WO2022145915A1 - 외골격형 재활 로봇시스템 - Google Patents

외골격형 재활 로봇시스템 Download PDF

Info

Publication number
WO2022145915A1
WO2022145915A1 PCT/KR2021/019919 KR2021019919W WO2022145915A1 WO 2022145915 A1 WO2022145915 A1 WO 2022145915A1 KR 2021019919 W KR2021019919 W KR 2021019919W WO 2022145915 A1 WO2022145915 A1 WO 2022145915A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
robot arm
link
exoskeleton
unit
Prior art date
Application number
PCT/KR2021/019919
Other languages
English (en)
French (fr)
Inventor
한창수
김호준
박수현
지영훈
조정호
류병갑
박정규
최동은
Original Assignee
주식회사 헥사휴먼케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210130617A external-priority patent/KR20220097185A/ko
Application filed by 주식회사 헥사휴먼케어 filed Critical 주식회사 헥사휴먼케어
Priority to CN202180088671.6A priority Critical patent/CN116669909A/zh
Priority to GB2311668.4A priority patent/GB2618256A/en
Priority to EP21915713.8A priority patent/EP4272719A1/en
Priority to JP2023540781A priority patent/JP2024501736A/ja
Priority to US18/270,295 priority patent/US20240082095A1/en
Publication of WO2022145915A1 publication Critical patent/WO2022145915A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0274Stretching or bending or torsioning apparatus for exercising for the upper limbs
    • A61H1/0277Elbow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0274Stretching or bending or torsioning apparatus for exercising for the upper limbs
    • A61H1/0281Shoulder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0138Support for the device incorporated in furniture
    • A61H2201/0149Seat or chair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0192Specific means for adjusting dimensions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • A61H2201/1454Special bearing arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1635Hand or arm, e.g. handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1659Free spatial automatic movement of interface within a working area, e.g. Robot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1671Movement of interface, i.e. force application means rotational
    • A61H2201/1673Multidimensional rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5064Position sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5092Optical sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2203/00Additional characteristics concerning the patient
    • A61H2203/04Position of the patient
    • A61H2203/0425Sitting on the buttocks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2203/00Additional characteristics concerning the patient
    • A61H2203/04Position of the patient
    • A61H2203/0425Sitting on the buttocks
    • A61H2203/0431Sitting on the buttocks in 90°/90°-position, like on a chair
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40305Exoskeleton, human robot interaction, extenders

