WO2022145283A1 - Solar cell and solar cell manufacturing method - Google Patents

Solar cell and solar cell manufacturing method Download PDF

Info

Publication number
WO2022145283A1
WO2022145283A1 PCT/JP2021/047232 JP2021047232W WO2022145283A1 WO 2022145283 A1 WO2022145283 A1 WO 2022145283A1 JP 2021047232 W JP2021047232 W JP 2021047232W WO 2022145283 A1 WO2022145283 A1 WO 2022145283A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
semiconductor substrate
semiconductor layer
electrode
translucent
Prior art date
Application number
PCT/JP2021/047232
Other languages
French (fr)
Japanese (ja)
Inventor
紳平 岡本
崇 口山
淳一 中村
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022573009A priority Critical patent/JPWO2022145283A1/ja
Publication of WO2022145283A1 publication Critical patent/WO2022145283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the present invention relates to a solar cell and a method for manufacturing a solar cell.
  • Patent Document 1 proposes etching using an electrolytic solution containing fluoride as a method for forming an opening in a semiconductor substrate at a relatively low cost.
  • the solar cell according to one aspect of the present invention is a semiconductor substrate formed in a plate shape and having a plurality of translucent openings penetrating in the thickness direction, and a first semiconductor laminated on one main surface side of the semiconductor substrate.
  • the inner peripheral surface of the translucent opening is located on the side of the first peripheral surface portion located on the side of the first semiconductor layer and on the side of the second semiconductor layer, and the surface texture is different from that of the first peripheral surface portion. It has a second peripheral surface portion.
  • the semiconductor substrate may be covered with the first semiconductor layer on the first peripheral surface portion, and the semiconductor substrate may be exposed on the second peripheral surface portion.
  • the method for manufacturing a solar cell according to one aspect of the present invention includes a step of forming an annular groove by irradiating a semiconductor substrate with laser light, and etching or cutting of the bottom of the annular groove to form the annular groove of the semiconductor substrate.
  • a step of forming an opening in the semiconductor substrate by separating the inner region is provided.
  • the above-mentioned solar cell manufacturing method may further include a step of forming a film on the semiconductor substrate between the step of forming the annular groove and the step of forming the opening.
  • a solar cell has a semiconductor substrate and a photoelectric converter having a semiconductor layer laminated on the semiconductor substrate and having a plurality of translucent openings penetrating the front and back surfaces, and the photoelectric converter.
  • the front surface electrode comprises a front surface electrode laminated on the front surface of the photoelectric converter and a back surface electrode laminated on the back surface of the photoelectric conversion body, and the front surface electrode has a plurality of surrounding portions individually surrounding the plurality of translucent openings.
  • the surrounding portion may have a polygonal shape.
  • the length of each side of the surrounding portion may be constant.
  • the minimum value of the distance between each side of the surrounding portion and the translucent opening may be 50% or more of the maximum value.
  • the distance between each side of the surrounding portion and the translucent opening may be 20% or more and 150% or less of the diameter of the translucent opening.
  • the surface electrodes are composed of a plurality of electrode wires arranged in parallel and at equal intervals, and may have three sets of electrode wire groups having different angles so as to intersect each other.
  • the surrounding portions may have a hexagonal shape that touches each other at the vertices, and may define a triangular space that does not include the translucent opening between them.
  • the area inside the plurality of surrounding parts may be twice or more and five times or less the area outside the plurality of surrounding parts.
  • the back surface electrode may have a plurality of surrounding portions individually surrounding the plurality of translucent openings.
  • FIG. 3 is a partial cross-sectional view taken along the line XX of the solar cell of FIG. It is a flowchart which shows the procedure of the solar cell manufacturing method which concerns on one Embodiment of this invention.
  • FIG. 3 is a partial cross-sectional view illustrating one step of the solar cell manufacturing method of FIG. It is a partial sectional view explaining the next process of FIG. 4 of the solar cell manufacturing method of FIG. It is a partial sectional view explaining the next process of FIG. 5 of the solar cell manufacturing method of FIG. It is a partial sectional view explaining the next process of FIG. 6 of the solar cell manufacturing method of FIG.
  • FIG. 11 is a schematic cross-sectional view taken along the line YY of the solar cell of FIG. It is a schematic plan view of the solar cell which concerns on 3rd Embodiment of this invention. It is a schematic plan view of the solar cell which concerns on 4th Embodiment of this invention. It is a schematic plan view of the solar cell which concerns on 5th Embodiment of this invention.
  • FIG. 1 is a partial plan view of the solar cell 1 according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view of a solar cell.
  • the solar cell 1 has a semiconductor substrate 10 formed in a plate shape, a first semiconductor layer 20 laminated on one main surface side (light receiving surface side) of the semiconductor substrate 10, and the other main surface of the semiconductor substrate 10.
  • the second semiconductor layer 30 laminated on the side, the first passion layer 40 interposed between the semiconductor substrate 10 and the first semiconductor layer 20, and the second passion intervening between the semiconductor substrate 10 and the second semiconductor layer 30.
  • the layer 50 includes a first electrode 60 laminated on the first semiconductor layer 20, and a second electrode 70 laminated on the second semiconductor layer 30.
  • the semiconductor substrate 10 functions as a photoelectric conversion substrate that absorbs incident light and generates optical carriers (electrons and holes).
  • the semiconductor substrate 10 may have a pyramid-shaped fine uneven structure called a texture structure in order to improve the incident rate of light on the light receiving surface.
  • the semiconductor substrate 10 can be formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. Further, the semiconductor substrate 10 may be formed of another semiconductor material such as gallium arsenide (GaAs).
  • the semiconductor substrate 10 can be, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P).
  • the semiconductor substrate 10 has a plurality of translucent openings 11 penetrating in the thickness direction.
  • the translucent opening 11 makes it possible to transmit light to the back surface side (opposite the light receiving surface) of the solar cell 1 and collect light.
  • the shape of the translucent opening 11 in a plan view is typically circular, but may be any shape such as an elliptical shape and a polygonal shape.
  • the translucent opening 11 is preferably formed so as to be dispersed over substantially the entire semiconductor substrate 10 in order to collect light evenly, but in order to secure the strength of the semiconductor substrate 10, for example, the peripheral portion of the semiconductor substrate 10. It may not be provided in a band-shaped region or the like that crosses the semiconductor substrate 10. It is preferable that the translucent apertures 11 are regularly arranged so as to collect light more evenly and improve the aesthetic appearance.
  • the area ratio of the translucent opening 11 in the semiconductor substrate 10, that is, the opening ratio of the semiconductor substrate 10 can be, for example, 3% or more and 50% or less, preferably 5% or more and 30% or less. As a result, sufficient light can pass through the solar cell 1 and a relatively large amount of electric power can be obtained.
  • the average diameter (diameter equivalent to a circle) of the translucent opening 11 can be, for example, 1 mm or more and 10 mm or less, preferably 2 mm or more and 8 mm or less. As a result, sufficient daylighting becomes possible while increasing the photoelectric conversion efficiency of the solar cell 1.
  • the inner peripheral surface of the translucent opening 11 is located on the side of the first peripheral surface portion 12 located on the side of the first semiconductor layer 20 and on the side of the second semiconductor layer 30, and has a second surface texture different from that of the first peripheral surface portion 12. It has a peripheral surface portion 13.
  • the "surface texture” includes a fine uneven shape, a layered structure on the surface, a metamorphic state such as oxidation of the material of the semiconductor substrate 10, and the like.
  • the first peripheral surface portion 12 of the translucent opening 11 is, for example, a laser-machined surface, and may have an oxide or the like on the inner peripheral surface of the semiconductor substrate 10. Further, in the first peripheral surface portion 12, the semiconductor substrate 10 is covered with the first passivation layer 40 and the first semiconductor layer 20. On the other hand, the semiconductor substrate 10 is exposed on the second peripheral surface portion 13.
  • the solar cell 1 since the semiconductor substrate 10 is covered with the first passivation layer 40 and the first semiconductor layer 20 in the first peripheral surface portion 12, the solar cell 1 by suppressing the recombination of carriers generated inside the semiconductor substrate 10. Improves photoelectric conversion efficiency. Further, since the translucent opening 11 has the second peripheral surface portion 13 that exposes the semiconductor substrate 10, the first semiconductor layer 20 and the second semiconductor layer 30 can be reliably insulated. That is, the inner peripheral surface of the translucent opening 11 has a first peripheral surface portion 12 that suppresses carrier recombination and a second peripheral surface portion 13 that prevents a short circuit, so that the solar cell 1 has high photoelectric conversion efficiency. Has.
  • the lower limit of the area ratio of the first peripheral surface portion 12 on the inner peripheral surface of the translucent opening 11 is preferably 50%, more preferably 60%.
  • the upper limit of the area ratio of the first peripheral surface portion 12 on the inner peripheral surface of the translucent opening 11 95% is preferable, and 90% is more preferable.
  • the first semiconductor layer 20 and the second semiconductor layer 30 collect charges of different polarities by attracting carriers having different polarities from the inside of the semiconductor substrate 10.
  • the first semiconductor layer 20 may be formed of a p-type semiconductor
  • the second semiconductor layer 30 may be formed of an n-type semiconductor.
  • the first semiconductor layer 20 and the second semiconductor layer 30 can be formed of, for example, an amorphous silicon material containing a dopant that imparts a desired conductive type.
  • a dopant that imparts a desired conductive type.
  • Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P) described above.
  • the first semiconductor layer 20 extends to the inner peripheral surface of the translucent opening 11 and covers the inner peripheral surface of the semiconductor substrate 10 at the first peripheral surface portion 12.
  • the first passivation layer 40 and the second passivation layer 50 improve the photoelectric conversion efficiency of the solar cell 1 by suppressing the recombination of the carriers generated inside the semiconductor substrate 10 on the surface of the semiconductor substrate 10.
  • the first passivation layer 40 and the second passivation layer 50 can be an intrinsic semiconductor layer formed of amorphous silicon.
  • the first passivation layer 40 extends to the inner peripheral surface of the translucent opening 11 and covers the inner peripheral surface of the semiconductor substrate 10 at the first peripheral surface portion 12.
  • the first electrode 60 and the second electrode 70 take out the carriers attracted by the first semiconductor layer 20 and the second semiconductor layer 30 as electric charges.
  • the first electrode 60 and the second electrode 70 are preferably made of a material having conductivity and mainly made of a metal having a small electric resistance.
  • the first electrode 60 and the second electrode 70 can be formed of metal, silver paste, or the like.
  • the first electrode 60 on the light receiving surface side is preferably formed in a plurality of linear shapes in order to reduce the area so that light can be incident on the semiconductor substrate 10. Further, the first electrode 60 may be formed in a mesh shape in order to reduce the region where the moving distance of the carrier becomes large.
  • the second electrode 70 may be formed in the same shape as the first electrode 60, but in order to reduce the moving distance of the carrier to the second electrode 70 and the electric resistance in the second electrode 70, the second electrode 70 may be formed. It may be provided on substantially the entire surface of a region other than the translucent opening 11.
  • the solar cell 1 is high because the inner peripheral surface of the translucent opening 11 has a first peripheral surface portion 12 that suppresses carrier recombination and a second peripheral surface portion 13 that prevents a short circuit. Photoelectric conversion efficiency can be achieved.
  • the solar cell 1 can be manufactured by one embodiment of the solar cell manufacturing method according to the present invention.
  • the solar cell cell manufacturing method of the present embodiment includes an annular groove forming step (step S1), a passage layer forming step (step S2), and a first semiconductor layer forming step (step S3).
  • a second semiconductor layer film forming step (step S4), a first electrode forming step (step S5), a second electrode forming step (step S6), and a translucent opening forming step (step S7) are provided. ..
  • the planar shape of the annular groove G is an endless loop shape corresponding to the outer shape of the translucent opening 11, and is not limited to a circular shape.
  • the depth of the annular groove G is determined corresponding to the height of the first peripheral surface portion 12.
  • a film is formed on the inner surface of the annular groove G in the passivation layer film forming step and the first semiconductor layer film forming step. Therefore, the width of the annular groove G is set so that the film-forming gas can be supplied to the inner part of the annular groove G.
  • the materials forming the first passivation layer 40 and the second passivation layer 50 are laminated on both sides of the semiconductor substrate 10 and the inner surface of the annular groove G.
  • the first passivation layer 40 and the second passivation layer 50 can be formed by, for example, a film forming technique such as CVD or PVD. This passivation layer film forming step may be performed in two steps for each side of the semiconductor substrate 10.
  • the first semiconductor layer 20 is formed on the surface of the first passivation layer 40 on the main surface of the semiconductor substrate 10 on the light receiving side and the inner surface of the annular groove G. Laminate the materials to be formed.
  • the first semiconductor layer 20 can also be formed by, for example, a film forming technique such as CVD or PVD, like the first passivation layer 40 and the second passivation layer 50.
  • a material for forming the second semiconductor layer 30 on the surface of the second passivation layer 50 on the main surface opposite to the light receiving surface of the semiconductor substrate 10. are laminated.
  • the second semiconductor layer 30 can also be formed by, for example, a film forming technique such as CVD or PVD.
  • the first electrode 60 is formed by, for example, printing and firing of a conductive paste, laminating of a metal layer, and etching of a metal layer using a resist pattern. do.
  • the second electrode 70 is formed by, for example, printing and firing of a conductive paste, laminating of a metal layer, and etching of a metal layer using a resist pattern. do.
  • the firing or etching in the second electrode forming step may be performed at the same time as the firing or etching in the first electrode forming step.
  • the translucent opening 11 is formed by separating the inner region of the annular groove G of the semiconductor substrate 10 by etching or cutting the bottom of the annular groove G. As a result, the solar cell 1 shown in FIG. 1 is obtained.
  • the inner region of the annular groove G can be separated by pressing a jig having a protrusion on the portion corresponding to the inside of the annular groove G.
  • the translucent opening 11 has different surface textures of the first peripheral surface portion 12 and the second peripheral surface portion. It will have 13 and.
