WO2022145508A1 - 자기 임피던스 센서용 듀얼 모드 리드아웃 집적회로 - Google Patents
자기 임피던스 센서용 듀얼 모드 리드아웃 집적회로 Download PDFInfo
- Publication number
- WO2022145508A1 WO2022145508A1 PCT/KR2020/019277 KR2020019277W WO2022145508A1 WO 2022145508 A1 WO2022145508 A1 WO 2022145508A1 KR 2020019277 W KR2020019277 W KR 2020019277W WO 2022145508 A1 WO2022145508 A1 WO 2022145508A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detector
- magnetic field
- output
- strength
- sensor
- Prior art date
Links
- 230000009977 dual effect Effects 0.000 title abstract description 3
- 230000035945 sensitivity Effects 0.000 claims abstract description 11
- 230000003213 activating effect Effects 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 21
- 238000001914 filtration Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 9
- 239000000284 extract Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0023—Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0005—Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
Definitions
- the present invention relates to a readout integrated circuit (ROIC) for a magneto-impedance (MI) sensor, and more particularly, to reduce power consumption of the MI sensor while reducing sensitivity and resolution It is about ROIC for MI sensor.
- ROIC readout integrated circuit
- ROIC for MI sensor is composed of MI driver (MI driver), coil monitor (Coil Monitor), LPF (Low Pass Filter) and ADC (Analog to Digital Converter) / DSP (Digital Signal Processor).
- MI driver MI driver
- coil monitor Coil Monitor
- LPF Low Pass Filter
- ADC Analog to Digital Converter
- DSP Digital Signal Processor
- the coil monitor detects the peak value of the output voltage from the pickup coil of the MI sensor.
- the coil monitor can be divided into a peak detection method and a lock-in detection method.
- the peak detection method has an advantage of low power consumption (Good), but has a disadvantage of low SNR (Bad).
- the lock-in detection method has an advantage of high SNR (good), but has a disadvantage in that power consumption is high (bad).
- the existing ROIC for MI sensor uses one of the above two methods by applying one of the above two methods to the coil monitor.
- the application of the MI sensor is so diverse that it ranges from a pT-class bio-magnetic field to a uT-class natural magnetic field and an mT-class industrial magnetic field. Therefore, the existing ROIC for MI sensor has a problem in that it lacks responsiveness according to various input magnetic field levels.
- the present invention has been devised to solve the above problems, and an object of the present invention is to obtain optimal MI sensor performance (sensitivity, resolution, power consumption) according to changes in the input magnetic field level of various MI sensors, It is to provide a ROIC for MI sensor that adaptively activates and uses various detectors.
- ROIC a first detector for detecting the strength of the magnetic field in a first manner from the output of the magnetic sensor; a second detector for detecting the strength of the magnetic field in a second manner from the output of the magnetic sensor; and a selector that selectively activates one of the first detector and the second detector.
- the selector may selectively activate one of the first detector and the second detector based on the strength of the magnetic field.
- the selector may activate the first detector when the strength of the magnetic field is equal to or greater than the reference, and activate the second detector when the strength of the magnetic field is less than the reference.
- the second detector may have higher sensitivity and resolution than the first detector, and consume more power than the first detector.
- the selector may determine whether the strength of the magnetic field is equal to or greater than a reference value from any one of the output of the magnetic sensor, the output of the first detector, and the output of the second detector.
- ROIC LPF for low-pass filtering the output of the first detector or the output of the second detector; and a processor that converts the output of the LPF into a digital signal and processes the signal; the selector may further include, from the output of the processor, whether the strength of the magnetic field is greater than or equal to a reference value.
- the first detector includes: a rectifier for rectifying the output of the magnetic sensor; and an amplifier amplifying the output of the rectifier.
- the selector may determine whether the strength of the magnetic field is equal to or greater than a reference value from the output of the rectifier.
- the ROIC further includes a driver for generating a driving signal of the magnetic sensor and applying it to the magnetic sensor, wherein the second detector includes: an amplifier for amplifying an output of the magnetic sensor; A multiplier that multiplies the output of the amplifier and the output of the driver; may include.
- the magnetic field measuring method a first detector for detecting the strength of the magnetic field in a first manner from the output of the magnetic sensor and detecting the strength of the magnetic field from the output of the magnetic sensor in a second manner selectively activating one of the second detectors; and detecting the strength of the magnetic field with an activated detector.
- a magnetic sensor module a magnetic sensor for measuring a magnetic field; a first detector for detecting the strength of the magnetic field in a first manner from the output of the magnetic sensor; a second detector for detecting the strength of the magnetic field in a second manner from the output of the magnetic sensor; and a selector that selectively activates one of the first detector and the second detector.
