WO2022145680A1 - 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 호중구성 폐질환의 예방 또는 치료용 조성물 - Google Patents

마이크로코커스 루테우스 유래 세포외 소포를 포함하는 호중구성 폐질환의 예방 또는 치료용 조성물 Download PDF

Info

Publication number
WO2022145680A1
WO2022145680A1 PCT/KR2021/015764 KR2021015764W WO2022145680A1 WO 2022145680 A1 WO2022145680 A1 WO 2022145680A1 KR 2021015764 W KR2021015764 W KR 2021015764W WO 2022145680 A1 WO2022145680 A1 WO 2022145680A1
Authority
WO
WIPO (PCT)
Prior art keywords
micrococcus luteus
vesicles
composition
lung disease
derived
Prior art date
Application number
PCT/KR2021/015764
Other languages
English (en)
French (fr)
Inventor
김윤근
Original Assignee
주식회사 엠디헬스케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210148789A external-priority patent/KR20220094112A/ko
Application filed by 주식회사 엠디헬스케어 filed Critical 주식회사 엠디헬스케어
Priority to US18/259,654 priority Critical patent/US20240066077A1/en
Priority to JP2023539151A priority patent/JP2024500997A/ja
Priority to EP21915478.8A priority patent/EP4268835A1/en
Priority to CN202180088250.3A priority patent/CN116801862A/zh
Publication of WO2022145680A1 publication Critical patent/WO2022145680A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy

Definitions

  • the present invention relates to an extracellular vesicle derived from Micrococcus luteus and its use, and more particularly, to neutrophilic pulmonary disease comprising an extracellular vesicle derived from Micrococcus luteus as an active ingredient. ) relates to a composition for prevention or treatment, and the like.
  • Immunity is a defense mechanism of cells against biological, chemical, physical, and mental stress, and occurs through innate immunity and adaptive immunity.
  • PAMP pathogen-associated molecular pattern
  • DAMP damage-associated molecular pattern
  • PRR pattern recognition receptor
  • NOD-like receptor Nucleotide-binding oligomerization domain-like receptor
  • NLRP Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing
  • NOD-like receptor which recognizes PAMP or DAMP present in the cell and forms an inflammasome for inflammatory response through K+ efflux and caspase-1 activation will cause
  • PAMP or DAMP PAMP
  • the NLRP3 inflammasome is an important signaling system in the pathogenesis of various intractable inflammatory diseases has attracted attention.
  • Microbiota or microbiome refers to a microbial community, including bacteria, archaea, and eukaryotes, that exist in a given habitat.
  • Bacterial-derived vesicles secreted locally are absorbed through epithelial cells of the mucous membrane to induce a local inflammatory response, and vesicles that have passed through epithelial cells are systemically absorbed through lymphatic vessels and distributed to each organ. Regulates immune and inflammatory responses.
  • vesicles derived from pathogenic Gram-negative bacteria such as E. coli ( Eshcherichia coli ) cause colitis locally as pathogenic nanoparticles. It promotes inflammatory response and blood clotting, and is absorbed into muscle cells where insulin works, leading to insulin resistance and diabetes.
  • vesicles derived from beneficial bacteria can control diseases by regulating abnormalities in immune and metabolic functions caused by pathogenic vesicles.
  • Micrococcus luteus is a gram-positive bacterium belonging to the genus Micrococcus, and is a bacterium widely distributed in nature such as water, dust, soil, and the like.
  • This fungus has catalase, which converts active oxygen, hydrogen peroxide, into water, and produces riboflavin when grown in toxic organic pollutants such as pyridine.
  • it has a lutein pigment that absorbs ultraviolet rays and exhibits antioxidant effects.
  • this fungus is isolated from dairy products and beer, grows in a dry environment or high salt environment, does not form spores, but is known to survive for a long time even at a refrigeration temperature such as a refrigerator.
  • the present inventors confirmed that when micrococcus luteus -derived vesicles were administered orally or nasally, they passed through the mucosa and were distributed in the lungs, When the vesicles were treated, it was confirmed that the secretion of inflammatory mediators by pathogenic nanoparticles was significantly inhibited.
  • micrococcus luteus-derived vesicles efficiently inhibit immune dysfunction caused by biological causative factors, and also regulate immune dysfunction by suppressing the expression of NLRP3 protein, a pattern recognition receptor (PRR) related to the pathogenesis of various diseases, It was confirmed that the cellular homeostasis was increased by increasing the endothelial NO synthase (eNOS) signal. In addition, it was confirmed that when Micrococcus luteus vesicles were treated in a mouse model of neutrophil lung disease caused by bacterial-derived vesicles and LPS-contaminated allergens, neutrophil pulmonary inflammation and airway hypersensitivity were significantly suppressed. completed.
  • NLRP3 protein a pattern recognition receptor
  • an object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of neutrophilic lung disease comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • an object of the present invention is to provide a food composition for preventing or improving neutrophilic pulmonary disease, comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • Another object of the present invention is to provide an inhalant composition for preventing or treating neutrophilic pulmonary disease, comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • an object of the present invention is to provide a quasi-drug composition for preventing or improving neutrophilic lung disease, comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • an object of the present invention is to provide a composition for drug delivery comprising vesicles derived from Micrococcus luteus as an active ingredient, for the treatment of neutrophilic lung disease.
  • the present invention can provide a pharmaceutical composition for the prevention or treatment of neutrophilic lung disease comprising a vesicle derived from Micrococcus luteus as an active ingredient.
  • the present invention can provide a food composition for the prevention or improvement of neutrophilic lung disease, comprising a vesicle derived from Micrococcus luteus as an active ingredient.
  • the present invention can provide an inhalant composition for preventing or treating neutrophilic lung disease, comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • the present invention can provide a quasi-drug composition for preventing or improving neutrophilic lung disease, comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • the present invention can provide a composition for drug delivery comprising a vesicle derived from Micrococcus luteus as an active ingredient, for treating neutrophilic lung disease.
  • the lung disease may be a lung disease mediated by NLRP3 inflammasome (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 inflammasome), but is not limited thereto.
  • NLRP3 inflammasome Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 inflammasome
  • the lung disease is asthma (Asthma), emphysema (Emphysema), cystic fibrosis (CF), bacterial pneumonia (Bacterial pneumonia), viral pneumonia (Viral pneumonia), idiopathic pulmonary fibrosis (Idiopathic pulmonary fibrosis; IPF), interstitial pneumonia (Interstitial pneumonitis), acute respiratory distress syndrome (ARDS) and acute lung injury (ALI)
  • asthma asthma
  • Emphysema emphysema
  • cystic fibrosis CF
  • Bacal pneumonia viral pneumonia
  • IPF idiopathic pulmonary fibrosis
  • IPF interstitial pneumonia
  • ARDS acute respiratory distress syndrome
  • ALI acute lung injury
  • the asthma may be neutrophilic asthma, but is not limited thereto.
  • the vesicle may have an average diameter of 10 to 200 nm, but is not limited thereto.
  • the vesicle may be naturally secreted or artificially produced in Micrococcus luteus , but is not limited thereto.
  • the composition may inhibit the activity of NLRP3 inflammasome, but is not limited thereto.
  • the present invention provides a method for preventing or treating neutrophilic lung disease, comprising administering a composition comprising vesicles derived from Micrococcus luteus as an active ingredient to an individual in need thereof.
  • the present invention provides a preventive or therapeutic use of a composition comprising vesicles derived from Micrococcus luteus as an active ingredient for preventing or treating neutrophilic lung disease.
  • the present invention provides the use of vesicles derived from Micrococcus luteus for the manufacture of a medicament for the treatment of neutrophilic lung disease.
  • the present invention includes the step of administering a composition comprising a vesicle derived from Micrococcus luteus carrying a desired neutrophilic lung disease treatment drug as an active ingredient to an individual in need thereof, neutrophilic lung A method of delivering a drug for treating a disease is provided.
  • the present invention provides a neutrophilic pulmonary disease treatment drug delivery use of a composition comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • the present inventors confirmed that when micrococcus luteus-derived vesicles were administered orally or nasally, the vesicles passed through the mucosa to the lungs.
  • the vesicles were treated with epithelial cells and inflammatory cells, the secretion of inflammatory mediators by biological causative factors was significantly inhibited, and when the cells were treated with the vesicles, NLRP3 protein expression by biological causative factors was suppressed. was confirmed.
  • the vesicles were administered to a mouse model of neutrophilic lung disease caused by biological factors, it was confirmed that neutrophilic lung inflammation and functional changes were significantly inhibited, Micrococcus luteus according to the present invention.
  • derived vesicles can be usefully used in the development of pharmaceuticals or health functional foods for preventing, improving symptoms, or treating neutrophilic lung disease, as well as being usefully used as a drug delivery system for treating the disease. will be able
  • 1A is a diagram illustrating the measurement of fluorescence intensity in each organ by extracting each organ by time after oral administration of micrococcus luteus-derived vesicles to mice.
  • 1B is a diagram showing the distribution of vesicles in the lungs over time after oral administration of micrococcus luteus-derived vesicles to mice.
  • FIG. 2 is a diagram showing the distribution of vesicles in organs for each time after intranasal administration of vesicles derived from Micrococcus luteus to mice.
  • MDH-101 EV Micrococcus luteus-derived vesicles
  • FIG. 4A to 4B show the results of confirming the inhibitory effect of IL-8 secretion, which is an inflammatory mediator, of Micrococcus luteus-derived vesicles in epithelial cells. It is a diagram showing the IL-8 secretion inhibitory effect, and FIG. 4b is a diagram showing the result of comparing the positive control drug dexamethasone (Dex) and the IL-8 secretion inhibitory effect (*P ⁇ 0.05, **P ⁇ 0.01, ***P ⁇ 0.001, n.s. means not significant, hereinafter the same).
  • Dex positive control drug dexamethasone
  • FIG. 5 is a diagram showing an experimental protocol for evaluating the inflammatory mediator secretion inhibitory effect of Micrococcus luteus-derived vesicles ( M. luteus EV) in macrophages (RAW 264.7), which are inflammatory cells.
  • FIG. 6a to 6b confirm the inflammatory mediator secretion inhibitory effect of Micrococcus luteus-derived vesicles ( M. luteus EV) in macrophages
  • FIG. 6a is TNF- ⁇ secretion inhibitory effect
  • FIG. 6b is IL-6 secretion inhibition A drawing showing the effect.
  • PBMC Plasma peripheral blood mononuclear cell
  • E. coli EV neutrophil-derived vesicle
  • NE neurotrophil elastase
  • M. luteus EV Micrococcus luteus-derived vesicles
  • E. coli EV E. coli EV
  • 10a to 10b show the results of confirming the anti-inflammatory effect of micrococcus luteus-derived vesicles ( M. luteus EV) in a mouse model of neutrophilic lung disease caused by E. coli-derived vesicles ( E. coli EV), which are pathogenic nanoparticles.
  • 10a is a view showing the results of confirming the number of macrophages and neutrophils in the bronchoalveolar lavage fluid (BALF) of the mouse model (NC: Negative Control)
  • FIG. 10b is a view showing the results of confirming the infiltration of inflammatory cells in the lung tissue. .
  • 11a to 11c confirm the inflammatory mediator secretion inhibitory effect of Micrococcus luteus-derived vesicles ( M. luteus EV) in a mouse model of neutrophilic lung disease caused by E. coli-derived vesicles ( E. coli EV), which are pathogenic nanoparticles. It is a diagram showing the results of confirming the secretion inhibitory effect of CXCL-1 (a), TNF- ⁇ (b), and IL-1 ⁇ (c) in the bronchoalveolar lavage fluid (BALF) of the mouse.
  • M. luteus EV Micrococcus luteus-derived vesicles
  • E. coli EV E. coli EV
  • 12a to 12c show the effect of micrococcus luteus-derived vesicles ( M. luteus EV) on the secretion of immune-related cytokines in a mouse model of neutrophilic lung disease caused by pathogenic nanoparticles, E. coli EVs.
  • 12A is a view showing the results of confirming the secretion of IL-6
  • FIG. 12B is IL-17
  • FIG. 12C is IL-10.
  • M. luteus EV micrococcus luteus-derived vesicles
  • NC pathogenic nanoparticles
  • MDH-101 Micrococcus luteus-derived vesicles
  • FIG. 15a to 15c confirm the anti-inflammatory effect of Micrococcus luteus-derived vesicles (MEV) in a mouse model of neutrophil lung disease caused by an LPS-contaminated allergen (LPS + OVA). It is a view showing the result of confirming the total number of inflammatory cells and the number of neutrophils in the alveolar lavage fluid (BALF), and FIG. 15c is a view showing the result of confirming the infiltration of inflammatory cells in the lung tissue (LPS: LPS-contaminated allergen).
  • MMV Micrococcus luteus-derived vesicles
  • Micrococcus luteus-derived vesicles are inflammatory mediators IL-1 ⁇ (a) and Th17 immune response indicators in a mouse model of neutrophil lung disease caused by an LPS-contaminated allergen (LPS + OVA). It is a diagram confirming the effect on IL-17(b) (LPS: LPS-contaminated allergen).
  • LPS + OVA an LPS-contaminated allergen
  • E. coli EV E. coli EV
  • the present invention relates to vesicles derived from Micrococcus luteus and uses thereof.
  • the present inventors confirmed that when micrococcus luteus-derived vesicles were administered orally or nasally, the vesicles passed through the mucosa and were distributed in the lung tissue.
  • the vesicles are treated in epithelial cells, the secretion of inflammatory mediators by biological causative factors is significantly inhibited, and when the vesicles are treated with macrophages and neutrophils, which are representative inflammatory cells, secretion of inflammatory mediators by biological causative factors and neutrophil activation were confirmed to be dose-dependently inhibited.
  • the present invention can provide a pharmaceutical composition for preventing or treating neutrophilic lung disease, comprising micrococcus luteus-derived vesicles as an active ingredient.
  • the term “neutrophilic pulmonary disease” refers to neutrophil infiltration in the lung tissue by biological causative factors present in dust, such as viruses, bacterial-derived vesicles, LPS (Lipopolysaccharide), and allergens.
  • the neutrophilic lung disease may be a lung disease mediated by NLRP3 inflammasome (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 inflammasome). It is not limited, and any lung disease characterized by neutrophil infiltration in lung tissue may be included.
  • the neutrophilic lung disease is, for example, asthma (Asthma), emphysema (Emphysema), cystic fibrosis (CF), bacterial pneumonia (Bacterial pneumonia), viral pneumonia (Viral pneumonia), idiopathic pulmonary fibrosis (Idiopathic) pulmonary fibrosis (IPF), interstitial pneumonitis, acute respiratory distress syndrome (ARDS), and acute lung injury (ALI), but are not limited thereto.
  • the “pulmonary disease mediated by NLRP3 inflammasome” means a lung disease caused by abnormally excessive formation of inflammasome.
  • the Micrococcus luteus-derived vesicle is Since it can inhibit the formation of NLRP3 inflammasome, it is possible to effectively prevent, improve or treat neutrophilic lung disease mediated by NLRP3 inflammasome.
  • the “asthma” is a state in which the bronchial tubes in the lungs are very sensitive, and refers to a representative allergic disease caused by the combination of genetic and environmental factors.
  • the eosinophilic (eosinophilic) and neutrophilic (neutrophilic) can be divided, in the present invention, specifically, the asthma may be neutrophilic asthma.
  • extracellular vesicle refers to a structure made of a nano-sized membrane secreted by various bacteria, for example, endotoxin (lipopolysaccharide) , vesicles derived from Gram-negative bacteria such as Escherichia coli or outer membrane vesicles (OMVs), which contain toxic proteins and bacterial DNA and RNA, and peptidoglycan, a component of the cell wall of bacteria, in addition to proteins and nucleic acids.
  • endotoxin lipopolysaccharide
  • OMVs outer membrane vesicles
  • vesicles derived from Gram-positive bacteria such as Micrococcus bacteria that also contain Peptidoglycan and Lipoteichoic acid.
  • the extracellular vesicles or vesicles may collectively refer to all membrane structures naturally secreted or artificially produced in Micrococcus luteus , and in the present invention, MDH-101, It can be variously expressed as MDH-101 EV, M. luteus EV, or MlEV.
  • the vesicles are heat-treated or high-pressure treated in the Micrococcus luteus culture process, or the bacterial culture medium is centrifuged, ultra-high-speed centrifugation, high-pressure treatment, extrusion, sonication, cell lysis, homogenization, freeze-thaw, electroporation, mechanical degradation,
  • the separation may be performed using one or more methods selected from the group consisting of chemical treatment, filtration by a filter, gel filtration chromatography, pre-flow electrophoresis, and capillary electrophoresis. In addition, it may further include processes such as washing for removal of impurities, concentration of the obtained vesicles, and the like.
  • the vesicles separated by the method have a spherical shape, and have an average diameter of 10-200 nm, 10-190 nm, 10-180 nm, 10-170 nm, 10-160 nm, 10-150 nm, 10 to 140 nm, 10-130 nm, 10-120 nm, 10-110 nm, 10-100 nm, 10-90 nm, 10-80 nm, 10-70 nm, 10-60 nm, 10-50 nm, 20 to 200 nm, 20 to 180 nm, 20 to 160 nm, 20 to 140 nm, 20 to 120 nm, 20 to 100 nm, or 20 to 80 nm, preferably, 20 to 200 nm, It is not limited thereto.
  • the term “comprising as an active ingredient” means including an amount sufficient to achieve efficacy or activity of the Micrococcus luteus-derived vesicle.
  • the content of the vesicles in the composition of the present invention can be appropriately adjusted depending on the symptoms of the disease, the degree of progression of the symptoms, the condition of the patient, etc., for example, 0.0001 to 99.9% by weight, or 0.001 to 50% by weight based on the total weight of the composition.
  • the content ratio is a value based on the dry amount from which the solvent is removed.
  • the pharmaceutical composition according to the present invention may include a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier is commonly used in formulation, and includes, but is not limited to, saline, sterile water, Ringer's solution, buffered saline, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposome, and the like. It does not, and may further include other conventional additives, such as antioxidants and buffers, if necessary.
  • diluents, dispersants, surfactants, binders, lubricants and the like may be additionally added to form an injectable formulation such as an aqueous solution, suspension, emulsion, etc., pills, capsules, granules, or tablets.
  • suitable pharmaceutically acceptable carriers and formulations formulations can be preferably made according to each component using the method disclosed in Remington's literature.
  • the pharmaceutical composition of the present invention is not particularly limited in the formulation, but may be formulated as an injection, inhalant, external preparation for skin, or oral ingestion.
  • the pharmaceutical composition of the present invention may be administered orally or parenterally (eg, intravenously, subcutaneously, dermally, nasally, or applied to the respiratory tract) according to a desired method, and the dosage may vary depending on the patient's condition and body weight, disease Although it varies depending on the degree, drug form, administration route, and time of administration, it may be appropriately selected by those skilled in the art.
  • a pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level depends on the type, severity, drug activity, and drug of the patient. It can be determined according to factors including sensitivity, administration time, administration route and excretion rate, duration of treatment, concurrent drugs, and other factors well known in the medical field.
  • the composition according to the present invention may be administered as an individual therapeutic agent or may be administered in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered single or multiple. In consideration of all of the above factors, it is important to administer an amount that can obtain the maximum effect with a minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the effective amount of the pharmaceutical composition according to the present invention may vary depending on the age, sex, and weight of the patient, and generally 0.001 to 150 mg, preferably 0.01 to 100 mg per kg of body weight, is administered daily or every other day. Or it can be administered in divided doses 1 to 3 times a day. However, since it may increase or decrease depending on the route of administration, the severity of obesity, sex, weight, age, etc., the dosage is not intended to limit the scope of the present invention in any way.
  • prevention refers to asthma, emphysema, cystic fibrosis (CF), bacterial pneumonia, and viral pneumonia by administration of the composition according to the present invention.