  • the first peripheral surface portion 12 that suppresses carrier recombination and the second circumference that prevents a short circuit are prevented. Since the surface portion 13 can be reliably formed, the solar cell 1 having high photoelectric conversion efficiency can be manufactured relatively easily.
  • FIG. 11 is a schematic plan view of the solar cell 101 according to the first embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of the solar cell 101.
  • the solar cell 101 includes a plate-shaped photoelectric converter 110, a front electrode 120 laminated on the surface of the photoelectric converter 110, and a back surface electrode 130 laminated on the back surface of the photoelectric converter 110.
  • the surface on the side where light is incident is referred to as the front surface, and the opposite side thereof is referred to as the back surface.
  • the photoelectric converter 110 has a semiconductor substrate 111, a first semiconductor layer 112 laminated on the surface of the semiconductor substrate 111, and a second semiconductor layer 113 laminated on the back surface of the semiconductor substrate 111.
  • the photoelectric converter 110 may have a further configuration such as a passivation layer and an antireflection layer.
  • the photoelectric converter 110 has a plurality of translucent openings 114 penetrating the front and back surfaces.
  • the semiconductor substrate 111 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes).
  • the semiconductor substrate 111 may have a pyramid-shaped fine uneven structure called a texture structure in order to improve the incident rate of light on the surface.
  • the semiconductor substrate 111 can be formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. It may also be formed from other semiconductor materials such as gallium arsenide (GaAs).
  • the semiconductor substrate 111 can be, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P). Since crystalline silicon is used as the material of the semiconductor substrate 111, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
  • the first semiconductor layer 112 and the second semiconductor layer 113 collect charges of different polarities by attracting carriers having different polarities from the inside of the semiconductor substrate 111.
  • the semiconductor substrate 111 is n-type
  • the first semiconductor layer 112 may be formed of a p-type semiconductor
  • the second semiconductor layer 113 may be formed of an n-type semiconductor.
  • the first semiconductor layer 112 and the second semiconductor layer 113 can be formed of, for example, an amorphous silicon material containing a dopant that imparts a desired conductive type.
  • Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P) described above.
  • the first semiconductor layer 112 and the second semiconductor layer 113 can be laminated on the semiconductor substrate 111, respectively, by a film forming technique such as CVD or PVD.
  • the translucent opening 114 makes it possible to transmit light to the back surface side of the solar cell 101 and collect light.
  • the translucent opening 114 can be formed by any method such as laser processing or etching processing.
  • the shape of the translucent opening 114 in a plan view, that is, the cross-sectional shape is typically circular, but can be any shape such as an elliptical shape and a polygonal shape.
  • the translucent opening 114 is preferably formed so as to be dispersed over substantially the entire photoelectric converter 110.
  • the translucent opening 114 is provided in a peripheral portion of the photoelectric converter 110, a band-shaped region crossing the photoelectric converter 110, or the like. By not providing it, the strength of the photoelectric converter 110 may be secured.
  • the translucent apertures 114 are regularly arranged so as to collect light evenly and improve the aesthetic appearance.
  • a plurality of translucent openings 114 are arranged in six directions so that six translucent openings 114 are adjacent to one translucent opening 114 at equal intervals in the circumferential direction and at equal distances.
  • the translucent openings 114 may be formed in a square arrangement in which the translucent openings 114 are arranged vertically and horizontally.
  • the area ratio of the translucent aperture 114 in the photoelectric converter 110 that is, the aperture ratio of the photoelectric converter 110 can be, for example, 3% or more and 50% or less, preferably 5% or more and 30% or less. As a result, sufficient light can pass through the solar cell 101, and a relatively large amount of electric power can be obtained.
  • the average diameter (diameter equivalent to a circle) of the translucent opening 114 can be, for example, 1 mm or more and 10 mm or less, preferably 2 mm or more and 8 mm or less. As a result, sufficient daylighting becomes possible while increasing the photoelectric conversion efficiency in the region other than the translucent aperture 114 of the solar cell 101.
  • the surface electrode 120 takes out the carriers attracted by the first semiconductor layer 112 as electric charges.
  • the surface electrode 120 is preferably made of a conductive material and preferably made of a metal having a low electrical resistance.
  • the surface electrode 120 can be formed by etching a metal layer laminated on the photoelectric converter 110, printing a conductive paste such as silver paste on the photoelectric converter 110, and firing. Further, the surface electrode 120 may have a multilayer structure.
  • the surface electrode 120 preferably has a small area so that light can be incident on the photoelectric conversion body 110, but in order to reduce the moving distance of carriers in the photoelectric conversion body 110 and improve the photoelectric conversion efficiency. It is preferable to provide it on the entire photoelectric converter 110. Therefore, it is preferable that the surface electrode 120 is formed in a net shape over the entire surface of the photoelectric converter 110.
  • the surface electrode 120 has a plurality of surrounding portions 121 (a hexagonal portion surrounded by a double-chain line) that individually surrounds the plurality of translucent openings 114.
  • the plurality of surrounding portions 121 are connected to each other. Therefore, the surface electrode 120 may have a connecting portion for connecting a plurality of surrounding portions 121, or may be formed so that the surrounding portions 121 are in contact with each other, for example, at a corner portion as shown in the drawing, and the adjacent surrounding portions are adjacent to each other. 121 may share a part thereof.
  • the surface electrode 120 individually surrounds the translucent opening 114 and has a plurality of surrounding portions 121 connected to each other, the surface electrode 120 is not divided by the translucent opening 114, so that charges can be collected from the entire photoelectric converter 110. ..
  • the surrounding portion 121 is preferably formed from an electrode wire 122 having a substantially constant width in order to reduce the electric resistance while reducing the area.
  • the surrounding portion 121 has a polygonal shape so that the pattern of the surface electrode 120 can be efficiently arranged while being simplified. Further, in order to equalize the current flowing through the surface electrode 120, the length of each side of the surrounding portion 121 is constant, that is, the surrounding portion 121 has a polygonal shape having the same length of all sides. preferable. In particular, when the translucent opening 114 is circular, by forming the surrounding portion 121 into a regular polygonal shape, it is possible to effectively suppress the variation in the moving distance of the carrier and prevent the current flowing through the surface electrode 120 from being biased. ..
  • each side of the surrounding portion 121 is arranged so that the distance (shortest distance) from the translucent opening 114 is substantially equal.
  • the minimum value of the distance from the translucent opening 114 of each side of the surrounding portion 121 is preferably 50% or more, and more preferably 55% or more of the maximum value.
  • the surface electrode 120 of the present embodiment is composed of a plurality of electrode wires 122 arranged in parallel and at equal intervals, and has three sets of electrode wire groups 123, 124, 125 having different angles so as to intersect each other. In this way, by forming the surface electrode 120 with the three sets of electrode wire groups 123, 124, 125, the pattern of the surface electrode 120 can be simplified. Further, by forming the surface electrode 120 with a plurality of electrode wires 122 extending linearly, the effective length of the electric circuit can be made relatively short. By reducing the width of the electrode wire 122, the area where light is incident on the photoelectric converter 110 can be increased.
  • the angles of the electrode wire groups 123, 124, 125 are different every 60 °, and the intersection positions are evenly shifted so that the three sets of electrode wire groups 123, 124, 125 do not intersect at one point. Therefore, a regular hexagonal surrounding portion 121 is formed. That is, in the surface electrode 120 of the present embodiment, the surrounding portions 121 have a regular hexagonal shape that is in contact with each other at the vertices, and defines a triangular residual space that does not include the translucent opening 114 between the plurality of surrounding portions 121. Since the surface electrode 120 having such a configuration does not form a region where the moving distance of the carrier becomes large, the photoelectric conversion efficiency per effective area (area excluding the translucent opening 114) of the photoelectric converter 110 is improved. Can be done.
  • the total area inside the plurality of surrounding parts 121 is preferably 2.0 times or more and 5.0 times or less, and 2.5 times or more and 4.0 times or less the total area of the remaining space outside the plurality of surrounding parts. More preferred. As a result, the maximum moving distance of the carrier can be easily reduced, so that the photoelectric conversion efficiency of the solar cell 101 can be easily improved.
  • the distance between each side of the surrounding portion 121 and the translucent opening 114 is preferably 20% or more and 150% or less, and more preferably 30% or more and 125% or less of the diameter of the translucent opening 114.
  • the area of the surface electrode 120 in a plan view is preferably 1% or more and 50% or less, and more preferably 2% or more and 40% or less of the area of the semiconductor substrate 111 excluding the translucent opening 114. As a result, it is possible to secure a sufficient area that contributes to the photoelectric conversion of the semiconductor substrate 111 while efficiently recovering the carriers.
  • the back surface electrode 130 takes out the carriers attracted by the second semiconductor layer 113 as electric charges.
  • the back surface electrode 130 can be formed of the same material as the front surface electrode 120.
  • the back surface electrode 130 may be formed in a mesh shape having a plurality of surrounding portions individually surrounding the plurality of translucent openings 114, but it is necessary to transmit light except for the translucent openings 114. Therefore, it may be laminated on the entire back surface of the photoelectric converter 110.
  • the solar cell 101 is a see-through type solar cell that can collect light on the back surface by having a plurality of translucent openings 114.
  • the surface electrode 120 has a plurality of surrounding portions 121 individually surrounding the translucent opening 114, the solar cell 101 does not have a region where the carrier travel distance is large, so that the photoelectric conversion efficiency is high.
  • FIG. 13 is a schematic plan view of the solar cell 101A according to the second embodiment of the present invention.
  • the same components as those in the above-described embodiment may be designated by the same reference numerals and duplicate description may be omitted.
  • the solar cell 101A has a plate-shaped photoelectric converter 110 having a plurality of translucent openings 114 penetrating the front and back surfaces, a surface electrode 120A laminated on the surface of the photoelectric converter 110, and laminated on the back surface of the photoelectric converter 110. It is provided with a back surface electrode (not shown).
  • the surface electrode 120A has a plurality of regular hexagonal surrounding portions 121A that individually surround the plurality of translucent openings 114.
  • the surrounding portion 121A shares each side with the adjacent surrounding portion 121A. With such a configuration, the surface electrode 120A can be appropriately arranged even when the area ratio of the translucent opening 114 is increased.
  • the surface electrode 120A has a plurality of regular hexagonal surrounding portions 121A that individually surround the plurality of translucent openings 114.
  • the surrounding portion 121A shares each side with the adjacent surrounding portion 121A. With such a configuration, the surface electrode 120A can be appropriately arranged even when the area ratio of the translucent opening 114 is increased.
  • FIG. 14 is a schematic plan view of the solar cell 101B according to the third embodiment of the present invention.
  • the solar cell 101B includes a plate-shaped photoelectric converter 110B having a plurality of elliptical transparent openings 114B in a plan view penetrating the front and back, a surface electrode 120B laminated on the surface of the photoelectric converter 110B, and a photoelectric conversion.
  • a back surface electrode (not shown) laminated on the back surface of the body 110B is provided.
  • the surface electrode 120B has a plurality of diamond-shaped surrounding portions 121B that individually surround the plurality of translucent openings 114B.
  • the surrounding portion 121B shares each side with the adjacent surrounding portion 121B. In this way, the maximum moving distance of the carrier can be reduced by forming the surrounding portion 121B surrounding the elliptical transparent opening 114B in a plan view in a diamond shape.
  • FIG. 15 is a schematic plan view of the solar cell 101C according to the fourth embodiment of the present invention.
  • the solar cell 101C has a plate-shaped photoelectric converter 110C having a plurality of triangular translucent openings 114C in a plan view penetrating the front and back, a surface electrode 120C laminated on the surface of the photoelectric converter 110C, and a photoelectric conversion.
  • a back surface electrode (not shown) laminated on the back surface of the body 110C is provided.
  • the surface electrode 120B has a plurality of triangular surrounding portions 121C that individually surround the plurality of translucent openings 114C.
  • the plurality of surrounding portions 121C are connected to each other at each vertex, and a triangular residual space not including the translucent opening 114C is defined between the plurality of surrounding portions 121.
  • the solar cell according to the present invention may include additional components such as an antireflection film.
  • additional components such as an antireflection film.
  • a further conductive layer or the like connecting between the first electrode and the first semiconductor layer and between the second electrode and the second semiconductor layer may be provided.
  • the passivation layer may be omitted.
  • the first peripheral surface portion and the second peripheral surface portion of the translucent opening may only have a difference in surface texture due to a difference in the processing process. Therefore, the semiconductor substrate may be exposed as a whole on the inner peripheral surface of the translucent opening.
  • the semiconductor substrate on the first peripheral surface portion may be covered with only the passivation layer.
  • the passivation layer may be formed of an insulating silicon oxide film, a silicon nitride film, or the like.
  • the first peripheral surface portion is located on the light receiving surface side, but in the solar cell according to the invention, the second peripheral surface portion may be located on the light receiving surface side.
  • the annular groove may be formed after the first semiconductor layer and the second semiconductor layer are formed.
  • the resist material can be patterned at the same time by irradiating the laser beam with the resist material laminated on the entire surface of the first semiconductor layer to form the annular groove.
  • the passivation layer may be formed after the formation of the annular groove or the formation of the translucent opening, and an electrode penetrating the passivation layer may be formed by, for example, printing and firing of a conductive paste.
  • this electrode line collects charge from other electrode lines and is external. It may be possible to use it as a bus bar for outputting to.
  • the surface electrode may have a bus bar provided separately, and one electrode wire group is arranged so as to be connected vertically to the bus bar, and the thickness of the electrode wire of this electrode wire group is larger than that of the other electrode wire. You may. As a result, the electrical resistance from the point where the surface electrode collects the electric charge from the photoelectric converter to the bus bar can be reduced, and the photoelectric conversion efficiency of the entire solar cell can be improved.

Abstract

Provided is a see-through solar cell having high photoelectric conversion efficiency. A solar cell 1 according to an aspect of the present invention comprises: a semiconductor substrate 10 formed as a flat plate and having a plurality of light-transmitting openings 11 extending therethrough in a thickness direction thereof; a first semiconductor layer 20 stacked on one major surface side of the semiconductor substrate 10; a second semiconductor layer 30 stacked on another major surface side of the semiconductor substrate 10; a first electrode 60 stacked on the first semiconductor layer 20; and a second electrode 70 stacked on the second semiconductor layer 30. The inner circumferential surface of the light-transmitting openings 11 includes a first circumferential surface portion 12 positioned closer to the first semiconductor layer 20, and a second circumferential surface portion 13 positioned closer to the second semiconductor layer 30 and having a surface property different from that of the first circumferential surface portion 12.

Description

太陽電池セル及び太陽電池セル製造方法Solar cell and solar cell manufacturing method
 本発明は、太陽電池セル及び太陽電池セル製造方法に関する。 The present invention relates to a solar cell and a method for manufacturing a solar cell.
 クリーンなエネルギー源として、太陽電池の利用が広がっている。一般的な太陽電池は、光を遮断するために、窓等には設置することが控えられる。そこで、光を透過する開口を形成したシースルー型の太陽電池も検討されている。例として、特許文献1には、光の入射によりキャリアを生成するn型半導体の基材にp型半導体の膜を積層することによりキャリアを回収するpn接合を形成した半導体基板に複数の開口を形成し、半導体基板の受光面に開口を避けるようフィンガー電極を配設した太陽電池が開示されている。特許文献1は、比較的安価に半導体基板に開口を形成する方法として、フッ化物を含有する電解液を用いたエッチングを行うことを提案している。 The use of solar cells is expanding as a clean energy source. In order to block light, general solar cells are not installed in windows or the like. Therefore, a see-through type solar cell having an opening through which light is transmitted is also being studied. As an example, in Patent Document 1, a plurality of openings are provided in a semiconductor substrate having a pn junction for recovering carriers by laminating a p-type semiconductor film on a base material of an n-type semiconductor that generates carriers by incident light. A solar cell formed and provided with a finger electrode so as to avoid an opening on a light receiving surface of a semiconductor substrate is disclosed. Patent Document 1 proposes etching using an electrolytic solution containing fluoride as a method for forming an opening in a semiconductor substrate at a relatively low cost.
特開2002-299672号公報Japanese Unexamined Patent Publication No. 2002-299672
 太陽電池セルの半導体基板にエッチングによって開口を形成すると、開口の内周面においてキャリアの再結合が生じるため、光電変換効率が低下し得る。特に、開口率を大きくしようとすると、開口の内周面におけるキャリアの再結合が顕著となるため、光電変換効率の低下が大きくなる。また、光を透過するための開口を避けてフィンガー電極を配設すると、フィンガー電極の延在方向と平行に並ぶ開口の間に、フィンガー電極までの距離が比較的大きい領域が形成される。フィンガー電極までの距離が大きくなると、光によって励起されたキャリアがフィンガー電極に回収される前に再結合して消滅してしまうことで、光電変換効率が低くなるという不都合が生じる。そこで、本発明は、光電変換効率が高いシースルー型の太陽電池セル及び太陽電池セル製造方法を提供することを課題とする。 When an opening is formed in the semiconductor substrate of a solar cell by etching, carrier recombination occurs on the inner peripheral surface of the opening, so that the photoelectric conversion efficiency may decrease. In particular, when an attempt is made to increase the aperture ratio, carrier recombination on the inner peripheral surface of the aperture becomes remarkable, so that the photoelectric conversion efficiency is significantly reduced. Further, if the finger electrodes are arranged so as to avoid openings for transmitting light, a region having a relatively large distance to the finger electrodes is formed between the openings arranged in parallel with the extending direction of the finger electrodes. When the distance to the finger electrode is increased, the carriers excited by light are recombined and disappear before being recovered by the finger electrode, which causes a disadvantage that the photoelectric conversion efficiency is lowered. Therefore, it is an object of the present invention to provide a see-through type solar cell and a method for manufacturing a solar cell having high photoelectric conversion efficiency.
 本発明の一態様に係る太陽電池セルは、板状に形成され、厚み方向に貫通する複数の透光開口を有する半導体基板と、前記半導体基板の一方の主面側に積層される第1半導体層と、前記半導体基板の他方の主面側に積層される第2半導体層と、前記第1半導体層に積層される第1電極と、前記第2半導体層に積層される第2電極と、を備え、前記透光開口の内周面は、前記第1半導体層の側に位置する第1周面部と、前記第2半導体層の側に位置し、前記第1周面部と表面性状が異なる第2周面部と、を有する。 The solar cell according to one aspect of the present invention is a semiconductor substrate formed in a plate shape and having a plurality of translucent openings penetrating in the thickness direction, and a first semiconductor laminated on one main surface side of the semiconductor substrate. A layer, a second semiconductor layer laminated on the other main surface side of the semiconductor substrate, a first electrode laminated on the first semiconductor layer, and a second electrode laminated on the second semiconductor layer. The inner peripheral surface of the translucent opening is located on the side of the first peripheral surface portion located on the side of the first semiconductor layer and on the side of the second semiconductor layer, and the surface texture is different from that of the first peripheral surface portion. It has a second peripheral surface portion.
 上述の太陽電池セルでは、前記第1周面部において、前記半導体基板は前記第1半導体層によって被覆され、前記第2周面部において、前記半導体基板は露出してもよい。 In the above-mentioned solar cell, the semiconductor substrate may be covered with the first semiconductor layer on the first peripheral surface portion, and the semiconductor substrate may be exposed on the second peripheral surface portion.
 本発明の一態様に係る太陽電池セル製造方法は、半導体基板にレーザ光を照射することによって環状溝を形成する工程と、前記環状溝の底部のエッチング又は割断により前記半導体基板の前記環状溝の内側の領域を分離することによって、前記半導体基板に開口を形成する工程と、備える。 The method for manufacturing a solar cell according to one aspect of the present invention includes a step of forming an annular groove by irradiating a semiconductor substrate with laser light, and etching or cutting of the bottom of the annular groove to form the annular groove of the semiconductor substrate. A step of forming an opening in the semiconductor substrate by separating the inner region is provided.
 上述の太陽電池セル製造方法は、前記環状溝を形成する工程と前記開口を形成する工程との間に、前記半導体基板に成膜を行う工程をさらに備えてもよい。 The above-mentioned solar cell manufacturing method may further include a step of forming a film on the semiconductor substrate between the step of forming the annular groove and the step of forming the opening.
 本発明の別の態様に係る太陽電池セルは、半導体基板及び前記半導体基板に積層される半導体層を有し、且つ表裏に貫通する複数の透光開口を有する光電変換体と、前記光電変換体の表面に積層される表面電極と、前記光電変換体の裏面に積層される裏面電極と、を備え、前記表面電極は、前記複数の透光開口を個別に取り囲む複数の囲繞部を有する。 A solar cell according to another aspect of the present invention has a semiconductor substrate and a photoelectric converter having a semiconductor layer laminated on the semiconductor substrate and having a plurality of translucent openings penetrating the front and back surfaces, and the photoelectric converter. The front surface electrode comprises a front surface electrode laminated on the front surface of the photoelectric converter and a back surface electrode laminated on the back surface of the photoelectric conversion body, and the front surface electrode has a plurality of surrounding portions individually surrounding the plurality of translucent openings.
 上述の太陽電池セルにおいて、前記囲繞部は多角形状であってもよい。 In the above-mentioned solar cell, the surrounding portion may have a polygonal shape.
 上述の太陽電池セルにおいて、囲繞部の各辺の長さは一定であってもよい。 In the above-mentioned solar cell, the length of each side of the surrounding portion may be constant.
 上述の太陽電池セルにおいて、前記囲繞部の各辺と前記透光開口との距離の最小値は最大値の50%以上であってもよい。 In the above-mentioned solar cell, the minimum value of the distance between each side of the surrounding portion and the translucent opening may be 50% or more of the maximum value.
 上述の太陽電池セルにおいて、前記囲繞部の各辺と前記透光開口との距離は前記透光開口の直径の20%以上150%以下であってもよい。 In the above-mentioned solar cell, the distance between each side of the surrounding portion and the translucent opening may be 20% or more and 150% or less of the diameter of the translucent opening.
 上述の太陽電池セルにおいて、前記表面電極は、それぞれ平行且つ等間隔に配置される複数の電極線からなり、互いに交差するよう角度が異なる3組の電極線群を有してもよい。 In the above-mentioned solar cell, the surface electrodes are composed of a plurality of electrode wires arranged in parallel and at equal intervals, and may have three sets of electrode wire groups having different angles so as to intersect each other.
 上述の太陽電池セルにおいて、前記囲繞部は、頂点で互いに接する六角形状であり、間に前記透光開口を含まない三角形状のスペースを画定してもよい。 In the above-mentioned solar cell, the surrounding portions may have a hexagonal shape that touches each other at the vertices, and may define a triangular space that does not include the translucent opening between them.
 上述の太陽電池セルにおいて、前記複数の囲繞部の内側の面積は前記複数の囲繞部の外側の面積の2倍以上5倍以下であってもよい。 In the above-mentioned solar cell, the area inside the plurality of surrounding parts may be twice or more and five times or less the area outside the plurality of surrounding parts.
 上述の太陽電池セルにおいて、前記裏面電極は、前記複数の透光開口を個別に取り囲む複数の囲繞部を有してもよい。 In the above-mentioned solar cell, the back surface electrode may have a plurality of surrounding portions individually surrounding the plurality of translucent openings.
 本発明によれば、光電変換効率が高いシースルー型の太陽電池セル及び太陽電池セル製造方法を提供できる。 According to the present invention, it is possible to provide a see-through type solar cell and a method for manufacturing a solar cell having high photoelectric conversion efficiency.
本発明の一実施形態に係る太陽電池セルの部分平面図である。It is a partial plan view of the solar cell which concerns on one Embodiment of this invention. 図1の太陽電池セルのX-X線部分断面図である。FIG. 3 is a partial cross-sectional view taken along the line XX of the solar cell of FIG. 本発明の一実施形態に係る太陽電池セル製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the solar cell manufacturing method which concerns on one Embodiment of this invention. 図3の太陽電池セル製造方法の一工程を説明する部分断面図である。FIG. 3 is a partial cross-sectional view illustrating one step of the solar cell manufacturing method of FIG. 図3の太陽電池セル製造方法の図4の次の工程を説明する部分断面図である。It is a partial sectional view explaining the next process of FIG. 4 of the solar cell manufacturing method of FIG. 図3の太陽電池セル製造方法の図5の次の工程を説明する部分断面図である。It is a partial sectional view explaining the next process of FIG. 5 of the solar cell manufacturing method of FIG. 図3の太陽電池セル製造方法の図6の次の工程を説明する部分断面図である。It is a partial sectional view explaining the next process of FIG. 6 of the solar cell manufacturing method of FIG. 図3の太陽電池セル製造方法の図7の次の工程を説明する部分断面図である。It is a partial sectional view explaining the next process of FIG. 7 of the solar cell manufacturing method of FIG. 図3の太陽電池セル製造方法の図8の次の工程を説明する部分断面図である。It is a partial sectional view explaining the next process of FIG. 8 of the solar cell manufacturing method of FIG. 図9の工程を説明する部分平面図である。It is a partial plan view explaining the process of FIG. 本発明の第2実施形態に係る太陽電池セルの模式平面図である。It is a schematic plan view of the solar cell which concerns on 2nd Embodiment of this invention. 図11の太陽電池セルのY-Y線模式断面図である。FIG. 11 is a schematic cross-sectional view taken along the line YY of the solar cell of FIG. 本発明の第3実施形態に係る太陽電池セルの模式平面図である。It is a schematic plan view of the solar cell which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る太陽電池セルの模式平面図である。It is a schematic plan view of the solar cell which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る太陽電池セルの模式平面図である。It is a schematic plan view of the solar cell which concerns on 5th Embodiment of this invention.
 以下、添付の図面を参照して本発明の各実施形態について説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。また、簡略化のために、部材の図示、符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の形状及び寸法は、便宜上、見やすいように調整されている。 Hereinafter, each embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing. Further, for the sake of simplification, illustrations, reference numerals, etc. of the members may be omitted, but in such cases, other drawings shall be referred to. Further, the shapes and dimensions of various members in the drawings are adjusted so as to be easy to see for convenience.
 図1は、本発明の第1実施形態に係る太陽電池セル1の部分平面図である。図2は、太陽電池セルの分断面図である。太陽電池セル1は、板状に形成される半導体基板10と、半導体基板10の一方の主面側(受光面側)に積層される第1半導体層20と、半導体基板10の他方の主面側に積層される第2半導体層30と、半導体基板10と第1半導体層20の間に介在する第1パッシベーション層40と、半導体基板10と第2半導体層30の間に介在する第2パッシベーション層50と、第1半導体層20に積層される第1電極60と、第2半導体層30に積層される第2電極70と、を備える。 FIG. 1 is a partial plan view of the solar cell 1 according to the first embodiment of the present invention. FIG. 2 is a sectional view of a solar cell. The solar cell 1 has a semiconductor substrate 10 formed in a plate shape, a first semiconductor layer 20 laminated on one main surface side (light receiving surface side) of the semiconductor substrate 10, and the other main surface of the semiconductor substrate 10. The second semiconductor layer 30 laminated on the side, the first passion layer 40 interposed between the semiconductor substrate 10 and the first semiconductor layer 20, and the second passion intervening between the semiconductor substrate 10 and the second semiconductor layer 30. The layer 50 includes a first electrode 60 laminated on the first semiconductor layer 20, and a second electrode 70 laminated on the second semiconductor layer 30.
 半導体基板10は、入射光を吸収して光キャリア(電子及び正孔)を生成する光電変換基板として機能する。半導体基板10は、受光面に光の入射率を向上するために、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有してもよい。 The semiconductor substrate 10 functions as a photoelectric conversion substrate that absorbs incident light and generates optical carriers (electrons and holes). The semiconductor substrate 10 may have a pyramid-shaped fine uneven structure called a texture structure in order to improve the incident rate of light on the light receiving surface.
 半導体基板10は、単結晶シリコン又は多結晶シリコン等の結晶シリコン材料で形成することができる。また、半導体基板10は、ガリウムヒ素(GaAs)等の他の半導体材料から形成されてもよい。半導体基板10は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板とすることができる。n型ドーパントとしては、例えばリン(P)が挙げられる。半導体基板10の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。 The semiconductor substrate 10 can be formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. Further, the semiconductor substrate 10 may be formed of another semiconductor material such as gallium arsenide (GaAs). The semiconductor substrate 10 can be, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P). By using crystalline silicon as the material of the semiconductor substrate 10, relatively high output (stable output regardless of illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
 半導体基板10は、厚み方向に貫通する複数の透光開口11を有する。透光開口11は、太陽電池セル1の裏面側(受光面と反対側)に光を透過して採光することを可能にする。透光開口11の平面視での形状としては、典型的には円形とされるが、楕円形状、多角形状等、任意の形状とされてもよい。 The semiconductor substrate 10 has a plurality of translucent openings 11 penetrating in the thickness direction. The translucent opening 11 makes it possible to transmit light to the back surface side (opposite the light receiving surface) of the solar cell 1 and collect light. The shape of the translucent opening 11 in a plan view is typically circular, but may be any shape such as an elliptical shape and a polygonal shape.