Definitions

  • the present invention relates to an exoskeleton-type rehabilitation robot system, and it is provided integrally with a chair on which a user is seated, so that it is possible to increase the space utilization efficiency and shorten the training preparation time. It is about robot systems.
  • the existing exoskeleton-type upper extremity rehabilitation robot has a problem in that the system and the chair are separated for left-right conversion, and the position of the entire system needs to be adjusted according to the patient's training direction.
  • the guide for left-right conversion is designed to protrude long in both directions, so the setting process for training preparation is relatively complicated and takes a long time, and the must have a relatively large amount of space.
  • the exoskeleton rehabilitation robot system for achieving the above object is provided in a chair on which a user is seated, and a body part having a robot arm that is movable in the left or right direction based on the user who is seated on the chair. , a conversion unit for converting the position of the robot arm with respect to the main body unit, a driving unit for jointly driving the robot arm with respect to the main body unit, and detecting a change in the position of the robot arm according to the position of the robot arm. and a control unit for controlling a left or right direction driving mode of the driving unit.
  • the main body portion a robot body integrally provided to support the chair, a connecting link protruding vertically upwardly with respect to the robot body, and a plurality of drives rotatably connected to the connecting link and capable of joint movement and the robot arm comprising a link.
  • the position of the robot arm may be adjusted in up-down, front-back, and left-right directions with respect to the chair in response to the user's body type.
  • the conversion unit is provided between the connecting link and the robot arm, a connecting member provided to be movable integrally with the robot arm, the connecting member protrudes toward the connecting link with respect to the connecting member, and is integrated with the robot arm
  • At least one rotatably provided tightening lever a first provided at the connection link so that the tightening lever can be inserted, and at least one on the left and right sides so as to face each other with the rotation center of the connection link therebetween and a second lever groove and a position protruding from the connecting link to be guided along a guide rail provided on the connecting member, limiting the rotation range of the robot arm including the connecting member to determine the rotational position of the robot arm It includes a decision pin, and the tightening lever is inserted into any one of the first and second lever grooves to be fastened and interlocked, so that the left and right driving modes of the robot arm can be automatically converted.
  • connection member is rotatably connected to an end of the connection link with a bearing
  • bearing may include a cross roller bearing
  • the robot arm may include a first driving link having one end rotatably connected to the connection link, a second driving link having the other end and one end rotatably connected to the other end of the first driving link, and the other of the second driving link. a third driving link having one end and one end rotatably connected, and a fourth driving link having the other end and one end of the third driving link rotatably connected, wherein the user's arm is mounted on the fourth driving link.
  • the cradle may be rotatably connected.
  • the driving unit may include a first driving member providing a rotational force between the connection links of the first driving link and the second driving link, a second driving member providing rotational force between the second and third driving links, and It may include a third driving member providing a rotational force between the third and fourth driving links, and a fourth driving member providing a rotational force between the fourth driving link and the cradle.
  • first to fourth driving links may have a bar shape extending in the longitudinal direction or a bent shape.
  • control unit includes a sensing unit for detecting that the tightening lever is inserted into any one of the first and second lever grooves, and a signal input unit for providing a driving signal to the driving unit with information sensed from the sensing unit. can do.
  • the sensing unit a first sensor provided to correspond to the left position of the robot arm, a second sensor provided to correspond to the right position of the robot arm, and any one of the first or second sensor It may include a sensing member for detecting the left or right driving posture of the robot arm by interfering.
  • the sensing member may include a trigger that is provided to interlock with the connection member and is movable between the first and second sensors.
  • the first and second sensors detect the sensing member by physical contact or by a proximity, optical, or magnetic sensing method, and the sensing member is a portion of the robot arm with respect to the robot arm. This color may be provided, or it may be provided to protrude or sink relative to the robot arm.
  • the controller rotates the fourth driving member and then rotates the first and second driving members, and the first and second driving members
  • the second and third driving members are respectively rotationally driven in a state in which the first driving member is continuously driven, and then the driving posture may be set by driving the third driving member.
  • the chair is provided with a belt adjustable in the longitudinal direction corresponding to the body type of the user, so that the movement of the user can be fixed with respect to the chair during the rehabilitation exercise.
  • An exoskeleton rehabilitation robot system is provided integrally to support a chair on which a user sits, and includes a robot arm capable of moving left or right based on the user sitting on the chair.
  • a main body a converting unit for converting the position of the robot arm with respect to the main body in the left or right direction, a driving unit including a plurality of driving links to jointly drive the robot arm with respect to the main body, and the robot and a control unit configured to sense a change in the left or right direction of the arm, and control the driving force of the driving unit in a driving mode corresponding to the left or right position of the robot arm, respectively.
  • the main body includes a robot body integrally provided to support the rear of the chair, a connecting link protruding vertically upward with respect to the center of the robot body, and the robot arm rotatably connected to the connecting link.
  • the robot arm includes a first driving link having one end rotatably connected to the connection link, a second driving link having the other end and one end rotatably connected to the other end of the first driving link, and the other of the second driving link. It may include a third driving link in which one end and one end are rotatably connected, and a fourth driving link in which the other end and one end of the third driving link are rotatably connected.
  • a cradle on which the user's arm is mounted may be rotatably connected to the fourth driving link.
  • the conversion unit is provided between the connecting link and the robot arm, a connecting member provided to be movable integrally with the robot arm, and protruding toward the connecting link with respect to the connecting member, the first driving link and At least one tightening lever provided rotatably integrally, and provided on the connection link so that the tightening lever can be inserted therebetween, at least one on the left and right sides so as to face each other with the rotation center of the connection link therebetween
  • the first and second lever grooves and the connecting link are provided protruding to be guided along the guide rails provided on the connecting member, and the rotation range of the robot arm including the connecting member is limited to determine the rotational position of the robot arm. It may include a positioning pin to make it.
  • connection member is rotatably connected to an end of the connection link with a bearing
  • bearing may include a cross roller bearing
  • the position of the robot arm may be adjusted in up-down, front-back, and left-right directions with respect to the chair in response to the user's body type.
  • the driving unit may include a first driving member providing a rotational force between the connection links of the first driving link and the second driving link, a second driving member providing rotational force between the second and third driving links, and a third driving member providing a rotational force between the third and fourth driving links, and a fourth driving member providing a rotational force between the fourth driving link and the cradle, wherein the first to fourth driving links include It may have a bar shape extending in the longitudinal direction or a bent shape.
  • control unit includes a sensing unit for detecting that the tightening lever is inserted into any one of the first and second lever grooves, and a signal input unit for providing a driving signal to the driving unit with information sensed from the sensing unit. can do.
  • the sensing unit may include a first sensor provided to correspond to a left position of the robot arm, a second sensor provided to correspond to a right position of the robot arm, and a first sensor provided to work with the connection member.
  • a sensing member capable of moving between the second sensors and detecting a left or right driving posture of the robot arm by interfering with any one of the first and second sensors may be included.
  • the sensing member may include a trigger that is provided to interlock with the connection member and is movable between the first and second sensors.
  • the first and second sensors detect the sensing member by physical contact or by a proximity, optical, or magnetic sensing method, and the sensing member is a portion of the robot arm with respect to the robot arm. This color may be provided, or it may be provided to protrude or sink relative to the robot arm.
  • the controller rotates the fourth driving member and then rotates the first and second driving members, and the first and second driving members
  • the second and third driving members are respectively rotationally driven in a state in which the first driving member is continuously driven, and then the driving posture may be set by driving the third driving member.
  • the chair may be provided with a belt adjustable in the longitudinal direction corresponding to the body shape of the user, so that the movement of the user with respect to the chair may be fixed during rehabilitation exercise.
  • the exoskeleton type rehabilitation robot system is provided integrally with the chair, thereby improving the system space efficiency.
  • the left or right direction driving can be converted to one robot arm by a simple operation and automatically set, so that the system preparation time for rehabilitation exercise can be shortened and efficiency can be improved.
  • FIG. 1 is a perspective view schematically illustrating an initial driving setting state of an exoskeleton-type rehabilitation robot system according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic enlarged perspective view of a driving unit of the exoskeleton type rehabilitation robot system shown in FIG. 1 .
  • FIG. 3 is a plan view schematically illustrating a state in which the exoskeleton-type rehabilitation robot system shown in FIG. 1 is viewed from the top.
  • FIG. 4 is a perspective view schematically showing the exoskeleton-type rehabilitation robot system shown in FIG. 1 as viewed from the side.
  • FIG. 5 is a cross-sectional view of the main part schematically cut away from the converter shown in FIG. 4 .
  • FIG. 6 is a plan view schematically illustrating a conversion unit of the exoskeleton type rehabilitation robot system shown in FIG. 5 .
  • FIG. 7 is a plan view schematically illustrating a control unit of the exoskeleton type rehabilitation robot system shown in FIG. 1 .
  • FIG. 8 is a perspective view schematically illustrating a state in which the exoskeleton-type rehabilitation robot system shown in FIG. 1 is driven from the right direction to the left direction.
  • FIG. 9 is a perspective view schematically illustrating a driving state of a fourth driving member of the exoskeleton-type rehabilitation robot system shown in FIG. 8 .
  • FIG. 10 is a perspective view schematically illustrating a driving state of the first and second driving members of the exoskeleton type rehabilitation robot system shown in FIG. 8 .
  • FIG. 11 is a perspective view schematically illustrating a driving state of the first driving member of the exoskeleton-type rehabilitation robot system shown in FIG. 8 .
  • FIG. 12 is a perspective view schematically illustrating the driving state of the second and third driving members in the continuous driving state of the first driving member of the exoskeleton-type rehabilitation robot system shown in FIG. 8 .
  • FIG. 13 is a perspective view schematically illustrating a state in which FIG. 12 is viewed from another direction.
  • FIG. 14 is a perspective view schematically illustrating a driving state of the first, second, and third driving members of the exoskeleton type rehabilitation robot system shown in FIG. 8 .
  • FIG. 15 is a perspective view schematically illustrating the state of FIG. 14 when viewed from another side.
  • FIG. 16 is a perspective view schematically illustrating a driving state of a third driving member of the exoskeleton type rehabilitation robot system shown in FIG. 8 .
  • FIG. 17 is a perspective view schematically illustrating the state of FIG. 16 as viewed from the other side.
  • an exoskeleton type rehabilitation robot system 1 includes a main body 10 , a transformation unit 20 , a driving unit 30 , and a control unit 40 .
  • the exoskeleton type rehabilitation robot system 1 described in the present invention is exemplified as being applied to the left arm and right arm rehabilitation exercise of a patient in need of rehabilitation treatment, that is, upper extremity rehabilitation training.
  • the present invention is not limited thereto, and it is natural that the exoskeleton-type rehabilitation robot system 1 according to the present invention is applicable not only to the upper extremities but also to the lower extremities rehabilitation training such as the left and right feet.
  • the main body 10 is provided on a chair C on which the user sits, and includes a robot body 11 , a connection link 12 , and a robot arm 13 .
  • the robot body 11 is provided integrally with the chair (C). As shown in FIG. 1 , the robot body 11 may be provided at the rear of the chair C to support the chair C integrally.
  • a wheel (not shown) for moving the robot body 11 provided integrally with the chair C may be provided on the bottom surface of the robot body 11, and the shape and size of the robot body 11 are It is not limited only to the illustrated example.
  • the chair (C) is provided with a belt (not shown) for fixing the seated user.
  • This belt (not shown) is provided integrally with the chair (C) and adjustable in the longitudinal direction, so that it can be worn according to the user's body type.
  • the belt (not shown) is provided for the purpose of continuously and firmly fixing the user seated on the chair C during the exercise period, unlike the seat belt of the vehicle.
  • connection link 12 One end of the connection link 12 is connected so as to protrude vertically upward from the robot body 11 . More specifically, the connecting link 12 is provided to protrude vertically upward from the center of the upper end of the robot body 11 , and a first driving link 131 to be described later is linked to the protruding upper end.
  • the connection link 12 is a kind of linear column, and a robot arm 13 to be described later is linked to the upper portion of the connection link 12 .
  • the robot arm 13 is movable in the left or right direction (R) (L) based on the user seated on the chair (C). As shown in FIG. 2 , the robot arm 13 includes first to fourth driving links 131 , 132 , 133 , 134 and a cradle 135 .
  • the first to fourth driving links 131 , 132 , 133 , and 134 are sequentially rotatably connected to the connecting link 12 , and are provided to allow joint movement. More specifically, one end of the first driving link 131 is rotatably connected to the protruding upper end of the connecting link 12 . The other end extending to one end of the first driving link 131 is rotatably connected to one end of the second driving link 132 . The other end of the second driving link 132 is rotatably connected to one end of the third driving link 133 , and one end of the fourth driving link 134 is rotatably connected to the other end of the third driving link 133 . do.