  • Neutrophils such as viral pneumonia), idiopathic pulmonary fibrosis (IPF), interstitial pneumonitis, acute respiratory distress syndrome (ARDS), and acute lung injury (ALI) It means any action that suppresses or delays the onset of lung disease.
  • treatment means asthma, emphysema, cystic fibrosis (CF), bacterial pneumonia, and viral pneumonia by administration of the composition according to the present invention.
  • Neutrophils such as viral pneumonia), idiopathic pulmonary fibrosis (IPF), interstitial pneumonitis, acute respiratory distress syndrome (ARDS), and acute lung injury (ALI) It means any action that improves or beneficially changes the symptoms of lung disease.
  • the present invention provides a method for preventing or treating neutrophilic lung disease, comprising administering a composition comprising vesicles derived from Micrococcus luteus as an active ingredient to an individual in need thereof.
  • the present invention provides a preventive or therapeutic use of a composition comprising vesicles derived from Micrococcus luteus as an active ingredient for preventing or treating neutrophilic lung disease.
  • the present invention provides the use of vesicles derived from Micrococcus luteus for the manufacture of a medicament for the treatment of neutrophilic lung disease.
  • “individual” means a subject in need of treatment for a disease, and more specifically, human or non-human primates, mice, rats, dogs, cats, horses, cattle, etc. It may be a mammal of, but is not limited thereto.
  • administration means providing a predetermined composition of the present invention to an individual by any suitable method.
  • the present invention can provide a food composition for the prevention or improvement of neutrophilic lung disease, comprising a vesicle derived from Micrococcus luteus as an active ingredient.
  • the term “improvement” refers to any action that at least reduces a parameter related to a condition to be treated, for example, the severity of symptoms.
  • the food composition of the present invention may be a health functional food composition, but is not limited thereto.
  • the parcel of the present invention When the parcel of the present invention is used as a food additive, it may be added to food as it is or used together with other food or food ingredients, and may be appropriately used according to a conventional method.
  • the mixing amount of the active ingredient may be suitably determined according to the purpose of its use (for prevention or improvement).
  • the antifoam of the present invention is added in an amount of 15% by weight or less, preferably 10% by weight or less, based on the raw material.
  • the amount may be less than or equal to the above range.
  • Examples of foods to which the above substances can be added include meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gums, dairy products including ice cream, various soups, beverages, tea, drinks, There are alcoholic beverages and vitamin complexes, and includes all health functional foods in the ordinary sense.
  • the health beverage composition according to the present invention may contain various flavoring agents or natural carbohydrates as additional ingredients, as in a conventional beverage.
  • the above-mentioned natural carbohydrates are monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, polysaccharides such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol and erythritol.
  • natural sweeteners such as taumartin and stevia extract, synthetic sweeteners such as saccharin and aspartame, and the like can be used.
  • the proportion of the natural carbohydrate is generally about 0.01-0.20 g, or about 0.04-0.10 g per 100 mL of the composition of the present invention.
  • the present invention can provide an inhalant composition for preventing or treating neutrophilic pulmonary disease, comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • inhalant compositions they may be formulated according to methods known in the art, using a suitable propellant, for example, dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant for example, dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant for example, dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant for example, dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • the present invention can provide a quasi-drug composition for preventing or improving neutrophilic lung disease, comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • the vesicle When the micrococcus luteus -derived vesicle of the present invention is used as a quasi-drug additive, the vesicle may be added as it is or used together with other quasi-drugs or quasi-drug ingredients, and may be appropriately used according to a conventional method.
  • the mixed amount of the active ingredient may be appropriately determined according to the purpose of use (prevention, health or therapeutic treatment).
  • the quasi-drug composition is not particularly limited in its formulation, and may be formulated in various forms in the form of quasi-drugs known in the art that have the effect of preventing or improving neutrophilic lung disease.
  • the quasi-drug composition may be, for example, disinfectant cleaner, shower foam, gargrin, wet tissue, detergent soap, hand wash, humidifier filler, mask, ointment, inhalant or filter filler, but is not limited thereto.
  • the present invention can provide a composition for drug delivery comprising a vesicle derived from Micrococcus luteus as an active ingredient, for treating neutrophilic lung disease.
  • drug delivery refers to any means or action for loading and delivering a drug into the composition according to the present invention in order to deliver the drug to a specific organ, tissue, cell or organelle.
  • the present invention includes the step of administering a composition comprising a vesicle derived from Micrococcus luteus carrying a desired neutrophilic lung disease treatment drug as an active ingredient to an individual in need thereof, neutrophilic lung A method of delivering a drug for treating a disease is provided.
  • the present invention provides a neutrophilic pulmonary disease treatment drug delivery use of a composition comprising vesicles derived from Micrococcus luteus as an active ingredient.
  • Micrococcus luteus After culturing the Micrococcus luteus strain, its vesicles were isolated and characterized. Micrococcus luteus was sub-cultured in MRS (de Man-Rogosa and Sharpe) medium until the absorbance (OD 600) became 1.0-1.5 in an aerobic chamber at 37°C. Thereafter, the medium supernatant containing the strain was recovered, centrifuged at 10,000 g, 4° C. for 20 minutes, the strain was removed, and filtered through a 0.22 ⁇ m filter.
  • MRS de Man-Rogosa and Sharpe
  • the filtered supernatant was concentrated to a volume of 50 ml through microfiltration using a MasterFlex pump system (Cole-Parmer, US) with a 100 kDa Pellicon 2 Cassette filter membrane (Merck Millipore, US). Then, the concentrated supernatant was filtered again with a 0.22 ⁇ m filter. Thereafter, the protein was quantified using the BCA assay, and the following experiments were performed on the obtained vesicles.
  • Example 2 Analysis of pharmacokinetic properties of micrococcus luteus-derived vesicles administered orally
  • Micrococcus luteus-derived vesicles stained with a fluorescent dye were orally administered to mice, and the fluorescence expressed in each organ was measured for up to 48 hours.
  • FIG. 1A when the organ distribution over time of vesicles derived from Micrococcus luteus fluorescence-stained was evaluated with images, it was confirmed that the vesicles were distributed in various organs.
  • FIG. 1A when the organ distribution over time of vesicles derived from Micrococcus luteus fluorescence-stained was evaluated with images, it was confirmed that the vesicles were distributed in various organs.
  • FIG. 1A when the organ distribution over time of vesicles derived from Micrococcus luteus fluorescence-stained was evaluated with images, it was confirmed that the vesicles were distributed in various organs.
  • FIG. 1A when the organ distribution over time of vesicles derived from Micrococcus luteus fluorescence-stained was evaluated with images, it was confirmed
  • Example 3 Analysis of pharmacokinetic properties of micrococcus luteus-derived vesicles administered by inhalation
  • micrococcus luteus-derived vesicles stained with a fluorescent dye were administered to the nasal cavity of mice and the fluorescence expressed in each organ was measured for up to 72 hours. did As shown in FIG. 2 , when the organ distribution over time of the fluorescently-stained Micrococcus luteus-derived vesicles was evaluated by images, Micrococcus luteus-derived vesicles were mainly distributed in the lung tissue, which was 1 to 6 hours after administration. until it appeared, and then it was confirmed that it was excreted. From the above results, it can be seen that when micrococcus luteus-derived vesicles are intranasally administered, they pass through the mucous membrane and are absorbed into the body and are mainly distributed in the lung tissue.
  • Example 4 Evaluation of the anti-inflammatory effect of micrococcus luteus-derived vesicles in epithelial cells
  • E. coli-derived vesicles that induce inflammation ( E. coli EV) and the secretion of IL-8, an inflammatory cytokine, was measured by ELISA (Enzyme-linked immunosorbent assay, R&D Systems).
  • ELISA Enzyme-linked immunosorbent assay, R&D Systems.
  • A549 cells were pretreated with micrococcus luteus-derived vesicles at various concentrations (1, 10, 100 ⁇ g/mL) for 24 hours, and then treated with E. coli-derived vesicles at a concentration of 1 ng/mL for 24 hours.
  • IL secreted into the medium -8 was measured.
  • Micrococcus luteus-derived vesicles have better therapeutic efficacy on neutrophilic inflammation than dexamethasone, a representative anti-inflammatory drug, and that the anti-inflammatory effect of Micrococcus luteus-derived vesicles disappears during heat treatment. It can be seen that the anti-inflammatory action is mediated by the protein in the vesicle.
  • Example 5 Evaluation of the anti-inflammatory effect of micrococcus luteus-derived vesicles in macrophages, which are inflammatory cells
  • E. coli-derived vesicles that induce inflammation were treated, and inflammatory
  • the secretion levels of cytokines TNF- ⁇ and IL-6 were measured by ELISA (R&D Systems) method.
  • E. coli-derived vesicles were treated at a concentration of 1 ng/mL for 24 hours, and TNF- secreted into the medium ⁇ and IL-6 were measured.
  • FIGS. 6a and 6b As a result, as shown in FIGS. 6a and 6b, when micrococcus luteus-derived vesicles were pretreated, secretion of TNF- ⁇ ( FIG. 6a ) and IL-6 ( FIG. 6b ) by E. coli-derived vesicles was dose-dependently inhibited was confirmed. From the above results, it can be seen that Micrococcus luteus-derived vesicles effectively inhibit the occurrence of inflammation caused by pathogenic biological factors.
  • neutrophil elastase a granular protein in neutrophils
  • ELISA neutrophil elastase
  • E. coli-derived vesicles E coli EV
  • M. luteus EV Micrococcus luteus-derived vesicles
  • the control drug dexamethasone did not inhibit neutrophil elastase (NE) secretion, which is a neutrophil activation index, but when micrococcus luteus-derived vesicles were treated, dose-dependently inhibited NE secretion from neutrophils. . From the above results, it can be seen that Micrococcus luteus-derived vesicles can effectively treat inflammatory diseases mediated by neutrophilic elastase by activation of neutrophils.
  • NE neutrophil elastase
  • Example 7 Evaluation of the therapeutic effect of Micrococcus luteus-derived vesicles in a mouse model of neutrophilic lung disease
  • E. coli EV E. coli-derived vesicles
  • M. luteus EV micrococcus luteus-derived vesicles
  • the number of inflammatory cells in bronchoalveolar lavage (BALF) and histological changes in the lungs were evaluated in order to evaluate the therapeutic effect on lung inflammation.
  • BALF bronchoalveolar lavage fluid
  • a syringe containing 1 mL of PBS was connected to the airway to collect bronchoalveolar lavage fluid (BALF), and then the total number of cells was measured using Trypan blue (Abcam).
  • Abcam Trypan blue
  • Hematoxylin & Eosin staining method was used to evaluate the histological changes in the lungs. Specifically, after fixing the cells by mounting a slide glass on Cytopro (ELItech), they were stained with Hematoxylin (DAKO) and Eosin (Sigma, USA). After that, the number of neutrophils was measured.
  • FIG. 10a it was confirmed that the number of macrophages and neutrophils in the bronchoalveolar lavage fluid (BALF) decreased in a dose-dependent manner in the group administered with Micrococcus luteus-derived vesicles.
  • FIG. 10b it was confirmed that the infiltration of inflammatory cells was significantly reduced in the lung tissue of the group administered with Micrococcus luteus-derived vesicles.
  • FIGS. 11a to 11c the cytokines CXCL-1 that induce inflammation ( FIG. 11a ), TNF- ⁇ ( FIG. 11b ), And it was confirmed that the secretion of IL-1 ⁇ (Fig. 11c) was dose-dependently inhibited by Micrococcus luteus-derived vesicles.
  • neutrophilic lung inflammatory disease caused by pathogenic nanoparticles can be efficiently treated by Micrococcus luteus-derived vesicles.
  • Example 8 Evaluation of Acquired Immune Modulating Effect of Micrococcus luteus-derived Vesicles in a Mouse Model of Neutrophilic Pulmonary Disease
  • the immune function modulating effect was evaluated by intranasally administering Micrococcus luteus-derived vesicles to the lung disease mouse model of Example 7.
  • FIGS. 12A and 12B the secretion of Th17 immune response-related cytokines IL-6 (FIG. 12A) and IL-17 (FIG. 12B) that induce neutrophilic inflammation was inhibited in Micrococcus luteus-derived vesicles. was confirmed to be dose-dependently inhibited by
  • Example 9 Evaluation of the inhibitory effect of micrococcus luteus-derived vesicles on airway hypersensitivity in a mouse model of neutrophilic lung disease
  • Inflammatory reactions caused by abnormal immune function cause functional changes in organs and cause pulmonary function abnormalities.
  • the functional change of the lungs was evaluated by intranasally administering Micrococcus luteus-derived vesicles to the lung disease mouse model of Example 7.
  • functional changes were evaluated by measuring airway hyperresponsiveness (AHR) induced by methacholine using flexiVent (SCIREQ, Canada). That is, after administration of aerosol methacholine (Sigma, USA) at various concentrations (0 mg/mL, 6.25 mg/mL, 12.5 mg/mL and 25 mg/mL) to each mouse, the highest airway response to inhaled methacholine was measured.
  • AHR airway hyperresponsiveness
  • SCIREQ flexiVent
  • Example 10 Evaluation of the anti-inflammatory effect of micrococcus luteus-derived vesicles in a mouse model of lung disease caused by LPS-contaminated allergens
  • a mouse model of neutrophilic lung disease was prepared by intranasally administering an allergen (ovalbumin; OVA) together with a high concentration of LPS.
  • allergen ovalbumin; OVA
  • OVA protein antigen ovalbumin
  • LPS protein antigen ovalbumin
  • 50 ⁇ g of OVA was administered intranasally for 3 weeks to cause lung disease caused by protein antigen.
  • a mouse model was created.
  • Micrococcus luteus-derived vesicles (M. luteus EV) were intranasally administered simultaneously with OVA for 3 weeks to induce disease by OVA.
  • Dex dexamectasone
  • the group administered with Micrococcus luteus-derived vesicles was similar to the group administered with dexamethasone, compared to the LPS-contaminated allergen-induced lung disease-positive control group, bronchoalveolar lavage fluid (BALF).
  • BALF bronchoalveolar lavage fluid
  • the group administered with Micrococcus luteus-derived vesicles compared to the positive group for lung disease induced by the LPS-contaminated allergen was Similar to the group administered with dexamethasone, it was confirmed that the infiltration of inflammatory cells into the lung tissue was significantly inhibited.
  • IL-1 ⁇ and IL-17 in bronchoalveolar lavage were measured using ELISA (R&D Systems).
  • FIGS. 16A and 16B the inflammatory cytokine IL-1 ⁇ ( FIG. 16A ) in the bronchoalveolar lavage fluid (BALF) and IL-17 ( FIG. 16B ), which is an indicator of Th17 immune response by protein antigen, were It was confirmed that the vesicles were significantly reduced by Micrococcus luteus-derived vesicles.
  • neutrophilic lung disease caused by a Th17 immune response to an allergen can be efficiently treated by Micrococcus luteus-derived vesicles.
  • Example 11 Analysis of immunomodulatory mechanisms of micrococcus luteus-derived vesicles
  • NLRP3 protein present in the cytoplasm is known as a key signaling pathway in the pathogenesis of various intractable diseases caused by abnormal immune function.
  • t-bet and ROR- ⁇ t which are related to the pathogenesis of immune dysfunction caused by protein antigens, are known as key signaling substances in the generation of hypersensitivity reactions by Th1 and Th17 cells to antigens, respectively.
  • the group administered with the LPS-contaminated allergen significantly increased NLRP3 expression compared to the control group
  • the group administered with Micrococcus luteus-derived vesicles showed NLRP3 expression similar to the group administered with dexamethasone. It was confirmed that it was significantly suppressed.
  • the group administered with micrococcus luteus-derived vesicles suppressed t-bet and ROR- ⁇ t expression more efficiently than dexamethasone.
  • Example 12 Evaluation of the efficacy of Micrococcus luteus-derived vesicles in regulating cellular homeostasis against oxidative stress
  • nitric oxide (NO) generated through eNOS signaling plays a key role in maintaining cellular homeostasis by antagonizing the action of reactive oxygen species (ROS), the main culprit of oxidative stress, as well as in lung disease. Inhibits the occurrence of airway hyperresponsiveness, an important functional change in
  • Micrococcus luteus-derived vesicles were treated to A549 cells by the method of Example 4, and then eNOS signal The expression profile of the transfer protein was evaluated.
  • eNOS signaling proteins cells were lysed using a lysis buffer and proteins were extracted, and proteins were quantified using a BCA protein assay kit (Thermo, USA). 50 ⁇ g of protein per sample was electrophoresed on 10% polyacrylamide gel, and the separated protein was transferred to a nitrocellulose membrane.
  • TBST tris-buffered saline containing 0.05% tween 20
  • primary antibodies specific for p-ERK, ERK, eNOS, p-eNOS, and ⁇ -actin was diluted to 1/1,000 and reacted at 4°C for 24 hours.
  • the secondary antibody was washed with PBST (phosphate buffer saline containing 0.05% tween-20) three times for 10 minutes each, and the secondary antibody diluted 1/5,000 was reacted at room temperature for 1 hour. After washing with PBST 5 times for 10 minutes, the band was confirmed using ECL select reagent.
  • Micrococcus luteus-derived vesicles not only increase cellular homeostasis by inducing a low concentration of NO by activating the eNOS signal, but also suppress the occurrence of functional changes related to lung disease.
  • the micrococcus luteus-derived vesicles of the present invention effectively inhibited the occurrence of neutrophilic lung disease.
  • the vesicles suppressed NLRP3 protein expression and inflammasome production induced by oxidative stress, mitochondrial dysfunction, lysosomal damage, etc., thereby restoring innate and acquired immune functions.
  • the eNOS signal induces low-concentration NO production to increase cellular homeostasis.
  • micrococcus luteus-derived vesicles were administered orally or nasally, it was confirmed that they passed through the mucous membrane and were distributed in the lung tissue. It is expected that it can be used for therapeutic purposes as well as usefully used as a drug delivery system for the treatment of lung diseases.
  • the present inventors confirmed that when micrococcus luteus-derived vesicles were administered orally or nasally, the vesicles passed through the mucosa to the lungs.
  • the vesicles were treated with epithelial cells and inflammatory cells, the secretion of inflammatory mediators by biological causative factors was significantly inhibited, and when the cells were treated with the vesicles, NLRP3 protein expression by biological causative factors was suppressed. was confirmed.
  • the vesicles were administered to a mouse model of neutrophilic lung disease caused by biological factors, it was confirmed that neutrophilic lung inflammation and functional changes were significantly inhibited, Micrococcus luteus according to the present invention.
  • derived vesicles can be usefully used in the development of pharmaceuticals or health functional foods for preventing, improving symptoms, or treating neutrophilic lung disease, as well as being usefully used as a drug delivery system for treating the disease. it is expected that it will be possible