 透光開口11は、均等に採光するために、半導体基板10の略全体に分散して形成されることが好ましいが、半導体基板10の強度を確保するために、例えば半導体基板10の周縁部、半導体基板10を横断する帯状領域等に設けられないようにしてもよい。透光開口11は、より均等に採光するとともに、美観を向上できるよう、規則的に配置されることが好ましい。 The translucent opening 11 is preferably formed so as to be dispersed over substantially the entire semiconductor substrate 10 in order to collect light evenly, but in order to secure the strength of the semiconductor substrate 10, for example, the peripheral portion of the semiconductor substrate 10. It may not be provided in a band-shaped region or the like that crosses the semiconductor substrate 10. It is preferable that the translucent apertures 11 are regularly arranged so as to collect light more evenly and improve the aesthetic appearance.
 半導体基板10における透光開口11の面積率、つまり半導体基板10の開口率としては、例えば3%以上50%以下、好ましくは5%以上30%以下とすることができる。これにより、十分な光が太陽電池セル1を透過することができ、且つ比較的大きい電力を得ることができる。 The area ratio of the translucent opening 11 in the semiconductor substrate 10, that is, the opening ratio of the semiconductor substrate 10 can be, for example, 3% or more and 50% or less, preferably 5% or more and 30% or less. As a result, sufficient light can pass through the solar cell 1 and a relatively large amount of electric power can be obtained.
 透光開口11の平均径(円相当径)としては、例えば1mm以上10mm以下好ましくは2mm以上8mm以下とすることができる。これにより、太陽電池セル1の光電変換効率を大きくしながら、十分な採光が可能となる。 The average diameter (diameter equivalent to a circle) of the translucent opening 11 can be, for example, 1 mm or more and 10 mm or less, preferably 2 mm or more and 8 mm or less. As a result, sufficient daylighting becomes possible while increasing the photoelectric conversion efficiency of the solar cell 1.
 透光開口11の内周面は、第1半導体層20の側に位置する第1周面部12と、第2半導体層30の側に位置し、第1周面部12と表面性状が異なる第2周面部13と、を有する。なお、「表面性状」とは、微細な凹凸形状、表面の層構造、半導体基板10の材料の酸化等の変成状態等を含む。 The inner peripheral surface of the translucent opening 11 is located on the side of the first peripheral surface portion 12 located on the side of the first semiconductor layer 20 and on the side of the second semiconductor layer 30, and has a second surface texture different from that of the first peripheral surface portion 12. It has a peripheral surface portion 13. The "surface texture" includes a fine uneven shape, a layered structure on the surface, a metamorphic state such as oxidation of the material of the semiconductor substrate 10, and the like.
 本実施形態において、透光開口11の第1周面部12は、例えばレーザ加工面であり、半導体基板10の内周面に酸化物等を有し得る。また、第1周面部12では、半導体基板10が第1パッシベーション層40及び第1半導体層20によって被覆されている。一方、第2周面部13では、半導体基板10が露出している。 In the present embodiment, the first peripheral surface portion 12 of the translucent opening 11 is, for example, a laser-machined surface, and may have an oxide or the like on the inner peripheral surface of the semiconductor substrate 10. Further, in the first peripheral surface portion 12, the semiconductor substrate 10 is covered with the first passivation layer 40 and the first semiconductor layer 20. On the other hand, the semiconductor substrate 10 is exposed on the second peripheral surface portion 13.
 第1周面部12は、第1パッシベーション層40及び第1半導体層20によって半導体基板10が被覆されているため、半導体基板10の内部に生じたキャリアの再結合を抑制することにより太陽電池セル1の光電変換効率を向上する。また、透光開口11は、半導体基板10を露出する第2周面部13を有するため、第1半導体層20と第2半導体層30とを確実に絶縁することができる。つまり、透光開口11の内周面がキャリアの再結合を抑制する第1周面部12と、短絡を防止する第2周面部13とを有することによって、太陽電池セル1は、高い光電変換効率を有する。 Since the semiconductor substrate 10 is covered with the first passivation layer 40 and the first semiconductor layer 20 in the first peripheral surface portion 12, the solar cell 1 by suppressing the recombination of carriers generated inside the semiconductor substrate 10. Improves photoelectric conversion efficiency. Further, since the translucent opening 11 has the second peripheral surface portion 13 that exposes the semiconductor substrate 10, the first semiconductor layer 20 and the second semiconductor layer 30 can be reliably insulated. That is, the inner peripheral surface of the translucent opening 11 has a first peripheral surface portion 12 that suppresses carrier recombination and a second peripheral surface portion 13 that prevents a short circuit, so that the solar cell 1 has high photoelectric conversion efficiency. Has.
 透光開口11の内周面における第1周面部12の面積率の下限としては、50%が好ましく、60%がより好ましい。一方、透光開口11の内周面における第1周面部12の面積率の上限としては、95%が好ましく、90%がより好ましい。透光開口11の内周面における第1周面部12の面積率を前記下限以上とすることによって、キャリアの再結合抑制効果を大きくできる。また、透光開口11の内周面における第1周面部12の面積率を前記上限以下とすることによって、確実に短絡を防止するために特段の加工精度が要求されない。 The lower limit of the area ratio of the first peripheral surface portion 12 on the inner peripheral surface of the translucent opening 11 is preferably 50%, more preferably 60%. On the other hand, as the upper limit of the area ratio of the first peripheral surface portion 12 on the inner peripheral surface of the translucent opening 11, 95% is preferable, and 90% is more preferable. By setting the area ratio of the first peripheral surface portion 12 on the inner peripheral surface of the translucent opening 11 to be equal to or higher than the lower limit, the effect of suppressing carrier recombination can be increased. Further, by setting the area ratio of the first peripheral surface portion 12 on the inner peripheral surface of the translucent opening 11 to be equal to or less than the upper limit, no special processing accuracy is required in order to surely prevent a short circuit.
 第1半導体層20及び第2半導体層30は、半導体基板10の内部から、互いに極性が異なるキャリアを誘引することにより、異なる極性の電荷を収集する。具体的には、半導体基板10がn型である場合、第1半導体層20はp型半導体から形成され、第2半導体層30はn型半導体から形成され得る。 The first semiconductor layer 20 and the second semiconductor layer 30 collect charges of different polarities by attracting carriers having different polarities from the inside of the semiconductor substrate 10. Specifically, when the semiconductor substrate 10 is n-type, the first semiconductor layer 20 may be formed of a p-type semiconductor, and the second semiconductor layer 30 may be formed of an n-type semiconductor.
 第1半導体層20及び第2半導体層30は、例えば所望の導電型を付与するドーパントを含有するアモルファスシリコン材料で形成することができる。p型ドーパントとしては、例えばホウ素(B)が挙げられ、n型ドーパントとしては、例えば上述したリン(P)が挙げられる。 The first semiconductor layer 20 and the second semiconductor layer 30 can be formed of, for example, an amorphous silicon material containing a dopant that imparts a desired conductive type. Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P) described above.
 第1半導体層20は、透光開口11の内周面に延在し、第1周面部12において、半導体基板10の内周面を覆う。 The first semiconductor layer 20 extends to the inner peripheral surface of the translucent opening 11 and covers the inner peripheral surface of the semiconductor substrate 10 at the first peripheral surface portion 12.
 第1パッシベーション層40及び第2パッシベーション層50は、半導体基板10の内部で生成したキャリアの半導体基板10の表面での再結合を抑制することにより、太陽電池セル1の光電変換効率を向上する。第1パッシベーション層40及び第2パッシベーション層50は、アモルファスシリコンから形成される真性半導体層とすることができる。 The first passivation layer 40 and the second passivation layer 50 improve the photoelectric conversion efficiency of the solar cell 1 by suppressing the recombination of the carriers generated inside the semiconductor substrate 10 on the surface of the semiconductor substrate 10. The first passivation layer 40 and the second passivation layer 50 can be an intrinsic semiconductor layer formed of amorphous silicon.
 第1パッシベーション層40は、透光開口11の内周面に延在し、第1周面部12において、半導体基板10の内周面を覆う。 The first passivation layer 40 extends to the inner peripheral surface of the translucent opening 11 and covers the inner peripheral surface of the semiconductor substrate 10 at the first peripheral surface portion 12.
 第1電極60及び第2電極70は、第1半導体層20及び第2半導体層30が引き寄せたキャリアを電荷として取り出す。第1電極60及び第2電極70は、導電性を有する材料から形成され、電気抵抗が小さい金属を主体とすることが好ましい。具体例として、第1電極60及び第2電極70は、金属、銀ペースト等から形成することができる。 The first electrode 60 and the second electrode 70 take out the carriers attracted by the first semiconductor layer 20 and the second semiconductor layer 30 as electric charges. The first electrode 60 and the second electrode 70 are preferably made of a material having conductivity and mainly made of a metal having a small electric resistance. As a specific example, the first electrode 60 and the second electrode 70 can be formed of metal, silver paste, or the like.
 受光面側の第1電極60は、半導体基板10に光が入射できるよう面積を小さくするために、複数の線状に形成されることが好ましい。また、第1電極60は、キャリアの移動距離が大きくなる領域を小さくするために、第1電極60は網状に形成されてもよい。一方、第2電極70は、第1電極60と同じ形状に形成されてもよいが、第2電極70までのキャリアの移動距離及び第2電極70の中での電気抵抗を小さくするために、透光開口11以外の領域の略全面に設けられ得る。 The first electrode 60 on the light receiving surface side is preferably formed in a plurality of linear shapes in order to reduce the area so that light can be incident on the semiconductor substrate 10. Further, the first electrode 60 may be formed in a mesh shape in order to reduce the region where the moving distance of the carrier becomes large. On the other hand, the second electrode 70 may be formed in the same shape as the first electrode 60, but in order to reduce the moving distance of the carrier to the second electrode 70 and the electric resistance in the second electrode 70, the second electrode 70 may be formed. It may be provided on substantially the entire surface of a region other than the translucent opening 11.
 以上のように、太陽電池セル1は、透光開口11の内周面がキャリアの再結合を抑制する第1周面部12と短絡を防止する第2周面部13と、を有することによって、高い光電変換効率を実現できる。 As described above, the solar cell 1 is high because the inner peripheral surface of the translucent opening 11 has a first peripheral surface portion 12 that suppresses carrier recombination and a second peripheral surface portion 13 that prevents a short circuit. Photoelectric conversion efficiency can be achieved.
 太陽電池セル1は、本発明に係る太陽電池セル製造方法の一実施形態によって製造することができる。本実施形態の太陽電池セル製造方法は、図3に示すように、環状溝形成工程(ステップS1)と、パッシベーション層成膜工程(ステップS2)と、第1半導体層成膜工程(ステップS3)と、第2半導体層成膜工程(ステップS4)と、第1電極形成工程(ステップS5)と、第2電極形成工程(ステップS6)と、透光開口形成工程(ステップS7)と、を備える。 The solar cell 1 can be manufactured by one embodiment of the solar cell manufacturing method according to the present invention. As shown in FIG. 3, the solar cell cell manufacturing method of the present embodiment includes an annular groove forming step (step S1), a passage layer forming step (step S2), and a first semiconductor layer forming step (step S3). A second semiconductor layer film forming step (step S4), a first electrode forming step (step S5), a second electrode forming step (step S6), and a translucent opening forming step (step S7) are provided. ..
 ステップS1の環状溝形成工程では、半導体基板10の一方の面にレーザ光を照射することにより、図4に示すように、透光開口11の外径に対応する環状溝Gを形成する。最終的に、環状溝Gの外側の内周面が第1周面部12となる。このため、環状溝Gの平面形状は、透光開口11の外形に対応する無端ループ状であり、円形に限られない。環状溝Gの深さは、第1周面部12の高さ対応して定められる。環状溝Gの内面には、パッシベーション層成膜工程及び第1半導体層成膜工程において成膜が行われる。このため、環状溝Gの幅は、環状溝Gの奥部まで成膜ガスを供給できるような幅とされる。 In the annular groove forming step of step S1, by irradiating one surface of the semiconductor substrate 10 with a laser beam, an annular groove G corresponding to the outer diameter of the translucent opening 11 is formed as shown in FIG. Finally, the inner peripheral surface on the outer side of the annular groove G becomes the first peripheral surface portion 12. Therefore, the planar shape of the annular groove G is an endless loop shape corresponding to the outer shape of the translucent opening 11, and is not limited to a circular shape. The depth of the annular groove G is determined corresponding to the height of the first peripheral surface portion 12. A film is formed on the inner surface of the annular groove G in the passivation layer film forming step and the first semiconductor layer film forming step. Therefore, the width of the annular groove G is set so that the film-forming gas can be supplied to the inner part of the annular groove G.
 ステップS2のパッシベーション層成膜工程では、図5に示すように、半導体基板10の両面及び環状溝Gの内面に、第1パッシベーション層40及び第2パッシベーション層50を形成する材料を積層する。第1パッシベーション層40及び第2パッシベーション層50は、例えばCVD、PVD等の成膜技術によって形成することができる。このパッシベーション層成膜工程は、半導体基板10の片面ずつ、2回に分けて行ってもよい。 In the passivation layer film forming step of step S2, as shown in FIG. 5, the materials forming the first passivation layer 40 and the second passivation layer 50 are laminated on both sides of the semiconductor substrate 10 and the inner surface of the annular groove G. The first passivation layer 40 and the second passivation layer 50 can be formed by, for example, a film forming technique such as CVD or PVD. This passivation layer film forming step may be performed in two steps for each side of the semiconductor substrate 10.
 ステップS3の第1半導体層成膜工程では、図6に示すように、半導体基板10の受光側の主面及び環状溝Gの内面の第1パッシベーション層40の表面に、第1半導体層20を形成する材料を積層する。第1半導体層20も、第1パッシベーション層40及び第2パッシベーション層50と同様に、例えばCVD、PVD等の成膜技術によって形成することができる。 In the first semiconductor layer film forming step of step S3, as shown in FIG. 6, the first semiconductor layer 20 is formed on the surface of the first passivation layer 40 on the main surface of the semiconductor substrate 10 on the light receiving side and the inner surface of the annular groove G. Laminate the materials to be formed. The first semiconductor layer 20 can also be formed by, for example, a film forming technique such as CVD or PVD, like the first passivation layer 40 and the second passivation layer 50.
 ステップS4の第2半導体層成膜工程では、図7に示すように、半導体基板10の受光面と反対側の主面の第2パッシベーション層50の表面に、第2半導体層30を形成する材料を積層する。第2半導体層30も、例えばCVD、PVD等の成膜技術によって形成することができる。 In the second semiconductor layer film forming step of step S4, as shown in FIG. 7, a material for forming the second semiconductor layer 30 on the surface of the second passivation layer 50 on the main surface opposite to the light receiving surface of the semiconductor substrate 10. Are laminated. The second semiconductor layer 30 can also be formed by, for example, a film forming technique such as CVD or PVD.
 ステップS5の第1電極形成工程では、図8に示すように、例えば導電性ペーストの印刷及び焼成、金属層の積層及びレジストパターン用いた金属層のエッチング等の方法により、第1電極60を形成する。 In the first electrode forming step of step S5, as shown in FIG. 8, the first electrode 60 is formed by, for example, printing and firing of a conductive paste, laminating of a metal layer, and etching of a metal layer using a resist pattern. do.
 ステップS6の第2電極形成工程では、図9に示すように、例えば導電性ペーストの印刷及び焼成、金属層の積層及びレジストパターン用いた金属層のエッチング等の方法により、第2電極70を形成する。第2電極形成工程における焼成又はエッチングは、第1電極形成工程における焼成又はエッチングと同時に行ってもよい。 In the second electrode forming step of step S6, as shown in FIG. 9, the second electrode 70 is formed by, for example, printing and firing of a conductive paste, laminating of a metal layer, and etching of a metal layer using a resist pattern. do. The firing or etching in the second electrode forming step may be performed at the same time as the firing or etching in the first electrode forming step.