  • first and third driving links 131 and 133 have a bar shape extending in the longitudinal direction
  • second and fourth driving links 132 and 134 are bent like a 'b'. has the shape of
  • the shapes, lengths, and thicknesses of the first to fourth driving links 131 , 132 , 133 and 134 are examples, and it is of course not limited to the illustrated examples.
  • the fourth driving link 134 is provided with a cradle 135 on which the user's arm can be seated.
  • the cradle 135 may be rotatably movable with respect to the fourth driving link 134 , and a handle 136 that can be gripped by the user may be provided.
  • the robot arm 13 can be adjusted in a certain range up and down, front and rear, and left and right, as shown by the arrows in FIG. 1 , based on the state in which the user is seated on the chair C.
  • the purpose of adjusting the up, down, front and back, and left and right of the robot arm 13 is to move the robot arm 13 to a position where rehabilitation is possible in response to physical conditions such as height, obesity, and posture distortion of the user.
  • an embodiment in which the position of the chair C rather than the robot arm 13 is adjusted in response to the user's physical condition up and down, forward and backward, and left and right is also possible.
  • the position movement of the robot arm 13 should be within a range that can avoid interference with surrounding components such as the chair C during transformation.
  • the vertical direction of the robot arm 13 may be adjusted at a height that does not interfere with the chair C during left-right conversion.
  • the connecting link 12 including the linear column moves in the vertical direction to adjust the position of the robot arm 13 up and down.
  • a scale 121 and a locking means 122 are provided on the connection link 12 .
  • the position of the robot arm 13 can be adjusted by operating or unlocking the locking means 122 along the scale 121 provided on the connection link 12 .
  • the converting unit 20 converts the position of the robot arm 13 with respect to the main body 10 . That is, the conversion unit 20 sets the driving position of the robot arm 13 with respect to the robot body 11 in the right direction (R) relative to the user as shown in FIG. 3 (a) and in FIG. 3 (b) and Likewise, it is converted to the left direction (L) with respect to the user.
  • This conversion unit 20, as shown in Figs. 4 to 7, the connecting member 21, the tightening lever 22, the first and second lever grooves 23 and 24, and the positioning pin 25 include
  • the connecting member 21 is provided to be movable integrally with the robot arm 13 between the connecting link 12 and the robot arm 13 .
  • the connecting member 21 is provided on the first driving link 131 of the robot arm 13 to face the connecting link 12 .
  • the connecting member 21 interlocks with the rotation of the first driving link 131 coupled to the upper end of the connecting link 12 by interposing a plurality of bearings B, and the connecting link ( 12) is rotatable.
  • the bearing B may include a ball bearing or a cross roller bearing, and in this embodiment, it is exemplified as including a cross roller bearing.
  • the tightening lever 22 protrudes toward the connection link 12 with respect to the connection member 21 , and is provided with at least one rotatable integrally with the robot arm 13 .
  • the tightening lever 22 is separated or inserted from the first and second lever grooves 23 and 24 to be described later.
  • the tightening lever 22 may be provided on the connecting member 21 so as to be able to move up and down in the direction of entry and separation toward the first and second lever grooves 23 and 24 .
  • the tightening lever 22 is a kind of position fixing guider for changing the position of the left direction (L) and the right direction (R) of the robot arm 13 , such as a plunger other than the tightening lever 22 . It can be changed to any one of various position fixing parts.
  • the first and second lever grooves 23 and 24 are provided to be inserted into the connecting link 12 by a predetermined depth so that the tightening lever 22 can be inserted, and the robot arm 13 rotates with respect to the connecting link 12 . At least one is provided on the left and right sides so as to face each other with the center therebetween. As shown in FIG. 4 , in this embodiment, the first and second lever grooves 23 and 24 are on the left and right sides so as to correspond to the left direction (L) and the right direction (R) of the robot arm 13, respectively. It is exemplified that each is provided one by one. That is, it is exemplified that the first lever groove 23 is provided on the left side and the second lever groove 24 is provided on the right side based on the user seated in the chair (C).
  • the tightening lever 22 is inserted and separated into any one of the first and second lever grooves 23 and 24 provided on the left and right sides, respectively, the tightening lever 22 is integrated with the connecting member 21 provided therein.
  • the provided robot arm 13 is posture-transformed. That is, when the tightening lever 22 is inserted into the first lever groove 23 , the robot arm 13 is attitude changed in the right direction (R) to set the driving. Conversely, when the tightening lever 22 is inserted into the second lever groove 24 , the posture is converted to the left direction (L) driving of the robot arm 13 and the driving is set.
  • the positioning pin 25 is provided to protrude from the connection link 12 so as to be guided along the guide rail 26 provided on the connection member 21 .
  • the positioning pin 25 determines the rotational position of the robot arm 13 by limiting the rotation range of the robot arm 13 having the connecting member 21 by the guide rail 26 .
  • the guide rail 26 is provided to pass through the connecting member 21 to have a predetermined radius of rotation, and to the upper end of the connecting link 12 so that the positioning pin 25 is inserted into the guide rail 26 .
  • a protrusion is provided. Accordingly, when the connecting member 21 is rotated in association with the first driving link 131 , the position at which the positioning pin 25 is inserted into the guide rail 26 is changed. In addition, the positioning pin 25 is inserted into the guide rail 26 to interfere with the rotation range of the first driving link 131 driven integrally with the connecting member 21 provided with the positioning pin 25 . The turning radius is limited.
  • the positioning pin 25 inserted into the guide rail 26 is rotated by the guide rail 26 by a rotation radius corresponding to the left (L) and right (R) driving positions of the robot arm 13 .
  • Rotation range is limited.
  • the conversion unit 20 as described above is the tightening lever 22 is inserted into any one of the plurality of lever grooves 23 and 24 to be tightened, thereby driving the robot arm 13 in the left direction (L) and the right direction. This will be converted
  • the driving unit 30 jointly drives the robot arm 13 with respect to the main body 10 in multiple directions.
  • the driving unit 30 includes first to fourth driving members 31, 32, and 33 for joint driving of the robot arm 13 provided with a plurality of driving links 131, 132, 133, and 134. (34) can be provided.
  • the driving unit 30 are first to fourth driving members 31, 32, 33, ( 34) is exemplified.
  • the number and position of the driving members 31, 32, 33, and 34 of the driving unit 30 are not limited only to the illustrated examples.
  • the first driving member 31 provides a rotational force between the first driving link 131 and the second driving link 132 .
  • the second driving member 32 provides a rotational force between the second and third driving links 132 and 133
  • the third driving member 33 includes the third and fourth driving links 133 and 134 . It provides driving force between
  • the fourth driving member 34 provides a rotational force between the fourth driving link 134 and the cradle 135 .
  • the first to fourth driving members 31, 32, 33, and 34 may include a driving force generating means such as a motor, but is not limited thereto.
  • the control unit 40 detects a change in the position of the robot arm 13 in the left or right direction (R) (L), and controls the driving mode of the driving unit 30 to be automatically converted according to the position of the robot arm 13 .
  • the control unit 40 includes a sensing unit 50 and an input unit 60 .
  • the sensing unit 50 detects that the position of the robot arm 13 is changed when the tightening lever 22 is inserted into any one of the first and second lever grooves 23 and 24 .
  • the sensing unit 50 includes a first sensor 51 , a second sensor 52 , and a sensing member 53 as shown in FIG. 7 .
  • the first sensor 51 is provided to correspond to the position of the robot arm 13 in the left direction (L).
  • the second sensor 52 is provided to correspond to a position of the robot arm 13 in the right direction (R).
  • the first and second sensors 51 and 52 are a kind of limit switch, and detect a sensing member 53 to be described later.
  • the sensing member 53 is provided to be movable integrally with the connecting member 21 so as to be movable between the first and second sensors 51 and 52 .
  • the connecting member 21 may include a trigger rotatable with respect to the connecting link 12 in association with the rotation of the first driving link 131 . Accordingly, the position of the sensing member 53 is changed to face any one of the first and second sensors 51 and 52 in association with the movement of the connection link 12 , so that the first and second sensors 51 . ) (52).
  • the sensing member 53 is provided to selectively press the first and second sensors 51 and 52 , so that the first and second sensors 51 and 52 sense the sensing member 43 .
  • a driving signal can be input.
  • the sensing operation between the sensing member 53 and the first and second sensors 51 and 52 is not necessarily limited to pressurized interference, and it is of course possible to change to various interference methods such as a photo sensor.
  • the sensing member 53 interfering with any one of the first and second sensors 51 and 52 in this way, the left direction (L) or the right direction (R) of the robot arm 13 connected to the connection link 12 . ) to detect a position change.
  • the first and second sensors 51 and 52 detect the movement of the sensing member 53 by physical contact.
  • the sensor unit 50 may sense the movement of the robot arm 13 using the principle of the optical encoder.
  • the movement area such as the boss part of the rotation shaft of the robot arm 13 is colored to distinguish it by color, and whether the color according to the movement of the robot arm 13 is colored according to the movement of the robot arm 13 is determined by a first including an optical sensor. and the second sensors 51 and 52 to detect the movement of the robot arm 13 .
  • a modified example of detecting the movement of the robot arm 13 with the first and second sensors 51 and 52 including a proximity sensor by relatively protruding or retracting without coloring a part of the robot arm 13 is also possible. do.
  • the sensing member 53 is provided with a partial region of the robot arm 13 colored, or is provided to be relatively protruded or depressed, and the first and second sensors ( 51 and 52 detect the sensing member 53 including an optical or proximity sensor.
  • the input unit 60 provides a driving signal to the driving unit 30 as information sensed by the sensing unit 50 .
  • the input unit 60 is connected to the first to fourth driving members 31 , 32 , 33 and 34 of the driving unit 30 to input a driving force. Therefore, the input unit 60 automatically interlocks with the change in the left direction (L) or the right direction (R) position of the robot arm 13 sensed by the sensing unit 50 to the first to fourth driving members 31 . It becomes possible to control the driving force conversion for (32), (33) and (34).
  • a monitor M capable of real-time control and confirmation of the operation of the exoskeleton rehabilitation robot system 1 may be provided in the chair C on which the user is seated. To this end, the user can directly turn on/off the driving through the monitor M, or visually check the driving situation.
  • FIG. 1 schematically shows the initial posture of the exoskeleton type rehabilitation robot system 1 according to the present embodiment.
  • the tightening lever 22 is inserted into the first lever groove 23, and the robot arm 13 is driven in the right direction (R).
  • the posture of the robot arm 13 is changed from right to left, that is, from the right direction (R) to the left direction (L) based on the user seated in the chair (C).
  • the user separates the tightening lever 22 from the first lever groove 23 and inserts it into the second lever groove 24 .
  • the connecting member 21 provided with the tightening lever 22 and the rotatable robot arm 13 are also rotated together.
  • the sensing member 53 of the sensing unit 50 is also rotated, so that the position of the sensing member 53 is determined by the first or second sensor 51 . (52) detects. At this time, the detection member 53 is detected by the first sensor 51 in conjunction with the position change of the robot arm 13 in the left direction (L).
  • the input unit 60 transmits the first to fourth driving members 31 of the driving unit 30 . ) (32), (33) and (34) automatically input the driving force input signal to automatically set the left direction (L) driving mode. In this case, the sensing member 53 may interfere by pressing the first sensor 51 .
  • the input unit 60 of the control unit 40 recognizes the left direction (L) driving of the robot arm 13 due to the interference between the sensing member 53 and the first sensor 51, the user in the following order Automatically advances the left direction (L) drive setting for rehabilitation training of the left arm.
  • the first and second driving members 31 and 32 are also driven around the respective driving shafts.
  • the driving force input is controlled by the input unit 60 to be rotationally driven.
  • the driving force input is controlled by the input unit 60 such that only the first driving member 31 is continuously driven to rotate around the driving shaft.
  • FIG. 12 A state in which the robot arm 13 of FIG. 12 is viewed from another direction is shown in FIG. 13 .
  • FIGS. 15 and 17 schematically show the robot arm 13 shown in FIGS. 14 and 15 when viewed from the other side.
  • the control unit 40 controls the first to fourth driving members 31, 32, 33, and 34 of the driving unit 30 . ) to automatically control the driving force. Therefore, when the left direction (L) driving of the robot arm 13 is finally set, the user can mount the left arm on the cradle 135 and then proceed with the rehabilitation exercise.
  • the second sensor 52 detects the change in the posture of the connected robot arm 13 by interlocking with the insertion operation of the tightening lever 22 into the second lever groove 24 as interference with the sensing member 53 ( see Fig. 7).
  • the input unit 60 performs the first to fourth driving members 31 ( 31 ) ( 32, 33, and 34 are driven and controlled to automatically set the right direction (R) driving posture.
  • the exoskeleton type rehabilitation robot system 1 may be provided to provide upper extremity rehabilitation exercise for patients with stroke or the like.
  • the exoskeleton rehabilitation robot system 1 must move the upper extremities (arms) in the left or right directions (L) (R) according to the patient's condition, and the exoskeleton type rehabilitation robot system 1 must be able to respond to this. .
  • the present invention designed the rotational freedom in the center of the rear of the exoskeleton type rehabilitation robot system 1 for left and right conversion, and the first and second sensors 51 and 52 mounted in each direction are connected with the sensing member 53. It generates a signal through interference. The signal generated in this way determines the left and right driving mode of the exoskeleton type rehabilitation robot system (1).
  • the posture is automatically set so that both arms can be trained through a specific joint position control of the robot arm 13 . Therefore, it is possible to provide high usability in the training preparation process of a user such as a rehabilitation therapist using the exoskeleton type rehabilitation robot system 1 according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Health & Medical Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)