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Transplantation (AREA)
  • Dispersion Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 마이크로코커스 루테우스 유래 세포외 소포 및 이의 용도에 관한 것으로, 구체적으로, NLRP3 inflammasome(Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 inflammasome)을 매개로 하여 발생하는 호중구성 폐질환을 효과적으로 치료할 수 있는 마이크로코커스 루테우스 유래 소포를 유효성분으로 포함하는 호중구성 폐질환 개선, 예방, 치료용 조성물 등에 관한 것이다.

Description

마이크로코커스 루테우스 유래 세포외 소포를 포함하는 호중구성 폐질환의 예방 또는 치료용 조성물
본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 세포외 소포 및 이의 용도에 관한 것으로, 보다 구체적으로, 마이크로코커스 루테우스에서 유래하는 세포외 소포를 유효성분으로 포함하는 호중구성 폐질환(Neutrophilic pulmonary disease) 예방 또는 치료용 조성물 등에 관한 것이다.
본 발명은 2020년 12월 28일에 출원된 대한민국 특허출원 제10-2020-0184337호 및 2021년 11월 2일에 출원된 대한민국 특허출원 제10-2021-0148789호에 기초한 우선권을 주장하며, 상기 출원들의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
21세기에 들어서면서 과거 전염병으로 인식되던 급성 감염성 질환의 중요성은 감소된 반면, 우리 몸의 주요 장기에 발생하는 면역기능 이상에 의한 염증을 주요 병인으로 하는 만성질환이 삶의 질 감소와 인간 수명을 결정하는 주요 질환으로 질병 패턴이 바뀌었다.
면역(immunity)은 생물학적, 화학적, 물리적, 정신적 스트레스에 대한 세포의 방어 기작으로, 선천면역(innate immunity)과 후천면역(adaptive immunity)을 통해 일어나게 된다. 최근 염증 질환의 병인과 관련해서 생물학적 원인 인자에서 유래하는 pathogen-associated molecular pattern(PAMP) 및 세포 손상에 의해 생기는 위험신호인 damage-associated molecular pattern(DAMP)가 pattern recognition receptor(PRR)에 의해 인식되어 염증이 시작되게 된다고 알려졌다. PRR 중에서 NOD-like receptor(Nucleotide-binding oligomerization domain-like receptor; NLR)는 세포 내에서 PAMP와 DAMP를 인지하는 PRR로서 염증반응이나 세포 사멸에 핵심적인 물질이다. NLRP(Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing)는 NOD-like receptor의 한 종류로서 세포 내에 존재하는 PAMP 또는 DAMP를 인지하여 inflammasome을 형성하여 K+ efflux 및 caspase-1 활성화를 통해 염증반응을 일으키게 된다. 최근 NLRP3 inflammasome이 여러 가지 난치성 염증질환의 병인에 중요한 신호전달 시스템이라는 사실이 주목을 받고 있다.
한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota 또는 microbiome)은 주어진 거주지에 존재하는 진정세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말한다.
우리 몸에 공생하는 세균 및 주변 환경에 존재하는 세균은 다른 세포로의 유전자, 저분자화합물, 단백질 등의 정보를 교환하기 위하여 나노미터 크기의 소포(vesicle)를 분비한다. 점막은 200 나노미터(nm) 크기 이상의 입자는 통과할 수 없는 물리적인 방어막을 형성하여 점막에 공생하는 세균의 경우에는 점막을 통과하지 못하지만, 세균 유래 소포는 크기가 200 나노미터 크기 이하라서 비교적 자유롭게 점막의 상피세포를 통과하여 우리 몸에 흡수된다. 이와 같이, 세균 유래 소포는 세균에서 분비된 것이지만, 세균과 구성 성분, 체내 흡수율, 부작용 위험성 등이 서로 상이하며, 이로 인하여 세균 유래 소포를 사용하는 것은 살아있는 세균을 사용하는 것과는 전혀 상이하거나 현저한 효과를 나타낸다.
국소적으로 분비된 세균 유래 소포는 점막의 상피세포를 통해 흡수되어 국소 염증반응을 유도할 뿐만 아니라, 상피세포를 통과한 소포는 림프관을 통해 전신적으로 흡수되어 각 장기로 분포하고, 분포된 장기에서 면역 및 염증반응을 조절한다. 예를 들어, 대장균(Eshcherichia coli)와 같은 병원성 그람음성세균에서 유래하는 소포는 병원성 나노 입자로서 국소적으로 대장염을 일으키고, 혈관으로 흡수된 경우에는 혈관 내피세포에 흡수되어 염증반응을 유도하여 전신적인 염증반응 및 혈액응고를 촉진시키고, 또한 인슐린이 작용하는 근육세포 등에 흡수되어 인슐린 저항성과 당뇨병을 유발한다. 반면, 유익한 세균에서 유래하는 소포는 병원성 소포에 의한 면역기능 및 대사기능 이상을 조절하여 질병을 조절할 수 있다.
마이크로코커스 루테우스(Micrococcus luteus)는 마이크로코커스 속에 속하는 그람양성세균으로서, 물, 먼지, 토양 등과 같은 자연에 널리 분포하는 세균이다. 이 균은 catalase를 갖고 있어 활성 산소인 과산화수소를 물로 변화시키고, 피리딘과 같은 독성 유기오염물질에서 자랄 때 리보플라빈을 생성한다. 또한, 자외선 흡수 및 항산화 효과를 나타내는 루테인 색소를 갖고 있다. 또한, 이 균은 유제품 및 맥주에서도 분리되고, 건조한 환경이나 고염 환경에서도 자라고, 포자(spore)를 형성하지는 않지만, 냉장고와 같은 냉장 온도에서도 장기간 생존하는 것으로 알려져 있다.
우리가 호흡하는 먼지에는 바이러스, 세균 유래 소포, LPS(Lipopolysaccharide) 등과 같이 폐에 염증을 유발하는 여러 가지 생물학적 원인 인자가 존재한다. 이러한 원인 인자를 반복적으로 흡입하게 되면 폐 상피세포 및 대식세포에서 PRR을 통한 신호전달 시스템에 의해 염증성 매개체가 분비되어 폐에 염증이 발생하고, 반복적인 스트레스에 의해 호중구성 폐 염증질환이 발생한다. 호중구성 폐 염증질환을 치료 또는 예방하기 위하여 사용되고 있는 일반적인 조성물로는 크게 스테로이드성과 비스테로이드성 조성물이 있으며, 최근에는 염증질환의 주요 매개체로 알려진 염증성 사이토카인인 TNF-α 억제제에 대한 관심이 증가되고 있다.
그러나, 아직까지 마이크로코커스 루테우스 유래 소포를 호중구성 폐질환 치료에 응용한 사례는 보고된 바가 없다.
본 발명자들은 상기와 같은 종래의 문제점을 해결하기 위해 예의 연구한 결과, 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 경구 또는 비강 투여하였을 때, 점막을 통과하여 폐에 분포하고 있는 것을 확인하였으며, 상기 소포를 처리하였을 때, 병원성 나노 입자에 의한 염증성 매개체 분비를 현저히 억제하는 것을 확인하였다. 또한, 생물학적 원인 인자에 의한 면역기능 이상을 마이크로코커스 루테우스 유래 소포가 효율적으로 억제할 뿐만 아니라 여러 질병의 병인과 관련된 PRR(pattern recognition receptor)인 NLRP3 단백질 발현을 억제하여 면역기능 이상을 조절하고, endothelial NO synthase (eNOS) 신호를 증가시켜 세포의 항상성을 증가시키는 것을 확인하였다. 또한, 세균 유래 소포 및 LPS 오염 알레르겐에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 소포를 처리하였을 때, 호중구성 폐염증 및 기도과민성이 유의하게 억제됨을 확인하였는바, 이에 기초하여 본 발명을 완성하였다.
이에, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 호중구성 폐질환의 예방 또는 치료용 약학적 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 개선용 식품 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 치료용 흡입제 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 예방 또는 개선용 의약외품 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 치료 약물 전달용 조성물을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 호중구성 폐질환의 예방 또는 치료용 약학적 조성물을 제공할 수 있다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 개선용 식품 조성물을 제공할 수 있다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 치료용 흡입제 조성물을 제공할 수 있다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 예방 또는 개선용 의약외품 조성물을 제공할 수 있다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 치료 약물 전달용 조성물을 제공할 수 있다.
본 발명의 일 구현예로, 상기 폐질환은 NLRP3 inflammasome(Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 inflammasome)에 의해 매개되는 폐질환일 수 있으나, 이에 제한되지 않는다.
본 발명의 다른 구현예로, 상기 폐질환은 천식(Asthma), 폐기종(Emphysema), 낭포성섬유증(Cystic fibrosis; CF), 세균성 폐렴(Bacterial pneumonia), 바이러스성 폐렴(Viral pneumonia), 특발성 폐섬유증(Idiopathic pulmonary fibrosis; IPF), 간질성 폐렴(Interstitial pneumonitis), 급성 호흡곤란 증후군(acute respiratory distress syndrome; ARDS) 및 급성 폐손상(acute lung injury; ALI)으로 이루어진 군으로부터 선택된 하나 이상의 질환일 수 있으며, 상기 천식은 호중구성 천식일 수 있으나, 이에 제한되지 않는다.
본 발명의 또 다른 구현예로, 상기 소포는 평균 직경이 10 내지 200 nm일 수 있으나, 이에 제한되지 않는다.
본 발명의 또 다른 구현예로, 상기 소포는 마이크로코커스 루테우스(Micrococcus luteus)에서 자연적으로 분비 또는 인공적으로 생산되는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 또 다른 구현예로, 상기 조성물은 NLRP3 inflammasome의 활성을 억제할 수 있으나, 이에 제한되지 않는다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 호중구성 폐질환의 예방 또는 치료방법을 제공한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물의 호중구성 폐질환의 예방 또는 치료 용도를 제공한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포의 호중구성 폐질환 치료용 약제의 제조를 위한 용도를 제공한다.
또한, 본 발명은 목적하는 호중구성 폐질환 치료 약물을 담지한 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 호중구성 폐질환 치료 약물 전달 방법을 제공한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물의 호중구성 폐질환 치료 약물 전달 용도를 제공한다.
본 발명자들은 마이크로코커스 루테우스 유래 소포를 경구 또는 비강 투여하였을 때 점막을 통과하여 폐로 소포가 전달됨을 확인하였다. 또한, 상피세포 및 염증세포에 상기 소포를 처리하였을 때, 생물학적 원인 인자에 의한 염증성 매개체 분비를 현저히 억제하였을 뿐만 아니라, 세포에 상기 소포를 처리하였을 때, 생물학적 원인 인자에 의한 NLRP3 단백질 발현을 억제함을 확인하였다. 또한, 생물학적 원인 인자에 의한 호중구성 폐질환 마우스 모델에 상기 소포를 투여하였을 때, 호중구성 폐 염증 및 기능적인 변화를 유의미하게 억제하는 것을 확인하였는바, 본 발명에 따른 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포는 호중구성 폐질환을 예방, 증상 개선, 또는 치료하기 위한 의약품 또는 건강기능식품 등의 개발에 유용하게 이용될 수 있을 뿐만 아니라, 상기 질환을 치료하기 위한 약물전달시스템으로서 유용하게 이용될 수 있을 것이다.
도 1a는 마이크로코커스 루테우스 유래 소포를 마우스에 경구 투여한 후 시간별로 각 장기를 적출하여 각 장기에서의 형광 세기를 측정한 도면이다.
도 1b는 마이크로코커스 루테우스 유래 소포를 마우스에 경구 투여한 후, 시간별로 소포가 폐에 분포하는 양상을 나타낸 도면이다.
도 2는 마이크로코커스 루테우스 유래 소포를 마우스에 비강 투여한 후 시간별로 소포가 장기에 분포하는 양상을 나타낸 도면이다.
도 3은 상피세포(A549)에서 마이크로코커스 루테우스 유래 소포(MDH-101 EV)의 염증성 매개체 분비 억제 효과를 평가하기 위한 실험 프로토콜을 나타낸 도면이다.
도 4a 내지 도 4b는 상피세포에서 마이크로코커스 루테우스 유래 소포의 염증성 매개체인 IL-8 분비 억제 효과를 확인한 결과를 나타낸 것으로, 도 4a는 마이크로코커스 루테우스 유래 소포(MDH-101)의 농도에 따른 IL-8 분비 억제 효과를 나타낸 도면이며, 도 4b는 양성 대조 약물 덱사메타손(Dexamethasone; Dex)과 IL-8 분비 억제 효과를 비교한 결과를 나타낸 도면이다 (*P<0.05, **P<0.01, ***P<0.001, n.s.는 유의하지 않음을 의미함, 이하 동일).
도 5는 염증세포인 대식세포(RAW 264.7)에서 마이크로코커스 루테우스 유래 소포(M.luteus EV)의 염증성 매개체 분비 억제 효과를 평가하기 위한 실험 프로토콜을 나타낸 도면이다.