 このように、環状溝Gを形成した半導体基板10に成膜を行うことによって、図9及び10に示すように、太陽電池セル1の透光開口11となるべき部分(環状溝G及びその内側)にも、半導体基板10、第1半導体層20、第2半導体層30、第1パッシベーション層40及び第2パッシベーション層50が存在する中間製品が得られる。 By forming a film on the semiconductor substrate 10 on which the annular groove G is formed in this way, as shown in FIGS. 9 and 10, a portion to be a translucent opening 11 of the solar cell 1 (annular groove G and its inner side). ) Also, an intermediate product having a semiconductor substrate 10, a first semiconductor layer 20, a second semiconductor layer 30, a first passivation layer 40, and a second passivation layer 50 can be obtained.
 ステップS7の透光開口形成工程では、環状溝Gの底部のエッチング又は割断により、半導体基板10の環状溝Gの内側の領域を分離することによって、透光開口11を形成する。これにより、図1に示す太陽電池セル1が得られる。 In the translucent opening forming step of step S7, the translucent opening 11 is formed by separating the inner region of the annular groove G of the semiconductor substrate 10 by etching or cutting the bottom of the annular groove G. As a result, the solar cell 1 shown in FIG. 1 is obtained.
 環状溝Gの底部をエッチングする場合、第1半導体層20の全面を覆うレジストパターンと、第2半導体層30の透光開口11を形成する領域の少なくとも環状溝Gに対応する部分を開口するレジストパターンとを形成することで、環状溝Gの内側の領域を分離できる。 When the bottom of the annular groove G is etched, a resist pattern that covers the entire surface of the first semiconductor layer 20 and a resist that opens at least a portion corresponding to at least the annular groove G in the region forming the translucent opening 11 of the second semiconductor layer 30. By forming the pattern, the region inside the annular groove G can be separated.
 環状溝Gの底部を割断する場合、環状溝Gの内側に対応する部分に突起を有する治具を圧接することで、環状溝Gの内側の領域を分離できる。 When cutting the bottom of the annular groove G, the inner region of the annular groove G can be separated by pressing a jig having a protrusion on the portion corresponding to the inside of the annular groove G.
 このように、環状溝形成工程と透光開口形成工程との2段階に分けて透光開口11を形成することによって、透光開口11が表面性状の異なる第1周面部12と第2周面部13とを有するものとなる。特に、環状溝形成工程と透光開口形成工程との間に半導体基板10に成膜を行う工程を備えることによって、キャリアの再結合を抑制する第1周面部12と短絡を防止する第2周面部13とを確実に形成できるため、高い光電変換効率を有する太陽電池セル1が比較的容易に製造される。 In this way, by forming the translucent opening 11 in two stages of the annular groove forming step and the translucent opening forming step, the translucent opening 11 has different surface textures of the first peripheral surface portion 12 and the second peripheral surface portion. It will have 13 and. In particular, by providing a step of forming a film on the semiconductor substrate 10 between the annular groove forming step and the translucent opening forming step, the first peripheral surface portion 12 that suppresses carrier recombination and the second circumference that prevents a short circuit are prevented. Since the surface portion 13 can be reliably formed, the solar cell 1 having high photoelectric conversion efficiency can be manufactured relatively easily.
<第2実施形態>
 図11は、本発明の第1実施形態に係る太陽電池セル101の模式平面図である。図12は、太陽電池セル101の模式断面図である。太陽電池セル101は、板状の光電変換体110と、光電変換体110の表面に積層される表面電極120と、光電変換体110の裏面に積層される裏面電極130と、を備える。なお、本明細書において、太陽電池セル101の使用状態において、光が入射する側の面を表面、その反対側を裏面という。
<Second Embodiment>
FIG. 11 is a schematic plan view of the solar cell 101 according to the first embodiment of the present invention. FIG. 12 is a schematic cross-sectional view of the solar cell 101. The solar cell 101 includes a plate-shaped photoelectric converter 110, a front electrode 120 laminated on the surface of the photoelectric converter 110, and a back surface electrode 130 laminated on the back surface of the photoelectric converter 110. In the present specification, in the state of use of the solar cell 101, the surface on the side where light is incident is referred to as the front surface, and the opposite side thereof is referred to as the back surface.
 光電変換体110は、半導体基板111と、半導体基板111の表面に積層される第1半導体層112と、半導体基板111の裏面に積層される第2半導体層113とを有する。光電変換体110は、図示しないが、例えばパッシベーション層、反射防止層等のさらなる構成を有してもよい。また、光電変換体110は、表裏に貫通する複数の透光開口114を有する。 The photoelectric converter 110 has a semiconductor substrate 111, a first semiconductor layer 112 laminated on the surface of the semiconductor substrate 111, and a second semiconductor layer 113 laminated on the back surface of the semiconductor substrate 111. Although not shown, the photoelectric converter 110 may have a further configuration such as a passivation layer and an antireflection layer. Further, the photoelectric converter 110 has a plurality of translucent openings 114 penetrating the front and back surfaces.
 半導体基板111は、受光面側からの入射光を吸収して光キャリア(電子及び正孔)を生成する光電変換基板として機能する。半導体基板111は、表面に光の入射率を向上するために、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有してもよい。 The semiconductor substrate 111 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). The semiconductor substrate 111 may have a pyramid-shaped fine uneven structure called a texture structure in order to improve the incident rate of light on the surface.
 半導体基板111は、単結晶シリコン又は多結晶シリコン等の結晶シリコン材料で形成することができる。また、ガリウムヒ素(GaAs)等の他の半導体材料から形成されてもよい。半導体基板111は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板とすることができる。n型ドーパントとしては、例えばリン(P)が挙げられる。半導体基板111の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。 The semiconductor substrate 111 can be formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. It may also be formed from other semiconductor materials such as gallium arsenide (GaAs). The semiconductor substrate 111 can be, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P). Since crystalline silicon is used as the material of the semiconductor substrate 111, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
 第1半導体層112及び第2半導体層113は、半導体基板111の内部から、互いに極性が異なるキャリアを誘引することにより、異なる極性の電荷を収集する。具体的には、半導体基板111がn型である場合、第1半導体層112はp型半導体から形成され、第2半導体層113はn型半導体から形成され得る。 The first semiconductor layer 112 and the second semiconductor layer 113 collect charges of different polarities by attracting carriers having different polarities from the inside of the semiconductor substrate 111. Specifically, when the semiconductor substrate 111 is n-type, the first semiconductor layer 112 may be formed of a p-type semiconductor, and the second semiconductor layer 113 may be formed of an n-type semiconductor.
 第1半導体層112及び第2半導体層113は、例えば所望の導電型を付与するドーパントを含有するアモルファスシリコン材料で形成することができる。p型ドーパントとしては、例えばホウ素(B)が挙げられ、n型ドーパントとしては、例えば上述したリン(P)が挙げられる。第1半導体層112及び第2半導体層113は、例えばCVD、PVD等の成膜技術によって、半導体基板111にそれぞれ積層され得る。 The first semiconductor layer 112 and the second semiconductor layer 113 can be formed of, for example, an amorphous silicon material containing a dopant that imparts a desired conductive type. Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P) described above. The first semiconductor layer 112 and the second semiconductor layer 113 can be laminated on the semiconductor substrate 111, respectively, by a film forming technique such as CVD or PVD.
 透光開口114は、太陽電池セル101の裏面側に光を透過して採光することを可能にする。透光開口114は、例えばレーザ加工、エッチング加工等、任意の方法で形成することができる。透光開口114の平面視での形状つまり断面形状としては、典型的には円形とされるが、楕円形状、多角形状等、任意の形状とすることができる。 The translucent opening 114 makes it possible to transmit light to the back surface side of the solar cell 101 and collect light. The translucent opening 114 can be formed by any method such as laser processing or etching processing. The shape of the translucent opening 114 in a plan view, that is, the cross-sectional shape is typically circular, but can be any shape such as an elliptical shape and a polygonal shape.
 透光開口114は、光電変換体110の略全体に分散して形成されることが好ましいが、例えば光電変換体110の周縁部、光電変換体110を横断する帯状領域等に透光開口114を設けないようにすることで、光電変換体110の強度と確保してもよい。透光開口114は、均等に採光するとともに、美観を向上できるよう、規則的に配置されることが好ましい。図示する例では、1つの透光開口114に周方向に等間隔且つ等距離に6つの透光開口114が隣接するよう、複数の透光開口114が六方配置されているが、透光開口114は例えば透光開口114が縦横に並んだ正方配置に形成されてもよい。 The translucent opening 114 is preferably formed so as to be dispersed over substantially the entire photoelectric converter 110. For example, the translucent opening 114 is provided in a peripheral portion of the photoelectric converter 110, a band-shaped region crossing the photoelectric converter 110, or the like. By not providing it, the strength of the photoelectric converter 110 may be secured. It is preferable that the translucent apertures 114 are regularly arranged so as to collect light evenly and improve the aesthetic appearance. In the illustrated example, a plurality of translucent openings 114 are arranged in six directions so that six translucent openings 114 are adjacent to one translucent opening 114 at equal intervals in the circumferential direction and at equal distances. For example, the translucent openings 114 may be formed in a square arrangement in which the translucent openings 114 are arranged vertically and horizontally.
 光電変換体110における透光開口114の面積率、つまり光電変換体110の開口率としては、例えば3%以上50%以下、好ましくは5%以上30%以下とすることができる。これにより、十分な光が太陽電池セル101を透過することができ、且つ比較的大きい電力を得ることができる。 The area ratio of the translucent aperture 114 in the photoelectric converter 110, that is, the aperture ratio of the photoelectric converter 110 can be, for example, 3% or more and 50% or less, preferably 5% or more and 30% or less. As a result, sufficient light can pass through the solar cell 101, and a relatively large amount of electric power can be obtained.
 透光開口114の平均径(円相当径)としては、例えば1mm以上10mm以下好ましくは2mm以上8mm以下とすることができる。これにより、太陽電池セル101の透光開口114以外の領域における光電変換効率を大きくしながら、十分な採光が可能となる。 The average diameter (diameter equivalent to a circle) of the translucent opening 114 can be, for example, 1 mm or more and 10 mm or less, preferably 2 mm or more and 8 mm or less. As a result, sufficient daylighting becomes possible while increasing the photoelectric conversion efficiency in the region other than the translucent aperture 114 of the solar cell 101.
 表面電極120は、第1半導体層112が引き寄せたキャリアを電荷として取り出す。表面電極120は、導電性を有する材料から形成され、電気抵抗が小さい金属から形成されることが好ましい。具体的には、表面電極120は、光電変換体110に積層した金属層のエッチング、光電変換体110への銀ペーストのような導電性ペーストの印刷及び焼成等の方法で形成することができる。また、表面電極120は、多層構造を有してもよい。 The surface electrode 120 takes out the carriers attracted by the first semiconductor layer 112 as electric charges. The surface electrode 120 is preferably made of a conductive material and preferably made of a metal having a low electrical resistance. Specifically, the surface electrode 120 can be formed by etching a metal layer laminated on the photoelectric converter 110, printing a conductive paste such as silver paste on the photoelectric converter 110, and firing. Further, the surface electrode 120 may have a multilayer structure.
 表面電極120は、光電変換体110に光が入射できるよう、面積を小さくすることが好ましいが、光電変換体110の中でのキャリアの移動距離を小さくして光電変換効率を向上するために、光電変換体110の全体に設けることが好ましい。このため、表面電極120は、光電変換体110の表面全域に網状に形成されることが好ましい。 The surface electrode 120 preferably has a small area so that light can be incident on the photoelectric conversion body 110, but in order to reduce the moving distance of carriers in the photoelectric conversion body 110 and improve the photoelectric conversion efficiency. It is preferable to provide it on the entire photoelectric converter 110. Therefore, it is preferable that the surface electrode 120 is formed in a net shape over the entire surface of the photoelectric converter 110.
 表面電極120は、複数の透光開口114を個別に取り囲む複数の囲繞部121(二鎖線で取り囲んだ六角形状の部分)を有する。表面電極120において、複数の囲繞部121は、互いに接続される。このため、表面電極120は、複数の囲繞部121を接続する接続部を有してもよく、囲繞部121同士が図示するように例えば角部で接するよう形成されてもよく、隣接する囲繞部121がその一部を共有してもよい。 The surface electrode 120 has a plurality of surrounding portions 121 (a hexagonal portion surrounded by a double-chain line) that individually surrounds the plurality of translucent openings 114. In the surface electrode 120, the plurality of surrounding portions 121 are connected to each other. Therefore, the surface electrode 120 may have a connecting portion for connecting a plurality of surrounding portions 121, or may be formed so that the surrounding portions 121 are in contact with each other, for example, at a corner portion as shown in the drawing, and the adjacent surrounding portions are adjacent to each other. 121 may share a part thereof.
 表面電極120は、透光開口114を個別に取り囲み、互いに接続される複数の囲繞部121を有するため、透光開口114よって分断されないので、光電変換体110の全体から電荷を収集することができる。 Since the surface electrode 120 individually surrounds the translucent opening 114 and has a plurality of surrounding portions 121 connected to each other, the surface electrode 120 is not divided by the translucent opening 114, so that charges can be collected from the entire photoelectric converter 110. ..
 囲繞部121は、面積を小さくしつつ電気抵抗を小さくするために略一定の幅を有する電極線122から形成されることが好ましい。 The surrounding portion 121 is preferably formed from an electrode wire 122 having a substantially constant width in order to reduce the electric resistance while reducing the area.
 囲繞部121は、表面電極120のパターンを簡素化しつつ効率よく配置できるよう多角形状であることが好ましい。また、表面電極120を流れる電流を均等化するために、囲繞部121の各辺の長さが一定であること、つまり囲繞部121が全ての辺の長さが等しい多角形状であることがより好ましい。特に透光開口114が円形である場合、囲繞部121を正多角形状に形成することによって、キャリアの移動距離のバラツキを効果的に抑制すると共に、表面電極120を流れる電流が偏ることを防止できる。 It is preferable that the surrounding portion 121 has a polygonal shape so that the pattern of the surface electrode 120 can be efficiently arranged while being simplified. Further, in order to equalize the current flowing through the surface electrode 120, the length of each side of the surrounding portion 121 is constant, that is, the surrounding portion 121 has a polygonal shape having the same length of all sides. preferable. In particular, when the translucent opening 114 is circular, by forming the surrounding portion 121 into a regular polygonal shape, it is possible to effectively suppress the variation in the moving distance of the carrier and prevent the current flowing through the surface electrode 120 from being biased. ..
 囲繞部121の各辺は、透光開口114からの距離(最短距離)が略等しくなるよう配置されることが好ましい。具体的には、囲繞部121の各辺の透光開口114からの距離の最小値が最大値の50%以上であることが好ましく、55%以上であることがより好ましい。これにより、キャリアの移動距離が局所的に大きくなることを防止できる。囲繞部121の重心を透光開口114の重心と略一致させることによって、囲繞部121の各辺の透光開口114からの距離を均等化できる。 It is preferable that each side of the surrounding portion 121 is arranged so that the distance (shortest distance) from the translucent opening 114 is substantially equal. Specifically, the minimum value of the distance from the translucent opening 114 of each side of the surrounding portion 121 is preferably 50% or more, and more preferably 55% or more of the maximum value. As a result, it is possible to prevent the moving distance of the carrier from increasing locally. By substantially matching the center of gravity of the surrounding portion 121 with the center of gravity of the translucent opening 114, the distance from each side of the surrounding portion 121 from the translucent opening 114 can be equalized.