- a magnetic field measuring method comprising: measuring a magnetic field; selectively activating one of a first detector for detecting the strength of the magnetic field in a first manner and a second detector for detecting the strength of the magnetic field in a second manner based on the measured strength of the magnetic field; and detecting the strength of the magnetic field with an activated detector.
- the strength of the measured magnetic field when the strength of the measured magnetic field is large, power consumption can be reduced by applying the Peak Detection method, and the Lock-in Detection method is applied only when the strength of the measured magnetic field is small. In this way, the sensitivity and resolution can be prevented from being deteriorated.
- FIG. 1 is a structural diagram of a ROIC for MI sensor
- 2 is a table comparing the SNR and power consumption of the peak detection method and the lock-in detection method
- FIG. 3 is a structural diagram of a coil monitor implemented in a peak detection method
- FIG. 4 is a structural diagram of a coil monitor implemented in a lock-in detection method
- FIG. 5 is a block diagram of a dual-mode ROIC according to an embodiment of the present invention.
- FIGS. 6 to 9 are block diagrams of a dual-mode ROIC according to another embodiment of the present invention.
- FIG. 10 is a flowchart provided to explain a method for measuring a magnetic field according to another embodiment of the present invention.
- FIG. 3 is a structural diagram of a coil monitor implemented by a peak detection method. This type of coil monitor rectifies the output voltage of the MI sensor pickup coil through a rectifier, amplifies it in an amplifier, and extracts magnetic field strength information.
- the rectified signal is input, the input signal of the amplifier has a low frequency and thus the bandwidth of the amplifier may be low, so that it can be designed with low power.
- the rectifier also has low power consumption.
- FIG. 4 is a structural diagram of a coil monitor implemented in a lock-in detection method. This type of coil monitor extracts magnetic field strength information by amplifying the output voltage of the MI sensor pickup coil by an amplifier, then multiplying it with a reference signal and demodulating it.
- the SNR is high because the magnetic field signal and the noise of the amplifier are easily separated through the demodulator, and the noise of the amplifier can be removed by using the LPF (not shown) at the rear.
- the LPF not shown
- a dual-mode readout integrated circuit that does not degrade sensitivity and resolution while reducing power consumption is proposed by adaptively utilizing the above two types of coil monitors.
- FIG. 5 is a block diagram of a dual-mode ROIC according to an embodiment of the present invention.
- Dual-mode ROIC according to an embodiment of the present invention, as shown, MI driver (MI driver) 110, PD (Peak Detector) 120, LD (Lock-in Detector) 130, mode selector ( Mode Selector) 140 , LPF (Low Pass Filter) 150 , and ADC (Analog to Digital Converter)/DSP (Digital Signal Processor) 160 are included.
- MI driver MI driver
- PD Peak Detector
- LD Low-in Detector
- mode selector Mode Selector
- LPF Low Pass Filter
- ADC Analog to Digital Converter
- DSP Digital Signal Processor
- the MI driver 110 generates a driving signal for operating the MI sensor 10 , for example, a sine wave or pulse wave of several tens of kHz to several tens of MHz, and applies it to the MI sensor 10 .
- the PD 120 detects the peak of the output voltage of the MI sensor 10 to detect the strength of the magnetic field measured by the MI sensor 10 .
- the PD 120 is configured to include a rectifier (Rectifier) 121 and an amplifier (Amp) (122).
- the rectifier 121 rectifies the output voltage of the MI sensor 10 , and the amplifier 122 amplifies the output of the rectifier 121 and outputs it as magnetic field strength information.
- the LD 130 demodulates the output of the MI sensor 10 to detect the strength of the magnetic field measured by the MI sensor 10 .
- the LD 130 is configured to include an amplifier (Amp) 131 and a demodulator (Demodulator) 132 .
- the amplifier 131 amplifies the output voltage of the MI sensor 10 , and the demodulator 132 multiplies the output signal of the amplifier 131 with the driving signal of the MI sensor 10 generated by the MI driver 110 and demodulates it. , output the magnetic field strength information.
- the mode selector 140 selectively activates one of the PD 120 and the LD 130 based on the strength of the magnetic field measured by the MI sensor 10 .
- the mode selector 140 sets the EN signal to a logic level High, activates the PD 120 and LD 130 is deactivated.
- the PD 120 is used to reduce power consumption.
- the mode selector 140 sets the EN signal to the logic level Low, activating the LD 130 and the PD 120 is deactivated.
- the LD 130 having high sensitivity and resolution was used even if power consumption was high.
- the LPF 150 low-pass-filters the output of the PD 120 or the output of the LD 130 to remove high-frequency noise present in the output of the PD 120, and the output of the LD 130 generated in the demodulation process By removing harmonic components, only pure magnetic field strength information is extracted.
- the ADC/DSP 160 converts the output of the LPF 150 from analog to a digital signal, and performs necessary digital signal processing such as calibration on the converted digital signal.
