。
  59. 根据权利要求56或58所述的装置,其特征在于,
    所述上行调度和下行调度属于同一所述基于RACH的小数据传输过程。
  60. 根据权利要求54至59任一所述的装置,其特征在于,
    所述第一上行BWP以及所述第一下行BWP是基于CORESET#0调度的SIB1确定的。
  61. 一种数据传输装置,其特征在于,应用于网络设备中,所述装置包括:传输模块;
    所述传输模块,用于在目标带宽上,与终端设备之间执行基于随机接入信道RACH的小数据传输过程;
    其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
  62. 根据权利要求61所述的装置,其特征在于,
    所述目标带宽包括:初始上行部分带宽BWP以及初始下行BWP,所述初始下行BWP包括资源控制集CORESET#0。
  63. 根据权利要求62所述的装置,其特征在于,所述RACH包括:四步RACH;
    所述传输模块,用于在所述初始上行BWP上,接收所述终端设备发送的前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  64. 根据权利要62所述的装置,其特征在于,所述RACH包括:四步RACH;
    所述传输模块,用于在所述初始下行BWP中的所述CORESET#0上,向所述终端设备发送随机接入响应、消息3的重传指示以及消息4中的至少一种。
  65. 根据权利要求64所述的装置,其特征在于,
    所述传输模块,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  66. 根据权利要求64所述的装置,其特征在于,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
    所述传输模块,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或所述第一搜索空间上发送资源调度,所述资源调度包括上行调度和下行调度中的至少一种。
  67. 根据权利要求62所述的装置,其特征在于,所述RACH包括:两步RACH;
    所述传输模块,用于在所述初始上行BWP上,接收所述终端设备发送的前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  68. 根据权利要求62所述的装置,其特征在于,所述RACH包括:两步RACH;
    所述传输模块,用于在所述初始下行BWP中的所述CORESET#0上,向所述终端设备发送随机接入响应、消息3的重传指示、消息4以及消息B中的至少一种。
  69. 根据权利要求68所述的装置,其特征在于,
    所述传输模块,用于响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;
    或,
    所述传输模块,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述初始下行BWP上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  70. 根据权利要求68所述的装置,其特征在于,所述初始下行BWP还包括第一CORESET和/或第一搜索空间,所述第一CORESET是在所述初始下行BWP中为所述终端设备配置的CORESET,所述第一搜 索空间是在所述初始下行BWP中为所述终端设备配置的搜索空间;
    所述传输模块,用于响应于所述消息B包括竞争冲突解决消息,且所述消息B不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种;
    或,
    所述传输模块,用于响应于所述消息4包括竞争冲突解决消息,且所述消息4不包括无线资源控制释放消息,在所述第一CORESET和/或第一搜索空间上发送资源调度,所述资源调度包括:上行调度和下行调度中的至少一种。
  71. 根据权利要求65或66或69或70任一所述的装置,其特征在于,
    所述上行调度和所述下行调度属于同一所述基于RACH的小数据传输过程。
  72. 根据权利要求76或70所述的装置,其特征在于,
    所述第一CORESET和/或第一搜索空间是基于所述CORESET#0调度的系统信息块1SIB1确定的。
  73. 根据权利要求62至72任一所述的装置,其特征在于,
    所述初始上行BWP以及所述初始下行BWP是基于所述CORESET#0调度的SIB1确定的。
  74. 根据权利要求61所述的装置,其特征在于,
    所述目标带宽包括:第一上行BWP以及第一下行BWP,所述第一上行BWP与所述第一下行BWP是为所述终端设备配置的,专用于所述基于RACH的小数据传输过程的BWP。
  75. 根据权利要求74所述的装置,其特征在于,所述RACH包括:四步RACH;
    所述传输模块,用于在所述第一上行BWP上,接收所述终端设备发送的前导码、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  76. 根据权利要求74所述的装置,其特征在于,所述RACH包括:四步RACH;
    所述传输模块,用于在所述第一下行BWP上,向所述终端设备发送随机接入响应、消息3的重传指示、上行调度、下行调度以及消息4中的至少一种。
  77. 根据权利要求74所述的装置,其特征在于,所述RACH包括:两步RACH;
    所述传输模块,用于在所述第一上行BWP上,接收所述终端设备发送的前导码、消息A负载、消息3、消息3的重传以及网络设备动态调度的上行传输中的至少一种。
  78. 根据权利要求74所述的装置,其特征在于,所述RACH包括:两步RACH;
    所述传输模块,用于在所述第一下行BWP上,向所述终端设备发送随机接入响应、消息3的重传指示、消息4、上行调度、下行调度以及消息B中的至少一种。
  79. 根据权利要求76或78所述的装置,其特征在于,
    所述上行调度和下行调度属于同一所述基于RACH的小数据传输过程。
  80. 根据权利要求74至79任一所述的装置,其特征在于,
    所述第一上行BWP以及所述第一下行BWP是基于CORESET#0调度的SIB1确定的。
  81. 一种终端设备,其特征在于,所述终端设备包括:处理器和与所述处理器相连的收发器;其中,
    所述处理器,用于确定用于基于随机接入信道RACH的小数据传输过程的目标带宽;
    所述收发器,用于在所述目标带宽上,与网络设备之间执行所述基于RACH的小数据传输过程;
    其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
  82. 一种网络设备,其特征在于,所述网络设备包括:处理器和与所述处理器相连的收发器;其中,
    所述收发器,用于在目标带宽上,与终端设备之间执行基于随机接入信道RACH的小数据传输过程;
    其中,所述小数据传输过程是所述终端设备处于非激活态的数据传输过程。
  83. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至40任一所述的数据传输方法。
PCT/CN2021/070666 2021-01-07 2021-01-07 数据传输方法、装置、通信设备和存储介质 WO2022147716A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21916774.9A EP4236573A4 (en) 2021-01-07 2021-01-07 DATA TRANSMISSION METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM
CN202180068390.4A CN116250351A (zh) 2021-01-07 2021-01-07 数据传输方法、装置、通信设备和存储介质
PCT/CN2021/070666 WO2022147716A1 (zh) 2021-01-07 2021-01-07 数据传输方法、装置、通信设备和存储介质
US18/319,128 US20230292375A1 (en) 2021-01-07 2023-05-17 Method for data transmission and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070666 WO2022147716A1 (zh) 2021-01-07 2021-01-07 数据传输方法、装置、通信设备和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/319,128 Continuation US20230292375A1 (en) 2021-01-07 2023-05-17 Method for data transmission and terminal device