 本実施形態の表面電極120は、それぞれ平行且つ等間隔に配置される複数の電極線122からなり、互いに交差するよう角度が異なる3組の電極線群123,124,125を有する。このように、3組の電極線群123,124,125によって表面電極120を構成することで、表面電極120のパターンを簡素化できる。また、直線的に延びる複数の電極線122によって表面電極120を構成することで、実効的な電路の長さを比較的短くすることができる。このような電極線122の幅を小さくすることによって光電変換体110に光が入射する面積を大きくできる。 The surface electrode 120 of the present embodiment is composed of a plurality of electrode wires 122 arranged in parallel and at equal intervals, and has three sets of electrode wire groups 123, 124, 125 having different angles so as to intersect each other. In this way, by forming the surface electrode 120 with the three sets of electrode wire groups 123, 124, 125, the pattern of the surface electrode 120 can be simplified. Further, by forming the surface electrode 120 with a plurality of electrode wires 122 extending linearly, the effective length of the electric circuit can be made relatively short. By reducing the width of the electrode wire 122, the area where light is incident on the photoelectric converter 110 can be increased.
 特に、本実施形態では、電極線群123,124,125の角度を60°毎に異ならせ、3組の電極線群123,124,125が一点で交差しないように均等に交差位置をずらすことで、正六角形状の囲繞部121を形成する。つまり、本実施形態の表面電極120において、囲繞部121は、頂点で互いに接する正六角形状であり、複数の囲繞部121の間に透光開口114を含まない三角形状の残余スペースを画定する。このような構成を有する表面電極120は、キャリアの移動距離が大きくなる領域を形成しないので、光電変換体110の有効面積(透光開口114を除外した面積)当たりの光電変換効率を向上することができる。 In particular, in the present embodiment, the angles of the electrode wire groups 123, 124, 125 are different every 60 °, and the intersection positions are evenly shifted so that the three sets of electrode wire groups 123, 124, 125 do not intersect at one point. Therefore, a regular hexagonal surrounding portion 121 is formed. That is, in the surface electrode 120 of the present embodiment, the surrounding portions 121 have a regular hexagonal shape that is in contact with each other at the vertices, and defines a triangular residual space that does not include the translucent opening 114 between the plurality of surrounding portions 121. Since the surface electrode 120 having such a configuration does not form a region where the moving distance of the carrier becomes large, the photoelectric conversion efficiency per effective area (area excluding the translucent opening 114) of the photoelectric converter 110 is improved. Can be done.
 複数の囲繞部121の内側の合計面積としては、複数の囲繞部の外側の残余スペースの合計面積の2.0倍以上5.0倍以下が好ましく、2.5倍以上4.0倍以下がより好ましい。これにより、キャリアの最大移動距離を容易に小さくできるので、太陽電池セル101の光電変換効率を容易に向上することができる。 The total area inside the plurality of surrounding parts 121 is preferably 2.0 times or more and 5.0 times or less, and 2.5 times or more and 4.0 times or less the total area of the remaining space outside the plurality of surrounding parts. More preferred. As a result, the maximum moving distance of the carrier can be easily reduced, so that the photoelectric conversion efficiency of the solar cell 101 can be easily improved.
 囲繞部121の各辺と透光開口114の距離としては、透光開口114の直径の20%以上150%以下が好ましく、30%以上125%以下がより好ましい。これにより、太陽電池セル101の光電変換効率を向上しつつ、採光性を確保できる。 The distance between each side of the surrounding portion 121 and the translucent opening 114 is preferably 20% or more and 150% or less, and more preferably 30% or more and 125% or less of the diameter of the translucent opening 114. As a result, the daylighting property can be ensured while improving the photoelectric conversion efficiency of the solar cell 101.
 平面視における表面電極120の面積としては、半導体基板111の透光開口114を除く面積の1%以上50%以下が好ましく、2%以上40%以下がより好ましい。これにより、キャリアを効率よく回収しつつ、半導体基板111の光電変換に寄与する面積を十分に確保できる。 The area of the surface electrode 120 in a plan view is preferably 1% or more and 50% or less, and more preferably 2% or more and 40% or less of the area of the semiconductor substrate 111 excluding the translucent opening 114. As a result, it is possible to secure a sufficient area that contributes to the photoelectric conversion of the semiconductor substrate 111 while efficiently recovering the carriers.
 裏面電極130は、第2半導体層113が引き寄せたキャリアを電荷として取り出す。裏面電極130は、表面電極120と同様の材料により形成できる。裏面電極130は、表面電極120と同様に、複数の透光開口114を個別に取り囲む複数の囲繞部を有する網状に形成されてもよいが、透光開口114を除いて光を透過させる必要がないので、光電変換体110の裏面全体に積層されてもよい。 The back surface electrode 130 takes out the carriers attracted by the second semiconductor layer 113 as electric charges. The back surface electrode 130 can be formed of the same material as the front surface electrode 120. Like the front surface electrode 120, the back surface electrode 130 may be formed in a mesh shape having a plurality of surrounding portions individually surrounding the plurality of translucent openings 114, but it is necessary to transmit light except for the translucent openings 114. Therefore, it may be laminated on the entire back surface of the photoelectric converter 110.
 以上のように、本実施形態に係る太陽電池セル101は、複数の透光開口114を有することで裏面に採光できるシースルー型の太陽電池セルである。加えて、太陽電池セル101は、表面電極120が透光開口114を個別に取り囲む複数の囲繞部121を有するため、キャリアの移動距離が大きい領域を有しないので、光電変換効率が高い。 As described above, the solar cell 101 according to the present embodiment is a see-through type solar cell that can collect light on the back surface by having a plurality of translucent openings 114. In addition, since the surface electrode 120 has a plurality of surrounding portions 121 individually surrounding the translucent opening 114, the solar cell 101 does not have a region where the carrier travel distance is large, so that the photoelectric conversion efficiency is high.
<第3実施形態>
 図13は、本発明の第2実施形態に係る太陽電池セル101Aの模式平面図である。なお、以降の実施形態について、先に説明した実施形態と同様の構成要素には同じ符号を付して重複する説明を省略することがある。
<Third Embodiment>
FIG. 13 is a schematic plan view of the solar cell 101A according to the second embodiment of the present invention. In the following embodiments, the same components as those in the above-described embodiment may be designated by the same reference numerals and duplicate description may be omitted.
 太陽電池セル101Aは、表裏に貫通する複数の透光開口114を有する板状の光電変換体110と、光電変換体110の表面に積層される表面電極120Aと、光電変換体110の裏面に積層される不図示の裏面電極と、を備える。 The solar cell 101A has a plate-shaped photoelectric converter 110 having a plurality of translucent openings 114 penetrating the front and back surfaces, a surface electrode 120A laminated on the surface of the photoelectric converter 110, and laminated on the back surface of the photoelectric converter 110. It is provided with a back surface electrode (not shown).
 表面電極120Aは、複数の透光開口114を個別に取り囲む複数の正六角形状の囲繞部121Aを有する。囲繞部121Aは、各辺を隣接する囲繞部121Aと共有する。このような構成とすることによって、特に透光開口114の面積率を大きくする場合にも、表面電極120Aを適切に配置できる。 The surface electrode 120A has a plurality of regular hexagonal surrounding portions 121A that individually surround the plurality of translucent openings 114. The surrounding portion 121A shares each side with the adjacent surrounding portion 121A. With such a configuration, the surface electrode 120A can be appropriately arranged even when the area ratio of the translucent opening 114 is increased.
 表面電極120Aは、複数の透光開口114を個別に取り囲む複数の正六角形状の囲繞部121Aを有する。囲繞部121Aは、各辺を隣接する囲繞部121Aと共有する。このような構成とすることによって、特に透光開口114の面積率を大きくする場合にも、表面電極120Aを適切に配置できる。 The surface electrode 120A has a plurality of regular hexagonal surrounding portions 121A that individually surround the plurality of translucent openings 114. The surrounding portion 121A shares each side with the adjacent surrounding portion 121A. With such a configuration, the surface electrode 120A can be appropriately arranged even when the area ratio of the translucent opening 114 is increased.
<第4実施形態>
 図14は、本発明の第3実施形態に係る太陽電池セル101Bの模式平面図である。太陽電池セル101Bは、表裏に貫通する平面視で楕円形状の複数の透光開口114Bを有する板状の光電変換体110Bと、光電変換体110Bの表面に積層される表面電極120Bと、光電変換体110Bの裏面に積層される不図示の裏面電極と、を備える。
<Fourth Embodiment>
FIG. 14 is a schematic plan view of the solar cell 101B according to the third embodiment of the present invention. The solar cell 101B includes a plate-shaped photoelectric converter 110B having a plurality of elliptical transparent openings 114B in a plan view penetrating the front and back, a surface electrode 120B laminated on the surface of the photoelectric converter 110B, and a photoelectric conversion. A back surface electrode (not shown) laminated on the back surface of the body 110B is provided.
 表面電極120Bは、複数の透光開口114Bを個別に取り囲む複数の菱形状の囲繞部121Bを有する。囲繞部121Bは、各辺を隣接する囲繞部121Bと共有する。このように、平面視で楕円形状の透光開口114Bを取り囲む囲繞部121Bを菱形状に形成することによって、キャリアの最大移動距離を小さくできる。 The surface electrode 120B has a plurality of diamond-shaped surrounding portions 121B that individually surround the plurality of translucent openings 114B. The surrounding portion 121B shares each side with the adjacent surrounding portion 121B. In this way, the maximum moving distance of the carrier can be reduced by forming the surrounding portion 121B surrounding the elliptical transparent opening 114B in a plan view in a diamond shape.
<第5実施形態>
 図15は、本発明の第4実施形態に係る太陽電池セル101Cの模式平面図である。太陽電池セル101Cは、表裏に貫通する平面視で三角形状の複数の透光開口114Cを有する板状の光電変換体110Cと、光電変換体110Cの表面に積層される表面電極120Cと、光電変換体110Cの裏面に積層される不図示の裏面電極と、を備える。
<Fifth Embodiment>
FIG. 15 is a schematic plan view of the solar cell 101C according to the fourth embodiment of the present invention. The solar cell 101C has a plate-shaped photoelectric converter 110C having a plurality of triangular translucent openings 114C in a plan view penetrating the front and back, a surface electrode 120C laminated on the surface of the photoelectric converter 110C, and a photoelectric conversion. A back surface electrode (not shown) laminated on the back surface of the body 110C is provided.
 表面電極120Bは、複数の透光開口114Cを個別に取り囲む複数の三角形状の囲繞部121Cを有する。複数の囲繞部121Cは各頂点で互いに接続され、複数の囲繞部121の間に透光開口114Cを含まない三角形状の残余スペースが画定される。 The surface electrode 120B has a plurality of triangular surrounding portions 121C that individually surround the plurality of translucent openings 114C. The plurality of surrounding portions 121C are connected to each other at each vertex, and a triangular residual space not including the translucent opening 114C is defined between the plurality of surrounding portions 121.
 以上、本発明の各実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更及び変形が可能である。本発明に係る太陽電池セルは、例えば反射防止膜等、さらなる構成要素を備えてもよい。具体例として、第1電極と第1半導体層の間、及び第2電極と第2半導体層の間を接続するさらなる導電層等を設けてもよい。また、本発明に係る太陽電池セルにおいて、パッシベーション層は省略されてもよい。 Although each embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications and modifications can be made. The solar cell according to the present invention may include additional components such as an antireflection film. As a specific example, a further conductive layer or the like connecting between the first electrode and the first semiconductor layer and between the second electrode and the second semiconductor layer may be provided. Further, in the solar cell according to the present invention, the passivation layer may be omitted.
 本発明に係る太陽電池セルにおいて、透光開口の第1周面部と第2周面部とは、加工工程の違いに起因する表面性状の違いを有するだけであってもよい。このため、透光開口の内周面おいて、半導体基板は、全体的に露出してもよい。 In the solar cell according to the present invention, the first peripheral surface portion and the second peripheral surface portion of the translucent opening may only have a difference in surface texture due to a difference in the processing process. Therefore, the semiconductor substrate may be exposed as a whole on the inner peripheral surface of the translucent opening.
 また、本発明に係る太陽電池セルにおいて、少なくとも第1周面部の半導体基板はパッシベーション層のみで被覆されてもよい。この場合、パッシベーション層は、絶縁性を有するシリコン酸化膜、シリコン窒化膜等から形成されてもよい。 Further, in the solar cell according to the present invention, at least the semiconductor substrate on the first peripheral surface portion may be covered with only the passivation layer. In this case, the passivation layer may be formed of an insulating silicon oxide film, a silicon nitride film, or the like.
 上述の実施形態では、第1周面部が受光面側に位置するものとしたが、発明に係る太陽電池セルでは、第2周面部が受光面側に位置してもよい。 In the above-described embodiment, the first peripheral surface portion is located on the light receiving surface side, but in the solar cell according to the invention, the second peripheral surface portion may be located on the light receiving surface side.
 本発明に係る太陽電池セル製造方法において、第1半導体層及び第2半導体層を形成した後に環状溝を形成してもよい。この場合、第1半導体層の全面にレジスト材料を積層した状態でレーザ光を照射して環状溝を形成することで、同時にレジスト材料のパターニングを行うことができる。さらに、環状溝の形成後又は透光開口形成後にパッシベーション層を形成し、例えば導電性ペーストの印刷及び焼成によりパッシベーション層を貫通する電極を形成してもよい。 In the solar cell manufacturing method according to the present invention, the annular groove may be formed after the first semiconductor layer and the second semiconductor layer are formed. In this case, the resist material can be patterned at the same time by irradiating the laser beam with the resist material laminated on the entire surface of the first semiconductor layer to form the annular groove. Further, the passivation layer may be formed after the formation of the annular groove or the formation of the translucent opening, and an electrode penetrating the passivation layer may be formed by, for example, printing and firing of a conductive paste.
 また、複数の太陽電池セルを一列に並べて接続する場合、他の太陽電池セルに隣接する外縁に沿う電極線の幅を大きくすることにより、この電極線を他の電極線から電荷を集めて外部に出力するためのバスバーとして使用できるようにしてもよい。また、表面電極は、別途設けられるバスバーを有してもよく、1つの電極線群がバスバーに垂直に接続するよう配置され、この電極線群の電極線の太さが他の電極線より大きくてもよい。これにより、表面電極が光電変換体から電荷を収集した点からバスバーまでの電気抵抗を低減して、太陽電池セル全体の光電変換効率を向上できる。 In addition, when connecting multiple solar cells side by side in a row, by increasing the width of the electrode line along the outer edge adjacent to the other solar cell, this electrode line collects charge from other electrode lines and is external. It may be possible to use it as a bus bar for outputting to. Further, the surface electrode may have a bus bar provided separately, and one electrode wire group is arranged so as to be connected vertically to the bus bar, and the thickness of the electrode wire of this electrode wire group is larger than that of the other electrode wire. You may. As a result, the electrical resistance from the point where the surface electrode collects the electric charge from the photoelectric converter to the bus bar can be reduced, and the photoelectric conversion efficiency of the entire solar cell can be improved.
 1 太陽電池セル
 10 半導体基板
 11 透光開口
 12 第1周面部
 13 第2周面部
 20 第1半導体層
 30 第2半導体層
 40 第1パッシベーション層
 50 第2パッシベーション層
 60 第1電極
 70 第2電極
 101,101A,101B,101C 太陽電池セル
 110,110B,110C 光電変換体
 111 半導体基板
 112 第1半導体層
 113 第2半導体層
 114,14B 透光開口
 120,120A,120B,120C 表面電極
 121,121A,121B,120C 囲繞部
 122 電極線
 123,124,125 電極線群
 130 裏面電極
 G 環状溝
1 Solar cell 10 Semiconductor substrate 11 Translucent opening 12 1st peripheral surface 13 2nd peripheral surface 20 1st semiconductor layer 30 2nd semiconductor layer 40 1st passion layer 50 2nd passion layer 60 1st electrode 70 2nd electrode 101 , 101A, 101B, 101C Solar cell 110, 110B, 110C Photoconverter 111 Semiconductor substrate 112 First semiconductor layer 113 Second semiconductor layer 114, 14B Translucent opening 120, 120A, 120B, 120C Surface electrode 121, 121A, 121B , 120C Surrounding part 122 Electrode wire 123, 124, 125 Electrode wire group 130 Backside electrode G annular groove