- the mode selector 140 selects a detector to be activated based on the strength of the magnetic field measured by the MI sensor 10 , but it is possible to modify it as an example.
- the mode selector 140 selects a detector to be activated based on the strength of the magnetic field output from the rectifier 121 of the PD 120, or as shown in FIG. 7, the amplifier ( It can be implemented by selecting a detector to be activated by the mode selector 140 based on the strength of the magnetic field output from the 122 , that is, the strength of the magnetic field output from the PD 120 .
- the mode selector 140 selects a detector to be activated based on the strength of the magnetic field output from the LD 130 , or output from the ADC/DSP 160 as shown in FIG. 9 . It can be implemented by selecting the detector to be activated by the mode selector 140 based on the strength of the magnetic field.
- mode selector 140 selects a detector to be activated manually by a user's selection, instead of selecting a detector to be automatically activated by detecting the magnetic field strength.
- PD and LD presented in the above embodiment are merely those exemplified as detectors for detecting the strength of a magnetic field as a peak. Replacing them with other types of detectors may also be included in the scope of the present invention.
- FIG. 10 is a flowchart provided to explain a method for measuring a magnetic field according to another embodiment of the present invention.
- the MI driver 110 applies a driving signal to the MI sensor 10 , and accordingly, the magnetic field is measured in the MI sensor 10 ( S210 ).
- the mode selector 140 selectively activates one of the PD 120 and the LD 130 based on the strength of the magnetic field measured in step S210 (S220).
- the mode selector 140 activates the PD 120 and deactivates the LD 130 (S230). Accordingly, the magnetic field strength is detected by the PD method.
- the mode selector 140 activates the LD 130 and deactivates the PD 120, as opposed to the step S230 (S240). Accordingly, the magnetic field strength is detected by the LD method.
- the LPF 150 low-pass-filters the detection result in step S230 or S240 (S250), and the ADC/DSP 160 A/D-converts the signal filtered in step S250 (S260), and digital Signal processing is performed (S270).
- the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
- the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium.
- the computer-readable recording medium may be any data storage device readable by the computer and capable of storing data.
- the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like.
- the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
MI 센서용 듀얼 모드 ROIC가 제공된다. 본 발명의 실시예에 따른 ROIC는, 자기 센서의 출력으로부터 제1 방식으로 자기장의 세기를 검출하는 제1 검출기, 자기 센서의 출력으로부터 제2 방식으로 자기장의 세기를 검출하는 제2 검출기 및 제1 검출기 및 제2 검출기 중 하나를 선택적으로 활성화시키는 선택기를 포함한다. 이에 의해, MI 센서의 감도/분해능 향상과 전력 절감이라는 트레이드 오프 관계에 있는 두 가지 목표 모두를 최선의 방향으로 추구할 수 있게 된다.
Description
본 발명은 MI(Magneto-Impedance:자기 임피던스) 센서를 위한 ROIC(ReadOut Integrated Circuit)에 관한 것으로, 더욱 상세하게는 MI 센서의 전력 소모를 저감시키면서 감도(sensitivity)와 분해능(resolution)은 떨어지지 않도록 하기 위한 ROIC에 관한 것이다.
도 1은 MI 센서용 ROIC의 구조도이다. MI 센서용 ROIC는, 도시된 바와 같이, MI 드라이버(MI driver), 코일 모니터(Coil Monitor), LPF(Low Pass Filter) 및 ADC(Analog to Digital Converter)/DSP(Digital Signal Processor)로 구성된다.
코일 모니터는 MI 센서의 픽업 코일(Peakup Coil)에서 출력 전압의 피크 값을 검출한다. 코일 모니터는 Peak detection 방식과 Lock-in detection 방식으로 구분할 수 있다.
도 2는 Peak detection 방식과 Lock-in detection 방식의 SNR과 전력 소모를 비교한 표이다. 도시된 표에 따르면, Peak detection 방식은 전력 소모량이 낮다(Good)는 장점이 있는 반면, SNR은 낮다(Bad)는 단점이 있다. 반대로, Lock-in detection 방식이 SNR이 높다(Good)는 장점이 있는 반면, 전력 소모량은 높다(Bad)는 단점이 있다.
기존의 MI 센서용 ROIC는 위 두 가지 방식 중 하나를 코일 모니터에 적용하여 사용하고 있다.
하지만, MI 센서의 application은 pT 급의 bio-magnetic field 부터 uT 급의 natural magnetic field, mT 급의 산업용 magnetic field 에 이를 정도로 다양하다. 따라서, 기존의 MI 센서용 ROIC는 다양한 입력 자기장 레벨에 따른 대응성이 부족하다는 문제점을 안고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 다양한 MI 센서의 입력 자기장 레벨 변화에 따라 최적의 MI 센서 성능 (감도, 분해능, 전력 소모)을 얻기 위한 방안으로, 다양한 검출기를 적응적으로 활성화시켜 사용하는 MI 센서용 ROIC를 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, ROIC는, 자기 센서의 출력으로부터 제1 방식으로 자기장의 세기를 검출하는 제1 검출기; 자기 센서의 출력으로부터 제2 방식으로 자기장의 세기를 검출하는 제2 검출기; 제1 검출기 및 제2 검출기 중 하나를 선택적으로 활성화시키는 선택기;를 포함한다.
선택기는, 자기장의 세기를 기초로, 제1 검출기 및 제2 검출기 중 하나를 선택적으로 활성화시킬 수 있다.
선택기는, 자기장의 세기가 기준 이상인 경우에는 제1 검출기를 활성화시키고, 자기장의 세기가 기준 미만인 경우에는 제2 검출기를 활성화시킬 수 있다.
제2 검출기는, 제1 검출기 보다 감도와 분해능이 높고, 제1 검출기 보다 전력 소모량이 많을 수 있다.
선택기는, 자기 센서의 출력, 제1 검출기의 출력 및 제2 검출기의 출력 중 어느 하나로부터 자기장의 세기가 기준 이상인지 여부를 판단할 수 있다.
본 발명의 실시예에 따른 ROIC는, 제1 검출기의 출력 또는 제2 검출기의 출력을 저역 통과 필터링하는 LPF; 및 LPF의 출력을 디지털 신호로 변환하고 신호 처리하는 처리기;를 더 포함하고, 선택기는, 처리기의 출력으로부터 자기장의 세기가 기준 이상인지 여부를 판단할 수 있다.
제1 검출기는, 자기 센서의 출력을 정류하는 정류기; 및 정류기의 출력을 증폭하는 증폭기;를 포함할 수 있다.
선택기는, 정류기의 출력으로부터 자기장의 세기가 기준 이상인지 여부를 판단할 수 있다.
본 발명의 실시예에 따른 ROIC는, 자기 센서의 구동 신호를 생성하여 자기 센서에 인가하는 드라이버;를 더 포함하고, 제2 검출기는, 자기 센서의 출력을 증폭하는 증폭기; 증폭기의 출력과 드라이버의 출력을 곱하는 곱셈기;를 포함할 수 있다.
한편, 본 발명의 다른 실시예에 따른, 자기장 측정 방법은, 자기 센서의 출력으로부터 제1 방식으로 자기장의 세기를 검출하는 제1 검출기와 자기 센서의 출력으로부터 제2 방식으로 자기장의 세기를 검출하는 제2 검출기 중 하나를 선택적으로 활성화시키는 단계; 활성화된 검출기로 자기장의 세기를 검출하는 단계;를 포함한다.
한편, 본 발명의 다른 실시예에 따른, 자기 센서 모듈은, 자기장을 측정하는 자기 센서; 자기 센서의 출력으로부터 제1 방식으로 자기장의 세기를 검출하는 제1 검출기; 자기 센서의 출력으로부터 제2 방식으로 자기장의 세기를 검출하는 제2 검출기; 제1 검출기 및 제2 검출기 중 하나를 선택적으로 활성화시키는 선택기;를 포함한다.
한편, 본 발명의 다른 실시예에 따른, 자기장 측정 방법은, 자기장을 측정하는 단계; 측정된 자기장의 세기를 기초로, 제1 방식으로 자기장의 세기를 검출하는 제1 검출기와 제2 방식으로 자기장의 세기를 검출하는 제2 검출기 중 하나를 선택적으로 활성화시키는 단계; 활성화된 검출기로 자기장의 세기를 검출하는 단계;를 포함한다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, MI 센서의 감도/분해능 향상과 전력 절감이라는 트레이드 오프 관계에 있는 두 가지 목표 모두를 최선의 방향으로 추구할 수 있게 된다.
구체적으로, 본 발명의 실시예들에 따르면, 측정되는 자기장의 세기가 큰 경우에는 Peak Detection 방식을 적용하여 전력 소모량을 줄일 수 있고, 측정되는 자기장의 세기가 작은 경우에만 Lock-in Detection 방식을 적용하여 감도와 분해능이 떨어지지 않도록 할 수 있다.
