WO2022146066A1 - 하이브리드 구동 모듈 - Google Patents

하이브리드 구동 모듈 Download PDF

Info

Publication number
WO2022146066A1
WO2022146066A1 PCT/KR2021/020244 KR2021020244W WO2022146066A1 WO 2022146066 A1 WO2022146066 A1 WO 2022146066A1 KR 2021020244 W KR2021020244 W KR 2021020244W WO 2022146066 A1 WO2022146066 A1 WO 2022146066A1
Authority
WO
WIPO (PCT)
Prior art keywords
circumferential surface
ring
bearing
housing
hub
Prior art date
Application number
PCT/KR2021/020244
Other languages
English (en)
French (fr)
Inventor
김정우
Original Assignee
주식회사 카펙발레오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210189907A external-priority patent/KR102631218B1/ko
Application filed by 주식회사 카펙발레오 filed Critical 주식회사 카펙발레오
Priority to CN202180077861.8A priority Critical patent/CN116529109A/zh
Priority to US18/259,531 priority patent/US20240063683A1/en
Priority to EP21915863.1A priority patent/EP4230455A4/en
Publication of WO2022146066A1 publication Critical patent/WO2022146066A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/60Electric Machines, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/52Positive connections with plastic deformation, e.g. caulking or staking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/70Positive connections with complementary interlocking parts
    • F16C2226/74Positive connections with complementary interlocking parts with snap-fit, e.g. by clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/43Clutches, e.g. disengaging bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling

Definitions

  • the present invention relates to a hybrid driving module, and more particularly, a sealing structure is provided between a rotor hub rotating relative to a housing, which is a fixed end of the hybrid driving module, and the housing, and the motor is positioned between the motor and the output member. It relates to a hybrid drive module equipped with a sensor.
  • a drive module used in a hybrid vehicle has a structure that transmits power of a motor and an engine to a transmission.
  • the hybrid driving module includes an input member receiving engine force, a motor, an engine clutch connecting the input member and the motor, an output member receiving the motor and/or engine force and transmitting it to a transmission, and the motor and the output member It includes a power transmission unit that connects between them.
  • the power transmission unit may have a structure in which the motor and the output member are directly connected, or may have a structure including a torque converter (fluid clutch) and a lock-up clutch.
  • the motor includes a stator and a rotor, and the rotor may be installed in a rotor hub.
  • a space in which a clutch or the like is installed is provided in a radially inner space of the rotor formed by the rotor hub. After a clutch or the like is installed in the space, a cover or a hub ridge is installed to cover the space.
  • the hub ridge is installed to rotate integrally with the rotor hub.
  • the stator is installed in the housing.
  • the input member, the rotor hub, the output member, etc. are rotatably installed with respect to the housing.
  • a clutch installed in the radially inner space of the rotor hub is actuated or disengaged by hydraulic pressure. And this hydraulic pressure may be supplied to the radially inner space of the rotor hub through the housing. At this time, the hydraulic pressure provided to operate the clutch also acts as a force to move the rotor hub itself from the housing in the axial direction. The axial movement of the rotor hub with respect to the housing may cause interference between the parts and cause wear. And such interference and wear may cause serious abnormal operation of the hybrid driving module. Accordingly, a structure for preventing relative occurrence in the axial direction between the housing and the rotor hub is additionally required.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a hybrid driving module in which a rotor hub does not move relative to a housing in an axial direction.
  • An object of the present invention is to provide a hybrid driving module that prevents relative movement between a housing and a rotor hub while minimizing the number of parts and assembling man-hours.
  • the present invention for solving the above problems may be applied to a hybrid driving module having a motor 40 including a rotor 42 and a stator 41 .
  • the hybrid driving module includes: a housing 80 in which the stator 41 is installed; a rotor hub 43 on which the rotor 42 is installed and rotatably supported by the housing 80; and an axial movement preventing unit between the housing (80) and the rotor hub (43) for regulating the forward movement and the rearward movement of the rotor hub (43) with respect to the housing (80). do.
  • the axial movement preventing part is interposed between the housing 80 and the rotor hub 43 to support the rotation of the rotor hub 43 with respect to the housing 80. It is attached to a bearing B2 or B3. can be provided.
  • the bearing may be interposed between a peripheral surface on the side of the housing 80 facing each other in the radial direction and a peripheral surface on the side of the rotor hub 43 .
  • the bearing includes: a first wheel in contact with a first circumferential surface which is a selected one of a circumferential surface on the side of the housing 80 and a peripheral surface on the side of the rotor hub 43; a second wheel in contact with a second circumferential surface that is the other of the circumferential surface of the housing 80 and the circumferential surface of the rotor hub 43; and a cloud body interposed between the first wheel and the second wheel.
  • One of the first and second wheels may be an inner ring and the other may be an outer ring.
  • the cloud body a roller, a ball, such as various rolling bodies may be used.
  • the axial movement preventing unit may include: a bearing groove provided on a surface of the first wheel facing the first circumferential surface; a circumferential surface groove provided on the first circumferential surface at a position corresponding to the bearing groove; and a play prevention ring (RR) inserted across the circumferential surface groove and the bearing groove.
  • a bearing groove provided on a surface of the first wheel facing the first circumferential surface
  • a circumferential surface groove provided on the first circumferential surface at a position corresponding to the bearing groove
  • RR play prevention ring
  • the height (h) of the anti-play ring may be less than or equal to the depth of the circumferential surface groove.
  • the height of the anti-play ring may be greater than the depth of the bearing groove.
  • a second bearing step protruding in a radial direction may be provided on the second circumferential surface to interfere with the other side of the second wheel in the axial direction.
  • a bearing fixing portion may be provided on the second circumferential surface to interfere with one side of the second wheel in the axial direction.
  • the bearing may be first fixed to the second circumferential surface, and the axial movement preventing part may be assembled.
  • a first bearing step protruding in a radial direction so as to interfere with one side of the first wheel in the axial direction may be provided on the first circumferential surface.
  • the bearing fixing portion may include: a ring groove formed in a position that does not face the second wheel on the second circumferential surface; and a snap ring inserted into the ring groove.
  • the snap ring portion protruding in the radial direction from the ring groove may have a structure that interferes with one side of the second wheel in the axial direction.
  • the bearing fixing part may include a plastic working part.
  • the plastic processing portion may be a portion plastically deformed so that the second circumferential surface protrudes in a radial direction in a state in which the bearing is inserted in the axial direction up to the step of the second bearing.
  • the plastic working part may be formed by caulking.
  • the housing 80 includes an input member 10 that is rotatably supported with respect to the housing 80 and receives a driving force input from the engine, and the peripheral surface of the housing 80 is connected to the input member 10 . can be provided.
  • the rotor hub 43 includes a central shaft extension portion 450 extending in the axial direction from a central portion of the rotor hub 43 , and a circumferential surface of the rotor hub 43 side is the central portion of the rotor hub 43 . It may be provided on the shaft extension 450 .
  • a circumferential surface of the central axis extension part 450 may be provided radially inside the circumferential surface of the input member 10 .
  • the housing 80 includes an axial projection 823 protruding from the housing 80 in the axial direction, and the peripheral surface of the housing 80 side is the axial projection 823 .
  • the rotor hub 43 includes a radially extending hub ridge 46 connected to the rotor hub 43 to be rotationally constrained, and radially inside the hub ridge 46 , the hub ridge
  • An axial extension portion 464 extending in the axial direction from 46 may be provided, and the circumferential surface of the rotor hub 43 may be provided in the axial extension portion 464 .
  • a circumferential surface of the axial protrusion 823 may be provided radially inside the circumferential surface of the axial extension 464 .
  • the hybrid drive module of the present invention it is possible to increase the operational stability of the hybrid drive module by regulating the axial play of the rotor hub with respect to the housing.
  • the relative movement between the housing and the rotor hub can be prevented while minimizing the number of parts and assembling man-hours.
  • 1 is a conceptual diagram of a first embodiment of a hybrid driving module.
  • FIG. 2 is a side cross-sectional view illustrating a process in which a housing and a spring damper are installed on a rotor hub.
  • FIG. 3 is a view showing a transmission path of a driving force in the drawing of FIG. 1 .
  • FIG. 4 is a view showing a flow control direction of a fluid in the drawing of FIG. 1 .
  • FIG. 5 is an enlarged view (part E of FIG. 4 ) of the first embodiment of the axial movement preventing unit.
  • FIG. 6 is an exploded view of the axial movement preventing part of FIG. 5 .
  • FIG. 7 is an enlarged view (part E of FIG. 4 ) of the second embodiment of the axial movement preventing part.
  • FIG. 8 is an enlarged view (part E of FIG. 4 ) of the third embodiment of the axial movement preventing part.
  • FIG. 9 is an enlarged view (part F of FIG. 3 ) of the fourth embodiment of the axial movement preventing part.
  • the hybrid driving module of the embodiment is symmetrical with respect to the axis, only half is shown with respect to the axis for convenience of drawing. Also, for convenience of description, a direction along the longitudinal direction of an axis forming the center of rotation of the hybrid driving module is referred to as an axial direction. That is, the front-rear direction or the axial direction is a direction parallel to the rotation axis, and the front (front) refers to a direction that is a power source, such as a direction toward the engine, and the rear (rear) refers to the other direction, such as a direction toward the transmission. . Therefore, the front (front) means the surface on which the surface faces the front, and the rear (rear) means the surface on which the surface faces the rear.
  • the radial or radial direction means a direction closer to the center or a direction away from the center along a straight line passing through the center of the rotation axis on a plane perpendicular to the rotation axis.
  • a direction away from the center in a radial direction is referred to as a centrifugal direction, and a direction closer to the center is referred to as a centripetal direction.
  • the circumferential direction or the circumferential direction means a direction surrounding the rotation shaft.
  • the outer circumference means the outer circumference
  • the inner circumference means the inner circumference.
  • the outer circumferential surface is a surface facing away from the rotation shaft
  • the inner circumferential surface is a surface facing the rotation shaft.
  • the circumferential side means a side whose normal line faces the circumferential direction.
  • the hybrid driving module of the embodiment includes an input member 10 that is connected to the output side of the engine to receive an output of the engine, and an output member 70 that transmits the driving force of the motor or the driving force of the motor and the engine to the transmission.
  • the output of the engine is input to the input member 10 through the spring damper 9 .
  • the spring damper 9 is a torsional damper.
  • the spring damper 9 engages with the splines 102 of the input member 10 and is rotationally constrained to each other.
  • the spring damper 9 dampens the sloshing of the engine output so that vibration does not occur.
  • the splines 102 are provided on the outer peripheral surface of the input member 10 toward the front in the axial direction.
  • the input plate 12 extending outward in the radial direction is connected to the outer peripheral surface of the input member 10 in the axial direction rearward.
  • the input plate 12 is integrally fixed to the input member 10 by welding or the like and rotates integrally with the input member 10 .
  • An engine clutch 20 is connected to the radially outer end of the input member 10 .
  • the engine clutch 20 is provided between the rotor hub 43 and the input member 10 , and may or may not transmit the output of the engine to the rotor hub 43 .
  • the hybrid driving module includes a motor 40 .
  • the motor 40 includes an annular stator 41 and an annular rotor 42 disposed radially inside the stator 41 .
  • the rotor 42 rotates by electromagnetic interaction with the stator 41 .
  • the stator 41 is fixed to the housing 80 .
  • the housing 80 is disposed axially forward of the motor 40 and extends radially.
  • the input member 10 is rotatably supported through the first bearing B1 at the inner end of the housing 80 in the radial direction.
  • the first bearing B1 is fixed in the axial direction by the first input member snap ring 13 fitted into the first input member ring groove 101 provided on the outer circumferential surface of the input member 10 .
  • the axial rear of the inner ring of the first bearing B1 is supported by the first input member step 105 of the input member 10, and the axial front of the inner ring of the first bearing B1 is the first It is supported by the input member snap ring (13).
  • the outer ring of the first bearing B1 is supported by the housing 80 in the axial direction and in the radial direction. Accordingly, by the first bearing B1 , the input member 10 is radially supported with respect to the housing 80 and supported in the axial direction. That is, the input member 10 is moved in the axial direction relative to the housing 80 by the first bearing B1 , the first input member step 105 , and the first input member snap ring 13 . doing is regulated.
  • a first sealing member S1 is provided between the input member 10 and the housing 80 to seal the fluid inside the housing 80 from leaking out.
  • the rotor 42 is fixed to the rotor hub 43 .
  • the rotor hub 43 includes a rotor holder 44 for fixing the rotor 42 , and a hub plate 45 extending radially inwardly from the rotor holder 44 .
  • the rotor holder 44 includes a radial support portion 441 for supporting an inner circumferential surface of the rotor 42 and an axial support portion 442 for supporting an axial rear end of the rotor 42 .
  • the radial support portion 441 may have a cylindrical shape extending in the axial direction.
  • the axial support part 442 may be in the form of a flange extending outward in a radial direction from the axial rear end of the radial support part 441 .
  • the radial support 441 supports the inner circumferential surface of the rotor 42
  • the axial support 442 supports the axial rear end of the rotor 42 .
  • a radially extending axial support is not formed at the front end of the radial support 441 . Accordingly, by extrapolating the rotor 42 from the front to the rear in the axial direction, the inner circumferential surface of the rotor 42 is supported while facing the outer circumferential surface of the radial support portion 441 , and the axial rear of the rotor 42 . An end is supported while facing the front surface of the axial support 442 .
  • a hub ridge 46 is coupled to the front end of the radial support 441 .
  • the hub ridge 46 is toothed to the front end of the radial support 441 to be rotationally constrained to each other.
  • the hub ridge 46 extends more radially outward than the radial support 441 , such that the radially outer end of the hub ridge 46 axially extends the front end of the rotor 42 .
  • the hub snap ring 49 is a ridge fixing member at the front of the hub ridge 46 so that the hub ridge 46 does not deviate forward in the axial direction. is inserted into the groove provided on the inner circumferential surface of the radial support part 441 .
  • the hub plate 45 is connected to the rotor holder 44 in the vicinity of an axial central portion of the radial support 441 .
  • the hub plate 45 extends radially inward from the inner circumferential surface of the radial support portion 441 and has a shape similar to a plate.
  • a central axis extension portion 450 extending forward is provided at the center of the radius of the hub plate 45 , and the central axis extension portion 450 is connected through the input member 10 and the third bearing B3. They are supported so that rotation relative to each other is possible.
  • the central axis extension portion 450 is provided with a central axis step 453 regulating the rear position of the third bearing B3 with respect to the input member 10 , and the input member 10 has A second input member step 107 for regulating the forward position of the third bearing B3 is provided.
  • the third bearing B3 axially and radially supports the input member 10 with respect to the central axis extension portion 450 of the hub plate 45 .
  • the engine clutch 20 is installed in a space corresponding to the radially inner side of the radial support part 441 and an axial front of the hub plate 45 .
  • the engine clutch 20 includes a first clutch pack 22 provided with a friction plate or a friction material and a first carrier 23 .
  • the first carrier 23 may be installed on the hub plate 45 of the rotor hub 43 .
  • the first carrier 23 is connected to the rotor hub 43 to be rotationally constrained and rotates integrally with the rotor hub 43 .
  • the radially outer side of the first clutch pack 22 is connected to the first carrier 23 , and the radially inner side thereof is connected to the input member 10 through the input plate 12 .
  • the clutch plates connected to the first carrier 23 and the clutch plates connected to the input member 10 are alternately arranged, and a friction material is interposed between the clutch plates.
  • a first piston plate 21 is disposed at the front of the first clutch pack 22 in the axial direction.
  • the input plate 12 and the first carrier 23 are connected to be rotationally constrained to each other. Accordingly, the output of the engine transmitted to the input plate 12 may be transmitted to the rotor hub 43 via the engine clutch 20 .
  • the first piston plate 21 does not press the first clutch pack 22 , the input plate 12 and the first carrier 23 are not rotationally constrained to each other. Accordingly, the output of the engine is transmitted only to the input plate 12 and is not transmitted to the rotor hub 43 .
  • a hub ridge is disposed at the front of the first piston plate 21 in the axial direction.
  • the hub ridge 46 may be a substantially dish-shaped or disc-shaped member having an open central portion and extending in a radial direction.
  • the first piston plate 21 of the engine clutch 20 is installed behind the hub ridge 46 in the axial direction.
  • the hub ridge 46 has a radially outer inner peripheral surface 465 extending rearwardly along the axial direction from the radially outer side, and a radially inner outer peripheral surface 466 extending rearwardly along the axial direction from the radially inner side. do.
  • the radially inner peripheral surface 466 is provided in an axial extension 464 extending rearward from the centripetal end of the hub ridge 46 .
  • the first piston plate 21 extends in a radial direction.
  • the outer peripheral surface of the radially outer end of the first piston plate 21 is slidably in contact with the radially outer inner peripheral surface 465 in the axial direction, and the inner peripheral surface of the radially inner end of the first piston plate 21 .
  • Silver is in contact with the radially inner outer peripheral surface 466 in the axial direction slidably.
  • a slide protrusion 468 extending further in the axial direction is provided.
  • the slide protrusion 468 may be provided near the radially inner outer peripheral surface 466 .
  • a slide groove having a shape complementary to that of the slide protrusion 468 is provided in the first piston plate 21 . Accordingly, the first piston plate 21 can slide in the axial direction while being rotationally constrained with the hub ridge 46 .
  • the engine is a space defined by the first piston plate 21 , the rear surface of the hub ridge 46 , the radially outer inner circumferential surface 465 , and the radially inner outer circumferential surface 466 .
  • a flow hole 467 through which a fluid may be introduced into the clutch operation chamber is provided.
  • a first sealing groove 822 is provided on an outer peripheral surface of the housing 80 where the first axial projection 821 faces the first sealing surface 4691, and therein, a second sealing member (S2) is inserted
  • a second sealing groove 824 is provided on an outer peripheral surface of the housing 80 where the second axial projection 823 faces the second sealing surface 4692, and a third sealing member S3 is provided there. is inserted
  • the first sealing surface 4691 and the second sealing surface 4692 have the first axial projection 821 and the second sealing member S3 interposed therebetween, respectively.
  • a predetermined space A1 for sealing is provided between the housing 80 and the hub ridge 46 .
  • a first flow path 83 for supplying oil to the space A1 is formed in the housing 80 .
  • the first flow path 83 extends from the radially outer end of the housing 80 to a predetermined position between the first axial projection 821 and the second axial projection 823, and the It communicates with space A1.
  • the first piston plate 21 forms a hub ridge ( 46) to press the first clutch pack 22 by moving axially rearward. That is, when hydraulic pressure is supplied to the first flow path 83 , the oil to which the pressure is applied is supplied to the engine clutch operating chamber through the space A1 and the flow hole 467 , and the first piston plate 21 is It moves backward and presses the first clutch pack 22 to connect the engine clutch 20 to the input plate 12 and the rotor hub 43 to be mutually rotationally constrained. Then, as shown by the "Engine power” path in FIG. 3 , the rotational force of the engine is transmitted to the rotor hub 43 .
  • a second flow path 84 for supplying a fluid to the rear space A2 of the first piston plate 21 is formed in the housing 80 .
  • the second flow path 84 extends radially from the radially outer end of the housing 80 to a position corresponding to the second axial projection 823, and extends along the second axial projection 823 in the axial direction. to communicate with the rear space A2. Since the second flow path 84 and the first flow path 83 are formed at different positions along the circumferential direction of the housing, they do not communicate with each other and form independent flow paths within the housing 80 .
  • the radially inner side of the hub ridge (46) is rotatably connected with respect to the housing (80).
  • a second A bearing B2 is interposed between the inner peripheral surface of the axial extension portion 464 provided on the radially inner side of the hub ridge 46 and the outer peripheral surface of the second axial direction projection portion 823 provided on the radially inner side of the housing 80.
  • a ridge step 469 regulating the rear position of the second bearing B2 is provided on the axial extension 464 of the hub ridge 46 .
  • the outer ring of the second bearing B2 supports the hub ridge 46 in the radial direction and supports it in the axial direction.
  • the housing 80 is provided with a housing step 828 for regulating the forward position of the second bearing B2.
  • the inner ring of the second bearing B2 supports the housing 80 in the radial direction and in the axial direction.
  • the hub ridge 46 is supported radially relative to the housing 80 and supported axially forward.
  • a retainer 420 for protecting and supporting the rotor 42 may be installed at the front and/or rear of the rotor 42 in the axial direction. An outer end of the hub ridge 46 may contact the retainer 420 .
  • the first piston plate 21 is installed together in the process of installing the hub ridge 46 to the rotor hub 43, and the hub ridge 46 is also installed in the rotor ( 42) is fixed.
  • the rotor 42 restricts the axial rearward movement of the hub ridge 46 .
  • the hub ridge 46 is axially front limited by the hub snap ring 49 , and axially rearward is limited by the radial support part 441 and/or the rotor 42 . Movement may be restricted.
  • the hybrid driving module may further include an elastic body 90 that elastically presses the hub ridge 46 forward in the axial direction to push it toward the hub snap ring 49 .
  • the elastic body 90 may be installed at any position suitable for pushing the hub ridge 46 toward the hub snap ring 49 .
  • 1 shows a structure in which the first elastic body 91 to the fourth elastic body 94 are installed at different positions to press the hub ridge 46 toward the hub snap ring 49 at once.
  • the elastic body 90 may include only one of the first elastic body 91 to the fourth elastic body 94 .
  • the elastic body 90 may include two or more elastic bodies 90 among the first to fourth elastic bodies 91 to 94 together.
  • the first elastic body 91 and/or the second elastic body 92 provides an elastic force in a direction extending in the axial direction.
  • the first elastic body 91 may be configured to press the hub ridge 46 forward from the front of the rotor 42 to push the hub ridge 46 toward the hub snap ring 49 .
  • the second elastic body 92 elastically presses the rotor 42 and the hub ridge 46 forward from the rear of the rotor 42 , and pushes the hub ridge 46 toward the hub snap ring 49 .
  • the hub ridge 46 is in close contact with the hub snap ring 49 and does not vibrate or vibrate, and the rotor 42 is also the shaft. It may be firmly supported in the axial direction between the directional support 442 and the radially extended portion 462 .
  • the elastic body 90 may be configured to press the piston installation part 464 forward from the engine clutch 20 side to push the hub ridge 46 toward the hub snap ring 49 .
  • the third elastic body 93 and the fourth elastic body 94 shown in FIG. 1 correspond to this.