도 6a 내지 도 6b는 대식세포에서 마이크로코커스 루테우스 유래 소포(M.luteus EV)의 염증성 매개체 분비 억제 효과를 확인한 것으로, 도 6a는 TNF-α 분비 억제 효과를, 도 6b는 IL-6 분비 억제 효과를 나타낸 도면이다.
도 7은 말초혈액에서 분리한 호중구에 마이크로코커스 루테우스 유래 소포(M. luteus EV) 또는 양성 대조 약물 덱사메타손(Dexamethasone; Dex)을 처리하여 생물학적 원인 인자인 대장균 유래 소포(E. coli EV)에 의한 호중구 활성화 억제 효과를 평가하기 위한 실험 프로토콜을 나타낸 도면이다 (Plasma PBMC: Plasma peripheral blood mononuclear cell).
도 8은 말초혈액에서 분리한 호중구에 마이크로코커스 루테우스 유래 소포(MDH-101) 또는 양성 대조 약물 덱사메타손을 처리한 후 대장균 유래 소포(E. coli EV)에 의한 호중구의 활성화 정도를 NE(neutrophil elastase) 분비로 평가한 결과를 나타낸 도면이다.
도 9는 병원성 나노 입자인 대장균 유래 소포(E. coli EV)에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(M. luteus EV)의 항염증 효과를 평가하기 위한 실험 프로토콜이다.
도 10a 내지 도 10b는 병원성 나노 입자인 대장균 유래 소포(E. coli EV)에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(M. luteus EV)에 의한 항염증 효과를 확인한 결과를 나타낸 것으로, 도 10a는 마우스 모델의 기관지폐포 세척액(BALF) 내 대식세포와 호중구 수를 확인한 결과를 나타낸 도면이며(NC: Negative Control), 도 10b는 폐 조직에서 염증세포 침윤을 확인한 결과를 나타낸 도면이다.
도 11a 내지 도 11c는 병원성 나노 입자인 대장균 유래 소포(E. coli EV)에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(M. luteus EV)의 염증성 매개체 분비 억제 효과를 확인한 것으로, 마우스의 기관지폐포 세척액(BALF) 내 CXCL-1(a), TNF-α(b), 및 IL-1β(c)의 분비 억제 효과를 확인한 결과를 나타낸 도면이다.
도 12a 내지 도 12c는 병원성 나노 입자인 대장균 유래 소포(E. coli EV)에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(M. luteus EV)가 면역 관련 사이토카인의 분비에 미치는 영향을 확인한 것으로, 도 12a는 IL-6, 도 12b는 IL-17, 및 도 12c는 IL-10의 분비를 확인한 결과를 나타낸 도면이다.
도 13은 병원성 나노 입자인 대장균 유래 소포(E. coli EV)에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(M. luteus EV)가 기도과민성에 미치는 효과를 나타낸 도면이다 (NC: Negative Control).
도 14는 LPS에 오염된 알레르겐(LPS + OVA(Ovalbumin))에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(MDH-101)의 항염증 효과를 평가하기 위한 실험 프로토콜을 나타낸 도면이다.
도 15a 내지 도 15c는 LPS에 오염된 알레르겐(LPS + OVA)에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(MlEV)에 의한 항염증 효과를 확인한 것으로, 도 15a 및 도 15b는 기관지폐포 세척액(BALF) 내 총 염증세포 수 및 호중구 수를 확인한 결과를 나타낸 도면이며, 도 15c는 폐 조직에서 염증세포 침윤을 확인한 결과를 나타낸 도면이다 (LPS: LPS에 오염된 알레르겐).
도 16a 내지 도 16b는 LPS에 오염된 알레르겐(LPS + OVA)에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(MlEV)가 염증성 매개체인 IL-1β(a) 및 Th17 면역반응 지표인 IL-17(b)에 미치는 영향을 확인한 도면이다 (LPS: LPS에 오염된 알레르겐).
도 17은 LPS에 오염된 알레르겐(LPS + OVA)에 의한 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포(MlEV)의 면역기능 조절 효과를 평가하기 위하여, 마우스 폐조직 내 면역기능 조절 단백질인 NLRP3, T-bet, 및 ROR-γt 단백질의 발현을 확인한 결과를 나타낸 도면이다 (LPS: LPS에 오염된 알레르겐).
도 18은 마이크로코커스 루테우스 유래 소포(MDH-101)가 기도과민성을 억제하는 NO(nitric oxide)의 생성을 유도하는 eNOS 신호에 미치는 효과를 평가하기 위하여, 폐 상피세포에 마이크로코커스 루테우스 유래 소포 또는 양성 대조 약물 덱사메타손(Dex)을 처리한 후 생물학적 원인 인자인 대장균 유래 소포(E. coli EV)에 의한 eNOS 신호 활성에 미치는 효과를 확인한 결과를 나타낸 도면이다.
본 발명은 마이크로코커스 루테우스 유래 소포 및 이의 용도에 관한 것이다.
이하, 본 발명을 상세히 설명한다.
본 발명자들은 마이크로코커스 루테우스 유래 소포를 경구 또는 비강 투여하였을 때 소포가 점막을 통과하여 폐 조직에 분포함을 확인하였다. 또한, 상피세포에 상기 소포를 처리하였을 때, 생물학적 원인 인자에 의한 염증성 매개체 분비를 현저히 억제할 뿐만 아니라 대표적인 염증세포인 대식세포와 호중구에 상기 소포를 처리하였을 때, 생물학적 원인 인자에 의한 염증성 매개체 분비와 호중구의 활성화를 용량 의존적으로 억제함을 확인하였다. 또한, 생물학적 원인 인자에 의해 발현되는 NLRP3 단백질이 상기 소포를 투여하였을 때 발현이 현저히 억제되는 것을 확인하였으며, 생물학적 원인 인자에 의해 억제되는 eNOS 신호가 상기 소포를 투여하였을 때 유의하게 회복되는 것을 확인하였다. 나아가, 병원성 나노 입자 및 LPS 오염 알레르겐에 의한 호중구성 폐질환 마우스 모델에 상기 소포를 투여하였을 때, 호중구성 폐염증, 면역기능 이상, 및 기도과민성의 발생이 용량 의존적으로 유의하게 억제됨을 확인하였는바, 이에 기초하여 본 발명을 완성하였다.
따라서, 본 발명은 마이크로코커스 루테우스 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 치료용 약학적 조성물을 제공할 수 있다.
본 발명에서 사용되는 용어 “호중구성 폐질환(Neutrophilic pulmonary disease)”이란 바이러스, 세균 유래 소포, LPS(Lipopolysaccharide), 알레르겐 등과 같은 먼지 내에 존재하는 생물학적 원인 인자에 의한 폐 조직 내 호중구 침윤을 특징으로 하는 질환을 의미하는 것으로, 본 발명에 있어서, 구체적으로, 상기 호중구성 폐질환은 NLRP3 inflammasome(Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 inflammasome)에 의해 매개되는 폐질환일 수 있으나, 이에 제한되지 않고 폐 조직 내 호중구 침윤을 특징으로 하는 폐질환이라면 모두 포함될 수 있다.
상기 호중구성 폐질환은 예를 들어, 천식(Asthma), 폐기종(Emphysema), 낭포성섬유증(Cystic fibrosis; CF), 세균성 폐렴(Bacterial pneumonia), 바이러스성 폐렴(Viral pneumonia), 특발성 폐섬유증(Idiopathic pulmonary fibrosis; IPF), 간질성 폐렴(Interstitial pneumonitis), 급성 호흡곤란 증후군(acute respiratory distress syndrome; ARDS) 및 급성 폐손상(acute lung injury; ALI)등을 포함하나, 이에 제한되지 않는다.
상기 “NLRP3 인플라마좀(NLRP3 inflammasome)에 의해 매개되는 폐질환”이란 인플라마좀이 비정상적으로 과도하게 형성되어 발생되는 폐질환을 의미하는 것으로, 본 발명에 있어서, 상기 마이크로코커스 루테우스 유래 소포는 NLRP3 inflammasome의 형성을 억제할 수 있으므로, 이를 통하여 NLRP3 inflammasome에 의해 매개되는 호중구성 폐질환을 효과적으로 예방, 개선 또는 치료할 수 있다.
또한, 상기 “천식(Asthma)”은 폐 속의 기관지가 아주 예민해진 상태로, 유전 및 환경적 요인이 합쳐져 생기는 대표적인 알레르기 질환을 의미하는 것으로, 기도 또는 폐 조직에 침투하는 면역 세포의 유형 및 침윤 양상에 따라 호산구성(eosinophilic) 및 호중구성(neutrophilic)으로 구분할 수 있으며, 본 발명에 있어서, 구체적으로, 상기 천식은 호중구성 천식일 수 있다.
본 발명에서 사용되는 용어, “세포외 소포(Extracellular vesicle)” 또는 “소포(Vesicle)”란, 다양한 세균에서 분비되는 나노 크기의 막으로 된 구조물을 의미하며, 예를 들어, 내독소(lipopolysaccharide), 독성 단백질 및 세균 DNA와 RNA 등을 가지고 있는 대장균과 같은 그람음성균(Gram-negative bacteria) 유래 소포 또는 외막 소포체(Outer membrane vesicles, OMVs) 및 단백질과 핵산 외에도 세균의 세포벽 구성성분인 펩티도글리칸(Peptidoglycan)과 리포테이코산(Lipoteichoic acid) 등도 가지고 있는 마이크로코커스 세균과 같은 그람양성균(Gram-positive bacteria) 유래 소포 등이 있다.
본 발명에 있어서, 상기 세포외 소포 또는 소포는 마이크로코커스 루테우스(Micrococcus luteus)에서 자연적으로 분비되거나 또는 인공적으로 생산된 막으로 된 모든 구조물을 총칭할 수 있으며, 본 발명에 있어서, MDH-101, MDH-101 EV, M. luteus EV 또는 MlEV로 다양하게 표시될 수 있다.
상기 소포는 마이크로코커스 루테우스 배양과정에서 열처리, 고압처리 하거나, 상기 세균 배양액을 원심분리, 초고속 원심분리, 고압처리, 압출, 초음파분해, 세포 용해, 균질화, 냉동-해동, 전기천공, 기계적 분해, 화학물질 처리, 필터에 의한 여과, 겔 여과 크로마토그래피, 프리-플로우 전기영동, 및 모세관 전기영동으로 이루어진 군에서 선택된 하나 이상의 방법을 사용하여 분리할 수 있다. 또한, 불순물의 제거를 위한 세척, 수득된 소포의 농축 등의 과정을 추가로 포함할 수 있다.
본 발명에서 상기 방법에 의하여 분리된 소포는 구형의 형태로, 평균 직경이 10 내지 200 nm, 10 내지 190 nm, 10 내지 180 nm, 10 내지 170 nm, 10 내지 160 nm, 10 내지 150 nm, 10 내지 140 nm, 10 내지 130 nm, 10 내지 120 nm, 10 내지 110 nm, 10 내지 100 nm, 10 내지 90 nm, 10 내지 80 nm, 10 내지 70 nm, 10 내지 60 nm, 10 내지 50 nm, 20 내지 200 nm, 20 내지 180 nm, 20 내지 160 nm, 20 내지 140 nm, 20 내지 120 nm, 20 내지 100 nm, 또는 20 내지 80 nm 일 수 있으며, 바람직하게는, 20 내지 200 nm 일 수 있으나, 이에 제한되지 않는다.
본 발명에서 사용되는 용어 "유효성분으로 포함하는"이란 상기 마이크로코커스 루테우스 유래 소포의 효능 또는 활성을 달성하는데 충분한 양을 포함하는 것을 의미한다.
본 발명의 조성물 내의 상기 소포의 함량은 질환의 증상, 증상의 진행 정도, 환자의 상태 등에 따라서 적절히 조절 가능하며, 예컨대, 전체 조성물 중량을 기준으로 0.0001 내지 99.9중량%, 또는 0.001 내지 50중량%일 수 있으나, 이에 한정되는 것은 아니다. 상기 함량비는 용매를 제거한 건조량을 기준으로 한 값이다.
본 발명에 따른 약학적 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다. 상기 약학적으로 허용 가능한 담체는 제제 시에 통상적으로 이용되는 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 사이클로덱스트린, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올, 리포좀 등을 포함하지만 이에 한정되지 않으며, 필요에 따라 항산화제, 완충액 등 다른 통상의 첨가제를 더 포함할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제, 윤활제 등을 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립, 또는 정제로 제제화할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제화에 관해서는 레밍턴의 문헌에 개시되어 있는 방법을 이용하여 각 성분에 따라 바람직하게 제제화할 수 있다. 본 발명의 약학적 조성물은 제형에 특별한 제한은 없으나 주사제, 흡입제, 피부 외용제, 또는 경구 섭취제 등으로 제제화할 수 있다.
본 발명의 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여(예를 들어, 정맥 내, 피하, 피부, 비강, 기도에 적용)할 수 있으며, 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 시간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다.
본 발명에 따른 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서, 약학적으로 유효한 양은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명에 따른 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
구체적으로, 본 발명에 따른 약학적 조성물의 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 1 kg 당 0.001 내지 150 mg, 바람직하게는 0.01 내지 100 mg을 매일 또는 격일 투여하거나 1일 1 내지 3회로 나누어 투여할 수 있다. 그러나 투여 경로, 비만의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.
