WO2022144181A1 - Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible - Google Patents

Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible Download PDF

Info

Publication number
WO2022144181A1
WO2022144181A1 PCT/EP2021/086091 EP2021086091W WO2022144181A1 WO 2022144181 A1 WO2022144181 A1 WO 2022144181A1 EP 2021086091 W EP2021086091 W EP 2021086091W WO 2022144181 A1 WO2022144181 A1 WO 2022144181A1
Authority
WO
WIPO (PCT)
Prior art keywords
jet pump
fuel cell
cell system
jet
anode gas
Prior art date
Application number
PCT/EP2021/086091
Other languages
German (de)
English (en)
Inventor
Hans-Christoph Magel
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022144181A1 publication Critical patent/WO2022144181A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/467Arrangements of nozzles with a plurality of nozzles arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants

Definitions

  • the invention relates to a method for recirculating anode gas in an anode circuit of a fuel cell system.
  • a device for recirculating anode gas in an anode circuit of a fuel cell system is also proposed.
  • the device enables the method according to the invention to be carried out.
  • the invention relates to a fuel cell system with a device according to the invention.
  • a fuel cell system includes at least one fuel cell, which can be used to convert a fuel, for example hydrogen, and an oxidizing agent, for example oxygen, into electrical energy, heat and water.
  • the fuel cell has an anode and a cathode.
  • the anode is supplied with the fuel and the cathode with the oxidizing agent.
  • the fuel is therefore the anode gas.
  • both jet pumps can be activated depending on the load.
  • both jet pumps can also be used for the recirculation of anode gas. In this way, a consistently high recirculation performance can be achieved, both at high and at low loads.
  • a high-load jet pump can be provided for high loads, which is then operated instead of or together with the low-load jet pump.
  • a valve is used to control at least one jet pump, via which fresh anode gas is supplied to the jet pump.
  • the jet pump can thus be controlled separately from the at least one other jet pump; in particular, the jet pump can be switched on or off.
  • the valve for controlling the jet pump or supplying fresh anode gas is preferably arranged upstream of a driving nozzle of the jet pump. With the help of the driving nozzle, a fluid jet of fresh anode gas is generated, which generates the pumping effect required for recirculation Accordingly, anode gas serves as the propellant medium. If the supply of fresh anode gas is prevented, the jet pump remains deactivated, which means that no depleted anode gas is drawn in from a recirculation line connected to the jet pump.
  • a metering valve preferably a metering valve with an integrated propulsion nozzle
  • a separate driving nozzle can thus be omitted.
  • the dosing valve can then be integrated into the jet pump instead of the driving nozzle. In this way a compact arrangement is created.
  • the pressure loss can also be reduced and the efficiency of the jet pump increased.
  • two jet pumps are advantageously used for the recirculation of anode gas, namely a low-load jet pump and a high-load jet pump. These are preferably connected in series in such a way that the low-load jet pump is upstream of the high-load jet pump.
  • the fresh fuel or anode gas quantity metered into the high-load jet pump therefore does not have to flow through the low-load jet pump, so that the pressure loss can be kept comparatively low.
  • the arrangement of the two jet pumps in series has the advantage over a parallel arrangement or connection that there is no risk of anode gas flowing back through the respective inactive jet pump.
  • at least one additional blocking element for example a non-return valve, is therefore always required. This can be omitted with jet pumps connected in series.
  • the additionally proposed device for the recirculation of anode gas in an anode circuit of a fuel cell system comprises at least two jet pumps connected in series, which can be operated individually or together depending on the load.
  • the proposed device is therefore particularly suitable for carrying out the method according to the invention described above.
  • the same advantages can thus be achieved with the aid of the device as with the aid of the method according to the invention described above.
  • a consistently high recirculation capacity can be provided because the jet pumps can be controlled separately from each other. There is no risk of anode gas flowing back through the respective inactive jet pump.
  • the series-connected jet pumps include a first jet pump for low loads and a further jet pump for high loads.
  • the low-load jet pump can then be operated at low load, and the high-load jet pump at high load.
  • the high-load jet pump is preferably downstream of the low-load jet pump. In this way, the pressure loss occurring when the two jet pumps flow through can be reduced.
  • At least one jet pump preferably has a valve in the area of an inlet for fresh anode gas.
  • the valve can in particular be a metering valve that enables fresh anode gas to be metered in precisely.
  • the valve is preferably arranged upstream of a propulsion nozzle integrated into the jet pump, with the aid of which the desired pumping effect can be achieved.
  • a metering valve with an integrated motive nozzle can be used in the inlet area, so that a separate motive nozzle is not required.
  • the device can be made more compact in this way.
  • the integrated propulsion nozzle is controlled with the help of the dosing valve.
  • jet pumps connected in series be structurally coupled. They preferably form a structural unit.
  • the jet pumps connected in series are arranged coaxially, so that a flow path through the first jet pump opens into an intake chamber of the downstream jet pump.
  • the supply of recirculated anode gas to the downstream jet pump is therefore axial, which leads to a reduction in flow losses.
  • fresh anode gas is preferably fed in from the side or radially.
  • At least one valve, preferably metering valve, for controlling a jet pump is aligned radially to the main direction of flow through the respective jet pump.
  • this is preferably a downstream jet pump.
  • the valve of the first jet pump can be arranged or aligned both axially and radially.
  • the device is arranged in an anode circuit of the fuel cell system.
  • the anode circuit preferably comprises an inflow path, via which a fuel cell stack of the fuel cell system can be supplied with anode gas, and a recirculation path, via which depleted anode gas exiting the fuel cell stack is recirculated.
  • the device according to the invention connects the recirculation path to the inflow path of the anode circuit. This means that the device is connected both to the inflow path and to the recirculation path.
  • at least one connection of the device to a storage facility for fresh anode gas is provided.
  • the fresh anode gas is introduced into a jet pump upstream of a driving nozzle with the aid of a valve, preferably a metering valve, so that a fluid jet is generated which achieves the desired pumping effect.
  • a valve preferably a metering valve
  • a dosing valve with an integrated motive nozzle can be used.
  • FIG. 1 shows a schematic longitudinal section through a device according to the invention according to a first preferred embodiment
  • FIG. 2 shows a schematic longitudinal section through a device according to the invention according to a second preferred embodiment
  • FIG 3 shows a schematic longitudinal section through a device according to the invention according to a third preferred embodiment.
  • the device 10 shown in FIG. 1 can be used for the recirculation of anode gas in an anode circuit of a fuel cell system (not shown).
  • the device 10 has a first jet pump 1 and a second jet pump 2 .
  • the two jet pumps 1, 2 are connected in series and arranged coaxially, so that a diffuser 15 of the first jet pump 1 opens directly into an intake chamber 12 of the jet pump 2 connected downstream.
  • Both jet pumps 1, 2 can be controlled separately via valves 3, 4, which are metering valves.
  • valves 3 , 4 used for activation are each integrated in the area of an inlet 8 in the jet pumps 1 , 2 , so that fresh anode gas can be supplied to the jet pumps 1 , 2 via the valves 3 , 4 .
  • a propulsion nozzle 7 is arranged downstream of the valves 3, 4 in order to generate the pumping action required for recirculation.
  • the fresh anode gas serves as the driving medium. Since the valves 3, 4 are arranged radially in the exemplary embodiment in FIG.
  • the recirculated anode gas is fed to the two jet pumps 1 , 2 via a common inlet 6 .
  • the inlet 6 is aligned axially.
  • the recirculated anode gas reaches an intake chamber 11 of the first jet pump 1, in which the driving nozzle 7 is also accommodated.
  • the intake chamber 11 is followed by a mixing tube 13 in which fresh anode gas and recirculated anode gas are mixed.
  • the mixing tube 13 opens into the diffuser 15.
  • the second jet pump 2 is constructed essentially identically, but has larger dimensions.
  • the second jet pump 2 is therefore designed for high loads, while the first jet pump 1 is only designed for low loads.
  • the intake chamber 12 of the second jet pump 2 is in turn followed by a mixing tube 14 and a diffuser 16 .
  • the diffuser 16 is followed by a common outlet 9 .
  • FIG. 2 shows a further preferred embodiment of a device 10 according to the invention.
  • This differs from that of Figure 1 essentially in that the valve 3 of the first jet pump 1 axially and the common inlet 6 for the recirculated anode gas are arranged radially. In this way, the flow losses can be further reduced since both jet pumps 1, 2 are flowed through axially.
  • the valve 3 is designed as a metering valve with an integrated driving nozzle 7, so that only a separate driving nozzle 7 is required.
  • the two jet pumps 1, 2 are not arranged coaxially but slightly offset from one another. This configuration creates space for an axial arrangement of the valve 4 analogous to that of the valve 3.
  • the jet pump 1 opens into an outlet 9 which is connected to the suction chamber 12 of the second jet pump 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un procédé de recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, procédé selon lequel au moins deux éjecteurs (1, 2) montés en série sont utilisés, lesquels sont actionnés individuellement ou conjointement en fonction de la charge. L'invention concerne en outre un dispositif (10) destiné à la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, ainsi qu'un système de pile à combustible équipé d'un dispositif (10) selon l'invention.
PCT/EP2021/086091 2021-01-04 2021-12-16 Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible WO2022144181A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021200008.8A DE102021200008A1 (de) 2021-01-04 2021-01-04 Verfahren und Vorrichtung zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem
DE102021200008.8 2021-01-04

Publications (1)

Publication Number Publication Date
WO2022144181A1 true WO2022144181A1 (fr) 2022-07-07

Family

ID=79317123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/086091 WO2022144181A1 (fr) 2021-01-04 2021-12-16 Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible

Country Status (2)

Country Link
DE (1) DE102021200008A1 (fr)
WO (1) WO2022144181A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022209707A1 (de) 2022-09-15 2024-03-21 Volkswagen Aktiengesellschaft Düsenanordnung mit integrierter Führung der Düsennadel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064255A1 (en) * 2003-09-18 2005-03-24 Ballard Power Systems Inc. Fuel cell system with fluid stream recirculation
DE102007004590A1 (de) * 2007-01-30 2008-07-31 Daimler Ag Gasversorgungsanordnung in einer Brennstoffzellenvorrichtung
US20090155641A1 (en) * 2007-12-14 2009-06-18 Ralph Senner Multiple injector and ejector array
KR20120049969A (ko) * 2010-11-10 2012-05-18 현대자동차주식회사 다단 이젝터를 사용한 연료전지 수소 재순환 구조
US20160204454A1 (en) * 2013-09-23 2016-07-14 Convion Oy Recirculation arrangement and method for a high temperature cell system
CN209607847U (zh) * 2019-04-12 2019-11-08 上海楞次新能源汽车科技有限公司 引射器单元及具备该引射器单元的燃料电池氢气循环系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064255A1 (en) * 2003-09-18 2005-03-24 Ballard Power Systems Inc. Fuel cell system with fluid stream recirculation
DE102007004590A1 (de) * 2007-01-30 2008-07-31 Daimler Ag Gasversorgungsanordnung in einer Brennstoffzellenvorrichtung
US20090155641A1 (en) * 2007-12-14 2009-06-18 Ralph Senner Multiple injector and ejector array
KR20120049969A (ko) * 2010-11-10 2012-05-18 현대자동차주식회사 다단 이젝터를 사용한 연료전지 수소 재순환 구조
US20160204454A1 (en) * 2013-09-23 2016-07-14 Convion Oy Recirculation arrangement and method for a high temperature cell system
CN209607847U (zh) * 2019-04-12 2019-11-08 上海楞次新能源汽车科技有限公司 引射器单元及具备该引射器单元的燃料电池氢气循环系统

Also Published As

Publication number Publication date
DE102021200008A1 (de) 2022-07-07

Similar Documents

Publication Publication Date Title
DE102020215518A1 (de) Brennstoffzellensystem und Gasfördermodul für ein Brennstoffzellensystem
WO2022144181A1 (fr) Procédé et dispositif permettant la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, système de pile à combustible
WO2022144183A1 (fr) Procédé et dispositif de recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, et système de pile à combustible
WO2022120401A1 (fr) Éjecteur pour un système de pile à combustible
WO2023025446A1 (fr) Dispositif et procédé de fonctionnement pour faire recirculer un gaz d'anode dans un circuit d'anode d'un système de pile à combustible, et véhicule
WO2023036570A1 (fr) Dispositif et procédé pour la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, et système de pile à combustible
EP4402736A1 (fr) Dispositif et procédé de recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, et système de pile à combustible
DE102019209765A1 (de) Ejektor, Ejektorset, Verfahren zum Betreiben eines Ejektors, Brennstoffzellensystem und Kraftfahrzeug
WO2023078637A1 (fr) Dispositif et procédé de fonctionnement pour la recirculation de gaz anodique dans un circuit anodique d'un système de pile à combustible, et système de pile à combustible
DE102022201020A1 (de) Vorrichtung und Verfahren zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem
DE102021210060A1 (de) Vorrichtung und Verfahren zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem
DE102020107703A1 (de) Saugstrahlpumpe, Brennstoffzellenvorrichtung und Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
WO2023006353A1 (fr) Système de pile à combustible et dispositif de recirculation pour la recirculation de gaz d'échappement d'anode dans un système de pile à combustible
DE2948297A1 (de) Kernreaktor mit einem fluessigen kuehlmittel
WO2023066619A1 (fr) Module de pompe à jet pour système de pile à combustible, et système de pile à combustible
DE102020215513A1 (de) Brennstoffzellensystem und Gasfördermodul für ein Brennstoffzellensystem
DE102021111661A1 (de) Strahlpumpe für ein Brennstoffzellensystem sowie Brennstoffzellensystem mit einer solchen Strahlpumpe
DE102021209884A1 (de) Ventilmodul für ein Brennstoffzellensystem und Brennstoffzellensystem
DE102021207268A1 (de) Vorrichtung und Verfahren zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems sowie Brennstoffzellensystem
WO2022214274A1 (fr) Système de pile à combustible et soupape pour système de pile à combustible
DE102021207270A1 (de) Einspritzmodul für ein Förderaggregat eines Brennstoffzellen-System
DE102021208467A1 (de) Brennstoffzellensystem und Zuführvorrichtung für eine Brennstoffzelle
DE102021204451A1 (de) Vorrichtung zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem sowie Verfahren zum Betreiben eines Brennstoffzellensystems
WO2023066628A1 (fr) Module de pompe à jet pour système de pile à combustible
DE102021212307A1 (de) Vorrichtung und Betriebsverfahren zur Rezirkulation von Anodengas in einem Anodenkreis eines Brennstoffzellensystems, Brennstoffzellensystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21840509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21840509

Country of ref document: EP

Kind code of ref document: A1