  • the third elastic body 93 may be sandwiched between the front end of the first carrier 23 and the hub ridge 46 . And the third elastic body 93 exerts an elastic force to be elastically restored in the direction of expansion in the axial direction. Accordingly, the first carrier 23 and the hub ridge 46 are elastically pressed by the third elastic body 93 in a direction away from each other. Accordingly, the hub ridge 46 is pushed toward the hub snap ring 49 .
  • the fourth elastic body 94 may be installed on the first clutch pack 22 .
  • the fourth elastic body 94 may function as a return spring of the first piston plate 21 .
  • the fourth elastic body 94 is interposed between a plurality of clutch plates to spread the clutch plates in a direction in which the first clutch pack 22 is opened in the axial direction, and the elastic force of the fourth elastic body 94 is The first piston plate 21 is pushed toward the hub ridge 46 . Then, the hub ridge 46 is elastically pressed toward the hub snap ring 49 .
  • the elastic body 90 that is, the first elastic body 91 to the fourth elastic body 94 may be an annular disc spring or a wave washer.
  • the type of the spring is not limited thereto.
  • a back cover 52 is fixed to the axial support 442 of the rotor holder 44 by bolts 53 .
  • a back cover 52 extends radially inwardly from the rotor holder 44 .
  • the radially inner end of the back cover 52 is connected to the oil pump of the transmission.
  • An impeller 51 is provided on the front surface of the back cover 52 .
  • An output member 70 is provided between the hub plate 45 and the back cover 52 .
  • Splines are formed on the inner circumferential surface of the output member 70 and are connected to the input shaft of the transmission (not shown).
  • the output member 70 is integrally connected to the turbine plate 55 .
  • the turbine plate 55 extends radially.
  • a turbine 54 facing each other in the axial direction with the impeller 51 is provided on the rear surface of the turbine plate 55 .
  • a fixed end 75 is disposed between the back cover 52 and the output member 70 .
  • a spline is formed on the inner circumferential surface of the fixed end 75, which is connected to the fixed shaft of the transmission (not shown).
  • a reactor 56 is disposed between the impeller 51 and the turbine 54 .
  • the reactor 56 is connected to the fixed end 75 through the one-way clutch 57 .
  • the impeller 51 , the turbine 54 , and the reactor 56 constitute a torque converter that multiplies the torque of the motor 40 and transmits it to the output member 70 .
  • the output member 70 is rotatably supported with respect to the fixed end 75 through a fourth bearing B4.
  • the back cover 52 is rotatably supported with respect to the fixed end 75 through a fifth bearing B5.
  • the hub plate 45 and the output member 70 are rotatably supported with each other through the sixth bearing B6.
  • a lock-up clutch 60 is installed on an inner circumferential surface of the rotor holder 44 .
  • An output plate 64 is integrally connected to the output member 70 and rotates integrally. The output plate 64 extends radially from the output member 70 toward the lock-up clutch 60 .
  • the lock-up clutch 60 includes a second clutch pack 62 having a friction plate or a friction material.
  • the second clutch pack 62 is disposed between the rotor hub 43 and the output plate 64 .
  • a second piston plate 61 is disposed at the front of the second clutch pack 62 in the axial direction.
  • the rotor hub 43 and the output plate 64 are connected to each other to be rotationally constrained. Accordingly, the rotational force of the rotor hub 43 may be transmitted to the output plate 64 and the output member 70 through the lock-up clutch 60 . If the second piston plate 61 does not press the second clutch pack 62 , the rotor hub 43 and the output plate 64 are not rotationally constrained to each other. Accordingly, the rotational force of the rotor hub 43 is transmitted to the output member 70 through the torque converter.
  • the second piston plate 61 extends in a radial direction.
  • the outer peripheral surface of the radially outer side of the second piston plate 61 faces the inner peripheral surface of the rotor holder 44, and is axially slidably in contact.
  • the inner circumferential surface of the second piston plate 61 in the radial direction faces the outer circumferential surface of the output member 70 and is in contact with the axially slidably movable surface.
  • the engine clutch 20 does not transmit power between the input plate 12 and the first carrier 23 .
  • the torque of the motor 40 is multiplied and needs to be transmitted to the transmission, that is, when the rotation speed of the motor 40 is greater than the rotation speed of the output member 70, the torque of the motor 40 is transmitted through the torque converter. It is multiplied and transmitted to the output member 70 . Accordingly, when the rotation speed of the output member 70 approaches the rotation speed of the motor 40 , the lock-up clutch 60 is operated to directly connect the rotor hub 43 and the output member 70 .
  • the engine clutch 20 transmits the power between the input plate 12 and the first carrier 23 . Then, the torques of the engine and the motor 40 are combined and transmitted to the output member 70 through the torque converter.
  • the torque of the engine and the motor 40 may be multiplied through the torque converter and transmitted to the output member 70 , and the speed ratio (SR: speed ratio) of the rotor hub 43 and the output member 70 is 1:
  • the speed ratio (SR: speed ratio) of the rotor hub 43 and the output member 70 is 1:
  • the torque converter and the lock-up clutch 60 constitute a power transmission unit that transmits power between the rotor hub 43 and the output member 70 .
  • the torque of the engine is transmitted to the rotor hub 43 through the input plate 12 , the engine clutch 20 and the first carrier 23 , and the hub ridge 46 receives this torque It is not in the delivery path.
  • the embodiment provides a structure for preventing such axial play.
  • the mounting structure of the third bearing B3 for supporting the relative rotation between the rotor hub 43 and the input member 10 is utilized, or the hub ridge Since the mounting structure of the second bearing B2 for supporting the relative rotation between the 46 and the housing 80 is utilized, a separate additional thrust bearing element is not required.
  • the axial movement preventing portion prevents the rotor hub 43 from moving forward with respect to the housing 80 and also from moving backward. That is, the axial movement preventing portion eliminates or minimizes the axial play of the rotor hub 43 with respect to the housing 80 .
  • the axial movement preventing unit according to the first embodiment is reflected in the installation structure of the third bearing B3.
  • the third bearing (B3) is provided radially inside the annular third inner ring (B31) and the third inner ring (B31) in a radial direction and spaced apart from the third inner ring (B31) in a radial direction a third outer ring B32, and a third cloud body B33 interposed between the third inner ring B31 and the third outer ring B32.
  • the third cloud body B33 may be a ball body, and the third bearing B3 may be a ball bearing.
  • the third bearing B3 may support rotation in radial and axial directions.
  • the central axis extension portion 450 of the hub plate 45 of the rotor hub 43 extends axially forward from the hub plate 45 .
  • a central axis step 453 is provided on the outer circumferential surface of the central axis extension part 450 .
  • a front diameter of the central axis extension part 450 is smaller than a rear diameter based on the central axis stepped part 453 .
  • the inner circumferential surface of the third inner ring B31 is in contact with the outer circumferential surface of the central axis extension part 450 in a radial direction to face each other. And the rear end of the third inner ring (B31) is in contact with the central axis step 453 and axially facing.
  • a central axis snap ring 455 is installed in front of the third inner ring B31 .
  • a first central axis ring groove 454 is formed on the outer peripheral surface of the central axis extension part 450 in front of the third inner ring B31 , and the central axis snap ring 455 includes the first central axis ring groove 454 .
  • ) is inserted into That is, the position of the third inner ring B31 is regulated by the central axis step 453 in the rear, and the position is regulated by the first central axis ring groove 454 and the central axis snap ring 455 in the front.
  • a hollow portion is provided at the rear of the input member 10 .
  • the central axis extension part 450 is accommodated in a hollow part provided at the rear of the input member 10 .
  • An inner peripheral surface defining the hollow portion is provided at the rear of the input member 10 .
  • a second input member step 107 is provided on the inner circumferential surface of the input member 10 . Based on the step 107 of the second input member, the inner diameter of the front of the input member 10 is smaller than the inner diameter of the rear.
  • An outer circumferential surface of the third outer ring B32 faces and abuts an inner circumferential surface of the input member 10 in a radial direction.
  • the front end of the third outer ring B32 faces and abuts the second input member step 107 in the axial direction.
  • a third bearing groove B34 is formed on the outer peripheral surface of the third outer ring B32.
  • a third input member ring groove is formed in a portion where the inner circumferential surface of the input member 10 faces the third bearing groove B34. (110) is formed. Accordingly, the third bearing groove B34 and the third input member ring groove 110 are connected to communicate with each other in the radial direction.
  • a play prevention ring RR is fitted into the third bearing groove B34 and the third input member ring groove 110 .
  • the play prevention ring RR may be a C-ring that can be elastically deformed to increase or decrease a radius.
  • the depth of the third input member ring groove 110 measured in the radial direction may be equal to or greater than the height h of the play prevention ring RR measured in the radial direction.
  • the depth of the third bearing groove (B34) may be smaller than the height of the play prevention ring (RR).
  • the third inner ring B31 of the third bearing B3 is extrapolated to the outer circumferential surface of the central axis extension part 450 until the central axis step 453 is reached. And insert the central axis snap ring 455 into the first central axis ring groove 454 in front of the third inner ring (B31).
  • the play prevention ring RR is inserted into the third input member ring groove 110 provided on the inner circumferential surface of the input member 10 .
  • the play preventing ring RR is elastically deformed to reduce the outer diameter, and at the moment it reaches the third input member ring groove 110 . It is elastically restored and the outer diameter is enlarged, so that it is fitted into the third input member ring groove 110 .
  • the radially inner end of the play preventing ring RR projects radially inward than the inner circumferential surface of the input member 10 .
  • the input member 10 is extrapolated to the outer peripheral surface of the central axis extension part 450 .
  • the third outer ring B32 of the third bearing B3 elastically deforms the play prevention ring RR to increase its radius. Since the depth of the third input member ring groove 110 is equal to or greater than the height of the play preventing ring RR, the play preventing ring RR can be completely inserted into the third input member ring groove 110 .
  • a tapered shape or a chamfered shape may be formed in a corner portion between the front surface and the outer circumferential surface of the third outer ring B32.
  • the anti-play ring RR with an enlarged radius is elastically restored at the moment it reaches the third bearing groove B34 and the inner diameter is reduced, thereby being fitted into the third bearing groove B34.
  • the radially outer end of the play preventing ring RR is fitted in the third input member ring groove 110 .
  • the central shaft step 453 is positioned on the third inner ring B31.
  • the third inner ring (B31) interferes with the third rolling body (B33)
  • the third rolling body (B33) interferes with the third outer ring (B32)
  • the third outer ring (B32) interferes with the play prevention ring ( RR)
  • the play prevention ring RR interferes with the input member 10, so that the forward movement of the rotor hub 43 is prevented.
  • the play prevention ring RR, the third bearing groove B34 and the third input member ring groove 110 are axial movement preventing parts to prevent play in the front-rear direction of the rotor hub 43 .
  • the second embodiment will be mainly described with respect to the differences from the first embodiment.
  • the caulking part which is a plastic machining part, is a bearing fixing part.
  • the difference is that (458) is applied.
  • the caulking portion 458 is machined in front of the third wheel.
  • the caulking portion 458 results in an enlarged outer diameter of the central axis extension portion 450 . Accordingly, the position of the third inner ring B31 is regulated forward by the plastic working part, that is, the caulking part 458 .
  • the third inner ring B31 of the third bearing B3 is extrapolated to the outer circumferential surface of the central axis extension portion 450 until the central axis step 453 is reached, and then the third inner ring B31 It has a difference from the first embodiment in that the front of the third inner ring B31 is fixed by caulking the central shaft extension 450 in front.
  • hydraulic pressure is supplied to the first space A1 in order to operate the engine clutch 20 so that the first piston plate 21 is pressurized to the rear, and the rotor hub 43 is moved rearward.
  • the caulking part 458 interferes with the third inner ring B31
  • the third inner ring B31 interferes with the third rolling body B33
  • the third rolling body B33 interferes with the third Interfering with the outer ring B32
  • the third outer ring B32 interferes with the anti-play ring RR
  • the anti-play ring RR interferes with the input member 10, so the rear of the rotor hub 43 movement is prevented.
  • the third embodiment has the biggest difference compared to the first embodiment in that the play prevention ring RR is applied to the third inner ring B31 side. And there are incidental differences due to these differences.
  • the third embodiment will be mainly described with reference to the differences.
  • a second input member snap ring 109 is installed behind the third outer ring B32 .
  • a second input member ring groove 108 is formed on the inner circumferential surface of the input member 10 just behind the third outer ring B32, and the second input member snap ring 109 includes the second input member ring groove 108 ) is inserted into That is, the position of the third outer ring B32 is regulated by the second input member step 107 in the front and rearward by the second input member ring groove 108 and the second input member snap ring 109. location is regulated.
  • a third bearing groove B34 is formed on the inner circumferential surface of the third inner ring B31. And in a state where the third inner ring B31 is in contact with the central shaft step 453 , the outer peripheral surface of the central shaft extension part 450 faces the third bearing groove B34, a second central shaft ring groove (459) is formed. Accordingly, the third bearing groove B34 and the second central axis ring groove 459 are connected to communicate with each other in the radial direction.
  • a play prevention ring RR is fitted in the third bearing groove B34 and the second central shaft ring groove 459 .
  • the depth of the second central axis ring groove 459 measured in the radial direction may be equal to or greater than the height h of the play prevention ring RR measured in the radial direction.
  • the depth of the third bearing groove (B34) may be smaller than the height of the play prevention ring (RR).
  • the third outer ring B32 of the third bearing B3 is interpolated into the inner circumferential surface of the input member 10 until the second input member step 107 is reached. Then, the second input member snap ring 109 is inserted into the second input member ring groove 108 immediately behind the third outer ring B32.
  • the play prevention ring RR is inserted into the second central axis ring groove 459 provided on the outer circumferential surface of the central axis extension part 450 .
  • the play prevention ring (RR) is elastically deformed so that the inner diameter is enlarged, and at the moment it reaches the second central axis ring groove (459) It is elastically restored and the inner diameter is reduced, so that it is fitted into the second central shaft ring groove 459 .
  • the input member 10 is extrapolated to the outer peripheral surface of the central axis extension part 450 .
  • the third inner ring B31 of the third bearing B3 elastically deforms the play prevention ring RR to reduce its radius. Since the depth of the second central axis ring groove 459 is equal to or greater than the height of the play preventing ring RR, the play preventing ring RR can be completely inserted into the second central axis ring groove 459. have.
  • a tapered shape or a chamfered shape may be formed at a corner portion between the rear surface and the inner circumferential surface of the third inner ring B31.
  • the play prevention ring RR with a reduced radius is elastically restored at the moment it reaches the third bearing groove B34 and the outer diameter is enlarged, thereby being fitted into the third bearing groove B34.
  • the radially inner end of the play prevention ring RR is fitted in the second central axis ring groove 459 .
  • the central shaft extension part 450 is the play prevention ring RR. interfering with, the play prevention ring (RR) interferes with the third inner ring (B31), the third inner ring (B31) interferes with the third rolling body (B33), and the third rolling body (B33) interferes with the third Since it interferes with the outer ring B32, and the third outer ring B32 interferes with the second input member step 107, the forward movement of the rotor hub 43 is prevented.
  • the play prevention ring RR, the third bearing groove B34, and the second central shaft ring groove 459 are axial movement preventing parts to prevent play in the front-rear direction of the rotor hub 43 .
  • the outer circumferential surface of the central axis extension part 450 is disposed more radially inside than the inner circumferential surface of the input member 10 .
  • the present invention is not limited thereto, and a hollow portion is provided in the central axis extension portion 450 , and the rear end of the input member 10 is fitted into the hollow portion of the central axis extension portion 450 to extend the central axis.
  • a hollow portion is provided in the central axis extension portion 450 , and the rear end of the input member 10 is fitted into the hollow portion of the central axis extension portion 450 to extend the central axis.
  • it is also applicable to a structure in which the outer circumferential surface of the input member 10 is disposed more radially inside than the inner circumferential surface of the portion 450 .
  • the axial movement preventing unit according to the fourth embodiment is reflected in the installation structure of the second bearing B2.
  • the second bearing (B2) is radially opposite to the annular second inner ring (B21) and the second inner ring (B21) provided on the radially inner side, and is spaced apart from the second inner ring (B21) in the radial direction.
  • the second cloud body B23 may be a ball body, and the second bearing B2 may be a ball bearing.
  • the second bearing B2 may support rotation in radial and axial directions.
  • An axial extension 464 of a hub ridge 46 of the rotor hub 43 extends axially rearward from the hub ridge 46 .
  • a ridge step 469 is provided on the inner circumferential surface of the axial extension 464 . Based on the ridge step 469 , the inner diameter of the front of the axial extension 464 is larger than the inner diameter of the rear.
  • the outer circumferential surface of the second outer ring B22 is radially facing and in contact with the inner circumferential surface of the axial extension portion 464 . And the rear end of the second outer ring (B22) is in contact with the ridge step 469 in the axial direction.
  • a ridge snap ring 470 is installed in front of the second outer ring B22.
  • a ridge ring groove 471 is formed on the inner circumferential surface of the axial extension portion 464 in front of the second outer ring B22 , and the ridge snap ring 470 is inserted into the ridge ring groove 471 . That is, the position of the second outer ring B22 is regulated in the rear by the ridge step 469 and in the front by the ridge ring groove 471 and the ridge snap ring 470 .
  • the second axial protrusion 823 includes a portion extending in an axial direction from a radially inner side of the axial extension 464 . Accordingly, at least a portion of the outer circumferential surface of the second axial projection 823 faces at least a portion of the inner circumferential surface of the axial extension 464 in the radial direction.
  • a housing step 828 is provided on the outer peripheral surface of the second axial projection 823 . Based on the housing step 828 , the rear outer diameter of the second axial projection 823 is smaller than the front outer diameter.
  • the inner circumferential surface of the second inner ring B21 is radially facing and in contact with the outer circumferential surface of the second axial direction protrusion 823 . And the front end of the second inner ring (B21) is facing and in contact with the housing step (828) in the axial direction.
  • a second bearing groove B24 is formed on the inner circumferential surface of the second inner ring B21. And in a state where the second outer ring B22 is in contact with the housing step 828, the outer circumferential surface of the second axial projection 823 faces the second bearing groove B24, a housing ring groove 829 this is formed Accordingly, the second bearing groove B24 and the housing ring groove 829 are connected to each other in the radial direction.
  • a play prevention ring RR is fitted in the second bearing groove B24 and the housing ring groove 829 .
  • the play prevention ring RR may be a C-ring that can be elastically deformed to increase or decrease a radius.
  • the depth of the housing ring groove 829 measured in the radial direction may be equal to or greater than the height h of the play prevention ring RR measured in the radial direction.
  • the depth of the second bearing groove (B24) may be smaller than the height of the play prevention ring (RR).
  • the installation sequence of the second bearing B2 in which the axial movement prevention part is reflected is as follows.
  • the second outer ring B22 of the second bearing B2 is interpolated on the inner circumferential surface of the axial extension 464 until reaching the ridge step 469 . And insert the ridge snap ring 470 in the ridge ring groove 471 in front of the second outer ring (B22).
  • the play prevention ring RR is inserted into the housing ring groove 829 provided on the outer circumferential surface of the second axial projection 823 .
  • the play prevention ring (RR) is elastically deformed so that the inner diameter is expanded, and is elastically restored at the moment it reaches the housing ring groove (829), and the inner diameter is reduced As a result, it is fitted into the housing ring groove (829).
  • the second axial projection 823 is interpolated into the inner circumferential surface of the axial extension portion 464 .
  • the second inner ring B21 of the second bearing B2 elastically deforms the play prevention ring RR to reduce its radius. Since the depth of the housing ring groove 829 is equal to or greater than the height of the play prevention ring RR, the play prevention ring RR can be completely inserted into the housing ring groove 829 .
  • a tapered shape or a chamfered shape may be formed at a corner portion between the front surface and the inner circumferential surface of the second inner ring B21.
  • the play prevention ring RR with a reduced radius is elastically restored at the moment it reaches the second bearing groove B24 and the outer diameter is enlarged, thereby being fitted into the second bearing groove B24.
  • the radially inner end of the play preventing ring RR is fitted into the housing ring groove 829 .
  • the ridge step 469 interferes with the second outer ring B22.
  • the second outer ring (B22) interferes with the second rolling body (B23)
  • the second rolling body (B23) interferes with the second inner ring (B21)
  • the second inner ring (B21) is a play prevention ring (RR) )
  • the play prevention ring RR interferes with the second axial projection 823, so that the forward movement of the rotor hub 43 is prevented.
  • the play prevention ring RR, the second bearing groove B24, and the housing ring groove 829 are axial movement preventing parts to prevent play in the front-rear direction of the rotor hub 43 .
  • the ridge ring groove 471 and the ridge snap ring 470 are replaced with a plastic working part 458 such as a caulking part.
  • the second bearing groove B24 may be provided on the second outer ring B22 instead of the second inner ring B21.
  • the second axial protrusion may also be disposed more radially outward than the axial extension of the hub ridge 46 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