Abstract

개시된 본 발명에 의한 외골격형 재활 로봇시스템은, 사용자가 착석하는 의자에 마련되며, 의자에 착석한 사용자를 기준으로 좌 또는 우방향으로 움직임 가능한 로봇 암을 구비하는 본체부, 본체부에 대한 로봇 암의 위치를 변환시키는 변환부, 본체부에 대해 로봇 암을 관절 구동시키는 구동부 및, 로봇 암의 위치 변화를 감지하여, 로봇 암의 위치에 따라 구동부의 좌 또는 우방향 구동 모드를 제어하는 제어부를 포함한다. 이러한 구성에 의하면, 의자와 일체로 마련되어 공간 활용도가 우수하며 사용자의 재활 훈련을 위한 초기 준비가 간단하여 효율을 향상시킬 수 있다.

Description

외골격형 재활 로봇시스템
본 발명은 외골격형 재활 로봇시스템에 관한 것에 관한 것으로서, 사용자가 착석하는 의자와 일체형으로 제공되어 공간 활용 효율성을 높일 수 있으며 훈련 준비 시간을 단축시킬 수 있는 로봇 암의 좌우 구동 변환이 가능한 외골격형 재활 로봇시스템에 관한 것이다.
기존의 외골격형 상지 재활 로봇은 좌우 변환을 위해 시스템과 의자가 분리되어 환자의 훈련 방향에 따라 시스템 전체의 위치를 조정해야 하는 문제를 가진다. 또한, 기존의 외골격형 상지 재활 로봇이 시스템-의자 일체형으로 제공되는 경우에도, 좌우 방향 변환을 위한 가이드가 양쪽으로 길게 돌출되도록 설계됨으로써, 훈련 준비를 위한 셋팅 과정이 상대적으로 복잡하고 오래 걸리며 병원 등의 공간을 상대적으로 많이 확보해야 한다.
이에 따라, 근래에는 시스템 공간 활용 효율성을 높일 수 있으며 훈련 준비 시간을 축소시킬 수 있는 외골격형 재활 로봇시스템에 대한 연구가 지속적으로 요구되고 있다.
본 발명의 목적은 공간 활용 효율성을 높일 수 있으며 훈련 준비 시간을 단축시킬 수 있는 로봇 암의 좌우 구동 변환이 가능한 외골격형 재활 로봇시스템을 제공하기 위한 것이다.
상기 목적을 달성하기 위한 본 발명에 의한 외골격형 재활 로봇시스템은, 사용자가 착석하는 의자에 마련되며, 상기 의자에 착석한 상기 사용자를 기준으로 좌 또는 우방향으로 움직임 가능한 로봇 암을 구비하는 본체부, 상기 본체부에 대한 상기 로봇 암의 위치를 변환시키는 변환부, 상기 본체부에 대해 상기 로봇 암을 관절 구동시키는 구동부 및, 상기 로봇 암의 위치 변화를 감지하여, 상기 로봇 암의 위치에 따라 상기 구동부의 좌 또는 우방향 구동 모드를 제어하는 제어부를 포함한다.
또한, 상기 본체부는, 상기 의자를 지지하도록 일체로 마련된 로봇 본체, 상기 로봇 본체에 대해 수직 상방향으로 돌출 연결되는 연결 링크 및, 상기 연결 링크에 대해 회전 가능하게 연결되어, 관절 운동 가능한 복수의 구동 링크를 포함하는 상기 로봇 암을 포함할 수 있다.
또한, 상기 로봇 암은 상기 사용자의 체형에 대응하여 상기 의자를 기준으로 상하, 전후 및 좌우 방향으로 위치가 조정될 수 있다.
또한, 상기 변환부는, 상기 연결 링크와 로봇 암의 사이에 마련되어, 상기 로봇 암과 일체로 움직임 가능하게 마련되는 연결부재, 상기 연결부재에 대해 상기 연결 링크를 향해 돌출되어, 상기 로봇 암과 일체로 회전 가능하게 마련되는 적어도 하나의 조임 레버, 상기 조임 레버가 삽입 가능하도록 상기 연결 링크에 마련되며, 상기 연결 링크의 회전 중심을 사이에 두고 상호 마주하도록 하도록 좌측 및 우측에 각각 적어도 하나씩 마련되는 제1 및 제2레버 홈 및, 상기 연결부재에 마련된 가이드레일을 따라 가이드되도록 상기 연결 링크에 돌출 마련되어, 상기 연결부재를 구비하는 상기 로봇 암의 회전 범위를 제한시켜 상기 로봇 암의 회전 위치를 결정시키는 위치 결정핀을 포함하며, 상기 조임 레버가 상기 제1 또는 제2레버 홈 중에서 어느 하나에 삽입되어 조임 고정됨에 연동하여, 상기 로봇 암의 좌우 구동 모드가 자동 변환될 수 있다.
또한, 상기 연결부재는 상기 연결 링크의 단부에 베어링으로 회전 가능하게 연결되며, 상기 베어링은 크로스 롤러 베어링(Cross roller bearing)을 포함할 수 있다.
또한, 상기 로봇 암은, 상기 연결 링크에 일단이 회전 가능하게 연결되는 제1구동 링크, 상기 제1구동 링크의 타단과 일단이 회전 가능하게 연결되는 제2구동 링크, 상기 제2구동 링크의 타단과 일단이 회전 가능하게 연결되는 제3구동 링크 및, 상기 제3구동 링크의 타단과 일단이 회전 가능하게 연결되는 제4구동 링크를 포함하며, 상기 제4구동 링크에는 상기 사용자의 팔이 거치되는 거치대가 회전 가능하게 연결될 수 있다.
또한, 상기 구동부는, 상기 제1구동 링크와 제2구동 링크의 연결 링크 사이에서 회전력을 제공시키는 제1구동부재, 상기 제2 및 제3구동 링크 사이에서 회전력을 제공시키는 제2구동부재, 상기 제3 및 제4구동 링크 사이에서 회전력을 제공시키는 제3구동부재 및, 상기 제4구동 링크와 상기 거치대 사이에서 회전력을 제공시키는 제4구동부재를 포함할 수 있다.
또한, 상기 제1 내지 제4구동 링크는 길이 방향으로 연장된 바(Bar) 형상을 가지거나, 절곡된 형상을 가질 수 있다.
또한, 상기 제어부는, 상기 조임 레버가 상기 제1 또는 제2레버 홈 중 어느 하나에 삽입됨을 감지하는 센싱부 및, 상기 센싱부로부터 감지된 정보로 상기 구동부로 구동 신호를 제공하는 신호 입력부를 포함할 수 있다.
또한, 상기 센싱부는, 상기 로봇 암의 좌방향 위치에 대응되도록 마련되는 제1센서, 상기 로봇 암의 우방향 위치에 대응되도록 마련되는 제2센서 및, 상기 제1 또는 제2센서 중 어느 하나를 간섭하여 상기 로봇 암의 좌 또는 우방향 구동 자세를 감지시키는 감지부재를 포함할 수 있다.
또한, 상기 감지부재는 상기 연결부재와 연동하도록 마련되어 상기 제1 및 제2센서 사이에서 움직임 가능한 트리거를 포함할 수 있다.
또한, 상기 제1 및 제2센서는 상기 감지부재를 물리적 접촉에 의해 감지하거나, 근접식, 광학식 또는 자기식 감지 방법에 의해 감지하며, 상기 감지부재는 상기 로봇 암에 대해 상기 로봇 암의 일부 영역이 착색되어 마련되거나, 상기 로봇 암에 대해 상대적으로 돌출 또는 함몰되어 마련될 수 있다.
또한, 상기 제어부는 상기 로봇 암의 좌 또는 우방향 위치가 감지되면, 상기 제4구동부재를 회전 구동시킨 후, 상기 제1 및 제2구동부재를 회전 구동시키며, 상기 제1 및 제2구동부재의 구동이 완료되면 상기 제1구동부재를 계속 구동시킨 상태에서 상기 제2 및 제3구동부재를 각각 회전 구동시킨 후에 상기 제3구동부재를 구동시켜 구동 자세를 셋팅시킬 수 있다.
또한, 상기 의자에는 상기 사용자의 체형에 대응하여 길이 방향으로 조정 가능한 벨트가 마련되어, 재활 운동 중에 상기 의자에 대해 상기 사용자의 움직임을 고정시킬 수 있다.
본 발명의 바람직한 다른 측면에 의한 외골격형 재활 로봇시스템은, 사용자가 착석하는 의자를 지지하도록 일체로 마련되며, 상기 의자에 착석한 상기 사용자를 기준으로 좌 또는 우방향으로 움직임 가능한 로봇 암을 구비하는 본체부, 상기 본체부에 대한 상기 로봇 암의 위치를 상기 좌 또는 우방향으로 변환시키는 변환부, 상기 본체부에 대해 상기 로봇 암을 관절 구동시키도록 복수의 구동 링크를 포함하는 구동부 및, 상기 로봇 암의 상기 좌 또는 우방향 위치 변화를 감지하여, 상기 로봇 암의 상기 좌 또는 우방향 위치에 각각 대응되는 구동 모드로 상기 구동부의 구동력을 제어하는 제어부를 포함한다.
상기 본체부는, 상기 의자의 후방을 지지하도록 일체로 마련된 로봇 본체, 상기 로봇 본체의 중앙에 대해 수직 상방향으로 돌출 연결되는 연결 링크 및, 상기 연결 링크에 대해 회전 가능하게 연결되는 상기 로봇 암을 포함하며, 상기 로봇 암은, 상기 연결 링크에 일단이 회전 가능하게 연결되는 제1구동 링크, 상기 제1구동 링크의 타단과 일단이 회전 가능하게 연결되는 제2구동 링크, 상기 제2구동 링크의 타단과 일단이 회전 가능하게 연결되는 제3구동 링크 및, 상기 제3구동 링크의 타단과 일단이 회전 가능하게 연결되는 제4구동 링크를 포함할 수 있다.
또한, 상기 제4구동 링크에는 상기 사용자의 팔이 거치되는 거치대가 회전 가능하게 연결될 수 있다.
또한, 상기 변환부는, 상기 연결 링크와 로봇 암의 사이에 마련되어, 상기 로봇 암과 일체로 움직임 가능하게 마련되는 연결부재, 상기 연결부재에 대해 상기 연결 링크를 향해 돌출되어, 상기 제1구동 링크와 일체로 회전 가능하게 마련되는 적어도 하나의 조임 레버, 상기 조임 레버가 삽입 가능하도록 상기 연결 링크에 마련되며, 상기 연결 링크의 회전 중심을 사이에 두고 상호 마주하도록 하도록 좌측 및 우측에 각각 적어도 하나씩 마련되는 제1 및 제2레버 홈 및, 상기 연결부재에 마련된 가이드레일을 따라 가이드되도록 상기 연결 링크에 돌출 마련되어, 상기 연결부재를 구비하는 상기 로봇 암의 회전 범위를 제한시켜 상기 로봇 암의 회전 위치를 결정시키는 위치 결정핀을 포함할 수 있다.
또한, 상기 연결부재는 상기 연결 링크의 단부에 베어링으로 회전 가능하게 연결되며, 상기 베어링은 크로스 롤러 베어링(Cross roller bearing)을 포함할 수 있다.
또한, 상기 로봇 암은 상기 사용자의 체형에 대응하여 상기 의자를 기준으로 상하, 전후 및 좌우 방향으로 위치가 조정될 수 있다.
또한, 상기 구동부는, 상기 제1구동 링크와 제2구동 링크의 연결 링크 사이에서 회전력을 제공시키는 제1구동부재, 상기 제2 및 제3구동 링크 사이에서 회전력을 제공시키는 제2구동부재, 상기 제3 및 제4구동 링크 사이에서 회전력을 제공시키는 제3구동부재 및, 상기 제4구동 링크와 상기 거치대 사이에서 회전력을 제공시키는 제4구동부재를 포함하며, 상기 제1 내지 제4구동 링크는 길이 방향으로 연장된 바(Bar) 형상을 가지거나, 절곡된 형상을 가질 수 있다.
또한, 상기 제어부는, 상기 조임 레버가 상기 제1 또는 제2레버 홈 중 어느 하나에 삽입됨을 감지하는 센싱부 및, 상기 센싱부로부터 감지된 정보로 상기 구동부로 구동 신호를 제공하는 신호 입력부를 포함할 수 있다.
또한, 상기 센싱부는, 상기 로봇 암의 좌방향 위치에 대응되도록 마련되는 제1센서, 상기 로봇 암의 우방향 위치에 대응되도록 마련되는 제2센서 및, 상기 연결부재와 연동하도록 마련되어 상기 제1 및 제2센서 사에서 움직임 가능하며, 상기 제1 또는 제2센서 중 어느 하나를 간섭하여 상기 로봇 암의 좌 또는 우방향 구동 자세를 감지시키는 감지부재를 포함할 수 있다.
또한, 상기 감지부재는 상기 연결부재와 연동하도록 마련되어 상기 제1 및 제2센서 사이에서 움직임 가능한 트리거를 포함할 수 있다.
또한, 상기 제1 및 제2센서는 상기 감지부재를 물리적 접촉에 의해 감지하거나, 근접식, 광학식 또는 자기식 감지 방법에 의해 감지하며, 상기 감지부재는 상기 로봇 암에 대해 상기 로봇 암의 일부 영역이 착색되어 마련되거나, 상기 로봇 암에 대해 상대적으로 돌출 또는 함몰되어 마련될 수 있다.
또한, 상기 제어부는 상기 로봇 암의 좌 또는 우방향 위치가 감지되면, 상기 제4구동부재를 회전 구동시킨 후, 상기 제1 및 제2구동부재를 회전 구동시키며, 상기 제1 및 제2구동부재의 구동이 완료되면 상기 제1구동부재를 계속 구동시킨 상태에서 상기 제2 및 제3구동부재를 각각 회전 구동시킨 후에 상기 제3구동부재를 구동시켜 구동 자세를 셋팅시킬 수 있다.
또한, 상기 의자에는 상기 사용자의 체형에 대응하여 길이 방향으로 조정 가능한 벨트가 마련되어, 재활 운동 중에 상기 의자에 대해 상기 사용자의 움직임을 고정될 수 있다.
상기와 같은 구성을 가지는 본 발명에 의하면, 외골격형 재활 로봇시스템이 의자와 일체형으로 마련됨으로써, 시스템 공간 효율성을 향상시킬 수 있다. 즉, 로봇 암의 좌우 움직임을 구현하기 위해 기존의 좌우 가이드를 길게 설계할 필요가 없어, 한정된 훈련장소 대비 시스템 공간 활용 효율성을 높일 수 있다.