본 발명에서 사용되는 용어 “예방”이란 본 발명에 따른 조성물의 투여에 의해 천식(Asthma), 폐기종(Emphysema), 낭포성섬유증(Cystic fibrosis; CF), 세균성 폐렴(Bacterial pneumonia), 바이러스성 폐렴(Viral pneumonia), 특발성 폐섬유증(Idiopathic pulmonary fibrosis; IPF), 간질성 폐렴(Interstitial pneumonitis), 급성 호흡곤란 증후군(acute respiratory distress syndrome; ARDS) 및 급성 폐손상(acute lung injury; ALI) 등의 호중구성 폐질환을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.
본 발명에서 사용되는 용어 “치료”란 본 발명에 따른 조성물의 투여에 의해 천식(Asthma), 폐기종(Emphysema), 낭포성섬유증(Cystic fibrosis; CF), 세균성 폐렴(Bacterial pneumonia), 바이러스성 폐렴(Viral pneumonia), 특발성 폐섬유증(Idiopathic pulmonary fibrosis; IPF), 간질성 폐렴(Interstitial pneumonitis), 급성 호흡곤란 증후군(acute respiratory distress syndrome; ARDS) 및 급성 폐손상(acute lung injury; ALI) 등의 호중구성 폐질환에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 호중구성 폐질환의 예방 또는 치료방법을 제공한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물의 호중구성 폐질환의 예방 또는 치료 용도를 제공한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포의 호중구성 폐질환 치료용 약제의 제조를 위한 용도를 제공한다.
본 발명에서 “개체”란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는 인간 또는 비-인간인 영장류, 생쥐(mouse), 쥐(rat), 개, 고양이, 말, 및 소 등의 포유류일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 “투여”란 임의의 적절한 방법으로 개체에게 소정의 본 발명의 조성물을 제공하는 것을 의미한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 개선용 식품 조성물을 제공할 수 있다.
본 발명에서 사용되는 용어 “개선”이란 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다.
본 발명의 식품 조성물은 건강기능식품 조성물일 수 있으나, 이에 제한되지 않는다.
본 발명의 상기 소포를 식품 첨가물로 사용할 경우, 식품에 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효성분의 혼합양은 그의 사용 목적(예방 또는 개선용)에 따라 적합하게 결정될 수 있다. 일반적으로, 식품 또는 음료의 제조 시에 본 발명의 소포는 원료에 대하여 15 중량% 이하, 바람직하게는 10 중량% 이하의 양으로 첨가된다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있다.
상기 식품의 종류에는 특별한 제한은 없다. 상기 물질을 첨가할 수 있는 식품의 예로는 육류, 소세지, 빵, 쵸코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강기능식품을 모두 포함한다.
본 발명에 따른 건강음료 조성물은 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물은 포도당 및 과당과 같은 모노사카라이드, 말토오스 및 수크로오스와 같은 디사카라이드, 덱스트린 및 시클로덱스트린과 같은 폴리사카라이드, 및 자일리톨, 소르비톨 및 에리트리톨 등의 당알콜이다. 감미제로서는 타우마틴, 스테비아 추출물과 같은 천연 감미제나, 사카린, 아스파르탐과 같은 합성 감미제 등을 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 mL당 일반적으로 약 0.01-0.20g, 또는 약 0.04-0.10g이다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 예방 또는 치료용 흡입제 조성물을 제공할 수 있다.
흡입제 조성물의 경우, 당업계에 공지된 방법에 따라 제형화될 수 있으며, 적합한 추진제, 예를 들면, 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로에탄, 이산화탄소 또는 다른 적합한 기체를 사용하여, 가압 팩 또는 연무기로부터 에어로졸 스프레이 형태로 편리하게 전달할 수 있다. 가압 에어로졸의 경우, 투약 단위는 계량된 양을 전달하는 밸브를 제공하여 결정할 수 있다. 예를 들면, 흡입기 또는 취입기에 사용되는 젤라틴 캡슐 및 카트리지는 화합물 및 락토오즈 또는 전분과 같은 적합한 분말 기제의 분말 혼합물을 함유하도록 제형화할 수 있다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 예방 또는 개선용 의약외품 조성물을 제공할 수 있다.
본 발명의 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 의약외품 첨가물로 사용할 경우, 상기 소포를 그대로 첨가하거나 다른 의약외품 또는 의약외품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효성분의 혼합양은 사용 목적(예방, 건강 또는 치료적 처치)에 따라 적합하게 결정될 수 있다. 상기 의약외품 조성물은 그 제형에 있어서 특별히 한정되는 바가 없으며, 호중구성 폐질환을 예방 또는 개선하는 효과가 있는 당업계에 공지된 의약외품의 형태로 다양하게 제형화될 수 있다. 상기 의약외품 조성물은 예를 들어, 소독청결제, 샤워폼, 가그린, 물티슈, 세제비누, 핸드워시, 가습기 충진제, 마스크, 연고제, 흡입제 또는 필터충진제일 수 있으나, 이에 제한되지 않는다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 치료 약물 전달용 조성물을 제공할 수 있다.
본 발명에서 사용되는 용어 “약물 전달”이란 특정 장기, 조직, 세포 또는 세포소기관으로 약물을 전달하기 위하여 본 발명에 따른 조성물에 약물을 로딩하여 전달하는 모든 수단 또는 행위를 의미한다.
또한, 본 발명은 목적하는 호중구성 폐질환 치료 약물을 담지한 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 호중구성 폐질환 치료 약물 전달 방법을 제공한다.
또한, 본 발명은 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물의 호중구성 폐질환 치료 약물 전달 용도를 제공한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 마이크로코커스 루테우스 배양액에서 소포 분리
마이크로코커스 루테우스 균주를 배양한 후 이의 소포를 분리하여 특성을 분석하였다. 마이크로코커스 루테우스를 37℃ 호기성 챔버에서 흡광도(OD 600)가 1.0~1.5가 될 때까지 MRS(de Man-Rogosa and Sharpe) 배지에서 배양한 후 sub-culture 하였다. 이후 균주가 포함되어 있는 배지 상등액을 회수하여 10,000 g, 4 ℃에서 20분 동안 원심분리하고 균주를 제거하고, 0.22μm 필터에 여과하였다. 여과한 상등액을 100 kDa Pellicon 2 Cassette 필터 멤브레인(Merck Millipore, US)으로 MasterFlex pump system(Cole-Parmer, US)를 이용하여 microfiltration을 통해 50 ㎖ 부피로 농축하였다. 이후 농축시킨 상등액을 다시 한번 0.22 μm 필터로 여과하였다. 이후 BCA assay를 이용해 단백질을 정량하였고, 얻어진 소포에 대하여 하기 실험들을 실시하였다.
실시예 2. 마이크로코커스 루테우스 유래 소포 경구 투여 시 약동학적 특성 분석
마이크로코커스 루테우스 유래 소포를 경구 투여하였을 때의 약동학적 특성을 알아보기 위해, 형광 염색시약으로 염색한 마이크로코커스 루테우스 유래 소포를 마우스에 경구 투여하여 48시간까지 각 장기에서 발현된 형광을 측정하였다. 도 1a에 나타난 바와 같이, 형광 염색된 마이크로코커스 루테우스 유래 소포의 시간에 따른 장기 분포를 이미지로 평가하였을 때 상기 소포가 여러 장기에 분포함을 확인하였다. 또한, 도 1b에 나타난 바와 같이, 폐에서 발현되는 마이크로코커스 루테우스 유래 소포의 형광 세기를 그래프로 나타냈을 때, 경구 투여 후 3시간뒤부터 폐에 분포하고 이는 24시간까지 지속되었으며, 이후로는 형광 시그널이 대부분 사라진 것을 확인하였다. 상기 결과로부터, 경구 투여한 마이크로코커스 루테우스 유래 소포는 투여하였을 때 점막을 통과하여 체내에 흡수되어 폐로 이동하여 분포함을 알 수 있다.
실시예 3. 마이크로코커스 루테우스 유래 소포 흡입 투여 시 약동학적 특성 분석
마이크로코커스 루테우스 유래 소포를 흡입 투여하였을 때의 약동학적 특성을 알아보기 위해, 형광 염색시약으로 염색한 마이크로코커스 루테우스 유래 소포를 마우스의 비강으로 투여하여 72시간까지 각 장기에서 발현된 형광을 측정하였다. 도 2에 나타난 바와 같이, 형광 염색된 마이크로코커스 루테우스 유래 소포의 시간에 따른 장기 분포를 이미지로 평가하였을 때 마이크로코커스 루테우스 유래 소포가 주로 폐 조직에 분포하며, 이는 투여 후 1시간에서 6시간까지 나타나고, 이후에는 배설됨을 확인하였다. 상기 결과로부터, 마이크로코커스 루테우스 유래 소포를 비강 투여하였을 때 점막을 통과하여 체내에 흡수되어 폐 조직에 주로 분포함을 알 수 있다.
실시예 4. 상피세포에서 마이크로코커스 루테우스 유래 소포의 항염증 효과 평가
도 3에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포(M. luteus EV) 또는 양성 대조 약물인 덱사메타손(Dexamethasone; Dex)을 상피세포(A549 세포)에 전처리한 후, 염증을 유도하는 대장균 유래 소포(E. coli EV)를 처리하여 염증성 사이토카인인 IL-8의 분비량을 ELISA(Enzyme-linked immunosorbent assay, R&D Systems)로 측정하였다. 구체적으로, A549 세포에 마이크로코커스 루테우스 유래 소포를 다양한 농도(1, 10, 100 ㎍/mL)로 24시간 전처리한 후 대장균 유래 소포를 1 ng/mL 농도로 24시간 처리하여 배지로 분비된 IL-8을 측정하였다.
그 결과, 도 4a에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포에 의해 IL-8의 분비가 용량 의존적으로 억제됨을 확인하였다. 또한, 도 4b에 나타난 바와 같이, 대조 약물인 덱사메타손과 비교하였을 때, 호중구 침윤을 유도하는 대표적인 사이토카인 IL-8의 분비에 대한 억제 효과가 더욱 탁월하였고, 상기 소포에 열처리를 하여 투여하였을 때에는 IL-8 분비 억제 효과가 없어짐을 확인하였다. 상기 결과로부터, 마이크로코커스 루테우스 유래 소포가 대표적인 항염증 약물인 덱사메타손에 비해 호중구성 염증에 대한 치료 효능이 더 우수함을 알 수 있고, 마이크로코커스 루테우스 유래 소포에 의한 항염증 효능이 열처리 시 없어지는 것을 통해 항염증 작용이 소포 내 단백질에 의해 매개됨을 알 수 있다.
실시예 5. 염증세포인 대식세포에서 마이크로코커스 루테우스 유래 소포의 항염증 효과 평가
도 5에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포(M. luteus EV)를 대식세포(RAW 264.7 세포)에 전처리한 후, 염증을 유발하는 대장균 유래 소포(E. coli EV)를 처리하고, 염증성 사이토카인 TNF-α 및 IL-6 분비 정도를 ELISA (R&D Systems) 방법으로 측정하였다. 구체적으로, 마이크로코커스 루테우스 유래 소포를 다양한 농도(1, 10, 100 ㎍/mL)로 24시간 동안 전처리한 후, 대장균 유래 소포를 1 ng/mL 농도로 24시간 처리하여 배지로 분비된 TNF-α와 IL-6을 측정하였다.
그 결과, 도 6a 및 도 6b에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포를 전처리한 경우 대장균 유래 소포에 의한 TNF-α(도 6a) 및 IL-6(도 6b)의 분비가 용량 의존적으로 억제됨을 확인하였다. 상기 결과로부터, 병원성 생물학적 원인 인자에 의한 염증의 발생을 마이크로코커스 루테우스 유래 소포가 효율적으로 억제함을 알 수 있다.
실시예 6. 염증세포인 호중구에서 마이크로코커스 루테우스 유래 소포의 호중구 활성화 억제 효과 확인
도 7에 나타난 바와 같이, 호중구의 활성화를 평가하기 위하여 lymphoprep을 이용해 사람 혈액으로부터 호중구를 추출한 후, 호중구 내 과립 단백질인 NE(neutrophil elastase)를 ELISA(R&D Systems)로 측정하였다. 구체적으로, 혈액 10 mL을 ACD solution을 포함하는 tube에 모아준 뒤, 20 mL lymphoprep 위에 혈액을 조심히 넣어 원심분리를 진행하였다. 원심분리 후 red blood layer를 모아 12 mL의 Dextran과 섞어주고 상온에 45 분간 방치하였다. 층 분리 후 상층액에 1X HBSS를 40 mL 넣고 한 번 더 원심분리를 진행한 후, autoclaved millipore water로 적혈구를 제거해 주고 neutrophil isolation kit(MACS)를 이용해 호중구를 분리하였다. 분리한 호중구를 RPMI1640 배지를 이용해 배양하고 대장균 유래 소포(E coli EV)와 마이크로코커스 루테우스 유래 소포(M. luteus EV)를 24시간 동안 동시 처리한 후, 배지에서 NE를 측정하였다. 양성 대조 약물로는 덱사메타손(Dex)을 처리하였다.
그 결과, 도 8에 나타난 바와 같이 대조 약물인 덱사메타손은 호중구 활성화 지표인 neutrophil elastase(NE) 분비를 억제하지 못하였지만, 마이크로코커스 루테우스 유래 소포를 처리하였을 때에는 용량 의존적으로 호중구에서 NE 분비를 억제하였다. 상기 결과로부터, 마이크로코커스 루테우스 유래 소포는 호중구의 활성화로 neutrophilic elastase에 의해 매개되는 염증 질환을 효율적으로 치료할 수 있음을 알 수 있다.
실시예 7. 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포의 치료 효과 평가
도 9에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포의 폐질환에 대한 효과를 평가하기 위하여 병원성 나노 입자인 대장균 유래 소포(E. coli EV) 10ng/ml를 비강으로 투여하여 폐질환 마우스 모델을 제작하였고, 상기 마우스 모델에 마이크로코커스 루테우스 유래 소포(M. luteus EV)를 비강으로 투여하여 치료 효과를 평가하였다.
도 10a 및 도 10b에 나타난 바와 같이, 폐 염증에 대한 치료 효과를 평가하기 위하여 기관지폐포 세척액(BALF) 내 염증세포 수와 폐의 조직학적 변화를 평가하였다. 구체적으로, 기관지폐포 세척액(BALF) 내 염증세포 수는 PBS 1 mL이 담긴 주사기를 기도에 연결하여 기관지폐포 세척액(BALF)을 채취한 후 Trypan blue(Abcam)를 사용하여 총 세포 수를 측정하였다. 또한, 페의 조직학적 변화를 평가하기 위하여 Hematoxylin & Eosin 염색법을 이용하였으며, 구체적으로, Cytopro(ELItech)에 슬라이드 글라스를 장착하여 세포를 고정시킨 후 Hematoxylin(DAKO) 및 Eosin(Sigma, USA)로 염색한 뒤 호중구 수를 측정하였다.
그 결과, 도 10a에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포를 투여한 그룹에서는 용량 의존적으로 기관지폐포 세척액(BALF) 내 대식세포와 호중구 수가 감소됨을 확인하였다. 또한, 도 10b에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포를 투여한 그룹의 폐 조직에서 염증세포 침윤이 현저히 감소됨을 확인하였다.
또한, 기관지폐포 세척액(BALF) 내 염증성 매개체 분비 정도를 평가한 결과, 도 11a 내지 도 11c에 나타난 바와 같이, 염증을 유도하는 사이토카인 CXCL-1(도 11a), TNF-α(도 11b), 및 IL-1β(도 11c)의 분비가 마이크로코커스 루테우스 유래 소포에 의해 용량 의존적으로 억제됨을 확인하였다.
상기 결과로부터, 병원성 나노 입자에 의해 유발되는 호중구성 폐 염증질환이 마이크로코커스 루테우스 유래 소포에 의해 효율적으로 치료될 수 있음을 알 수 있었다.
실시예 8. 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포의 후천면역 조절 효과 평가
상기 실시예 7의 폐질환 마우스 모델에 마이크로코커스 루테우스 유래 소포를 비강내 투여하여 면역기능 조절 효과를 평가하였다. 그 결과, 도 12a 및 도 12b에 나타난 바와 같이, 호중구성 염증을 유발하는 Th17 면역반응 관련 사이토카인 IL-6(도 12a) 및 IL-17(도 12b)의 분비가 마이크로코커스 루테우스 유래 소포에 의해 용량 의존적으로 억제됨을 확인하였다.
한편, 도 12c에 나타난 바와 같이, 면역기능을 억제하는 IL-10의 분비는 마이크로코커스 루테우스 유래 소포에 의해 억제되지 않았다.
상기 결과로부터, 마이크로코커스 루테우스 유래 소포의 항염증 효과는 병원성 나노 입자에 의한 Th17 면역반응을 억제하여 나타나는 것임을 알 수 있다.
실시예 9. 호중구성 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포의 기도과민성 억제 효과 평가
면역기능 이상으로 발생하는 염증반응은 장기의 기능적인 변화를 초래하여 폐기능 이상을 일으킨다. 상기 실시예 7의 폐질환 마우스 모델에 마이크로코커스 루테우스 유래 소포를 비강 내 투여하여 폐의 기능적인 변화를 평가하였다. 구체적으로, flexiVent (SCIREQ, Canada)를 사용하여 메타콜린에 의한 기도과민성 (Airway hyperresponsiveness; AHR)을 측정하여 기능적인 변화를 평가하였다. 즉, 각 마우스에 다양한 농도(0 mg/mL, 6.25 mg/mL, 12.5 mg/mL 및 25 mg/mL)로 에어로졸 메타콜린(Sigma, USA)을 투여한 후 흡입된 메타콜린에 대한 최고 기도반응을 측정하였다.
그 결과, 도 13에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포를 투여한 그룹에서 메타콜린에 의해 유도된 기도과민성이 용량 의존적으로 억제됨을 확인하였다. 상기 결과로부터, 병원성 나노 입자에 의해 유도되는 폐질환 관련 기능적인 변화가 마이크로코커스 루테우스 유래 소포에 의해 효율적으로 치료될 수 있음을 알 수 있다.
실시예 10. LPS 오염 알레르겐에 의한 폐질환 마우스 모델에서 마이크로코커스 루테우스 유래 소포의 항염증 효과 평가
단백질 항원만 흡입하는 경우, 기도에 면역학적 과민반응 보다는 면역관용이 발생하여 알레르겐에 의한 염증질환이 발생하지 않지만, LPS(lipopolysaccharide)와 같은 세균성 원인 인자와 알레르겐을 동시에 흡입하였을 때는 LPS에 의한 선천면역 기능 이상에 의해 알레르겐에 대한 과민반응이 발생한다. 특히, 저농도의 LPS에 의해선 Th2 면역반응에 의한 호산구성 천식이 발생하고, 고농도 LPS에 의해선 Th17 면역반응에 의해 호중구성 천식이 발생한다. 도 14에 나타난 바와 같이, 고농도의 LPS과 함께 알레르겐(ovalbumin; OVA)을 비강으로 투여하여 호중구성 폐질환 마우스 모델을 제작하였다. 구체적으로, 단백질 항원인 ovalbumin(OVA) 75 μg과 LPS 10 μg을 동시에 4일간 비강으로 투여하여 OVA에 대한 과민반응을 유도한 뒤, 3주간 OVA 50 μg을 비강으로 투여하여 단백질 항원에 의한 폐질환 마우스 모델을 제작하였다. 마이크로코커스 루테우스 유래 소포(M. luteus EV)는 OVA로 질병을 유발하는 3주간 OVA와 동시에 비강으로 투여하였다. 대조 약물로는 덱사멕타손(Dex) 20 μg을 복강 투여하였다.
그 결과, 도 15a 및 도 15b에 나타난 바와 같이, 마이크로코커스 루테우스 유래 소포를 투여한 그룹은 덱사메타손을 투여한 그룹과 유사하게 LPS 오염 알레르겐으로 유도된 폐질환 양성 대조군에 비해 기관지폐포 세척액(BALF) 내 염증세포 수 및 호중구 수가 유의하게 감소하였다.
또한, Hematoxylin & Eosin 염색법을 이용하여 폐의 조직학적 변화를 평가한 결과, 도 15c에 나타난 바와 같이, LPS 오염 알레르겐에 의해 유도된 폐질환 양성 그룹에 비해 마이크로코커스 루테우스 유래 소포를 투여한 그룹이 덱사메타손을 투여한 그룹과 유사하게 폐 조직에 염증세포 침윤을 현저히 억제함을 확인하였다.
나아가, 상기 마우스 모델에서 마이크로코커스 루테우스 유래 소포의 면역조절 효과를 평가하기 위하여, 기관지폐포세척액 내 IL-1β와 IL-17을 ELISA(R&D Systems)를 이용해서 측정하였다.
그 결과, 도 16a 및 도 16b에 나타난 바와 같이, 기관지폐포 세척액(BALF)내 염증성 사이토카인 IL-1β(도 16a) 및 단백질 항원에 의한 Th17 면역반응 지표인 IL-17(도 16b)의 농도가 마이크로코커스 루테우스 유래 소포에 의해 유의하게 감소한 것을 확인하였다.
상기 결과로부터, 알레르겐에 의한 Th17 면역반응으로 발생하는 호중구성 폐질환이 마이크로코커스 루테우스 유래 소포에 의해 효율적으로 치료될 수 있음을 알 수 있다.
실시예 11. 마이크로코커스 루테우스 유래 소포의 면역조절 기전 분석
여러 가지 스트레스에 대한 선천면역 반응은 질병의 병인에 매우 중요하다고 알려져 있다. 특히, 세포질에 존재하는 NLRP3 단백질은 면역기능 이상에 의한 여러 가지 난치성 질환의 병인에 핵심적인 신호전달 경로로 알려져 있다. 또한, 단백질 항원에 의한 면역기능 이상의 병인과 관련 있는 t-bet과 ROR-γt는 각각 항원에 대한 Th1 및 Th17 세포에 의한 과민반응의 발생에 핵심적인 신호전달 물질로 알려져 있다.
마이크로코커스 루테우스 유래 소포의 면역기능 조절 효과를 평가하기 위하여, 상기 실시예 10의 마우스 모델에서 폐 조직을 얻은 후, 폐 조직 내 선천면역 관련 단백질인 NLRP3, 및 후천면역 관련 단백질인 t-bet (t-box protein expressed in T cells), ROR-γt (retineic-acid-receptor-related orphan nuclear receptor gamma) 발현을 western blotting으로 확인하였다. 각 단백질의 발현양을 측정하기 위해 단백질 50 μg이 사용되었다.
그 결과, 도 17에 나타난 바와 같이, LPS 오염 알레르겐을 투여한 그룹은 대조군에 비해 NLRP3 발현이 현저히 증가되었고, 마이크로코커스 루테우스 유래 소포를 투여한 그룹은 덱사메타손을 투여한 그룹과 유사하게 NLRP3 발현이 현저히 억제됨을 확인하였다. 또한, 마이크로코커스 루테우스 유래 소포를 투여한 그룹은 덱사메타손보다 효율적으로 t-bet 및 ROR-γt 발현을 억제함을 확인하였다.
상기 결과로부터, LPS 오염 알레르겐에 의한 Th1 및 Th17 과민반응의 발생에 마이크로코커스 루테우스 유래 소포가 NLRP3 inflammasome 신호를 억제하고, 이를 통해 알레르겐 특이 Th1 및 Th17 세포의 형성을 억제하여 면역기능을 조절함을 알 수 있었다.
실시예 12. 산화 스트레스에 대한 세포의 항상성 조절에 마이크로코커스 루테우스 유래 소포의 효능 평가
세포가 여러 가지 스트레스에 반복적으로 노출 시 세포 내에서는 산화 스트레스(Oxidative stress)에 의해 세포 노화가 발생하고, 세포 기능에 이상이 초래되며, 세포 사멸이 초래되어 질병이 발생한다. 특히, eNOS 신호를 통해 생성되는 저농도의 NO(Nitric oxide)는 산화 스트레스의 주범인 활성 산소(reactive oxygen species; ROS) 작용을 길항하여 세포의 항상성을 유지하는 핵심적인 역할을 담당할 뿐만 아니라 폐질환의 중요한 기능적 변화인 기도과민성의 발생을 억제한다.
마이크로코커스 루테우스 유래 소포가 산화 스트레스에 대한 방어 기작의 하나인 eNOS 신호 활성화에 미치는 효과를 평가하기 위하여, 상기 실시예 4의 방법으로 마이크로코커스 루테우스 유래 소포를 A549 세포에 처리한 후, eNOS 신호전달 단백질의 발현 양상을 평가하였다. 신호전달 단백질 발현을 평가하기 위한 구체적인 방법으로, lysis buffer를 이용해 세포를 용해시키고 단백질을 추출하였으며, BCA protein assay kit(Thermo, USA)를 사용하여 단백질을 정량하였다. 샘플 당 50 μg의 단백질을 10% polyacrylamide gel에서 전기영동 하였으며, 분리된 단백질은 nitrocellulose membrane에 transfer하였다. skim milk를 첨가한 TBST(0.05% tween 20이 들어있는 tris-buffered saline)로 실온에서 30분간 blocking 한 후, p-ERK, ERK, eNOS, p-eNOS, 및 β-actin에 특이적인 1차 항체를 1/1,000으로 희석하여 4℃에서 24시간 동안 반응시켰다. 이후, 10분씩 3회 PBST(0.05% tween-20이 들어있는 phosphate buffer saline)로 세척하고 1/5,000으로 희석한 2차 항체를 실온에서 1시간 동안 반응시켰다. 10분씩 5회 PBST로 세척 후 ECL select reagent를 이용해 band를 확인하였다.
그 결과, 도 18에 나타난 바와 같이, 병원성 나노 입자인 대장균 유래 소포(E. coli EV)를 처리하였을 때, eNOS 신호 활성화가 억제되었다. 반면, 마이크로코커스 루테우스 유래 소포를 처리하였을 때, ERK 및 eNOS의 인산화가 덱사메타손(Dex)을 투여하였을 때와 유사하게 증가하였다. 또한, 마이크로코커스 루테우스 유래 소포에 의한 eNOS 인산화는 열처리한 마이크로코커스 유래 소포를 투여하였을 때 억제되는 것을 확인하였다.
상기 결과로부터, 마이크로코커스 루테우스 유래 소포는 eNOS 신호를 활성화함으로써 저농도의 NO를 유도하여 세포의 항상성을 증가시킬 뿐만 아니라, 폐질환 관련 기능적인 변화의 발생을 억제함을 알 수 있다.
상기 결과들을 통하여, 본 발명의 마이크로코커스 루테우스 유래 소포는 호중구성 폐질환의 발생을 효율적으로 억제함을 알 수 있었다. 특히 상기 소포는 산화 스트레스, 미토콘드리아 기능 이상, 리소좀 손상 등에 의해 유도되는 NLRP3 단백질 발현 및 inflammasome 생성을 억제하여 선천 면역과 후천 면역 기능을 회복시킴을 알 수 있었다. 또한, eNOS 신호를 통해 저농도 NO 생성을 유도하여 세포의 항상성을 증가시킨다는 사실을 알 수 있었다. 특히, 마이크로코커스 루테우스 유래 소포를 경구 또는 비강 투여하였을 때 점막을 통과하여 폐 조직에 분포함을 확인할 수 있었는바, 본 발명의 마이크로코커스 루테우스 유래 소포는 호중구성 폐질환의 개선, 예방, 또는 치료 용도로 사용될 수 있을 뿐만 아니라 폐질환 치료를 위한 약물 전달체로도 유용하게 이용될 수 있을 것으로 기대된다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명자들은 마이크로코커스 루테우스 유래 소포를 경구 또는 비강 투여하였을 때 점막을 통과하여 폐로 소포가 전달됨을 확인하였다. 또한, 상피세포 및 염증세포에 상기 소포를 처리하였을 때, 생물학적 원인 인자에 의한 염증성 매개체 분비를 현저히 억제하였을 뿐만 아니라, 세포에 상기 소포를 처리하였을 때, 생물학적 원인 인자에 의한 NLRP3 단백질 발현을 억제함을 확인하였다. 또한, 생물학적 원인 인자에 의한 호중구성 폐질환 마우스 모델에 상기 소포를 투여하였을 때, 호중구성 폐 염증 및 기능적인 변화를 유의미하게 억제하는 것을 확인하였는바, 본 발명에 따른 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포는 호중구성 폐질환을 예방, 증상 개선, 또는 치료하기 위한 의약품 또는 건강기능식품 등의 개발에 유용하게 이용될 수 있을 뿐만 아니라, 상기 질환을 치료하기 위한 약물전달시스템으로서 유용하게 이용될 수 있을 것으로 기대된다.

Claims (18)

  1. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 치료용 약학적 조성물.
  2. 제1항에 있어서,
    상기 폐질환은 NLRP3 inflammasome(Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 inflammasome)에 의해 매개되는 폐질환인 것을 특징으로 하는, 약학적 조성물.
  3. 제1항에 있어서,
    상기 폐질환은 천식(Asthma), 폐기종(Emphysema), 낭포성섬유증(Cystic fibrosis; CF), 세균성 폐렴(Bacterial pneumonia), 바이러스성 폐렴(Viral pneumonia), 특발성 폐섬유증(Idiopathic pulmonary fibrosis; IPF), 간질성 폐렴(Interstitial pneumonitis), 급성 호흡곤란 증후군(acute respiratory distress syndrome; ARDS), 및 급성 폐손상(acute lung injury; ALI)으로 이루어진 군으로부터 선택된 하나 이상의 질환인 것을 특징으로 하는, 약학적 조성물.
  4. 제3항에 있어서,
    상기 천식은 호중구성 천식인 것을 특징으로 하는, 약학적 조성물.
  5. 제1항에 있어서,
    상기 소포는 평균 직경이 10 내지 200 nm인 것을 특징으로 하는, 약학적 조성물.
  6. 제1항에 있어서,
    상기 소포는 마이크로코커스 루테우스(Micrococcus luteus)에서 자연적으로 분비 또는 인공적으로 생산되는 것을 특징으로 하는, 약학적 조성물.
  7. 제1항에 있어서,
    상기 조성물은 NLRP3 inflammasome의 활성을 억제하는 것을 특징으로 하는, 약학적 조성물.
  8. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 개선용 식품 조성물.
  9. 제8항에 있어서,
    상기 폐질환은 천식(Asthma), 폐기종(Emphysema), 낭포성섬유증(Cystic fibrosis; CF), 세균성 폐렴(Bacterial pneumonia), 바이러스성 폐렴(Viral pneumonia), 특발성 폐섬유증(Idiopathic pulmonary fibrosis; IPF), 간질성 폐렴(Interstitial pneumonitis), 급성 호흡곤란 증후군(acute respiratory distress syndrome; ARDS), 및 급성 폐손상(acute lung injury; ALI)으로 이루어진 군으로부터 선택된 하나 이상의 질환인 것을 특징으로 하는, 식품 조성물.
  10. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환의 예방 또는 치료용 흡입제 조성물.
  11. 제10항에 있어서,
    상기 폐질환은 천식(Asthma), 폐기종(Emphysema), 낭포성섬유증(Cystic fibrosis; CF), 세균성 폐렴(Bacterial pneumonia), 바이러스성 폐렴(Viral pneumonia), 특발성 폐섬유증(Idiopathic pulmonary fibrosis; IPF), 간질성 폐렴(Interstitial pneumonitis), 급성 호흡곤란 증후군(acute respiratory distress syndrome; ARDS), 및 급성 폐손상(acute lung injury; ALI)으로 이루어진 군으로부터 선택된 하나 이상의 질환인 것을 특징으로 하는, 흡입제 조성물.
  12. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 예방 또는 개선용 의약외품 조성물.
  13. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는, 호중구성 폐질환 치료 약물 전달용 조성물.
  14. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 호중구성 폐질환의 예방 또는 치료방법.
  15. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물의 호중구성 폐질환의 예방 또는 치료 용도.
  16. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포의 호중구성 폐질환 치료용 약제의 제조를 위한 용도.
  17. 호중구성 폐질환 치료 약물을 담지한 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 호중구성 폐질환 치료 약물 전달 방법.
  18. 마이크로코커스 루테우스(Micrococcus luteus) 유래 소포를 유효성분으로 포함하는 조성물의 호중구성 폐질환 치료 약물 전달 용도.
PCT/KR2021/015764 2020-12-28 2021-11-03 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 호중구성 폐질환의 예방 또는 치료용 조성물 WO2022145680A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/259,654 US20240066077A1 (en) 2020-12-28 2021-11-03 Composition for prevention or treatment of neutrophilic pulmonary disease comprising extracellular vesicles derived from micrococcus luteus
JP2023539151A JP2024500997A (ja) 2020-12-28 2021-11-03 マイクロコッカス・ルテウス由来細胞外小胞を含む好中球性肺疾患の予防または治療用組成物
EP21915478.8A EP4268835A1 (en) 2020-12-28 2021-11-03 Composition for prevention or treatment of neutrophilic pulmonary disease comprising extracellular vesicles derived from micrococcus luteus
CN202180088250.3A CN116801862A (zh) 2020-12-28 2021-11-03 包含来源于藤黄微球菌的细胞外囊泡的、用于预防或治疗中性粒细胞肺病的组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200184337 2020-12-28
KR10-2020-0184337 2020-12-28
KR1020210148789A KR20220094112A (ko) 2020-12-28 2021-11-02 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 호중구성 폐질환의 예방 또는 치료용 조성물
KR10-2021-0148789 2021-11-02

Publications (1)

Publication Number Publication Date
WO2022145680A1 true WO2022145680A1 (ko) 2022-07-07

Family

ID=82259298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015764 WO2022145680A1 (ko) 2020-12-28 2021-11-03 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 호중구성 폐질환의 예방 또는 치료용 조성물

Country Status (4)

Country Link
US (1) US20240066077A1 (ko)
EP (1) EP4268835A1 (ko)
JP (1) JP2024500997A (ko)
WO (1) WO2022145680A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110038575A (ko) * 2009-10-08 2011-04-14 주식회사이언메딕스 실내 공기유래 세포밖 소포체를 포함하는 조성물 및 이의 용도
WO2019051380A1 (en) * 2017-09-08 2019-03-14 Evelo Biosciences, Inc. BACTERIAL EXTRACELLULAR (EV) VESICLES
KR20190073917A (ko) * 2017-12-19 2019-06-27 포항공과대학교 산학협력단 인터류킨-17 억제제 및 종양괴사인자-알파 억제제를 유효성분으로 포함하는 호중구성 폐 염증질환의 예방 또는 치료용 약학적 조성물
KR20190103962A (ko) * 2018-02-28 2019-09-05 주식회사 엠디헬스케어 마이크로코커스 속 세균 유래 나노소포 및 이의 용도
KR20210148789A (ko) 2020-05-29 2021-12-08 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 반도체 디바이스 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110038575A (ko) * 2009-10-08 2011-04-14 주식회사이언메딕스 실내 공기유래 세포밖 소포체를 포함하는 조성물 및 이의 용도
WO2019051380A1 (en) * 2017-09-08 2019-03-14 Evelo Biosciences, Inc. BACTERIAL EXTRACELLULAR (EV) VESICLES
KR20190073917A (ko) * 2017-12-19 2019-06-27 포항공과대학교 산학협력단 인터류킨-17 억제제 및 종양괴사인자-알파 억제제를 유효성분으로 포함하는 호중구성 폐 염증질환의 예방 또는 치료용 약학적 조성물
KR20190103962A (ko) * 2018-02-28 2019-09-05 주식회사 엠디헬스케어 마이크로코커스 속 세균 유래 나노소포 및 이의 용도
KR20210148789A (ko) 2020-05-29 2021-12-08 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 반도체 디바이스 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG WENLIN, NI HONGYAN, WANG HAIFENG, GU HUILING: "Original Article NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease", INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, vol. 8, no. 10, 1 January 2015 (2015-01-01), US , pages 13209 - 13216, XP055947749, ISSN: 1936-2625 *

Also Published As

Publication number Publication date
EP4268835A1 (en) 2023-11-01
US20240066077A1 (en) 2024-02-29
JP2024500997A (ja) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2016144139A2 (ko) 유산균 유래 세포밖 소포체를 유효성분으로 포함하는 염증질환의 예방 또는 치료용 조성물
Yang et al. Effects of vitamin A deficiency on mucosal immunity and response to intestinal infection in rats
WO2021256665A1 (ko) 락토바실러스 파라카세이 유래 소포를 포함하는 신경질환 또는 정신질환 예방 또는 치료용 조성물
KR20110082480A (ko) 포유동물 체내에서 유래된 세포밖 소포체를 포함하는 조성물 및 이의 용도
WO2018030732A1 (ko) 바실러스 속 세균 유래 나노소포 및 이의 용도
Xia et al. Lactobacillus johnsonii L531 ameliorates enteritis via elimination of damaged mitochondria and suppression of SQSTM1‐dependent mitophagy in a Salmonella infantis model of piglet diarrhea
KR20220094112A (ko) 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 호중구성 폐질환의 예방 또는 치료용 조성물
WO2019004668A1 (ko) 프로테우스 속 세균 유래 나노소포 및 이의 용도
WO2012093755A1 (ko) 발효식품에서 유래된 세포밖 소포체를 포함하는 조성물 및 이의 용도
WO2018105926A1 (ko) 유산균 발효 복합생약추출물을 유효성분으로 하는 항알레르기 조성물
AU2021212021B2 (en) Pharmaceutical composition for preventing or treating atopic disease containing Akkermansia muciniphila strain
WO2022145680A1 (ko) 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 호중구성 폐질환의 예방 또는 치료용 조성물
WO2020222483A1 (ko) 분리된 미토콘드리아를 유효성분으로 포함하는 패혈증 또는 전신성 염증 반응 증후군 치료용 약학 조성물
Parthasarathy et al. Trichuris suis excretory secretory products (ESP) elicit interleukin-6 (IL-6) and IL-10 secretion from intestinal epithelial cells (IPEC-1)
WO2019031729A2 (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 비알콜성 단순 지방간 또는 비알콜성 지방간염의 개선 용도
WO2022145656A1 (ko) 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 안질환 예방 또는 치료용 조성물
WO2012093754A1 (ko) 포유동물 체내에서 유래된 세포밖 소포체를 포함하는 조성물 및 이의 용도
WO2017116005A1 (ko) 세포밖 소포 생성 및 숙주 면역반응을 조절하는 small rna 유전자 및 이의 용도
WO2019156449A1 (ko) 락토코커스 속 세균 유래 나노소포 및 이의 용도
WO2021242056A1 (ko) 비피도박테리움 속 균주, 및 그의 유래의 소포체 및 그의 항염증 및 항균 용도
WO2022145711A1 (ko) 마이크로코커스 루테우스 유래 세포외 소포를 포함하는 대사질환 예방 또는 치료용 조성물
WO2019164230A1 (ko) 큐프리아비더스 속 세균 유래 나노소포 및 이의 용도
WO2022114528A1 (ko) 락토코커스 락티스 유래 소포를 포함하는 호산구성 염증질환 또는 th2 과민성 면역질환 예방, 치료, 또는 개선용 조성물
WO2022255553A1 (ko) 락토바실러스 파라카세이 유래 세포외소포를 포함하는 안질환 예방 또는 치료용 조성물
WO2017123025A1 (ko) 세균유래 세포밖 소포에 의한 기도 면역기능이상 조절제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539151

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18259654

Country of ref document: US

Ref document number: 202180088250.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021915478

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915478

Country of ref document: EP

Effective date: 20230728