Publications (1)

Publication Number Publication Date
WO2022147716A1 true WO2022147716A1 (zh) 2022-07-14

Family

ID=82357759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070666 WO2022147716A1 (zh) 2021-01-07 2021-01-07 数据传输方法、装置、通信设备和存储介质

Country Status (4)

Country Link
US (1) US20230292375A1 (zh)
EP (1) EP4236573A4 (zh)
CN (1) CN116250351A (zh)
WO (1) WO2022147716A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190132862A1 (en) * 2017-10-26 2019-05-02 Comcast Cable Communications, Llc Activation and Deactivation of Configured Grant
CN110324809A (zh) * 2018-03-30 2019-10-11 维沃移动通信有限公司 非同步上行传输方法、终端及网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190132862A1 (en) * 2017-10-26 2019-05-02 Comcast Cable Communications, Llc Activation and Deactivation of Configured Grant
CN110324809A (zh) * 2018-03-30 2019-10-11 维沃移动通信有限公司 非同步上行传输方法、终端及网络设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "RACH-based Small Data Transmission", 3GPP DRAFT; R2-2009457, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942410 *
SAMSUNG: "RACH configuration for Small Data Transmission", 3GPP DRAFT; R2-2009097, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942128 *
See also references of EP4236573A4 *

Also Published As

Publication number Publication date
US20230292375A1 (en) 2023-09-14
EP4236573A1 (en) 2023-08-30
EP4236573A4 (en) 2023-12-06
CN116250351A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
JP2023532563A (ja) ビーム失敗決定方法、装置、デバイス及び記憶媒体
CN110463274B (zh) 用于管理由无线通信网络提供的系统信息的无线通信设备和方法
JP2021503786A (ja) 情報を送信または受信するための方法および装置
WO2021184170A1 (zh) 数据传输方法、装置、通信设备及存储介质
TW201320801A (zh) 處理用於機器型態通訊之資源配置的方法及其通訊裝置
CN111869281B (zh) 定位测距方法、装置、通信设备及存储介质
WO2021043416A1 (en) Idle state small data transmissions for wireless networks
CN107466116B (zh) 处理连结转换的装置及方法
WO2022067788A1 (zh) 数据传输方法、装置、设备及存储介质
WO2021223221A1 (zh) 上行发送方法、装置、设备及存储介质
US20230284231A1 (en) Data transmission method and apparatus, communication device, and storage medium
CN115606136A (zh) Drx参数的切换方法、装置、设备及存储介质
US20220174776A1 (en) Timer control method, configuration method, electronic device, and storage medium
CN112203306B (zh) 终端、通信方法、装置及存储介质
WO2022147716A1 (zh) 数据传输方法、装置、通信设备和存储介质
CN117957896A (zh) 用于波束确定的方法及设备
CN114698034A (zh) 用于新无线电侧链路通信中的资源预留周期性的方法
KR20220162771A (ko) 정보 지시 방법, 장치, 기기 및 저장매체
WO2022141071A1 (zh) 小数据传输方法、装置、设备及介质
CN112586029A (zh) 用于在公共资源上进行数据传输的方法和装置
WO2022236558A1 (zh) 用于数据传输的方法、装置、设备及存储介质
WO2022236526A1 (zh) 载波确定方法、装置、设备及存储介质
WO2022082618A1 (zh) 数据传输方法、装置、通信设备和存储介质
US20230276501A1 (en) Method and apparatus for requesting other system information, and device medium
US20230362916A1 (en) Search space configuration method and apparatus, and device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021916774

Country of ref document: EP

Effective date: 20230523

NENP Non-entry into the national phase

Ref country code: DE