도 1은 MI 센서용 ROIC의 구조도,
도 2는 Peak detection 방식과 Lock-in detection 방식의 SNR과 전력 소모를 비교한 표,
도 3은 Peak Detection 방식으로 구현한 코일 모니터의 구조도,
도 4는 Lock-in Detection 방식으로 구현한 코일 모니터의 구조도,
도 5는 본 발명의 일 실시예에 따른 듀얼 모드 ROIC의 블럭도,
도 6 내지 도 9는, 본 발명의 다른 실시예에 따른 듀얼 모드 ROIC의 블럭도들,
도 10은 본 발명의 또 다른 실시예에 따른 자기장 측정 방법의 설명에 제공되는 흐름도이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
도 3은 Peak Detection 방식으로 구현한 코일 모니터의 구조도이다. 이 같은 방식의 코일 모니터는 MI 센서 픽업 코일의 출력 전압을 정류기(Rectifier)를 통해 정류한 후 증폭기(Amp)에서 증폭시켜, 자기장 세기 정보를 추출한다.
정류된 신호가 입력되므로, 증폭기의 입력 신호는 주파수가 낮아 증폭기의 대역폭은 낮아도 되므로, 저전력으로 설계할 수 있다. 또한, 정류기도 전력 소모가 낮다.
하지만, MI 센서에서 측정된 자기장 신호의 주파수 분포가 정류기와 증폭기 의 노이즈 밴드에 함께 포함되어 있어, 자기장 신호와 노이즈를 분리하는 것이 어려워 SNR(Signal to Noise Ratio)이 낮다.
도 4는 Lock-in Detection 방식으로 구현한 코일 모니터의 구조도이다. 이 같은 방식의 코일 모니터는 MI 센서 픽업 코일의 출력 전압을 증폭기에서 증폭시킨 후에 기준 신호와 곱하여 복조함으로써, 자기장 세기 정보를 추출한다.
복조기를 통해 자기장 신호와 증폭기의 노이즈를 쉽게 분리하고, 후단의 LPF(미도시)를 이용하여 증폭기의 노이즈를 제거할 수 있어 SNR이 높다. 하지만, 고주파수의 MI 센서의 출력 전압이 그대로 증폭기에 인가되기 때문에 증폭기의 대역폭이 높아야 하므로 전력 소모가 많다.
본 발명의 실시예에서는, 위 두 가지 방식의 코일 모니터를 적응적으로 활용하여, 전력 소모를 저감시키면서도 감도(sensitivity)와 분해능(resolution)을 떨어뜨리지 않는 듀얼 모드 ROIC(ReadOut Integrated Circuit)를 제시한다.
도 5는 본 발명의 일 실시예에 따른 듀얼 모드 ROIC의 블럭도이다. 본 발명의 실시예에 따른 듀얼 모드 ROIC는, 도시된 바와 같이, MI 드라이버(MI driver)(110), PD(Peak Detector)(120), LD(Lock-in Detector)(130), 모드 선택기(Mode Selector)(140), LPF(Low Pass Filter)(150) 및 ADC(Analog to Digital Converter)/DSP(Digital Signal Processor)(160)를 포함하여 구성된다.
MI 드라이버(110)는 MI 센서(10)를 동작시키기 위한 구동 신호, 이를 테면, 수십 kHz ~ 수십 MHz의 sine 파 혹은 pulse 파를 생성하여, MI 센서(10)로 인가한다.
이에 따라, MI 센서(10)의 픽업 코일(미도시)에서는 피크 값이 입력 자기장에 비례하는 sine 파 혹은 pulse 파가 발생된다.
PD(120)는 MI 센서(10)의 출력 전압의 피크를 검지하여, MI 센서(10)에 의해 측정된 자기장의 세기를 검출한다. PD(120)는 도시된 바와 같이, 정류기(Rectifier)(121) 및 증폭기(Amp)(122)를 포함하여 구성된다.
정류기(121)는 MI 센서(10)의 출력 전압을 정류하고, 증폭기(122)는 정류기(121)의 출력을 증폭시켜 자기장의 세기 정보로 출력한다.
LD(130)는 MI 센서(10)의 출력을 복조하여, MI 센서(10)에 의해 측정된 자기장의 세기를 검출한다. LD(130)는 도시된 바와 같이, 증폭기(Amp)(131) 및 복조기(Demodulator)(132)를 포함하여 구성된다.
증폭기(131)는 MI 센서(10)의 출력 전압을 증폭시키고, 복조기(132)는 증폭기(131)의 출력 신호와 MI 드라이버(110)에서 생성되는 MI 센서(10)의 구동 신호를 곱하여 복조함으로써, 자기장의 세기 정보를 출력한다.
모드 선택기(140)는 MI 센서(10)에서 측정되는 자기장의 세기를 기초로, PD(120)와 LD(130) 중 하나를 선택적으로 활성화시킨다.
구체적으로, MI 센서(10)에서 측정되는 자기장의 세기가 크면, 즉, 기준 이상이면, 모드 선택기(140)는 EN 신호를 논리 레벨 High로 설정하여, PD(120)를 활성화 시키고 LD(130)는 비활성화 시킨다.
MI 센서(10)에서 측정되는 자기장의 세기가 크다면, PD(120)를 활용하여 자기장의 세기를 검출한다 하더라도 감도와 분해능이 크게 떨어지지 않는다. 따라서, 이 경우에는 PD(120)를 활용하여 전력 소모를 줄이도록 하였다.
반면, MI 센서(10)에서 측정되는 자기장의 세기가 작으면, 즉, 기준 미만이면, 모드 선택기(140)는 EN 신호를 논리 레벨 Low로 설정하여, LD(130)를 활성화 시키고 PD(120)는 비활성화 시킨다.
MI 센서(10)에서 측정되는 자기장의 세기가 작은 경우, PD(120)를 활용하여 자기장의 세기를 검출한다면 감도와 분해능이 크게 떨어지는 문제가 발생할 수 있다. 따라서, 이 경우에는 전력 소모가 많더라도 감도와 분해능이 높은 LD(130)를 활용하도록 하였다.
LPF(150)는 PD(120)의 출력 또는 LD(130)의 출력을 저역 통과 필터링하여, PD(120)의 출력에 존재하는 고주파 노이즈를 제거하고, 복조 과정에서 발생한 LD(130)의 출력의 고조파 성분들을 제거하여, 순수한 자기장 세기 정보 만을 추출한다.
ADC/DSP(160)는 LPF(150)의 출력을 아날로그에서 디지털 신호로 변환하고, 변환된 디지털 신호에 대해 캘리브레이션 등의 필요한 디지털 신호 처리를 수행한다.
지금까지, MI 센서용 듀얼 모드 ROIC에 대해 바람직한 실시예를 들어 상세히 설명하였다.
위 실시예에서, 모드 선택기(140)는 MI 센서(10)에서 측정되는 자기장의 세기를 기초로 활성화할 검출기를 선택하는 것을 상정하였는데, 예시적인 것으로 변형이 가능하다.
이를 테면, 도 6에 도시된 바와 같이 PD(120)의 정류기(121)에서 출력되는 자기장의 세기를 기초로 모드 선택기(140)가 활성화할 검출기를 선택하거나, 도 7에 도시된 바와 같이 증폭기(122)에서 출력되는 자기장의 세기, 즉, PD(120)에서 출력되는 자기장의 세기를 기초로 모드 선택기(140)가 활성화할 검출기를 선택하는 것으로 구현할 수 있다.
나아가, 도 8에 도시된 바와 같이 LD(130)에서 출력되는 자기장의 세기를 기초로 모드 선택기(140)가 활성화할 검출기를 선택하거나, 도 9에 도시된 바와 같이 ADC/DSP(160)에서 출력되는 자기장의 세기를 기초로 모드 선택기(140)가 활성화할 검출기를 선택하는 것으로 구현할 수 있다.
더 나아가, 모드 선택기(140)가 자기장 세기를 검출하여 자동으로 활성화할 검출기를 선택하는 것이 아닌, 사용자의 선택에 의해 수동으로 활성화할 검출기를 선택하는 모드를 추가하는 것도 가능하다.
한편, 위 실시예에서 제시한 듀얼 모드 ROIC와 MI 센서(10)를 결합한 자기 센서 모듈을 구현함에 있어서도, 본 발명의 기술적 사상이 적용될 수 있음은 물론이다.
또한, 위 실시예에서 제시한 PD와 LD는 자기장의 세기를 피크로 검출하기 위한 검출기들로 예시한 것들에 불과하다. 이들을 다른 종류의 검출기로 대체하는 경우도 본 발명의 범주에 포함될 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 자기장 측정 방법의 설명에 제공되는 흐름도이다.
도시된 바와 같이, 먼저, MI 드라이버(110)는 MI 센서(10)에 구동 신호를 인가하고, 이에 따라, MI 센서(10)에서 자기장 측정이 이루어진다(S210).
모드 선택기(140)는 S210단계에서 측정되는 자기장의 세기를 기초로, PD(120)와 LD(130) 중 하나를 선택적으로 활성화시킨다(S220).
구체적으로, S210단계에서 측정되는 자기장의 세기가 기준 이상이면(S220-Y), 모드 선택기(140)는 PD(120)를 활성화 시키고 LD(130)는 비활성화 시킨다(S230). 이에 따라, PD 방식으로 자기장 세기가 검출된다.
반면, S210단계에서 측정되는 자기장의 세기가 기준 미만이면(S220-N), 모드 선택기(140)는 S230단계와 반대로 LD(130)를 활성화 시키고 PD(120)는 비활성화 시킨다(S240). 이에 따라, LD 방식으로 자기장 세기가 검출된다.
다음, LPF(150)가 S230단계 또는 S240단계에서의 검출 결과를 저역 통과 필터링하고(S250), ADC/DSP(160)는 S250단계에서의 필터링된 신호를 A/D 변환하고(S260), 디지털 신호 처리 한다(S270).
