WO2022145075A1 - Position inference method, position inference device, and automatic guided vehicle - Google Patents

Position inference method, position inference device, and automatic guided vehicle Download PDF

Info

Publication number
WO2022145075A1
WO2022145075A1 PCT/JP2021/022214 JP2021022214W WO2022145075A1 WO 2022145075 A1 WO2022145075 A1 WO 2022145075A1 JP 2021022214 W JP2021022214 W JP 2021022214W WO 2022145075 A1 WO2022145075 A1 WO 2022145075A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
rotor
pole pair
position estimation
processing unit
Prior art date
Application number
PCT/JP2021/022214
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 石上
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2022145075A1 publication Critical patent/WO2022145075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Definitions

  • the present invention relates to a position estimation method, a position estimation device, and an automatic guided vehicle.
  • Patent Document 1 discloses a method of estimating the rotational position of the rotor of a motor without using an absolute angular position sensor.
  • the initial position of the rotation position of the rotor may not be estimated in the range where the rotor angle is less than one rotation. Therefore, it is difficult to apply it to applications where the preliminary operation of rotating the rotor for estimating the initial position is not allowed, for example, a drive motor such as a robot or an automatic guided vehicle.
  • One aspect of the position estimation method of the present invention is a method of estimating the rotational position of a motor including a rotor having a plurality of magnetic pole pairs, which includes a learning step of acquiring a learning value necessary for estimating the rotational position. It has a position estimation step for estimating the rotation position of the rotor based on the learning value.
  • the rotor is fixed in a predetermined position by passing a predetermined current from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of a plurality of phases of the motor.
  • the magnetic field indicated by the first step and the signals output from N magnetic sensors (N is an integer of 3 or more) arranged so as to face the rotor in the axial direction of the rotor and along the rotation direction of the rotor.
  • the second step of acquiring the strength as the learning value the third step of associating the learning value with the pole pair number representing the pole pair position which is the position of the magnetic pole pair, and the first step to the third step.
  • the rotor In the position estimation step, the rotor is fixed in a predetermined position by passing a predetermined current from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of a plurality of phases of the motor.
  • the sixth step Based on the fifth step, the sixth step of acquiring the magnetic field strength indicated by the output signals of the N magnetic sensors as a detection value, the detection value, and the origin learning data acquired in the learning step. It has a seventh step of determining one of the pole pair numbers included in the origin learning data as the initial position of the rotor.
  • One aspect of the position estimation device of the present invention is a device that estimates the rotational position of a motor including a rotor having a plurality of magnetic pole pairs, which faces the rotor in the axial direction of the rotor and the rotational direction of the rotor.
  • N magnetic sensors N is an integer of 3 or more
  • a processing unit that calculates the rotation position of the motor based on the output signals of the N magnetic sensors, and predetermined data are stored. It is equipped with a storage unit.
  • the processing unit has a stator coil of one phase among the stator coils of a plurality of phases of the motor and a stator of the remaining phases.
  • the fourth process of acquiring the origin learning data showing the correspondence between the pole pair position and the learning value and storing the origin learning data in the storage unit is executed.
  • the processing unit causes a predetermined current to flow from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of a plurality of phases of the motor.
  • the fifth process of fixing the rotor in a predetermined position the sixth process of acquiring the magnetic field strength indicated by the output signals of the N magnetic sensors as a detection value, the detection value, and the storage stored in the storage unit.
  • the seventh process of determining one of the pole pair numbers included in the origin learning data as the initial position of the rotor is executed.
  • One aspect of the automatic guided vehicle of the present invention includes a motor including a rotor having a plurality of magnetic pole pairs, and the position estimation device of the above-described aspect for estimating the rotational position of the motor.
  • a position estimation method a position estimation device, and an automatic guided vehicle that can eliminate the need for a preliminary rotation operation for estimating a rotation position.
  • FIG. 1 is a block diagram schematically showing a configuration of a position estimation device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a pre-learning process and a learning process executed by the processing unit in the present embodiment.
  • FIG. 3 is a supplementary explanatory diagram regarding the prior learning process and the learning process in the present embodiment.
  • FIG. 4 is an enlarged view of Hall signals Hu, Hv and Hw contained in one pole pair region.
  • FIG. 5 is a diagram showing an example of origin learning data obtained by the learning process in the present embodiment.
  • FIG. 6 is a flowchart showing a position estimation process executed by the processing unit in the present embodiment.
  • FIG. 7 is a diagram showing an example of the detected values of the three Hall signals obtained by the processing unit in the present embodiment executing the sixth processing.
  • FIG. 8 is a diagram showing the appearance of an automatic guided vehicle, which is an application example of the present invention.
  • FIG. 1 is a block diagram schematically showing the configuration of the position estimation device 1 according to the embodiment of the present invention.
  • the position estimation device 1 is a device that estimates the rotation position (rotation angle) of a motor 100 including a rotor 110 having a plurality of magnetic pole pairs.
  • the rotor 110 has four pole pairs.
  • the magnetic pole pair means a pair of N pole and S pole. That is, in the present embodiment, the rotor 110 has four pairs of N pole and S pole, and has a total of eight magnetic poles (rotor magnets).
  • the motor 100 is, for example, an inner rotor type three-phase brushless DC motor.
  • the motor 100 has a stator and a motor housing in addition to the rotor 110.
  • the motor housing houses the rotor 110 and the stator inside.
  • the rotor 110 is rotatably supported around a rotating shaft by bearing components inside the motor housing.
  • the stator has a three-phase excitation coil including a U-phase coil, a V-phase coil, and a W-phase coil, and is fixed in a state of facing the outer peripheral surface of the rotor 110 inside the motor housing.
  • the three-phase excitation coil of the motor 100 is electrically connected to the drive unit 3.
  • the energized state of the three-phase excitation coil is controlled by the control device 2 via the drive unit 3, so that the electromagnetic force required to rotate the rotor 110 is generated.
  • the position estimation device 1 includes a sensor unit 10 and a signal processing unit 20.
  • the sensor unit 10 has three magnetic sensors 10u, 10v, and 10w.
  • the signal processing unit 20 includes a processing unit 21 and a storage unit 22.
  • a circuit board is mounted on the motor 100, and the sensor unit 10, the signal processing unit 20, the control device 2, and the drive unit 3 are arranged on the circuit board. ..
  • the three magnetic sensors 10u, 10v, and 10w face the rotor 110 in the axial direction of the rotor 110 and are arranged on the circuit board at predetermined intervals along the rotation direction of the rotor 110.
  • the signal estimation device 1 includes three magnetic sensors 10u, 10v, and 10w is illustrated, but the number of magnetic sensors may be N (N is an integer of 3 or more).
  • the magnetic sensors 10u, 10v, and 10w are Hall elements or linear Hall ICs, respectively.
  • the magnetic sensors 10u, 10v, and 10w each output an analog signal indicating the magnetic field strength.
  • One cycle of the electric angle of each analog signal corresponds to 1 / P of one cycle of the mechanical angle.
  • the number of pole pairs of the "P" rotor 110 since the pole logarithm P of the rotor 110 is "4", one cycle of the electric angle of each analog signal corresponds to 1/4 of one cycle of the mechanical angle, that is, 90 ° in the mechanical angle.
  • the magnetic sensors 10u, 10v, and 10w are arranged at intervals of 30 ° along the rotation direction of the rotor 110. Therefore, the analog signals output from the magnetic sensors 10u, 10v, and 10w have a phase difference of 120 ° in electrical angle from each other.
  • the analog signal output from the magnetic sensors 10u, 10v, and 10w is referred to as a hall signal.
  • the magnetic sensor 10u outputs the Hall signal Hu to the signal processing unit 20.
  • the magnetic sensor 10v outputs the Hall signal Hv to the signal processing unit 20.
  • the magnetic sensor 10w outputs the Hall signal Hw to the signal processing unit 20.
  • the signal processing unit 20 estimates the rotation position of the motor 100, that is, the rotation position of the rotor 110 based on the Hall signals Hu, Hv, and Hw, and outputs the estimation result of the rotation position to the control device 2.
  • the signal processing unit 20 includes a processing unit 21 and a storage unit 22.
  • the processing unit 21 is a microprocessor such as an MCU (Microcontroller Unit), for example.
  • the Hall signals Hu, Hv and Hw output from the magnetic sensors 10u, 10v and 10w are input to the processing unit 21.
  • the processing unit 21 is connected to the storage unit 22 via a data bus so as to be capable of data communication.
  • the Hall signals Hu, Hv, and Hw are converted into digital signals inside the processing unit 21 via the A / D converter, but for convenience of explanation, the digital signals output from the A / D converter are also Hall.
  • the signals are referred to as Hu, Hv and Hw.
  • the processing unit 21 executes at least the following three processes according to the program stored in the storage unit 22.
  • the processing unit 21 executes a learning process of acquiring a learning value necessary for estimating the rotation position of the rotor 110 based on the Hall signals Hu, Hv, and Hw.
  • the processing unit 41 executes a position estimation process for estimating the rotation position of the rotor 110 based on the Hall signals Hu, Hv, and Hw. Further, before executing the learning process, the processing unit 21 executes a pre-learning process for acquiring the correspondence between the magnetic field strengths indicated by the Hall signals Hu, Hv, and Hw and the pole pair number.
  • the processing unit 21 outputs the estimation result of the rotation position of the rotor 110 to the control device 2.
  • the storage unit 22 has a non-volatile memory for storing programs, various setting values, learning data, etc. required for the processing unit 21 to execute various processes, and temporary data when the processing unit 21 executes various processes.
  • volatile memory used as a storage destination.
  • the non-volatile memory is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory) or flash memory.
  • the volatile memory is, for example, RAM (RandomAccessMemory).
  • the drive unit 3 is, for example, a three-phase full bridge circuit having three upper arm switches and three lower arm switches, or a current source.
  • the drive unit 3 is electrically connected to each of the U-phase terminal 120, the V-phase terminal 130, and the W-phase terminal 140 of the motor 100.
  • a DC voltage for driving a motor is input to the three-phase full bridge circuit from a battery (not shown).
  • the control device 2 By controlling the open / closed state of each arm switch included in the three-phase full bridge circuit by the control device 2, the three-phase full bridge circuit converts the input DC voltage into a three-phase AC voltage and outputs it to the motor 100.
  • the drive unit 3 is a current source
  • the current source is controlled by the control device 2 or outputs a predetermined drive current to the motor 100 in response to a manual operation.
  • the control device 2 controls the energization of the motor 100 by controlling the drive unit 3 based on the estimation result of the rotation position obtained from the processing unit 21 of the position estimation device 1.
  • FIG. 2 is a flowchart showing the advance learning process and the learning process executed by the processing unit 21 in the present embodiment.
  • the processing unit 21 executes the processing shown in FIG. 2 at least when the power of the position estimation device 1 is turned on for the first time.
  • the processing unit 21 first acquires the correspondence between the magnetic field strength and the pole pair number indicated by the Hall signals Hu, Hv and Hw.
  • the learning process is executed (step S0). This prior learning process corresponds to the prior learning step in the position estimation method of claim 4.
  • step S0 the processing unit 21 rotates the rotor 110 by controlling the energization of the motor 100 via the control device 2.
  • the rotation position of the rotor 110 is fixed to a specific position by performing DC excitation for a predetermined time, and then a constant drive voltage is applied to the energized phase.
  • an activation sequence that performs forced commutation control to forcibly switch the energized phase at a constant commutation frequency while applying.
  • the processing unit 21 rotates the rotor 110 by controlling the energization of the motor 100 according to the above start sequence.
  • the rotating shaft of the rotor 110 may be connected to an external rotating machine, and the rotor 110 may be rotated by the rotating machine.
  • the processing unit 21 acquires three Hall signals Hu, Hv, and Hw output from the three magnetic sensors 10u, 10v, and 10w as the rotor 110 rotates.
  • each electric angle 1 cycle of the Hall signals Hu, Hv, and Hw corresponds to 1/4 of the mechanical angle 1 cycle, that is, 90 ° in the mechanical angle.
  • the period from time t1 to time t5 corresponds to one machine angle cycle.
  • the period from time t1 to time t2, the period from time t2 to time t3, the period from time t3 to time t4, and the period from time t4 to time t5 are 90 in machine angle, respectively.
  • the Hall signals Hu, Hv and Hw have a phase difference of 120 ° in electrical angle from each other.
  • the processing unit 21 sets the learning period as a pole pair number representing the pole pair position of each of the four magnetic pole pairs based on the Hall signals Hu, Hv, and Hw obtained in the learning period corresponding to one cycle of the machine angle. It is divided into four pole pair regions associated with, each of the four pole pair regions is further divided into a plurality of sections, and each of the plurality of sections is associated with a segment number indicating the rotation position of the rotor 110.
  • pole pair numbers representing the pole pair positions are assigned to the four magnetic pole pairs of the rotor 110.
  • the four magnetic pole pairs of the rotor 110 are assigned pole pair numbers in the order of "0", “1", “2", and "3" in the clockwise direction.
  • the processing unit 21 divides the learning period into four pole pair regions based on the Hall signals Hu, Hv, and Hw obtained during the learning period.
  • "No. C” indicates a pole pair number.
  • the processing unit 21 divides the period from time t1 to time t2 in the learning period as a pole pair region associated with the pole pair number "0".
  • the processing unit 21 divides the period from time t2 to time t3 in the learning period as a pole pair region associated with the pole pair number "1".
  • the processing unit 21 divides the period from time t3 to time t4 in the learning period as a pole pair region associated with the pole pair number "2".
  • the processing unit 21 divides the period from time t4 to time t5 in the learning period as a pole pair region associated with the pole pair number "3".
  • the processing unit 21 further divides each of the four pole pair regions into 12 sections based on the three Hall signals Hu, Hv, and Hw obtained during the learning period, and twelve pieces.
  • a segment number indicating the rotation position of the rotor 110 is associated with each of the sections.
  • "No. A” indicates a section number assigned to a section
  • "No. B” indicates a segment number.
  • section numbers from “0" to “11” are assigned to the 12 sections included in each of the four pole pair regions.
  • consecutive numbers over the entire learning period are associated with each section as segment numbers.
  • the segment numbers "0" to "11” are obtained for the section numbers "0" to "11". Is linked up to.
  • the segment numbers "12" to "23” are associated with the section numbers "0" to "11”.
  • the segment numbers "24" to "35” are associated with the section numbers "0" to "11”.
  • the segment numbers "36" to "47” are associated with the section numbers "0" to "11".
  • FIG. 4 is an enlarged view of Hall signals Hu, Hv, and Hw contained in one pole pair region.
  • the digital value of the amplitude which is a positive value, represents the digital value of the magnetic field strength of the N pole as an example.
  • the digital value of the amplitude which is a negative value, represents the digital value of the magnetic field strength of the S pole as an example.
  • the processing unit 21 extracts a zero cross point, which is a point where the three Hall signals Hu, Hv, and Hw included in each of the four pole pair regions intersect with the reference value “0”. As shown in FIG. 4, the processing unit 21 extracts points P1, point P3, point P5, point P7, point P9, point P11, and point P13 as zero cross points.
  • the processing unit 21 extracts an intersection point at which the three Hall signals Hu, Hv, and Hw included in each of the four pole pair regions intersect with each other. As shown in FIG. 4, the processing unit 21 extracts points P2, P4, P6, P8, P10, and P12 as intersections. Then, the processing unit 21 determines the section between the zero crossing points and the intersections adjacent to each other as a section.
  • the processing unit 21 determines the section between the zero cross point P1 and the intersection P2 as a section to which the section number “0” is assigned.
  • the processing unit 21 determines the section between the intersection P2 and the zero crossing point P3 as the section to which the section number "1" is assigned.
  • the processing unit 21 determines the section between the zero cross point P3 and the intersection P4 as a section to which the section number "2" is assigned.
  • the processing unit 21 determines the section between the intersection P4 and the zero crossing point P5 as the section to which the section number "3” is assigned.
  • the processing unit 21 determines the section between the zero cross point P5 and the intersection P6 as a section to which the section number "4" is assigned.
  • the processing unit 21 determines the section between the intersection P6 and the zero crossing point P7 as the section to which the section number "5" is assigned.
  • the processing unit 21 determines the section between the zero cross point P7 and the intersection P8 as a section to which the section number "6" is assigned. The processing unit 21 determines the section between the intersection P8 and the zero crossing point P9 as the section to which the section number "7" is assigned. The processing unit 21 determines the section between the zero cross point P9 and the intersection point P10 as a section to which the section number “8” is assigned. The processing unit 21 determines the section between the intersection P10 and the zero crossing point P11 as the section to which the section number "9” is assigned. The processing unit 21 determines the section between the zero cross point P11 and the intersection P12 as a section to which the section number "10” is assigned. The processing unit 21 determines the section between the intersection P12 and the zero crossing point P13 as the section to which the section number "11" is assigned.
  • the learning period is divided into four pole pair regions associated with the pole pair numbers, and the four pole pair regions.
  • Each of the sections is divided into 12 sections, and a segment number is associated with each section.
  • the section to which the section number "0" is assigned is referred to as "0th section”
  • the section to which the section number "11” is assigned is referred to as "11th section”. ..
  • the processing unit 21 changes from the stator coil of one phase to the stator coil of the remaining phase among the stator coils of the plurality of phases of the motor 100.
  • the first process of fixing the rotor 110 to a predetermined position is executed by passing a predetermined current to the rotor 110 (step S1). This first process corresponds to the first step of the learning step in the position estimation method of claim 1.
  • step S1 the processing unit 21 applies a rated current from the U-phase stator coil to the remaining V-phase and W-phase stator coils among the three-phase stator coils of the motor 100.
  • the rotor 110 is fixed in a predetermined position.
  • passing a predetermined current from the stator coil of one phase to the stator coil of the remaining phase among the stator coils of a plurality of phases of the motor 100 is referred to as "d-axis current energization”.
  • the processing unit 21 energizes the d-axis current as described above via the control device 2 and the drive unit 3.
  • the processing unit 21 outputs three Hall signals Hu, Hv, and Hw output from the three magnetic sensors 10u, 10v, and 10w with the rotor 110 fixed at a predetermined position.
  • a second process is executed in which sampling is performed and the magnetic field strength indicated by each Hall signal Hu, Hv, and Hw obtained by sampling is acquired as a learning value (step S2). This second process corresponds to the second step of the learning step in the position estimation method of claim 1.
  • the processing unit 21 executes a third process of associating the three learning values acquired in step S2 with the pole pair number as one of the learning processes (step S3).
  • This third process corresponds to the third step of the learning step in the position estimation method of claim 1.
  • a point PHu located on the waveform of the Hall signal Hu, a point PHv located on the waveform of the Hall signal Hv, and a point PHw located on the waveform of the Hall signal Hw were obtained by sampling. It is assumed that each hall signal is Hu, Hv, and Hw.
  • the processing unit 21 acquires the value of the point PHu (magnetic field strength) as the learning value of the Hall signal Hu. Further, the processing unit 21 acquires the value of the point PHv as the learning value of the Hall signal Hv. Further, the processing unit 21 acquires the value of the point PHw as the learning value of the hall signal Hw.
  • the processing unit 21 obtains the three learning values acquired as described above based on the correspondence between the magnetic field strengths of the Hall signals Hu, Hv, and Hw learned in advance by the prior learning process and the pole pair numbers. Correspond to one of.
  • the processing unit 21 performs a series of processes from the first process (step S1) to the third process (step S3) a plurality of times to show the correspondence between all the pole pair numbers and the learning values.
  • the fourth process of acquiring the learning data and storing the acquired origin learning data in the storage unit 22 is executed (step S4).
  • This fourth process corresponds to the fourth step of the learning step in the position estimation method of claim 1.
  • the rotating shaft of the rotor 110 is connected to an external rotating machine as necessary, and the d-axis is rotated by the rotating machine. Current may be applied.
  • FIG. 5 is a diagram showing an example of origin learning data obtained by the learning process from step S1 to step S4.
  • the learning value "-800” acquired from the Hall signal Hu, the learning value "400” acquired from the Hall signal Hv, and the Hall signal Hw are acquired. It is associated with the learned value "450".
  • the pole pair number "1” includes a learning value "-700” acquired from the hall signal Hu, a learning value "370” acquired from the hall signal Hv, and a learning value "350” acquired from the hall signal Hw. Is associated with.
  • the pole pair number "2" includes a learning value "-1000” acquired from the hall signal Hu, a learning value “500” acquired from the hall signal Hv, and a learning value “550” acquired from the hall signal Hw. Is associated with.
  • the pole pair number "3” includes a learning value "-1200” acquired from the hall signal Hu, a learning value "600” acquired from the hall signal Hv, and a learning value "650” acquired from the hall signal Hw. Is associated with.
  • FIG. 6 is a flowchart showing a position estimation process executed by the processing unit 21. After executing the advance learning process and the learning process shown in FIG. 2, the processing unit 21 executes the position estimation process shown in FIG. 6 when the power of the position estimation device 1 is turned on again.
  • the processing unit 21 first executes a fifth process of fixing the rotor 110 to a predetermined position by energizing the d-axis current (step S5).
  • This fifth process corresponds to the fifth step of the position estimation step in the position estimation method of claim 1.
  • the processing unit 21 samples the three Hall signals Hu, Hv, and Hw output from the three magnetic sensors 10u, 10v, and 10w with the rotor 110 fixed at a predetermined position, and obtains the sampling.
  • the sixth process of acquiring the magnetic field strength indicated by each Hall signal Hu, Hv, and Hw as a detection value is executed (step S6). This sixth process corresponds to the sixth step of the position estimation step in the position estimation method of claim 1.
  • FIG. 7 is a diagram showing an example of the detected values of the three Hall signals Hu, Hv, and Hw obtained by the processing unit 21 executing the sixth process (step S6). As shown in FIG. 7, for example, the processing unit 21 acquires the detected value “-1050” from the Hall signal Hu, acquires the detected value “-520” from the Hall signal Hv, and acquires the detected value “-520” from the Hall signal Hw. Get 600 ".
  • the processing unit 21 is one of the pole pair numbers included in the origin learning data based on the three detected values acquired in step S6 and the origin learning data shown in FIG. 5 stored in the storage unit 22. Is executed as the seventh process for determining the initial position of the rotor 110 (step S7). This seventh process corresponds to the seventh step of the position estimation step in the position estimation method of claim 1.
  • the processing unit 21 compares the three detected values acquired in step S6 with all the learned values included in the origin learning data shown in FIG. 5, and 3
  • the pole pair number associated with the three learning values closest to the one detected value is determined as the initial position of the rotor 110. For example, when three detected values as shown in FIG. 7 are obtained, the pole pair number associated with the three learning values closest to these three detected values is the pole from the origin learning data shown in FIG. It can be seen that the pair number is "3". Therefore, in this case, the processing unit 21 determines the pole pair number "3" as the initial position of the rotor 110.
  • the processing unit 21 determines the initial position of the rotor 110 immediately after the power is turned on again by the position estimation process as described above, and then outputs the pole pair number determined as the initial position of the rotor 110 to the control device 2.
  • the control device 2 rotates the rotor 110 by starting the energization control of the motor 100 via the drive unit 3 based on the pole pair number determined as the initial position of the rotor 110.
  • the processing unit 21 estimates the rotation position of the rotor 110 based on the Hall signals Hu, Hv, and Hw output from the three magnetic sensors 31, 32, and 33 as the rotor 110 rotates, and estimates the estimation result. Output to the control device 2.
  • the rotation position estimation algorithm for example, the position estimation algorithm described in Japanese Patent No. 6233532 can be used. Therefore, the description of the rotation position estimation algorithm is omitted in the present specification.
  • the control device 2 continuously controls the energization of the motor 100 via the drive unit 3 based on the estimation result of the rotation position of the rotor 110.
  • the position estimation device 1 of the present embodiment has a learning process of acquiring a learning value necessary for estimating the rotational position of the rotor 110 based on the Hall signals Hu, Hv and Hw, and a Hall signal Hu.
  • a processing unit 21 that executes a position estimation process for estimating the rotation position of the rotor 110 based on Hv and Hw and the origin learning data is provided.
  • the processing unit 21 executes the learning process at least when the power of the position estimation device 1 is turned on for the first time, and acquires the origin learning data showing the correspondence between all the pole pair numbers and the learning values.
  • the processing unit 21 executes the position estimation process when the power of the position estimation device 1 is turned on again, so that any one of the pole pair numbers is determined as the initial position of the rotor 110.
  • the position estimation device 1 of the present embodiment can estimate the initial position of the rotor 110 without rotating the rotor 110. Therefore, the motor 100 provided with the position estimation device 1 does not have to adjust the origin of the rotation position of the rotor 110 when the power is turned on. Since the motor 100 does not require a preliminary rotation operation for adjusting the origin, it can be suitably used for a drive motor application such as a robot or an automatic guided vehicle in which the preliminary rotation operation is not allowed. Since the motor 100 does not require a preliminary rotation operation for adjusting the origin, the drive time and power consumption required for the preliminary rotation operation can be reduced.
  • the present invention is not limited to the above-described embodiment, and the configurations described in the present specification can be appropriately combined within a range that does not contradict each other.
  • the case where three magnetic sensors that output Hall signals are provided is illustrated, but the number of magnetic sensors is not limited to three, and the number of magnetic sensors is N (N1 is an integer of 3 or more). It should be. That is, the number of magnetic sensors may be four or more.
  • a motor including a rotor having four pole pairs is exemplified, but the number of pole pairs of the rotor is not limited to four, and the number of pole pairs of the rotor is P (P is an integer of 2 or more). All you need is.
  • FIG. 8 is a diagram showing the appearance of the automatic guided vehicle 200, which is an application example of the present invention.
  • the automatic guided vehicle 200 includes a motor including a rotor having a plurality of magnetic pole pairs, and a position estimation device for estimating the rotation position of the motor.
  • the motor the motor 100 described in the above embodiment can be used.
  • the position estimation device the position estimation device 1 of the above embodiment can be used. Since the motor provided on the automatic guided vehicle 200 does not require a preliminary rotation operation for adjusting the origin, it is possible to prevent the automatic guided vehicle 200 from moving at an unintended timing.
  • the application example of the present invention is not limited to the automatic guided vehicle 200, and the present invention can be widely applied to a device such as a robot which cannot tolerate the preliminary rotation operation of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

One aspect of a position inference method according to the present invention comprises: a learning step for acquiring a learning value which is necessary for inferring a rotation position; and a position inference step for inferring the rotation position of a rotor on the basis of the learning value. The learning step includes a second step for acquiring, as learning values, magnetic field intensities that are indicated by signals which are output from N magnetic sensors and a fourth step for acquiring origin point learning data that shows correspondences between all pole pair numbers and the learning values. The position inference step includes a sixth step for acquiring, as detection values, the magnetic field intensities that are indicated by output signals from the N magnetic sensors and a seventh step for determining, as the initial position of the rotor, one of the pole pair numbers included in the origin point learning data acquired in the learning step, on the basis of the detection values and of the origin point learning data.

Description

位置推定方法、位置推定装置および無人搬送車Position estimation method, position estimation device and automatic guided vehicle
 本発明は、位置推定方法、位置推定装置および無人搬送車に関する。 The present invention relates to a position estimation method, a position estimation device, and an automatic guided vehicle.
 従来、ロータ位置を正確に制御可能なモータとして、光学エンコーダ、レゾルバ等の絶対角位置センサを備える構成が知られる。しかし、絶対角位置センサは、大型、高コストである。そこで、特許文献1には、絶対角位置センサを用いることなくモータのロータの回転位置を推定する方法が開示される。 Conventionally, as a motor capable of accurately controlling the rotor position, a configuration equipped with an absolute angle position sensor such as an optical encoder or a resolver is known. However, the absolute angle position sensor is large and expensive. Therefore, Patent Document 1 discloses a method of estimating the rotational position of the rotor of a motor without using an absolute angular position sensor.
特許第6233532号公報Japanese Patent No. 6233532
 特許文献1記載の位置推定方法では、ロータ角が1回転未満の範囲ではロータの回転位置の初期位置を推定できない場合があった。そのため、初期位置の推定のためにロータを回転させる予備動作が許容されない用途、例えばロボット、無人搬送車などの駆動用モータには適用が難しかった。 In the position estimation method described in Patent Document 1, the initial position of the rotation position of the rotor may not be estimated in the range where the rotor angle is less than one rotation. Therefore, it is difficult to apply it to applications where the preliminary operation of rotating the rotor for estimating the initial position is not allowed, for example, a drive motor such as a robot or an automatic guided vehicle.
 本発明の位置推定方法における一つの態様は、複数の磁極対を有するロータを備えるモータの回転位置を推定する方法であって、前記回転位置の推定に必要な学習値を取得する学習ステップと、前記学習値に基づいて前記ロータの回転位置を推定する位置推定ステップと、を有する。 前記学習ステップは、前記モータの複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより、前記ロータを所定位置に固定する第1ステップと、前記ロータの軸方向において前記ロータと対向し且つ前記ロータの回転方向に沿って配置されるN個(Nは3以上の整数)の磁気センサから出力される信号が示す磁界強度を前記学習値として取得する第2ステップと、前記学習値を前記磁極対の位置である極対位置を表す極対番号と対応付ける第3ステップと、前記第1ステップから前記第3ステップまでの一連のステップを複数回行うことにより、全ての前記極対番号と前記学習値との対応関係を示す原点学習データを取得する第4ステップと、を有する。 前記位置推定ステップは、前記モータの複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより前記ロータを所定位置に固定する第5ステップと、前記N個の磁気センサの出力信号が示す磁界強度を検出値として取得する第6ステップと、前記検出値と、前記学習ステップで取得した前記原点学習データとに基づいて、前記原点学習データに含まれる前記極対番号の一つを前記ロータの初期位置として決定する第7ステップと、を有する。 One aspect of the position estimation method of the present invention is a method of estimating the rotational position of a motor including a rotor having a plurality of magnetic pole pairs, which includes a learning step of acquiring a learning value necessary for estimating the rotational position. It has a position estimation step for estimating the rotation position of the rotor based on the learning value. In the learning step, the rotor is fixed in a predetermined position by passing a predetermined current from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of a plurality of phases of the motor. The magnetic field indicated by the first step and the signals output from N magnetic sensors (N is an integer of 3 or more) arranged so as to face the rotor in the axial direction of the rotor and along the rotation direction of the rotor. The second step of acquiring the strength as the learning value, the third step of associating the learning value with the pole pair number representing the pole pair position which is the position of the magnetic pole pair, and the first step to the third step. By performing a series of steps a plurality of times, there is a fourth step of acquiring origin learning data showing the correspondence between all the pole pair numbers and the learning values. In the position estimation step, the rotor is fixed in a predetermined position by passing a predetermined current from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of a plurality of phases of the motor. Based on the fifth step, the sixth step of acquiring the magnetic field strength indicated by the output signals of the N magnetic sensors as a detection value, the detection value, and the origin learning data acquired in the learning step. It has a seventh step of determining one of the pole pair numbers included in the origin learning data as the initial position of the rotor.
 本発明の位置推定装置における一つの態様は、複数の磁極対を有するロータを備えるモータの回転位置を推定する装置であって、前記ロータの軸方向において前記ロータと対向し且つ前記ロータの回転方向に沿って配置されるN個(Nは3以上の整数)の磁気センサと、前記N個の磁気センサの出力信号に基づいて前記モータの回転位置を演算する処理部と、所定のデータを記憶する記憶部と、を備える。 前記処理部は、前記モータの回転位置の推定に必要な学習値を取得する学習処理として、前記モータの複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより、前記ロータを所定位置に固定する第1処理と、前記N個の磁気センサの出力信号が示す磁界強度を前記学習値として取得する第2処理と、前記学習値を前記磁極対の位置である極対位置を表す極対番号と対応付ける第3処理と、前記第1処理から前記第3処理までの一連の処理を複数回行うことにより、全ての前記極対位置と前記学習値との対応関係を示す原点学習データを取得し、前記原点学習データを前記記憶部に格納する第4処理と、を実行する。 前記処理部は、前記回転位置の推定処理として、前記モータの複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより前記ロータを所定位置に固定する第5処理と、前記N個の磁気センサの出力信号が示す磁界強度を検出値として取得する第6処理と、前記検出値と、前記記憶部に記憶された前記原点学習データとに基づいて、前記原点学習データに含まれる前記極対番号の一つを前記ロータの初期位置として決定する第7処理と、を実行する。 One aspect of the position estimation device of the present invention is a device that estimates the rotational position of a motor including a rotor having a plurality of magnetic pole pairs, which faces the rotor in the axial direction of the rotor and the rotational direction of the rotor. N magnetic sensors (N is an integer of 3 or more) arranged along the line, a processing unit that calculates the rotation position of the motor based on the output signals of the N magnetic sensors, and predetermined data are stored. It is equipped with a storage unit. As a learning process for acquiring a learning value necessary for estimating the rotation position of the motor, the processing unit has a stator coil of one phase among the stator coils of a plurality of phases of the motor and a stator of the remaining phases. The first process of fixing the rotor to a predetermined position by passing a predetermined current through the coil, and the second process of acquiring the magnetic field strength indicated by the output signals of the N magnetic sensors as the learning value. By performing the third process of associating the learned value with the pole pair number representing the pole pair position, which is the position of the magnetic pole pair, and a series of processes from the first process to the third process a plurality of times, all the above. The fourth process of acquiring the origin learning data showing the correspondence between the pole pair position and the learning value and storing the origin learning data in the storage unit is executed. As the rotation position estimation process, the processing unit causes a predetermined current to flow from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of a plurality of phases of the motor. The fifth process of fixing the rotor in a predetermined position, the sixth process of acquiring the magnetic field strength indicated by the output signals of the N magnetic sensors as a detection value, the detection value, and the storage stored in the storage unit. Based on the origin learning data, the seventh process of determining one of the pole pair numbers included in the origin learning data as the initial position of the rotor is executed.
 本発明の無人搬送車における一つの態様は、複数の磁極対を有するロータを備えるモータと、前記モータの回転位置を推定する上記態様の位置推定装置と、を備える。 One aspect of the automatic guided vehicle of the present invention includes a motor including a rotor having a plurality of magnetic pole pairs, and the position estimation device of the above-described aspect for estimating the rotational position of the motor.
 本発明の上記態様によれば、回転位置の推定のための予備的な回転動作を不要にできる位置推定方法、位置推定装置および無人搬送車が提供される。 According to the above aspect of the present invention, there is provided a position estimation method, a position estimation device, and an automatic guided vehicle that can eliminate the need for a preliminary rotation operation for estimating a rotation position.
図1は、本発明の一実施形態における位置推定装置の構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing a configuration of a position estimation device according to an embodiment of the present invention. 図2は、本実施形態において処理部が実行する先行学習処理及び学習処理を示すフローチャートである。FIG. 2 is a flowchart showing a pre-learning process and a learning process executed by the processing unit in the present embodiment. 図3は、本実施形態における先行学習処理及び学習処理に関する補足説明図である。FIG. 3 is a supplementary explanatory diagram regarding the prior learning process and the learning process in the present embodiment. 図4は、1つの極対領域に含まれるホール信号Hu、Hv及びHwの拡大図である。FIG. 4 is an enlarged view of Hall signals Hu, Hv and Hw contained in one pole pair region. 図5は、本実施形態における学習処理によって得られた原点学習データの一例を示す図である。FIG. 5 is a diagram showing an example of origin learning data obtained by the learning process in the present embodiment. 図6は、本実施形態において処理部が実行する位置推定処理を示すフローチャートである。FIG. 6 is a flowchart showing a position estimation process executed by the processing unit in the present embodiment. 図7は、本実施形態における処理部が第6処理を実行することによって得られた3つのホール信号の検出値の一例を示す図である。FIG. 7 is a diagram showing an example of the detected values of the three Hall signals obtained by the processing unit in the present embodiment executing the sixth processing. 図8は、本発明の適用例である無人搬送車の外観を示す図である。FIG. 8 is a diagram showing the appearance of an automatic guided vehicle, which is an application example of the present invention.
 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。 図1は、本発明の一実施形態における位置推定装置1の構成を模式的に示すブロック図である。図1に示すように、位置推定装置1は、複数の磁極対を有するロータ110を備えるモータ100の回転位置(回転角)を推定する装置である。本実施形態では、一例として、ロータ110は、4つの磁極対を有する。なお、磁極対とは、N極とS極とのペアを意味する。すなわち、本実施形態においてロータ110は、N極とS極とのペアを4つ有し、計8つの磁極(ロータマグネット)を有する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram schematically showing the configuration of the position estimation device 1 according to the embodiment of the present invention. As shown in FIG. 1, the position estimation device 1 is a device that estimates the rotation position (rotation angle) of a motor 100 including a rotor 110 having a plurality of magnetic pole pairs. In this embodiment, as an example, the rotor 110 has four pole pairs. The magnetic pole pair means a pair of N pole and S pole. That is, in the present embodiment, the rotor 110 has four pairs of N pole and S pole, and has a total of eight magnetic poles (rotor magnets).
 モータ100は、例えばインナーロータ型の三相ブラシレスDCモータである。図1では図示を省略するが、モータ100は、ロータ110の他に、ステータと、モータハウジングと、を有する。モータハウジングは、ロータ110及びステータを内部に収容する。ロータ110は、モータハウジングの内部において軸受け部品によって回転軸周りに回転可能に支持される。ステータは、U相コイル、V相コイル及びW相コイルを含む三相励磁コイルを有し、モータハウジングの内部においてロータ110の外周面に対向する状態で固定される。図1に示すように、モータ100の三相励磁コイルは、駆動部3と電気的に接続される。三相励磁コイルの通電状態が駆動部3を介して制御装置2によって制御されることにより、ロータ110を回転させるのに必要な電磁力が発生する。 The motor 100 is, for example, an inner rotor type three-phase brushless DC motor. Although not shown in FIG. 1, the motor 100 has a stator and a motor housing in addition to the rotor 110. The motor housing houses the rotor 110 and the stator inside. The rotor 110 is rotatably supported around a rotating shaft by bearing components inside the motor housing. The stator has a three-phase excitation coil including a U-phase coil, a V-phase coil, and a W-phase coil, and is fixed in a state of facing the outer peripheral surface of the rotor 110 inside the motor housing. As shown in FIG. 1, the three-phase excitation coil of the motor 100 is electrically connected to the drive unit 3. The energized state of the three-phase excitation coil is controlled by the control device 2 via the drive unit 3, so that the electromagnetic force required to rotate the rotor 110 is generated.
 位置推定装置1は、センサ部10と、信号処理部20と、を備える。センサ部10は、3つの磁気センサ10u、10v、10wを有する。信号処理部20は、処理部21と、記憶部22と、を有する。図1では図示を省略するが、モータ100には回路基板が装着されており、センサ部10と、信号処理部20と、制御装置2と、駆動部3とが、回路基板上に配置される。 The position estimation device 1 includes a sensor unit 10 and a signal processing unit 20. The sensor unit 10 has three magnetic sensors 10u, 10v, and 10w. The signal processing unit 20 includes a processing unit 21 and a storage unit 22. Although not shown in FIG. 1, a circuit board is mounted on the motor 100, and the sensor unit 10, the signal processing unit 20, the control device 2, and the drive unit 3 are arranged on the circuit board. ..
 3つの磁気センサ10u、10v、10wは、ロータ110の軸方向においてロータ110と対向し且つロータ110の回転方向に沿って所定の間隔で回路基板上に配置される。本実施形態では、信号推定装置1が3つの磁気センサ10u、10v、10wを備える場合を例示するが、磁気センサの個数はN個(Nは3以上の整数)であればよい。例えば、磁気センサ10u、10v、10wは、それぞれ、ホール素子、或いはリニアホールICである。磁気センサ10u、10v、10wは、それぞれ、磁界強度を示すアナログ信号を出力する。各アナログ信号の電気角1周期は、機械角1周期の1/Pに相当する。「P」ロータ110の極対数である。本実施形態では、ロータ110の極対数Pが「4」なので、各アナログ信号の電気角1周期は、機械角1周期の1/4、すなわち機械角で90°に相当する。 The three magnetic sensors 10u, 10v, and 10w face the rotor 110 in the axial direction of the rotor 110 and are arranged on the circuit board at predetermined intervals along the rotation direction of the rotor 110. In the present embodiment, the case where the signal estimation device 1 includes three magnetic sensors 10u, 10v, and 10w is illustrated, but the number of magnetic sensors may be N (N is an integer of 3 or more). For example, the magnetic sensors 10u, 10v, and 10w are Hall elements or linear Hall ICs, respectively. The magnetic sensors 10u, 10v, and 10w each output an analog signal indicating the magnetic field strength. One cycle of the electric angle of each analog signal corresponds to 1 / P of one cycle of the mechanical angle. The number of pole pairs of the "P" rotor 110. In the present embodiment, since the pole logarithm P of the rotor 110 is "4", one cycle of the electric angle of each analog signal corresponds to 1/4 of one cycle of the mechanical angle, that is, 90 ° in the mechanical angle.
 本実施形態において、磁気センサ10u、10v、10wは、ロータ110の回転方向に沿って30°間隔で配置される。従って、磁気センサ10u、10v、10wから出力されるアナログ信号は、互いに電気角で120°の位相差を有する。以下では、磁気センサ10u、10v、10wから出力されるアナログ信号をホール信号と呼称する。磁気センサ10uは、ホール信号Huを信号処理部20に出力する。磁気センサ10vは、ホール信号Hvを信号処理部20に出力する。磁気センサ10wは、ホール信号Hwを信号処理部20に出力する。 In the present embodiment, the magnetic sensors 10u, 10v, and 10w are arranged at intervals of 30 ° along the rotation direction of the rotor 110. Therefore, the analog signals output from the magnetic sensors 10u, 10v, and 10w have a phase difference of 120 ° in electrical angle from each other. Hereinafter, the analog signal output from the magnetic sensors 10u, 10v, and 10w is referred to as a hall signal. The magnetic sensor 10u outputs the Hall signal Hu to the signal processing unit 20. The magnetic sensor 10v outputs the Hall signal Hv to the signal processing unit 20. The magnetic sensor 10w outputs the Hall signal Hw to the signal processing unit 20.
 信号処理部20は、ホール信号Hu、Hv及びHwに基づいて、モータ100の回転位置、すなわちロータ110の回転位置を推定し、回転位置の推定結果を制御装置2に出力する。上記のように、信号処理部20は、処理部21と、記憶部22と、を有する。処理部21は、例えばMCU(Microcontroller Unit)などのマイクロプロセッサである。磁気センサ10u、10v、10wから出力されるホール信号Hu、Hv及びHwは、処理部21に入力される。処理部21は、データバスを介して記憶部22とデータ通信可能に接続される。 The signal processing unit 20 estimates the rotation position of the motor 100, that is, the rotation position of the rotor 110 based on the Hall signals Hu, Hv, and Hw, and outputs the estimation result of the rotation position to the control device 2. As described above, the signal processing unit 20 includes a processing unit 21 and a storage unit 22. The processing unit 21 is a microprocessor such as an MCU (Microcontroller Unit), for example. The Hall signals Hu, Hv and Hw output from the magnetic sensors 10u, 10v and 10w are input to the processing unit 21. The processing unit 21 is connected to the storage unit 22 via a data bus so as to be capable of data communication.
 なお、ホール信号Hu、Hv及びHwは、処理部21の内部でA/D変換器を介してデジタル信号に変換されるが、説明の便宜上、A/D変換器から出力されるデジタル信号もホール信号Hu、Hv及びHwと呼称する。 The Hall signals Hu, Hv, and Hw are converted into digital signals inside the processing unit 21 via the A / D converter, but for convenience of explanation, the digital signals output from the A / D converter are also Hall. The signals are referred to as Hu, Hv and Hw.
 処理部21は、記憶部22に記憶されたプログラムに従って、少なくとも以下の3つの処理を実行する。処理部21は、ホール信号Hu、Hv及びHwに基づいて、ロータ110の回転位置の推定に必要な学習値を取得する学習処理を実行する。処理部41は、ホール信号Hu、Hv及びHwに基づいて、ロータ110の回転位置を推定する位置推定処理を実行する。さらに、処理部21は、学習処理を実行する前に、ホール信号Hu、Hv及びHwが示す磁界強度と極対番号との対応関係を取得する先行学習処理を実行する。処理部21は、ロータ110の回転位置の推定結果を制御装置2に出力する。 The processing unit 21 executes at least the following three processes according to the program stored in the storage unit 22. The processing unit 21 executes a learning process of acquiring a learning value necessary for estimating the rotation position of the rotor 110 based on the Hall signals Hu, Hv, and Hw. The processing unit 41 executes a position estimation process for estimating the rotation position of the rotor 110 based on the Hall signals Hu, Hv, and Hw. Further, before executing the learning process, the processing unit 21 executes a pre-learning process for acquiring the correspondence between the magnetic field strengths indicated by the Hall signals Hu, Hv, and Hw and the pole pair number. The processing unit 21 outputs the estimation result of the rotation position of the rotor 110 to the control device 2.
 記憶部22は、処理部21に各種処理を実行させるのに必要なプログラム、各種設定値、及び学習データなどを記憶する不揮発性メモリと、処理部21が各種処理を実行する際にデータの一時保存先として使用される揮発性メモリとを含む。不揮発性メモリは、例えばEEPROM(Electrically Erasable Programmable Read-Only Memory)又はフラッシュメモリなどである。揮発性メモリは、例えばRAM(Random Access Memory)などである。 The storage unit 22 has a non-volatile memory for storing programs, various setting values, learning data, etc. required for the processing unit 21 to execute various processes, and temporary data when the processing unit 21 executes various processes. Includes volatile memory used as a storage destination. The non-volatile memory is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory) or flash memory. The volatile memory is, for example, RAM (RandomAccessMemory).
 駆動部3は、例えば、3つの上側アームスイッチと3つの下側アームスイッチとを有する三相フルブリッジ回路、或いは電流源である。駆動部3は、モータ100のU相端子120と、V相端子130と、W相端子140とのそれぞれに電気的に接続される。駆動部3が三相フルブリッジ回路である場合、三相フルブリッジ回路には不図示のバッテリからモータ駆動用の直流電圧が入力される。三相フルブリッジ回路に含まれる各アームスイッチの開閉状態が制御装置2によって制御されることにより、三相フルブリッジ回路は、入力直流電圧を三相交流電圧に変換してモータ100に出力する。駆動部3が電流源である場合、電流源は、制御装置2によって制御されるか、或いは手動操作に応じて所定の駆動電流をモータ100に出力する。 The drive unit 3 is, for example, a three-phase full bridge circuit having three upper arm switches and three lower arm switches, or a current source. The drive unit 3 is electrically connected to each of the U-phase terminal 120, the V-phase terminal 130, and the W-phase terminal 140 of the motor 100. When the drive unit 3 is a three-phase full bridge circuit, a DC voltage for driving a motor is input to the three-phase full bridge circuit from a battery (not shown). By controlling the open / closed state of each arm switch included in the three-phase full bridge circuit by the control device 2, the three-phase full bridge circuit converts the input DC voltage into a three-phase AC voltage and outputs it to the motor 100. When the drive unit 3 is a current source, the current source is controlled by the control device 2 or outputs a predetermined drive current to the motor 100 in response to a manual operation.
 制御装置2は、位置推定装置1の処理部21から得られる回転位置の推定結果に基づいて、駆動部3を制御することにより、モータ100の通電制御を行う。 The control device 2 controls the energization of the motor 100 by controlling the drive unit 3 based on the estimation result of the rotation position obtained from the processing unit 21 of the position estimation device 1.
 次に、処理部21が実行する先行学習処理及び学習処理について説明する。 図2は、本実施形態において処理部21が実行する先行学習処理及び学習処理を示すフローチャートである。処理部21は、少なくとも位置推定装置1の電源が初めて投入されるときに図2に示す処理を実行する。 Next, the advance learning process and the learning process executed by the processing unit 21 will be described. FIG. 2 is a flowchart showing the advance learning process and the learning process executed by the processing unit 21 in the present embodiment. The processing unit 21 executes the processing shown in FIG. 2 at least when the power of the position estimation device 1 is turned on for the first time.
 図2に示すように、位置推定装置1の電源が初めて投入されると、処理部21は、まず、ホール信号Hu、Hv及びHwが示す磁界強度と極対番号との対応関係を取得する先行学習処理を実行する(ステップS0)。この先行学習処理は、請求項4の位置推定方法における先行学習ステップに対応する。 As shown in FIG. 2, when the power of the position estimation device 1 is turned on for the first time, the processing unit 21 first acquires the correspondence between the magnetic field strength and the pole pair number indicated by the Hall signals Hu, Hv and Hw. The learning process is executed (step S0). This prior learning process corresponds to the prior learning step in the position estimation method of claim 4.
 具体的には、ステップS0において、処理部21は、制御装置2を介してモータ100を通電制御することにより、ロータ110を回転させる。ロータ110の回転位置が不明な状態でモータ100を起動させる起動シーケンスの一例として、直流励磁を所定時間行うことによりロータ110の回転位置を特定の位置に固定した後、通電相に一定の駆動電圧を印加しながら一定の転流周波数で強制的に通電相を切り替える強制転流制御を行う起動シーケンスが知られている。本実施形態において、処理部21は、上記の起動シーケンスに従ってモータ100を通電制御することにより、ロータ110を回転させる。 なお、ロータ110の回転軸を外部の回転機に接続し、回転機によってロータ110を回転させてもよい。 Specifically, in step S0, the processing unit 21 rotates the rotor 110 by controlling the energization of the motor 100 via the control device 2. As an example of a start sequence in which the motor 100 is started in a state where the rotation position of the rotor 110 is unknown, the rotation position of the rotor 110 is fixed to a specific position by performing DC excitation for a predetermined time, and then a constant drive voltage is applied to the energized phase. There is known an activation sequence that performs forced commutation control to forcibly switch the energized phase at a constant commutation frequency while applying. In the present embodiment, the processing unit 21 rotates the rotor 110 by controlling the energization of the motor 100 according to the above start sequence. The rotating shaft of the rotor 110 may be connected to an external rotating machine, and the rotor 110 may be rotated by the rotating machine.
 そして、処理部21は、ロータ110の回転に伴って3個の磁気センサ10u、10v及び10wから出力される3つのホール信号Hu、Hv及びHwを取得する。図3に示すように、ホール信号Hu、Hv及びHwのそれぞれの電気角1周期は、機械角1周期の1/4、すなわち機械角で90°に相当する。図3において、時刻t1から時刻t5までの期間が、機械角1周期に相当する。図3において、時刻t1から時刻t2までの期間と、時刻t2から時刻t3までの期間と、時刻t3から時刻t4までの期間と、時刻t4から時刻t5までの期間とが、それぞれ機械角で90°に相当する。また、ホール信号Hu、Hv及びHwは、互いに電気角で120°の位相差を有する。 Then, the processing unit 21 acquires three Hall signals Hu, Hv, and Hw output from the three magnetic sensors 10u, 10v, and 10w as the rotor 110 rotates. As shown in FIG. 3, each electric angle 1 cycle of the Hall signals Hu, Hv, and Hw corresponds to 1/4 of the mechanical angle 1 cycle, that is, 90 ° in the mechanical angle. In FIG. 3, the period from time t1 to time t5 corresponds to one machine angle cycle. In FIG. 3, the period from time t1 to time t2, the period from time t2 to time t3, the period from time t3 to time t4, and the period from time t4 to time t5 are 90 in machine angle, respectively. Corresponds to °. Further, the Hall signals Hu, Hv and Hw have a phase difference of 120 ° in electrical angle from each other.
 そして、処理部21は、機械角1周期に相当する学習期間に得られたホール信号Hu、Hv及びHwに基づいて、学習期間を、4つの磁極対のそれぞれの極対位置を表す極対番号に紐付けられた4つの極対領域に分割し、4つの極対領域のそれぞれをさらに複数のセクションに分割し、複数のセクションのそれぞれに、ロータ110の回転位置を表すセグメント番号を紐づける。 Then, the processing unit 21 sets the learning period as a pole pair number representing the pole pair position of each of the four magnetic pole pairs based on the Hall signals Hu, Hv, and Hw obtained in the learning period corresponding to one cycle of the machine angle. It is divided into four pole pair regions associated with, each of the four pole pair regions is further divided into a plurality of sections, and each of the plurality of sections is associated with a segment number indicating the rotation position of the rotor 110.
 本実施形態では、ロータ110の回転位置を推定するために、ロータ110の4つの磁極対に対して、極対位置を表す極対番号が割り当てられる。例えば、図1に示すように、ロータ110の4つの磁極対には、時計回りに、「0」、「1」、「2」、「3」の順で極対番号が割り当てられる。 In the present embodiment, in order to estimate the rotation position of the rotor 110, pole pair numbers representing the pole pair positions are assigned to the four magnetic pole pairs of the rotor 110. For example, as shown in FIG. 1, the four magnetic pole pairs of the rotor 110 are assigned pole pair numbers in the order of "0", "1", "2", and "3" in the clockwise direction.
 図3に示すように、処理部21は、学習期間に得られたホール信号Hu、Hv及びHwに基づいて、学習期間を4つの極対領域に分割する。図3において、「No.C」は極対番号を示す。 処理部21は、学習期間のうち時刻t1から時刻t2までの期間を、極対番号「0」に紐づけられた極対領域として分割する。 処理部21は、学習期間のうち時刻t2から時刻t3までの期間を、極対番号「1」に紐づけられた極対領域として分割する。 処理部21は、学習期間のうち時刻t3から時刻t4までの期間を、極対番号「2」に紐づけられた極対領域として分割する。 処理部21は、学習期間のうち時刻t4から時刻t5までの期間を、極対番号「3」に紐づけられた極対領域として分割する。 As shown in FIG. 3, the processing unit 21 divides the learning period into four pole pair regions based on the Hall signals Hu, Hv, and Hw obtained during the learning period. In FIG. 3, "No. C" indicates a pole pair number. The processing unit 21 divides the period from time t1 to time t2 in the learning period as a pole pair region associated with the pole pair number "0". The processing unit 21 divides the period from time t2 to time t3 in the learning period as a pole pair region associated with the pole pair number "1". The processing unit 21 divides the period from time t3 to time t4 in the learning period as a pole pair region associated with the pole pair number "2". The processing unit 21 divides the period from time t4 to time t5 in the learning period as a pole pair region associated with the pole pair number "3".
 図3に示すように、処理部21は、学習期間に得られた3つのホール信号Hu、Hv及びHwに基づいて、4つの極対領域のそれぞれをさらに12個のセクションに分割し、12個のセクションのそれぞれに、ロータ110の回転位置を表すセグメント番号を紐づける。図3において、「No.A」はセクションに割り当てられたセクション番号を示し、「No.B」はセグメント番号を示す。 As shown in FIG. 3, the processing unit 21 further divides each of the four pole pair regions into 12 sections based on the three Hall signals Hu, Hv, and Hw obtained during the learning period, and twelve pieces. A segment number indicating the rotation position of the rotor 110 is associated with each of the sections. In FIG. 3, "No. A" indicates a section number assigned to a section, and "No. B" indicates a segment number.
 図3に示すように、4つの極対領域のそれぞれに含まれる12個のセクションには、「0」から「11」までのセクション番号が割り当てられる。一方、学習期間の全期間にわたって連続する番号がセグメント番号として各セクションに紐づけられる。具体的には、図3に示すように、極対番号「0」に紐づけられた極対領域では、セクション番号「0」から「11」までに対して、セグメント番号「0」から「11」までが紐づけられる。極対番号「1」に紐づけられた極対領域では、セクション番号「0」から「11」までに対して、セグメント番号「12」から「23」までが紐づけられる。極対番号「2」に紐づけられた極対領域では、セクション番号「0」から「11」までに対して、セグメント番号「24」から「35」までが紐づけられる。極対番号「3」に紐づけられた極対領域では、セクション番号「0」から「11」までに対して、セグメント番号「36」から「47」までが紐づけられる。 As shown in FIG. 3, section numbers from "0" to "11" are assigned to the 12 sections included in each of the four pole pair regions. On the other hand, consecutive numbers over the entire learning period are associated with each section as segment numbers. Specifically, as shown in FIG. 3, in the pole pair region associated with the pole pair number "0", the segment numbers "0" to "11" are obtained for the section numbers "0" to "11". Is linked up to. In the pole pair area associated with the pole pair number "1", the segment numbers "12" to "23" are associated with the section numbers "0" to "11". In the pole pair area associated with the pole pair number "2", the segment numbers "24" to "35" are associated with the section numbers "0" to "11". In the pole pair area associated with the pole pair number "3", the segment numbers "36" to "47" are associated with the section numbers "0" to "11".
 図4は、1つの極対領域に含まれるホール信号Hu、Hv及びHwの拡大図である。以下、図4を参照しながら、極対領域を12個のセクションに分割する方法について説明する。図4において、正値である振幅のデジタル値は、一例として、N極の磁界強度のデジタル値を表す。また、負値である振幅のデジタル値は、一例として、S極の磁界強度のデジタル値を表す。 FIG. 4 is an enlarged view of Hall signals Hu, Hv, and Hw contained in one pole pair region. Hereinafter, a method of dividing the pole pair region into 12 sections will be described with reference to FIG. 4. In FIG. 4, the digital value of the amplitude, which is a positive value, represents the digital value of the magnetic field strength of the N pole as an example. Further, the digital value of the amplitude, which is a negative value, represents the digital value of the magnetic field strength of the S pole as an example.
 処理部21は、4つの極対領域のそれぞれに含まれる3つのホール信号Hu、Hv及びHwが基準値「0」と交差する点であるゼロクロス点を抽出する。図4に示すように、処理部21は、ゼロクロス点として、点P1、点P3、点P5、点P7、点P9、点P11、及び点P13を抽出する。 The processing unit 21 extracts a zero cross point, which is a point where the three Hall signals Hu, Hv, and Hw included in each of the four pole pair regions intersect with the reference value “0”. As shown in FIG. 4, the processing unit 21 extracts points P1, point P3, point P5, point P7, point P9, point P11, and point P13 as zero cross points.
 そして、処理部21は、4つの極対領域のそれぞれに含まれる3つのホール信号Hu、Hv及びHwが互いに交差する点である交点を抽出する。図4に示すように、処理部21は、交点として、点P2、点P4、点P6、点P8、点P10、及び点P12を抽出する。そして、処理部21は、互いに隣り合うゼロクロス点と交点との間の区間をセクションとして決定する。 Then, the processing unit 21 extracts an intersection point at which the three Hall signals Hu, Hv, and Hw included in each of the four pole pair regions intersect with each other. As shown in FIG. 4, the processing unit 21 extracts points P2, P4, P6, P8, P10, and P12 as intersections. Then, the processing unit 21 determines the section between the zero crossing points and the intersections adjacent to each other as a section.
 図4に示すように、処理部21は、ゼロクロス点P1と交点P2との間の区間を、セクション番号「0」が割り当てられるセクションとして決定する。 処理部21は、交点P2とゼロクロス点P3との間の区間を、セクション番号「1」が割り当てられるセクションとして決定する。 処理部21は、ゼロクロス点P3と交点P4との間の区間を、セクション番号「2」が割り当てられるセクションとして決定する。 処理部21は、交点P4とゼロクロス点P5との間の区間を、セクション番号「3」が割り当てられるセクションとして決定する。 処理部21は、ゼロクロス点P5と交点P6との間の区間を、セクション番号「4」が割り当てられるセクションとして決定する。 処理部21は、交点P6とゼロクロス点P7との間の区間を、セクション番号「5」が割り当てられるセクションとして決定する。 As shown in FIG. 4, the processing unit 21 determines the section between the zero cross point P1 and the intersection P2 as a section to which the section number “0” is assigned. The processing unit 21 determines the section between the intersection P2 and the zero crossing point P3 as the section to which the section number "1" is assigned. The processing unit 21 determines the section between the zero cross point P3 and the intersection P4 as a section to which the section number "2" is assigned. The processing unit 21 determines the section between the intersection P4 and the zero crossing point P5 as the section to which the section number "3" is assigned. The processing unit 21 determines the section between the zero cross point P5 and the intersection P6 as a section to which the section number "4" is assigned. The processing unit 21 determines the section between the intersection P6 and the zero crossing point P7 as the section to which the section number "5" is assigned.
 処理部21は、ゼロクロス点P7と交点P8との間の区間を、セクション番号「6」が割り当てられるセクションとして決定する。 処理部21は、交点P8とゼロクロス点P9との間の区間を、セクション番号「7」が割り当てられるセクションとして決定する。 処理部21は、ゼロクロス点P9と交点P10との間の区間を、セクション番号「8」が割り当てられるセクションとして決定する。 処理部21は、交点P10とゼロクロス点P11との間の区間を、セクション番号「9」が割り当てられるセクションとして決定する。 処理部21は、ゼロクロス点P11と交点P12との間の区間を、セクション番号「10」が割り当てられるセクションとして決定する。 処理部21は、交点P12とゼロクロス点P13との間の区間を、セクション番号「11」が割り当てられるセクションとして決定する。 The processing unit 21 determines the section between the zero cross point P7 and the intersection P8 as a section to which the section number "6" is assigned. The processing unit 21 determines the section between the intersection P8 and the zero crossing point P9 as the section to which the section number "7" is assigned. The processing unit 21 determines the section between the zero cross point P9 and the intersection point P10 as a section to which the section number “8” is assigned. The processing unit 21 determines the section between the intersection P10 and the zero crossing point P11 as the section to which the section number "9" is assigned. The processing unit 21 determines the section between the zero cross point P11 and the intersection P12 as a section to which the section number "10" is assigned. The processing unit 21 determines the section between the intersection P12 and the zero crossing point P13 as the section to which the section number "11" is assigned.
 以上のような先行学習処理が学習処理の前に行われることにより、図3に示すように、学習期間が極対番号に紐付けられた4つの極対領域に分割され、4つの極対領域のそれぞれが12個のセクションに分割され、各セクションのそれぞれにセグメント番号が紐づけられる。なお、以下の説明において、例えば、セクション番号「0」が割り当てられたセクションを、「0番セクション」と呼称し、セクション番号「11」が割り当てられたセクションを、「11番セクション」と呼称する。 By performing the above-mentioned prior learning process before the learning process, as shown in FIG. 3, the learning period is divided into four pole pair regions associated with the pole pair numbers, and the four pole pair regions. Each of the sections is divided into 12 sections, and a segment number is associated with each section. In the following description, for example, the section to which the section number "0" is assigned is referred to as "0th section", and the section to which the section number "11" is assigned is referred to as "11th section". ..
 続いて、図2に示すように、処理部21は、学習処理の一つとして、モータ100の複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより、ロータ110を所定位置に固定する第1処理を実行する(ステップS1)。この第1処理は、請求項1の位置推定方法における学習ステップの第1ステップに対応する。 Subsequently, as shown in FIG. 2, as one of the learning processes, the processing unit 21 changes from the stator coil of one phase to the stator coil of the remaining phase among the stator coils of the plurality of phases of the motor 100. The first process of fixing the rotor 110 to a predetermined position is executed by passing a predetermined current to the rotor 110 (step S1). This first process corresponds to the first step of the learning step in the position estimation method of claim 1.
 具体的には、ステップS1において、処理部21は、モータ100の三相の固定子コイルのうち、U相の固定子コイルから残りのV相及びW相の固定子コイルに対して定格電流を流すことにより、ロータ110を所定位置に固定する。以下では、モータ100の複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことを「d軸電流通電」と呼称する。なお、処理部21は、制御装置2及び駆動部3を介して、上記のようなd軸電流通電を行う。 Specifically, in step S1, the processing unit 21 applies a rated current from the U-phase stator coil to the remaining V-phase and W-phase stator coils among the three-phase stator coils of the motor 100. By flowing, the rotor 110 is fixed in a predetermined position. Hereinafter, passing a predetermined current from the stator coil of one phase to the stator coil of the remaining phase among the stator coils of a plurality of phases of the motor 100 is referred to as "d-axis current energization". The processing unit 21 energizes the d-axis current as described above via the control device 2 and the drive unit 3.
 続いて、処理部21は、学習処理の一つとして、ロータ110が所定位置に固定された状態で3個の磁気センサ10u、10v及び10wから出力される3つのホール信号Hu、Hv及びHwをサンプリングし、サンプリングによって得られた各ホール信号Hu、Hv及びHwが示す磁界強度を学習値として取得する第2処理を実行する(ステップS2)。この第2処理は、請求項1の位置推定方法における学習ステップの第2ステップに対応する。 Subsequently, as one of the learning processes, the processing unit 21 outputs three Hall signals Hu, Hv, and Hw output from the three magnetic sensors 10u, 10v, and 10w with the rotor 110 fixed at a predetermined position. A second process is executed in which sampling is performed and the magnetic field strength indicated by each Hall signal Hu, Hv, and Hw obtained by sampling is acquired as a learning value (step S2). This second process corresponds to the second step of the learning step in the position estimation method of claim 1.
 続いて、処理部21は、学習処理の一つとして、ステップS2で取得した3つの学習値を極対番号と対応付ける第3処理を実行する(ステップS3)。この第3処理は、請求項1の位置推定方法における学習ステップの第3ステップに対応する。 Subsequently, the processing unit 21 executes a third process of associating the three learning values acquired in step S2 with the pole pair number as one of the learning processes (step S3). This third process corresponds to the third step of the learning step in the position estimation method of claim 1.
 例えば図4において、ホール信号Huの波形上に位置する点PHuと、ホール信号Hvの波形上に位置する点PHvと、ホール信号Hwの波形上に位置する点PHwとが、サンプリングによって得られた各ホール信号Hu、Hv及びHwであると仮定する。この場合、処理部21は、点PHuの値(磁界強度)をホール信号Huの学習値として取得する。また、処理部21は、点PHvの値をホール信号Hvの学習値として取得する。さらに、処理部21は、点PHwの値をホール信号Hwの学習値として取得する。処理部21は、先行学習処理によって予め学習された各ホール信号Hu、Hv及びHwの磁界強度と極対番号との対応関係に基づいて、上記のように取得した3つの学習値を極対番号の一つと対応付ける。 For example, in FIG. 4, a point PHu located on the waveform of the Hall signal Hu, a point PHv located on the waveform of the Hall signal Hv, and a point PHw located on the waveform of the Hall signal Hw were obtained by sampling. It is assumed that each hall signal is Hu, Hv, and Hw. In this case, the processing unit 21 acquires the value of the point PHu (magnetic field strength) as the learning value of the Hall signal Hu. Further, the processing unit 21 acquires the value of the point PHv as the learning value of the Hall signal Hv. Further, the processing unit 21 acquires the value of the point PHw as the learning value of the hall signal Hw. The processing unit 21 obtains the three learning values acquired as described above based on the correspondence between the magnetic field strengths of the Hall signals Hu, Hv, and Hw learned in advance by the prior learning process and the pole pair numbers. Correspond to one of.
 続いて、処理部21は、第1処理(ステップS1)から第3処理(ステップS3)までの一連の処理を複数回行うことにより、全ての極対番号と学習値との対応関係を示す原点学習データを取得し、取得した原点学習データを記憶部22に格納する第4処理を実行する(ステップS4)。この第4処理は、請求項1の位置推定方法における学習ステップの第4ステップに対応する。なお、全ての極対番号と学習値との対応関係を得るために、必要に応じて、ロータ110の回転軸を外部の回転機に接続し、回転機によってロータ110を回転させながら、d軸電流通電を行ってもよい。 Subsequently, the processing unit 21 performs a series of processes from the first process (step S1) to the third process (step S3) a plurality of times to show the correspondence between all the pole pair numbers and the learning values. The fourth process of acquiring the learning data and storing the acquired origin learning data in the storage unit 22 is executed (step S4). This fourth process corresponds to the fourth step of the learning step in the position estimation method of claim 1. In order to obtain the correspondence between all the pole pair numbers and the learned values, the rotating shaft of the rotor 110 is connected to an external rotating machine as necessary, and the d-axis is rotated by the rotating machine. Current may be applied.
 図5は、上記のステップS1からステップS4までの学習処理によって得られた原点学習データの一例を示す図である。図5に示すように、例えば、極対番号「0」には、ホール信号Huから取得した学習値「-800」と、ホール信号Hvから取得した学習値「400」と、ホール信号Hwから取得した学習値「450」とが対応付けられる。 例えば、極対番号「1」には、ホール信号Huから取得した学習値「-700」と、ホール信号Hvから取得した学習値「370」と、ホール信号Hwから取得した学習値「350」とが対応付けられる。 例えば、極対番号「2」には、ホール信号Huから取得した学習値「-1000」と、ホール信号Hvから取得した学習値「500」と、ホール信号Hwから取得した学習値「550」とが対応付けられる。 例えば、極対番号「3」には、ホール信号Huから取得した学習値「-1200」と、ホール信号Hvから取得した学習値「600」と、ホール信号Hwから取得した学習値「650」とが対応付けられる。 FIG. 5 is a diagram showing an example of origin learning data obtained by the learning process from step S1 to step S4. As shown in FIG. 5, for example, for the pole pair number "0", the learning value "-800" acquired from the Hall signal Hu, the learning value "400" acquired from the Hall signal Hv, and the Hall signal Hw are acquired. It is associated with the learned value "450". For example, the pole pair number "1" includes a learning value "-700" acquired from the hall signal Hu, a learning value "370" acquired from the hall signal Hv, and a learning value "350" acquired from the hall signal Hw. Is associated with. For example, the pole pair number "2" includes a learning value "-1000" acquired from the hall signal Hu, a learning value "500" acquired from the hall signal Hv, and a learning value "550" acquired from the hall signal Hw. Is associated with. For example, the pole pair number "3" includes a learning value "-1200" acquired from the hall signal Hu, a learning value "600" acquired from the hall signal Hv, and a learning value "650" acquired from the hall signal Hw. Is associated with.
 次に、処理部21が実行する位置推定処理について説明する。位置推定処理は、請求項1の位置推定方法における位置推定ステップに対応する。図6は、処理部21が実行する位置推定処理を示すフローチャートである。処理部21は、図2に示す先行学習処理及び学習処理を実行した後に、位置推定装置1の電源が再投入されたときに図6に示す位置推定処理を実行する。 Next, the position estimation process executed by the processing unit 21 will be described. The position estimation process corresponds to the position estimation step in the position estimation method of claim 1. FIG. 6 is a flowchart showing a position estimation process executed by the processing unit 21. After executing the advance learning process and the learning process shown in FIG. 2, the processing unit 21 executes the position estimation process shown in FIG. 6 when the power of the position estimation device 1 is turned on again.
 図6に示すように、処理部21は、位置推定処理を開始すると、まず、d軸電流通電を行うことにより、ロータ110を所定位置に固定する第5処理を実行する(ステップS5)。この第5処理は、請求項1の位置推定方法における位置推定ステップの第5ステップに対応する。 As shown in FIG. 6, when the position estimation process is started, the processing unit 21 first executes a fifth process of fixing the rotor 110 to a predetermined position by energizing the d-axis current (step S5). This fifth process corresponds to the fifth step of the position estimation step in the position estimation method of claim 1.
 続いて、処理部21は、ロータ110が所定位置に固定された状態で3個の磁気センサ10u、10v及び10wから出力される3つのホール信号Hu、Hv及びHwをサンプリングし、サンプリングによって得られた各ホール信号Hu、Hv及びHwが示す磁界強度を検出値として取得する第6処理を実行する(ステップS6)。この第6処理は、請求項1の位置推定方法における位置推定ステップの第6ステップに対応する。 Subsequently, the processing unit 21 samples the three Hall signals Hu, Hv, and Hw output from the three magnetic sensors 10u, 10v, and 10w with the rotor 110 fixed at a predetermined position, and obtains the sampling. The sixth process of acquiring the magnetic field strength indicated by each Hall signal Hu, Hv, and Hw as a detection value is executed (step S6). This sixth process corresponds to the sixth step of the position estimation step in the position estimation method of claim 1.
 図7は、処理部21が第6処理(ステップS6)を実行することによって得られた3つのホール信号Hu、Hv及びHwの検出値の一例を示す図である。図7に示すうように、例えば、処理部21は、ホール信号Huから検出値「-1050」を取得し、ホール信号Hvから検出値「-520」を取得し、ホール信号Hwから検出値「600」を取得する。 FIG. 7 is a diagram showing an example of the detected values of the three Hall signals Hu, Hv, and Hw obtained by the processing unit 21 executing the sixth process (step S6). As shown in FIG. 7, for example, the processing unit 21 acquires the detected value “-1050” from the Hall signal Hu, acquires the detected value “-520” from the Hall signal Hv, and acquires the detected value “-520” from the Hall signal Hw. Get 600 ".
 続いて、処理部21は、ステップS6で取得した3つの検出値と、記憶部22に記憶された図5に示す原点学習データとに基づいて、原点学習データに含まれる極対番号の一つをロータ110の初期位置として決定する第7処理を実行する(ステップS7)。この第7処理は、請求項1の位置推定方法における位置推定ステップの第7ステップに対応する。 Subsequently, the processing unit 21 is one of the pole pair numbers included in the origin learning data based on the three detected values acquired in step S6 and the origin learning data shown in FIG. 5 stored in the storage unit 22. Is executed as the seventh process for determining the initial position of the rotor 110 (step S7). This seventh process corresponds to the seventh step of the position estimation step in the position estimation method of claim 1.
 具体的には、処理部21は、位置推定処理の第7処理として、ステップS6で取得した3つの検出値と、図5に示す原点学習データに含まれる全ての学習値とを比較し、3つの検出値に最も近い3つの学習値に対応付けられた極対番号をロータ110の初期位置として決定する。例えば、図7に示すような3つの検出値が得られた場合、これらの3つの検出値に最も近い3つの学習値に対応付けられた極対番号は、図5に示す原点学習データから極対番号「3」であることがわかる。従って、この場合、処理部21は、極対番号「3」をロータ110の初期位置として決定する。 Specifically, as the seventh process of the position estimation process, the processing unit 21 compares the three detected values acquired in step S6 with all the learned values included in the origin learning data shown in FIG. 5, and 3 The pole pair number associated with the three learning values closest to the one detected value is determined as the initial position of the rotor 110. For example, when three detected values as shown in FIG. 7 are obtained, the pole pair number associated with the three learning values closest to these three detected values is the pole from the origin learning data shown in FIG. It can be seen that the pair number is "3". Therefore, in this case, the processing unit 21 determines the pole pair number "3" as the initial position of the rotor 110.
 処理部21は、上記のような位置推定処理によって電源再投入直後におけるロータ110の初期位置を決定した後、ロータ110の初期位置として決定された極対番号を制御装置2に出力する。制御装置2は、ロータ110の初期位置として決定された極対番号に基づいて、駆動部3を介してモータ100の通電制御を開始することにより、ロータ110を回転させる。 The processing unit 21 determines the initial position of the rotor 110 immediately after the power is turned on again by the position estimation process as described above, and then outputs the pole pair number determined as the initial position of the rotor 110 to the control device 2. The control device 2 rotates the rotor 110 by starting the energization control of the motor 100 via the drive unit 3 based on the pole pair number determined as the initial position of the rotor 110.
 処理部21は、ロータ110の回転に伴って3個の磁気センサ31、32及び33から出力されるホール信号Hu、Hv及びHwに基づいて、ロータ110の回転位置を推定し、その推定結果を制御装置2に出力する。回転位置の推定アルゴリズムとして、例えば特許第6233532号公報に記載の位置推定アルゴリズムを用いることができる。そのため、本明細書では回転位置の推定アルゴリズムについての説明を省略する。制御装置2は、ロータ110の回転位置の推定結果に基づいて、駆動部3を介してモータ100の通電制御を継続して行う。 The processing unit 21 estimates the rotation position of the rotor 110 based on the Hall signals Hu, Hv, and Hw output from the three magnetic sensors 31, 32, and 33 as the rotor 110 rotates, and estimates the estimation result. Output to the control device 2. As the rotation position estimation algorithm, for example, the position estimation algorithm described in Japanese Patent No. 6233532 can be used. Therefore, the description of the rotation position estimation algorithm is omitted in the present specification. The control device 2 continuously controls the energization of the motor 100 via the drive unit 3 based on the estimation result of the rotation position of the rotor 110.
 以上説明したように、本実施形態の位置推定装置1は、ホール信号Hu、Hv及びHwに基づいて、ロータ110の回転位置の推定に必要な学習値を取得する学習処理と、ホール信号Hu、Hv及びHw及び原点学習データに基づいて、ロータ110の回転位置を推定する位置推定処理とを実行する処理部21を備える。処理部21は、少なくとも位置推定装置1の電源が初めて投入されたときに学習処理を実行することにより、全ての極対番号と学習値との対応関係を示す原点学習データを取得する。処理部21は、位置推定装置1の電源が再投入されたときに位置推定処理を実行することにより、極対番号のいずれか一つをロータ110の初期位置として決定する。 As described above, the position estimation device 1 of the present embodiment has a learning process of acquiring a learning value necessary for estimating the rotational position of the rotor 110 based on the Hall signals Hu, Hv and Hw, and a Hall signal Hu. A processing unit 21 that executes a position estimation process for estimating the rotation position of the rotor 110 based on Hv and Hw and the origin learning data is provided. The processing unit 21 executes the learning process at least when the power of the position estimation device 1 is turned on for the first time, and acquires the origin learning data showing the correspondence between all the pole pair numbers and the learning values. The processing unit 21 executes the position estimation process when the power of the position estimation device 1 is turned on again, so that any one of the pole pair numbers is determined as the initial position of the rotor 110.
 これにより、本実施形態の位置推定装置1は、ロータ110を回転させることなくロータ110の初期位置を推定することが可能である。従って、位置推定装置1を備えるモータ100は、電源投入時にロータ110の回転位置の原点調整をしなくてもよい。モータ100は、原点調整のための予備回転動作が不要であるため、予備回転動作が許容されないロボット、無人搬送車などの駆動用モータ用途にも好適に用いることができる。モータ100は原点調整のための予備回転動作が不要であるため、予備回転動作に要する駆動時間、消費電力を削減できる。 Thereby, the position estimation device 1 of the present embodiment can estimate the initial position of the rotor 110 without rotating the rotor 110. Therefore, the motor 100 provided with the position estimation device 1 does not have to adjust the origin of the rotation position of the rotor 110 when the power is turned on. Since the motor 100 does not require a preliminary rotation operation for adjusting the origin, it can be suitably used for a drive motor application such as a robot or an automatic guided vehicle in which the preliminary rotation operation is not allowed. Since the motor 100 does not require a preliminary rotation operation for adjusting the origin, the drive time and power consumption required for the preliminary rotation operation can be reduced.
(変形例)
 本発明は上記実施形態に限定されず、本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 上記実施形態では、ホール信号を出力する磁気センサが3つ設けられる場合を例示したが、磁気センサの個数は3つに限定されず、磁気センサの個数はN個(N1は3以上の整数)であればよい。すなわち、磁気センサの個数は4つ以上でもよい。 また、上記実施形態では、4つの磁極対を有するロータを備えるモータを例示したが、ロータの極対数は4つに限定されず、ロータの極対数はP個(Pは2以上の整数)であればよい。
(Modification example)
The present invention is not limited to the above-described embodiment, and the configurations described in the present specification can be appropriately combined within a range that does not contradict each other. In the above embodiment, the case where three magnetic sensors that output Hall signals are provided is illustrated, but the number of magnetic sensors is not limited to three, and the number of magnetic sensors is N (N1 is an integer of 3 or more). It should be. That is, the number of magnetic sensors may be four or more. Further, in the above embodiment, a motor including a rotor having four pole pairs is exemplified, but the number of pole pairs of the rotor is not limited to four, and the number of pole pairs of the rotor is P (P is an integer of 2 or more). All you need is.
〔適用例〕
 図8は、本発明の適用例である無人搬送車200の外観を示す図である。 無人搬送車200は、複数の磁極対を有するロータを備えるモータと、モータの回転位置を推定する位置推定装置と、を備える。モータとして、上記実施形態で説明したモータ100を用いることができる。また、位置推定装置として、上記実施形態の位置推定装置1を用いることができる。 このような無人搬送車200に設けられたモータは、原点調整のための予備回転動作が不要であるため、無人搬送車200が意図しないタイミングで動くことを防止できる。 なお、本発明の適用例は、無人搬送車200に限定されず、本発明は例えばロボットなどのモータの予備回転動作を許容できない装置に広く適用することができる。
[Application example]
FIG. 8 is a diagram showing the appearance of the automatic guided vehicle 200, which is an application example of the present invention. The automatic guided vehicle 200 includes a motor including a rotor having a plurality of magnetic pole pairs, and a position estimation device for estimating the rotation position of the motor. As the motor, the motor 100 described in the above embodiment can be used. Further, as the position estimation device, the position estimation device 1 of the above embodiment can be used. Since the motor provided on the automatic guided vehicle 200 does not require a preliminary rotation operation for adjusting the origin, it is possible to prevent the automatic guided vehicle 200 from moving at an unintended timing. The application example of the present invention is not limited to the automatic guided vehicle 200, and the present invention can be widely applied to a device such as a robot which cannot tolerate the preliminary rotation operation of the motor.
 1…位置推定装置、2…制御装置、3…駆動部、10…センサ部、10u、10v、10w…磁気センサ、20…信号処理部、21…処理部、22…記憶部、100…モータ、110…ロータ、200…無人搬送車 1 ... position estimation device, 2 ... control device, 3 ... drive unit, 10 ... sensor unit, 10u, 10v, 10w ... magnetic sensor, 20 ... signal processing unit, 21 ... processing unit, 22 ... storage unit, 100 ... motor, 110 ... rotor, 200 ... automatic guided vehicle

Claims (9)

  1.  複数の磁極対を有するロータを備えるモータの回転位置を推定する方法であって、
     前記回転位置の推定に必要な学習値を取得する学習ステップと、
     前記学習値に基づいて前記ロータの回転位置を推定する位置推定ステップと、
     を有し、
     前記学習ステップは、
      前記モータの複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより、前記ロータを所定位置に固定する第1ステップと、
      前記ロータの軸方向において前記ロータと対向し且つ前記ロータの回転方向に沿って配置されるN個(Nは3以上の整数)の磁気センサから出力される信号が示す磁界強度を前記学習値として取得する第2ステップと、  前記学習値を前記磁極対の位置である極対位置を表す極対番号と対応付ける第3ステップと、
      前記第1ステップから前記第3ステップまでの一連のステップを複数回行うことにより、全ての前記極対番号と前記学習値との対応関係を示す原点学習データを取得する第4ステップと、
     を有し、
     前記位置推定ステップは、
      前記モータの複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより前記ロータを所定位置に固定する第5ステップと、
      前記N個の磁気センサの出力信号が示す磁界強度を検出値として取得する第6ステップと、
      前記検出値と、前記学習ステップで取得した前記原点学習データとに基づいて、前記原点学習データに含まれる前記極対番号の一つを前記ロータの初期位置として決定する第7ステップと、
     を有する、
     位置推定方法。
    A method of estimating the rotational position of a motor with a rotor with multiple pole pairs.
    A learning step for acquiring the learning value required for estimating the rotation position, and
    A position estimation step for estimating the rotation position of the rotor based on the learning value, and
    Have,
    The learning step is
    With the first step of fixing the rotor in a predetermined position by passing a predetermined current from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of the plurality of phases of the motor. ,
    The magnetic field strength indicated by the signals output from N magnetic sensors (N is an integer of 3 or more) arranged in the axial direction of the rotor facing the rotor and along the rotation direction of the rotor is used as the learning value. The second step to be acquired, the third step of associating the learned value with the pole pair number representing the pole pair position which is the position of the magnetic pole pair, and the third step.
    By performing the series of steps from the first step to the third step a plurality of times, the fourth step of acquiring the origin learning data showing the correspondence between all the pole pair numbers and the learning values, and
    Have,
    The position estimation step is
    A fifth step of fixing the rotor in a predetermined position by passing a predetermined current from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of a plurality of phases of the motor.
    The sixth step of acquiring the magnetic field strength indicated by the output signals of the N magnetic sensors as a detection value, and
    A seventh step of determining one of the pole pair numbers included in the origin learning data as the initial position of the rotor based on the detected value and the origin learning data acquired in the learning step.
    Have,
    Position estimation method.
  2.  前記位置推定ステップの前記第7ステップは、前記検出値と、前記原点学習データに含まれる全ての前記学習値とを比較し、前記検出値に最も近い前記学習値に対応付けられた前記極対番号を前記ロータの初期位置として決定する、
     請求項1に記載の位置推定方法。
    In the seventh step of the position estimation step, the detected value is compared with all the learned values included in the origin learning data, and the pole pair associated with the learned value closest to the detected value. The number is determined as the initial position of the rotor,
    The position estimation method according to claim 1.
  3.  前記学習ステップは、少なくとも前記学習ステップ及び前記位置推定ステップを行う位置推定装置の電源が初めて投入されるときに行われ、 前記位置推定ステップは、前記学習ステップが実行された後に、前記位置推定装置の電源が再投入されたときに行われる、
     請求項1または請求項2に記載の位置推定方法。
    The learning step is performed at least when the power of the learning step and the position estimation device performing the position estimation step is turned on for the first time, and the position estimation step is performed after the learning step is executed. This happens when the power is turned on again.
    The position estimation method according to claim 1 or 2.
  4.  前記学習ステップの前に、前記N個の磁気センサの出力信号が示す磁界強度と前記極対番号との対応関係を取得する先行学習ステップをさらに有する、
     請求項1から請求項3のいずれか一項に記載の位置推定方法。
    Prior to the learning step, there is further a prior learning step of acquiring the correspondence between the magnetic field strength indicated by the output signals of the N magnetic sensors and the pole pair number.
    The position estimation method according to any one of claims 1 to 3.
  5.  複数の磁極対を有するロータを備えるモータの回転位置を推定する装置であって、
     前記ロータの軸方向において前記ロータと対向し且つ前記ロータの回転方向に沿って配置されるN個(Nは3以上の整数)の磁気センサと、
     前記N個の磁気センサの出力信号に基づいて前記モータの回転位置を演算する処理部と、所定のデータを記憶する記憶部と、
     を備え、
     前記処理部は、前記モータの回転位置の推定に必要な学習値を取得する学習処理として、
      前記モータの複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより、前記ロータを所定位置に固定する第1処理と、
      前記N個の磁気センサの出力信号が示す磁界強度を前記学習値として取得する第2処理と、
      前記学習値を前記磁極対の位置である極対位置を表す極対番号と対応付ける第3処理と、
      前記第1処理から前記第3処理までの一連の処理を複数回行うことにより、全ての前記極対番号と前記学習値との対応関係を示す原点学習データを取得し、前記原点学習データを前記記憶部に格納する第4処理と、
     を実行し、
     前記処理部は、前記回転位置の推定処理として、
      前記モータの複数の相の固定子コイルのうち、1相の固定子コイルから残りの相の固定子コイルに対して所定の電流を流すことにより前記ロータを所定位置に固定する第5処理と、
      前記N個の磁気センサの出力信号が示す磁界強度を検出値として取得する第6処理と、
      前記検出値と、前記記憶部に記憶された前記原点学習データとに基づいて、前記原点学習データに含まれる前記極対番号の一つを前記ロータの初期位置として決定する第7処理と、
     を実行する、
     位置推定装置。
    A device that estimates the rotational position of a motor with a rotor with multiple magnetic pole pairs.
    N magnetic sensors (N is an integer of 3 or more) arranged so as to face the rotor in the axial direction of the rotor and along the rotation direction of the rotor.
    A processing unit that calculates the rotation position of the motor based on the output signals of the N magnetic sensors, a storage unit that stores predetermined data, and a storage unit.
    Equipped with
    As a learning process, the processing unit acquires a learning value necessary for estimating the rotation position of the motor.
    The first process of fixing the rotor in a predetermined position by passing a predetermined current from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of the plurality of phases of the motor. ,
    The second process of acquiring the magnetic field strength indicated by the output signals of the N magnetic sensors as the learning value, and
    The third process of associating the learned value with the pole pair number representing the pole pair position which is the position of the pole pair,
    By performing a series of processes from the first process to the third process a plurality of times, origin learning data showing the correspondence between all the pole pair numbers and the learning values is acquired, and the origin learning data is used as described above. The fourth process stored in the storage unit and
    And run
    The processing unit performs the estimation processing of the rotation position.
    A fifth process of fixing the rotor in a predetermined position by passing a predetermined current from the stator coil of one phase to the stator coils of the remaining phases among the stator coils of a plurality of phases of the motor.
    The sixth process of acquiring the magnetic field strength indicated by the output signals of the N magnetic sensors as a detection value, and
    A seventh process of determining one of the pole pair numbers included in the origin learning data as the initial position of the rotor based on the detected value and the origin learning data stored in the storage unit.
    To execute,
    Position estimation device.
  6.  前記処理部は、前記推定処理の前記第7処理として、前記検出値と、前記原点学習データに含まれる全ての前記学習値とを比較し、前記検出値に最も近い前記学習値に対応付けられた前記極対番号を前記ロータの初期位置として決定する、
     請求項5に記載の位置推定装置。
    As the seventh process of the estimation process, the processing unit compares the detected value with all the learned values included in the origin learning data, and associates the detected value with the learned value closest to the detected value. The pole pair number is determined as the initial position of the rotor.
    The position estimation device according to claim 5.
  7.  前記処理部は、少なくとも前記位置推定装置の電源が初めて投入されるときに前記学習処理を実行し、
     前記処理部は、前記学習処理を実行した後に、前記位置推定装置の電源が再投入されたときに前記推定処理を実行する、
     請求項5または請求項6に記載の位置推定装置。
    The processing unit executes the learning process at least when the power of the position estimation device is turned on for the first time.
    After executing the learning process, the processing unit executes the estimation process when the power of the position estimation device is turned on again.
    The position estimation device according to claim 5 or 6.
  8.  前記処理部は、前記学習処理を実行する前に、前記N個の磁気センサの出力信号が示す磁界強度と前記極対番号との対応関係を取得する先行学習処理を実行する、
     請求項5から請求項7のいずれか一項に記載の位置推定装置。
    Before executing the learning process, the processing unit executes a pre-learning process for acquiring the correspondence between the magnetic field strength indicated by the output signals of the N magnetic sensors and the pole pair number.
    The position estimation device according to any one of claims 5 to 7.
  9.  複数の磁極対を有するロータを備えるモータと、
     前記モータの回転位置を推定する請求項5から請求項8のいずれか一項に記載の位置推定装置と、
     を備える、無人搬送車。
    A motor with a rotor with multiple pole pairs and
    The position estimation device according to any one of claims 5 to 8, which estimates the rotational position of the motor, and the position estimation device.
    An automatic guided vehicle equipped with.
PCT/JP2021/022214 2020-12-28 2021-06-10 Position inference method, position inference device, and automatic guided vehicle WO2022145075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020218856 2020-12-28
JP2020-218856 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145075A1 true WO2022145075A1 (en) 2022-07-07

Family

ID=82259219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022214 WO2022145075A1 (en) 2020-12-28 2021-06-10 Position inference method, position inference device, and automatic guided vehicle

Country Status (1)

Country Link
WO (1) WO2022145075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116915118A (en) * 2023-07-14 2023-10-20 苏州利氪科技有限公司 Zero position learning method and device for motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11356088A (en) * 1998-06-08 1999-12-24 Matsushita Electric Ind Co Ltd Driver of brushless motor
WO2020090595A1 (en) * 2018-10-29 2020-05-07 日本電産株式会社 Position estimating device and position estimating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11356088A (en) * 1998-06-08 1999-12-24 Matsushita Electric Ind Co Ltd Driver of brushless motor
WO2020090595A1 (en) * 2018-10-29 2020-05-07 日本電産株式会社 Position estimating device and position estimating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116915118A (en) * 2023-07-14 2023-10-20 苏州利氪科技有限公司 Zero position learning method and device for motor

Similar Documents

Publication Publication Date Title
CN104221274B (en) Three-phase synchronous motor driving means
JP4716118B2 (en) Motor control device
JP6104012B2 (en) Method of operating sensorless commutation brushless electric motor and brushless electric motor
JP6438176B1 (en) DC motor control device
JP5273451B2 (en) Motor control device
US6774592B2 (en) Method and system for controlling a permanent magnet machine
US8754603B2 (en) Methods, systems and apparatus for reducing power loss in an electric motor drive system
JP3315847B2 (en) Magnetic pole position detecting device and brushless DC motor driving device using the same
WO2022145075A1 (en) Position inference method, position inference device, and automatic guided vehicle
WO2016163398A1 (en) Motor drive apparatus and method of controlling motor drive apparatus
JP5857825B2 (en) Motor control device
US11012017B2 (en) Method for operating a three-phase machine
JP5782769B2 (en) AC motor control method and control apparatus
US11031899B1 (en) Method for operating an electronically commutated synchronous machine, and actuation circuit
JP6719403B2 (en) Motor controller
JP2010226827A (en) Motor control drive device and motor start positioning method
JP6516537B2 (en) Motor drive device and control method of motor drive device
JP2007267547A (en) Motor controller
CN114389496A (en) Motor drive control device and motor drive control method
JP2009100544A (en) Motor controller
CN115176411A (en) Magnetic pole position detection device
JP3706556B2 (en) Control device for permanent magnet motor
JP6582212B2 (en) Driving method of sensorless / brushless motor and motor control apparatus using the driving method
JP4501365B2 (en) Winding field motor control device
WO2022145363A1 (en) Position estimation method, position estimation device, unmanned carrier, and sewing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP