WO2022145824A1 - Optical film with low optical transmittance change ratio and display device including same - Google Patents

Optical film with low optical transmittance change ratio and display device including same Download PDF

Info

Publication number
WO2022145824A1
WO2022145824A1 PCT/KR2021/019140 KR2021019140W WO2022145824A1 WO 2022145824 A1 WO2022145824 A1 WO 2022145824A1 KR 2021019140 W KR2021019140 W KR 2021019140W WO 2022145824 A1 WO2022145824 A1 WO 2022145824A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
chlorine
light transmittance
light
present
Prior art date
Application number
PCT/KR2021/019140
Other languages
French (fr)
Korean (ko)
Inventor
최민희
박효준
정학기
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2022145824A1 publication Critical patent/WO2022145824A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to an optical film having a low light transmittance change rate and a display device including the same.
  • the use of an optical film as a cover window instead of glass is being considered.
  • the optical film In order for the optical film to be used as a cover window of a display device, it must have excellent optical and mechanical properties. Therefore, even if the optical film is used for a long time in an external environment, it is necessary to develop an optical film having no change in optical properties. In particular, even when used for a long time, it is necessary that the light transmittance of the optical film does not decrease.
  • An embodiment of the present invention is to provide an optical film having excellent optical properties.
  • An embodiment of the present invention is to provide an optical film having a small rate of change in light transmittance ( ⁇ TT) before and after heat treatment and exposure to visible light, even when exposed to visible light for a long time after heat treatment.
  • ⁇ TT light transmittance
  • an embodiment of the present invention has a large light transmittance slope (sT), while effectively blocking the light of the ultraviolet wavelength region, while trying to provide an optical film that passes the light of the visible ray region with high transmittance.
  • sT light transmittance slope
  • Another embodiment of the present invention is to provide an optical film in which optical properties can be maintained even when used for a long time by controlling the chlorine (Cl) concentration in the film.
  • one embodiment of the present invention is, before and after heat treatment at 150° C. for 30 minutes and exposure treatment in visible light for 150 hours, light transmittance change rate of more than 0% and 0.5% or less based on a thickness of 50 ⁇ m ( ⁇ TT).
  • ⁇ TT rate of change of light transmittance
  • ⁇ TT (%) [
  • TT 1 is the light transmittance (TT) of the optical film before heat treatment at 150° C. for 30 minutes and exposure to visible light for 150 hours
  • TT 2 is heat treatment at 150° C. for 30 minutes
  • the exposure treatment conditions by the visible light were, using a xenon lamp in an environment where an average temperature of 25° C. and an average relative humidity of 30% were maintained, and a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, for 150 hours Conditions for irradiating light to the optical film.
  • the optical film may have a light transmittance slope (sT) of 1.65 [%/nm] or more in a wavelength region from 370 nm to 430 nm based on a thickness of 50 ⁇ m.
  • the light transmittance slope (sT) is the light transmittance change with respect to the wavelength change, and is calculated by the following Equation 2.
  • Equation 2 ⁇ denotes the wavelength of light expressed in nm, and ⁇ T denotes a change in light transmittance expressed in %.
  • the optical film may have a light transmittance of 88% or more based on a thickness of 50 ⁇ m.
  • the optical film may have a yellowness of 3 or less based on a thickness of 50 ⁇ m.
  • the optical film may have a haze of 1.0% or less based on a thickness of 50 ⁇ m.
  • the optical film may contain chlorine (Cl) of 120 ppm (0.012 wt%) or less by weight.
  • the optical film may contain chlorine (Cl) of 50 ppm (0.005 wt%) or less by weight.
  • a change in yellowness (Y.I.) ( ⁇ Y.I.) may be 5 or less.
  • the change in yellowness ( ⁇ Y.I.) is calculated by Equation 3 below.
  • Equation 3 YI (1) is the yellowness (YI) of the optical film before heat treatment at a temperature of 150° C. for 30 minutes and exposure to visible light for 150 hours, and YI (2) is at a temperature of 150° C. After heat treatment for 30 minutes and exposure to visible light for 150 hours, the light transmittance of the optical film is the yellowness (YI), and the exposure treatment conditions by the visible light are, an average temperature of 25 ° C, an average relative humidity of 30% is maintained It is a condition of irradiating light to the optical film for 150 hours at a light amount of 0.8 W/m 2 at a central wavelength of 420 nm using a xenon lamp in an environment.
  • the optical film may include at least one of an imide repeating unit and an amide repeating unit.
  • the optical film may include 30 ppm (0.003 wt%) or less of a cyclic ether-based compound by weight.
  • Another embodiment of the present invention provides a display device including a display panel and the optical film disposed on the display panel.
  • the optical film according to an embodiment of the present invention has a small light transmittance change rate ( ⁇ TT), so that even when exposed to visible light for a long time, transmittance of the optical film does not decrease and excellent light transmittance properties can be maintained.
  • the optical film according to an embodiment of the present invention has a large light transmittance slope (sT), so that light in a visible ray region can pass through with high transmittance while blocking light in an ultraviolet wavelength region.
  • the optical film according to an embodiment of the present invention has a low chlorine (Cl) content, and has a small light transmittance change rate ( ⁇ TT) even after heat treatment and exposure treatment to have excellent optical stability.
  • the display device including the optical film according to an embodiment of the present invention has excellent display quality, and can maintain excellent display quality even when used for a long time.
  • 1 is a view for explaining a light transmittance slope (sT).
  • FIG. 2 is a cross-sectional view of a portion of a display device according to another exemplary embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of a portion “P” of FIG. 2 .
  • spatially relative terms “below, beneath”, “lower”, “above”, “upper”, etc. are one element or component as shown in the drawings. and can be used to easily describe the correlation with other devices or components.
  • the spatially relative term should be understood as a term including different directions of the device during use or operation in addition to the directions shown in the drawings. For example, when an element shown in the figures is turned over, an element described as “beneath” or “beneath” another element may be placed “above” the other element. Accordingly, the exemplary term “below” may include both directions below and above. Likewise, the exemplary terms “above” or “on” may include both directions above and below.
  • first, second, etc. are used to describe various elements, these elements are not limited by these terms. These terms are only used to distinguish one component from another. Accordingly, the first component mentioned below may be the second component within the spirit of the present invention.
  • At least one should be understood to include all possible combinations from one or more related items.
  • the meaning of “at least one of the first, second, and third items” means each of the first, second, or third items as well as two of the first, second, and third items. It may mean a combination of all items that can be presented from more than one.
  • the optical film according to an embodiment of the present invention includes a polymer resin.
  • the optical film according to an embodiment of the present invention may include at least one of an imide repeating unit and an amide repeating unit.
  • the optical film according to an embodiment of the present invention may include at least one of a polyimide-based polymer, a polyamide-based polymer, and a polyamide-imide-based polymer.
  • the optical film according to an embodiment of the present invention may include an imide repeating unit formed by a diamine-based compound and a dianhydride-based compound.
  • the optical film according to an embodiment of the present invention may include an amide repeating unit formed by a diamine-based compound and a dicarbonyl-based compound.
  • the optical film according to an embodiment of the present invention may include both an amide repeating unit and an imide repeating unit formed by a diamine-based compound, a dianhydride-based compound, and a dicarbonyl-based compound.
  • the optical film according to an embodiment of the present invention may include at least one of a polyimide resin, a polyamide resin, and a polyamide-imide resin.
  • the optical film may be any one of a polyimide-based film, a polyamide-based film, and a polyamide-imide-based film.
  • an embodiment of the present invention is not limited thereto, and as long as it is a film having light transmittance, the optical film according to an embodiment of the present invention may be used.
  • the diamine-based compound may be represented by the following Chemical Formula 1.
  • a 1 represents a divalent group.
  • a 1 may include a divalent organic group having 4 to 40 carbon atoms.
  • a hydrogen atom in the organic group included in Formula 1 is a halogen element, a hydrocarbon group, or a hydrocarbon group substituted with a halogen element.
  • the number of carbon atoms of the hydrocarbon group or the hydrocarbon group substituted with a halogen element may be 1 to 8.
  • hydrogen included in A 1 is -F, -CH 3 , -CF 3 , etc. can be replaced with
  • An optical film prepared by using a diamine-based compound in which a hydrogen atom is substituted with a fluorine-substituted hydrocarbon group may have excellent light transmittance and excellent processing properties.
  • Examples of the diamine-based compound used in the manufacture of the optical film according to an embodiment of the present invention include aliphatic diamines, aromatic diamines, and mixtures thereof.
  • aromatic diamine refers to a diamine in which an amino group is directly bonded to an aromatic ring, and a part of the structure may include an aliphatic group or other substituents.
  • the aromatic ring may be a single ring or a bonded ring in which a single ring is directly or heteroatom connected, or a condensed ring.
  • the aromatic ring may include, for example, a benzene ring, a biphenyl ring, a naphthalene ring, an anthracene ring, and a fluorene ring, but is not limited thereto.
  • aliphatic diamine refers to a diamine in which an amino group is directly bonded to an aliphatic group, and a part of its structure may include an aromatic ring or other substituents.
  • the aliphatic diamine may include a cyclic aliphatic diamine and a non-cyclic acyclic aliphatic diamine.
  • a 1 in Formula 1 may include, for example, a structure represented by any one of the following structural formulas.
  • * represents a bonding position.
  • X may be independently a single bond, O, S, SO 2 , CO, CH 2 , C(CH 3 ) 2 and C(CF 3 ) 2 .
  • the bonding position of X and each ring is not particularly limited, the bonding position of X may be, for example, meta or para to each ring.
  • the dianhydride-based compound may be represented by the following formula (2).
  • a 2 represents a tetravalent group.
  • a 2 may include a tetravalent organic group having 4 to 40 carbon atoms.
  • a hydrogen atom in the organic group included in Formula 2 may be substituted with a halogen element, a hydrocarbon group, or a halogen-substituted hydrocarbon group.
  • the hydrocarbon group or the halogen-substituted hydrocarbon group may have 1 to 8 carbon atoms.
  • a 2 of Formula 2 may include, for example, a structure represented by any one of the following structural formulas.
  • * represents a bonding position.
  • X may be independently any one of a single bond, O, S, SO 2 , CO, (CH 2 )n, (C(CH 3 ) 2 )n and (C(CF 3 ) 2 )n, and , n may be an integer of 1 to 5.
  • the bonding position of X and each ring is not particularly limited, the bonding position of X may be, for example, meta or para to each ring.
  • the monomer used for manufacturing the optical film according to an embodiment of the present invention may include a plurality of types of dianhydride-based compounds.
  • An optical film prepared by using a dianhydride-based compound in which a hydrogen atom is substituted with a fluorine-substituted hydrocarbon group may have excellent light transmittance and excellent processing properties.
  • the dicarbonyl-based compound may be represented by the following formula (3).
  • a 3 represents a divalent group.
  • a 3 may include a divalent organic group having 4 to 40 carbon atoms.
  • a 3 may represent a carbon atom, a nitrogen atom, or an oxygen atom.
  • a hydrogen atom in the organic group included in Formula 3 may be substituted with a halogen element, a hydrocarbon group, or a fluorine-substituted hydrocarbon group.
  • the hydrocarbon group or the fluorine-substituted hydrocarbon group may have 1 to 8 carbon atoms.
  • the content of the dianhydride-based compound and the dicarbonyl-based compound used in the manufacture of the optical film according to an embodiment of the present invention is not particularly limited.
  • the molar ratio of the dianhydride-based compound represented by Formula 2 and the dicarbonyl-based compound represented by Formula 3 may be adjusted in the range of 20 to 60:80 to 40.
  • the optical film according to an embodiment of the present invention may include an imide repeating unit represented by Formula 4 below.
  • a 1 and A 2 included in Formula 4 are the same as previously described.
  • the optical film according to an embodiment of the present invention may include an amide repeating unit represented by the following Chemical Formula 5.
  • a 1 and A 3 included in Formula 5 are the same as previously described.
  • an optical film having an imide repeating unit for example, there is a polyimide film.
  • an optical film having an amide repeating unit there is, for example, a polyamide film.
  • an optical film having an imide repeating unit and an amide repeating unit there is, for example, a polyamide-imide film.
  • the optical film may have light transmittance and flexible properties.
  • the optical film according to an embodiment of the present invention may have a bending characteristic, a folding characteristic, and a rollable characteristic.
  • the optical film even when the optical film is exposed to visible light for a long time, it can be prevented that the optical film's light transmittance is lowered.
  • the optical film of light transmittance change rate is greater than 0% and less than or equal to 0.5%.
  • exposure treatment irradiating visible light to the optical film for 150 hours.
  • the rate of change of light transmittance ( ⁇ TT) is calculated by Equation 1 below.
  • ⁇ TT (%) [
  • TT 1 is the light transmittance (TT) of the optical film before heat treatment at a temperature of 150° C. for 30 minutes and exposure to visible light for 150 hours.
  • TT 2 is the light transmittance (TT) of the optical film after heat treatment at a temperature of 150° C. for 30 minutes and exposure to visible light for 150 hours.
  • the rate of change of light transmittance may be calculated from the absolute value (
  • the heat treatment is to treat the optical film with heat at 150° C. for 30 minutes.
  • heat treatment may be performed by storing or leaving the optical film in an oven at 150° C. for 30 minutes.
  • the exposure treatment conditions by visible light were, using a xenon lamp, in an environment where an average temperature of 25° C. and an average relative humidity of 30% was maintained, with a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, and optical for 150 hours. It is a condition for irradiating light to the film.
  • the light transmittance may be measured in a wavelength range of 360 to 740 nm by a spectrophotometer according to standard ASTM E313.
  • a spectrophotometer for example, CM-3700D manufactured by KONICA MINOLTA may be used.
  • the optical film has a low light transmittance change rate ( ⁇ TT), even if exposed to light for a long time, the light transmittance of the optical film may not decrease, or may hardly decrease. Accordingly, the optical film according to an embodiment of the present invention may have excellent light transmittance maintaining ability. As such, the optical film according to an embodiment of the present invention may have excellent optical stability.
  • ⁇ TT light transmittance change rate
  • the light transmittance of the optical film may be improved after the optical film is exposed to light for a long time.
  • transparency may not decrease in the optical film, but rather, transparency may increase.
  • the optical film according to an embodiment of the present invention may have, for example, a light transmittance change rate ( ⁇ TT) of 0.01% to 0.5%.
  • the optical film according to an embodiment of the present invention may have a light transmittance change rate ( ⁇ TT) of 0.05% to 0.5%.
  • the optical film according to an embodiment of the present invention may have a light transmittance change rate ( ⁇ TT) of 0.1% to 0.5%.
  • the optical film according to an embodiment of the present invention may have a light transmittance slope (sT) of 1.65 [%/nm] or more in a wavelength region from 370 nm to 430 nm based on a thickness of 50 ⁇ m.
  • sT light transmittance slope
  • the light transmittance slope (sT) refers to a change in light transmittance with respect to a change in wavelength, and can be calculated by Equation 2 below.
  • Equation 2 ⁇ denotes the wavelength of light expressed in nm, and ⁇ T denotes a change in light transmittance expressed in %.
  • the light transmittance of the optical film is measured.
  • the light transmittance of the optical film may be measured in a wavelength range of 360 to 740 nm by a spectrophotometer according to standard ASTM E313.
  • a spectrophotometer for example, CM-3700D manufactured by KONICA MINOLTA may be used.
  • the light transmittance slope (sT) is measured for the optical film before heat treatment and exposure treatment.
  • FIG. 1 is a view for explaining a light transmittance slope (sT).
  • the light transmittance slope sT may be measured by measuring the light transmittance change with respect to the wavelength change.
  • the light transmittance slope (sT) may be calculated as follows.
  • the color of the film is green or a color close to yellow or orange. Therefore, in order to be a transparent optical film that is colorless or close to colorless, the optical film has a high transmittance slope in a short wavelength region of 370 to 430 nm, and transmits light having a wavelength of 430 nm or more without absorbing as much as possible.
  • light in a wavelength range of 10 to 400 nm corresponds to ultraviolet light.
  • light with strong photon energy reaching the earth's surface without being absorbed or reflected by the ozone layer and atmospheric layer among sunlight is UV-A rays, and has a wavelength of 315 to 400 nm.
  • One of the causes of the change in light transmittance of the optical film is the formation of radicals in the optical film and decomposition of the polymer resin by heat and light.
  • the optical film needs to have a high transmittance slope in a short wavelength region of 370 to 430 nm.
  • ⁇ TT light transmittance change rate
  • sT light transmittance slope
  • the present invention by minimizing the content of chlorine (Cl) included in the optical film, it is possible to reduce the rate of change of light transmittance ( ⁇ TT) of the optical film.
  • ⁇ TT rate of change of light transmittance
  • by minimizing the content of chlorine (Cl) contained in the optical film it is possible to improve the light transmittance slope (sT) of the optical film.
  • the present inventors have confirmed that, when chlorine (Cl) atoms remain in the optical film, the possibility that the optical film has a change in light transmittance is increased. In addition, the present inventors confirmed that, when chlorine (Cl) atoms remain in the optical film, the possibility that the light transmittance slope (sT) of the optical film is decreased is increased.
  • the polymer polymerization process for example, hydrochloric acid (HCl) generated in the polymerization process of the polyamide-imide-based polymer is not sufficiently removed, so that the reaction solution for manufacturing the optical film, for example , when present in the polyamide-amic acid solution, the acidity of the reaction solution is increased, the reactivity is lowered, and degradation of the polymer may occur.
  • HCl hydrochloric acid
  • hydrochloric acid (HCl) reacts with water (H 2 O) to generate hydronium ions (H 3 O + ) and chlorine ions (Cl ⁇ )
  • Side reactions such as the like may be induced, and the optical properties of the film may be deteriorated.
  • heat and light are irradiated to an optical film containing chlorine (Cl) atoms
  • the decomposition or deterioration of the polymer constituting the optical film may be accelerated by chlorine (Cl) atoms, or changes in the chemical structure of the polymer resin may occur.
  • the chemical structure of the polymer resin constituting the optical film is decomposed or deteriorated and changed, the light transmittance of the optical film may be reduced, and the light transmittance slope (sT) may be reduced.
  • the optical film according to an embodiment of the present invention may contain less than or equal to 120 ppm chlorine (Cl) by weight.
  • 120 ppm may correspond to 0.012% by weight.
  • a chemical reaction in the optical film caused by chlorine (Cl) may be reduced, and as a result, a decrease in light transmittance of the optical film may be prevented. and a decrease in the light transmittance slope sT may be prevented.
  • chlorine (Cl) is used in a meaning including a chlorine atom and a chlorine ion (Cl ⁇ ).
  • chlorine (Cl) may combine with other atoms to form a molecule, and the chlorine atom included in the molecule is included in chlorine (Cl) according to an embodiment of the present invention.
  • the content of chlorine may be expressed as a concentration of chlorine.
  • the optical film according to an embodiment of the present invention may include chlorine (Cl) in an amount of 1 to 120 ppm (0.0001 to 0.012 wt%).
  • the optical film according to an embodiment of the present invention may contain chlorine (Cl) of 50 ppm (0.005 wt%) or less, and chlorine (Cl) of 10 ppm (0.001 wt%) or less, based on weight. may include.
  • the optical film according to an embodiment of the present invention may contain 2 to 120 ppm chlorine, 2 to 50 ppm chlorine, 1 to 10 ppm chlorine, 2 to It may also contain 10 ppm chlorine.
  • hydrochloric acid (HCl) may be generated during the manufacturing process of the optical film. If hydrochloric acid generated during the manufacturing process of the optical film is not removed, chlorine (Cl) may remain in the resulting optical film. Therefore, according to an embodiment of the present invention, in order to minimize the chlorine (Cl) content remaining in the optical film, a chlorine (Cl) acceptor for removing hydrochloric acid generated during the manufacturing process of the optical film is used.
  • the chlorine (Cl) acceptor reacts with hydrochloric acid (HCl) in the manufacturing process of the optical film to become a chlorine (Cl) compound, and then is removed in the manufacturing process of the optical film.
  • HCl hydrochloric acid
  • a portion of the chlorine (Cl) acceptor may not react with hydrochloric acid and may not be removed during the manufacturing process of the optical film. Therefore, the optical film according to an embodiment of the present invention may include a trace amount of chlorine (Cl) receptor.
  • the chlorine (Cl) acceptor is a material capable of reacting with hydrochloric acid (HCl) or chlorine ions (Cl ⁇ ).
  • the chlorine (Cl) acceptor after reacting with hydrochloric acid (HCl) or chlorine ions (Cl ⁇ ), is selected from materials that can be removed in a subsequent process during the manufacturing process of the optical film can be
  • the chlorine (Cl) acceptor may react with hydrochloric acid to form a salt or a halohydrine compound, thereby removing hydrochloric acid generated during polymerization.
  • a cyclic ether-based compound may be used as the chlorine (Cl) acceptor.
  • the cyclic ether-based compound is, for example, at least one of an epoxide-based compound, an oxetane-based compound, a tetrahydrofuran-based compound, and a tetrahydropyran-based compound may include.
  • the optical film according to an embodiment of the present invention may contain 0.1 to 30 ppm by weight of a cyclic ether-based compound.
  • the optical film according to an embodiment of the present invention may contain 0.1 to 12 ppm by weight of a cyclic ether-based compound.
  • an epoxide-based compound represented by the following Chemical Formula 6 may be used as the chlorine (Cl) acceptor.
  • R 1 , R 2 , R 3 , and R 4 may each independently be any one of hydrogen or an organic group having 1 to 20 carbon atoms. More specifically, R 1 , R 2 , R 3 and R 4 may each independently be hydrogen or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. According to an embodiment of the present invention, R 1 , R 2 , R 3 and R 4 may each independently be hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • propylene oxide (PO) of the epoxide-based compound represented by Formula 6 may be used as a chlorine (Cl) acceptor. therefore,
  • the epoxide-based compound used as a chlorine (Cl) acceptor may react with hydrochloric acid (HCl) or chlorine (Cl) according to Scheme 1 below.
  • the reactant of the chlorine (Cl) acceptor and hydrochloric acid (HCl) is removed during the manufacturing process of the optical film.
  • chlorine (Cl) can be removed.
  • the reaction product of the chlorine (Cl) acceptor and chlorine (Cl) may remain in the optical film without being removed.
  • the optical film according to an embodiment of the present invention may contain a trace amount of a reaction product of a chlorine (Cl) acceptor and hydrochloric acid (HCl) or chlorine (Cl).
  • the chlorine (Cl) acceptor may react with hydrochloric acid (HCl) according to Scheme 2 below.
  • the optical film according to an embodiment of the present invention may have a light transmittance of 88% or more based on a thickness of 50 ⁇ m.
  • the optical film according to an embodiment of the present invention may have a light transmittance of 90% or more, or a light transmittance of 91% or more, based on a thickness of 50 ⁇ m.
  • light transmittance is measured and evaluated for an optical film before heat treatment and exposure treatment.
  • the optical film according to an embodiment of the present invention may have a yellowness (Y.I.) of 3 or less based on a thickness of 50 ⁇ m.
  • the optical film according to an embodiment of the present invention may have a yellowness of 2 or less, or a yellowness of 1 or less, based on a thickness of 50 ⁇ m.
  • the yellowness (Y.I.) of the optical film before heat treatment and exposure treatment is measured and evaluated.
  • Light transmittance and yellowness may be measured in a wavelength range of 360 to 740 nm by a spectrophotometer according to standard ASTM E313.
  • a spectrophotometer for example, CM-3700D manufactured by KONICA MINOLTA may be used.
  • the optical film according to an embodiment of the present invention may have a haze of 1.0% or less based on a thickness of 50 ⁇ m.
  • Haze can be measured by a haze meter according to ASTM D1003.
  • An optical film sample having a size of 50 mm x 50 mm may be used for haze measurement.
  • the average of the haze values measured five times may be referred to as the haze of the sample.
  • HM-150 manufactured by MURAKAMI may be used as the haze meter.
  • the optical film according to an embodiment of the present invention may have a yellowness change ( ⁇ Y.I.) of 5 or less.
  • the change in yellowness ( ⁇ Y.I.) of the optical film is measured based on a thickness of 50 ⁇ m before and after heat treatment at 150° C. for 30 minutes and exposure treatment in visible light for 150 hours.
  • Equation 3 the change in yellowness ( ⁇ Y.I.) is calculated by Equation 3 below.
  • Equation 3 Y.I. (1) is the yellowness (Y.I.) of the optical film before heat treatment at a temperature of 150° C. for 30 minutes and exposure to visible light for 150 hours, and Y.I. (2) is 30 at a temperature of 150° C. After heat treatment for minutes and exposure to visible light for 150 hours, the light transmittance of the optical film is also the yellowness (Y.I.).
  • the exposure treatment conditions by visible light were, using a xenon lamp, in an environment where an average temperature of 25° C. and an average relative humidity of 30% was maintained, and a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, for 150 hours. It is a condition for irradiating light to the optical film.
  • the optical film has a low yellowness change ( ⁇ Y.I.) of 5 or less, even when exposed to visible light for a long time under normal conditions in which the optical film is used, the yellowness ( Y.I.) properties can be prevented from being deteriorated. More specifically, according to an embodiment of the present invention, even if the optical film is exposed to visible light for a long time under normal conditions in which it is used, the increase in yellowness (Y.I.) can be prevented.
  • the optical film according to an embodiment of the present invention has a low chlorine (Cl) concentration, it may have a low yellowness change ( ⁇ Y.I.).
  • the optical film contains chlorine (Cl)
  • chlorine (Cl) when heat or light is irradiated to the optical film, the decomposition or deterioration of the polymer constituting the optical film by chlorine (Cl) may be deepened, and the polymer resin Changes in chemical structure may occur.
  • the chemical structure of the polymer resin constituting the optical film is decomposed or deteriorated to change, the yellowness of the optical film may increase.
  • the optical film according to an embodiment of the present invention has a low chlorine (Cl) concentration, the increase in yellowness is not large even after undergoing adverse conditions such as heat treatment at 150° C. for 30 minutes and exposure treatment in visible light for 150 hours. , can have a low yellowness change ( ⁇ Y.I.).
  • the optical film according to an embodiment of the present invention hardly increases yellowness under normal conditions in which the optical film is used, and thus can be usefully applied to a display device or the like.
  • the optical film according to an embodiment of the present invention may be applied to a display device to protect the display surface of the display panel.
  • the optical film according to an embodiment of the present invention may have a thickness sufficient to protect the display panel.
  • the optical film may have a thickness of 10 to 100 ⁇ m.
  • FIGS. 2 and 3 a display device using an optical film according to an exemplary embodiment of the present invention will be described with reference to FIGS. 2 and 3 .
  • FIG. 2 is a cross-sectional view of a portion of the display device 200 according to another exemplary embodiment
  • FIG. 3 is an enlarged cross-sectional view of a portion “P” of FIG. 2 .
  • a display device 200 includes a display panel 501 and an optical film 100 on the display panel 501 .
  • the display panel 501 includes a substrate 510 , a thin film transistor TFT on the substrate 510 , and an organic light emitting diode 570 connected to the thin film transistor TFT.
  • the organic light emitting diode 570 includes a first electrode 571 , an organic emission layer 572 on the first electrode 571 , and a second electrode 573 on the organic emission layer 572 .
  • the display device 200 illustrated in FIGS. 2 and 3 is an organic light emitting display device.
  • the substrate 510 may be made of glass or plastic. Specifically, the substrate 510 may be made of plastic such as polyimide-based resin. Although not shown, a buffer layer may be disposed on the substrate 510 .
  • the thin film transistor TFT is disposed on the substrate 510 .
  • the thin film transistor TFT includes a semiconductor layer 520 , a gate electrode 530 that is insulated from the semiconductor layer 520 and overlaps at least a portion of the semiconductor layer 520 , a source electrode 541 connected to the semiconductor layer 520 , and A drain electrode 542 is spaced apart from the source electrode 541 and connected to the semiconductor layer 520 .
  • a gate insulating layer 535 is disposed between the gate electrode 530 and the semiconductor layer 520 .
  • An interlayer insulating layer 551 may be disposed on the gate electrode 530 , and a source electrode 541 and a drain electrode 542 may be disposed on the interlayer insulating layer 551 .
  • the planarization layer 552 is disposed on the thin film transistor TFT to planarize an upper portion of the thin film transistor TFT.
  • the first electrode 571 is disposed on the planarization layer 552 .
  • the first electrode 571 is connected to the thin film transistor TFT through a contact hole provided in the planarization layer 552 .
  • the bank layer 580 is disposed on a portion of the first electrode 571 and the planarization layer 552 to define a pixel area or a light emitting area. For example, since the bank layer 580 is disposed in a matrix structure in a boundary region between a plurality of pixels, a pixel region may be defined by the bank layer 580 .
  • the organic emission layer 572 is disposed on the first electrode 571 .
  • the organic emission layer 572 may also be disposed on the bank layer 580 .
  • the organic emission layer 572 may include one emission layer or two or more emission layers stacked vertically. Light having any one of red, green, and blue colors may be emitted from the organic emission layer 572 , and white light may be emitted.
  • the second electrode 573 is disposed on the organic emission layer 572 .
  • a first electrode 571 , an organic emission layer 572 , and a second electrode 573 may be stacked to form an organic light emitting diode 570 .
  • each pixel may include a color filter for filtering the white light emitted from the organic emission layer 572 for each wavelength.
  • the color filter is formed on the path of light.
  • a thin film encapsulation layer 590 may be disposed on the second electrode 573 .
  • the thin film encapsulation layer 590 may include at least one organic layer and at least one inorganic layer, and at least one organic layer and at least one inorganic layer may be alternately disposed.
  • the optical film 100 is disposed on the display panel 501 having the above-described laminated structure.
  • the method of manufacturing an optical film comprises the steps of forming a first reaction solution using a diamine-based compound, a dianhydride-based compound, a first dicarbonyl-based compound, and a first chlorine (Cl) acceptor , adding and reacting a second dicarbonyl compound and a second chlorine (Cl) acceptor to the first reaction solution to form a second reaction solution, adding a dehydrating agent and an imidization catalyst to the second reaction solution and reacting 3 forming a reaction solution, processing the third reaction solution to prepare a polymer resin in a solid state, dissolving the polymer resin in a solid state to prepare a polymer resin solution, and casting the polymer resin solution may include Hereinafter, each step will be described in detail.
  • a first reaction solution is formed using a diamine-based compound, a dianhydride-based compound, a first dicarbonyl-based compound, and a first chlorine (Cl) acceptor.
  • a solvent for preparing the first reaction solution for example, dimethylacetamide (DMAc, N,N-dimethylacetamide), dimethylformamide (DMF, N,N-dimethylformamide), methylpyrrolidone (NMP, 1-methyl -2-pyrrolidinone), m-cresol, tetrahydrofuran (THF, tetrahydrofuran), chloroform, methyl ethyl ketone (Methyl Ethyl Ketone, MEK), such as a polar aprotic solvent ) and mixtures thereof may be used.
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • NMP N,N-dimethylformamide
  • NMP methylpyrrolidone
  • NMP 1-methyl -2-pyrrolidinone
  • m-cresol tetrahydrofuran
  • THF tetrahydrofuran
  • chloroform methyl ethyl ketone
  • MEK
  • the compounds of Formula 1 described above may be used as the diamine-based compound, and the compounds of Formula 2 described above may be used as the dianhydride-based compound.
  • dicarbonyl-based compounds represented by Chemical Formula 3 described above may be used.
  • a diamine compound p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diamino Diphenylether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,2'-bis(trifluoromethyl)benzidine (TFDB), etc.
  • TFDB 2,2'-bis(trifluoromethyl)benzidine
  • cyclobutane-1,2,3,4-tetracarboxylic dianhydride CBDA
  • 3,3',4,4 '-Biphenyltetracarboxylic dianhydride 3,3',4,4'-biphenyltetracarboxylic dianhydride, BPDA
  • 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride 4,4' -(hexafluoroisopropylidene)diphthalic anhydride, 6FDA).
  • terephthalic acid dichloride terephthaloyl chloride
  • IPC isophthaloyl chloride
  • naphthalene dicarboxylic acid dichloride 4,4'-biphenyldicarboxyl acid dichloride, 3,3'-biphenyldicarboxylic acid dichloride, and the like.
  • Each of the diamine-based compound, the dianhydride-based compound, and the first dicarbonyl-based compound may be used alone or in combination of two or more.
  • based on 100 mole parts of the diamine-based compound 20 to 60 mole parts of the dianhydride-based compound may be used.
  • a chlorine (Cl) compound may be generated during the reaction between the diamine-based compound and the first dicarbonyl-based compound.
  • a first chlorine (Cl) acceptor is used in the formation of the first reaction solution.
  • a cyclic ether-based compound may be used as the first chlorine (Cl) acceptor.
  • the cyclic ether-based compound is, for example, at least one of an epoxide-based compound, an oxetane-based compound, a tetrahydrofuran-based compound, and a tetrahydropyran-based compound may include.
  • epoxide-based compounds represented by Chemical Formula 6 may be used as the first chlorine (Cl) acceptor.
  • R 1 , R 2 , R 3 , and R 4 may each independently be any one of hydrogen or an organic group having 1 to 20 carbon atoms. More specifically, R 1 , R 2 , R 3 and R 4 may each independently be hydrogen or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. According to an embodiment of the present invention, R 1 , R 2 , R 3 and R 4 may each independently be hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • the epoxide-based compound used as the first chlorine (Cl) acceptor may react with hydrochloric acid (HCl) according to Scheme 1. Accordingly, hydrochloric acid (HCl) may be removed from the first reaction solution.
  • propylene oxide (PO) among the epoxide-based compounds may be used as the first chlorine (Cl) acceptor.
  • hydrochloric acid (HCl) may be removed according to Scheme 2 below.
  • the content of the first chlorine (Cl) acceptor may be 4 to 7 times the content of the first dicarbonyl-based compound.
  • the content of the first chlorine (Cl) acceptor is adjusted to 4 to 7 times the content of the first dicarbonyl-based compound, based on the number of moles.
  • the first reaction solution may include a polyamic acid and a polyamide repeating unit.
  • a second dicarbonyl-based compound and a second chlorine (Cl) acceptor are added to the first reaction solution and reacted to form a second reaction solution.
  • the second dicarbonyl-based compound and the second chlorine (Cl) acceptor may be added to the first reaction solution. More specifically, 1 to 20 hours after the formation of the first reaction solution, the second dicarbonyl-based compound and the second chlorine (Cl) acceptor may be added to the first reaction solution.
  • the reaction solution when the second dicarbonyl-based compound and the second chlorine (Cl) acceptor are added to the first reaction solution, the reaction solution is referred to as a second reaction solution.
  • the first dicarbonyl-based compound and the second dicarbonyl-based compound may be the same material.
  • one embodiment of the present invention is not limited thereto, and the first dicarbonyl-based compound and the second dicarbonyl-based compound may be different materials.
  • the first dicarbonyl-based compound and the second dicarbonyl-based compound are collectively referred to as a dicarbonyl-based compound.
  • the first chlorine (Cl) acceptor and the second chlorine (Cl) acceptor may be the same material.
  • an embodiment of the present invention is not limited thereto, and the first chlorine (Cl) acceptor and the second chlorine (Cl) acceptor may be different materials.
  • the first chlorine (Cl) receptor and the second chlorine (Cl) receptor are collectively referred to as a chlorine (Cl) receptor.
  • the second chlorine (Cl) acceptor may include a cyclic ether-based compound.
  • the cyclic ether-based compound used as the second chlorine (Cl) acceptor is an epoxide-based compound, an oxetane-based compound, a tetrahydrofuran-based compound, and a tetrahydropyran )-based compounds.
  • the cyclic ether-based compound may include a propylene oxide-based compound.
  • the viscosity of the reaction solution may be adjusted by the second dicarbonyl-based compound and the second chlorine (Cl) acceptor.
  • the second dicarbonyl-based compound and the second chlorine (Cl) acceptor are reacted until the apparent viscosity of the second reaction solution is 250 ⁇ 30 Ps. may be added.
  • the content of the second chlorine (Cl) acceptor may be 4 to 7 times the content of the second dicarbonyl-based compound, based on the number of moles.
  • the total content of the first dicarbonyl-based compound and the second dicarbonyl-based compound may be 40 to 80 mole parts based on 100 mole parts of the diamine-based compound. More specifically, with respect to 100 mole parts of the diamine-based compound, the content of the first dicarbonyl-based compound may be 35 to 79 mole parts, and the content of the second dicarbonyl-based compound may be 1 to 5 mole parts.
  • the content of the first dicarbonyl-based compound may be 37 to 79 mole parts based on 100 mole parts of the diamine-based compound.
  • the content of the second dicarbonyl-based compound may be 1 to 3 mole parts based on 100 mole parts of the diamine-based compound.
  • a dehydrating agent and an imidization catalyst are added and reacted to form a third reaction liquid.
  • a portion of the amic acid may be imidized to form an imide repeating unit.
  • reflux stirring may be performed at a temperature of 60 to 80° C. for 30 minutes to 2 hours. As a result, a third reaction solution may be formed.
  • acid anhydrides such as acetic anhydride, propionic anhydride, isonyric anhydride, pivalic anhydride, butyric anhydride, and isovaracetic anhydride can be used.
  • a tertiary amine such as isoquinoline, beta-picoline, or pyridine may be used.
  • the pH of the third reaction solution may be adjusted by the first chlorine (Cl) acceptor, the second chlorine (Cl) acceptor, and the imidization catalyst.
  • the third reaction solution may have a pH of 8 or more.
  • the third reaction solution may have a pH of 8 to 9.
  • the content of the second chlorine (Cl) acceptor added when the second reaction solution is formed may be adjusted so that the pH of the third reaction solution is 8 to 9.
  • hydrochloric acid (HCl) generated during the formation of the first reaction solution and the second reaction solution is not sufficiently removed, so that chlorine (Cl) and chlorine compounds derived from the remaining hydrochloric acid (HCl) are It is more likely to be present in polyamide-imide based films.
  • an imidization catalyst of 2 to 7 times the number of moles of the dianhydride compound may be used.
  • the third reaction solution is treated to prepare a polymer resin in a solid state.
  • a solvent may be added to the third reaction solution.
  • the solvent for example, ethanol, methanol, hexane and the like can be used.
  • the solvent may be used alone, or two or more solvents may be mixed and used.
  • a solid polymer resin in a powder state is precipitated.
  • a high-purity solid polymer resin can be obtained.
  • the liquid components are removed in the process of filtering the precipitate, unreacted monomers, oligomers, additives, and reaction by-products are removed, and in this case, the reactants of hydrochloric acid (HCl) and chlorine (Cl) acceptors may be removed.
  • the solid polymer resin thus obtained does not contain chlorine (Cl) or contains only a trace amount of chlorine (Cl).
  • the polymer resin thus obtained is in a solid powder state, and may include an imide repeating unit and an amide repeating unit.
  • the polymer resin may be, for example, a polyamide-imide-based resin.
  • a polymer resin solution is prepared by dissolving the polymer resin in a solid state.
  • the step of dissolving the polymer resin in a solid state in a solvent to prepare a polymer resin solution is also referred to as a redissolving step.
  • a solvent for dissolving the polymer resin in a solid state the same solvents as those used in the polymerization process may be used.
  • the solvent according to an embodiment of the present invention is not limited thereto, and other known solvents may be used.
  • the re-dissolved polymer resin solution may have a pH of 6 to 7.
  • the polyamide-imide-based resin solution may have weak acidity or weak acidity close to neutrality. Since the third reaction solution was prepared in a weakly basic state of pH 8 to 9, the polymer resin solution may exhibit weak acidity in pH 6 to 7.
  • a casting substrate is used for casting.
  • the type of the casting substrate There is no particular limitation on the type of the casting substrate.
  • a glass substrate an aluminum substrate, a stainless (SUS) substrate, a Teflon substrate, or the like may be used.
  • a glass substrate may be used as the casting substrate.
  • casting is made by applying a polymer resin solution to the casting substrate.
  • a coater, a blade, etc. may be used for casting.
  • a coating film of the polymer resin can be prepared.
  • the coating film prepared in this way can be said to be an intermediate of the optical film.
  • heat treatment is performed while raising the temperature from 120° C. to 250 to 350° C. at a temperature increase rate of 3° C./min.
  • additional heat treatment may be performed in an isothermal atmosphere for 10 to 30 minutes. As a result, an optical film can be manufactured.
  • TPC 29.945 g (148 mmol) (the first dicarbonyl-based compound) and propylene oxide (PO) (38.55 g, 664 mmol, 4.5 times the number of moles of TPC) (first chlorine) receptor) was added. The mixture was stirred at 7° C. for 1 hour [formation of first reaction solution].
  • the flask was cooled to room temperature, and the third reaction solution was poured into methanol (3000 ml) to cause precipitation. The precipitate was filtered to obtain a polymer resin in a white solid state. The obtained polymer resin is in a solid powder state.
  • the polymer resin prepared in Example 1 is a polyamide-imide polymer resin.
  • the polymer resin in the solid powder state thus obtained was dissolved in dimethylacetamide (DMAc) at a concentration of 12.7 wt% to prepare a polymer resin solution.
  • DMAc dimethylacetamide
  • the prepared polymer resin solution was cast on a substrate. Specifically, a polymer resin solution was applied to a glass substrate using a Mayer bar coater, and treated with hot air at 80° C. for 10 minutes to form a coating film.
  • the coating film was subjected to primary heat treatment for 17 minutes while the temperature was raised from 80°C to 120°C.
  • the obtained intermediate coating film was pulled taut on a tenter in the form of a pin, put into an oven, and then heated from 120°C to 270°C at a temperature increase rate of 3°C/min.
  • secondary heat treatment was performed in an isothermal atmosphere for 10 minutes.
  • the second heat-treated coating film was separated from the tenter and subjected to a third heat treatment at 270° C. for 1 minute. As a result, an optical film having a thickness of 50 ⁇ m was manufactured.
  • Example 1 100 27 12 59 4.5 2.5 4.5 2.2 2.2 8.09
  • Example 2 59 4.5 One 4.5 3.3 8.41
  • Example 3 59 4.5 One 4.5 6.6 8.55
  • Example 4 59 4.9 1.6 4.9 2.2 8.62
  • Example 5 59 4.9 1.6 4.9 3.3 8.64 Comparative Example 1 59 2.5 1.5 2.5 3.3 4.04 Comparative Example 2 59 3.8 1.5 3.7 2.2 4.64 Comparative Example 3 59 3.8 1.3 3.7 3.3 5.17
  • mole part represents the relative number of moles with respect to 100 moles of TFDB, which is a diamine-based compound.
  • “Multiple” indicating the content of PO (Propylene oxide) is a multiple of the number of moles of TPC, and “Multiple” indicating the content of Py (pyridine) and AA (acetic anhydride) is the number of moles of dianhydride. is a multiple of
  • optical films prepared in Examples 1 to 5 and Comparative Examples 1 and 3 were measured for physical properties as follows.
  • the average light transmittance of the optical film at a wavelength of 360 to 740 nm was measured using a Spectrophotometer (CM-3700D, KONICA MINOLTA) in accordance with the standard ASTM E313. Light transmittance is measured for the optical film before heat treatment and exposure treatment.
  • the light transmittance of the optical film was measured by the method of (1) above, and the light transmittance TT 1 of the optical film before heat treatment and exposure treatment was obtained.
  • Exposure treatment was carried out by irradiating the sample with light at a central wavelength of 420 nm at a light quantity of 0.8 W/m 2 for 150 hours.
  • Xenon lamp A Xenon Lamp NXE 1700 lamp with the model name of Abnexo (Atlas, importer) was used. According to the XLSII+/XXL standard, it is a lamp with energy for each wavelength most similar to sunlight.
  • ⁇ TT (%) [
  • the light transmittance slope (sT) in the wavelength region from 370 nm to 430 nm was measured based on a thickness of 50 ⁇ m.
  • ⁇ T (light transmittance at 430 nm) - (light transmittance at 370 nm)
  • Yellowness (Y.I.): The yellowness was measured using a Spectrophotometer (CM-3700D, KONICA MINOLTA) in accordance with the standard ASTM E313.
  • Haze (%) The manufactured optical film was cut into 50 mm VIII 50 mm and measured 5 times according to ASTM D1003 using MURAKAMI's haze meter (model name: HM-150) equipment, and the average value of the haze value was done with
  • the change in yellowness ( ⁇ Y.I.) of the optical film was measured based on a thickness of 50 ⁇ m before and after heat treatment at 150° C. for 30 minutes and exposure treatment for 150 hours in visible light.
  • the yellowness (Y.I.) of the optical film was measured by the method of (4) above, and Y.I. (1), which is the yellowness (Y.I.) of the optical film before heat treatment and exposure treatment, was obtained.
  • Exposure treatment was carried out by irradiating the sample with light at a central wavelength of 420 nm at a light quantity of 0.8 W/m 2 for 150 hours.
  • the content of chlorine (Cl) is expressed as the concentration of chlorine (ppm).
  • chlorine (Cl) is measured as follows.
  • Measuring device Two types of columns [IonPac AS18 Analytical (4x250 mm) + AG18 Guard (4x50 mm)] and eluent [Dionex ICS-2000 Ion Chromatography System] EGC-KOH III Cartridge] was installed and analyzed.
  • the prepared chlorine extraction mixture was filtered through a 0.45 ⁇ m nylon filter to prepare a sample for measurement.
  • the area of the peak corresponding to the chlorine ion among the separated ion peaks is checked by introducing 20 ⁇ L of the sample for measurement into an ion chromatograph device set at a column temperature of 30° C. and a measurement cell temperature of 35° C.
  • the calibration curve can be expressed as a linear function as in Equation 4 below.
  • Equation 4 y is the peak area, x is the concentration of the standard solution, a is the slope of the calibration curve, and b is the y-axis intercept of the calibration curve.
  • the content of chlorine contained in the optical film is calculated in consideration of the dilution ratio applied to the preparation of the sample for measurement.
  • the weight ratio of the optical film applied to the sample for measurement may be calculated by the following Equation 6.
  • Weight ratio of optical film in the sample for measurement (weight of optical film)/(weight of optical film + weight of distilled water)
  • weight of the optical film means the weight of the optical film used to prepare the sample for measurement.
  • the chlorine concentration of the optical film is calculated according to Equation 7 below by using the weight ratio of the optical film among the measurement samples and the chlorine concentration of the measurement sample.
  • Chlorine concentration of optical film (chlorine concentration of sample for measurement) / (weight ratio of optical film in sample for measurement)
  • the light transmittance TT 1 of the optical film before exposure treatment corresponds to the light transmittance of each optical film.
  • the optical film according to an embodiment of the present invention has a low light transmittance change rate ( ⁇ TT), low yellowness, low yellowness change, excellent light transmittance, low haze, low chlorine (Cl) It can be seen that the content and the large light transmittance slope (sT) have.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Optical Filters (AREA)

Abstract

An embodiment of the present invention provides an optical film having an optical transmittance change (ΔTT) of 0% (exclusive) to 0.5% (inclusive) as measured for a thickness of 50㎛ before and after heat treatment at 150℃ for 30 minutes and exposure to visible light for 150 hours. The optical film may have a slope of optical transmittance of 1.65 [%/nm] or higher in the wavelength region of 370 nm to 430 nm on the basis of a thickness of 50㎛. In addition, an embodiment of the present invention provides a display device including the optical film.

Description

낮은 광투과도 변화율을 갖는 광학 필름 및 이를 포함하는 표시장치Optical film having low light transmittance change rate and display device including same
본 발명은 낮은 광투과도 변화율을 갖는 광학 필름 및 이를 포함하는 표시장치에 대한 것이다.The present invention relates to an optical film having a low light transmittance change rate and a display device including the same.
최근, 표시장치의 박형화, 경량화, 플렉서블화로 인하여, 커버 윈도우로 유리 대신 광학 필름을 사용하는 것이 검토되고 있다. 광학 필름이 표시장치의 커버 윈도우로 사용되기 위해서는, 우수한 광학적 특성 및 기계적 특성을 가져야 한다. 따라서, 광학 필름이 외부 환경에서 장시간 사용되더라도, 광학 특성에 변화가 없는 광학 필름을 개발하는 것이 필요하다. 특히, 장시간 사용되더라도, 광학 필름의 광투과도가 저하되지 않는 것이 필요하다.Recently, due to reduction in thickness, weight reduction, and flexibility of a display device, the use of an optical film as a cover window instead of glass is being considered. In order for the optical film to be used as a cover window of a display device, it must have excellent optical and mechanical properties. Therefore, even if the optical film is used for a long time in an external environment, it is necessary to develop an optical film having no change in optical properties. In particular, even when used for a long time, it is necessary that the light transmittance of the optical film does not decrease.
본 발명의 일 실시예는 우수한 광학 특성을 갖는 광학 필름을 제공하고자 한다.An embodiment of the present invention is to provide an optical film having excellent optical properties.
본 발명의 일 실시예는, 열처리 후 가시광선에 장시간 노출되더라도, 열처리 및 가시광선에 노출 전과 후의 광투과도 변화율(ΔTT)이 작은 광학 필름을 제공하고자 한다.An embodiment of the present invention is to provide an optical film having a small rate of change in light transmittance (ΔTT) before and after heat treatment and exposure to visible light, even when exposed to visible light for a long time after heat treatment.
또한, 본 발명의 일 실시예는, 큰 광투과도 기울기(sT)를 가져, 자외선 파장 영역의 빛은 효율적으로 차단하면서, 가시광선 영역의 빛은 높은 투과율로 통과시키는 광학 필름을 제공하고자 한다.In addition, an embodiment of the present invention has a large light transmittance slope (sT), while effectively blocking the light of the ultraviolet wavelength region, while trying to provide an optical film that passes the light of the visible ray region with high transmittance.
본 발명의 다른 일 실시예는, 필름 내의 염소(Cl) 농도를 제어함으로써, 장시간 사용되더라도 광학적 특성이 유지될 수 있는 광학 필름을 제공하고자 한다.Another embodiment of the present invention is to provide an optical film in which optical properties can be maintained even when used for a long time by controlling the chlorine (Cl) concentration in the film.
이러한 과제를 해결하기 위해, 본 발명의 일 실시예는, 150℃에서 30분간 열처리 및 가시광선에서 150시간 노광처리 되기 전과 후, 50㎛ 두께를 기준으로 0% 초과 0.5% 이하의 광투과도 변화율(ΔTT)을 갖는, 광학 필름을 제공한다. 여기서, 광투과도 변화율(ΔTT)은 다음 식 1로 계산된다 In order to solve this problem, one embodiment of the present invention is, before and after heat treatment at 150° C. for 30 minutes and exposure treatment in visible light for 150 hours, light transmittance change rate of more than 0% and 0.5% or less based on a thickness of 50 μm ( ΔTT). Here, the rate of change of light transmittance (ΔTT) is calculated by the following Equation 1
[식 1][Equation 1]
ΔTT (%) = [|TT2-TT1|/TT1] x 100ΔTT (%) = [|TT 2 -TT 1 |/TT 1 ] x 100
상기 식 1에서, TT1은 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 되기 전 상기 광학 필름의 광투과도(TT)이고, TT2는 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 된 후 상기 광학 필름의 광투과도(TT)이다. 상기 가시광선에 의한 노광처리 조건은, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(xenon) 램프를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 상기 광학 필름에 광을 조사하는 조건이다.In Equation 1, TT 1 is the light transmittance (TT) of the optical film before heat treatment at 150° C. for 30 minutes and exposure to visible light for 150 hours, TT 2 is heat treatment at 150° C. for 30 minutes and The light transmittance (TT) of the optical film after exposure to visible light for 150 hours. The exposure treatment conditions by the visible light were, using a xenon lamp in an environment where an average temperature of 25° C. and an average relative humidity of 30% were maintained, and a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, for 150 hours Conditions for irradiating light to the optical film.
상기 광학 필름은, 50㎛ 두께를 기준으로, 370nm에서 430nm까지의 파장 영역에서, 1.65 [%/nm] 이상의 광투과도 기울기(sT)를 가질 수 있다. 여기서, 광투과도 기울기(sT)는 파장 변화에 대한 광투과도 변화로서, 다음 식 2에 의하여 계산된다.The optical film may have a light transmittance slope (sT) of 1.65 [%/nm] or more in a wavelength region from 370 nm to 430 nm based on a thickness of 50 μm. Here, the light transmittance slope (sT) is the light transmittance change with respect to the wavelength change, and is calculated by the following Equation 2.
[식 2][Equation 2]
sT (%/nm) = ΔT/ΔλsT (%/nm) = ΔT/Δλ
상기 식 2에서, Δλ는 nm 단위로 표시되는 광의 파장을 나타내며 ΔT는 % 단위로 표시되는 광투과도 변화를 나타낸다.In Equation 2, Δλ denotes the wavelength of light expressed in nm, and ΔT denotes a change in light transmittance expressed in %.
상기 광학 필름은, 50㎛ 두께를 기준으로, 88% 이상의 광투과도를 가질 수 있다.The optical film may have a light transmittance of 88% or more based on a thickness of 50 μm.
상기 광학 필름은, 50㎛ 두께를 기준으로, 3 이하의 황색도를 가질 수 있다.The optical film may have a yellowness of 3 or less based on a thickness of 50 μm.
상기 광학 필름은, 50㎛ 두께를 기준으로, 1.0% 이하의 헤이즈(haze)를 가질 수 있다. The optical film may have a haze of 1.0% or less based on a thickness of 50 μm.
상기 광학 필름은, 중량 기준으로 120 ppm (0.012 중량%) 이하의 염소(Cl)를 포함할 수 있다. The optical film may contain chlorine (Cl) of 120 ppm (0.012 wt%) or less by weight.
상기 광학 필름은, 중량 기준으로 50 ppm (0.005 중량%) 이하의 염소(Cl)를 포함할 수 있다.The optical film may contain chlorine (Cl) of 50 ppm (0.005 wt%) or less by weight.
상기 광학 필름에 있어서, 150℃에서 30분간 열처리 및 가시광선에서 150시간 노광처리 되기 전과 후, 50㎛ 두께를 기준으로, 황색도(Y.I.) 변화(ΔY.I.)가 5 이하일 수 있다. 여기서, 황색도 변화(ΔY.I.)는 다음 식 3으로 계산된다.In the optical film, before and after heat treatment at 150° C. for 30 minutes and exposure to visible light for 150 hours, based on a thickness of 50 μm, a change in yellowness (Y.I.) (ΔY.I.) may be 5 or less. Here, the change in yellowness (ΔY.I.) is calculated by Equation 3 below.
[식 3][Equation 3]
ΔY.I. = Y.I.(2) - Y.I.(1)ΔY.I. = Y.I.(2) - Y.I.(1)
상기 식 3에서, Y.I.(1)은 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 되기 전 상기 광학 필름의 황색도(Y.I.)이고, Y.I.(2)는 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 된 후 상기 광학 필름의 광투과도 황색도(Y.I.)이며, 상기 가시광선에 의한 노광처리 조건은, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(xenon) 램프를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 상기 광학 필름에 광을 조사하는 조건이다.In Equation 3, YI (1) is the yellowness (YI) of the optical film before heat treatment at a temperature of 150° C. for 30 minutes and exposure to visible light for 150 hours, and YI (2) is at a temperature of 150° C. After heat treatment for 30 minutes and exposure to visible light for 150 hours, the light transmittance of the optical film is the yellowness (YI), and the exposure treatment conditions by the visible light are, an average temperature of 25 ° C, an average relative humidity of 30% is maintained It is a condition of irradiating light to the optical film for 150 hours at a light amount of 0.8 W/m 2 at a central wavelength of 420 nm using a xenon lamp in an environment.
상기 광학 필름은, 이미드 반복 단위 및 아마이드 반복 단위 중 적어도 하나를 포함할 수 있다. The optical film may include at least one of an imide repeating unit and an amide repeating unit.
상기 광학 필름은, 중량 기준으로 30 ppm (0.003 중량%) 이하의 환형 에테르(cyclic ether)계 화합물을 포함할 수 있다.The optical film may include 30 ppm (0.003 wt%) or less of a cyclic ether-based compound by weight.
본 발명의 다른 일 실시예는, 표시패널 및 상기 표시패널 상에 배치된 상기의 광학 필름을 포함하는, 표시장치를 제공한다.Another embodiment of the present invention provides a display device including a display panel and the optical film disposed on the display panel.
본 발명의 일 실시예에 따른 광학 필름은 작은 광투과도 변화율(ΔTT)을 가져, 가시광선에 장시간 노출되더라도 광학 필름의 투과도가 저하되지 않고 우수한 광투과 특성을 유지할 수 있다. 또한, 본 발명의 일 실시예에 따른 광학 필름은, 큰 광투과도 기울기(sT)를 가져, 자외선 파장 영역의 빛은 차단하면서, 가시광선 영역의 빛은 높은 투과율로 통과시킬 수 있다. The optical film according to an embodiment of the present invention has a small light transmittance change rate (ΔTT), so that even when exposed to visible light for a long time, transmittance of the optical film does not decrease and excellent light transmittance properties can be maintained. In addition, the optical film according to an embodiment of the present invention has a large light transmittance slope (sT), so that light in a visible ray region can pass through with high transmittance while blocking light in an ultraviolet wavelength region.
본 발명의 일 실시예에 따른 광학 필름은 낮은 염소(Cl) 함량을 가지며, 열처리 및 노광처리 후에도 광투과도 변화율(ΔTT)이 작아 우수한 광학적 안정성을 가질 수 있다.The optical film according to an embodiment of the present invention has a low chlorine (Cl) content, and has a small light transmittance change rate (ΔTT) even after heat treatment and exposure treatment to have excellent optical stability.
본 발명의 일 실시예에 따른 광학 필름을 포함하는 표시장치는 우수한 표시품질을 가지며, 장시간 사용되더라도 우수한 표시품질을 유지할 수 있다.The display device including the optical film according to an embodiment of the present invention has excellent display quality, and can maintain excellent display quality even when used for a long time.
도 1은 광투과도 기울기(sT)를 설명하는 도면이다.1 is a view for explaining a light transmittance slope (sT).
도 2는 본 발명의 다른 일 실시예에 따른 표시장치의 일부에 대한 단면도이다.2 is a cross-sectional view of a portion of a display device according to another exemplary embodiment of the present invention.
도 3은 도 2의 "P" 부분에 대한 확대 단면도이다.3 is an enlarged cross-sectional view of a portion “P” of FIG. 2 .
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다. 다만, 아래에서 설명되는 실시예들은 본 발명의 명확한 이해를 돕기 위한 예시적 목적으로 제시되는 것일 뿐, 본 발명의 범위를 제한하지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiments described below are provided for illustrative purposes only to help a clear understanding of the present invention, and do not limit the scope of the present invention.
본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로, 본 발명이 도면에 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 구성 요소는 동일 참조 부호로 지칭될 수 있다. 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명은 생략된다. Since the shapes, sizes, proportions, angles, numbers, etc. disclosed in the drawings for explaining the embodiments of the present invention are exemplary, the present invention is not limited to the matters shown in the drawings. Throughout the specification, like elements may be referred to by like reference numerals. In describing the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
본 명세서에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이라는 표현이 사용되지 않는 이상, 다른 부분이 추가될 수 있다. 구성 요소가 단수로 표현된 경우, 특별히 명시적인 기재 사항이 없는 한 복수를 포함한다. 또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.When 'includes', 'have', 'consists of', etc. mentioned in this specification are used, other parts may be added unless the expression 'only' is used. When a component is expressed in the singular, the plural is included unless specifically stated otherwise. In addition, in interpreting the components, it is interpreted as including an error range even if there is no separate explicit description.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.In the case of a description of the positional relationship, for example, when the positional relationship of two parts is described as 'on', 'on', 'on', 'beside', etc., 'right' Alternatively, unless the expression 'directly' is used, one or more other parts may be positioned between the two parts.
공간적으로 상대적인 용어인 "아래(below, beneath)", "하부 (lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해 되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below)" 또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 마찬가지로, 예시적인 용어인 "위" 또는 "상"은 위와 아래의 방향을 모두 포함할 수 있다.Spatially relative terms "below, beneath", "lower", "above", "upper", etc. are one element or component as shown in the drawings. and can be used to easily describe the correlation with other devices or components. The spatially relative term should be understood as a term including different directions of the device during use or operation in addition to the directions shown in the drawings. For example, when an element shown in the figures is turned over, an element described as "beneath" or "beneath" another element may be placed "above" the other element. Accordingly, the exemplary term “below” may include both directions below and above. Likewise, the exemplary terms “above” or “on” may include both directions above and below.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.In the case of a description of a temporal relationship, for example, 'immediately' or 'directly' when a temporal relationship is described with 'after', 'following', 'after', 'before', etc. It may include cases that are not continuous unless the expression "
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.Although the first, second, etc. are used to describe various elements, these elements are not limited by these terms. These terms are only used to distinguish one component from another. Accordingly, the first component mentioned below may be the second component within the spirit of the present invention.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1 항목, 제2 항목 및 제3 항목 중 적어도 하나"의 의미는 제1 항목, 제2 항목 또는 제3 항목 각각 뿐만 아니라 제1 항목, 제2 항목 및 제3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미할 수 있다. The term “at least one” should be understood to include all possible combinations from one or more related items. For example, the meaning of “at least one of the first, second, and third items” means each of the first, second, or third items as well as two of the first, second, and third items. It may mean a combination of all items that can be presented from more than one.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동이 가능하다.Each feature of the various embodiments of the present invention may be partially or wholly combined or combined with each other, and technically various interlocking is possible.
발명의 일 실시예는 광학 필름을 제공한다. 본 발명의 일 실시예에 따른 광학 필름은 고분자 수지를 포함한다. One embodiment of the invention provides an optical film. The optical film according to an embodiment of the present invention includes a polymer resin.
본 발명의 일 실시예에 따른 광학 필름은 이미드 반복 단위 및 아마이드 반복 단위 중 적어도 하나를 포함할 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 광학 필름은, 폴리이미드계 고분자, 폴리아마이드계 고분자 및 폴리아마이드-이미드계 고분자 중 적어도 하나를 포함할 수 있다.The optical film according to an embodiment of the present invention may include at least one of an imide repeating unit and an amide repeating unit. For example, the optical film according to an embodiment of the present invention may include at least one of a polyimide-based polymer, a polyamide-based polymer, and a polyamide-imide-based polymer.
본 발명의 일 실시예에 따른 광학 필름은 디아민계 화합물 및 디안하이드라이드계 화합물에 의하여 형성된 이미드 반복 단위를 포함할 수 있다.The optical film according to an embodiment of the present invention may include an imide repeating unit formed by a diamine-based compound and a dianhydride-based compound.
본 발명의 일 실시예에 따른 광학 필름은 디아민계 화합물 및 디카르보닐계 화합물에 의하여 형성된 아마이드 반복 단위를 포함할 수 있다.The optical film according to an embodiment of the present invention may include an amide repeating unit formed by a diamine-based compound and a dicarbonyl-based compound.
본 발명의 일 실시예에 따른 광학 필름은 디아민계 화합물, 디안하이드라이드계 화합물 및 디카르보닐계 화합물에 의하여 형성된 아마이드 반복 단위 및 이미드 반복 단위를 모두 포함할 수 있다.The optical film according to an embodiment of the present invention may include both an amide repeating unit and an imide repeating unit formed by a diamine-based compound, a dianhydride-based compound, and a dicarbonyl-based compound.
본 발명의 일 실시예에 따른 광학 필름은 폴리이미드 수지, 폴리아마이드 수지 및 폴리아마이드-이미드 수지 중 적어도 하나를 포함할 수 있다.The optical film according to an embodiment of the present invention may include at least one of a polyimide resin, a polyamide resin, and a polyamide-imide resin.
본 발명의 일 실시예에 따르면, 광학 필름은 폴리이미드계 필름, 폴리아마이드계 필름 및 폴리아마이드-이미드계 필름 중 어느 하나일 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 광투과성을 갖는 필름이라면 본 발명의 일 실시예에 따른 광학 필름이 될 수 있다.According to an embodiment of the present invention, the optical film may be any one of a polyimide-based film, a polyamide-based film, and a polyamide-imide-based film. However, an embodiment of the present invention is not limited thereto, and as long as it is a film having light transmittance, the optical film according to an embodiment of the present invention may be used.
본 발명의 일 실시예에 따르면, 디아민계 화합물은 하기 화학식 1로 표현될 수 있다.According to an embodiment of the present invention, the diamine-based compound may be represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Figure PCTKR2021019140-appb-I000001
Figure PCTKR2021019140-appb-I000001
화학식 1에서, A1은 2가의 기(group)를 나타낸다. 예를 들어, A1은 탄소수 4 내지 40의 2가의 유기기(organic group를 포함할 수 있다. 화학식 1에 포함된 유기기 중의 수소 원자는 할로겐 원소, 탄화수소기, 또는 할로겐 원소로 치환된 탄화수소기에 의해 치환될 수 있다. 여기서, 탄화수소기 또는 할로겐 원소로 치환된 탄화수소기의 탄소수는 1 내지 8일 수 있다. 예를 들어, A1에 포함된 수소는 -F, -CH3, -CF3 등으로 치환될 수 있다. In Formula 1, A 1 represents a divalent group. For example, A 1 may include a divalent organic group having 4 to 40 carbon atoms. A hydrogen atom in the organic group included in Formula 1 is a halogen element, a hydrocarbon group, or a hydrocarbon group substituted with a halogen element. Here, the number of carbon atoms of the hydrocarbon group or the hydrocarbon group substituted with a halogen element may be 1 to 8. For example, hydrogen included in A 1 is -F, -CH 3 , -CF 3 , etc. can be replaced with
수소 원자가 불소 치환된 탄화수소기에 의해 치환된 디아민계 화합물을 사용하여 제조된 광학 필름은 우수한 광투과성을 가지며, 우수한 가공 특성을 가질 수 있다. An optical film prepared by using a diamine-based compound in which a hydrogen atom is substituted with a fluorine-substituted hydrocarbon group may have excellent light transmittance and excellent processing properties.
본 발명의 일 실시예에 따른 광학 필름의 제조에 사용되는 디아민계 화합물로, 예를 들면, 지방족 디아민, 방향족 디아민 및 이들의 혼합물이 있다. Examples of the diamine-based compound used in the manufacture of the optical film according to an embodiment of the present invention include aliphatic diamines, aromatic diamines, and mixtures thereof.
본 발명의 일 실시예에서, "방향족 디아민"은 아미노기가 방향족 고리에 직접 결합되어 있는 디아민을 의미하며, 그 구조의 일부에 지방족 기 또는 기타의 치환기를 포함할 수도 있다. 방향족 고리는, 단일 고리 또는 단일 고리가 직접 또는 헤테로원자로 연결된 결합 고리일 수도 있고, 축합 고리일 수도 있다. 방향족 고리는, 예를 들어, 벤젠 고리, 비페닐 고리, 나프탈렌 고리, 안트라센 고리 및 플루오렌 고리를 포함할 수 있으며, 이들에 한정되는 것은 아니다.In one embodiment of the present invention, "aromatic diamine" refers to a diamine in which an amino group is directly bonded to an aromatic ring, and a part of the structure may include an aliphatic group or other substituents. The aromatic ring may be a single ring or a bonded ring in which a single ring is directly or heteroatom connected, or a condensed ring. The aromatic ring may include, for example, a benzene ring, a biphenyl ring, a naphthalene ring, an anthracene ring, and a fluorene ring, but is not limited thereto.
본 발명의 일 실시예에서, "지방족 디아민"은 아미노기가 지방족 기에 직접 결합해 있는 디아민을 의미하며, 그 구조의 일부에 방향족 고리 또는 기타의 치환기를 포함할 수도 있다. 지방족 디아민은, 고리형 지방족 디아민 및 고리형이 아닌 비환식 지방족 디아민을 포함할 수 있다. In one embodiment of the present invention, "aliphatic diamine" refers to a diamine in which an amino group is directly bonded to an aliphatic group, and a part of its structure may include an aromatic ring or other substituents. The aliphatic diamine may include a cyclic aliphatic diamine and a non-cyclic acyclic aliphatic diamine.
화학식 1의 A1은, 예를 들어, 하기의 구조식들 중 어느 하나로 표현되는 구조를 포함할 수 있다.A 1 in Formula 1 may include, for example, a structure represented by any one of the following structural formulas.
Figure PCTKR2021019140-appb-I000002
Figure PCTKR2021019140-appb-I000002
상기 구조식에서 *은 결합 위치를 나타낸다. 상기 구조식에서 X는 독립적으로 단일 결합, O, S, SO2, CO, CH2, C(CH3)2 및 C(CF3)2 중 어느 하나일 수 있다. X와 각 고리에 대한 결합 위치가 특별히 한정되는 것은 아니지만, X의 결합 위치는, 예를 들어, 각 고리에 대해 메타 또는 파라 위치일 수 있다.In the structural formula, * represents a bonding position. In the above structural formula, X may be independently a single bond, O, S, SO 2 , CO, CH 2 , C(CH 3 ) 2 and C(CF 3 ) 2 . Although the bonding position of X and each ring is not particularly limited, the bonding position of X may be, for example, meta or para to each ring.
본 발명의 일 실시예에 따르면, 디안하이드라이드계 화합물은 하기 화학식 2로 표현될 수 있다.According to an embodiment of the present invention, the dianhydride-based compound may be represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2021019140-appb-I000003
Figure PCTKR2021019140-appb-I000003
화학식 2에서, A2는 4가의 기(group)를 나타낸다. 예를 들어, A2는 탄소수 4 내지 40의 4가의 유기기(organic group)를 포함할 수 있다. 화학식 2에 포함된 유기기 중의 수소 원자는 할로겐 원소, 탄화수소기 또는 할로겐 치환된 탄화수소기에 의해 치환될 수 있다. 여기서, 탄화수소기 또는 할로겐 치환된 탄화수소기의 탄소수는 1 내지 8일 수 있다. In Formula 2, A 2 represents a tetravalent group. For example, A 2 may include a tetravalent organic group having 4 to 40 carbon atoms. A hydrogen atom in the organic group included in Formula 2 may be substituted with a halogen element, a hydrocarbon group, or a halogen-substituted hydrocarbon group. Here, the hydrocarbon group or the halogen-substituted hydrocarbon group may have 1 to 8 carbon atoms.
화학식 2의 A2는, 예를 들어, 하기의 구조식들 중 어느 하나로 표현되는 구조를 포함할 수 있다.A 2 of Formula 2 may include, for example, a structure represented by any one of the following structural formulas.
Figure PCTKR2021019140-appb-I000004
Figure PCTKR2021019140-appb-I000004
상기 구조식에서 *은 결합 위치를 나타낸다. 상기 구조식에서 X는 독립적으로 단일 결합, O, S, SO2, CO, (CH2)n, (C(CH3)2)n 및 (C(CF3)2)n 중 어느 하나일 수 있고, n은 1 내지 5인 정수일 수 있다. X와 각 고리에 대한 결합 위치가 특별히 한정되는 것은 아니지만, X의 결합 위치는, 예를 들어, 각 고리에 대해 메타 또는 파라 위치일 수 있다.In the above structural formula, * represents a bonding position. In the above structural formula, X may be independently any one of a single bond, O, S, SO 2 , CO, (CH 2 )n, (C(CH 3 ) 2 )n and (C(CF 3 ) 2 )n, and , n may be an integer of 1 to 5. Although the bonding position of X and each ring is not particularly limited, the bonding position of X may be, for example, meta or para to each ring.
본 발명의 일 실시예에 따른 광학 필름의 제조에 사용되는 모노머는 복수 종류의 디안하이드라이드계 화합물을 포함할 수 있다.The monomer used for manufacturing the optical film according to an embodiment of the present invention may include a plurality of types of dianhydride-based compounds.
수소 원자가 불소 치환된 탄화수소기에 의해 치환된 디안하이드라이드계 화합물을 사용하여 제조된 광학 필름은 우수한 광투과성 및 우수한 가공 특성을 가질 수 있다.An optical film prepared by using a dianhydride-based compound in which a hydrogen atom is substituted with a fluorine-substituted hydrocarbon group may have excellent light transmittance and excellent processing properties.
본 발명의 일 실시예에 따르면, 디카르보닐계 화합물은 하기 화학식 3으로 표현될 수 있다.According to an embodiment of the present invention, the dicarbonyl-based compound may be represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2021019140-appb-I000005
Figure PCTKR2021019140-appb-I000005
화학식 3에서, A3는 2가의 기(group)를 나타낸다. 예를 들어, A3는 탄소수 4 내지 40의 2가의 유기기(organic group)를 포함할 수 있다. 또한, A3는 탄소 원자, 질소 원자 또는 산소 원자를 표시할 수도 있다. 화학식 3에 포함된 유기기 중의 수소 원자는 할로겐 원소, 탄화수소기 또는 불소 치환된 탄화수소기에 의해 치환될 수 있다. 여기서, 탄화수소기 또는 불소 치환된 탄화수소기의 탄소수는 1 내지 8일 수 있다. In Formula 3, A 3 represents a divalent group. For example, A 3 may include a divalent organic group having 4 to 40 carbon atoms. In addition, A 3 may represent a carbon atom, a nitrogen atom, or an oxygen atom. A hydrogen atom in the organic group included in Formula 3 may be substituted with a halogen element, a hydrocarbon group, or a fluorine-substituted hydrocarbon group. Here, the hydrocarbon group or the fluorine-substituted hydrocarbon group may have 1 to 8 carbon atoms.
본 발명의 일 실시예에 따른 광학 필름의 제조에 사용되는 디안하이드라이드계 화합물과 디카르보닐계 화합물의 함량에 특별한 제한이 있는 것은 아니다. 예를 들어, 화학식 2로 표현되는 디안하이드라이드계 화합물과 화학식 3으로 표현되는 디카르보닐계 화합물의 몰비(디안하이드라이드계 화합물:디카르보닐계 화합물)는 20 내지 60:80 내지 40의 범위로 조정될 수 있다. The content of the dianhydride-based compound and the dicarbonyl-based compound used in the manufacture of the optical film according to an embodiment of the present invention is not particularly limited. For example, the molar ratio of the dianhydride-based compound represented by Formula 2 and the dicarbonyl-based compound represented by Formula 3 (dianhydride-based compound:dicarbonyl-based compound) may be adjusted in the range of 20 to 60:80 to 40. can
본 발명의 일 실시예에 따른 광학 필름은, 하기 화학식 4로 표현되는 이미드 반복단위를 포함할 수 있다.The optical film according to an embodiment of the present invention may include an imide repeating unit represented by Formula 4 below.
[화학식 4][Formula 4]
Figure PCTKR2021019140-appb-I000006
Figure PCTKR2021019140-appb-I000006
화학식 4에 포함된 A1과 A2는 이미 설명된 바와 같다.A 1 and A 2 included in Formula 4 are the same as previously described.
본 발명의 일 실시예에 따른 광학 필름은 하기 화학식 5로 표현되는 아마이드 반복 단위를 포함할 수 있다.The optical film according to an embodiment of the present invention may include an amide repeating unit represented by the following Chemical Formula 5.
[화학식 5][Formula 5]
Figure PCTKR2021019140-appb-I000007
Figure PCTKR2021019140-appb-I000007
화학식 5에 포함된 A1과 A3는 이미 설명된 바와 같다.A 1 and A 3 included in Formula 5 are the same as previously described.
본 발명의 일 실시예에 따라, 이미드 반복단위를 갖는 광학 필름으로, 예를 들어, 폴리이미드 필름이 있다. 아마이드 반복단위를 갖는 광학 필름으로, 예를 들어, 폴리아마이드 필름이 있다. 이미드 반복단위와 아마이드 반복단위를 갖는 광학 필름으로, 예를 들어, 폴리아마이드-이미드 필름이 있다. According to an embodiment of the present invention, as an optical film having an imide repeating unit, for example, there is a polyimide film. As an optical film having an amide repeating unit, there is, for example, a polyamide film. As an optical film having an imide repeating unit and an amide repeating unit, there is, for example, a polyamide-imide film.
본 발명의 일 실시예에 따르면, 광학 필름은 광투과성 및 플렉서블 특성을 가질 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 광학 필름은 벤딩(bending) 특성, 폴딩(folding) 특성 및 롤러블(rollable) 특성을 가질 수 있다. According to an embodiment of the present invention, the optical film may have light transmittance and flexible properties. For example, the optical film according to an embodiment of the present invention may have a bending characteristic, a folding characteristic, and a rollable characteristic.
본 발명의 일 실시예에 따르면, 광학 필름이 가시광선에 장시간 노출되더라도, 광학 필름의 광투과도가 저하되는 것이 방지될 수 있다.According to an embodiment of the present invention, even when the optical film is exposed to visible light for a long time, it can be prevented that the optical film's light transmittance is lowered.
본 발명의 일 실시예에 따르면, 광학 필름이 150℃에서 30분간 열처리되고, 150시간 동안 광학 필름에 가시광선이 조사되는 경우, 열처리 및 가시광선 조사 전과 후, 50㎛ 두께를 기준으로, 광학 필름의 광투과도 변화율(ΔTT)이 0% 초과 0.5% 이하이다. 본 발명의 일 실시예에 따르면, 150시간 동안 광학 필름에 가시광선을 조사하는 것을 "노광처리"라고 한다.According to an embodiment of the present invention, when the optical film is heat treated at 150° C. for 30 minutes, and visible light is irradiated to the optical film for 150 hours, before and after heat treatment and visible light irradiation, based on a thickness of 50 μm, the optical film of light transmittance change rate (ΔTT) is greater than 0% and less than or equal to 0.5%. According to an embodiment of the present invention, irradiating visible light to the optical film for 150 hours is called “exposure treatment”.
본 발명의 일 실시예에 따르면, 광투과도 변화율(ΔTT)은 다음 식 1로 계산된다. According to an embodiment of the present invention, the rate of change of light transmittance (ΔTT) is calculated by Equation 1 below.
[식 1][Equation 1]
ΔTT (%) = [|TT2-TT1|/TT1] x 100ΔTT (%) = [|TT 2 -TT 1 |/TT 1 ] x 100
식 1에서, TT1은 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 되기 전 광학 필름의 광투과도(TT)이다. TT2는 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 된 후 광학 필름의 광투과도(TT)이다. 본 발명의 일 실시예에 따르면, 광투과도 변화율은 TT1과 TT2 차이의 절대값(|TT2-TT1|)으로부터 계산될 수 있다. In Equation 1, TT 1 is the light transmittance (TT) of the optical film before heat treatment at a temperature of 150° C. for 30 minutes and exposure to visible light for 150 hours. TT 2 is the light transmittance (TT) of the optical film after heat treatment at a temperature of 150° C. for 30 minutes and exposure to visible light for 150 hours. According to an embodiment of the present invention, the rate of change of light transmittance may be calculated from the absolute value (|TT 2 -TT 1 |) of the difference between TT 1 and TT 2 .
열처리는 광학 필름을 30분간 150℃의 열로 처리되는 것이다. 예를 들어, 광학 필름이 150℃ 오븐에서 30분간 보관 또는 방치하는 것에 의하여 열처리가 이루어질 수 있다.The heat treatment is to treat the optical film with heat at 150° C. for 30 minutes. For example, heat treatment may be performed by storing or leaving the optical film in an oven at 150° C. for 30 minutes.
가시광선에 의한 노광처리 조건은, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(xenon) 램프를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 광학 필름에 광을 조사하는 조건이다.The exposure treatment conditions by visible light were, using a xenon lamp, in an environment where an average temperature of 25° C. and an average relative humidity of 30% was maintained, with a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, and optical for 150 hours. It is a condition for irradiating light to the film.
광투과도는 표준규격 ASTM E313에 따라 분광 광도계(spectrophotometer)에 의하여, 파장 360 내지 740nm의 범위에서 측정될 수 있다. 분광 광도계로, 예를 들어, KONICA MINOLTA 社의 CM-3700D가 사용될 수 있다.The light transmittance may be measured in a wavelength range of 360 to 740 nm by a spectrophotometer according to standard ASTM E313. As the spectrophotometer, for example, CM-3700D manufactured by KONICA MINOLTA may be used.
본 발명의 일 실시예에 따르면, 광학 필름이 낮은 광투과도 변화율(ΔTT)를 가져, 장시간 광에 노출되더라도 광학 필름의 광투과도가 저하되지 않거나, 거의 저하되지 않을 수 있다. 따라서, 본 발명의 일 실시예에 따른 광학 필름은 우수한 광투과성을 유지 능력을 가질 수 있다. 이와 같이, 본 발명의 일 실시예에 따른 광학 필름은 우수한 광학적 안정성을 가질 수 있다.According to an embodiment of the present invention, the optical film has a low light transmittance change rate (ΔTT), even if exposed to light for a long time, the light transmittance of the optical film may not decrease, or may hardly decrease. Accordingly, the optical film according to an embodiment of the present invention may have excellent light transmittance maintaining ability. As such, the optical film according to an embodiment of the present invention may have excellent optical stability.
본 발명의 일 실시예에 따르면, 광학 필름이 광에 장시간 노출된 후 광학 필름의 광투과도가 향상될 수도 있다. 그 결과, 광에 장시간 노출되더라도 광학 필름에서 투명도 저하가 발생하지 않고 오히려 투명도가 상승할 수도 있다.According to an embodiment of the present invention, the light transmittance of the optical film may be improved after the optical film is exposed to light for a long time. As a result, even when exposed to light for a long time, transparency may not decrease in the optical film, but rather, transparency may increase.
본 발명의 일 실시예에 따른 광학 필름은, 예를 들어, 0.01% 내지 0.5%의 광투과도 변화율(ΔTT)을 가질 수 있다. 또는, 본 발명의 일 실시예에 따른 광학 필름은, 0.05% 내지 내지 0.5%의 광투과도 변화율(ΔTT)을 가질 수 있다. 또는, 본 발명의 일 실시예에 따른 광학 필름은, 0.1% 내지 내지 0.5%의 광투과도 변화율(ΔTT)을 가질 수 있다.The optical film according to an embodiment of the present invention may have, for example, a light transmittance change rate (ΔTT) of 0.01% to 0.5%. Alternatively, the optical film according to an embodiment of the present invention may have a light transmittance change rate (ΔTT) of 0.05% to 0.5%. Alternatively, the optical film according to an embodiment of the present invention may have a light transmittance change rate (ΔTT) of 0.1% to 0.5%.
본 발명의 일 실시예에 따른 광학 필름은, 50㎛ 두께를 기준으로, 370nm에서 430nm까지의 파장 영역에서, 1.65 [%/nm] 이상의 광투과도 기울기(sT)를 가질 수 있다.The optical film according to an embodiment of the present invention may have a light transmittance slope (sT) of 1.65 [%/nm] or more in a wavelength region from 370 nm to 430 nm based on a thickness of 50 μm.
광투과도 기울기(sT)는 파장 변화에 대한 광투과도 변화를 의미하며, 다음 식 2에 의하여 계산될 수 있다. The light transmittance slope (sT) refers to a change in light transmittance with respect to a change in wavelength, and can be calculated by Equation 2 below.
[식 2][Equation 2]
sT (%/nm) = ΔT/ΔλsT (%/nm) = ΔT/Δλ
식 2에서, Δλ는 nm 단위로 표시되는 광의 파장을 나타내며, ΔT는 % 단위로 표시되는 광투과도 변화를 나타낸다.In Equation 2, Δλ denotes the wavelength of light expressed in nm, and ΔT denotes a change in light transmittance expressed in %.
예를 들어, 광투과도 기울기(sT)를 측정하기 위해, 광학 필름의 광투과도가 측정된다. 이때 광학 필름의 광투과도는 표준규격 ASTM E313에 따라 분광 광도계(spectrophotometer)에 의하여, 파장 360 내지 740nm의 범위에서 측정될 수 있다. 분광 광도계로, 예를 들어, KONICA MINOLTA 社의 CM-3700D가 사용될 수 있다. 광투과도 기울기(sT)는 열처리 및 노광처리 전 광학 필름을 대상으로 측정된다.For example, to measure the light transmittance slope (sT), the light transmittance of the optical film is measured. In this case, the light transmittance of the optical film may be measured in a wavelength range of 360 to 740 nm by a spectrophotometer according to standard ASTM E313. As the spectrophotometer, for example, CM-3700D manufactured by KONICA MINOLTA may be used. The light transmittance slope (sT) is measured for the optical film before heat treatment and exposure treatment.
도 1은 광투과도 기울기(sT)를 설명하는 도면이다. 도 1에 도시된 바와 같이, 파장 변화에 대한 광투과도 변화를 측정함으로써, 광투과도 기울기(sT)가 측정될 수 있다.1 is a view for explaining a light transmittance slope (sT). As shown in FIG. 1 , the light transmittance slope sT may be measured by measuring the light transmittance change with respect to the wavelength change.
예를 들어, 370nm에서의 광투과도가 1%이고, 430nm에서 광투과도가 99%인 경우, 다음과 같이 광투과도 기울기(sT)가 계산될 수 있다.For example, when the light transmittance at 370 nm is 1% and the light transmittance is 99% at 430 nm, the light transmittance slope (sT) may be calculated as follows.
ΔT = 99%(430nm에서 광투과도) - 1%(370nm에서의 광투과도) = 98%ΔT = 99% (light transmittance at 430 nm) - 1% (light transmittance at 370 nm) = 98%
Δλ= 430nm - 370nm = 60nmΔλ= 430 nm - 370 nm = 60 nm
sT (%/nm) = ΔT/Δλ= 98%/60nm = 1.63 [%/nm]sT (%/nm) = ΔT/Δλ= 98%/60 nm = 1.63 [%/nm]
본 발명의 일 실시예에 따르면, 370 내지 430nm의 파장 영역에서 광투과도 기울기가 낮을수록, 필름 색상이 녹색 또는 황색이나 오렌지색에 가까운 색을 띄게 된다. 따라서, 무색 또는 무색에 근접하는 투명한 광학 필름이 되기 위해서는, 광학 필름이 370 내지 430nm의 단파장 영역에서 높은 투과도 기울기를 가져, 430nm 이상의 파장을 갖는 광을 최대한 흡수하지 않고 투과하여야 한다.According to an embodiment of the present invention, as the light transmittance slope is lower in the wavelength region of 370 to 430 nm, the color of the film is green or a color close to yellow or orange. Therefore, in order to be a transparent optical film that is colorless or close to colorless, the optical film has a high transmittance slope in a short wavelength region of 370 to 430 nm, and transmits light having a wavelength of 430 nm or more without absorbing as much as possible.
태양광 스펙트럼 중 10 내지 400nm의 파장대 빛은 자외선에 해당된다. 특히, 태양광 중 오존층과 대기층에 의해 흡수 또는 반사되지 않고 지표면에 도달하는 강한 광자 에너지를 갖는 빛은 UV-A선이며, 이는 315 내지 400nm의 파장을 갖는다. 광학 필름의 광투과도 변화의 원인 중 하나는 열 및 빛에 의한 광학 필름 내의 라디칼 형성 및 고분자 수지의 분해이다. 이러한 라디칼 형성 및 고분자 수지의 분해가 방지되도록 하기 위해, 광학 필름이 370 내지 430nm의 단파장 영역에서 높은 투과도 기울기를 가질 필요가 있다. In the solar spectrum, light in a wavelength range of 10 to 400 nm corresponds to ultraviolet light. In particular, light with strong photon energy reaching the earth's surface without being absorbed or reflected by the ozone layer and atmospheric layer among sunlight is UV-A rays, and has a wavelength of 315 to 400 nm. One of the causes of the change in light transmittance of the optical film is the formation of radicals in the optical film and decomposition of the polymer resin by heat and light. In order to prevent such radical formation and decomposition of the polymer resin, the optical film needs to have a high transmittance slope in a short wavelength region of 370 to 430 nm.
본 발명의 일 실시예에 따르면, 광학 필름에서 발생되는 광투과도 변화율(ΔTT)을 최소화하는 방법으로, 예를 들어, 광학 필름에 포함된 염소(Cl)의 함량을 최소화하는 방법이 있다. 또한, 광학 필름의 광투과도 기울기(sT)를 향상시키는 방법으로, 예를 들어, 광학 필름에 포함된 염소(Cl)의 함량을 최소화하는 방법이 있다.According to an embodiment of the present invention, as a method of minimizing the light transmittance change rate (ΔTT) generated in the optical film, for example, there is a method of minimizing the content of chlorine (Cl) contained in the optical film. In addition, as a method of improving the light transmittance slope (sT) of the optical film, for example, there is a method of minimizing the content of chlorine (Cl) contained in the optical film.
본 발명의 일 실시예에 따르면, 광학 필름에 포함된 염소(Cl)의 함량을 최소화하여, 광학 필름의 광투과도 변화율(ΔTT)을 저하시킬 수 있다. 또한, 본 발명의 일 실시예에 따르면, 광학 필름에 포함된 염소(Cl)의 함량을 최소화하여, 광학 필름의 광투과도 기울기(sT)를 향상시킬 수 있다.According to an embodiment of the present invention, by minimizing the content of chlorine (Cl) included in the optical film, it is possible to reduce the rate of change of light transmittance (ΔTT) of the optical film. In addition, according to an embodiment of the present invention, by minimizing the content of chlorine (Cl) contained in the optical film, it is possible to improve the light transmittance slope (sT) of the optical film.
본 발명자들은, 광학 필름에 염소(Cl) 원자가 잔존하는 경우, 광학 필름의 광투과도가 변할 가능성이 증가한다는 것을 확인하였다. 또한, 본 발명자들은, 광학 필름에 염소(Cl) 원자가 잔존하는 경우, 광학 필름의 광투과도 기울기(sT)가 감소될 가능성이 증가한다는 것을 확인하였다. The present inventors have confirmed that, when chlorine (Cl) atoms remain in the optical film, the possibility that the optical film has a change in light transmittance is increased. In addition, the present inventors confirmed that, when chlorine (Cl) atoms remain in the optical film, the possibility that the light transmittance slope (sT) of the optical film is decreased is increased.
구체적으로, 광학 필름의 제조 과정 중, 고분자 중합 과정, 예를 들어, 폴리아마이드-이미드계 고분자의 중합 과정에서 발생된 염산(HCl)이 충분히 제거되지 못하여 광학 필름 제조를 위한 반응액, 예를 들어, 폴리아마이드-아믹산 용액 내에 존재하는 경우, 반응액의 산도(acidity)가 증가되어 반응성이 저하되고, 고분자의 분해(degradation)가 발생될 수 있다. 또한, 광학 필름을 제조하는 과정 중, 화학적 또는 열적 이미드화 과정에서, 염산(HCl)이 물(H2O)과 반응하여 하이드로늄 이온(H3O+)과 염소 이온(Cl-)의 생성 등과 같은 부반응이 유발되어, 필름의 광학 물성이 저하될 수 있다. 염소(Cl) 원자를 포함하는 광학 필름에 열 및 광이 조사되는 경우, 염소(Cl) 원자에 의해 광학필름을 구성하는 고분자의 분해 또는 열화가 가속화되거나, 고분자 수지의 화학 구조에 변화가 생길 수 있다. 이와 같이, 광학 필름을 구성하는 고분자 수지의 화학 구조가 분해되거나 열화되어 변하는 경우, 광학 필름의 광투과도가 저하될 수 있으며, 광투과도 기울기(sT)가 감소될 수 있다.Specifically, during the manufacturing process of the optical film, the polymer polymerization process, for example, hydrochloric acid (HCl) generated in the polymerization process of the polyamide-imide-based polymer is not sufficiently removed, so that the reaction solution for manufacturing the optical film, for example , when present in the polyamide-amic acid solution, the acidity of the reaction solution is increased, the reactivity is lowered, and degradation of the polymer may occur. In addition, during the process of manufacturing the optical film, in the process of chemical or thermal imidization, hydrochloric acid (HCl) reacts with water (H 2 O) to generate hydronium ions (H 3 O + ) and chlorine ions (Cl ) Side reactions such as the like may be induced, and the optical properties of the film may be deteriorated. When heat and light are irradiated to an optical film containing chlorine (Cl) atoms, the decomposition or deterioration of the polymer constituting the optical film may be accelerated by chlorine (Cl) atoms, or changes in the chemical structure of the polymer resin may occur. have. As such, when the chemical structure of the polymer resin constituting the optical film is decomposed or deteriorated and changed, the light transmittance of the optical film may be reduced, and the light transmittance slope (sT) may be reduced.
본 발명의 일 실시예에 따른 광학 필름은, 중량 기준으로 120 ppm 이하의 염소(Cl)를 포함할 수 있다. 본 발명의 일 실시예에 따르면, 120 ppm은 0.012 중량%에 대응될 수 있다. 광학 필름에 중량 기준으로 120 ppm 이하의 염소(Cl)가 포함되는 경우, 염소(Cl)로 인해 발생되는 광학 필름 내의 화학 반응이 저하될 수 있으며, 그 결과, 광학 필름의 광투과도 저하가 방지될 수 있고, 광투과도 기울기(sT) 감소가 방지될 수 있다. The optical film according to an embodiment of the present invention may contain less than or equal to 120 ppm chlorine (Cl) by weight. According to an embodiment of the present invention, 120 ppm may correspond to 0.012% by weight. When the optical film contains 120 ppm or less of chlorine (Cl) by weight, a chemical reaction in the optical film caused by chlorine (Cl) may be reduced, and as a result, a decrease in light transmittance of the optical film may be prevented. and a decrease in the light transmittance slope sT may be prevented.
본 발명의 일 실시예에 따르면, 염소(Cl)라는 용어는 염소 원자 및 염소 이온(Cl-)를 포함하는 의미로 사용된다. 또한, 본 발명의 일 실시예에 따르면, 염소(Cl)는 다른 원자와 결합하여 분자를 형성할 수 있으며, 분자 내에 포함된 염소 원자는 본 발명의 일 실시예에 따른 염소(Cl)에 포함된다. 염소의 함량은 염소의 농도로 표현될 수 있다.According to an embodiment of the present invention, the term chlorine (Cl) is used in a meaning including a chlorine atom and a chlorine ion (Cl ). In addition, according to an embodiment of the present invention, chlorine (Cl) may combine with other atoms to form a molecule, and the chlorine atom included in the molecule is included in chlorine (Cl) according to an embodiment of the present invention. . The content of chlorine may be expressed as a concentration of chlorine.
본 발명의 일 실시예에 따른 광학 필름은, 1 내지 120 ppm (0.0001 내지 0.012 중량%)의 염소(Cl)를 포함할 수 있다. 또한, 본 발명의 일 실시예에 따른 광학 필름은, 중량 기준으로, 50 ppm (0.005 중량%) 이하의 염소(Cl)를 포함할 수 있고, 10 ppm (0.001 중량%) 이하의 염소(Cl)를 포함할 수도 있다. 본 발명의 일 실시예에 따른 광학 필름은, 2 내지 120 ppm의 염소를 포함할 수도 있고, 2 내지 50 ppm의 염소를 포함할 수도 있고, 1 내지 10 ppm의 염소를 포함할 수도 있고, 2 내지 10 ppm의 염소를 포함할 수도 있다.The optical film according to an embodiment of the present invention may include chlorine (Cl) in an amount of 1 to 120 ppm (0.0001 to 0.012 wt%). In addition, the optical film according to an embodiment of the present invention may contain chlorine (Cl) of 50 ppm (0.005 wt%) or less, and chlorine (Cl) of 10 ppm (0.001 wt%) or less, based on weight. may include. The optical film according to an embodiment of the present invention may contain 2 to 120 ppm chlorine, 2 to 50 ppm chlorine, 1 to 10 ppm chlorine, 2 to It may also contain 10 ppm chlorine.
이미 설명한 바와 같이, 광학 필름의 제조 과정에서 염산(HCl)이 발생되는 경우가 있다. 광학 필름의 제조 과정 중 발생된 염산이 제거되지 않는 경우, 결과물인 광학 필름에 염소(Cl)가 잔존할 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 광학 필름에 잔존하는 염소(Cl) 함량을 최소화하기 위해, 광학 필름의 제조 과정에서 발생되는 염산을 제거하기 위한 염소(Cl) 수용체가 사용된다. As already described, hydrochloric acid (HCl) may be generated during the manufacturing process of the optical film. If hydrochloric acid generated during the manufacturing process of the optical film is not removed, chlorine (Cl) may remain in the resulting optical film. Therefore, according to an embodiment of the present invention, in order to minimize the chlorine (Cl) content remaining in the optical film, a chlorine (Cl) acceptor for removing hydrochloric acid generated during the manufacturing process of the optical film is used.