또한, 간단한 조작으로 하나의 로봇 암으로 좌방향 또는 우방향 구동이 변환되어 자동 셋팅될 수 있어, 재활 운동을 위한 시스템 준비 시간을 단축시켜 효율을 향상시킬 수 있다.
도 1은 본 발명의 바람직한 일 실시예에 의한 외골격형 재활 로봇시스템의 초기 구동 셋팅 상태를 개략적으로 도시한 사시도이다.
도 2는 도 1에 도시된 외골격형 재활 로봇시스템의 구동부를 개략적으로 확대 도시한 사시도이다.
도 3은 도 1에 도시된 외골격형 재활 로봇시스템을 상부에서 바라본 상태를 개략적으로 도시한 평면도이다.
도 4은 도 1에 도시된 외골격형 재활 로봇시스템을 측면에서 바라본 상태를 개략적으로 도시한 요부 사시도이다.
도 5는 도 4에 도시된 변환부를 개략적으로 절단하여 도시한 요부 단면도이다.
도 6은 도 5에 도시된 외골격형 재활 로봇시스템의 변환부를 개략적으로 도시한 평면도이다.
도 7은 도 1에 도시된 외골격형 재활 로봇시스템의 제어부를 개략적으로 도시한 평면도이다.
도 8은 도 1에 도시된 외골격형 재활 로봇시스템이 우방향에서 좌방향으로 구동이 셋팅된 상태를 개략적으로 도시한 사시도이다.
도 9는 도 8에 도시된 외골격형 재활 로봇시스템의 제4구동부재의 구동 상태를 개략적으로 도시한 사시도이다.
도 10은 도 8에 도시된 외골격형 재활 로봇시스템의 제1 및 제2구동부재의 구동 상태를 개략적으로 도시한 사시도이다. `
도 11은 도 8에 도시된 외골격형 재활 로봇시스템의 제1구동부재의 구동 상태를 개략적으로 도시한 사시도이다.
도 12는 도 8에 도시된 외골격형 재활 로봇시스템의 제1구동부재의 계속 구동 상태에서 제2 및 제3구동부재의 구동 상태를 개략적으로 도시한 사시도이다.
도 13은 도 12를 다른 방향에서 바라본 상태를 개략적으로 도시한 사시도이다.
도 14는 도 8에 도시된 외골격형 재활 로봇시스템의 제1, 2, 3구동부재의 구동 상태를 개략적으로 도시한 사시도이다.
도 15는 도 14의 상태를 다른 측면에서 바라본 상태를 개략적으로 도시한 사시도이다.
도 16은 도 8에 도시된 외골격형 재활 로봇시스템의 제3구동부재의 구동 상태를 개략적으로 도시한 사시도이다.
도 17은 도 16의 상태를 다른 측면에서 바라본 상태를 개략적으로 도시한 사시도이다.
이하, 본 발명의 바람직한 일 실시예를 첨부된 도면을 참고하여 설명한다. 다만, 본 발명의 사상이 그와 같은 실시예에 제한되지 않고, 본 발명의 사상은 실시예를 이루는 구성요소의 부가, 변경 및 삭제 등에 의해서 다르게 제안될 수 있을 것이나, 이 또한 발명의 사상에 포함되는 것이다.
도 1을 참고하면, 본 발명의 바람직한 일 실시예에 의한 외골격형 재활 로봇시스템(1)은 본체부(10), 변환부(20), 구동부(30) 및 제어부(40)를 포함한다.
참고로, 본 발명에서 설명하는 외골격형 재활 로봇시스템(1)은 재활 치료가 필요한 환자의 왼팔과 오른팔 재활 운동 즉, 상지 재활 훈련에 적용되는 것으로 예시한다. 그러나, 꼭 이에 한정하는 것은 아니며, 본 발명에 의한 외골격형 재활 로봇시스템(1)이 상지 뿐만 아니라 왼발 및 오른발과 같은 하지 재활 훈련에도 적용 가능함은 당연하다.
본체부(10)는 사용자가 착석하는 의자(C)에 마련되며, 로봇 본체(11), 연결 링크(12) 및 로봇 암(13)을 포함한다.
로봇 본체(11)는 의자(C)에 대해 일체로 마련된다. 이러한 로봇 본체(11)는 도 1의 도시와 같이, 의자(C)의 후방에 마련되어, 의자(C)를 일체로 지지할 수 있다.
참고로, 의자(C)와 일체로 마련된 로봇 본체(11)를 위치 이동시키기 위한 바퀴(미도시)가 로봇 본체(11)의 저면에 마련될 수 있으며, 로봇 본체(11)의 형상 및 크기는 도시된 예로만 한정되지 않는다.
또한, 의자(C)에는 착석한 사용자를 고정시키기 위한 벨트(미도시)가 마련된다. 이러한 벨트(미도시)는 의자(C)에 일체로 마련되어 길이 방향으로 조절 가능함으로써, 사용자의 체형에 대응하여 착용 가능하다. 여기서, 벨트(미도시)는 자동차의 안전벨트와 달리 의자(C)에 대해 착석한 사용자의 운동 기간 중에 지속적으로 단단히 고정시키는 목적으로 마련된다.
연결 링크(12)는 로봇 본체(11)로부터 수직 상방향으로 돌출되도록 일단이 연결된다. 보다 구체적으로, 연결 링크(12)는 로봇 본체(11)의 상단 중앙으로부터 수직 상방향으로 돌출 마련되고, 돌출된 상단에 후술할 제1구동 링크(131)가 링크 연결된다. 이러한 연결 링크(12)는 일종의 리니어 컬럼으로써, 후술할 로봇 암(13)이 연결 링크(12)의 상부에 링크 연결된다.
로봇 암(13)은 의자(C)에 착석한 사용자를 기준으로 좌 또는 우방향(R)(L)으로 움직임 가능하다. 이러한 로봇 암(13)은 도 2의 도시와 같이, 제1 내지 제4구동 링크(131)(132)(133)(134) 및 거치대(135)를 포함한다.
제1 내지 제4구동 링크(131)(132)(133)(134)는 연결 링크(12)에 순차적으로 회전 가능하게 연결되어, 관절 운동 가능하게 마련된다. 보다 구체적으로, 제1구동 링크(131)의 일단은 연결 링크(12)의 돌출된 상단과 회전 가능하게 연결된다. 제1구동 링크(131)의 일단으로 연장된 타단은 제2구동 링크(132)의 일단과 회전 가능하게 연결된다. 제2구동 링크(132)의 타단은 제3구동 링크(133)의 일단과 회전 가능하게 연결되고, 제4구동 링크(134)의 일단은 제3구동 링크(133)의 타단과 회전 가능하게 연결된다.
여기서, 제1 및 제3구동 링크(131)(133)는 길이 방향으로 연장된 바(Bar) 형상을 가지며, 제2 및 제4구동 링크(132)(134)는 'ㄴ'자와 같이 절곡된 형상을 가진다. 이러한 제1 내지 제4구동 링크(131)(132)(133)(134)의 형상, 길이 및 두께는 일 예이며, 도시된 예로 한정되지 않음은 당연하다.
한편, 제4구동 링크(134)에는 사용자의 팔이 안착되어 거치될 수 있는 거치대(135)가 마련된다. 이때, 제4구동 링크(134)에 대해 거치대(135)는 회전 움직임 가능할 수 있으며, 사용자에 의해 파지 가능한 손잡이(136)가 마련될 수 있다.
참고로, 사용자의 체형을 고려하여 로봇 암(13)을 사용자가 의자(C)에 착석한 상태를 기준으로 도 1에 도시된 화살표와 같이, 상하, 전후 및 좌우로 일정범위 조정할 수 있다. 이때, 로봇 암(13)의 상하, 전후 및 좌우 조정 목적은 사용자의 키, 비만도 및 자세 비틀어짐 등의 신체 조건에 대응하여 재활 운동이 가능한 위치로 로봇 암(13)을 이동시키기 위함이다. 이를 위해, 로봇 암(13)이 아닌 의자(C)를 상하, 전후 및 좌우로 사용자의 신체 조건에 대응하여 위치를 조정하는 실시예도 가능하다.
로봇 암(13)의 위치 이동은 변환 시 의자(C)와 같이 주변 구성 요소들과의 간섭을 피할 수 있는 범위이어야 한다. 예컨대, 로봇 암(13)의 상하 방향은 좌우 변환시에 의자(C)와 간섭되지 않는 높이에서 조정될 수 있다. 본 실시예에서는 리니어 컬럼을 포함하는 연결 링크(12)가 상하 방향으로 움직여 로봇 암(13)의 위치를 상하로 조정할 수 있다. 한편, 이러한 로봇 암(13)의 위치 조정을 가이드 하기 위해, 눈금(121)과 잠금수단(122)이 연결 링크(12)에 마련된다. 이러한 연결 링크(12)에 마련된 눈금(121)을 따라 잠금수단(122)을 작동시키거나 잠금을 해제하여 로봇 암(13)의 위치를 조정할 수 있다.
변환부(20)는 본체부(10)에 대한 로봇 암(13)의 위치를 변환시킨다. 즉, 변환부(20)는 로봇 본체(11)에 대한 로봇 암(13)의 구동 위치를 도 3의 (a)와 같이 사용자를 기준으로 우방향(R) 그리고, 도 3의 (b)와 같이 사용자를 기준으로 좌방향(L)으로 변환시킨다. 이러한 변환부(20)는 도 4 내지 도 7의 도시와 같이, 연결부재(21), 조임 레버(22), 제1 및 제2레버 홈(23)(24) 및 위치 결정핀(25)을 포함한다.
연결부재(21)는 도 5 및 도 6의 도시와 같이, 연결 링크(12)와 로봇 암(13)의 사이에서 로봇 암(13)과 일체로 움직임 가능하게 마련된다. 본 실시예에서는 연결 부재(21)가 연결 링크(12)와 마주하도록 로봇 암(13)의 제1구동 링크(131)에 마련되는 것으로 예시한다.
한편, 연결부재(21)는 도 7의 도시와 같이, 복수의 베어링(B)이 개재됨으로써, 연결 링크(12)의 상단과 결합된 제1구동 링크(131)의 회전에 연동하여 연결 링크(12)에 대해 회전 가능하다. 참고로, 베어링(B)은 볼 베어링(Ball bearing) 또는 크로스 롤러 베어링(Cross roller bearing)을 포함할 수 있으며, 본 실시예에서는 크로스 롤러 베어링을 포함하는 것으로 예시한다.
조임 레버(22)는 도 4의 도시와 같이, 연결부재(21)에 대해 연결 링크(12)를 향해 돌출되어, 로봇 암(13)과 일체로 회전 가능하게 적어도 하나 마련된다. 여기서, 조임 레버(22)는 후술할 제1 및 제2레버 홈(23)(24)으로부터 분리 또는 삽입된다. 이를 위해, 조임 레버(22)는 제1 및 제2레버 홈(23)(24)을 향해 진입 및 분리되는 방향으로 승강 및 하강 가능하도록 연결부재(21)에 마련될 수 있다.
한편, 본 실시예에서 조임 레버(22)는 로봇 암(13)의 좌방향(L) 및 우방향(R) 위치 변환을 위한 일종의 위치 고정 가이더로써, 조임 레버(22)가 아닌 플런져 등과 같은 다양한 위치 고정용 부품 중 어느 하나로 변경 가능하다.
제1 및 제2레버 홈(23)(24)은 조임 레버(22)가 삽입 가능하도록 연결 링크(12)에 소정 깊이 인입되어 마련되며, 연결 링크(12)에 대한 로봇 암(13)의 회전 중심을 사이에 두고 상호 마주하도록 좌측 및 우측에 각각 적어도 하나씩 마련된다. 도 4의 도시와 같이, 본 실시예에서는 제1 및 제2레버 홈(23)(24)이 로봇 암(13)의 좌방향(L) 및 우방향(R)에 각각 대응되도록 좌측 및 우측에 각각 하나씩 마련되는 것으로 예시한다. 즉, 의자(C)에 착석한 사용자를 기준으로 제1레버 홈(23)이 좌측에 마련되고, 제2레버 홈(24)이 우측에 마련되는 것으로 예시한다.
이러한 좌측 및 우측에 각각 마련된 제1 및 제2레버 홈(23)(24) 중 어느 하나에 조임 레버(22)가 삽입 및 분리됨으로써, 조임 레버(22)가 마련된 연결부재(21)와 일체로 마련된 로봇 암(13)이 자세 변환된다. 즉, 조임 레버(22)이 제1레버 홈(23)에 삽입될 경우에는, 로봇 암(13)은 우방향(R)으로 자세 변환되어 구동이 셋팅된다. 반대로, 제2레버 홈(24)에 조임 레버(22)가 삽입될 경우에는 로봇 암(13)의 좌방향(L) 구동으로 자세가 변환되어 구동이 셋팅된다.
위치 결정핀(25)은 연결부재(21)에 마련된 가이드 레일(26)을 따라 가이드되도록 연결 링크(12)에 돌출 마련된다. 이러한 위치 결정핀(25)은 연결부재(21)를 구비하는 로봇 암(13)의 회전 범위를 가이드 레일(26)에 의해 제한시켜 로봇 암(13)의 회전 위치를 결정시킨다.
보다 구체적으로, 가이드 레일(26)은 연결부재(21)를 관통하여 소정 회전 반경을 가지도록 마련되며, 위치 결정핀(25)이 가이드 레일(26)에 삽입되도록 연결 링크(12)의 상단에 돌출 마련된다. 그로 인해, 연결부재(21)가 제1구동 링크(131)와 연동하여 회전되면, 위치 결정핀(25)이 가이드 레일(26)에 삽입된 위치가 변경되게 된다. 뿐만 아니라, 위치 결정핀(25)이 가이드 레일(26)에 삽입되어 회전 범위가 간섭됨으로써, 위치 결정핀(25)이 마련된 연결부재(21)와 일체로 구동되는 제1구동 링크(131)의 회전 반경이 제한된다.
참고로, 가이드 레일(26)에 삽입된 위치 결정핀(25)은 로봇 암(13)의 좌방향(L) 및 우방향(R) 구동 위치에 대응되는 회전 반경만큼 가이드 레일(26)에 의해 회전 범위가 제한된다.
이상과 같은 변환부(20)는 조임 레버(22)가 복수의 레버 홈(23)(24) 중 어느 하나에 삽입되어 조임 고정됨으로써, 로봇 암(13)의 좌방향(L) 및 우방향 구동이 변환되게 된다.
구동부(30)는 본체부(10)에 대해 로봇 암(13)을 다방향으로 관절 구동시킨다. 구동부(30)는 복수의 구동 링크(131)(132)(133)(134)로 마련된 로봇 암(13)의 관절 구동을 위해, 제1 내지 제4구동부재(31)(32)(33)(34)로 마련될 수 있다. 참고로, 본 실시예에서는 로봇 암(13)이 제1 내지 제4구동 링크(131)(132)(133)(134)와 거치대(135)를 포함하는 것으로 도시 및 예시함에 따라, 구동부(30)는 제1 내지 제4구동 링크(131)(132)(133)(134)와 거치대(135)의 연결 부위에 각각 마련되는 제1 내지 제4구동부재(31)(32)(33)(34)를 포함하는 것으로 예시한다. 이러한 구동부(30)의 구동부재(31)(32)(33)(34)의 개수, 위치 등은 도시된 예로만 한정되지 않음은 당연하다.
제1구동부재(31)는 제1구동 링크(131)와 제2구동 링크(132)의 사이에서 회전력을 제공한다. 제2구동부재(32)는 제2 및 제3구동 링크(132)(133)의 사이에서 회전력을 제공하며, 제3구동부재(33)는 제3 및 제4구동 링크(133)(134)의 사이에서 구동력을 제공한다. 또한, 제4구동부재(34)는 제4구동 링크(134)와 거치대(135) 사이에서의 회전력을 제공한다. 이러한 제1 내지 제4구동부재(31)(32)(33)(34)는 모터와 같은 구동력 발생 수단을 포함할 수 있으나, 꼭 이에 한정되지 않는다.
제어부(40)는 로봇 암(13)의 좌 또는 우방향(R)(L) 위치 변화를 감지하여, 로봇 암(13)의 위치에 따라 구동부(30)의 구동 모드가 자동 변환되도록 제어한다. 이를 위해, 제어부(40)는 센싱부(50) 및 입력부(60)를 포함한다.
센싱부(50)는 조임 레버(22)가 제1 및 제2레버 홈(23)(24) 중 어느 하나에 삽입되어 로봇 암(13)의 위치가 변환됨을 감지한다. 이를 위해, 센싱부(50)는 도 7의 도시와 같이, 제1센서(51), 제2센서(52) 및 감지부재(53)를 포함한다.
제1센서(51)는 로봇 암(13)의 좌방향(L) 위치에 대응되도록 마련된다. 제2센서(52)는 로봇 암(13)의 우방향(R) 위치에 대응되도록 마련된다. 이러한 제1 및 제2센서(51)(52)는 일종의 리밋 스위치로써, 후술할 감지부재(53)를 감지한다.
감지부재(53)는 제1 및 제2센서(51)(52)의 사이에서 움직임 가능하도록 연결부재(21)와 함께 일체로 움직임 가능하게 마련된다. 여기서, 연결부재(21)는 상술한 바와 같이, 제1구동 링크(131)의 회전에 연동하여 연결 링크(12)에 대해 회전 가능한 트리거를 포함할 수 있다. 이에 따라, 연결 링크(12)의 움직임에 연동하여 감지부재(53)가 제1 및 제2센서(51)(52) 중 어느 하나와 마주하도록 위치가 가변됨으로써, 제1 및 제2센서(51)(52) 중 어느 하나에 의해 감지된다.
참고로, 감지부재(53)는 제1 및 제2센서(51)(52)를 선택적으로 가압하도록 마련됨으로써, 제1 및 제2센서(51)(52)가 감지부재(43)를 센싱시킬 수 있다. 즉, 감지부재(53)가 제1 및 제2센서(51)(52)를 가압함으로써, 구동 신호를 입력할 수 있는 것이다. 그러나, 감지부재(53)와 제1 및 제2센서(51)(52) 사이의 감지 동작은 가압 간섭으로 꼭 한정하는 것은 아니며, 포토 센서 등과 같이 다양한 간섭 방식으로 변경 가능함은 당연하다.
이렇게 제1 및 제2센서(51)(52) 중 어느 하나에 간섭된 감지부재(53)로 인해, 연결 링크(12)와 연결된 로봇 암(13)의 좌방향(L) 또는 우방향(R) 위치 변환을 감지하게 된다.
한편, 제1 및 제2센서(51)(52)는 감지부재(53)의 움직임을 물리적 접촉에 의해 감지하는 것으로서, 근접식, 광학식 및 자기식 등의 방식으로 감지부재(53)를 감지할 수 있다. 뿐만 아니라, 센서부(50)가 광학식 엔코더의 원리를 이용하여 로봇 암(13)의 움직임을 감지할 수도 있다.
광학식 엔코더의 원리가 이용되는 경우, 로봇 암(13)의 회전축의 보스 부분과 같은 움직임 영역을 착색하여 칼라로 구별하며, 로봇 암(13)의 움직임에 따른 착색 여부를 광학 센서를 포함하는 제1 및 제2센서(51)(52)로 감지하여 로봇 암(13)의 움직임을 감지할 수 있다. 또는, 로봇 암(13)의 일부를 착색하지 않고 상대적으로 돌출 또는 함몰시켜서 근접 센서를 포함하는 제1 및 제2센서(51)(52)로 로봇 암(13)의 움직임을 감지하는 변형예도 가능하다. 즉, 광학식 엔코더 원리가 적용되는 센서부(50)에서는 감지부재(53)가 로봇 암(13)의 일부 영역이 착색되어 마련되거나, 상대적으로 돌출 또는 함몰되어 마련되며, 제1 및 제2센서(51)(52)는 이러한 감지부재(53)를 광학 또는 근접 센서를 포함하여 감지한다.
입력부(60)는 센싱부(50)로부터 감지된 정보로 구동부(30)로 구동 신호를 제공한다. 이러한 입력부(60)는 구동부(30)의 제1 내지 제4구동부재(31)(32)(33)(34)들과 연결되어, 구동력을 입력시킨다. 그로 인해, 입력부(60)는 센싱부(50)에서 감지된 로봇 암(13)의 좌방향(L) 또는 우방향(R) 위치 변화에 연동하여 자동으로 제1 내지 제4구동부재(31)(32)(33)(34)에 대한 구동력 변환을 제어할 수 있게 된다.
한편, 도 1의 도시와 같이, 사용자가 착석하는 의자(C)에는 외골격형 재활 로봇시스템(1)의 동작을 실시간 제어 및 확인할 수 있는 모니터(M)가 마련될 수 있다. 이를 위해, 사용자는 모니터(M)를 통해 직접 구동을 온/오프(On/Off) 하거나, 구동 상황을 육안으로 확인할 수 있다.
상기와 같은 구성을 가지는 본 발명에 의한 외골격형 재활 로봇시스템(1)의 좌방향(L) 및 우방향(R) 구동 셋팅 동작을 도 8 내지 도 17을 참고하여 설명한다.
참고로, 도 1에는 본 실시예에 의한 외골격형 재활 로봇시스템(1)의 초기 자세가 개략적으로 도시된다. 이때, 조임 레버(22)는 제1레버 홈(23)에 삽입되어, 로봇 암(13)이 우방향(R)으로 구동이 셋팅된 상태이다.
도 8의 도시와 같이, 의자(C)에 착석한 사용자를 기준으로 오른쪽에서 왼쪽, 즉, 우방향(R)에서 좌방향(L)으로 로봇 암(13)을 자세 변환시킨다. 이때, 사용자는 조임 레버(22)를 제1레버 홈(23)으로부터 분리하여 제2레버 홈(24)으로 삽입시킨다. 이러한 조임 레버(22)의 움직임에 연동하여, 조임 레버(22)가 마련된 연결부재(21)와 일체로 회전 가능한 로봇 암(13)도 함께 회전된다.
연결부재(21)와 로봇 암(13)의 회전에 연동하여, 센싱부(50)의 감지부재(53)도 함께 회전됨으로써, 감지부재(53)의 위치를 제1 또는 제2센서(51)(52)가 감지한다. 이때, 로봇 암(13)은 좌방향(L)으로 위치가 변환됨에 연동하여 감지부재(53)가 제1센서(51)에 의해 감지된다. 이러한 센싱부(50)의 제1센서(51)에서 로봇 암(13)의 좌방향(L) 위치 변환이 감지되면, 입력부(60)는 구동부(30)의 제1 내지 제4구동부재(31)(32)(33)(34)로 구동력 입력 신호를 자동으로 입력하여 좌방향(L) 구동 모드로 자동 셋팅시킨다. 이때, 감지부재(53)는 제1센서(51)를 가압하여 간섭할 수 있다.
감지부재(53)와 제1센서(51) 사이의 간섭으로 인해 제어부(40)의 입력부(60)가 로봇 암(13)의 좌방향(L) 구동을 인식하게 되면, 다음과 같은 순서로 사용자의 왼팔 재활 훈련을 위한 좌방향(L) 구동 셋팅을 자동 진행시킨다.
우선, 도 9와 같이, 제4구동부재(34)가 구동축을 중심으로 회전 구동된 후, 도 10의 도시와 같이, 제1 및 제2구동부재(31)(32)도 각각의 구동축을 중심으로 회전 구동되도록 입력부(60)에 의해 구동력 입력이 제어된다. 다음으로, 도 11과 같이, 제1구동부재(31)만이 구동축을 중심으로 계속 회전 구동되도록 입력부(60)에 의해 구동력 입력이 제어된다.
그 후, 도 12의 도시와 같이, 제1구동부재(31)가 계속 구동되도록 제어된 상태에서, 제2 및 제2구동부재(31)(32)가 각각의 구동축을 중심으로 회전 구동되도록 제어된다. 이러한 도 12의 로봇 암(13)을 다른 방향에서 바라본 상태가 도 13에 도시된다.
이 후, 입력부(60)는 도 14의 도시와 같이, 제1 내지 제3구동부재(31)(32)(33)이 계속 구동되도록 제어하며, 마지막으로 도 16의 도시와 같이, 제3구동부재(33)를 구동시켜 최종적으로 왼팔에 대한 로봇 암(13) 구동 자세 셋팅을 완료하게 된다. 여기서, 도 15 및 도 17에는 도 14 및 도 15에 각각 도시된 로봇 암(13)을 다른 측면에서 바라본 상태가 개략적으로 도시된다.
이와 같이, 로봇 암(13)이 좌방향(L)으로 위치 이동함을 감지하여, 제어부(40)는 구동부(30)의 제1 내지 제4구동부재(31)(32)(33)(34)의 구동력을 자동 제어한다. 그로 인해, 로봇 암(13)의 좌방향(L) 구동이 최종 셋팅되면, 사용자는 거치대(135)에 왼팔을 거치시킨 후, 재활 훈련 운동을 진행할 수 있게 된다.
한편, 사용자가 오른팔에 대한 재활 운동을 진행하고자 할 경우, 다시 도 4의 도시와 같이, 조임 레버(22)를 제1레버 홈(23)으로부터 분리하여 제2레버 홈(24)으로 삽입시킨다. 이때, 조임 레버(22)의 회전 반경은 도 6과 같이, 연결부재(21)에 마련된 가이드 레일(26)에 간섭되는 위치 결정핀(25)의 회전 반경에 의해 간섭된다.
이러한 조임 레버(22)의 제2레버 홈(24)에 대한 삽입 동작에 연동하여 연결된 로봇 암(13)의 자세 변환을 제2센서(52)가 감지부재(53)와의 간섭으로 감지하게 된다(도 7 참조). 이렇게 센싱부(50)에 의해 로봇 암(13)의 우방향(R) 자세 변환이 감지되면, 입력부(60)는 도 8 내지 도 17과 같은 순서로 제1 내지 제4구동부재(31)(32)(33)(34)를 구동 제어하여, 우방향(R) 구동 자세를 자동 셋팅하게 된다.
한편, 본 발명에 의한 외골격형 재활 로봇시스템(1)은 뇌졸중 등의 환자를 대상으로 상지 재활운동을 제공하기 위해 마련될 수 있다. 이러한 외골격형 재활 로봇시스템(1)은 환자의 상태에 따라 좌 또는 우방향(L)(R)의 상지(팔)를 운동시켜야 하며 외골격형 재활 로봇시스템(1)은 이에 대한 대응이 가능해야 한다.
이러한 본 발명은 좌우 변환을 위해 외골격형 재활 로봇시스템(1)의 후면 중앙에 회전 자유도를 설계하였고, 각 방향에 장착된 제1 및 제2센서(51)(52)는 감지부재(53)와의 간섭을 통하여 신호를 발생시킨다. 이렇게 발생된 신호는 외골격형 재활 로봇시스템(1)의 좌우 구동 모드를 판단을 하게 된다.
좌 또는 우방향(L)(R) 구동이 판단되면 로봇 암(13)의 특정 관절 위치제어를 통하여 양쪽 팔 훈련이 가능하도록 자세를 자동으로 셋팅하게 된다. 그러므로 본 발명에 의한 외골격형 재활 로봇시스템(1)을 사용하는 재활치료사와 같은 사용자의 훈련 준비과정에서 높은 사용성을 제공할 수 있다.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본문에 포함되어 있음

Claims (27)

  1. 사용자가 착석하는 의자에 마련되며, 상기 의자에 착석한 상기 사용자를 기준으로 좌 또는 우방향으로 움직임 가능한 로봇 암을 구비하는 본체부;
    상기 본체부에 대한 상기 로봇 암의 위치를 변환시키는 변환부;
    상기 본체부에 대해 상기 로봇 암을 관절 구동시키는 구동부; 및
    상기 로봇 암의 위치 변화를 감지하여, 상기 로봇 암의 위치에 따라 상기 구동부의 좌 또는 우방향 구동 모드를 제어하는 제어부;
    를 포함하는 외골격형 재활 로봇시스템.
  2. 제1항에 있어서,
    상기 본체부는,
    상기 의자를 지지하도록 일체로 마련된 로봇 본체;
    상기 로봇 본체에 대해 수직 상방향으로 돌출 연결되는 연결 링크; 및
    상기 연결 링크에 대해 회전 가능하게 연결되어, 관절 운동 가능한 복수의 구동 링크를 포함하는 상기 로봇 암;
    을 포함하는 외골격형 재활 로봇시스템.
  3. 제2항에 있어서,
    상기 로봇 암은 상기 사용자의 체형에 대응하여 상기 의자를 기준으로 상하, 전후 및 좌우 방향으로 위치가 조정되는 외골격형 재활 로봇시스템.
  4. 제2항에 있어서,
    상기 변환부는,
    상기 연결 링크와 로봇 암의 사이에 마련되어, 상기 로봇 암과 일체로 움직임 가능하게 마련되는 연결부재;
    상기 연결부재에 대해 상기 연결 링크를 향해 돌출되어, 상기 로봇 암과 일체로 회전 가능하게 마련되는 적어도 하나의 조임 레버;
    상기 조임 레버가 삽입 가능하도록 상기 연결 링크에 마련되며, 상기 연결 링크의 회전 중심을 사이에 두고 상호 마주하도록 하도록 좌측 및 우측에 각각 적어도 하나씩 마련되는 제1 및 제2레버 홈; 및
    상기 연결부재에 마련된 가이드레일을 따라 가이드되도록 상기 연결 링크에 돌출 마련되어, 상기 연결부재를 구비하는 상기 로봇 암의 회전 범위를 제한시켜 상기 로봇 암의 회전 위치를 결정시키는 위치 결정핀;
    을 포함하며,
    상기 조임 레버가 상기 제1 또는 제2레버 홈 중에서 어느 하나에 삽입되어 조임 고정됨에 연동하여, 상기 로봇 암의 좌우 구동 모드가 자동 변환되는 외골격형 재활 로봇시스템.
  5. 제4항에 있어서,
    상기 연결부재는 상기 연결 링크의 단부에 베어링으로 회전 가능하게 연결되며,
    상기 베어링은 크로스 롤러 베어링(Cross roller bearing)을 포함하는 외골격형 재활 로봇시스템.
  6. 제2항에 있어서,
    상기 로봇 암은,
    상기 연결 링크에 일단이 회전 가능하게 연결되는 제1구동 링크;
    상기 제1구동 링크의 타단과 일단이 회전 가능하게 연결되는 제2구동 링크;
    상기 제2구동 링크의 타단과 일단이 회전 가능하게 연결되는 제3구동 링크; 및
    상기 제3구동 링크의 타단과 일단이 회전 가능하게 연결되는 제4구동 링크;
    를 포함하며,
    상기 제4구동 링크에는 상기 사용자의 팔이 거치되는 거치대가 회전 가능하게 연결되는 외골격형 재활 로봇시스템.
  7. 제6항에 있어서,
    상기 구동부는,
    상기 제1구동 링크와 제2구동 링크의 연결 링크 사이에서 회전력을 제공시키는 제1구동부재;
    상기 제2 및 제3구동 링크 사이에서 회전력을 제공시키는 제2구동부재;
    상기 제3 및 제4구동 링크 사이에서 회전력을 제공시키는 제3구동부재; 및
    상기 제4구동 링크와 상기 거치대 사이에서 회전력을 제공시키는 제4구동부재;
    를 포함하는 외골격형 재활 로봇시스템.
  8. 제6항에 있어서,
    상기 제1 내지 제4구동 링크는 길이 방향으로 연장된 바(Bar) 형상을 가지거나, 절곡된 형상을 가지는 외골격형 재활 로봇시스템.
  9. 제4항에 있어서,
    상기 제어부는,
    상기 조임 레버가 상기 제1 또는 제2레버 홈 중 어느 하나에 삽입됨을 감지하는 센싱부; 및
    상기 센싱부로부터 감지된 정보로 상기 구동부로 구동 신호를 제공하는 신호 입력부;
    를 포함하는 외골격형 재활 로봇시스템.
  10. 제9항에 있어서,
    상기 센싱부는,
    상기 로봇 암의 좌방향 위치에 대응되도록 마련되는 제1센서;
    상기 로봇 암의 우방향 위치에 대응되도록 마련되는 제2센서; 및
    상기 제1 또는 제2센서 중 어느 하나를 간섭하여 상기 로봇 암의 좌 또는 우방향 구동 자세를 감지시키는 감지부재;
    를 포함하는 외골격형 재활 로봇시스템.
  11. 제10항에 있어서,
    상기 감지부재는 상기 연결부재와 연동하도록 마련되어 상기 제1 및 제2센서 사이에서 움직임 가능한 트리거를 포함하는 외골격형 재활 로봇시스템.
  12. 제10항에 있어서,
    상기 제1 및 제2센서는 상기 감지부재를 물리적 접촉에 의해 감지하거나, 근접식, 광학식 또는 자기식 감지 방법에 의해 감지하며,
    상기 감지부재는 상기 로봇 암에 대해 상기 로봇 암의 일부 영역이 착색되어 마련되거나, 상기 로봇 암에 대해 상대적으로 돌출 또는 함몰되어 마련되는 외골격형 재활 로봇시스템.
  13. 제7항에 있어서,
    상기 제어부는 상기 로봇 암의 좌 또는 우방향 위치가 감지되면, 상기 제4구동부재를 회전 구동시킨 후, 상기 제1 및 제2구동부재를 회전 구동시키며, 상기 제1 및 제2구동부재의 구동이 완료되면 상기 제1구동부재를 계속 구동시킨 상태에서 상기 제2 및 제3구동부재를 각각 회전 구동시킨 후에 상기 제3구동부재를 구동시켜 구동 자세를 셋팅시키는 외골격형 재활 로봇시스템.
  14. 제1항에 있어서,
    상기 의자에는 상기 사용자의 체형에 대응하여 길이 방향으로 조정 가능한 벨트가 마련되어, 재활 운동 중에 상기 의자에 대해 상기 사용자의 움직임을 고정시키는 외골격형 재활 로봇시스템.
  15. 사용자가 착석하는 의자를 지지하도록 일체로 마련되며, 상기 의자에 착석한 상기 사용자를 기준으로 좌 또는 우방향으로 움직임 가능한 로봇 암을 구비하는 본체부;
    상기 본체부에 대한 상기 로봇 암의 위치를 상기 좌 또는 우방향으로 변환시키는 변환부;
    상기 본체부에 대해 상기 로봇 암을 관절 구동시키도록 복수의 구동 링크를 포함하는 구동부; 및
    상기 로봇 암의 상기 좌 또는 우방향 위치 변화를 감지하여, 상기 로봇 암의 상기 좌 또는 우방향 위치에 각각 대응되는 구동 모드로 상기 구동부의 구동력을 제어하는 제어부;
    를 포함하는 외골격형 재활 로봇시스템.
  16. 제15항에 있어서,
    상기 본체부는,
    상기 의자의 후방을 지지하도록 일체로 마련된 로봇 본체;
    상기 로봇 본체의 중앙에 대해 수직 상방향으로 돌출 연결되는 연결 링크; 및
    상기 연결 링크에 대해 회전 가능하게 연결되는 상기 로봇 암;
    을 포함하며,
    상기 로봇 암은, 상기 연결 링크에 일단이 회전 가능하게 연결되는 제1구동 링크, 상기 제1구동 링크의 타단과 일단이 회전 가능하게 연결되는 제2구동 링크, 상기 제2구동 링크의 타단과 일단이 회전 가능하게 연결되는 제3구동 링크 및, 상기 제3구동 링크의 타단과 일단이 회전 가능하게 연결되는 제4구동 링크를 포함하는 외골격형 재활 로봇시스템.
  17. 제16항에 있어서,
    상기 제4구동 링크에는 상기 사용자의 팔이 거치되는 거치대가 회전 가능하게 연결되는 외골격형 재활 로봇시스템.
  18. 제16항에 있어서,
    상기 변환부는,
    상기 연결 링크와 로봇 암의 사이에 마련되어, 상기 로봇 암과 일체로 움직임 가능하게 마련되는 연결부재;
    상기 연결부재에 대해 상기 연결 링크를 향해 돌출되어, 상기 제1구동 링크와 일체로 회전 가능하게 마련되는 적어도 하나의 조임 레버;
    상기 조임 레버가 삽입 가능하도록 상기 연결 링크에 마련되며, 상기 연결 링크의 회전 중심을 사이에 두고 상호 마주하도록 하도록 좌측 및 우측에 각각 적어도 하나씩 마련되는 제1 및 제2레버 홈; 및
    상기 연결부재에 마련된 가이드레일을 따라 가이드되도록 상기 연결 링크에 돌출 마련되어, 상기 연결부재를 구비하는 상기 로봇 암의 회전 범위를 제한시켜 상기 로봇 암의 회전 위치를 결정시키는 위치 결정핀;
    을 포함하는 외골격형 재활 로봇시스템.
  19. 제18항에 있어서,
    상기 연결부재는 상기 연결 링크의 단부에 베어링으로 회전 가능하게 연결되며,
    상기 베어링은 크로스 롤러 베어링(Cross roller bearing)을 포함하는 외골격형 재활 로봇시스템.
  20. 제16항에 있어서,
    상기 로봇 암은 상기 사용자의 체형에 대응하여 상기 의자를 기준으로 상하, 전후 및 좌우 방향으로 위치가 조정되는 외골격형 재활 로봇시스템.
  21. 제17항에 있어서,
    상기 구동부는,
    상기 제1구동 링크와 제2구동 링크의 연결 링크 사이에서 회전력을 제공시키는 제1구동부재;
    상기 제2 및 제3구동 링크 사이에서 회전력을 제공시키는 제2구동부재;
    상기 제3 및 제4구동 링크 사이에서 회전력을 제공시키는 제3구동부재; 및
    상기 제4구동 링크와 상기 거치대 사이에서 회전력을 제공시키는 제4구동부재;
    를 포함하며,
    상기 제1 내지 제4구동 링크는 길이 방향으로 연장된 바(Bar) 형상을 가지거나, 절곡된 형상을 가지는 외골격형 재활 로봇시스템.
  22. 제18항에 있어서,
    상기 제어부는,
    상기 조임 레버가 상기 제1 또는 제2레버 홈 중 어느 하나에 삽입됨을 감지하는 센싱부; 및
    상기 센싱부로부터 감지된 정보로 상기 구동부로 구동 신호를 제공하는 신호 입력부;
    를 포함하는 외골격형 재활 로봇시스템.
  23. 제22항에 있어서,
    상기 센싱부는,
    상기 로봇 암의 좌방향 위치에 대응되도록 마련되는 제1센서;
    상기 로봇 암의 우방향 위치에 대응되도록 마련되는 제2센서; 및
    상기 제1 또는 제2센서 중 어느 하나를 간섭하여 상기 로봇 암의 좌 또는 우방향 구동 자세를 감지시키는 감지부재;
    를 포함하는 외골격형 재활 로봇시스템.
  24. 제23항에 있어서,
    상기 감지부재는 상기 연결부재와 연동하도록 마련되어 상기 제1 및 제2센서 사이에서 움직임 가능한 트리거를 포함하는 외골격형 재활 로봇시스템.
  25. 제23항에 있어서,
    상기 제1 및 제2센서는 상기 감지부재를 물리적 접촉에 의해 감지하거나, 근접식, 광학식 또는 자기식 감지 방법에 의해 감지하며,
    상기 감지부재는 상기 로봇 암에 대해 상기 로봇 암의 일부 영역이 착색되어 마련되거나, 상기 로봇 암에 대해 상대적으로 돌출 또는 함몰되어 마련되는 외골격형 재활 로봇시스템.
  26. 제21항에 있어서,
    상기 제어부는 상기 로봇 암의 좌 또는 우방향 위치가 감지되면, 상기 제4구동부재를 회전 구동시킨 후, 상기 제1 및 제2구동부재를 회전 구동시키며, 상기 제1 및 제2구동부재의 구동이 완료되면 상기 제1구동부재를 계속 구동시킨 상태에서 상기 제2 및 제3구동부재를 각각 회전 구동시킨 후에 상기 제3구동부재를 구동시켜 구동 자세를 셋팅시키는 외골격형 재활 로봇시스템.
  27. 제15항에 있어서,
    상기 의자에는 상기 사용자의 체형에 대응하여 길이 방향으로 조정 가능한 벨트가 마련되어, 재활 운동 중에 상기 의자에 대해 상기 사용자의 움직임을 고정시키는 외골격형 재활 로봇시스템.
PCT/KR2021/019919 2020-12-30 2021-12-27 외골격형 재활 로봇시스템 WO2022145915A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180088671.6A CN116669909A (zh) 2020-12-30 2021-12-27 外骨骼式康复机器人系统
GB2311668.4A GB2618256A (en) 2020-12-30 2021-12-27 Exoskeleton-type rehabilitation robot system
EP21915713.8A EP4272719A1 (en) 2020-12-30 2021-12-27 Exoskeleton-type rehabilitation robot system
JP2023540781A JP2024501736A (ja) 2020-12-30 2021-12-27 外骨格型リハビリロボットシステム
US18/270,295 US20240082095A1 (en) 2020-12-30 2021-12-27 Exoskeleton-type rehabilitation robot system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200187511 2020-12-30
KR10-2020-0187511 2020-12-30
KR1020210130617A KR20220097185A (ko) 2020-12-30 2021-10-01 외골격형 재활 로봇시스템
KR10-2021-0130617 2021-10-01

Publications (1)

Publication Number Publication Date
WO2022145915A1 true WO2022145915A1 (ko) 2022-07-07

Family

ID=82259778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019919 WO2022145915A1 (ko) 2020-12-30 2021-12-27 외골격형 재활 로봇시스템

Country Status (5)

Country Link
US (1) US20240082095A1 (ko)
EP (1) EP4272719A1 (ko)
JP (1) JP2024501736A (ko)
GB (1) GB2618256A (ko)
WO (1) WO2022145915A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200459496Y1 (ko) * 2010-10-12 2012-03-27 창명제어기술 (주) 어깨 관절 치료기
US8177732B2 (en) * 2004-02-05 2012-05-15 Motorika Limited Methods and apparatuses for rehabilitation and training
KR101248766B1 (ko) * 2011-12-06 2013-04-03 창명제어기술 (주) 좌우수 변환 사용이 용이한 어깨 관절 치료기
KR20150048432A (ko) * 2013-10-28 2015-05-07 한양대학교 에리카산학협력단 관절 운동 장치
KR20150082711A (ko) * 2014-01-06 2015-07-16 동의대학교 산학협력단 팔 거치대형 상지재활 훈련장치
KR20210130617A (ko) 2020-04-22 2021-11-01 디엑스랩즈 주식회사 전력제어를 위한 전자태그를 생성하여 관리자에게 제공하는 방법 및 그 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20150604A1 (es) * 2012-04-23 2015-06-07 Chiesi Farma Spa Sistema para la administracion de un tensioactivo pulmonar mediante atomizacion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8177732B2 (en) * 2004-02-05 2012-05-15 Motorika Limited Methods and apparatuses for rehabilitation and training
KR200459496Y1 (ko) * 2010-10-12 2012-03-27 창명제어기술 (주) 어깨 관절 치료기
KR101248766B1 (ko) * 2011-12-06 2013-04-03 창명제어기술 (주) 좌우수 변환 사용이 용이한 어깨 관절 치료기
KR20150048432A (ko) * 2013-10-28 2015-05-07 한양대학교 에리카산학협력단 관절 운동 장치
KR20150082711A (ko) * 2014-01-06 2015-07-16 동의대학교 산학협력단 팔 거치대형 상지재활 훈련장치
KR20210130617A (ko) 2020-04-22 2021-11-01 디엑스랩즈 주식회사 전력제어를 위한 전자태그를 생성하여 관리자에게 제공하는 방법 및 그 장치

Also Published As

Publication number Publication date
EP4272719A1 (en) 2023-11-08
US20240082095A1 (en) 2024-03-14
GB202311668D0 (en) 2023-09-13
GB2618256A (en) 2023-11-01
JP2024501736A (ja) 2024-01-15

Similar Documents

Publication Publication Date Title
WO2016186270A1 (ko) 착석형 보행 재활로봇
WO2014058241A1 (ko) 회전력 조절이 가능한 주행보조시스템이 구비된 이동식 리프팅장치
WO2013154386A1 (ko) 모션 시뮬레이터
WO2014035025A1 (ko) 모션 시뮬레이터
WO2010147310A2 (ko) 수동 주행기구
WO2022055263A1 (ko) 프리휠 조절형 바퀴 및 이를 구비하는 헬스 자전거
WO2012118263A1 (en) Walking assistance system
WO2014148721A1 (ko) 주행중 앉은 자세로 자전거의 안장 각도를 조절하는 장치
WO2022145915A1 (ko) 외골격형 재활 로봇시스템
WO2011122809A2 (ko) 링형 조작부가 구비된 리프트 장치
WO2012111967A2 (en) Radiographic apparatus
WO2021002663A1 (ko) 보행 자동화 로봇 시스템
WO2020166924A1 (ko) 진입 특성이 향상된 착석형 보행재활로봇
WO2022103030A1 (ko) 유모차에 부착하는 전동 퍼스널 모빌리티
WO2010021444A1 (en) Quick board with handle to operate driving power of front wheel
WO2015083967A1 (ko) 온열치료기용 도자구조체
WO2014189302A1 (ko) 전방향 보행보조 로봇
WO2019164317A1 (ko) 마사지 모듈의 이동 기능을 제공하는 다리 마사지 장치 및 마사지 장치
WO2012138206A2 (ko) 다리스트레칭 운동기구
WO2022034952A1 (ko) 레일 형식 보행보조기구 방향전환장치
WO2019164158A1 (ko) 토크가 증가된 자전거 구동장치
KR20220097185A (ko) 외골격형 재활 로봇시스템
WO2021060759A1 (ko) 하이브리드 보행 재활 로봇의 구동 시스템 및 제어 방법
WO2019112264A1 (ko) 승마운동기구
WO2024080567A1 (ko) 원격 중재시술용 마스터 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270295

Country of ref document: US

Ref document number: 2023540781

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180088671.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 202311668

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211227

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915713

Country of ref document: EP

Effective date: 20230731