본 발명은, 회전자와 고정자를 포함하는 모터를 구비한 하이브리드 구동 모듈이다. 상기 하이브리드 구동 모듈은: 상기 고정자가 설치된 하우징; 상기 회전자가 설치되고 상기 하우징에 의해 회전 가능하게 지지되는 회전자 허브; 및 상기 하우징과 회전자 허브 사이에서 상기 하우징에 대한 상기 회전자 허브의 전방으로의 이동과 후방으로의 이동을 규제하는 축방향 이동 방지부;를 포함한다. 상기 축방향 이동 방지부는, 상기 하우징과 상기 회전자 허브 사이에 개재되는 베어링에 마련될 수 있다. 상기 베어링은: 제1둘레면에 접하는 제1륜; 제2둘레면에 접하는 제2륜; 및 상기 제1륜과 제2륜 사이에 개재된 구름체;를 포함한다. 상기 축방향 이동 방지부는: 상기 제1륜의 표면에 마련된 베어링홈; 상기 제1둘레면에 마련된 둘레면홈; 및 상기 둘레면홈과 베어링홈에 걸쳐지며 삽입된 유격방지링;을 포함한다. 상기 유격방지링의 높이는 상기 둘레면홈의 깊이 이하이다.

Description

하이브리드 구동 모듈
본 발명은 하이브리드 구동 모듈에 관한 것으로, 보다 상세하게는 하이브리드 구동 모듈의 고정단인 하우징에 대해 상대적으로 회전하는 회전자 허브와 상기 하우징 사이에 실링 구조가 마련되고, 모터와 출력부재 사이에 모터위치센서가 장착된 하이브리드 구동 모듈에 관한 것이다.
하이브리드 차량에 사용되는 구동 모듈은 모터와 엔진의 힘을 변속기로 전달하는 구조를 가진다. 하이브리드 구동 모듈은, 엔진의 힘을 전달받는 입력부재, 모터, 상기 입력부재와 모터 사이를 연결하는 엔진클러치, 모터 및/또는 엔진의 힘을 전달받아 변속기에 전달하는 출력부재, 상기 모터와 출력부재 사이를 연결하는 동력전달부를 포함한다. 상기 동력전달부는, 모터와 출력부재를 직결하는 구조이거나, 토크컨버터(유체클러치)와 락업클러치를 포함하는 구조일 수 있다.
상기 모터는 고정자와 회전자를 포함하며, 회전자는 회전자 허브에 설치될 수 있다. 상기 회전자 허브에 의해 형성되는 회전자의 반경방향 내측 공간에는 클러치 등이 설치되는 공간을 제공한다. 상기 공간에 클러치 등이 설치된 뒤에는 커버나 허브 리지가 설치되어 상기 공간을 덮는다. 상기 허브 리지는 회전자 허브와 일체로 회전하도록 설치된다.
고정자는 하우징에 설치된다. 그리고 상기 입력부재, 회전자 허브, 출력부재 등은 상기 하우징에 대해 회전 가능하게 설치된다.
상기 회전자 허브의 반경방향 내측 공간에 설치된 클러치는 유압에 의해 작동되거나 작동 해제된다. 그리고 이러한 유압은 하우징을 통해 상기 회전자 허브의 반경방향 내측 공간으로 공급될 수 있다. 이때 상기 클러치를 작동하기 위해 제공되는 유압이 회전자 허브 자체를 하우징으로부터 축방향으로 이동하려는 힘으로도 작동하게 된다. 하우징에 대한 회전자 허브의 축방향 이동은 부품들 간의 간섭을 유발하여 마모를 발생시킬 우려가 있다. 그리고 이러한 간섭과 마모는, 하이브리드 구동 모듈의 심각한 비정상적 구동을 초래할 수 있다. 따라서, 상기 하우징과 회전자 허브 사이에 축방향으로 상대적인 일어나지 않도록 하는 구조가 추가적으로 요구된다.
한편, 위와 같이 하우징과 회전자 허브의 상대적인 이동을 방지하기 위한 축방향 지지구조로서 스러스트 베어링과 같은 부품을 추가할 경우, 부품수와 조립 공수 증가에 따른 생산 단가 상승으로 이어질 수 있다. 따라서 부품수와 조립 공수를 최소화하면서 하우징과 회전자 허브 간의 상대적인 이동을 방지하는 구조가 요구된다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 하우징에 대해 회전자 허브가 축방향으로 상대적으로 이동하지 않도록 한 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.
본 발명은, 부품수와 조립 공수를 최소화하면서 하우징과 회전자 허브 간의 상대적인 이동을 방지하는 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.
상술한 과제를 해결하기 위한 본 발명은, 회전자(42)과 고정자(41)를 포함하는 모터(40)를 구비한 하이브리드 구동 모듈에 적용될 수 있다.
상기 하이브리드 구동 모듈은: 상기 고정자(41)가 설치된 하우징(80); 상기 회전자(42)가 설치되고 상기 하우징(80)에 의해 회전 가능하게 지지되는 회전자 허브(43); 및 상기 하우징(80)과 회전자 허브(43) 사이에서 상기 하우징(80)에 대한 상기 회전자 허브(43)의 전방으로의 이동과 후방으로의 이동을 규제하는 축방향 이동 방지부;를 포함한다.
상기 축방향 이동 방지부는, 상기 하우징(80)과 상기 회전자 허브(43) 사이에 개재되어 상기 하우징(80)에 대한 상기 회전자 허브(43)의 회전을 지지하는 베어링(B2 또는 B3)에 마련될 수 있다.
상기 베어링은, 반경방향으로 서로 마주하는 상기 하우징(80) 측의 둘레면과 상기 회전자 허브(43) 측의 둘레면 사이에 개재될 수 있다.
상기 베어링은: 상기 하우징(80) 측의 둘레면과 상기 회전자 허브(43) 측의 둘레면 중 선택된 한 면인 제1둘레면에 접하는 제1륜; 상기 하우징(80) 측의 둘레면과 상기 회전자 허브(43) 측의 둘레면 중 나머지 한 면인 제2둘레면에 접하는 제2륜; 및 상기 제1륜과 제2륜 사이에 개재된 구름체;를 포함할 수 있다.
상기 제1륜과 제2륜 중 어느 하나는 내륜이고 다른 하나는 외륜일 수 있다.
상기 구름체는, 롤러, 볼 등 다양한 구름체가 사용될 수 있다.
상기 축방향 이동 방지부는: 상기 제1둘레면과 마주하는 상기 제1륜의 표면에 마련된 베어링홈; 상기 베어링홈과 대응하는 위치에서 상기 제1둘레면에 마련된 둘레면홈; 및 상기 둘레면홈과 베어링홈에 걸쳐지며 삽입된 유격방지링(RR);을 포함할 수 있다.
상기 유격방지링의 높이(h)는 상기 둘레면홈의 깊이 이하일 수 있다.
선택적으로, 상기 유격방지링의 높이는 상기 베어링홈의 깊이보다 클 수 있다.
상기 제2둘레면에는, 상기 제2륜의 축방향 타측과 간섭되도록 반경방향으로 돌출된 제2베어링 단턱이 마련될 수 있다.
상기 제2둘레면에는, 상기 제2륜의 축방향 일측과 간섭되는 베어링 고정부가 마련될 수 있다.
상기 제2베어링 단턱과 상기 베어링 고정부를 통해, 먼저 상기 베어링을 상기 제2둘레면에 먼저 고정하고, 상기 축방향 이동 방지부를 조립할 수 있다.
상기 제1둘레면에는, 상기 제1륜의 축방향 일측과 간섭되도록 반경방향으로 돌출된 제1베어링 단턱이 마련될 수 있다.
일 예로서, 상기 베어링 고정부는: 상기 제2둘레면에서 상기 제2륜과 마주하지 않는 위치에는 형성된 링홈; 및 상기 링홈에 삽입되는 스냅링;을 포함할 수 있다. 이에 따르면, 상기 링홈으로부터 반경방향으로 돌출된 스냅링 부위가 상기 제2륜의 축방향 일측과 간섭되는 구조일 수 있다,
다른 일 예로서, 상기 베어링 고정부는 소성가공부를 포함할 수 있다.
상기 소성가공부는, 상기 베어링이 상기 제2베어링 단턱까지 축방향으로 삽입된 상태에서, 상기 제2둘레면이 반경방향으로 돌출되도록 소성 변형시킨 부위일 수 있다.
상기 소성가공부는 코킹 가공에 의해 형성될 수 있다.
일 실시예에 있어서. 상기 하우징(80)은, 하우징(80)에 대해 회전 가능하게 지지되고 엔진으로부터 구동력을 입력 받는 입력부재(10)를 포함하고, 상기 하우징(80) 측의 둘레면은 상기 입력부재(10)에 마련될 수 있다.
상기 회전자 허브(43)는, 상기 회전자 허브(43)의 중심 부분에서 축방향으로 연장되는 중심축 연장부(450)를 구비하고, 상기 회전자 허브(43) 측의 둘레면은 상기 중심축 연장부(450)에 마련될 수 있다.
상기 중심축 연장부(450)의 둘레면은 상기 입력부재(10)의 둘레면보다 반경방향 내측에 마련될 수 있다.
다른 일 실시예에서, 상기 하우징(80)은 상기 하우징(80)으로부터 축방향으로 돌출된 축방향돌출부(823)를 포함하고, 상기 하우징(80) 측의 둘레면은 상기 축방향돌출부(823)에 마련될 수 있다.
상기 회전자 허브(43)는 상기 회전자 허브(43)와 회전 구속되도록 연결되고 반경방향으로 연장되는 허브 리지(46)를 포함하고, 상기 허브 리지(46)의 반경방향 내측에는, 상기 허브 리지(46)로부터 축방향으로 연장되는 축방향 연장부(464)가 마련되고, 상기 회전자 허브(43) 측의 둘레면은 상기 축방향 연장부(464)에 마련될 수 있다.
상기 축방향돌출부(823)의 둘레면은 상기 축방향 연장부(464)의 둘레면보다 반경방향 내측에 마련될 수 있다.
본 발명의 하이브리드 구동 모듈에 따르면, 하우징에 대해 회전자 허브의 축방향 유격을 규제하여 하이브리드 구동 모듈의 작동 안정성을 높일 수 있다.
본 발명에 따르면, 하우징에 대해 회전자 허브의 축방향 유격을 규제함에 있어서 구름 베어링, 특히 볼 베어링의 스러스트 베어링 작용을 그대로 활용함으로써 별도의 스러스트 베어링 요소를 추가하지 않아도 무방하다.
본 발명은, 별도의 스러스트 베어링 요소를 추가하지 않아, 부품수와 조립 공수를 최소화하면서도 하우징과 회전자 허브 간의 상대적인 이동을 방지할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 하이브리드 구동 모듈의 제1실시예의 개념적인 도면이다.
도 2는 회전자 허브에 하우징과 스프링 댐퍼가 설치되는 과정을 나타낸 측면단면도이다.
도 3은 도 1의 도면에 구동력의 전달 경로를 표시한 도면이다.
도 4는 도 1의 도면에 유체의 유동 제어 방향을 표시한 도면이다.
도 5는 축방향 이동 방지부의 제1실시예의 확대도(도 4의 E 부분)이다.
도 6은 도 5의 축방향 이동 방지부의 분해도이다.
도 7은 축방향 이동 방지부의 제2실시예의 확대도(도 4의 E 부분)이다.
도 8은 축방향 이동 방지부의 제3실시예의 확대도(도 4의 E 부분)이다.
도 9는 축방향 이동 방지부의 제4실시예의 확대도(도 3의 F 부분)이다.
<부호의 설명>
9: 스프링 댐퍼 10: 입력부재 101: 제1입력부재 링홈 102: 스플라인 105: 제1입력부재 단턱 107: 제2입력부재 단턱 108: 제2입력부재 링홈 109: 제2입력부재 스냅링 110: 제3입력부재 링홈 12: 입력플레이트 13: 제1입력부재 스냅링 20: 엔진클러치 21: 제1피스톤 플레이트 22: 제1클러치팩 23: 제1캐리어 40: 모터 41: 고정자(스테이터) 42: 회전자(로터) 420: 리테이너 43: 회전자 허브 44: 회전자 홀더 441: 반경방향 지지부 442: 축방향 지지부 45: 허브 플레이트 450: 중심축 연장부 451: 허브 내축 453: 중심축 단턱 454: 제1중심축 링홈 455: 중심축 스냅링 458: 소성가공부(코킹부) 459: 제2중심축 링홈 46: 허브 리지(ridge) 464: 축방향 연장부 465: 반경방향 외측 내주면 466: 반경방향 내측 외주면 467: 유동홀 468: 슬라이드 돌기 469: 리지 단턱 470: 리지 스냅링 471: 리지 링홈 4691: 제1실링면 4692: 제2실링면 49: 허브 스냅링(리지 고정부재) 50: 유체클러치 51: 임펠러 52: 백커버 53: 볼트 54: 터빈 55: 터빈 플레이트 56: 리액터 57: 원웨이클러치 60: 락업클러치 61: 제2피스톤 플레이트 62: 제2클러치팩 64: 출력플레이트 70: 출력부재 75: 고정단 80: 하우징 821: 제1축방향돌출부 822: 제1실링홈 823: 제2축방향돌출부 824: 제2실링홈 828: 하우징 단턱 829: 하우징 링홈 83: 제1유로 84: 제2유로 90: 탄성체 91: 제1탄성체 92: 제2탄성체 93: 제3탄성체 94: 제4탄성체 S1: 제1실링부재 S2: 제2실링부재 S3: 제3실링부재 B1, B2, B3, B4, B5, B6: 베어링 B21: 제2내륜 B22: 제2외륜 B23: 제2구름체 B24: 제2베어링홈 B31: 제3내륜 B32: 제3외륜 B33: 제3구름체 B34: 제3베어링홈 A1, A2, A3, A4: 공간 RR: 유격방지링
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다.
본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 다양한 변경을 가할 수 있고 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 따라서 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 어느 하나의 실시예의 구성과 다른 실시예의 구성을 서로 치환하거나 부가하는 것은 물론 본 발명의 기술적 사상과 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 구성요소들은 이해의 편의 등을 고려하여 크기나 두께가 과장되게 크거나 작게 표현될 수 있으나, 이로 인해 본 발명의 보호범위가 제한적으로 해석되어서는 아니 될 것이다.
본 명세서에서 사용한 용어는 단지 특정한 구현예나 실시예를 설명하기 위해 사용되는 것으로, 본 발명을 한정하려는 의도가 아니다. 그리고 단수의 표현은, 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 명세서에서 ~포함하다, ~이루어진다 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이다. 즉 명세서에서 ~포함하다, ~이루어진다 등의 용어는. 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들이 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
어떤 구성요소가 다른 구성요소의 "상부에 있다"거나 "하부에 있다"고 언급된 때에는, 그 다른 구성요소의 바로 위에 배치되어 있는 것뿐만 아니라 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
실시예의 하이브리드 구동 모듈은 축을 기준으로 대칭을 이루므로, 작도의 편의 상, 축을 기준으로 반만 도시한다. 또한 설명의 편의 상, 하이브리드 구동 모듈의 회전의 중심을 이루는 축의 길이방향을 따르는 방향을 축방향이라 한다. 즉 전후 방향 또는 축방향은 회전축과 나란한 방향으로서, 전방(앞쪽)은 동력원인 어느 일 방향, 가령 엔진 쪽으로 향하는 방향을 의미하고, 후방(뒤쪽)은 다른 일 방향, 가령 변속기 쪽으로 향하는 방향을 의미한다. 따라서 전면(앞면)이란 그 표면이 전방을 바라보는 면을 의미하고, 후면(뒷면)이란 그 표면이 후방을 바라보는 면을 의미한다.
반경방향 또는 방사 방향이라 함은 상기 회전축과 수직한 평면 상에서 상기 회전축의 중심을 지나는 직선을 따라 상기 중심에 가까워지는 방향 또는 상기 중심으로부터 멀어지는 방향을 의미한다. 상기 중심으로부터 반경방향으로 멀어지는 방향을 원심방향이라 하고, 상기 중심에 가까워지는 방향을 구심방향이라 한다.
둘레방향 또는 원주방향이라 함은 상기 회전축의 주위를 둘러싸는 방향을 의미한다. 외주라 함은 외측 둘레, 내주라 함은 내측 둘레를 의미한다. 따라서 외주면은 상기 회전축을 등지는 방향의 면이고, 내주면은 상기 회전축을 바라보는 방향의 면을 의미한다.
둘레방향 측면이라 함은 그 면의 법선이 둘레방향을 향하는 면을 의미한다.
[하이브리드 구동 모듈]
이하 도 1 내지 도 4를 참조하여 실시예의 하이브리드 구동 모듈의 구조를 설명한다.
실시예의 하이브리드 구동 모듈은, 엔진의 출력측과 연결되어 엔진의 출력이 입력되는 입력부재(10)와, 모터의 구동력 또는 모터와 엔진의 구동력을 변속기에 전달하는 출력부재(70)를 포함한다.
엔진의 출력은 스프링 댐퍼(9)를 거쳐 입력부재(10)에 입력된다. 상기 스프링 댐퍼(9)는 토셔널 댐퍼이다. 상기 스프링 댐퍼(9)는 입력부재(10)의 스플라인(102)에 맞물려 상호 회전 구속된다. 스프링 댐퍼(9)는 진동이 발생하지 않도록 엔진 출력의 출렁거림을 완화시킨다.
입력부재(10)의 축방향 전방 쪽 외주면에는, 상기 스플라인(102)이 마련된다. 그리고 입력부재(10)의 축방향 후방 쪽 외주면에는, 반경방향으로 외향 연장되는 입력플레이트(12)가 연결된다. 상기 입력플레이트(12)는 상기 입력부재(10)에 용접 등에 의해 일체로 고정되어 상기 입력부재(10)와 일체로 회전한다.
입력부재(10)의 반경방향 외측 단부에는 엔진클러치(20)가 연결된다. 상기 엔진클러치(20)는 회전자 허브(43)와 상기 입력부재(10) 사이에 마련되어, 상기 엔진의 출력을 상기 회전자 허브(43)에 전달하거나 전달하지 않는다.
상기 하이브리드 구동 모듈은 모터(40)를 구비한다. 상기 모터(40)는 환형의 고정자(41)와, 상기 고정자(41)의 반경방향 내측에 배치되는 환형의 회전자(42)를 포함한다. 상기 회전자(42)는 상기 고정자(41)와의 전자기적 상호작용에 의해 회전한다.
상기 고정자(41)는 하우징(80)에 고정된다. 상기 하우징(80)은 모터(40)보다 축방향 전방에 배치되고 반경방향으로 연장된다. 상기 입력부재(10)는 상기 하우징(80)의 반경방향 내측 단부에서 제1베어링(B1)을 통해 회전 가능하게 지지된다. 상기 제1베어링(B1)은, 상기 입력부재(10)의 외주면에 마련된 제1입력부재 링홈(101)에 끼워지는 제1입력부재 스냅링(13)에 의해 축방향으로 고정된다. 상기 제1베어링(B1)의 내륜의 축방향 후방은 입력부재(10)의 제1입력부재 단턱(105)에 의해 지지되고, 상기 제1베어링(B1)의 내륜의 축방향 전방은 상기 제1입력부재 스냅링(13)에 의해 지지된다. 상기 제1베어링(B1)의 외륜은 축방향으로, 그리고 반경방향으로 상기 하우징(80)에 의해 지지된다. 이에 따라, 상기 제1베어링(B1)에 의해, 상기 입력부재(10)는 상기 하우징(80)에 대해 반경방향으로 지지되고, 축방향으로 지지된다. 즉 상기 입력부재(10)는, 상기 제1베어링(B1)과 제1입력부재 단턱(105)과 제1입력부재 스냅링(13)에 의해, 상기 하우징(80)에 대해 상대적으로 축방향으로 이동하는 것이 규제된다.
상기 입력부재(10)와 하우징(80) 사이에는, 상기 하우징(80) 내부의 유체가 외부로 세어 나가지 않도록 밀봉하는 제1실링부재(S1)가 마련된다.
상기 회전자(42)는 상기 회전자 허브(43)에 고정된다. 상기 회전자 허브(43)는 상기 회전자(42)를 고정하는 회전자 홀더(44)와, 상기 회전자 홀더(44)로부터 반경방향 내측으로 연장되는 허브 플레이트(45)를 구비한다.
상기 회전자 홀더(44)는, 상기 회전자(42)의 내주면을 지지하는 반경방향 지지부(441)와, 상기 회전자(42)의 축방향 후단부를 지지하는 축방향 지지부(442)를 포함한다. 상기 반경방향 지지부(441)는 축방향으로 연장되는 원통 형상일 수 있다. 상기 축방향 지지부(442)는 상기 반경방향 지지부(441)의 축방향 후단부에서 반경방향으로 외향 연장되는 플랜지 형태일 수 있다.
반경방향 지지부(441)는 회전자(42)의 내주면을 지지하고, 축방향 지지부(442)는 회전자(42)의 축방향 후방 단부를 지지한다. 반경방향 지지부(441)의 전방 단부에는 반경방향으로 연장되는 축방향 지지부가 형성되지 않는다. 이에 따라 축방향의 전방으로부터 후방으로 회전자(42)를 외삽하여, 회전자(42)의 내주면이 상기 반경방향 지지부(441)의 외주면과 마주하며 지지되고, 회전자(42)의 축방향 후방 단부가 상기 축방향 지지부(442)의 전면과 마주하며 지지된다.
상기 반경방향 지지부(441)의 전방 단부에는 허브 리지(46)가 결합된다. 상기 허브 리지(46)는 상기 반경방향 지지부(441)의 전방 단부에 치형 결합되어 상호 회전 구속된다. 상기 허브 리지(46)는 상기 반경방향 지지부(441)보다 더 반경방향 외측으로 연장되고, 이에 따라 상기 허브 리지(46)의 반경방향 외측 단부는 상기 회전자(42)의 전방 단부를 축방향으로 지지한다. 상기 허브 리지(46)를 반경방향 지지부(441)에 끼운 후, 상기 허브 리지(46)가 축방향 전방으로 이탈하지 않도록, 상기 허브 리지(46)의 전방에서 리지 고정부재인 허브 스냅링(49)을 상기 반경방향 지지부(441)의 내주면에 마련된 홈에 끼운다.
상기 허브 플레이트(45)는 상기 반경방향 지지부(441)의 축방향의 중앙부 부근에서 상기 회전자 홀더(44)와 연결된다. 상기 허브 플레이트(45)는 상기 반경방향 지지부(441)의 내주면으로부터 반경방향 내측으로 연장되는 형태로서, 접시와 유사한 형상을 가진다. 상기 허브 플레이트(45)의 반경의 중심부에는 전방으로 연장되는 중심축 연장부(450)가 구비되고, 상기 중심축 연장부(450)는 상기 입력부재(10)와 제3베어링(B3)을 통해 상호 상대적인 회전이 가능하게 지지된다. 이를 위해 상기 중심축 연장부(450)에는, 상기 입력부재(10)에 대한 상기 제3베어링(B3)의 후방 위치를 규제하는 중심축 단턱(453)이 마련되고, 상기 입력부재(10)에는 상기 제3베어링(B3)의 전방 위치를 규제하는 제2입력부재 단턱(107)이 마련된다. 상기 제3베어링(B3)은 상기 허브 플레이트(45)의 중심축 연장부(450)에 대해, 상기 입력부재(10)를 축방향으로, 그리고 반경방향으로 지지한다.