염소(Cl) 수용체는 광학 필름의 제조 과정에서 염산(HCl)과 반응하여 염소(Cl) 화합물이 된 후, 광학 필름의 제조 과정에서 제거된다. 그러나, 염소(Cl) 수용체의 일부는 염산과 반응하지 않을 수 있고, 광학 필름의 제조 과정 중에서 제거되지 않을 수 있다. 따라서, 본 발명의 일 실시예에 따른 광학 필름은 미량의 염소(Cl) 수용체를 포함할 수 있다. The chlorine (Cl) acceptor reacts with hydrochloric acid (HCl) in the manufacturing process of the optical film to become a chlorine (Cl) compound, and then is removed in the manufacturing process of the optical film. However, a portion of the chlorine (Cl) acceptor may not react with hydrochloric acid and may not be removed during the manufacturing process of the optical film. Therefore, the optical film according to an embodiment of the present invention may include a trace amount of chlorine (Cl) receptor.
본 발명의 일 실시예에 있어서, 염소(Cl) 수용체는 염산(HCl) 또는 염소이온(Cl-)과 반응할 수 있는 물질이다. 또한, 본 발명의 일 실시예에 따르면, 염소(Cl) 수용체는, 염산(HCl) 또는 염소이온(Cl-)과 반응한 후, 광학 필름의 제조 과정 중 후속 공정에 제거될 수 있는 물질로부터 선택될 수 있다. 예를 들어, 염소(Cl) 수용체는 염산과 반응하여 염(salt) 또는 할로하이드린 화합물(halohydrine compound)를 형성함으로써 중합 과정에서 생성되는 염산을 제거하는 역할을 할 수 있다.In one embodiment of the present invention, the chlorine (Cl) acceptor is a material capable of reacting with hydrochloric acid (HCl) or chlorine ions (Cl ). In addition, according to an embodiment of the present invention, the chlorine (Cl) acceptor, after reacting with hydrochloric acid (HCl) or chlorine ions (Cl ), is selected from materials that can be removed in a subsequent process during the manufacturing process of the optical film can be For example, the chlorine (Cl) acceptor may react with hydrochloric acid to form a salt or a halohydrine compound, thereby removing hydrochloric acid generated during polymerization.
본 발명의 일 실시예에 따르면, 염소(Cl) 수용체로, 환형 에테르(cyclic ether)계 화합물이 사용될 수 있다. 환형 에테르(cyclic ether)계 화합물은, 예를 들어, 에폭사이드(epoxide)계 화합물, 옥세탄(oxetane)계 화합물, 테트라하이드로퓨란(tetrahydrofuran)계 화합물 및 테트라하이드로피란(tetrahydropyran)계 화합물 중 적어도 하나를 포함할 수 있다.According to an embodiment of the present invention, as the chlorine (Cl) acceptor, a cyclic ether-based compound may be used. The cyclic ether-based compound is, for example, at least one of an epoxide-based compound, an oxetane-based compound, a tetrahydrofuran-based compound, and a tetrahydropyran-based compound may include.
본 발명의 일 실시예에 따른 광학 필름은, 환형 에테르(cyclic ether)계 화합물을, 중량 기준으로 0.1 내지 30 ppm 만큼 포함할 수 있다. 본 발명의 일 실시예에 따른 광학 필름은, 중량 기준으로 0.1 내지 12 ppm의 환형 에테르(cyclic ether)계 화합물을 포함할 수도 있다.The optical film according to an embodiment of the present invention may contain 0.1 to 30 ppm by weight of a cyclic ether-based compound. The optical film according to an embodiment of the present invention may contain 0.1 to 12 ppm by weight of a cyclic ether-based compound.
본 발명의 일 실시예에 따르면, 염소(Cl) 수용체로, 하기 화학식 6으로 표현되는 에폭사이드계 화합물이 사용될 수 있다. According to an embodiment of the present invention, as the chlorine (Cl) acceptor, an epoxide-based compound represented by the following Chemical Formula 6 may be used.
[화학식 6] [Formula 6]
Figure PCTKR2021019140-appb-I000008
Figure PCTKR2021019140-appb-I000008
화학식 6에서 R1, R2, R3 및 R4는 각각 독립적으로, 수소 또는 탄소수 1 내지 20의 유기기 중 어느 하나일 수 있다. 보다 구체적으로, R1, R2, R3 및 R4는 각각 독립적으로, 수소, 또는 치환되거나 치환되지 않은 탄소수 1 내지 20의 탄화수소기일 수 있다. 본 발명의 일 실시예에 따르면, R1, R2, R3 및 R4는 각각 독립적으로, 수소, 또는 탄소수 1 내지 10의 알킬기일 수 있다. In Formula 6, R 1 , R 2 , R 3 , and R 4 may each independently be any one of hydrogen or an organic group having 1 to 20 carbon atoms. More specifically, R 1 , R 2 , R 3 and R 4 may each independently be hydrogen or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. According to an embodiment of the present invention, R 1 , R 2 , R 3 and R 4 may each independently be hydrogen or an alkyl group having 1 to 10 carbon atoms.
본 발명의 일 실시예에 따르면, 화학식 6로 표현되는 에폭사이드계 화합물 중 프로필렌옥사이드(propylene oxide, PO)가 염소(Cl) 수용체로 사용될 수 있다. 따라서, According to an embodiment of the present invention, propylene oxide (PO) of the epoxide-based compound represented by Formula 6 may be used as a chlorine (Cl) acceptor. therefore,
염소(Cl) 수용체로 사용되는 에폭사이드계 화합물은 하기 반응식 1에 따라 염산(HCl) 또는 염소(Cl)와 반응할 수 있다.The epoxide-based compound used as a chlorine (Cl) acceptor may react with hydrochloric acid (HCl) or chlorine (Cl) according to Scheme 1 below.
[반응식 1][Scheme 1]
Figure PCTKR2021019140-appb-I000009
Figure PCTKR2021019140-appb-I000009
본 발명의 일 실시예에 있어서, 염소(Cl) 수용체와 염산(HCl)의 반응물은 광학 필름의 제조 과정 중에 제거된다. 그 결과, 염소(Cl)가 제거될 수 있다. 그러나, 염소(Cl) 수용체와 염소(Cl)의 반응물이 제거되지 않고 광학 필름에 잔존할 수도 있다. 따라서, 본 발명의 일 실시예에 따른 광학 필름은 염소(Cl) 수용체와 염산(HCl) 또는 염소(Cl)의 반응물을 미량 포함할 수도 있다. In one embodiment of the present invention, the reactant of the chlorine (Cl) acceptor and hydrochloric acid (HCl) is removed during the manufacturing process of the optical film. As a result, chlorine (Cl) can be removed. However, the reaction product of the chlorine (Cl) acceptor and chlorine (Cl) may remain in the optical film without being removed. Accordingly, the optical film according to an embodiment of the present invention may contain a trace amount of a reaction product of a chlorine (Cl) acceptor and hydrochloric acid (HCl) or chlorine (Cl).
염소(Cl) 수용체로 프로필렌옥사이드(PO)가 사용되는 경우, 염소(Cl) 수용체는 하기 반응식 2에 따라 염산(HCl)과 반응할 수 있다.When propylene oxide (PO) is used as the chlorine (Cl) acceptor, the chlorine (Cl) acceptor may react with hydrochloric acid (HCl) according to Scheme 2 below.
[반응식 2][Scheme 2]
Figure PCTKR2021019140-appb-I000010
Figure PCTKR2021019140-appb-I000010
본 발명의 일 실시예에 따른 광학 필름은, 50㎛ 두께를 기준으로, 88% 이상의 광투과도를 가질 수 있다. 또한, 본 발명의 일 실시예에 따른 광학 필름은, 50㎛ 두께를 기준으로, 90% 이상의 광투과도를 가질 수도 있고, 91% 이상의 광투과도를 가질 수도 있다. 본 발명의 일 실시예에 따르면, 열처리 및 노광처리 전 광학 필름을 대상으로 광투과도가 측정 및 평가된다.The optical film according to an embodiment of the present invention may have a light transmittance of 88% or more based on a thickness of 50 μm. In addition, the optical film according to an embodiment of the present invention may have a light transmittance of 90% or more, or a light transmittance of 91% or more, based on a thickness of 50 μm. According to an embodiment of the present invention, light transmittance is measured and evaluated for an optical film before heat treatment and exposure treatment.
본 발명의 일 실시예에 따른 광학 필름은, 50㎛ 두께를 기준으로, 3 이하의 황색도(Y.I.)를 가질 수 있다. 또한, 본 발명의 일 실시예에 따른 광학 필름은, 50㎛ 두께를 기준으로, 2 이하의 황색도를 가질 수도 있고, 1 이하의 황색도를 가질 수도 있다. 본 발명의 일 실시예에 따르면, 열처리 및 노광처리 전 광학 필름을 대상으로 황색도(Y.I.)가 측정 및 평가된다.The optical film according to an embodiment of the present invention may have a yellowness (Y.I.) of 3 or less based on a thickness of 50 μm. In addition, the optical film according to an embodiment of the present invention may have a yellowness of 2 or less, or a yellowness of 1 or less, based on a thickness of 50 μm. According to an embodiment of the present invention, the yellowness (Y.I.) of the optical film before heat treatment and exposure treatment is measured and evaluated.
광투과도 및 황색도는 표준규격 ASTM E313에 따라 분광 광도계(spectrophotometer)에 의하여, 파장 360 내지 740nm의 범위에서 측정될 수 있다. 분광 광도계(spectrophotometer)로, 예를 들어, KONICA MINOLTA 社의 CM-3700D가 사용될 수 있다.Light transmittance and yellowness may be measured in a wavelength range of 360 to 740 nm by a spectrophotometer according to standard ASTM E313. As a spectrophotometer, for example, CM-3700D manufactured by KONICA MINOLTA may be used.
본 발명의 일 실시예에 따른 광학 필름은, 50㎛ 두께를 기준으로, 1.0% 이하의 헤이즈(haze)를 가질 수 있다. The optical film according to an embodiment of the present invention may have a haze of 1.0% or less based on a thickness of 50 μm.
헤이즈는 ASTM D1003에 따라 헤이즈 미터에 의하여 측정될 수 있다. 헤이즈 측정을 위해 50㎜ x 50㎜ 크기의 광학 필름 샘플이 사용될 수 있다. 5회 측정된 헤이즈 값의 평균을 그 샘플의 헤이즈라고 할 수 있다. 본 발명의 일 실시예에 따르면, 헤이즈 미터로 MURAKAMI 社의 HM-150이 사용될 수 있다.Haze can be measured by a haze meter according to ASTM D1003. An optical film sample having a size of 50 mm x 50 mm may be used for haze measurement. The average of the haze values measured five times may be referred to as the haze of the sample. According to an embodiment of the present invention, HM-150 manufactured by MURAKAMI may be used as the haze meter.
본 발명의 일 실시예에 따른 광학 필름은, 5 이하의 황색도 변화(ΔY.I.)를 가질 수 있다. 본 발명의 일 실시예에 다르면, 150℃에서 30분간 열처리 및 가시광선에서 150시간 노광처리 되기 전과 후, 50㎛ 두께를 기준으로, 광학 필름의 황색도 변화(ΔY.I.)가 측정된다.The optical film according to an embodiment of the present invention may have a yellowness change (ΔY.I.) of 5 or less. According to an embodiment of the present invention, the change in yellowness (ΔY.I.) of the optical film is measured based on a thickness of 50 μm before and after heat treatment at 150° C. for 30 minutes and exposure treatment in visible light for 150 hours.
보다 구체적으로, 황색도 변화(ΔY.I.)는 다음 식 3으로 계산된다. More specifically, the change in yellowness (ΔY.I.) is calculated by Equation 3 below.
[식 3][Equation 3]
ΔY.I. = Y.I.(2) - Y.I.(1)ΔY.I. = Y.I.(2) - Y.I.(1)
식 3에서, Y.I.(1)은 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 되기 전 상기 광학 필름의 황색도(Y.I.)이고, Y.I.(2)는 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 된 후 상기 광학 필름의 광투과도 황색도(Y.I.)이다. In Equation 3, Y.I. (1) is the yellowness (Y.I.) of the optical film before heat treatment at a temperature of 150° C. for 30 minutes and exposure to visible light for 150 hours, and Y.I. (2) is 30 at a temperature of 150° C. After heat treatment for minutes and exposure to visible light for 150 hours, the light transmittance of the optical film is also the yellowness (Y.I.).
가시광선에 의한 노광처리 조건은, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(xenon) 램프를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 상기 광학 필름에 광을 조사하는 조건이다.The exposure treatment conditions by visible light were, using a xenon lamp, in an environment where an average temperature of 25° C. and an average relative humidity of 30% was maintained, and a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, for 150 hours. It is a condition for irradiating light to the optical film.
본 발명의 일 실시예에 따르면, 광학 필름은 5 이하의 낮은 황색도 변화(ΔY.I.)를 가져, 광학 필름이 사용되는 통상적인 조건에서 가시광선에 장시간 노출되더라도, 광학 필름의 황색도(Y.I.) 특성이 저하되는 것이 방지될 수 있다. 보다 구체적으로, 본 발명의 일 실시예에 따르면, 광학 필름이 사용되는 통상적인 조건에서 가시광선에 장시간 노출되더라도, 황색도(Y.I.)가 증가되는 것이 방지될 수 있다.According to one embodiment of the present invention, the optical film has a low yellowness change (ΔY.I.) of 5 or less, even when exposed to visible light for a long time under normal conditions in which the optical film is used, the yellowness ( Y.I.) properties can be prevented from being deteriorated. More specifically, according to an embodiment of the present invention, even if the optical film is exposed to visible light for a long time under normal conditions in which it is used, the increase in yellowness (Y.I.) can be prevented.
본 발명의 일 실시예에 따른 광학 필름은 낮은 염소(Cl) 농도를 가지기 때문에, 낮은 황색도 변화(ΔY.I.)를 가질 수 있다.Since the optical film according to an embodiment of the present invention has a low chlorine (Cl) concentration, it may have a low yellowness change (ΔY.I.).
일반적으로, 광학 필름이 염소(Cl)를 포함하는 경우, 광학 필름에 열 또는 광이 조사되면, 염소(Cl)에 의해 광학필름을 구성하는 고분자의 분해 또는 열화가 심화될 수 있고, 고분자 수지의 화학 구조에 변화가 생길 수 있다. 이와 같이, 광학 필름을 구성하는 고분자 수지의 화학 구조가 분해되거나 열화되어 변하는 경우, 광학 필름의 황색도가 증가할 수 있다.In general, when the optical film contains chlorine (Cl), when heat or light is irradiated to the optical film, the decomposition or deterioration of the polymer constituting the optical film by chlorine (Cl) may be deepened, and the polymer resin Changes in chemical structure may occur. As such, when the chemical structure of the polymer resin constituting the optical film is decomposed or deteriorated to change, the yellowness of the optical film may increase.
본 발명의 일 실시예에 따른 광학 필름은 낮은 염소(Cl) 농도를 가지기 때문에, 150℃에서 30분간 열처리 및 가시광선에서 150시간 노광처리와 같은 악조건 실험을 거치더라도, 황색도의 증가가 크지 않아, 낮은 황색도 변화(ΔY.I.)를 가질 수 있다. 이러한 본 발명의 일 실시예에 따른 광학 필름은, 광학 필름이 사용되는 통상의 조건에서 황색도의 증가가 거의 발생하지 않아, 표시장치 등에 유용하게 적용될 수 있다.Since the optical film according to an embodiment of the present invention has a low chlorine (Cl) concentration, the increase in yellowness is not large even after undergoing adverse conditions such as heat treatment at 150° C. for 30 minutes and exposure treatment in visible light for 150 hours. , can have a low yellowness change (ΔY.I.). The optical film according to an embodiment of the present invention hardly increases yellowness under normal conditions in which the optical film is used, and thus can be usefully applied to a display device or the like.
본 발명의 일 실시예에 따른 광학 필름은 표시장치에 적용되어 표시패널의 표시면을 보호할 수 있다. 본 발명의 일 실시예에 따른 광학 필름은, 표시패널을 보호하기 충분한 정도의 두께를 가질 수 있다. 예를 들어, 광학 필름은 10 내지 100㎛의 두께를 가질 수 있다.The optical film according to an embodiment of the present invention may be applied to a display device to protect the display surface of the display panel. The optical film according to an embodiment of the present invention may have a thickness sufficient to protect the display panel. For example, the optical film may have a thickness of 10 to 100 μm.
이하, 도 2 및 도 3를 참조하여, 본 발명의 일 실시예에 따른 광학 필름이 사용된 표시장치에 대하여 설명한다.Hereinafter, a display device using an optical film according to an exemplary embodiment of the present invention will be described with reference to FIGS. 2 and 3 .
도 2은 본 발명의 다른 일 실시예에 따른 표시장치(200)의 일부에 대한 단면도이고, 도 3는 도 2의 "P" 부분에 대한 확대 단면도이다.FIG. 2 is a cross-sectional view of a portion of the display device 200 according to another exemplary embodiment, and FIG. 3 is an enlarged cross-sectional view of a portion “P” of FIG. 2 .
도 2을 참조하면, 본 발명의 다른 일 실시예에 따른 표시장치(200)는 표시패널(501) 및 표시패널(501) 상의 광학 필름(100)을 포함한다. Referring to FIG. 2 , a display device 200 according to another exemplary embodiment includes a display panel 501 and an optical film 100 on the display panel 501 .
도 2 및 도 3을 참조하면, 표시패널(501)은 기판(510), 기판(510) 상의 박막 트랜지스터(TFT) 및 박막 트랜지스터(TFT)와 연결된 유기 발광 소자(570)를 포함한다. 유기 발광 소자(570)는 제1 전극(571), 제1 전극(571) 상의 유기 발광층(572) 및 유기 발광층(572) 상의 제2 전극(573)을 포함한다. 도 2 및 도 3에 개시된 표시장치(200)은 유기발광 표시장치이다.2 and 3 , the display panel 501 includes a substrate 510 , a thin film transistor TFT on the substrate 510 , and an organic light emitting diode 570 connected to the thin film transistor TFT. The organic light emitting diode 570 includes a first electrode 571 , an organic emission layer 572 on the first electrode 571 , and a second electrode 573 on the organic emission layer 572 . The display device 200 illustrated in FIGS. 2 and 3 is an organic light emitting display device.
기판(510)은 유리 또는 플라스틱으로 만들어질 수 있다. 구체적으로, 기판(510)은 폴리이미드계 수지와 같은 플라스틱으로 만들어질 수 있다. 도시되지 않았지만, 기판(510) 상에 버퍼층이 배치될 수 있다. The substrate 510 may be made of glass or plastic. Specifically, the substrate 510 may be made of plastic such as polyimide-based resin. Although not shown, a buffer layer may be disposed on the substrate 510 .
박막 트랜지스터(TFT)는 기판(510) 상에 배치된다. 박막 트랜지스터(TFT)는 반도체층(520), 반도체층(520)과 절연되어 반도체층(520)의 적어도 일부와 중첩하는 게이트 전극(530), 반도체층(520)과 연결된 소스 전극(541) 및 소스 전극(541)과 이격되어 반도체층(520)과 연결된 드레인 전극(542)을 포함한다. The thin film transistor TFT is disposed on the substrate 510 . The thin film transistor TFT includes a semiconductor layer 520 , a gate electrode 530 that is insulated from the semiconductor layer 520 and overlaps at least a portion of the semiconductor layer 520 , a source electrode 541 connected to the semiconductor layer 520 , and A drain electrode 542 is spaced apart from the source electrode 541 and connected to the semiconductor layer 520 .
도 3를 참조하면, 게이트 전극(530)과 반도체층(520) 사이에 게이트 절연막(535)이 배치된다. 게이트 전극(530) 상에 층간 절연막(551)이 배치되고, 층간 절연막(551) 상에 소스 전극(541) 및 드레인 전극(542)이 배치될 수 있다.Referring to FIG. 3 , a gate insulating layer 535 is disposed between the gate electrode 530 and the semiconductor layer 520 . An interlayer insulating layer 551 may be disposed on the gate electrode 530 , and a source electrode 541 and a drain electrode 542 may be disposed on the interlayer insulating layer 551 .
평탄화막(552)은 박막 트랜지스터(TFT) 상에 배치되어 박막 트랜지스터(TFT)의 상부를 평탄화시킨다.The planarization layer 552 is disposed on the thin film transistor TFT to planarize an upper portion of the thin film transistor TFT.
제1 전극(571)은 평탄화막(552) 상에 배치된다. 제1 전극(571)은 평탄화막(552)에 구비된 콘택홀을 통해 박막 트랜지스터(TFT)와 연결된다. The first electrode 571 is disposed on the planarization layer 552 . The first electrode 571 is connected to the thin film transistor TFT through a contact hole provided in the planarization layer 552 .
뱅크층(580)은 제1 전극(571)의 일부 및 평탄화막(552) 상에 배치되어 화소 영역 또는 발광 영역을 정의한다. 예를 들어, 뱅크층(580)이 복수의 화소들 사이의 경계 영역에 매트릭스 구조로 배치됨으로써, 뱅크층(580)에 의해 화소 영역이 정의될 수 있다. The bank layer 580 is disposed on a portion of the first electrode 571 and the planarization layer 552 to define a pixel area or a light emitting area. For example, since the bank layer 580 is disposed in a matrix structure in a boundary region between a plurality of pixels, a pixel region may be defined by the bank layer 580 .
유기 발광층(572)은 제1 전극(571) 상에 배치된다. 유기 발광층(572)은 뱅크층(580) 상에도 배치될 수 있다. 유기 발광층(572)은 하나의 발광층을 포함할 수도 있고, 상하로 적층된 2개 이상의 발광층을 포함할 수도 있다. 이러한 유기 발광층(572)에서 적색, 녹색 및 청색 중 어느 하나의 색을 갖는 광이 방출될 수 있으며, 백색(White) 광이 방출될 수도 있다. The organic emission layer 572 is disposed on the first electrode 571 . The organic emission layer 572 may also be disposed on the bank layer 580 . The organic emission layer 572 may include one emission layer or two or more emission layers stacked vertically. Light having any one of red, green, and blue colors may be emitted from the organic emission layer 572 , and white light may be emitted.
제2 전극(573)은 유기 발광층(572) 상에 배치된다.The second electrode 573 is disposed on the organic emission layer 572 .
제1 전극(571), 유기 발광층(572) 및 제2 전극(573)이 적층되어 유기 발광 소자(570)가 이루어질 수 있다. A first electrode 571 , an organic emission layer 572 , and a second electrode 573 may be stacked to form an organic light emitting diode 570 .
도시되지 않았지만, 유기 발광층(572)이 백색(White) 광을 발광하는 경우, 개별 화소는 유기 발광층(572)에서 방출되는 백색(White) 광을 파장 별로 필터링하기 위한 컬러 필터를 포함할 수 있다. 컬러 필터는 광의 이동경로 상에 형성된다.Although not shown, when the organic emission layer 572 emits white light, each pixel may include a color filter for filtering the white light emitted from the organic emission layer 572 for each wavelength. The color filter is formed on the path of light.
제2 전극(573) 상에 박막 봉지층(590)이 배치될 수 있다. 박막 봉지층(590)은 적어도 하나의 유기막 및 적어도 하나의 무기막을 포함할 수 있으며, 적어도 하나의 유기막 및 적어도 하나의 무기막이 교호적으로 배치될 수 있다.A thin film encapsulation layer 590 may be disposed on the second electrode 573 . The thin film encapsulation layer 590 may include at least one organic layer and at least one inorganic layer, and at least one organic layer and at least one inorganic layer may be alternately disposed.
이상 설명된 적층 구조를 갖는 표시패널(501) 상에 광학 필름(100)이 배치된다. The optical film 100 is disposed on the display panel 501 having the above-described laminated structure.
이하, 본 발명의 일 실시예에 따른 광학 필름의 제조방법을 설명한다.Hereinafter, a method of manufacturing an optical film according to an embodiment of the present invention will be described.
본 발명의 일 실시예에 따른 광학 필름의 제조방법은, 디아민계 화합물, 디안하이드라이드계 화합물, 제1 디카르보닐계 화합물 및 제1 염소(Cl) 수용체를 이용하여 제1 반응액을 형성하는 단계, 제1 반응액에 제2 디카르보닐계 화합물 및 제2 염소(Cl) 수용체를 첨가하고 반응시켜 제2 반응액을 형성하는 단계, 제2 반응액에 탈수제 및 이미드화 촉매를 첨가하고 반응시켜 제3 반응액을 형성하는 단계, 제3반응액을 처리하여 고체 상태의 고분자 수지를 제조하는 단계, 고체 상태의 고분자 수지를 용해시켜 고분자 수지 용액을 제조하는 단계, 및 고분자 수지 용액을 캐스팅하는 단계를 포함할 수 있다. 이하, 각 단계를 구체적으로 설명한다.The method of manufacturing an optical film according to an embodiment of the present invention comprises the steps of forming a first reaction solution using a diamine-based compound, a dianhydride-based compound, a first dicarbonyl-based compound, and a first chlorine (Cl) acceptor , adding and reacting a second dicarbonyl compound and a second chlorine (Cl) acceptor to the first reaction solution to form a second reaction solution, adding a dehydrating agent and an imidization catalyst to the second reaction solution and reacting 3 forming a reaction solution, processing the third reaction solution to prepare a polymer resin in a solid state, dissolving the polymer resin in a solid state to prepare a polymer resin solution, and casting the polymer resin solution may include Hereinafter, each step will be described in detail.
먼저, 디아민계 화합물, 디안하이드라이드계 화합물, 제1 디카르보닐계 화합물 및 제1 염소(Cl) 수용체를 이용하여 제1 반응액을 형성한다. First, a first reaction solution is formed using a diamine-based compound, a dianhydride-based compound, a first dicarbonyl-based compound, and a first chlorine (Cl) acceptor.
제1 반응액 제조를 위한 용매로, 예를 들어, 디메틸아세트아마이드(DMAc, N,N-dimethylacetamide), 디메틸포름아마이드(DMF, N,N-dimethylformamide), 메틸피롤리돈(NMP, 1-methyl-2-pyrrolidinone), m-크레졸(m-cresol), 테트라하이드로퓨란(THF, tetrahydrofuran), 클로로포름(Chloroform), 메틸에틸케톤(Methyl Ethyl Ketone, MEK) 등의 극성 비양성자성 용매 (polar aprotic solvent) 및 이들의 혼합물이 사용될 수 있다. 그러나, 본 발명의 일 실시예에 따른 용매가 이에 한정되는 것은 아니며 다른 용매가 사용될 수도 있다.As a solvent for preparing the first reaction solution, for example, dimethylacetamide (DMAc, N,N-dimethylacetamide), dimethylformamide (DMF, N,N-dimethylformamide), methylpyrrolidone (NMP, 1-methyl -2-pyrrolidinone), m-cresol, tetrahydrofuran (THF, tetrahydrofuran), chloroform, methyl ethyl ketone (Methyl Ethyl Ketone, MEK), such as a polar aprotic solvent ) and mixtures thereof may be used. However, the solvent according to an embodiment of the present invention is not limited thereto, and other solvents may be used.
디아민계 화합물로 상기 설명된 화학식 1의 화합물들이 사용될 수 있고, 디안하이드라이드계 화합물로 상기 설명된 화학식 2의 화합물들이 사용될 수 있다. 제1 디카르보닐계 화합물로, 상기 설명된 화학식 3으로 표현되는 디카르보닐계 화합물들이 사용될 수 있다. The compounds of Formula 1 described above may be used as the diamine-based compound, and the compounds of Formula 2 described above may be used as the dianhydride-based compound. As the first dicarbonyl-based compound, dicarbonyl-based compounds represented by Chemical Formula 3 described above may be used.
예를 들어, 디아민계 화합물로, p-페닐렌디아민, m-페닐렌디아민, 4,4'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐에테르, 4,4'-디아미노디페닐술폰, 3,4'-디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 2,2'-비스(트리플루오로메틸) 벤지딘(TFDB) 등이 있다.For example, as a diamine compound, p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diamino Diphenylether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,2'-bis(trifluoromethyl)benzidine (TFDB), etc.
디안하이드라이드계 화합물로, 싸이클로부탄-1,2,3,4-테트라카르복실릭 디안하이드라이드(cyclobutane-1,2,3,4-tetracarboxylic dianhydride, CBDA), 3,3',4,4'-비페닐테트라카르복실산 이무수물(3,3′,4,4′-biphenyltetracarboxylic dianhydride, BPDA), 4,4'-(헥사플루오로이소프로피리덴) 디프탈산 이무수물( 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 6FDA)등이 있다. As a dianhydride-based compound, cyclobutane-1,2,3,4-tetracarboxylic dianhydride (CBDA), 3,3',4,4 '-Biphenyltetracarboxylic dianhydride (3,3',4,4'-biphenyltetracarboxylic dianhydride, BPDA), 4,4'-(hexafluoroisopropylidene) diphthalic dianhydride ( 4,4' -(hexafluoroisopropylidene)diphthalic anhydride, 6FDA).
디카르보닐계 화합물로, 테레프탈산 디클로라이드(테레프탈로일 클로라이드, terephthaloyl chloride, TPC), 이소프탈산 디클로라이드(isophthaloyl chloride, IPC), 나프탈렌 디카르복실산 디클로라이드, 4,4'-비페닐디카르복실산 디클로라이드, 3,3'-비페닐디카르복실산 디클로라이드 등이 있다. As a dicarbonyl-based compound, terephthalic acid dichloride (terephthaloyl chloride, TPC), isophthaloyl chloride (IPC), naphthalene dicarboxylic acid dichloride, 4,4'-biphenyldicarboxyl acid dichloride, 3,3'-biphenyldicarboxylic acid dichloride, and the like.
디아민계 화합물, 디안하이드라이드계 화합물, 제1 디카르보닐계 화합물 각각은 단독으로 또는 2종 이상 혼합되어 사용될 수 있다.Each of the diamine-based compound, the dianhydride-based compound, and the first dicarbonyl-based compound may be used alone or in combination of two or more.
본 발명의 일 실시예에 따르면, 디아민계 화합물 100 몰부(mole part)에 대하여, 20 내지 60 몰부(mole part)의 디안하이드라이드계 화합물이 사용될 수 있다. According to an embodiment of the present invention, based on 100 mole parts of the diamine-based compound, 20 to 60 mole parts of the dianhydride-based compound may be used.
디아민계 화합물과 제1 디카르보닐계 화합물이 반응하는 과정에서 염소(Cl) 화합물이 발생할 수 있다. 염소 화합물을 제거하기 위해, 본 발명의 일 실시예에 따르면, 제1 반응액 형성과정에서 제1 염소(Cl) 수용체가 사용된다. A chlorine (Cl) compound may be generated during the reaction between the diamine-based compound and the first dicarbonyl-based compound. In order to remove the chlorine compound, according to an embodiment of the present invention, a first chlorine (Cl) acceptor is used in the formation of the first reaction solution.
본 발명의 일 실시예에 따르면, 제1 염소(Cl) 수용체로, 환형 에테르(cyclic ether)계 화합물이 사용될 수 있다. 환형 에테르(cyclic ether)계 화합물은, 예를 들어, 에폭사이드(epoxide)계 화합물, 옥세탄(oxetane)계 화합물, 테트라하이드로퓨란(tetrahydrofuran)계 화합물 및 테트라하이드로피란(tetrahydropyran)계 화합물 중 적어도 하나를 포함할 수 있다.According to an embodiment of the present invention, as the first chlorine (Cl) acceptor, a cyclic ether-based compound may be used. The cyclic ether-based compound is, for example, at least one of an epoxide-based compound, an oxetane-based compound, a tetrahydrofuran-based compound, and a tetrahydropyran-based compound may include.
본 발명의 일 실시예에 따르면, 제1 염소(Cl) 수용체로, 화학식 6으로 표현되는 에폭사이드계 화합물들이 사용될 수 있다. According to an embodiment of the present invention, as the first chlorine (Cl) acceptor, epoxide-based compounds represented by Chemical Formula 6 may be used.
[화학식 6] [Formula 6]
Figure PCTKR2021019140-appb-I000011
Figure PCTKR2021019140-appb-I000011
화학식 6에서 R1, R2, R3 및 R4는 각각 독립적으로, 수소 또는 탄소수 1 내지 20의 유기기 중 어느 하나일 수 있다. 보다 구체적으로, R1, R2, R3 및 R4는 각각 독립적으로, 수소, 또는 치환되거나 치환되지 않은 탄소수 1 내지 20의 탄화수소기일 수 있다. 본 발명의 일 실시예에 따르면, R1, R2, R3 및 R4는 각각 독립적으로, 수소, 또는 탄소수 1 내지 10의 알킬기일 수 있다.In Formula 6, R 1 , R 2 , R 3 , and R 4 may each independently be any one of hydrogen or an organic group having 1 to 20 carbon atoms. More specifically, R 1 , R 2 , R 3 and R 4 may each independently be hydrogen or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. According to an embodiment of the present invention, R 1 , R 2 , R 3 and R 4 may each independently be hydrogen or an alkyl group having 1 to 10 carbon atoms.
제1 염소(Cl) 수용체로 사용되는 에폭사이드계 화합물은 반응식 1에 따라 염산(HCl)와 반응할 수 있다. 그에 따라, 제1 반응액에서 염산(HCl)이 제거될 수 있다.The epoxide-based compound used as the first chlorine (Cl) acceptor may react with hydrochloric acid (HCl) according to Scheme 1. Accordingly, hydrochloric acid (HCl) may be removed from the first reaction solution.
[반응식 1][Scheme 1]
Figure PCTKR2021019140-appb-I000012
Figure PCTKR2021019140-appb-I000012
본 발명의 일 실시예에 따르면, 에폭사이드계 화합물 중 프로필렌옥사이드(propylene oxide, PO)가 제1 염소(Cl) 수용체로 사용될 수 있다.According to an embodiment of the present invention, propylene oxide (PO) among the epoxide-based compounds may be used as the first chlorine (Cl) acceptor.
프로필렌옥사이드(PO)가 제1 염소(Cl) 수용체로 사용되는 경우, 하기 반응식 2에 따라 염산(HCl)이 제거될 수 있다.When propylene oxide (PO) is used as the first chlorine (Cl) acceptor, hydrochloric acid (HCl) may be removed according to Scheme 2 below.
[반응식 2][Scheme 2]
Figure PCTKR2021019140-appb-I000013
Figure PCTKR2021019140-appb-I000013
본 발명의 일 실시예에 따르면, 제1 염소(Cl) 수용체의 함량은, 몰(mole) 수 기준으로, 제1 디카르보닐계 화합물 함량의 4 내지 7배가 될 수 있다. According to an embodiment of the present invention, the content of the first chlorine (Cl) acceptor, based on the number of moles, may be 4 to 7 times the content of the first dicarbonyl-based compound.
디아민과 제1 카르보닐계 화합물의 반응식을 고려할 때, 이론적으로 제1 디카르보닐계 화합물에 대한 제1 염소(Cl) 수용체의 함량이 2배인 경우, 디아민과 제1 디카르보닐계 화합물의 반응에 의하여 생성된 염산(HCl)이 제1 염소 수용체에 의하여 제거될 수 있다. 그러나, 본 발명자들이 확인한 바에 따르면, 제1 염소(Cl) 수용체의 함량이 제1 디카르보닐계 화합물 몰 수의 4배 미만인 경우, 제1 염소(Cl) 수용체와 염산(HCl)의 반응이 충분히 이루어지지 않아, 염소(Cl) 제거 효율이 저하되었다. 또한, 디카르보닐계 화합물 몰 수의 7배를 초과하는 제1 염소(Cl) 수용체가 사용되는 경우, 과량의 염소(Cl) 수용체로 인하여 중합도가 저하되었다. 따라서, 본 발명의 일 실시예에 따르면, 제1 염소(Cl) 수용체의 함량은, 몰(mole) 수 기준으로, 제1 디카르보닐계 화합물 함량의 4 내지 7배로 조정된다.Considering the reaction formula between the diamine and the first carbonyl compound, theoretically, when the content of the first chlorine (Cl) acceptor for the first dicarbonyl compound is doubled, the diamine and the first dicarbonyl compound are reacted by the reaction The generated hydrochloric acid (HCl) may be removed by the first chlorine acceptor. However, as confirmed by the present inventors, when the content of the first chlorine (Cl) acceptor is less than 4 times the number of moles of the first dicarbonyl-based compound, the reaction of the first chlorine (Cl) acceptor with hydrochloric acid (HCl) is sufficiently achieved It did not lose, the chlorine (Cl) removal efficiency fell. In addition, when the first chlorine (Cl) acceptor exceeding 7 times the molar number of the dicarbonyl-based compound was used, the polymerization degree was lowered due to the excess chlorine (Cl) acceptor. Accordingly, according to an embodiment of the present invention, the content of the first chlorine (Cl) acceptor is adjusted to 4 to 7 times the content of the first dicarbonyl-based compound, based on the number of moles.
본 발명의 일 실시예에 따르면, 제1 반응액은 폴리아믹산과 폴리아마이드 반복단위를 포함할 수 있다. According to an embodiment of the present invention, the first reaction solution may include a polyamic acid and a polyamide repeating unit.
다음, 제1 반응액에, 제2 디카르보닐계 화합물 및 제2 염소(Cl) 수용체를 첨가하고 반응시켜, 제2 반응액을 형성한다. 예를 들어, 제1 반응액 형성 후, 1 내지 24 시간 경과 후, 제1 반응액에 제2 디카르보닐계 화합물 및 제2 염소(Cl) 수용체가 첨가될 수 있다. 보다 구체적으로, 제1 반응액 형성 후 1 내지 20 시간 경과 후, 제1 반응액에 제2 디카르보닐계 화합물 및 제2 염소(Cl) 수용체가 첨가될 수 있다.Next, a second dicarbonyl-based compound and a second chlorine (Cl) acceptor are added to the first reaction solution and reacted to form a second reaction solution. For example, after 1 to 24 hours have elapsed after the formation of the first reaction solution, the second dicarbonyl-based compound and the second chlorine (Cl) acceptor may be added to the first reaction solution. More specifically, 1 to 20 hours after the formation of the first reaction solution, the second dicarbonyl-based compound and the second chlorine (Cl) acceptor may be added to the first reaction solution.
본 발명의 일 실시예에 따르면, 제1 반응액에 제2 디카르보닐계 화합물 및 제2 염소(Cl) 수용체가 첨가되기 시작하면, 그 반응액을 제2 반응액이라고 한다.According to an embodiment of the present invention, when the second dicarbonyl-based compound and the second chlorine (Cl) acceptor are added to the first reaction solution, the reaction solution is referred to as a second reaction solution.
본 발명의 일 실시예에 따르면, 제1 디카르보닐계 화합물과 제2 디카르보닐계 화합물은 동일한 물질일 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 제1 디카르보닐계 화합물과 제2 디카르보닐계 화합물은 다른 물질일 수도 있다. 제1 디카르보닐계 화합물과 제2 디카르보닐계 화합물을 통합하여 디카르보닐계 화합물이라고 한다.According to an embodiment of the present invention, the first dicarbonyl-based compound and the second dicarbonyl-based compound may be the same material. However, one embodiment of the present invention is not limited thereto, and the first dicarbonyl-based compound and the second dicarbonyl-based compound may be different materials. The first dicarbonyl-based compound and the second dicarbonyl-based compound are collectively referred to as a dicarbonyl-based compound.
본 발명의 일 실시예에 따르면, 제1 염소(Cl) 수용체와 제2 염소(Cl) 수용체는 동일한 물질일 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 제1 염소(Cl) 수용체와 제2 염소(Cl) 수용체는 다른 물질일 수도 있다. 제1 염소(Cl) 수용체와 제2 염소(Cl) 수용체를 통합하여 염소(Cl) 수용체라고 한다.According to an embodiment of the present invention, the first chlorine (Cl) acceptor and the second chlorine (Cl) acceptor may be the same material. However, an embodiment of the present invention is not limited thereto, and the first chlorine (Cl) acceptor and the second chlorine (Cl) acceptor may be different materials. The first chlorine (Cl) receptor and the second chlorine (Cl) receptor are collectively referred to as a chlorine (Cl) receptor.
본 발명의 일 실시예에 따르면, 제2 염소(Cl) 수용체는 환형 에테르(cyclic ether)계 화합물을 포함할 수 있다. 제2 염소(Cl) 수용체로 사용되는 환형 에테르(cyclic ether)계 화합물은, 에폭사이드(epoxide)계 화합물, 옥세탄(oxetane)계 화합물, 테트라하이드로퓨란(tetrahydrofuran)계 화합물 및 테트라하이드로피란(tetrahydropyran)계 화합물을 포함할 수 있다. 환형 에테르(cyclic ether)계 화합물은 프로필렌옥사이드(propylene oxide)계 화합물을 포함할 수 있다.According to an embodiment of the present invention, the second chlorine (Cl) acceptor may include a cyclic ether-based compound. The cyclic ether-based compound used as the second chlorine (Cl) acceptor is an epoxide-based compound, an oxetane-based compound, a tetrahydrofuran-based compound, and a tetrahydropyran )-based compounds. The cyclic ether-based compound may include a propylene oxide-based compound.
제2 디카르보닐계 화합물 및 제2 염소(Cl) 수용체에 의하여 반응액의 점도가 조정될 수 있다. 본 발명의 일 실시예에 따르면, 제2 반응액을 형성하는 단계에서, 제2 반응액의 겉보기 점도가 250 ㅁ 30 Ps이 될 때까지 제2 디카르보닐계 화합물 및 제2 염소(Cl) 수용체가 첨가될 수 있다.The viscosity of the reaction solution may be adjusted by the second dicarbonyl-based compound and the second chlorine (Cl) acceptor. According to an embodiment of the present invention, in the step of forming the second reaction solution, the second dicarbonyl-based compound and the second chlorine (Cl) acceptor are reacted until the apparent viscosity of the second reaction solution is 250 ㅁ 30 Ps. may be added.
본 발명의 일 실시예에 따르면, 제2 염소(Cl) 수용체의 함량은, 몰(mole) 수 기준으로, 제2 디카르보닐계 화합물 함량의 4 내지 7배가 될 수 있다.According to an embodiment of the present invention, the content of the second chlorine (Cl) acceptor may be 4 to 7 times the content of the second dicarbonyl-based compound, based on the number of moles.
본 발명의 일 실시예에 따르면, 디아민계 화합물 100 몰부(mole part)에 대하여, 제1 디카르보닐계 화합물 및 제2 디카르보닐계 화합물의 총 함량은 40 내지 80 몰부일 수 있다. 보다 구체적으로, 디아민계 화합물 100 몰부(mole part)에 대하여, 제1 디카르보닐계 화합물의 함량은 35 내지 79 몰부이고, 제2 디카르보닐계 화합물의 함량은 1 내지 5 몰부일 수 있다. According to an embodiment of the present invention, the total content of the first dicarbonyl-based compound and the second dicarbonyl-based compound may be 40 to 80 mole parts based on 100 mole parts of the diamine-based compound. More specifically, with respect to 100 mole parts of the diamine-based compound, the content of the first dicarbonyl-based compound may be 35 to 79 mole parts, and the content of the second dicarbonyl-based compound may be 1 to 5 mole parts.
또한, 제1 디카르보닐계 화합물의 함량은, 디아민계 화합물 100 몰부에 대하여 37 내지 79 몰부일 수 있다. 제2 디카르보닐계 화합물의 함량은, 디아민계 화합물 100 몰부에 대하여 1 내지 3 몰부일 수 있다.In addition, the content of the first dicarbonyl-based compound may be 37 to 79 mole parts based on 100 mole parts of the diamine-based compound. The content of the second dicarbonyl-based compound may be 1 to 3 mole parts based on 100 mole parts of the diamine-based compound.
다음, 제2 반응액에, 탈수제 및 이미드화 촉매를 첨가하고 반응시켜, 제3 반응액을 형성한다. Next, to the second reaction liquid, a dehydrating agent and an imidization catalyst are added and reacted to form a third reaction liquid.
제3 반응액 형성 과정에서, 아믹산의 일부가 이미드화되어 이미드 반복단위가 형성될 수 있다. In the third reaction solution forming process, a portion of the amic acid may be imidized to form an imide repeating unit.
본 발명의 일 실시예에 따르면, 제2 반응액에 탈수제 및 이미드화 촉매가 첨가된 후 60 내지 80℃의 온도에서 30분 내지 2시간 동안 환류 교반이 진행될 수 있다. 그 결과, 제3 반응액이 형성될 수 있다.According to an embodiment of the present invention, after the dehydrating agent and the imidization catalyst are added to the second reaction solution, reflux stirring may be performed at a temperature of 60 to 80° C. for 30 minutes to 2 hours. As a result, a third reaction solution may be formed.
탈수제로, 무수 초산(acetic anhydride), 프로피온산 무수물, 이소낙산 무수물, 피발산 무수물, 낙산 무수물, 이소길초산 무수물과 같은 산무수물이 사용될 수 있다.As the dehydrating agent, acid anhydrides such as acetic anhydride, propionic anhydride, isonyric anhydride, pivalic anhydride, butyric anhydride, and isovaracetic anhydride can be used.
이미드화 촉매로, 이소퀴놀린(isoquinoline), 베타피콜린(β-picoline), 피리딘(pyridine)과 같은 3급 아민이 사용될 수 있다.As the imidation catalyst, a tertiary amine such as isoquinoline, beta-picoline, or pyridine may be used.
제1 염소(Cl) 수용체, 제2 염소(Cl) 수용체 및 이미드화 촉매에 의하여 제3 반응액의 pH가 조정될 수 있다. 본 발명의 일 실시예에 따르면, 제3 반응액은 8 이상의 pH를 가질 수 있다. The pH of the third reaction solution may be adjusted by the first chlorine (Cl) acceptor, the second chlorine (Cl) acceptor, and the imidization catalyst. According to an embodiment of the present invention, the third reaction solution may have a pH of 8 or more.
본 발명의 일 실시예에 따르면 제3 반응액은 8 내지 9의 pH를 가질 수 있다. 본 발명의 일 실시예에 따르면, 제3 반응액의 pH가 8 내지 9가 되도록, 제2 반응액 형성시 첨가되는 제2 염소(Cl) 수용체의 함량이 조정될 수 있다. According to an embodiment of the present invention, the third reaction solution may have a pH of 8 to 9. According to an embodiment of the present invention, the content of the second chlorine (Cl) acceptor added when the second reaction solution is formed may be adjusted so that the pH of the third reaction solution is 8 to 9.
제3 반응액이 pH 8 내지 9 정도의 약 염기성 상태인 경우, 제1 반응액 및 2 반응액 형성시 생성되었던 염산(HCl)이 모두 또는 대부분 염소(Cl) 수용체와 반응하였다고 할 수 있다. When the third reaction solution is in a weakly basic state with a pH of about 8 to 9, it can be said that all or most of the hydrochloric acid (HCl) generated during the formation of the first reaction solution and the second reaction solution reacted with the chlorine (Cl) acceptor.
제3 반응액의 pH가 8 미만인 경우, 제1 반응액 및 2 반응액 형성시 생성되었던 염산(HCl)이 충분히 제거되지 않아, 잔존하는 염산(HCl)에서 유래된 염소(Cl) 및 염소 화합물이 폴리아마이드-이미드계 필름에 존재하게 될 가능성이 커진다. When the pH of the third reaction solution is less than 8, hydrochloric acid (HCl) generated during the formation of the first reaction solution and the second reaction solution is not sufficiently removed, so that chlorine (Cl) and chlorine compounds derived from the remaining hydrochloric acid (HCl) are It is more likely to be present in polyamide-imide based films.
제3 반응액 pH를 고려할 때, 디안하이드라이드 화합물의 몰 수의 2배 내지 7배의 이미드화 촉매가 사용될 수 있다. Considering the pH of the third reaction solution, an imidization catalyst of 2 to 7 times the number of moles of the dianhydride compound may be used.
다음, 제3 반응액을 처리하여, 고체 상태의 고분자 수지를 제조한다.Next, the third reaction solution is treated to prepare a polymer resin in a solid state.
고체 상태의 고분자 수지 제조를 위해, 제3 반응액에 용매가 첨가될 수 있다. 용매로, 예를 들어, 에탄올, 메탄올, 헥산 등이 사용될 수 있다. 용매는 단독으로 사용될 수도 있고, 2종 이상의 용매가 혼합되어 사용될 수도 있다.In order to prepare the polymer resin in a solid state, a solvent may be added to the third reaction solution. As the solvent, for example, ethanol, methanol, hexane and the like can be used. The solvent may be used alone, or two or more solvents may be mixed and used.
중합 용매와 잘 섞이면서 극성이 낮은 용매가 제3 반응액에 첨가되면, 분말 상태의 고체 고분자 수지가 침전된다. 침전물을 여과하여, 건조함으로써 고순도의 고체 고분자 수지가 얻어질 수 있다. 침전물을 여과하는 과정에서 액체 성분들이 제거될 때, 미반응 모노머, 올리고머, 첨가제, 반응 부산물이 제거되며, 이때, 염산(HCl)과 염소(Cl) 수용체의 반응물이 제거될 수 있다. 이와 같이 얻어진 고체 상태의 고분자 수지는 염소(Cl)를 포함하지 않거나, 미량의 염소(Cl) 만을 포함하게 된다. When a solvent having low polarity and mixing well with the polymerization solvent is added to the third reaction solution, a solid polymer resin in a powder state is precipitated. By filtering and drying the precipitate, a high-purity solid polymer resin can be obtained. When the liquid components are removed in the process of filtering the precipitate, unreacted monomers, oligomers, additives, and reaction by-products are removed, and in this case, the reactants of hydrochloric acid (HCl) and chlorine (Cl) acceptors may be removed. The solid polymer resin thus obtained does not contain chlorine (Cl) or contains only a trace amount of chlorine (Cl).
이와 같이 얻어진 고분자 수지는 고체 분말 상태이며, 이미드 반복단위 및 아마이드 반복 단위를 포함할 수 있다. 고분자 수지는, 예를 들어, 폴리아마이드-이미드계 수지일 수 있다.The polymer resin thus obtained is in a solid powder state, and may include an imide repeating unit and an amide repeating unit. The polymer resin may be, for example, a polyamide-imide-based resin.
다음, 고체 상태의 고분자 수지를 용해시켜 고분자 수지 용액을 제조한다. 고체 상태의 고분자 수지를 용매에 용해시켜 고분자 수지 용액을 제조하는 단계를 재용해 단계라고도 한다. Next, a polymer resin solution is prepared by dissolving the polymer resin in a solid state. The step of dissolving the polymer resin in a solid state in a solvent to prepare a polymer resin solution is also referred to as a redissolving step.
고체 상태의 고분자 수지를 용해시키기 위한 용매로, 중합 과정에서 사용된 용매와 동일한 용매들이 사용될 수 있다. 예를 들어, 디메틸아세트아마이드(DMAc, N,N-dimethylacetamide), 디메틸포름아마이드(DMF, N,N-dimethylformamide), 메틸피롤리돈(NMP, 1-methyl-2-pyrrolidinone), m-크레졸(m-cresol), 테트라하이드로퓨란(THF, tetrahydrofuran), 클로로포름(Chloroform), 메틸에틸케톤(Methyl Ethyl Ketone, MEK) 등의 극성 비양성자성 용매 (polar aprotic solvent) 및 이들의 혼합물이 고체 상태의 고분자 수지를 용해시키기 위한 용매로 사용될 수 있다. 그러나, 본 발명의 일 실시예에 따른 용매가 이에 한정되는 것은 아니며 공지된 다른 용매가 사용될 수도 있다.As a solvent for dissolving the polymer resin in a solid state, the same solvents as those used in the polymerization process may be used. For example, dimethylacetamide (DMAc, N,N-dimethylacetamide), dimethylformamide (DMF, N,N-dimethylformamide), methylpyrrolidone (NMP, 1-methyl-2-pyrrolidinone), m-cresol ( m-cresol), tetrahydrofuran (THF, tetrahydrofuran), chloroform (Chloroform), methyl ethyl ketone (Methyl Ethyl Ketone, MEK) such as polar aprotic solvent (polar aprotic solvent) and mixtures thereof are solid polymer It can be used as a solvent for dissolving the resin. However, the solvent according to an embodiment of the present invention is not limited thereto, and other known solvents may be used.
본 발명의 일 실시예에 따르면, 재용해된 고분자 수지 용액은 6 내지 7의 pH를 가질 수 있다. 본 발명의 일 실시예에 따르면, 폴리아마이드-이미드계 수지 용액은 약산성 또는 중성에 가까운 약산성의 특성을 가질 수 있다. 제3 반응액이 pH 8 내지 9의 약 염기성 상태로 제조되었기 때문에, 고분자 수지 용액이 pH 6 내지 7의 약산성을 나타낼 수 있다.According to an embodiment of the present invention, the re-dissolved polymer resin solution may have a pH of 6 to 7. According to an embodiment of the present invention, the polyamide-imide-based resin solution may have weak acidity or weak acidity close to neutrality. Since the third reaction solution was prepared in a weakly basic state of pH 8 to 9, the polymer resin solution may exhibit weak acidity in pH 6 to 7.
다음, 고분자 수지 용액을 캐스팅한다.Next, the polymer resin solution is cast.
캐스팅을 위해 캐스팅 기판이 사용된다. 캐스팅 기판의 종류에 특별한 제한이 있는 것은 아니다. 캐스팅 기판으로, 유리 기판, 알루미늄 기판, 스테인레스(SUS) 기판, 테프론 기판 등이 사용될 수 있다. 본 발명의 일 실시예에 따르면, 캐스팅 기판으로 유리 기판이 사용될 수 있다.A casting substrate is used for casting. There is no particular limitation on the type of the casting substrate. As the casting substrate, a glass substrate, an aluminum substrate, a stainless (SUS) substrate, a Teflon substrate, or the like may be used. According to an embodiment of the present invention, a glass substrate may be used as the casting substrate.
구체적으로, 고분자 수지 용액이 캐스팅 기판에 도포됨으로써 캐스팅이 이루어진다. 캐스팅을 위하여 코터(coater), 블레이드(blade) 등이 사용될 수 있다.Specifically, casting is made by applying a polymer resin solution to the casting substrate. A coater, a blade, etc. may be used for casting.