Claims (13)

  1.  板状に形成され、厚み方向に貫通する複数の透光開口を有する半導体基板と、
     前記半導体基板の一方の主面側に積層される第1半導体層と、
     前記半導体基板の他方の主面側に積層される第2半導体層と、
     前記第1半導体層に積層される第1電極と、
     前記第2半導体層に積層される第2電極と、
    を備え、
     前記透光開口の内周面は、前記第1半導体層の側に位置する第1周面部と、前記第2半導体層の側に位置し、前記第1周面部と表面性状が異なる第2周面部と、を有する、太陽電池セル。
    A semiconductor substrate formed in a plate shape and having a plurality of translucent openings penetrating in the thickness direction,
    A first semiconductor layer laminated on one main surface side of the semiconductor substrate,
    A second semiconductor layer laminated on the other main surface side of the semiconductor substrate, and
    The first electrode laminated on the first semiconductor layer and
    The second electrode laminated on the second semiconductor layer and
    Equipped with
    The inner peripheral surface of the translucent opening is located on the side of the first peripheral surface portion located on the side of the first semiconductor layer and on the side of the second semiconductor layer, and the surface texture is different from that of the first peripheral surface portion. A solar cell having a face portion and.
  2.  前記第1周面部において、前記半導体基板は前記第1半導体層によって被覆され、
     前記第2周面部において、前記半導体基板は露出する、請求項1に記載の太陽電池セル。
    In the first peripheral surface portion, the semiconductor substrate is covered with the first semiconductor layer, and the semiconductor substrate is covered with the first semiconductor layer.
    The solar cell according to claim 1, wherein the semiconductor substrate is exposed on the second peripheral surface portion.
  3.  半導体基板にレーザ光を照射することによって環状溝を形成する工程と、
     前記環状溝の底部のエッチング又は割断により前記半導体基板の前記環状溝の内側の領域を分離することによって、前記半導体基板に開口を形成する工程と、
    を備える、太陽電池セル製造方法。
    The process of forming an annular groove by irradiating a semiconductor substrate with laser light,
    A step of forming an opening in the semiconductor substrate by separating the inner region of the annular groove of the semiconductor substrate by etching or cutting the bottom of the annular groove.
    A solar cell manufacturing method.
  4.  前記環状溝を形成する工程と前記開口を形成する工程との間に、前記半導体基板に成膜を行う工程をさらに備える、請求項3に記載の太陽電池セル製造方法。 The solar cell manufacturing method according to claim 3, further comprising a step of forming a film on the semiconductor substrate between the step of forming the annular groove and the step of forming the opening.
  5.  半導体基板及び前記半導体基板に積層される半導体層を有し、且つ表裏に貫通する複数の透光開口を有する光電変換体と、
     前記光電変換体の表面に積層される表面電極と、
     前記光電変換体の裏面に積層される裏面電極と、
    を備え、
     前記表面電極は、前記複数の透光開口を個別に取り囲む複数の囲繞部を有する、太陽電池セル。
    A photoelectric converter having a semiconductor substrate and a semiconductor layer laminated on the semiconductor substrate, and having a plurality of translucent openings penetrating the front and back surfaces.
    A surface electrode laminated on the surface of the photoelectric converter and
    The back surface electrode laminated on the back surface of the photoelectric converter and
    Equipped with
    The surface electrode is a solar cell having a plurality of surrounding portions individually surrounding the plurality of translucent openings.
  6.  前記囲繞部は多角形状である、請求項5に記載の太陽電池セル。 The solar cell according to claim 5, wherein the surrounding portion has a polygonal shape.
  7.  前記囲繞部の各辺の長さは一定である、請求項6に記載の太陽電池セル。 The solar cell according to claim 6, wherein the length of each side of the surrounding portion is constant.
  8.  前記囲繞部の各辺と前記透光開口との距離の最小値は最大値の50%以上である、請求項6又は7に記載の太陽電池セル。 The solar cell according to claim 6 or 7, wherein the minimum value of the distance between each side of the surrounding portion and the translucent opening is 50% or more of the maximum value.
  9.  前記囲繞部の各辺と前記透光開口との距離は前記透光開口の直径の20%以上150%以下である、請求項6から8のいずれかに記載の太陽電池セル。 The solar cell according to any one of claims 6 to 8, wherein the distance between each side of the surrounding portion and the translucent opening is 20% or more and 150% or less of the diameter of the translucent opening.
  10.  前記表面電極は、それぞれ平行且つ等間隔に配置される複数の電極線からなり、互いに交差するよう角度が異なる3組の電極線群を有する、請求項5から9のいずれかに記載の太陽電池セル。 The solar cell according to any one of claims 5 to 9, wherein the surface electrodes are composed of a plurality of electrode wires arranged in parallel and at equal intervals, and have three sets of electrode wire groups having different angles so as to intersect each other. cell.
  11.  前記囲繞部は、頂点で互いに接する六角形状であり、間に前記透光開口を含まない三角形状のスペースを画定する、請求項9に記載の太陽電池セル。 The solar cell according to claim 9, wherein the surrounding portions have a hexagonal shape that is in contact with each other at the apex, and a triangular space that does not include the translucent opening is defined between them.
  12.  前記複数の囲繞部の内側の面積は、前記複数の囲繞部の外側の面積の2倍以上5倍以下である、請求項5から11のいずれかに記載の太陽電池セル。 The solar cell according to any one of claims 5 to 11, wherein the area inside the plurality of surrounding parts is twice or more and five times or less the area outside the plurality of surrounding parts.
  13.  前記裏面電極は、前記複数の透光開口を個別に取り囲む複数の囲繞部を有する、請求項5から12のいずれかに記載の太陽電池セル。 The solar cell according to any one of claims 5 to 12, wherein the back surface electrode has a plurality of surrounding portions individually surrounding the plurality of translucent openings.
PCT/JP2021/047232 2020-12-28 2021-12-21 Solar cell and solar cell manufacturing method WO2022145283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022573009A JPWO2022145283A1 (en) 2020-12-28 2021-12-21