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.
Claims (12)
- 자기 센서의 출력으로부터 제1 방식으로 자기장의 세기를 검출하는 제1 검출기;자기 센서의 출력으로부터 제2 방식으로 자기장의 세기를 검출하는 제2 검출기;제1 검출기 및 제2 검출기 중 하나를 선택적으로 활성화시키는 선택기;를 포함하는 것을 특징으로 하는 ROIC(ReadOut Integrated Circuit).
- 청구항 1에 있어서,선택기는,자기장의 세기를 기초로, 제1 검출기 및 제2 검출기 중 하나를 선택적으로 활성화시키는 것을 특징으로 하는 ROIC.
- 청구항 2에 있어서,선택기는,자기장의 세기가 기준 이상인 경우에는 제1 검출기를 활성화시키고,자기장의 세기가 기준 미만인 경우에는 제2 검출기를 활성화시키는 것을 특징으로 하는 ROIC.
- 청구항 3에 있어서,제2 검출기는,제1 검출기 보다 감도와 분해능이 높고,제1 검출기 보다 전력 소모량이 많은 것을 특징으로 하는 ROIC.
- 청구항 3에 있어서,선택기는,자기 센서의 출력, 제1 검출기의 출력 및 제2 검출기의 출력 중 어느 하나로부터 자기장의 세기가 기준 이상인지 여부를 판단하는 것을 특징으로 하는 ROIC.
- 청구항 3에 있어서,제1 검출기의 출력 또는 제2 검출기의 출력을 저역 통과 필터링하는 LPF; 및LPF의 출력을 디지털 신호로 변환하고 신호 처리하는 처리기;를 더 포함하고,선택기는,처리기의 출력으로부터 자기장의 세기가 기준 이상인지 여부를 판단하는 것을 특징으로 하는 ROIC.
- 청구항 3에 있어서,제1 검출기는,자기 센서의 출력을 정류하는 정류기;정류기의 출력을 증폭하는 증폭기;를 포함하는 것을 특징으로 하는 ROIC.
- 청구항 7에 있어서,선택기는,정류기의 출력으로부터 자기장의 세기가 기준 이상인지 여부를 판단하는 것을 특징으로 하는 ROIC.
- 청구항 3에 있어서,자기 센서의 구동 신호를 생성하여 자기 센서에 인가하는 드라이버;를 더 포함하고,제2 검출기는,자기 센서의 출력을 증폭하는 증폭기;증폭기의 출력과 드라이버의 출력을 곱하는 곱셈기;를 포함하는 것을 특징으로 하는 ROIC.
- 자기 센서의 출력으로부터 제1 방식으로 자기장의 세기를 검출하는 제1 검출기와 자기 센서의 출력으로부터 제2 방식으로 자기장의 세기를 검출하는 제2 검출기 중 하나를 선택적으로 활성화시키는 단계;활성화된 검출기로 자기장의 세기를 검출하는 단계;를 포함하는 것을 특징으로 하는 자기장 측정 방법.
- 자기장을 측정하는 자기 센서;자기 센서의 출력으로부터 제1 방식으로 자기장의 세기를 검출하는 제1 검출기;자기 센서의 출력으로부터 제2 방식으로 자기장의 세기를 검출하는 제2 검출기;제1 검출기 및 제2 검출기 중 하나를 선택적으로 활성화시키는 선택기;를 포함하는 것을 특징으로 하는 자기 센서 모듈.
- 자기장을 측정하는 단계;측정된 자기장의 세기를 기초로, 제1 방식으로 자기장의 세기를 검출하는 제1 검출기와 제2 방식으로 자기장의 세기를 검출하는 제2 검출기 중 하나를 선택적으로 활성화시키는 단계;활성화된 검출기로 자기장의 세기를 검출하는 단계;를 포함하는 것을 특징으로 하는 자기장 측정 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0185651 | 2020-12-29 | ||
KR1020200185651A KR102460914B1 (ko) | 2020-12-29 | 2020-12-29 | Mi 센서용 듀얼 모드 리드아웃 집적 회로 (roic) |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022145508A1 true WO2022145508A1 (ko) | 2022-07-07 |
Family
ID=82260838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/019277 WO2022145508A1 (ko) | 2020-12-29 | 2020-12-29 | 자기 임피던스 센서용 듀얼 모드 리드아웃 집적회로 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102460914B1 (ko) |
WO (1) | WO2022145508A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110013378A (ko) * | 2008-04-08 | 2011-02-09 | 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) | 평면에서 자기장의 방향을 측정하는 자기장 센서 및 전류 센서 |
KR20110129454A (ko) * | 2009-03-10 | 2011-12-01 | 알레그로 마이크로시스템스 인코포레이티드 | 가변 임계값을 가지는 자기장 검출기 |
KR20120010051A (ko) * | 2010-07-23 | 2012-02-02 | 조선대학교산학협력단 | 차분 자기 센서 모듈을 구비한 자기장 검출 장치 |
KR20160102780A (ko) * | 2015-02-23 | 2016-08-31 | 한국전자통신연구원 | 3축 코일 센서 및 그것을 포함하는 자기장 측정 장치 |
KR20180041713A (ko) * | 2015-08-19 | 2018-04-24 | 알레그로 마이크로시스템스, 엘엘씨 | 임의의 검출로 자기장의 크기를 검출하는 자기장 센서 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005017110A (ja) | 2003-06-26 | 2005-01-20 | Kri Inc | 磁界検出素子 |
KR101731830B1 (ko) * | 2015-05-27 | 2017-05-24 | 주식회사 해치텍 | 물리량 계측 장치 및 그의 처리 방법 |
US10921373B2 (en) * | 2017-11-29 | 2021-02-16 | Allegro Microsystems, Llc | Magnetic field sensor able to identify an error condition |
-
2020
- 2020-12-29 KR KR1020200185651A patent/KR102460914B1/ko active IP Right Grant
- 2020-12-29 WO PCT/KR2020/019277 patent/WO2022145508A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110013378A (ko) * | 2008-04-08 | 2011-02-09 | 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) | 평면에서 자기장의 방향을 측정하는 자기장 센서 및 전류 센서 |
KR20110129454A (ko) * | 2009-03-10 | 2011-12-01 | 알레그로 마이크로시스템스 인코포레이티드 | 가변 임계값을 가지는 자기장 검출기 |
KR20120010051A (ko) * | 2010-07-23 | 2012-02-02 | 조선대학교산학협력단 | 차분 자기 센서 모듈을 구비한 자기장 검출 장치 |
KR20160102780A (ko) * | 2015-02-23 | 2016-08-31 | 한국전자통신연구원 | 3축 코일 센서 및 그것을 포함하는 자기장 측정 장치 |
KR20180041713A (ko) * | 2015-08-19 | 2018-04-24 | 알레그로 마이크로시스템스, 엘엘씨 | 임의의 검출로 자기장의 크기를 검출하는 자기장 센서 |
Also Published As
Publication number | Publication date |
---|---|
KR102460914B1 (ko) | 2022-10-31 |
KR20220094438A (ko) | 2022-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022145508A1 (ko) | 자기 임피던스 센서용 듀얼 모드 리드아웃 집적회로 | |
US20150326770A1 (en) | Information processing apparatus and method, and photoelectric conversion apparatus | |
WO2009145516A2 (ko) | 디지털 고주파 처리 기술을 이용한 근거리 무선 신호 송/수신장치 및 방법 | |
WO2021177725A1 (en) | Wearable electronic device | |
KR20010056422A (ko) | 씨디엠에이 기지국 시스템 | |
WO2013015572A2 (en) | Impedance matching apparatus and impedance matching method | |
JP2698349B2 (ja) | Fm通信機 | |
CN115184687A (zh) | 面向平板电容式mems传感器微弱电容检测的动态测试系统 | |
WO2023140605A1 (ko) | 피지의 양을 판단하기 위한 방법 및 키트 | |
WO2019050204A1 (ko) | 아날로그 디지털 변환 장치 및 이를 포함하는 마이크 | |
CN109793509B (zh) | 一种核辐射探测与心率测量方法及装置 | |
WO2024111979A1 (ko) | 데이터 수신 장치 및 데이터 수신 방법 | |
CN211179665U (zh) | 一种声发射信号处理装置及光学元件损伤检测系统 | |
CN114280019A (zh) | 相移检测系统中收发通道初始相位和解调信号频率偏差校正方法 | |
WO2024177168A1 (ko) | 다이아몬드 질소-공공 센서 기반 자기 센싱 장치 | |
CN206096255U (zh) | 一种用于射频功率反射计的信号调理电路 | |
WO2021215609A1 (ko) | 바이오 임피던스 계측용 시스템, 바이오 임피던스 계측 방법 및 이를 수행하기 위한 컴퓨터 판독 가능한 기록매체 | |
JPH0621980A (ja) | 光信号復調方式 | |
CN213722001U (zh) | 一种人体应激反应检测系统 | |
CN2504629Y (zh) | 试纸条检测装置 | |
CN108389572A (zh) | 自适应声音屏蔽系统 | |
CN220271887U (zh) | 一种量子随机数发生器 | |
CN214539945U (zh) | 一种锂电池id电阻阻抗快速测试的智能装置 | |
CN214040145U (zh) | 液管检测电路及样本分析仪 | |
JPH05191161A (ja) | 赤外線受信プリアンプリファイア |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20968059 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20968059 Country of ref document: EP Kind code of ref document: A1 |