고분자 수지 용액을 캐스팅한 후, 80 내지 120℃ 온도 범위에서 2℃/분의 속도로 승온하며 건조시켜, 고분자 수지의 도막(coating film)이 제조될 수 있다. 이와 같이 제조된 도막(coating film)은 광학 필름의 중간체라고 할 수 있다. 도막(coating film)을 핀 형태의 텐터에 팽팽하게 당겨 고정시킨 후, 3℃/min의 승온 속도로 120℃부터 250 ~ 350℃까지 승온하면서 열처리한다. 최고 제막 온도에 도달하면 등온 분위기에서 10 내지 30분간 추가적인 열처리를 할 수 있다. 그 결과, 광학 필름이 제조될 수 있다.After casting the polymer resin solution, the temperature is raised to 80 to 120 ° C. at a rate of 2 ° C./min and dried, a coating film of the polymer resin can be prepared. The coating film prepared in this way can be said to be an intermediate of the optical film. After pulling the coating film taut to the pin-type tenter and fixing it, heat treatment is performed while raising the temperature from 120° C. to 250 to 350° C. at a temperature increase rate of 3° C./min. When the maximum film forming temperature is reached, additional heat treatment may be performed in an isothermal atmosphere for 10 to 30 minutes. As a result, an optical film can be manufactured.
이하, 예시적인 실시예 및 비교예를 참조하여 본 발명을 보다 구체적으로 설명한다. 그러나, 이하 설명되는 실시예 및 비교예에 의하여 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to illustrative examples and comparative examples. However, the present invention is not limited by the Examples and Comparative Examples to be described below.
<실시예 1><Example 1>
4구의 이중 자켓 반응조에 TFDB 80.06g(250 mmol)(디아민계 화합물)을 디메틸아세트아마이드(DMAc)(용매)에 용해시켰다. 여기에, 19.86g(68 mmol)의 BPDA(디안하이드라이드계 화합물)를 투입하고, 반응기의 온도를 25℃로 2시간 동안 유지하면서 교반시켰다. 반응이 완료되면, 6FDA(디안하이드라이드계 화합물) 13.33g(30 mmol)을 넣고 1시간 동안 25℃에서 교반시켰다. 이후 반응기 온도를 7℃ 이하로 낮춘 후, TPC 29.945g(148 mmol)(제1 디카르보닐계 화합물)과 프로필렌옥사이드(PO) (38.55g, 664 mmol, TPC 몰 수의 4.5배)(제1 염소 수용체)를 투입하였다. 1시간 동안 7℃에서 교반하였다[제1 반응액 형성].80.06 g (250 mmol) (diamine-based compound) of TFDB was dissolved in dimethylacetamide (DMAc) (solvent) in a four-piece double jacketed reactor. Here, 19.86 g (68 mmol) of BPDA (dianhydride-based compound) was added, and the reactor was stirred while maintaining the temperature at 25° C. for 2 hours. Upon completion of the reaction, 13.33 g (30 mmol) of 6FDA (dianhydride-based compound) was added and stirred at 25° C. for 1 hour. After lowering the reactor temperature to 7° C. or less, TPC 29.945 g (148 mmol) (the first dicarbonyl-based compound) and propylene oxide (PO) (38.55 g, 664 mmol, 4.5 times the number of moles of TPC) (first chlorine) receptor) was added. The mixture was stirred at 7° C. for 1 hour [formation of first reaction solution].
제1 반응액을 상온에서 1시간 방치한 후, 제1 반응액의 점도를 확인하고, 25℃에서 반응액의 겉보기 점도가 250ㅁ 30 Ps가 될 때까지 TPC(1.269g, 6 mmol)(제2 디카르보닐계 화합물)와 프로필렌옥사이드(PO)(1.63g, 28 mmol, TPC 몰 수의 4.5배)(제2 염소 수용체)를 추가 투입하였다[제2 반응액 형성].After leaving the first reaction solution at room temperature for 1 hour, check the viscosity of the first reaction solution, and TPC (1.269 g, 6 mmol) (No. 2 dicarbonyl-based compound) and propylene oxide (PO) (1.63 g, 28 mmol, 4.5 times the number of moles of TPC) (second chlorine acceptor) were additionally added [formation of second reaction solution].
중합 반응이 종료된 후, 제2 반응액에, 이미드화 촉매인 피리딘(pyridine, Py)(16.97g, BPDA+6FDA 몰 수의 2.2배)과 탈수제인 아세트산 무수물(acetic anhydride, AA)(21.97g, BPDA+6FDA 몰 수의 2.2배)를 투입한 후, 온도를 80℃로 올려 1시간 교반하였다[제3 반응액 형성]. After the polymerization reaction is completed, in the second reaction solution, pyridine (Py) as an imidization catalyst (16.97 g, 2.2 times the number of moles of BPDA+6FDA) and acetic anhydride (AA) (21.97 g) as a dehydrating agent , 2.2 times the number of moles of BPDA+6FDA) was added, and the temperature was raised to 80° C. and stirred for 1 hour [formation of a third reaction solution].
플라스크를 상온으로 식히고, 제3 반응액을 메탄올(3000 ml)에 부어 침전이 이루어지도록 하였다. 침전물을 여과하여 흰색 고체 상태의 고분자 수지를 획득하였다. 획득된 고분자 수지는 고체 분말 상태이다. 실시예 1에서 제조된 고분자 수지는, 폴리아마이드-이미드 고분자 수지이다.The flask was cooled to room temperature, and the third reaction solution was poured into methanol (3000 ml) to cause precipitation. The precipitate was filtered to obtain a polymer resin in a white solid state. The obtained polymer resin is in a solid powder state. The polymer resin prepared in Example 1 is a polyamide-imide polymer resin.
이와 같이 획득된 고체 분말 상태의 고분자 수지를 디메틸아세트아마이드(DMAc)에 12.7 wt%의 농도로 용해하여, 고분자 수지 용액을 제조하였다.The polymer resin in the solid powder state thus obtained was dissolved in dimethylacetamide (DMAc) at a concentration of 12.7 wt% to prepare a polymer resin solution.
제조된 고분자 수지 용액을 기판에 캐스팅하였다. 구체적으로, 메이어 바(Mayer bar) 코터를 이용하여 고분자 수지 용액을 유리 기판에 도포하고, 80℃의 열풍으로 10분 처리하여 도막(coating film)이 형성되도록 하였다. The prepared polymer resin solution was cast on a substrate. Specifically, a polymer resin solution was applied to a glass substrate using a Mayer bar coater, and treated with hot air at 80° C. for 10 minutes to form a coating film.
이어서, 80℃부터 120℃까지 승온하면서, 도막을 17분간 1차 열처리하였다. 수득된 중간체 도막을 핀 형태의 텐터(tenter)에 팽팽하게 당겨 고정하여 오븐에 투입한 후, 3℃/min의 승온 속도로 120℃부터 270℃까지 승온하였다. 270℃에 도달하면 등온 분위기에서 10분간 2차 열처리하였다. Subsequently, the coating film was subjected to primary heat treatment for 17 minutes while the temperature was raised from 80°C to 120°C. The obtained intermediate coating film was pulled taut on a tenter in the form of a pin, put into an oven, and then heated from 120°C to 270°C at a temperature increase rate of 3°C/min. Upon reaching 270°C, secondary heat treatment was performed in an isothermal atmosphere for 10 minutes.
잔류 응력의 제거를 위해, 2차 열처리된 도막을 텐터(tenter)에서 분리하여 270℃에서 1분간 3차 열처리하였다. 그 결과, 50㎛ 두께의 광학 필름이 제조되었다.In order to remove the residual stress, the second heat-treated coating film was separated from the tenter and subjected to a third heat treatment at 270° C. for 1 minute. As a result, an optical film having a thickness of 50 μm was manufactured.
<실시예 2 내지 5><Examples 2 to 5>
하기 표 1의 조건에 따라, 실시예 1에 개시된 방법을 적용하여, 실시예 2 내지 5에 따른 광학 필름을 제조하였다.According to the conditions in Table 1 below, by applying the method disclosed in Example 1, the optical films according to Examples 2 to 5 were prepared.
<비교예 1 내지 3><Comparative Examples 1 to 3>
하기 표 1의 조건에 따라, 실시예 1에 개시된 방법을 적용하여, 비교예 1 내지 3에 따른 필름을 제조하였다. According to the conditions in Table 1 below, by applying the method disclosed in Example 1, films according to Comparative Examples 1 to 3 were prepared.
구분division 제1 반응액first reaction solution 제2 반응액second reaction solution 제3 반응액third reaction solution
TFDB
(몰부)
TFDB
(Molbu)
BPDA
(몰부)
BPDA
(Molbu)
6FDA
(몰부)
6FDA
(Molbu)
TPC
(몰부)
TPC
(Molbu)
PO
(배수)
PO
(Drainage)
TPC
(몰부)
TPC
(Molbu)
PO
(배수)
PO
(Drainage)
Py
(배수)
Py
(Drainage)
AA
(배수)
AA
(Drainage)
pHpH
실시예 1Example 1 100100 2727 1212 5959 4.54.5 2.52.5 4.54.5 2.22.2 2.22.2 8.098.09
실시예 2Example 2 5959 4.54.5 1One 4.54.5 3.33.3 8.418.41
실시예 3Example 3 5959 4.54.5 1One 4.54.5 6.66.6 8.558.55
실시예 4Example 4 5959 4.94.9 1.61.6 4.94.9 2.22.2 8.628.62
실시예 5Example 5 5959 4.94.9 1.61.6 4.94.9 3.33.3 8.648.64
비교예 1Comparative Example 1 5959 2.52.5 1.51.5 2.52.5 3.33.3 4.044.04
비교예 2Comparative Example 2 5959 3.83.8 1.51.5 3.73.7 2.22.2 4.644.64
비교예 3Comparative Example 3 5959 3.83.8 1.31.3 3.73.7 3.33.3 5.175.17
표 1에서, "몰부(mole part)"는 디아민계 화합물인 TFDB 100몰(mole)에 대한 상대적인 몰수를 나타낸다. PO(Propylene oxide)의 함량을 표시하는 "배수"는 TPC의 몰수에 대한 배수이며, Py(피리딘)과 AA(아세트산 무수물, Acetic anhydride)의 함량을 표시하는 "배수"는 디안하이드라이드의 몰수에 대한 배수이다. In Table 1, "mole part" represents the relative number of moles with respect to 100 moles of TFDB, which is a diamine-based compound. "Multiple" indicating the content of PO (Propylene oxide) is a multiple of the number of moles of TPC, and "Multiple" indicating the content of Py (pyridine) and AA (acetic anhydride) is the number of moles of dianhydride. is a multiple of
실시예 1 내지 5 및 비교예 1 및 3에서 제조된 광학 필름에 대하여 다음과 같이 물성을 측정하였다.The optical films prepared in Examples 1 to 5 and Comparative Examples 1 and 3 were measured for physical properties as follows.
(1) 광투과도(TT)(%)(1) light transmittance (TT) (%)
표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여, 파장 360 내지 740nm 에서의 광학 필름의 평균 광투과도를 측정하였다. 열처리 및 노광처리 전 광학 필름에 대해 광투과도가 측정된다.The average light transmittance of the optical film at a wavelength of 360 to 740 nm was measured using a Spectrophotometer (CM-3700D, KONICA MINOLTA) in accordance with the standard ASTM E313. Light transmittance is measured for the optical film before heat treatment and exposure treatment.
(2) 광투과도 변화율(ΔTT)(%)(2) Light transmittance change rate (ΔTT) (%)
광학 필름에 대해 상기 (1)의 방법으로 광투과도를 측정하여, 열처리 및 노광처리 전 광학 필름의 광투과도 TT1를 얻었다.The light transmittance of the optical film was measured by the method of (1) above, and the light transmittance TT 1 of the optical film before heat treatment and exposure treatment was obtained.
다음, 광학 필름을 150℃의 오븐에서 30분간 열처리한 후, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(Xenon) 램프가 설치된 Q-Sun 장비(Suntest XXL+)를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 샘플에 광을 조사함으로써 노광처리를 하였다.Next, after heat-treating the optical film in an oven at 150 ° C. for 30 minutes, using Q-Sun equipment (Suntest XXL+) with a Xenon lamp installed in an environment where an average temperature of 25 ° C and an average relative humidity of 30% is maintained, Exposure treatment was carried out by irradiating the sample with light at a central wavelength of 420 nm at a light quantity of 0.8 W/m 2 for 150 hours.
제논(xenon) 램프: 에이비넥소(Atlas 社 수입업체)의 모델명 Xenon Lamp NXE 1700 램프를 사용하였다. XLSII+/XXL 규격에 따라 태양광과 가장 유사한 파장별 에너지를 갖는 램프이다.Xenon lamp: A Xenon Lamp NXE 1700 lamp with the model name of Abnexo (Atlas, importer) was used. According to the XLSII+/XXL standard, it is a lamp with energy for each wavelength most similar to sunlight.
열처리 및 노광처리 후, 광학 필름에 대해 상기 (1)의 방법으로 광투과도를 측정하여, 열처리 및 노광처리 후 광학 필름의 광투과도 TT2을 얻었다.After heat treatment and exposure treatment, light transmittance of the optical film was measured by the method of (1) above, and light transmittance TT 2 of the optical film after heat treatment and exposure treatment was obtained.
다음, 식 1에 따라 광투과도 변화율(ΔTT)을 계산하였다.Next, the rate of change of light transmittance (ΔTT) was calculated according to Equation 1.
[식 1][Equation 1]
ΔTT (%) = [|TT2-TT1|/TT1] x 100ΔTT (%) = [|TT 2 -TT 1 |/TT 1 ] x 100
(3) 광투과도 기울기 (sT)(3) Light transmittance slope (sT)
상기 (1)의 방법으로 광투과도를 측정한 다음, 식 2에 따라, 50㎛ 두께를 기준으로, 370nm에서 430nm까지의 파장 영역에서의 광투과도 기울기(sT)를 측정하였다. After measuring the light transmittance by the method of (1), according to Equation 2, the light transmittance slope (sT) in the wavelength region from 370 nm to 430 nm was measured based on a thickness of 50 μm.
[식 2][Equation 2]
sT (%/nm) = ΔT/ΔλsT (%/nm) = ΔT/Δλ
ΔT = (430nm에서 광투과도) - (370nm에서의 광투과도)ΔT = (light transmittance at 430 nm) - (light transmittance at 370 nm)
Δλ= 430nm - 370nm = 60nmΔλ= 430 nm - 370 nm = 60 nm
(4) 황색도(Y.I.): 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여 황색도를 측정하였다.(4) Yellowness (Y.I.): The yellowness was measured using a Spectrophotometer (CM-3700D, KONICA MINOLTA) in accordance with the standard ASTM E313.
(5) 헤이즈(%): 제조된 광학 필름을 50㎜ ㅧ 50㎜로 잘라 MURAKAMI社의 헤이즈 미터(모델명: HM-150) 장비를 이용하여 ASTM D1003에 따라 5회 측정하여 그 평균 값을 헤이즈 값으로 하였다.(5) Haze (%): The manufactured optical film was cut into 50 mm Ⅷ 50 mm and measured 5 times according to ASTM D1003 using MURAKAMI's haze meter (model name: HM-150) equipment, and the average value of the haze value was done with
(6) 황색도 변화(ΔY.I.)(6) Yellowness change (ΔY.I.)
150℃에서 30분간 열처리 및 가시광선에서 150시간 노광처리 되기 전과 후, 50㎛ 두께를 기준으로, 광학 필름의 황색도 변화(ΔY.I.)가 측정된다.The change in yellowness (ΔY.I.) of the optical film was measured based on a thickness of 50 μm before and after heat treatment at 150° C. for 30 minutes and exposure treatment for 150 hours in visible light.
구체적으로, 광학 필름에 대해 상기 (4)의 방법으로 황색도(Y.I.)를 측정하여, 열처리 및 노광처리 전 광학 필름의 황색도(Y.I.)인 Y.I.(1)를 얻었다.Specifically, the yellowness (Y.I.) of the optical film was measured by the method of (4) above, and Y.I. (1), which is the yellowness (Y.I.) of the optical film before heat treatment and exposure treatment, was obtained.
다음, 광학 필름을 150℃의 오븐에서 30분간 열처리한 후, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(Xenon) 램프가 설치된 Q-Sun 장비(Suntest XXL+)를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 샘플에 광을 조사함으로써 노광처리를 하였다.Next, after heat-treating the optical film in an oven at 150 ° C. for 30 minutes, using Q-Sun equipment (Suntest XXL+) with a Xenon lamp installed in an environment where an average temperature of 25 ° C and an average relative humidity of 30% is maintained, Exposure treatment was carried out by irradiating the sample with light at a central wavelength of 420 nm at a light quantity of 0.8 W/m 2 for 150 hours.
열처리 및 노광처리 후, 광학 필름에 대해 상기 (4)의 방법으로 황색도(Y.I.)를 측정하여, 열처리 및 노광처리 후 광학 필름의 황색도(Y.I.)인 Y.I.(2)를 얻었다.After heat treatment and exposure treatment, the yellowness (Y.I.) of the optical film was measured by the method of (4) above, and Y.I. (2), which is the yellowness degree (Y.I.) of the optical film after heat treatment and exposure treatment, was obtained.
다음, 식 3에 따라 황색도 변화(ΔY.I.)를 계산하였다. Next, the change in yellowness (ΔY.I.) was calculated according to Equation 3.
[식 3][Equation 3]
ΔY.I. = Y.I.(2) - Y.I.(1)ΔY.I. = Y.I.(2) - Y.I.(1)
(7) 염소(Cl) 함량(ppm)(7) Chlorine (Cl) content (ppm)
염소(Cl)의 함량은 염소의 농도(ppm)로 표현된다.The content of chlorine (Cl) is expressed as the concentration of chlorine (ppm).
50㎛ 두께의 광학 필름을 약 0.5 cm x 0.5 cm 로 자른 후, 동결 건조 및 분말화한 후, 증류수를 이용하여 2시간 동안 Sonication 추출을 진행하여 염소(Cl) 추출액을 얻었다. 염소 추출액에 대하여 이온 크로마토그래피 분석을 실시하여 염소의 농도를 계산함으로써, 염소의 함량을 측정하였다. 이온 크로마토그래피 분석을 위해, Dionex社의 이온 크로마토그래프 장치인 ICS 2000 모델(Dionex ICS-2000 Ion Chromatography System)에 2종의 컬럼[IonPac AS18 Analytical (4x250 mm) + AG18 Guard (4x50 mm)]과 용리액[Dionex社의 EGC-KOH III Cartridge]을 설치하여 분석 하였다.After cutting the 50㎛-thick optical film to about 0.5 cm x 0.5 cm, freeze-dried and powdered, and then sonication extraction was performed using distilled water for 2 hours to obtain a chlorine (Cl) extract. The chlorine content was measured by calculating the concentration of chlorine by performing ion chromatography analysis on the chlorine extract. For ion chromatography analysis, two columns [IonPac AS18 Analytical (4x250 mm) + AG18 Guard (4x50 mm)] and eluent in the ICS 2000 model (Dionex ICS-2000 Ion Chromatography System) [Dionex's EGC-KOH III Cartridge] was installed and analyzed.
구체적으로, 염소(Cl)의 함량은 다음과 같이 측정된다.Specifically, the content of chlorine (Cl) is measured as follows.
측정 장치: Dionex社의 이온 크로마토그래프 장치인 ICS 2000 모델(Dionex ICS-2000 Ion Chromatography System)에 2종의 컬럼[IonPac AS18 Analytical (4x250 mm) + AG18 Guard (4x50 mm)]과 용리액[Dionex社의 EGC-KOH III Cartridge]을 설치하여 분석 하였다.Measuring device: Two types of columns [IonPac AS18 Analytical (4x250 mm) + AG18 Guard (4x50 mm)] and eluent [Dionex ICS-2000 Ion Chromatography System] EGC-KOH III Cartridge] was installed and analyzed.
측정 방법: 실시예 1 내지 5 및 비교예 1 및 3에서 제조된 50㎛ 두께의 광학 필름을 약 0.5 cm x 0.5 cm 로 자른 후 동결 건조하고 분쇄하여 광학 필름의 분말을 제조한 후, 분말화된 광학 필름을 5 중량%의 비율로 증류수에 혼합한 후, 광학 필름으로부터 염소(Cl), 특히 염소 이온(Cl-)을 추출한다. 구체적으로, 광학 필름 분말 0.2 g과 물 3.8 g을 20 mL Vial에 넣고 BRANSON社의 5510 ultrasonic bath를 사용하여 2시간 동안 Sonication 추출을 진행한다. 그 결과, 광학 필름으로부터 추출된 염소(Cl)를 포함하는 염소 추출 혼합액이 제조된다. 제조된 염소 추출 혼합액을 0.45 ㎛ 나일론 필터(nylon filter)로 걸러 측정용 샘플을 제조하였다. 컬럼 온도는 30℃, 측정 셀 온도는 35℃로 세팅된 이온 크로마토그래프 장치에 측정용 샘플을 20μL 투입하여 분리된 이온 피크들 중 염소 이온에 해당하는 피크의 면적을 확인한다. 염소 이온의 함량 계산을 위해 Thermo Scientific社의 Dionex Seven Anion Standard를 증류수로 희석하여 0.04 ppm 내지 1 ppm 농도 구간 (0.04ppm, 0.06ppm, 0.08 ppm, 0.1 ppm, 1.0 ppm)의 염소 이온 표준 용액을 제조하여, 측정용 샘플과 동일한 방법으로 이온 크로마토그래피 분석을 실시하였다. 표준 용액을 이용하여 측정된 염소 이온에 해당하는 피크의 면적을 확인하여, 검량선을 작성하였다.Measurement method: After cutting the 50 μm thick optical film prepared in Examples 1 to 5 and Comparative Examples 1 and 3 to about 0.5 cm x 0.5 cm, freeze-drying and pulverizing to prepare a powder of the optical film, then powdered After mixing the optical film with distilled water in a proportion of 5 wt%, chlorine (Cl), especially chlorine ions (Cl ) are extracted from the optical film. Specifically, 0.2 g of optical film powder and 3.8 g of water are put into a 20 mL vial, and sonication extraction is performed for 2 hours using BRANSON's 5510 ultrasonic bath. As a result, a chlorine extraction mixture containing chlorine (Cl) extracted from the optical film is prepared. The prepared chlorine extraction mixture was filtered through a 0.45 μm nylon filter to prepare a sample for measurement. The area of the peak corresponding to the chlorine ion among the separated ion peaks is checked by introducing 20 μL of the sample for measurement into an ion chromatograph device set at a column temperature of 30° C. and a measurement cell temperature of 35° C. To calculate the chlorine ion content, dilute Thermo Scientific's Dionex Seven Anion Standard with distilled water to prepare a chlorine ion standard solution with a concentration range of 0.04 ppm to 1 ppm (0.04 ppm, 0.06 ppm, 0.08 ppm, 0.1 ppm, 1.0 ppm) Therefore, ion chromatography analysis was performed in the same manner as the sample for measurement. A calibration curve was prepared by confirming the area of the peak corresponding to the chlorine ion measured using the standard solution.
검량선은, 다음 식 4와 같이 1차 함수로 표현될 수 있다.The calibration curve can be expressed as a linear function as in Equation 4 below.
[식 4][Equation 4]
y = ax + by = ax + b
식 4에서, y는 피크 면적이고, x는 표준 용액의 농도이고, a는 검량선의 기울기이고, b는 검량선의 y축 절편이다. 식 4에서 얻어진 검량선을 측정용 샘플의 피크 면적(y)에 적용하여, 측정용 샘플의 염소 농도(x)를 계산할 수 있다. 측정용 샘플의 염소 농도(x)는 다음 식 5로 구해질 수 있다.In Equation 4, y is the peak area, x is the concentration of the standard solution, a is the slope of the calibration curve, and b is the y-axis intercept of the calibration curve. By applying the calibration curve obtained in Equation 4 to the peak area (y) of the sample for measurement, the chlorine concentration (x) of the sample for measurement can be calculated. The chlorine concentration (x) of the sample for measurement can be obtained by the following Equation 5.
[식 5][Equation 5]
x = (y-b)/a x = (y-b)/a
다음, 측정용 샘플 제조에 적용된 희석비를 고려하여, 광학 필름에 포함된 염소의 함량을 계산한다. 구체적으로, 측정용 샘플에 적용된 광학 필름의 중량비는 다음 식 6으로 계산될 수 있다.Next, the content of chlorine contained in the optical film is calculated in consideration of the dilution ratio applied to the preparation of the sample for measurement. Specifically, the weight ratio of the optical film applied to the sample for measurement may be calculated by the following Equation 6.
[식 6][Equation 6]
측정용 샘플 중 광학 필름의 중량비 = (광학 필름의 중량)/(광학 필름의 중량 + 증류수의 중량)Weight ratio of optical film in the sample for measurement = (weight of optical film)/(weight of optical film + weight of distilled water)
식 6에서 "광학 필름의 중량"은 측정용 샘플 제조에 사용된 광학 필름의 중량을 의미한다.In Equation 6, "weight of the optical film" means the weight of the optical film used to prepare the sample for measurement.
다음, 측정용 샘플 중 광학 필름의 중량비와 측정용 샘플의 염소 농도를 이용하여, 다음 식 7에 따라 광학 필름의 염소 농도를 계산한다.Next, the chlorine concentration of the optical film is calculated according to Equation 7 below by using the weight ratio of the optical film among the measurement samples and the chlorine concentration of the measurement sample.
[식 7][Equation 7]
광학 필름의 염소 농도 = (측정용 샘플의 염소 농도) / (측정용 샘플 중 광학 필름의 중량비)Chlorine concentration of optical film = (chlorine concentration of sample for measurement) / (weight ratio of optical film in sample for measurement)
측정결과는 다음 표 2와 같다.The measurement results are shown in Table 2 below.
구분division TT1 (%)TT 1 (%) TT2 (%)TT 2 (%) ΔTT (%)ΔTT (%) Y.I.(1)Y.I.(1) Y.I.(2)Y.I.(2) ΔY.I.ΔY.I. 헤이즈
(%)
haze
(%)
염소 함량
(ppm)
chlorine content
(ppm)
sTst
실시예 1Example 1 88.9488.94 88.9988.99 0.06 0.06 2.912.91 7.447.44 4.534.53 0.20.2 4949 1.65031.6503
실시예 2Example 2 89.1289.12 89.5689.56 0.49 0.49 2.722.72 7.087.08 4.364.36 0.20.2 3131 1.65741.6574
실시예 3Example 3 88.8188.81 88.6888.68 0.15 0.15 2.712.71 7.187.18 4.474.47 0.20.2 1010 1.66011.6601
실시예 4Example 4 89.1589.15 88.9488.94 0.24 0.24 2.622.62 7.117.11 4.494.49 0.20.2 6.76.7 1.65181.6518
실시예 5Example 5 89.0689.06 89.4089.40 0.38 0.38 2.542.54 6.846.84 4.304.30 0.20.2 2.42.4 1.66561.6656
비교예 1Comparative Example 1 88.6688.66 89.3289.32 0.740.74 3.723.72 9.94 9.94 6.226.22 0.30.3 350350 1.61831.6183
비교예 2Comparative Example 2 88.5988.59 89.1889.18 0.670.67 3.543.54 8.948.94 5.405.40 0.30.3 286286 1.62431.6243
비교예 3Comparative Example 3 88.9088.90 88.2288.22 0.760.76 3.243.24 8.418.41 5.175.17 0.40.4 166166 1.63391.6339
표 2에서 노광처리 전 광학 필름의 광투과도 TT1이 각각의 광학 필름의 광투과도에 해당된다.In Table 2, the light transmittance TT 1 of the optical film before exposure treatment corresponds to the light transmittance of each optical film.
표 2의 측정결과에 개시된 바와 같이, 본 발명의 실시예에 따른 광학 필름은, 낮은 광투과도 변화율(ΔTT), 낮은 황색도, 낮은 황색도 변화, 우수한 광투과도, 낮은 헤이즈, 낮은 염소(Cl) 함량 및 큰 광투과도 기울기(sT)을 가진다는 것을 확인할 수 있다. As disclosed in the measurement results of Table 2, the optical film according to an embodiment of the present invention has a low light transmittance change rate (ΔTT), low yellowness, low yellowness change, excellent light transmittance, low haze, low chlorine (Cl) It can be seen that the content and the large light transmittance slope (sT) have.
[부호의 설명][Explanation of code]
100: 광학 필름100: optical film
200: 표시장치200: display device
501: 표시패널501: display panel

