WO2022144181A1 - Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible - Google Patents
Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible Download PDFInfo
- Publication number
- WO2022144181A1 WO2022144181A1 PCT/EP2021/086091 EP2021086091W WO2022144181A1 WO 2022144181 A1 WO2022144181 A1 WO 2022144181A1 EP 2021086091 W EP2021086091 W EP 2021086091W WO 2022144181 A1 WO2022144181 A1 WO 2022144181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- jet pump
- fuel cell
- cell system
- jet
- anode gas
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000003134 recirculating effect Effects 0.000 title claims abstract description 9
- 239000003380 propellant Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 36
- 238000005086 pumping Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/14—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
- F04F5/16—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
- F04F5/46—Arrangements of nozzles
- F04F5/467—Arrangements of nozzles with a plurality of nozzles arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
- F04F5/48—Control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/54—Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
Definitions
- the invention relates to a method for recirculating anode gas in an anode circuit of a fuel cell system.
- a device for recirculating anode gas in an anode circuit of a fuel cell system is also proposed.
- the device enables the method according to the invention to be carried out.
- the invention relates to a fuel cell system with a device according to the invention.
- a fuel cell system includes at least one fuel cell, which can be used to convert a fuel, for example hydrogen, and an oxidizing agent, for example oxygen, into electrical energy, heat and water.
- the fuel cell has an anode and a cathode.
- the anode is supplied with the fuel and the cathode with the oxidizing agent.
- the fuel is therefore the anode gas.
- both jet pumps can be activated depending on the load.
- both jet pumps can also be used for the recirculation of anode gas. In this way, a consistently high recirculation performance can be achieved, both at high and at low loads.
- a high-load jet pump can be provided for high loads, which is then operated instead of or together with the low-load jet pump.
- a valve is used to control at least one jet pump, via which fresh anode gas is supplied to the jet pump.
- the jet pump can thus be controlled separately from the at least one other jet pump; in particular, the jet pump can be switched on or off.
- the valve for controlling the jet pump or supplying fresh anode gas is preferably arranged upstream of a driving nozzle of the jet pump. With the help of the driving nozzle, a fluid jet of fresh anode gas is generated, which generates the pumping effect required for recirculation Accordingly, anode gas serves as the propellant medium. If the supply of fresh anode gas is prevented, the jet pump remains deactivated, which means that no depleted anode gas is drawn in from a recirculation line connected to the jet pump.
- a metering valve preferably a metering valve with an integrated propulsion nozzle
- a separate driving nozzle can thus be omitted.
- the dosing valve can then be integrated into the jet pump instead of the driving nozzle. In this way a compact arrangement is created.
- the pressure loss can also be reduced and the efficiency of the jet pump increased.
- two jet pumps are advantageously used for the recirculation of anode gas, namely a low-load jet pump and a high-load jet pump. These are preferably connected in series in such a way that the low-load jet pump is upstream of the high-load jet pump.
- the fresh fuel or anode gas quantity metered into the high-load jet pump therefore does not have to flow through the low-load jet pump, so that the pressure loss can be kept comparatively low.
- the arrangement of the two jet pumps in series has the advantage over a parallel arrangement or connection that there is no risk of anode gas flowing back through the respective inactive jet pump.
- at least one additional blocking element for example a non-return valve, is therefore always required. This can be omitted with jet pumps connected in series.
- the additionally proposed device for the recirculation of anode gas in an anode circuit of a fuel cell system comprises at least two jet pumps connected in series, which can be operated individually or together depending on the load.
- the proposed device is therefore particularly suitable for carrying out the method according to the invention described above.
- the same advantages can thus be achieved with the aid of the device as with the aid of the method according to the invention described above.
- a consistently high recirculation capacity can be provided because the jet pumps can be controlled separately from each other. There is no risk of anode gas flowing back through the respective inactive jet pump.
- the series-connected jet pumps include a first jet pump for low loads and a further jet pump for high loads.
- the low-load jet pump can then be operated at low load, and the high-load jet pump at high load.
- the high-load jet pump is preferably downstream of the low-load jet pump. In this way, the pressure loss occurring when the two jet pumps flow through can be reduced.
- At least one jet pump preferably has a valve in the area of an inlet for fresh anode gas.
- the valve can in particular be a metering valve that enables fresh anode gas to be metered in precisely.
- the valve is preferably arranged upstream of a propulsion nozzle integrated into the jet pump, with the aid of which the desired pumping effect can be achieved.
- a metering valve with an integrated motive nozzle can be used in the inlet area, so that a separate motive nozzle is not required.
- the device can be made more compact in this way.
- the integrated propulsion nozzle is controlled with the help of the dosing valve.
- jet pumps connected in series be structurally coupled. They preferably form a structural unit.
- the jet pumps connected in series are arranged coaxially, so that a flow path through the first jet pump opens into an intake chamber of the downstream jet pump.
- the supply of recirculated anode gas to the downstream jet pump is therefore axial, which leads to a reduction in flow losses.
- fresh anode gas is preferably fed in from the side or radially.
- At least one valve, preferably metering valve, for controlling a jet pump is aligned radially to the main direction of flow through the respective jet pump.
- this is preferably a downstream jet pump.
- the valve of the first jet pump can be arranged or aligned both axially and radially.
- the device is arranged in an anode circuit of the fuel cell system.
- the anode circuit preferably comprises an inflow path, via which a fuel cell stack of the fuel cell system can be supplied with anode gas, and a recirculation path, via which depleted anode gas exiting the fuel cell stack is recirculated.
- the device according to the invention connects the recirculation path to the inflow path of the anode circuit. This means that the device is connected both to the inflow path and to the recirculation path.
- at least one connection of the device to a storage facility for fresh anode gas is provided.
- the fresh anode gas is introduced into a jet pump upstream of a driving nozzle with the aid of a valve, preferably a metering valve, so that a fluid jet is generated which achieves the desired pumping effect.
- a valve preferably a metering valve
- a dosing valve with an integrated motive nozzle can be used.
- FIG. 1 shows a schematic longitudinal section through a device according to the invention according to a first preferred embodiment
- FIG. 2 shows a schematic longitudinal section through a device according to the invention according to a second preferred embodiment
- FIG 3 shows a schematic longitudinal section through a device according to the invention according to a third preferred embodiment.
- the device 10 shown in FIG. 1 can be used for the recirculation of anode gas in an anode circuit of a fuel cell system (not shown).
- the device 10 has a first jet pump 1 and a second jet pump 2 .
- the two jet pumps 1, 2 are connected in series and arranged coaxially, so that a diffuser 15 of the first jet pump 1 opens directly into an intake chamber 12 of the jet pump 2 connected downstream.
- Both jet pumps 1, 2 can be controlled separately via valves 3, 4, which are metering valves.
- valves 3 , 4 used for activation are each integrated in the area of an inlet 8 in the jet pumps 1 , 2 , so that fresh anode gas can be supplied to the jet pumps 1 , 2 via the valves 3 , 4 .
- a propulsion nozzle 7 is arranged downstream of the valves 3, 4 in order to generate the pumping action required for recirculation.
- the fresh anode gas serves as the driving medium. Since the valves 3, 4 are arranged radially in the exemplary embodiment in FIG.
- the recirculated anode gas is fed to the two jet pumps 1 , 2 via a common inlet 6 .
- the inlet 6 is aligned axially.
- the recirculated anode gas reaches an intake chamber 11 of the first jet pump 1, in which the driving nozzle 7 is also accommodated.
- the intake chamber 11 is followed by a mixing tube 13 in which fresh anode gas and recirculated anode gas are mixed.
- the mixing tube 13 opens into the diffuser 15.
- the second jet pump 2 is constructed essentially identically, but has larger dimensions.
- the second jet pump 2 is therefore designed for high loads, while the first jet pump 1 is only designed for low loads.
- the intake chamber 12 of the second jet pump 2 is in turn followed by a mixing tube 14 and a diffuser 16 .
- the diffuser 16 is followed by a common outlet 9 .
- FIG. 2 shows a further preferred embodiment of a device 10 according to the invention.
- This differs from that of Figure 1 essentially in that the valve 3 of the first jet pump 1 axially and the common inlet 6 for the recirculated anode gas are arranged radially. In this way, the flow losses can be further reduced since both jet pumps 1, 2 are flowed through axially.
- the valve 3 is designed as a metering valve with an integrated driving nozzle 7, so that only a separate driving nozzle 7 is required.
- the two jet pumps 1, 2 are not arranged coaxially but slightly offset from one another. This configuration creates space for an axial arrangement of the valve 4 analogous to that of the valve 3.
- the jet pump 1 opens into an outlet 9 which is connected to the suction chamber 12 of the second jet pump 2 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
L'invention concerne un procédé de recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, procédé selon lequel au moins deux éjecteurs (1, 2) montés en série sont utilisés, lesquels sont actionnés individuellement ou conjointement en fonction de la charge. L'invention concerne en outre un dispositif (10) destiné à la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, ainsi qu'un système de pile à combustible équipé d'un dispositif (10) selon l'invention.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021200008.8A DE102021200008A1 (de) | 2021-01-04 | 2021-01-04 | Verfahren und Vorrichtung zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem |
DE102021200008.8 | 2021-01-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022144181A1 true WO2022144181A1 (fr) | 2022-07-07 |
Family
ID=79317123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/086091 WO2022144181A1 (fr) | 2021-01-04 | 2021-12-16 | Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102021200008A1 (fr) |
WO (1) | WO2022144181A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022209707A1 (de) | 2022-09-15 | 2024-03-21 | Volkswagen Aktiengesellschaft | Düsenanordnung mit integrierter Führung der Düsennadel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050064255A1 (en) * | 2003-09-18 | 2005-03-24 | Ballard Power Systems Inc. | Fuel cell system with fluid stream recirculation |
DE102007004590A1 (de) * | 2007-01-30 | 2008-07-31 | Daimler Ag | Gasversorgungsanordnung in einer Brennstoffzellenvorrichtung |
US20090155641A1 (en) * | 2007-12-14 | 2009-06-18 | Ralph Senner | Multiple injector and ejector array |
KR20120049969A (ko) * | 2010-11-10 | 2012-05-18 | 현대자동차주식회사 | 다단 이젝터를 사용한 연료전지 수소 재순환 구조 |
US20160204454A1 (en) * | 2013-09-23 | 2016-07-14 | Convion Oy | Recirculation arrangement and method for a high temperature cell system |
CN209607847U (zh) * | 2019-04-12 | 2019-11-08 | 上海楞次新能源汽车科技有限公司 | 引射器单元及具备该引射器单元的燃料电池氢气循环系统 |
-
2021
- 2021-01-04 DE DE102021200008.8A patent/DE102021200008A1/de not_active Withdrawn
- 2021-12-16 WO PCT/EP2021/086091 patent/WO2022144181A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050064255A1 (en) * | 2003-09-18 | 2005-03-24 | Ballard Power Systems Inc. | Fuel cell system with fluid stream recirculation |
DE102007004590A1 (de) * | 2007-01-30 | 2008-07-31 | Daimler Ag | Gasversorgungsanordnung in einer Brennstoffzellenvorrichtung |
US20090155641A1 (en) * | 2007-12-14 | 2009-06-18 | Ralph Senner | Multiple injector and ejector array |
KR20120049969A (ko) * | 2010-11-10 | 2012-05-18 | 현대자동차주식회사 | 다단 이젝터를 사용한 연료전지 수소 재순환 구조 |
US20160204454A1 (en) * | 2013-09-23 | 2016-07-14 | Convion Oy | Recirculation arrangement and method for a high temperature cell system |
CN209607847U (zh) * | 2019-04-12 | 2019-11-08 | 上海楞次新能源汽车科技有限公司 | 引射器单元及具备该引射器单元的燃料电池氢气循环系统 |
Also Published As
Publication number | Publication date |
---|---|
DE102021200008A1 (de) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102020215518A1 (de) | Brennstoffzellensystem und Gasfördermodul für ein Brennstoffzellensystem | |
WO2022144181A1 (fr) | Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible | |
WO2022144183A1 (fr) | Procédé et dispositif de recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, et système de pile à combustible | |
WO2022120401A1 (fr) | Éjecteur pour un système de pile à combustible | |
WO2023025446A1 (fr) | Dispositif et procédé de fonctionnement pour faire recirculer un gaz d'anode dans un circuit d'anode d'un système de pile à combustible, et véhicule | |
WO2023036570A1 (fr) | Dispositif et procédé pour la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, et système de pile à combustible | |
EP4402736A1 (fr) | Dispositif et procédé de recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, et système de pile à combustible | |
DE102019209765A1 (de) | Ejektor, Ejektorset, Verfahren zum Betreiben eines Ejektors, Brennstoffzellensystem und Kraftfahrzeug | |
WO2023078637A1 (fr) | Dispositif et procédé de fonctionnement pour la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, et système de pile à combustible | |
DE102022201020A1 (de) | Vorrichtung und Verfahren zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem | |
DE102021210060A1 (de) | Vorrichtung und Verfahren zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem | |
DE102020107703A1 (de) | Saugstrahlpumpe, Brennstoffzellenvorrichtung und Kraftfahrzeug mit einer Brennstoffzellenvorrichtung | |
WO2023006353A1 (fr) | Système de pile à combustible et dispositif de recirculation pour la recirculation de gaz d'échappement d'anode dans un système de pile à combustible | |
DE2948297A1 (de) | Kernreaktor mit einem fluessigen kuehlmittel | |
WO2023066619A1 (fr) | Module de pompe à jet pour système de pile à combustible, et système de pile à combustible | |
DE102020215513A1 (de) | Brennstoffzellensystem und Gasfördermodul für ein Brennstoffzellensystem | |
DE102021111661A1 (de) | Strahlpumpe für ein Brennstoffzellensystem sowie Brennstoffzellensystem mit einer solchen Strahlpumpe | |
DE102021209884A1 (de) | Ventilmodul für ein Brennstoffzellensystem und Brennstoffzellensystem | |
DE102021207268A1 (de) | Vorrichtung und Verfahren zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems sowie Brennstoffzellensystem | |
WO2022214274A1 (fr) | Système de pile à combustible et soupape pour système de pile à combustible | |
DE102021207270A1 (de) | Einspritzmodul für ein Förderaggregat eines Brennstoffzellen-System | |
DE102021208467A1 (de) | Brennstoffzellensystem und Zuführvorrichtung für eine Brennstoffzelle | |
DE102021204451A1 (de) | Vorrichtung zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem sowie Verfahren zum Betreiben eines Brennstoffzellensystems | |
WO2023066628A1 (fr) | Module de pompe à jet pour système de pile à combustible | |
DE102021212307A1 (de) | Vorrichtung und Betriebsverfahren zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21840509 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21840509 Country of ref document: EP Kind code of ref document: A1 |