상기 엔진클러치(20)는 상기 반경방향 지지부(441)의 반경방향 내측이면서, 상기 허브 플레이트(45)의 축방향 전방에 해당하는 공간에 설치된다. 상기 엔진클러치(20)는 마찰판 또는 마찰재를 구비하는 제1클러치팩(22)과 제1캐리어(23)를 포함한다. 상기 회전자 허브(43)의 허브 플레이트(45)에 상기 제1캐리어(23)가 설치될 수 있다. 상기 제1캐리어(23)는 상기 회전자 허브(43)에 회전 구속되도록 연결되어 상기 회전자 허브(43)와 일체로 회전한다. 상기 제1클러치팩(22)의 반경방향 외측은 상기 제1캐리어(23)에 연결되고, 반경방향 내측은 상기 입력플레이트(12)를 통해 상기 입력부재(10)에 연결된다. 상기 제1캐리어(23)에 연결되는 클러치판들과, 상기 입력부재(10)에 연결되는 클러치판들은 서로 교호로 배치되고, 이 클러치판들 사이에는 마찰재가 개재된다.
상기 제1클러치팩(22)의 축방향 전방에는 제1피스톤 플레이트(21)가 배치된다. 상기 제1피스톤 플레이트(21)가 상기 제1클러치팩(22)을 축방향으로 가압하면, 상기 입력플레이트(12)와 제1캐리어(23)는 상호 회전 구속되도록 연결된다. 이에 따라 입력플레이트(12)까지 전달된 엔진의 출력은, 상기 엔진클러치(20)를 거쳐 상기 회전자 허브(43)에 전달될 수 있다. 상기 제1피스톤 플레이트(21)가 상기 제1클러치팩(22)을 가압하지 않으면, 상기 입력플레이트(12)와 제1캐리어(23)는 상호 회전 구속되지 않는다. 이에 따라 엔진의 출력은 상기 입력플레이트(12)까지만 전달되고, 상기 회전자 허브(43)에는 전달되지 않는다.
상기 제1피스톤 플레이트(21)의 축방향 전방에는 허브 리지(ridge)가 배치된다. 도 2를 참조하면, 상기 허브 리지(46)는 중앙부가 개방되고 반경방향으로 연장된 대략 접시형 또는 원반형 부재일 수 있다.
상기 엔진클러치(20)의 제1피스톤 플레이트(21)는 상기 허브 리지(46)의 축방향 후방에 설치된다. 상기 허브 리지(46)는, 반경방향 외측에서 축방향을 따라 후방으로 연장되는 반경방향 외측 내주면(465)과, 반경방향 내측에서 축방향을 따라 후방으로 연장되는 반경방향 내측 외주면(466)을 구비한다. 상기 반경방향 내측 외주면(466)은 상기 허브 리지(46)의 구심 단부로부터 후방으로 연장된 축방향 연장부(464)에 마련된다. 상기 제1피스톤 플레이트(21)는 반경방향으로 연장된다. 상기 제1피스톤 플레이트(21)의 반경방향 외측 단부의 외주면은, 상기 반경방향 외측 내주면(465)과 축방향으로 슬라이드 이동 가능하게 접하고, 상기 제1피스톤 플레이트(21)의 반경방향 내측 단부의 내주면은, 상기 반경방향 내측 외주면(466)과 축방향으로 슬라이드 이동 가능하게 접한다.
상기 허브 리지(46)의 반경방향 내측에 마련된 축방향 연장부(464)의 단부에는, 축방향 후방으로 더 연장되는 슬라이드 돌기(468)가 마련된다. 상기 슬라이드 돌기(468)는 상기 반경방향 내측 외주면(466) 부근에 마련될 수 있다. 상기 제1피스톤 플레이트(21)에는 상기 슬라이드 돌기(468)와 상보적인 형상의 슬라이드 홈이 마련된다. 이에 따라 상기 제1피스톤 플레이트(21)는 상기 허브 리지(46)와 회전 구속되면서도, 축방향으로 슬라이드 이동이 가능하다.
상기 허브 리지(46)에는, 상기 제1피스톤 플레이트(21), 상기 허브 리지(46)의 후면, 상기 반경방향 외측 내주면(465) 및 상기 반경방향 내측 외주면(466)에 의해 규정되는 공간인 엔진클러치 작동 챔버에 유체가 유입될 수 있는 유동홀(467)이 마련된다.
상기 허브리지(46)에서 상기 유동홀(467)보다 반경방향 외측과 반경방향 내측에는, 각각 하우징(80)의 제1축방향돌출부(821) 및 제2축방향돌출부(823)와 반경방향으로 마주하는 제1실링면(4691)과 제2실링면(4692)이 마련된다.
그리고 상기 하우징(80)의 제1축방향돌출부(821)가 상기 제1실링면(4691)을 바라보는 외주면 부위에는 제1실링홈(822)이 마련되고, 거기에 제2실링부재(S2)가 끼워진다. 또한 상기 하우징(80)의 제2축방향돌출부(823)가 상기 제2실링면(4692)을 바라보는 외주면 부위에는 제2실링홈(824)이 마련되고, 거기에 제3실링부재(S3)가 끼워진다.
상기 제1실링면(4691)과 제2실링면(4692)이 각각 제2실링부재(S2)와 제3실링부재(S3)를 사이에 두고 각각 상기 제1축방향돌출부(821) 및 상기 제2축방향돌출부(823)와 접하면, 상기 하우징(80)과 허브 리지(46) 사이에는 실링이 이루어지는 소정의 공간(A1)이 제공된다.
상기 하우징(80)에는 상기 공간(A1)으로 오일을 공급하기 위한 제1유로(83)가 형성된다. 상기 제1유로(83)는 하우징(80)의 반경방향 외측 단부에서 상기 제1축방향돌출부(821) 및 상기 제2축방향돌출부(823) 사이의 소정의 위치까지 반경방향으로 연장되고, 상기 공간(A1)으로 연통한다.
도 4에 도시된 "clutch actuating" 경로와 같이 상기 하우징(80)을 통해 상기 제1피스톤 플레이트(21)의 전방 공간(A1)으로 유체가 유입되면, 제1피스톤 플레이트(21)는 허브 리지(46)에 대해 축방향 후방으로 이동하여 제1클러치팩(22)을 가압한다. 즉 상기 제1유로(83)로 유압이 공급되면, 압력이 가해진 오일은 상기 공간(A1)과 상기 유동홀(467)을 통해 상기 엔진클러치 작동 챔버에 공급되고, 제1피스톤 플레이트(21)가 후방으로 이동하며 제1클러치팩(22)을 가압하여 엔진클러치(20)가 입력플레이트(12)와 회전자 허브(43)를 상호 회전 구속되도록 연결한다. 그러면 도 3에 "Engine power" 경로로 도시된 바와 같이, 엔진의 회전력은 회전자 허브(43)에 전달된다.
도 4에 도시된 "clutch actuating" 경로와 같이 상기 하우징(80)을 통해 상기 제1피스톤 플레이트(21)의 전방 공간(A1)으로 유체가 유입되어 제1피스톤 플레이트(21)가 제1클러치팩(22)을 가압할 때, 제1피스톤 플레이트(21)가 제1클러치팩(22)을 가압하는 가압력은 회전자 허브(43) 자체를 후방으로 밀게 된다. 따라서 엔진클러치(20)를 작동시키기 위해 도 4에 도시된 바와 같이 유압이 공급되면, 회전자 허브(43)와 허브 리지(46)는 하우징(80)과 입력부재(10)와 입력플레이트(12)에 대해 상대적으로 후방으로 이동할 여지가 있다. 그러면 허브 리지(46)의 슬라이드 돌기(468)가 입력플레이트(12)와 간섭될 가능성을 배제할 수 없게 된다. 본 발명은 이와 같은 회전자 허브(43)의 축방향 유격을 방지하기 위한 구조를 제공한다.
한편 상기 하우징(80)에는 상기 제1피스톤 플레이트(21)의 후방 공간(A2)으로 유체를 공급하기 위한 제2유로(84)가 형성된다. 제2유로(84)는 하우징(80)의 반경방향 외측 단부에서 상기 제2축방향돌출부(823)에 대응하는 위치까지 반경방향으로 연장되고, 상기 제2축방향돌출부(823)를 따라 축방향으로 연장되어 상기 후방 공간(A2)으로 연통한다. 상기 제2유로(84)는, 상기 제1유로(83)와 하우징의 둘레방향을 따라 서로 다른 위치에 형성되어 있기 때문에, 하우징(80) 내에서 서로 통하지 않고 독립적인 유로를 형성한다.
도 4에 도시된 "clutch & Rotor cooling" 경로와 같이, 상기 하우징(80)의 제2유로(84)를 통해 상기 제1피스톤 플레이트(21)의 후방 공간(A2)으로 유체가 유입되면, 제1피스톤 플레이트(21)는 허브 리지(46)에 대해 축방향 전방으로 이동하여 제1클러치팩(22)을 가압하지 않는다. 제2유로(84)를 통해 후방 공간(A2)에 유입된 유체(오일)은 베어링들(B1, B2, B3)을 냉각 및/또는 윤활하고, 상기 엔진클러치(20)를 냉각 및/또는 윤활시키고 상기 회전자(42)를 냉각한다.
상기 허브 리지(46)의 반경방향 내측은 상기 하우징(80)에 대해 회전 가능하도록 연결된다. 이를 위해 상기 허브 리지(46)의 반경방향 내측에 마련된 축방향 연장부(464)의 내주면과, 상기 하우징(80)의 반경방향 내측에 마련된 제2축방향돌출부(823)의 외주면 사이에는 제2베어링(B2)이 개재된다. 상기 허브 리지(46)의 축방향 연장부(464)에는 상기 제2베어링(B2)의 후방 위치를 규제하는 리지 단턱(469)이 마련되어 있다. 이에 따라 제2베어링(B2)의 외륜은 상기 허브 리지(46)를 반경방향으로 지지하고 축방향으로 지지한다. 상기 하우징(80)에는 상기 제2베어링(B2)의 전방 위치를 규제하는 하우징 단턱(828)이 마련되어 있다. 이에 따라 제2베어링(B2)의 내륜은 상기 하우징(80)을 반경방향으로 지지하고 축방향으로 지지한다. 따라서 상기 허브 리지(46)는 상기 하우징(80)에 대해 반경방향으로 지지되고, 축방향의 전방으로 지지된다.
한편, 상기 회전자(42)의 축방향 전방 및/또는 후방에는, 상기 회전자(42)를 보호하고 지지하기 위한 리테이너(420)가 설치될 수 있다. 상기 허브 리지(46)의 외측 단부는 상기 리테이너(420)와 접할 수 있다.
이와 같은 허브 리지(46) 구조에 따르면, 허브 리지(46)를 회전자 허브(43)에 설치하는 과정에서 제1피스톤 플레이트(21)가 함께 설치되고, 아울러 허브 리지(46)가 회전자(42)를 고정하게 된다. 다른 관점에서 설명하면 상기 회전자(42)는 상기 허브 리지(46)가 축방향 후방으로 이동하는 것을 제한한다고 할 수 있다.
즉 상기 허브 리지(46)는, 축방향 전방으로는 상기 허브 스냅링(49)에 의해 이탈이 제한되고, 축방향 후방으로는 상기 반경방향 지지부(441) 및/또는 상기 회전자(42)에 의해 이동이 제한될 수 있다.
상기 반경방향 지지부(441)와 허브 리지(46)의 제조 오차 등으로 인해, 상기 허브 리지(46)는 축방향으로 유격이 발생할 수 있다. 즉 허브 리지(46)가 축방향으로 이동하며 진동할 수 있고, 이는 소음의 원인이 될 수 있다.
이에 상기 하이브리드 구동 모듈은, 상기 허브 리지(46)를 축방향 전방으로 탄성 가압하여 허브 스냅링(49) 쪽으로 밀어붙이는 탄성체(90)를 더 포함할 수 있다.
상기 탄성체(90)는 상기 허브 리지(46)를 상기 허브 스냅링(49) 쪽으로 밀어붙이기에 적합한 위치라면 어디라도 설치될 수 있다. 도 1에는, 제1탄성체(91) 내지 제4탄성체(94)가 서로 다른 위치에 설치되어, 상기 허브 리지(46)를 상기 허브 스냅링(49) 쪽으로 가압하는 구조가 한꺼번에 도시되어 있다. 그러나 이는 설명의 편의를 위한 것으로, 상기 탄성체(90)는 상기 제1탄성체(91) 내지 제4탄성체(94) 중 어느 하나만을 포함해도 족하다. 물론 상기 탄성체(90)는 상기 제1탄성체(91) 내지 제4탄성체(94) 중 2 이상의 탄성체(90)를 함께 포함할 수도 있을 것이다.
상기 제1탄성체(91) 및/또는 제2탄성체(92)는, 축방향으로 확장되는 방향으로 탄성력을 제공한다.
먼저 제1탄성체(91)는, 회전자(42)의 전방에서 상기 허브 리지(46)를 전방으로 탄성 가압하여, 상기 허브 리지(46)를 상기 허브 스냅링(49) 쪽으로 밀어붙이도록 구성될 수 있다. 제2탄성체(92)는, 회전자(42)의 후방에서 상기 회전자(42)와 허브 리지(46)를 전방으로 탄성 가압하여, 상기 허브 리지(46)를 상기 허브 스냅링(49) 쪽으로 밀어붙이도록 구성될 수 있다.
따라서 제1탄성체(91) 및/또는 제2탄성체(92)에 의해, 상기 허브 리지(46)는 허브 스냅링(49) 쪽으로 밀착되어 진동하거나 떨리지 않고, 또한 상기 회전자(42) 역시, 상기 축방향 지지부(442)와 상기 반경연장부(462) 사이에서 축방향으로 견고하게 지지될 수 있다.
다음으로 상기 탄성체(90)는, 엔진클러치(20) 쪽에서 상기 피스톤 설치부(464)를 전방으로 탄성 가압하여, 상기 허브 리지(46)를 허브 스냅링(49) 쪽으로 밀어붙이도록 구성될 수 있다. 도 1에 도시된 제3탄성체(93)와 제4탄성체(94)가 이에 해당한다.
제3탄성체(93)는 상기 제1캐리어(23)의 전방 단부와 상기 허브 리지(46) 사이에 끼워져 있을 수 있다. 그리고 상기 제3탄성체(93)는 축방향으로 팽창하는 방향으로 탄성 복원되려는 탄성력을 발휘한다. 따라서 상기 제1캐리어(23)와 상기 허브 리지(46)는 서로 멀어지는 방향으로 제3탄성체(93)에 의해 탄성 가압된다. 이에 따라 상기 허브 리지(46)는 허브 스냅링(49) 쪽으로 밀어붙여진다.
제4탄성체(94)는 상기 제1클러치팩(22)에 설치될 수 있다. 상기 제4탄성체(94)는 상기 제1피스톤 플레이트(21)의 리턴 스프링의 기능을 수행할 수 있다. 상기 제4탄성체(94)는, 복수 개의 클러치판들 사이에 개재되어, 상기 제1클러치팩(22)이 축방향으로 벌어지는 방향으로 상기 클러치판들을 벌리고, 이러한 제4탄성체(94)의 탄성력은 상기 제1피스톤 플레이트(21)를 상기 허브 리지(46) 쪽으로 밀어붙인다. 그러면 상기 허브 리지(46)는 상기 허브 스냅링(49) 쪽으로 탄성 가압된다.
상기 탄성체(90), 즉 상기 제1탄성체(91) 내지 제4탄성체(94)는 환형의 접시 스프링이거나 웨이브 와셔일 수 있다. 그러나 스프링의 종류가 이에 한정되는 것은 아니다.
상기 회전자 홀더(44)의 축방향 지지부(442)에는 백커버(52)가 볼트(53)에 의해 고정된다. 백커버(52)는 상기 회전자 홀더(44)로부터 반경방향 내측으로 연장된다. 상기 백커버(52)의 반경방향 내측 단부는 변속기의 오일펌프에 연결된다. 상기 백커버(52)의 전면에는 임펠러(51)가 구비된다.
상기 허브 플레이트(45)와 백커버(52) 사이에는 출력부재(70)가 구비된다. 상기 출력부재(70)의 내주면에는 스플라인이 형성되고, 이는 미도시된 변속기의 입력축과 연결된다. 상기 출력부재(70)는 터빈 플레이트(55)와 일체로 연결된다. 상기 터빈 플레이트(55)는 반경방향으로 연장된다. 상기 터빈 플레이트(55)의 후면에는, 상기 임펠러(51)와 축방향으로 서로 마주하는 터빈(54)이 구비된다.
상기 백커버(52)와 상기 출력부재(70) 사이에는 고정단(75)이 배치된다. 상기 고정단(75)의 내주면에는 스플라인이 형성되고, 이는 미도시된 변속기의 고정축과 연결된다.
상기 임펠러(51)와 터빈(54) 사이에는 리액터(56)가 배치된다. 리액터(56)는 원웨이클러치(57)를 통해 상기 고정단(75)과 연결된다. 상기 임펠러(51)와 터빈(54)과 리액터(56)는, 모터(40)의 토크를 증배시켜 출력부재(70)에 전달하는 토크 컨버터를 구성한다.
상기 출력부재(70)는 제4베어링(B4)을 통해 상기 고정단(75)에 대해 회전 가능하게 지지된다. 상기 백커버(52)는 제5베어링(B5)을 통해 상기 고정단(75)에 대해 회전 가능하게 지지된다. 아울러 상기 허브 플레이트(45)와 출력부재(70)는, 제6베어링(B6)을 통해 상호 회전 가능하게 지지된다.
상기 허브 플레이트(45)의 후방에서, 상기 회전자 홀더(44)의 내주면에는 락업클러치(60)가 설치된다. 상기 출력부재(70)에는 출력플레이트(64)가 일체로 연결되어 일체로 회전한다. 상기 출력플레이트(64)는 상기 출력부재(70)로부터 상기 락업클러치(60)를 향해 반경방향으로 연장된다.
상기 락업클러치(60)는 마찰판 또는 마찰재를 구비하는 제2클러치팩(62)을 포함한다. 상기 제2클러치팩(62)은, 상기 회전자 허브(43)와 상기 출력플레이트(64) 사이에 배치된다.
상기 제2클러치팩(62)의 축방향 전방에는 제2피스톤 플레이트(61)가 배치된다. 상기 제2피스톤 플레이트(61)가 상기 제2클러치팩(62)을 축방향으로 가압하면, 상기 회전자 허브(43)와 출력플레이트(64)는 상호 회전 구속되도록 연결된다. 이에 따라 상기 회전자 허브(43)의 회전력은 상기 락업클러치(60)를 거쳐 상기 출력플레이트(64)와 출력부재(70)에 전달될 수 있다. 상기 제2피스톤 플레이트(61)가 상기 제2클러치팩(62)을 가압하지 않으면, 상기 회전자 허브(43)와 출력플레이트(64)는 상호 회전 구속되지 않는다. 이에 따라 회전자 허브(43)의 회전력은 상기 토크 컨버터를 통해 상기 출력부재(70)에 전달된다.
상기 제2피스톤 플레이트(61)는 반경방향으로 연장된다. 상기 제2피스톤 플레이트(61)의 반경방향 외측의 외주면은, 상기 회전자 홀더(44)의 내주면과 마주하고, 축방향으로 슬라이드 이동 가능하게 접한다. 상기 제2피스톤 플레이트(61)의 반경방향 내측의 내주면은, 상기 출력부재(70)의 외주면과 마주하고, 축방향으로 슬라이드 이동 가능하게 접한다.
도 4에 "Inlet" 경로로 도시된 바와 같이 상기 변속기를 통해 상기 제2피스톤 플레이트(61)의 후방 공간(A3)으로 유체가 유입되면, 제2피스톤 플레이트(61)는 회전자 홀더(44)에 대해 축방향 전방으로 이동하여 제2클러치팩(62)을 가압하지 않는다.
도 4에 "L/up clutch actuating" 경로로 도시된 바와 같이 상기 변속기를 통해 상기 제2피스톤 플레이트(61)의 전방 공간(A4)으로 유체가 유입되면, 제1피스톤 플레이트(21)는 회전자 홀더(44)에 대해 축방향 후방으로 이동하여 제2클러치팩(62)을 가압한다.
이하 도 3을 참조하여 하이브리드 구동 모듈의 구동 작동에 대해 설명한다.
먼저, 엔진은 구동력을 제공하지 않고 모터(40)가 구동력을 제공할 때에는, 엔진클러치(20)가 입력플레이트(12)와 제1캐리어(23) 사이에서 동력을 전달하지 않는다. 모터(40)의 토크가 증배되어 변속기에 전달될 필요가 있을 때, 즉 모터(40)의 회전속도가 출력부재(70)의 회전속도보다 클 때, 모터(40)의 토크는 토크 컨버터를 통해 증배되어 출력부재(70)에 전달된다. 이에 따라 출력부재(70)의 회전속도가 모터(40)의 회전속도에 가까워지면 락업클러치(60)가 작동하여 회전자 허브(43)와 출력부재(70)가 직결된다.
한편, 엔진, 또는 엔진과 모터(40)가 구동력을 제공할 때에는, 엔진클러치(20)가 입력플레이트(12)와 제1캐리어(23) 사이에서 동력을 전달한다. 그러면 엔진과 모터(40)의 토크는 합쳐져서 상기 토크 컨버터를 통해 출력부재(70)에 전달된다. 엔진과 모터(40)의 토크는 토크 컨버터를 통해 증배되어 출력부재(70)에 전달될 수 있고, 회전자 허브(43)와 출력부재(70)의 속도비(SR: speed ratio)가 1:1에 이루면 락업클러치(60)에 의해 회전자 허브(43)와 출력부재(70)가 직결된다. 즉 상기 토크 컨버터와 상기 락업클러치(60)는 상기 회전자 허브(43)와 상기 출력부재(70) 사이에서 이들 간의 동력을 전달하는 동력전달부를 구성한다.
실시예의 하이브리드 구동 모듈에 따르면, 엔진의 토크는 입력플레이트(12), 엔진클러치(20) 및 제1캐리어(23)를 통해 회전자 허브(43)에 전달되고, 허브 리지(46)는 이러한 토크 전달 경로에 있지 않다.
[회전자 허브의 축방향 유격 방지 구조]
앞서 설명한 회전자 허브(43) 및 허브 리지(46)는, 하우징(80) 및 입력부재(10)에 대해 축방향으로 유격이 일어날 가능성을 배제할 수 없다. 실시예에서는 이러한 축방향 유격을 방지하기 위한 구조를 제공한다.
특히 본 발명은, 이러한 유격 방지 구조를 제공함에 있어서, 상기 회전자 허브(43)와 입력부재(10) 간의 상대적인 회전을 지지하기 위한 제3베어링(B3)의 장착 구조를 활용하거나, 상기 허브 리지(46)와 하우징(80) 간의 상대적인 회전을 지지하기 위한 제2베어링(B2)의 장착 구조를 활용하기 때문에, 별도의 추가적인 스러스트 베어링 요소를 필요로 하지 않는다.
상기 회전자 허브(43)(허브 리지를 포함하는 개념)가 상기 하우징(80)(입력부재를 포함하는 개념)에 대해 축방향으로 유격이 발생하여 축방향으로 이동하게 되는 것을 방지하기 위한 축방향 이동 방지부는 도 5 및 도 6에 도시된 제1실시예, 도 7 내지 도 9에 각각 도시된 제2 내지 제4 실시예로 설명한다.
상기 축방향 이동 방지부는, 상기 회전자 허브(43)가 상기 하우징(80)에 대해 전방으로 이동하는 것을 방지하고 또한 후방으로 이동하는 것을 방지한다. 즉 상기 축방향 이동 방지부는 상기 하우징(80)에 대한 상기 회전자 허브(43)의 축방향 유격을 제거하거나 최소화한다.
<제1실시예>
도 5와 도 6을 참조하면, 제1실시예에 따른 축방향 이동 방지부는, 상기 제3베어링(B3) 설치 구조에 반영된다.
상기 제3베어링(B3)은, 반경방향 내측에 마련된 환형의 제3내륜(B31), 상기 제3내륜(B31)과 반경방향으로 마주하고 상기 제3내륜(B31)보다 반경방향 외측에 이격 배치된 제3외륜(B32), 및 상기 제3내륜(B31)과 상기 제3외륜(B32) 사이에 개재되는 제3구름체(B33)를 포함한다. 상기 제3구름체(B33)는 볼체이고, 상기 제3베어링(B3)은 볼베어링일 수 있다. 상기 제3베어링(B3)은 반경방향과 축방향으로 회전을 지지할 수 있다.
상기 회전자 허브(43)의 허브 플레이트(45)의 중심축 연장부(450)는 상기 허브 플레이트(45)로부터 축방향 전방으로 연장된다. 상기 중심축 연장부(450)의 외주면에는 중심축 단턱(453)이 마련된다, 중심축 단턱(453)을 기준으로, 상기 중심축 연장부(450)의 전방의 직경이 후방의 직경보다 작다.
상기 제3내륜(B31)의 내주면은 상기 중심축 연장부(450)의 외주면과 반경방향으로 서로 마주하며 접한다. 그리고 상기 제3내륜(B31)의 후방 단부는 상기 중심축 단턱(453)과 축방향으로 마주하며 접한다.
상기 제3내륜(B31)이 상기 중심축 단턱(453)과 접하는 상태에서, 상기 제3내륜(B31)보다 전방에는 중심축 스냅링(455)이 설치된다. 상기 중심축 연장부(450)의 외주면에서 상기 제3내륜(B31) 바로 전방에는, 제1중심축 링홈(454)이 형성되고, 상기 중심축 스냅링(455)은 상기 제1중심축 링홈(454)에 삽입된다. 즉 상기 제3내륜(B31)은 후방으로는 상기 중심축 단턱(453)에 의해 위치 규제되고, 전방으로는 상기 제1중심축 링홈(454)과 중심축 스냅링(455)에 의해 위치 규제된다.
상기 입력부재(10)의 후방에는 중공부가 마련된다. 그리고 상기 중심축 연장부(450)는 상기 입력부재(10)의 후방에 마련된 중공부에 수용된다. 상기 입력부재(10)의 후방에는 상기 중공부를 규정하는 내주면이 마련된다. 상기 입력부재(10)의 내주면에는 제2입력부재 단턱(107)이 마련된다. 상기 제2입력부재 단턱(107)을 기준으로, 상기 입력부재(10)의 전방의 내경이 후방의 내경보다 작다.
상기 제3외륜(B32)의 외주면은 상기 입력부재(10)의 내주면과 반경방향으로 서로 마주하며 접한다. 그리고 상기 제3외륜(B32)의 전방 단부는 상기 제2입력부재 단턱(107)과 축방향으로 마주하며 접한다.
상기 제3외륜(B32)의 외주면에는 제3베어링홈(B34)이 형성되어 있다. 그리고 상기 제3외륜(B32)이 상기 제2입력부재 단턱(107)과 접하는 상태에서, 상기 입력부재(10)의 내주면이 상기 제3베어링홈(B34)과 마주하는 부위에는 제3입력부재 링홈(110)이 형성된다. 이에 따라 상기 제3베어링홈(B34)과 상기 제3입력부재 링홈(110)은 반경방향으로 서로 통하도록 연결된다.
상기 제3베어링홈(B34)과 상기 제3입력부재 링홈(110)에는 유격방지링(RR)이 끼워진다. 상기 유격방지링(RR)은 반경이 커지거나 작아지도록 탄성 변형될 수 있는 C링일 수 있다.
반경방향으로 측정되는 상기 제3입력부재 링홈(110)의 깊이는, 반경방향으로 측정되는 상기 유격방지링(RR)의 높이(h)와 같거나 그보다 클 수 있다. 이에 반해, 상기 제3베어링홈(B34)의 깊이는 상기 유격방지링(RR)의 높이보다 작을 수 있다.
도 6을 참조하여, 이러한 축방향 이동 방지부가 반영된 제3베어링(B3)의 설치 순서를 설명한다.
먼저 중심축 단턱(453)에 다다를 때까지 중심축 연장부(450)의 외주면에 제3베어링(B3)의 제3내륜(B31)을 외삽한다. 그리고 제3내륜(B31)의 바로 앞에 있는 제1중심축 링홈(454)에 중심축 스냅링(455)을 삽입한다.
다음으로, 상기 입력부재(10)의 내주면에 마련된 제3입력부재 링홈(110)에 유격방지링(RR)을 끼워 넣는다. 유격방지링(RR)을 제3입력부재 링홈(110)에 끼워 넣는 과정에서, 상기 유격방지링(RR)은 외경이 축소되도록 탄성 변형되고, 상기 제3입력부재 링홈(110)에 다다르는 순간에 탄성 복원되어 외경이 확대됨으로써 상기 제3입력부재 링홈(110)에 끼워진다. 상기 유격방지링(RR)이 상기 제3입력부재 링홈(110)에 끼워진 상태에서, 유격방지링(RR)의 반경방향 내측 단부는 상기 입력부재(10)의 내주면보다 반경방향 내측으로 돌출된다.
이러한 상태에서, 상기 입력부재(10)를 상기 중심축 연장부(450)의 외주면에 외삽한다. 그러면, 상기 제3베어링(B3)의 제3외륜(B32)이 상기 유격방지링(RR)을 그 반경이 확대되도록 탄성변형시킨다. 상기 제3입력부재 링홈(110)의 깊이가 상기 유격방지링(RR)의 높이와 같거나 그보다 크므로, 상기 유격방지링(RR)은 상기 제3입력부재 링홈(110)에 완전히 삽입될 수 있다. 보다 원활한 조립을 위해, 상기 제3외륜(B32)의 전면과 외주면 간의 모서리 부위에는 테이퍼 형상이나 챔퍼 형상이 형성될 수 있다.
반경이 확대된 상기 유격방지링(RR)은, 상기 제3베어링홈(B34)에 다다르는 순간에 탄성 복원되어 내경이 축소됨으로써 상기 제3베어링홈(B34)에 끼워진다. 상기 유격방지링(RR)이 상기 제3베어링홈(B34)에 끼워진 상태에서, 유격방지링(RR)의 반경방향 외측 단부는 상기 제3입력부재 링홈(110)에 끼워진 상태가 된다.
그러면 도 5에 도시된 바와 같이 제3베어링(B3)의 설치가 완료된다.
이와 같은 상태에서, 엔진클러치(20)를 작동시키기 위해 제1공간(A1)으로 유압이 공급되어 제1피스톤 플레이트(21)가 후방으로 압력을 받아 회전자 허브(43)가 후방으로 이동하려고 하여도, 상기 중심축 스냅링(455)이 상기 제3내륜(B31)에 간섭하고, 제3내륜(B31)은 제3구름체(B33)에 간섭하며, 제3구름체(B33)는 제3외륜(B32)에 간섭하고, 제3외륜(B32)은 유격방지링(RR)에 간섭하며, 유격방지링(RR)은 입력부재(10)에 간섭하게 되므로, 회전자 허브(43)의 후방 이동이 방지된다.
한편 락업클러치(60)를 작동시키기 위해 제4공간(A4)으로 유압이 공급되어 회전자 허브(43)가 전방으로 이동하려고 하더라도, 상기 중심축 단턱(453)이 상기 제3내륜(B31)에 간섭하고, 제3내륜(B31)은 제3구름체(B33)에 간섭하며, 제3구름체(B33)는 제3외륜(B32)에 간섭하고, 제3외륜(B32)은 유격방지링(RR)에 간섭하며, 유격방지링(RR)은 입력부재(10)에 간섭하게 되므로, 회전자 허브(43)의 전방 이동이 방지된다.
이처럼 상기 유격방지링(RR)과 제3베어링홈(B34)과 제3입력부재 링홈(110)은, 축방향 이동 방지부로서 상기 회전자 허브(43)의 전후방향 유격을 방지한다.
<제2실시예>
제2실시예는, 제1실시예와 대비하여 차이점을 위주로 설명한다.
도 7을 참조하면, 베어링 고정부로서 제1실시예에서는 제1중심축 링홈(454)과 중심축 스냅링(455)이 적용되었던 것과 달리, 제2실시예에서는 베어링 고정부로 소성가공부인 코킹부(458)가 적용되었다는 점에 차이가 있다.
상기 제3내륜(B31)이 상기 중심축 단턱(453)과 접하는 상태에서, 상기 제3륜보다 전방에 코킹부(458)가 가공된다. 코킹부(458)는 상기 중심축 연장부(450)의 외경이 확장되는 결과를 가져온다. 이에 따라 상기 제3내륜(B31)은 전방으로는 상기 소성가공부, 즉 코킹부(458)에 의해 위치 규제된다.
이러한 축방향 이동 방지부가 반영된 제3베어링(B3)의 설치 방법에서, 제1실시예와 다른 부분을 설명한다.
제2실시예에서는 중심축 단턱(453)에 다다를 때까지 중심축 연장부(450)의 외주면에 제3베어링(B3)의 제3내륜(B31)을 외삽한 뒤, 제3내륜(B31)의 바로 앞에 있는 중심축 연장부(450)를 코킹 가공하여, 제3내륜(B31)의 전방을 고정한다는 점에서 제1실시예와 차이점을 가진다.
제2실시예에 따르면, 엔진클러치(20)를 작동시키기 위해 제1공간(A1)으로 유압이 공급되어 제1피스톤 플레이트(21)가 후방으로 압력을 받아 회전자 허브(43)가 후방으로 이동하려고 하여도, 상기 코킹부(458)가 상기 제3내륜(B31)에 간섭하고, 제3내륜(B31)은 제3구름체(B33)에 간섭하며, 제3구름체(B33)는 제3외륜(B32)에 간섭하고, 제3외륜(B32)은 유격방지링(RR)에 간섭하며, 유격방지링(RR)은 입력부재(10)에 간섭하게 되므로, 회전자 허브(43)의 후방 이동이 방지된다.
<제3실시예>
도 7을 참조하면, 제3실시예는 제1실시예와 대비하여, 제3내륜(B31) 쪽에 유격방지링(RR)이 적용된다는 점에 가장 큰 차이가 있다. 그리고 이러한 차이로 인한 부수적인 차이도 존재한다. 이하 차이점을 위주로 제3실시예를 설명한다.
상기 제3외륜(B32)이 상기 제2입력부재 단턱(107)과 접하는 상태에서, 상기 제3외륜(B32)보다 후방에는 제2입력부재 스냅링(109)이 설치된다. 상기 입력부재(10)의 내주면에서 상기 제3외륜(B32) 바로 후방에는, 제2입력부재 링홈(108)이 형성되고, 상기 제2입력부재 스냅링(109)은 상기 제2입력부재 링홈(108)에 삽입된다. 즉 상기 제3외륜(B32)은 전방으로는 상기 제2입력부재 단턱(107)에 의해 위치 규제되고, 후방으로는 상기 제2입력부재 링홈(108)과 제2입력부재 스냅링(109)에 의해 위치 규제된다. 물론 제2실시예와 유사하게, 상기 입력부재(10)의 전방 단부를 코킹 가공하여 베어링 고정부를 형성할 수도 있음은 물론이다.
상기 제3내륜(B31)의 내주면에는 제3베어링홈(B34)이 형성되어 있다. 그리고 상기 제3내륜(B31)이 상기 중심축 단턱(453)과 접하는 상태에서, 상기 중심축 연장부(450)의 외주면이 상기 제3베어링홈(B34)과 마주하는 부위에는 제2중심축 링홈(459)이 형성된다. 이에 따라 상기 제3베어링홈(B34)과 상기 제2중심축 링홈(459)은 반경방향으로 서로 통하도록 연결된다.
상기 제3베어링홈(B34)과 상기 제2중심축 링홈(459)에는 유격방지링(RR)이 끼워진다.
반경방향으로 측정되는 상기 제2중심축 링홈(459)의 깊이는, 반경방향으로 측정되는 상기 유격방지링(RR)의 높이(h)와 같거나 그보다 클 수 있다. 이에 반해, 상기 제3베어링홈(B34)의 깊이는 상기 유격방지링(RR)의 높이보다 작을 수 있다.
이러한 축방향 이동 방지부가 반영된 제3베어링(B3)의 설치 순서를 설명하면 다음과 같다.
먼저 제2입력부재 단턱(107)에 다다를 때까지 입력부재(10)의 내주면에 제3베어링(B3)의 제3외륜(B32)을 내삽한다. 그리고 제3외륜(B32)의 바로 뒤에 있는 제2입력부재 링홈(108)에 제2입력부재 스냅링(109)을 삽입한다.
다음으로, 상기 중심축 연장부(450)의 외주면에 마련된 제2중심축 링홈(459)에 유격방지링(RR)을 끼워 넣는다. 유격방지링(RR)을 제2중심축 링홈(459)에 끼워 넣는 과정에서, 상기 유격방지링(RR)은 내경이 확대되도록 탄성 변형되고, 상기 제2중심축 링홈(459)에 다다르는 순간에 탄성 복원되어 내경이 축소됨으로써 상기 제2중심축 링홈(459)에 끼워진다. 상기 유격방지링(RR)이 상기 제2중심축 링홈(459)에 끼워진 상태에서, 유격방지링(RR)의 반경방향 외측 단부는 상기 중심축 연장부(450)의 외주면보다 반경방향 외측으로 돌출된다.
이러한 상태에서, 상기 입력부재(10)를 상기 중심축 연장부(450)의 외주면에 외삽한다. 그러면, 상기 제3베어링(B3)의 제3내륜(B31)이 상기 유격방지링(RR)을 그 반경이 축소되도록 탄성변형시킨다. 상기 제2중심축 링홈(459)의 깊이가 상기 유격방지링(RR)의 높이와 같거나 그보다 크므로, 상기 유격방지링(RR)은 상기 제2중심축 링홈(459)에 완전히 삽입될 수 있다. 보다 원활한 조립을 위해, 상기 제3내륜(B31)의 후면과 내주면 간의 모서리 부위에는 테이퍼 형상이나 챔퍼 형상이 형성될 수 있다.
반경이 축소된 상기 유격방지링(RR)은, 상기 제3베어링홈(B34)에 다다르는 순간에 탄성 복원되어 외경이 확대됨으로써 상기 제3베어링홈(B34)에 끼워진다. 상기 유격방지링(RR)이 상기 제3베어링홈(B34)에 끼워진 상태에서, 유격방지링(RR)의 반경방향 내측 단부는 상기 제2중심축 링홈(459)에 끼워진 상태가 된다.
그러면 도 8에 도시된 바와 같이 제3베어링(B3)의 설치가 완료된다.
이와 같은 상태에서, 엔진클러치(20)를 작동시키기 위해 제1공간(A1)으로 유압이 공급되어 제1피스톤 플레이트(21)가 후방으로 압력을 받아 회전자 허브(43)가 후방으로 이동하려고 하여도, 상기 중심축 연장부(450)가 상기 유격방지링(RR)에 간섭하고, 상기 유격방지링(RR)이 상기 제3내륜(B31)에 간섭하고, 제3내륜(B31)은 제3구름체(B33)에 간섭하며, 제3구름체(B33)는 제3외륜(B32)에 간섭하고, 제3외륜(B32)은 제2입력부재 스냅링(109)에 간섭하게 되므로, 회전자 허브(43)의 후방 이동이 방지된다.
한편 락업클러치(60)를 작동시키기 위해 제4공간(A4)으로 유압이 공급되어 회전자 허브(43)가 전방으로 이동하려고 하더라도, 상기 중심축 연장부(450)가 상기 유격방지링(RR)에 간섭하고, 유격방지링(RR)이 상기 제3내륜(B31)에 간섭하고, 제3내륜(B31)은 제3구름체(B33)에 간섭하며, 제3구름체(B33)는 제3외륜(B32)에 간섭하고, 제3외륜(B32)은 제2입력부재 단턱(107)에 간섭하게 되므로, 회전자 허브(43)의 전방 이동이 방지된다.
이처럼 상기 유격방지링(RR)과 제3베어링홈(B34)과 제2중심축 링홈(459)은, 축방향 이동 방지부로서 상기 회전자 허브(43)의 전후방향 유격을 방지한다.
앞서 제1실시예 내지 제3실시예는, 중심축 연장부(450)의 외주면이 입력부재(10)의 내주면보다 더 반경방향 내측에 배치된 상태를 전제하고 있다.
그러나 본 발명이 이에 한정되는 것은 아니며, 중심축 연장부(450)에 중공부가 마련되고, 입력부재(10)의 후방 단부가 상기 중심축 연장부(450)의 중공부에 끼워져서, 중심축 연장부(450)의 내주면보다 입력부재(10)의 외주면이 더 반경방향 내측에 배치된 구조에도 적용 가능함은 물론이다.
<제4실시예>
도 9를 참조하면, 제4실시예에 따른 축방향 이동 방지부는, 상기 제2베어링(B2) 설치 구조에 반영된다.
상기 제2베어링(B2)은, 반경방향 내측에 마련된 환형의 제2내륜(B21), 상기 제2내륜(B21)과 반경방향으로 마주하고 상기 제2내륜(B21)보다 반경방향 외측에 이격 배치된 제2외륜(B22), 및 상기 제2내륜(B21)과 상기 제2외륜(B22) 사이에 개재되는 제2구름체(B23)를 포함한다. 상기 제2구름체(B23)는 볼체이고, 상기 제2베어링(B2)은 볼베어링일 수 있다. 상기 제2베어링(B2)은 반경방향과 축방향으로 회전을 지지할 수 있다.
상기 회전자 허브(43)의 허브 리지(46)의 축방향 연장부(464)는 상기 허브 리지(46)로부터 축방향 후방으로 연장된다. 상기 축방향 연장부(464)의 내주면에는 리지 단턱(469)이 마련된다, 리지 단턱(469)을 기준으로, 상기 축방향 연장부(464)의 전방의 내경이 후방의 내경보다 크다.
상기 제2외륜(B22)의 외주면은 상기 축방향 연장부(464)의 내주면과 반경방향으로 서로 마주하며 접한다. 그리고 상기 제2외륜(B22)의 후방 단부는 상기 리지 단턱(469)과 축방향으로 마주하며 접한다.
상기 제2외륜(B22)이 상기 리지 단턱(469)과 접하는 상태에서, 상기 제2외륜(B22)보다 전방에는 리지 스냅링(470)이 설치된다. 상기 축방향 연장부(464)의 내주면에서 상기 제2외륜(B22) 바로 전방에는, 리지 링홈(471)이 형성되고, 상기 리지 스냅링(470)은 상기 리지 링홈(471)에 삽입된다. 즉 상기 제2외륜(B22)은 후방으로는 상기 리지 단턱(469)에 의해 위치 규제되고, 전방으로는 상기 리지 링홈(471)과 리지 스냅링(470)에 의해 위치 규제된다.
상기 제2축방향돌출부(823)는 상기 축방향 연장부(464)보다 반경방향 내측에서 축방향으로 연장되는 부분을 포함한다. 이에 따라 상기 제2축방향돌출부(823)의 외주면의 적어도 일부 구간은, 상기 축방향 연장부(464)의 내주면의 적어도 일부 구간과 반경방향으로 마주한다. 상기 제2축방향돌출부(823)의 외주면에는 하우징 단턱(828)이 마련된다. 상기 하우징 단턱(828)을 기준으로, 상기 제2축방향돌출부(823)의 후방의 외경이 전방의 외경보다 작다.
상기 제2내륜(B21)의 내주면은 상기 제2축방향돌출부(823)의 외주면과 반경방향으로 서로 마주하며 접한다. 그리고 상기 제2내륜(B21)의 전방 단부는 상기 하우징 단턱(828)과 축방향으로 마주하며 접한다.
상기 제2내륜(B21)의 내주면에는 제2베어링홈(B24)이 형성되어 있다. 그리고 상기 제2외륜(B22)이 상기 하우징 단턱(828)과 접하는 상태에서, 상기 제2축방향돌출부(823)의 외주면이 상기 제2베어링홈(B24)과 마주하는 부위에는 하우징 링홈(829)이 형성된다. 이에 따라 상기 제2베어링홈(B24)과 상기 하우징 링홈(829)은 반경방향으로 서로 통하도록 연결된다.
상기 제2베어링홈(B24)과 상기 하우징 링홈(829)에는 유격방지링(RR)이 끼워진다. 상기 유격방지링(RR)은 반경이 커지거나 작아지도록 탄성 변형될 수 있는 C링일 수 있다.
반경방향으로 측정되는 상기 하우징 링홈(829)의 깊이는, 반경방향으로 측정되는 상기 유격방지링(RR)의 높이(h)와 같거나 그보다 클 수 있다. 이에 반해, 상기 제2베어링홈(B24)의 깊이는 상기 유격방지링(RR)의 높이보다 작을 수 있다.
이러한 축방향 이동 방지부가 반영된 제2베어링(B2)의 설치 순서는 다음과 같다.
먼저 리지 단턱(469)에 다다를 때까지 축방향 연장부(464)의 내주면에 제2베어링(B2)의 제2외륜(B22)을 내삽한다. 그리고 제2외륜(B22)의 바로 앞에 있는 리지 링홈(471)에 리지 스냅링(470)을 삽입한다.
다음으로, 상기 제2축방향돌출부(823)의 외주면에 마련된 하우징 링홈(829)에 유격방지링(RR)을 끼워 넣는다. 유격방지링(RR)을 하우징 링홈(829)에 끼워 넣는 과정에서, 상기 유격방지링(RR)은 내경이 확장되도록 탄성 변형되고, 상기 하우징 링홈(829)에 다다르는 순간에 탄성 복원되어 내경이 축소됨으로써 상기 하우징 링홈(829)에 끼워진다. 상기 유격방지링(RR)이 상기 하우징 링홈(829)에 끼워진 상태에서, 유격방지링(RR)의 반경방향 외측 단부는 상기 제2축방향돌출부(823)의 외주면보다 반경방향 외측으로 돌출된다.
이러한 상태에서, 상기 제2축방향돌출부(823)를 상기 축방향 연장부(464)의 내주면에 내삽한다. 그러면, 상기 제2베어링(B2)의 제2내륜(B21)이 상기 유격방지링(RR)을 그 반경이 축소되도록 탄성변형시킨다. 상기 하우징 링홈(829)의 깊이가 상기 유격방지링(RR)의 높이와 같거나 그보다 크므로, 상기 유격방지링(RR)은 상기 하우징 링홈(829)에 완전히 삽입될 수 있다. 보다 원활한 조립을 위해, 상기 제2내륜(B21)의 전면과 내주면 간의 모서리 부위에는 테이퍼 형상이나 챔퍼 형상이 형성될 수 있다.
반경이 축소된 상기 유격방지링(RR)은, 상기 제2베어링홈(B24)에 다다르는 순간에 탄성 복원되어 외경이 확대됨으로써 상기 제2베어링홈(B24)에 끼워진다. 상기 유격방지링(RR)이 상기 제2베어링홈(B24)에 끼워진 상태에서, 유격방지링(RR)의 반경방향 내측 단부는 상기 하우징 링홈(829)에 끼워진 상태가 된다.
이러한 과정을 거치면 도 9에 도시된 바와 같이 제2베어링(B2)의 설치가 완료된다.
이와 같은 상태에서, 엔진클러치(20)를 작동시키기 위해 제1공간(A1)으로 유압이 공급되어 제1피스톤 플레이트(21)가 후방으로 압력을 받아 회전자 허브(43)가 후방으로 이동하려고 하여도, 상기 리지 스냅링(470)이 상기 제2외륜(B22)에 간섭하고, 제2외륜(B22)은 제2구름체(B23)에 간섭하며, 제2구름체(B23)는 제2내륜(B21)에 간섭하고, 제2내륜(B21)은 유격방지링(RR)에 간섭하며, 유격방지링(RR)은 제2축방향돌출부(823)에 간섭하게 되므로, 회전자 허브(43)의 후방 이동이 방지된다.
한편 락업클러치(60)를 작동시키기 위해 제4공간(A4)으로 유압이 공급되어 회전자 허브(43)가 전방으로 이동하려고 하더라도, 상기 리지 단턱(469)이 상기 제2외륜(B22)에 간섭하고, 제2외륜(B22)은 제2구름체(B23)에 간섭하며, 제2구름체(B23)는 제2내륜(B21)에 간섭하고, 제2내륜(B21)은 유격방지링(RR)에 간섭하며, 유격방지링(RR)은 제2축방향돌출부(823)에 간섭하게 되므로, 회전자 허브(43)의 전방 이동이 방지된다.
이처럼 상기 유격방지링(RR)과 제2베어링홈(B24)과 하우징 링홈(829)은, 축방향 이동 방지부로서 상기 회전자 허브(43)의 전후방향 유격을 방지한다.
제1실시예에 대한 변형예인 제2실시예 및 제3실시예와 마찬가지로, 제4실시예에 있어서도, 리지 링홈(471) 및 리지 스냅링(470)을 대체하여 코킹부와 같은 소성가공부(458)를 형성하거나, 제2베어링홈(B24)이 제2내륜(B21)이 아닌 제2외륜(B22)에 마련될 수도 있다.
아울러 제1실시예 내지 제3실시예의 변형예처럼, 제4실시예 역시 제2축방향 돌출부가 허브 리지(46)의 축방향 연장부보다 반경방향으로 더 외측에 배치될 수도 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (10)