Claims (12)

150℃에서 30분간 열처리 및 가시광선에서 150시간 노광처리 되기 전과 후, 50㎛ 두께를 기준으로, 0% 초과 0.5% 이하의 광투과도 변화율(ΔTT)을 갖는, 광학 필름:An optical film having a light transmittance change rate (ΔTT) of greater than 0% and 0.5% or less, based on a thickness of 50 μm, before and after heat treatment at 150° C. for 30 minutes and exposure treatment for 150 hours in visible light:
여기서, 광투과도 변화율(ΔTT)은 다음 식 1로 계산되며, Here, the rate of change of light transmittance (ΔTT) is calculated by Equation 1 below,
[식 1][Equation 1]
ΔTT (%) = [|TT2-TT1|/TT1] x 100ΔTT (%) = [|TT 2 -TT 1 |/TT 1 ] x 100
상기 식 1에서, TT1은 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 되기 전 상기 광학 필름의 광투과도(TT)이고, TT2는 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 된 후 상기 광학 필름의 광투과도(TT)이며, In Equation 1, TT 1 is the light transmittance (TT) of the optical film before heat treatment at 150° C. for 30 minutes and exposure to visible light for 150 hours, TT 2 is heat treatment at 150° C. for 30 minutes and It is the light transmittance (TT) of the optical film after exposure to visible light for 150 hours,
상기 가시광선에 의한 노광처리 조건은, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(xenon) 램프를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 상기 광학 필름에 광을 조사하는 조건이다.The exposure treatment conditions by the visible light were, using a xenon lamp in an environment where an average temperature of 25° C. and an average relative humidity of 30% were maintained, and a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, for 150 hours Conditions for irradiating light to the optical film.
제1항에 있어서, The method of claim 1,
50㎛ 두께를 기준으로, 370nm에서 430nm까지의 파장 영역에서, 1.65 [%/nm] 이상의 광투과도 기울기(sT)를 갖는, 광학 필름:Based on a thickness of 50 μm, in the wavelength region from 370 nm to 430 nm, having a light transmittance slope (sT) of 1.65 [%/nm] or more, an optical film:
여기서, 광투과도 기울기(sT)는 파장 변화에 대한 광투과도 변화로서, 다음 식 2에 의하여 계산되며,Here, the light transmittance slope (sT) is the light transmittance change with respect to the wavelength change, and is calculated by the following Equation 2,
[식 2][Equation 2]
sT (%/nm) = ΔT/ΔλsT (%/nm) = ΔT/Δλ
상기 식 2에서, Δλ는 nm 단위로 표시되는 광의 파장을 나타내며 ΔT는 % 단위로 표시되는 광투과도 변화를 나타낸다.In Equation 2, Δλ denotes the wavelength of light expressed in nm, and ΔT denotes a change in light transmittance expressed in %.
제1항에 있어서, The method of claim 1,
50㎛ 두께를 기준으로, 88% 이상의 광투과도를 갖는, 광학 필름.Based on the thickness of 50㎛, having a light transmittance of 88% or more, an optical film.
제1항에 있어서, The method of claim 1,
50㎛ 두께를 기준으로, 3 이하의 황색도를 갖는, 광학 필름.An optical film having a yellowness of 3 or less, based on a thickness of 50 μm.
제1항에 있어서, The method of claim 1,
50㎛ 두께를 기준으로, 1.0% 이하의 헤이즈(haze)를 갖는, 광학 필름.An optical film having a haze of 1.0% or less, based on a thickness of 50 μm.
제1항에 있어서, The method of claim 1,
중량 기준으로 120 ppm (0.012 중량%) 이하의 염소(Cl)를 포함하는, 광학 필름.An optical film comprising up to 120 ppm (0.012 wt %) chlorine (Cl) by weight.
제1항에 있어서, The method of claim 1,
중량 기준으로 50 ppm (0.005 중량%) 이하의 염소(Cl)를 포함하는, 광학 필름.An optical film comprising up to 50 ppm (0.005% by weight) chlorine (Cl) by weight.
제1항에 있어서,The method of claim 1,
150℃에서 30분간 열처리 및 가시광선에서 150시간 노광처리 되기 전과 후, 50㎛ 두께를 기준으로, 황색도(Y.I.) 변화(ΔY.I.)가 5 이하인, 광학 필름:An optical film having a yellowness (Y.I.) change (ΔY.I.) of 5 or less, based on a thickness of 50 μm, before and after heat treatment at 150° C. for 30 minutes and exposure treatment in visible light for 150 hours:
여기서, 황색도 변화(ΔY.I.)는 다음 식 3으로 계산되며, Here, the change in yellowness (ΔY.I.) is calculated by the following Equation 3,
[식 3][Equation 3]
ΔY.I. = Y.I.(2) - Y.I.(1)ΔY.I. = Y.I.(2) - Y.I.(1)
상기 식 3에서, Y.I.(1)은 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 되기 전 상기 광학 필름의 황색도(Y.I.)이고, Y.I.(2)는 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 된 후 상기 광학 필름의 광투과도 황색도(Y.I.)이며, In Equation 3, Y.I. (1) is the yellowness (Y.I.) of the optical film before heat treatment at 150° C. for 30 minutes and exposure to visible light for 150 hours, and Y.I. (2) is at a temperature of 150° C. After heat treatment for 30 minutes and exposure to visible light for 150 hours, the light transmittance of the optical film is also yellowness (Y.I.),
상기 가시광선에 의한 노광처리 조건은, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(xenon) 램프를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 상기 광학 필름에 광을 조사하는 조건이다.The exposure treatment conditions by the visible light were, using a xenon lamp in an environment where an average temperature of 25° C. and an average relative humidity of 30% were maintained, and a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, for 150 hours Conditions for irradiating light to the optical film.
제1항에 있어서, The method of claim 1,
이미드 반복 단위 및 아마이드 반복 단위 중 적어도 하나를 포함하는, 광학 필름.An optical film comprising at least one of an imide repeat unit and an amide repeat unit.
제1항에 있어서, The method of claim 1,
중량 기준으로, 30 ppm (0.003 중량%) 이하의 환형 에테르(cyclic ether)계 화합물을 포함하는, 광학 필름.An optical film comprising, by weight, 30 ppm (0.003% by weight) or less of a cyclic ether-based compound.
150℃에서 30분간 열처리 및 가시광선에서 150시간 노광처리 되기 전과 후, 50㎛ 두께를 기준으로, 황색도(Y.I.) 변화(ΔY.I.)가 5 이하인, 광학 필름:An optical film having a yellowness (Y.I.) change (ΔY.I.) of 5 or less, based on a thickness of 50 μm, before and after heat treatment at 150° C. for 30 minutes and exposure treatment in visible light for 150 hours:
여기서, 황색도 변화(ΔY.I.)는 다음 식 3으로 계산되며, Here, the change in yellowness (ΔY.I.) is calculated by the following Equation 3,
[식 3][Equation 3]
(ΔY.I.) = Y.I.(2) - Y.I.(1)(ΔY.I.) = Y.I.(2) - Y.I.(1)
상기 식 3에서, Y.I.(1)은 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 되기 전 상기 광학 필름의 황색도(Y.I.)이고, Y.I.(2)는 150℃의 온도에서 30분간 열처리 및 150시간 동안 가시광선에서 노광처리 된 후 상기 광학 필름의 광투과도 황색도(Y.I.)이며, In Equation 3, Y.I. (1) is the yellowness (Y.I.) of the optical film before heat treatment at 150° C. for 30 minutes and exposure to visible light for 150 hours, and Y.I. (2) is at a temperature of 150° C. After heat treatment for 30 minutes and exposure to visible light for 150 hours, the light transmittance of the optical film is also yellowness (Y.I.),
상기 가시광선에 의한 노광처리 조건은, 평균 온도 25℃, 평균 상대 습도 30%가 유지되는 환경에서 제논(xenon) 램프를 사용하여, 중심 파장 420nm에서 0.8 W/m2 의 광량으로, 150 시간 동안 상기 광학 필름에 광을 조사하는 조건이다.The exposure treatment conditions by the visible light were, using a xenon lamp in an environment where an average temperature of 25° C. and an average relative humidity of 30% were maintained, and a light quantity of 0.8 W/m 2 at a central wavelength of 420 nm, for 150 hours Conditions for irradiating light to the optical film.
표시패널; 및display panel; and
상기 표시패널 상에 배치된, 제1항 내지 제11항 중 어느 한 항의 광학 필름;The optical film of any one of claims 1 to 11, disposed on the display panel;
을 포함하는, 표시장치.Including, a display device.
PCT/KR2021/019140 2020-12-31 2021-12-16 Optical film with low optical transmittance change ratio and display device including same WO2022145824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0188956 2020-12-31
KR1020200188956A KR102591029B1 (en) 2020-12-31 2020-12-31 Optical film having low variation of light transmission rate and display apparatus comprising the same

Publications (1)

Publication Number Publication Date
WO2022145824A1 true WO2022145824A1 (en) 2022-07-07

Family

ID=82260586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019140 WO2022145824A1 (en) 2020-12-31 2021-12-16 Optical film with low optical transmittance change ratio and display device including same

Country Status (3)

Country Link
KR (1) KR102591029B1 (en)
TW (1) TWI801037B (en)
WO (1) WO2022145824A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160759A (en) * 2001-09-14 2003-06-06 Nippon Steel Corp Silica-based coating liquid, silica-based coating film using it and base material coated with the same film
KR20160081829A (en) * 2014-12-30 2016-07-08 코오롱인더스트리 주식회사 Polyamide-imide precursor composition, polyamide-imide film and display device
KR20170043885A (en) * 2015-10-14 2017-04-24 삼성전자주식회사 Windows for display device and display device including the same
KR20190065977A (en) * 2017-12-04 2019-06-12 코오롱인더스트리 주식회사 Mothod of Producing Polyimide film and Polyimide film thereby
KR20190087504A (en) * 2016-12-22 2019-07-24 후지필름 가부시키가이샤 Optical film and manufacturing method of optical film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149858A (en) * 1997-07-31 1999-02-23 Toray Ind Inc Polyamide-imide and its production
JP2007078786A (en) * 2005-09-12 2007-03-29 Teijin Dupont Films Japan Ltd Optical film for display
JP2015093966A (en) * 2013-11-13 2015-05-18 デクセリアルズ株式会社 Polyimide, polyimide solution, molded body and optical device
JP6482977B2 (en) * 2014-11-10 2019-03-13 住友化学株式会社 Laminated film for flexible device, optical member, display member, front plate, and method for producing laminated film for flexible device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160759A (en) * 2001-09-14 2003-06-06 Nippon Steel Corp Silica-based coating liquid, silica-based coating film using it and base material coated with the same film
KR20160081829A (en) * 2014-12-30 2016-07-08 코오롱인더스트리 주식회사 Polyamide-imide precursor composition, polyamide-imide film and display device
KR20170043885A (en) * 2015-10-14 2017-04-24 삼성전자주식회사 Windows for display device and display device including the same
KR20190087504A (en) * 2016-12-22 2019-07-24 후지필름 가부시키가이샤 Optical film and manufacturing method of optical film
KR20190065977A (en) * 2017-12-04 2019-06-12 코오롱인더스트리 주식회사 Mothod of Producing Polyimide film and Polyimide film thereby

Also Published As

Publication number Publication date
KR102591029B1 (en) 2023-10-17
TWI801037B (en) 2023-05-01
KR20220096480A (en) 2022-07-07
TW202231748A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2015183056A1 (en) Polyimide-based liquid and polyimide-based film produced using same
WO2017111299A1 (en) Polyamic acid composition with improved adhesive strength and polyimide film comprising same
WO2017111300A1 (en) Polyamic acid solution to which diamine monomer having novel structure is applied, and polyimide film comprising same
WO2018038436A1 (en) Diamine compound and method for producing same
EP2553001A2 (en) Polyimide film
WO2014104557A1 (en) Novel polyamideimide having low thermal expansion coefficient
WO2018117551A1 (en) Transparent polyimide film
WO2019235712A1 (en) Siloxane compound and polyimide precursor composition comprising same
WO2020111522A1 (en) Photosensitive resin composition, film, and electronic device
WO2021060752A1 (en) Polyimide-based film having excellent surface evenness and method for producing same
WO2020159174A1 (en) Polyimide-based polymer film, and substrate for display device and optical device, each using same
WO2022145824A1 (en) Optical film with low optical transmittance change ratio and display device including same
WO2014104496A1 (en) Monomer, hardmask composition including monomer, and method for forming pattern by using hardmask composition
WO2022145825A1 (en) Optical film having low chlorine concentration, manufacturing method therefor and display device comprising same
WO2015182925A1 (en) Novel diamine synthesis, and liquid crystal alignment agent using same
WO2020105933A1 (en) Liquid crystal alignment agent composition, method for preparing liquid crystal alignment film by using same, and liquid crystal alignment film and liquid crystal display device which use same
WO2022145823A1 (en) Optical film having excellent optical property, and display device comprising same
WO2022145826A1 (en) Optical film having low color transformation index, and display device comprising same
WO2022145891A1 (en) Optical film including polymer resin having excellent degree of polymerization, and display device including same
WO2022010253A1 (en) Light-transmissive film, manufacturing method therefor, and display device comprising same
WO2023128075A1 (en) Optical film and method of preparing same
WO2022145950A1 (en) Precursor, polymer, optical film comprising polymer, and display device comprising optical film
WO2022045737A1 (en) Positive photosensitive resin composition
WO2024123144A1 (en) Optical film having excellent dent property, and element comprising same
WO2022055235A1 (en) Polyimide-based polymer film, and substrate for display device and optical device, each using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915622

Country of ref document: EP

Kind code of ref document: A1