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020219144 2020-12-28
JP2020-219144 2020-12-28
JP2021-012129 2021-01-28
JP2021012129 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022145283A1 true WO2022145283A1 (en) 2022-07-07

Family

ID=82259287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047232 WO2022145283A1 (en) 2020-12-28 2021-12-21 Solar cell and solar cell manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2022145283A1 (en)
WO (1) WO2022145283A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016274A (en) * 2000-06-27 2002-01-18 Canon Inc Photovoltaic element, its manufacturing method and solar cell module
WO2006120735A1 (en) * 2005-05-11 2006-11-16 Mitsubishi Denki Kabushiki Kaisha Solar battery and method for manufacturing same
WO2010138976A1 (en) * 2009-05-29 2010-12-02 Solexel, Inc. Three-dimensional thin-film semiconductor substrate with through-holes and methods of manufacturing
JP2012164919A (en) * 2011-02-09 2012-08-30 Fuji Electric Co Ltd Thin film solar cell and manufacturing method of the same
KR101895842B1 (en) * 2017-06-19 2018-09-07 주식회사 광명전기 Transmissive flexible solar cell module and manufacturing method thereof
CN111091765A (en) * 2018-10-24 2020-05-01 北京汉能光伏投资有限公司 Photovoltaic display module and photovoltaic curtain wall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016274A (en) * 2000-06-27 2002-01-18 Canon Inc Photovoltaic element, its manufacturing method and solar cell module
WO2006120735A1 (en) * 2005-05-11 2006-11-16 Mitsubishi Denki Kabushiki Kaisha Solar battery and method for manufacturing same
WO2010138976A1 (en) * 2009-05-29 2010-12-02 Solexel, Inc. Three-dimensional thin-film semiconductor substrate with through-holes and methods of manufacturing
JP2012164919A (en) * 2011-02-09 2012-08-30 Fuji Electric Co Ltd Thin film solar cell and manufacturing method of the same
KR101895842B1 (en) * 2017-06-19 2018-09-07 주식회사 광명전기 Transmissive flexible solar cell module and manufacturing method thereof
CN111091765A (en) * 2018-10-24 2020-05-01 北京汉能光伏投资有限公司 Photovoltaic display module and photovoltaic curtain wall

Also Published As

Publication number Publication date
JPWO2022145283A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP4073968B2 (en) Solar cell and manufacturing method thereof
KR101776874B1 (en) Solar cell
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
EP2219226A2 (en) Electrode structure and solar cell comprising the same
EP2212920B1 (en) Solar cell, method of manufacturing the same, and solar cell module
JP2013084930A (en) Method of manufacturing photovoltaic device and photovoltaic device
JP6337352B2 (en) Solar cell
KR101751946B1 (en) Solar cell module
US20120291860A1 (en) Solar cell and method of manufacturing the same
TWI474489B (en) Photovoltaic cell comprising a thin lamina having a rear junction and method of making
JP2007073745A (en) Integrated thin film solar cell and its manufacturing method
KR20130073346A (en) Solar cell
JP2016122749A (en) Solar battery element and solar battery module
JP6770947B2 (en) Photoelectric conversion element
JPWO2016147566A1 (en) Solar cells
JP7406666B2 (en) Solar cells and their manufacturing methods, photovoltaic modules
JP2008227269A (en) Photoelectric conversion element, solar cell module, photovoltaic generation system
TW201327870A (en) Method for making solar battery
KR20120086593A (en) Solar cell and the method of manufacturing the same
WO2022145283A1 (en) Solar cell and solar cell manufacturing method
KR101348848B1 (en) Method for fabricating back contact solar cell
KR20180079228A (en) Solar cell having a plurality of sub-cells coupled by cell level interconnection
KR101032064B1 (en) Solar cell and method of manufacturing the same
KR20190041989A (en) Solar cell manufacturing method and solar cell
KR101122048B1 (en) Solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915143

Country of ref document: EP

Kind code of ref document: A1