  1. 회전자(42)과 고정자(41)를 포함하는 모터(40)를 구비한 하이브리드 구동 모듈로서, 상기 하이브리드 구동 모듈은:
    상기 고정자(41)가 설치된 하우징(80);
    상기 회전자(42)가 설치되고 상기 하우징(80)에 의해 회전 가능하게 지지되는 회전자 허브(43); 및
    상기 하우징(80)과 회전자 허브(43) 사이에서 상기 하우징(80)에 대한 상기 회전자 허브(43)의 전방으로의 이동과 후방으로의 이동을 규제하는 축방향 이동 방지부;를 포함하는, 하이브리드 구동 모듈.
  2. 청구항 1에 있어서,
    상기 축방향 이동 방지부는, 상기 하우징(80)과 상기 회전자 허브(43) 사이에 개재되어 상기 하우징(80)에 대한 상기 회전자 허브(43)의 회전을 지지하는 베어링(B2 또는 B3)에 마련된, 하이브리드 구동 모듈.
  3. 청구항 2에 있어서,
    상기 베어링은, 반경방향으로 서로 마주하는 상기 하우징(80) 측의 둘레면과 상기 회전자 허브(43) 측의 둘레면 사이에 개재되고,
    상기 베어링은:
    상기 하우징(80) 측의 둘레면과 상기 회전자 허브(43) 측의 둘레면 중 선택된 한 면인 제1둘레면에 접하는 제1륜;
    상기 하우징(80) 측의 둘레면과 상기 회전자 허브(43) 측의 둘레면 중 나머지 한 면인 제2둘레면에 접하는 제2륜; 및
    상기 제1륜과 제2륜 사이에 개재된 구름체;를 포함하고,
    상기 축방향 이동 방지부는:
    상기 제1둘레면과 마주하는 상기 제1륜의 표면에 마련된 베어링홈;
    상기 베어링홈과 대응하는 위치에서 상기 제1둘레면에 마련된 둘레면홈; 및
    상기 둘레면홈과 베어링홈에 걸쳐지며 삽입된 유격방지링(RR);을 포함하는, 하이브리드 구동 모듈.
  4. 청구항 3에 있어서,
    상기 유격방지링의 높이(h)는 상기 둘레면홈의 깊이 이하인, 하이브리드 구동 모듈.
  5. 청구항 4에 있어서,
    상기 유격방지링의 높이는 상기 베어링홈의 깊이보다 큰, 하이브리드 구동 모듈.
  6. 청구항 3에 있어서,
    상기 제1둘레면에는, 상기 제1륜의 축방향 일측과 간섭되도록 반경방향으로 돌출된 제1베어링 단턱이 마련된, 하이브리드 구동 모듈.
  7. 청구항 3 내지 청구항 6 중 어느 한 항에 있어서,
    상기 제2둘레면에는, 상기 제2륜의 축방향 타측과 간섭되도록 반경방향으로 돌출된 제2베어링 단턱이 마련된, 하이브리드 구동 모듈.
  8. 청구항 7에 있어서,
    상기 제2둘레면에는, 상기 제2륜의 축방향 일측과 간섭되는 베어링 고정부가 마련된, 하이브리드 구동 모듈.
  9. 청구항 8에 있어서,
    상기 베어링 고정부는:
    상기 제2둘레면에서 상기 제2륜과 마주하지 않는 위치에는 형성된 링홈; 및
    상기 링홈에 삽입되는 스냅링;을 포함하고,
    상기 링홈으로부터 반경방향으로 돌출된 스냅링 부위가 상기 제2륜의 축방향 일측과 간섭되는, 하이브리드 구동 모듈.
  10. 청구항 8에 있어서,
    상기 베어링 고정부는,
    상기 베어링이 상기 제2베어링 단턱까지 축방향으로 삽입된 상태에서, 상기 제2둘레면이 반경방향으로 돌출되도록 소성 변형시킨 소성가공부를 포함하는, 하이브리드 구동 모듈.
PCT/KR2021/020244 2020-12-31 2021-12-30 하이브리드 구동 모듈 WO2022146066A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180077861.8A CN116529109A (zh) 2020-12-31 2021-12-30 混合动力驱动模块
US18/259,531 US20240063683A1 (en) 2020-12-31 2021-12-30 Hybrid driving module
EP21915863.1A EP4230455A4 (en) 2020-12-31 2021-12-30 HYBRID DRIVE MODULE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0189898 2020-12-31
KR20200189898 2020-12-31
KR10-2021-0189907 2021-12-28
KR1020210189907A KR102631218B1 (ko) 2020-12-31 2021-12-28 하이브리드 구동 모듈

Publications (1)

Publication Number Publication Date
WO2022146066A1 true WO2022146066A1 (ko) 2022-07-07

Family

ID=82259532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/020244 WO2022146066A1 (ko) 2020-12-31 2021-12-30 하이브리드 구동 모듈

Country Status (3)

Country Link
US (1) US20240063683A1 (ko)
EP (1) EP4230455A4 (ko)
WO (1) WO2022146066A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230038832A1 (en) * 2020-02-04 2023-02-09 Valeo Kapec Co., Ltd. Hybrid driving module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428081B1 (ko) * 2008-07-16 2014-08-07 현대자동차주식회사 하이브리드 변속기의 냉각구조
US20170045088A1 (en) * 2014-05-28 2017-02-16 Schaeffler Technologies AG & Co. KG Bearing arrangement and corresponding production process
JP2018021569A (ja) * 2016-08-01 2018-02-08 株式会社ジェイテクト 転がり軸受
KR20180040682A (ko) * 2015-08-20 2018-04-20 섀플러 테크놀로지스 아게 운트 코. 카게 하이브리드 구동 시스템용 클러치 장치
JP2019011818A (ja) * 2017-06-30 2019-01-24 Ntn株式会社 回転伝達装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193344B2 (ja) * 2000-08-22 2008-12-10 日本精工株式会社 車輪用駆動ユニット
JP2007333125A (ja) * 2006-06-16 2007-12-27 Ntn Corp ボールねじの支持構造
JP7031734B2 (ja) * 2018-03-28 2022-03-08 株式会社アイシン 車両用駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428081B1 (ko) * 2008-07-16 2014-08-07 현대자동차주식회사 하이브리드 변속기의 냉각구조
US20170045088A1 (en) * 2014-05-28 2017-02-16 Schaeffler Technologies AG & Co. KG Bearing arrangement and corresponding production process
KR20180040682A (ko) * 2015-08-20 2018-04-20 섀플러 테크놀로지스 아게 운트 코. 카게 하이브리드 구동 시스템용 클러치 장치
JP2018021569A (ja) * 2016-08-01 2018-02-08 株式会社ジェイテクト 転がり軸受
JP2019011818A (ja) * 2017-06-30 2019-01-24 Ntn株式会社 回転伝達装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4230455A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230038832A1 (en) * 2020-02-04 2023-02-09 Valeo Kapec Co., Ltd. Hybrid driving module

Also Published As

Publication number Publication date
EP4230455A4 (en) 2024-05-15
EP4230455A1 (en) 2023-08-23
US20240063683A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2021157921A1 (ko) 하이브리드 구동 모듈
WO2021118054A1 (ko) 하이브리드 구동 모듈
WO2024117503A1 (ko) 하이브리드 구동 모듈
WO2024117504A1 (ko) 하이브리드 구동 모듈
WO2024117505A1 (ko) 하이브리드 구동 모듈
WO2024111859A1 (ko) 로터 허브 및 이를 구비한 하이브리드 구동 모듈
WO2022146066A1 (ko) 하이브리드 구동 모듈
WO2017026797A1 (ko) 두 개 이상의 피스톤이 구비된 동력 전달 장치
WO2017052024A1 (ko) 이중 클러치
WO2021157919A1 (ko) 하이브리드 구동 모듈
WO2024096340A1 (ko) 하이브리드 구동 모듈
WO2024096341A1 (ko) 하이브리드 구동 모듈
WO2021085735A1 (ko) 이중 재질 스템너트를 가지는 온도 보정용 밸브 개폐장치, 듀얼 감속비 감속기 및 듀얼 감속비 온도 보정용 밸브 개폐장치
WO2013085288A1 (ko) 변속장치와 이를 포함하여 구성되는 차량용 인휠구동 시스템 및 변속장치 제작방법
WO2020263057A1 (ko) 토크 컨버터
WO2018093108A1 (ko) 트리플 클러치 및 그 액츄에이터
WO2021256708A1 (en) Friction disc apparatus and related torque converter assemblies for use with vehicles
WO2021101110A1 (ko) 차량용 토크 컨버터
WO2023090697A1 (ko) 하이브리드 구동 모듈
WO2022146065A1 (ko) 하이브리드 구동 모듈
WO2020204296A1 (ko) 전기 자동차용 건식 토크 컨버터 및 그 제어방법
WO2018088740A1 (ko) 이중 클러치용 액츄에이터 및 이를 포함하는 이중 클러치
WO2021049747A1 (ko) 토크 컨버터
WO2022065584A1 (ko) 싸이클로이드 감속기
WO2016108299A1 (ko) 무단 변속장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077861.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021915863

Country of ref document: EP

Effective date: 20230515

WWE Wipo information: entry into national phase

Ref document number: 18259531

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE