WO2022143996A1 - 磁共振引导激光消融治疗系统 - Google Patents

磁共振引导激光消融治疗系统 Download PDF

Info

Publication number
WO2022143996A1
WO2022143996A1 PCT/CN2021/143786 CN2021143786W WO2022143996A1 WO 2022143996 A1 WO2022143996 A1 WO 2022143996A1 CN 2021143786 W CN2021143786 W CN 2021143786W WO 2022143996 A1 WO2022143996 A1 WO 2022143996A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
fiber
guide
magnetic resonance
distal end
Prior art date
Application number
PCT/CN2021/143786
Other languages
English (en)
French (fr)
Inventor
韩萌
刘文博
爱新觉罗启轩
吴朝
Original Assignee
华科精准(北京)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华科精准(北京)医疗科技有限公司 filed Critical 华科精准(北京)医疗科技有限公司
Priority to CN202180066103.6A priority Critical patent/CN116801826A/zh
Priority to US18/270,437 priority patent/US20240099772A1/en
Publication of WO2022143996A1 publication Critical patent/WO2022143996A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00128Electrical control of surgical instruments with audible or visual output related to intensity or progress of surgical action
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • A61B2018/00208Moving parts rotating actively driven, e.g. by a motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00321Head or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • A61B2018/00446Brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI

Definitions

  • the present invention claims the priority of the application number 202011640255.6, the application date is 2020.12.31, and the name of the invention is "magnetic resonance guided laser ablation therapy system", the entire contents of which are incorporated herein by reference.
  • the invention relates to the technical field of medical equipment, in particular to a magnetic resonance guided laser ablation treatment system.
  • the present invention proposes a magnetic resonance guided laser ablation treatment system.
  • the purpose of the present invention is to provide a magnetic resonance guided laser ablation treatment system, which can effectively ablate both regular and irregular tissues.
  • an embodiment of the present invention provides a first magnetic resonance guided laser ablation therapy system, including:
  • Laser ablation equipment which contains a laser generator and cooling means
  • a stereotaxic system that houses and controls the position and angle of rotation of the ablation fiber
  • a workstation which is configured to: control the movement of the stereotaxic device, and use magnetic resonance temperature imaging technology to generate and display the ablation information of the target site during the operation of the magnetic resonance guided laser ablation treatment system.
  • the ablation fiber can emit light laterally.
  • Stereotactic system including:
  • the proximal end of the sleeve is connected to the plug, and the distal end of the sleeve can extend from the distal end of the guiding device;
  • the ablation optical fiber is arranged in the sleeve, and the rotation driving device drives the ablation optical fiber to rotate.
  • the rotation driving device includes a first driver
  • the first driver is connected to the ablation fiber, and the first driver drives the ablation fiber to rotate around its own axis.
  • the above-mentioned stereotaxic system further includes a controller, and the first driver is connected in communication with the controller;
  • the controller sends a motion control command to the first driver
  • the first driver drives the ablation fiber to rotate about its own axis according to the motion control command.
  • the rotation driving device further includes a first angle sensor, and the first angle sensor is connected in communication with the controller;
  • the first angle sensor detects the rotation angle of the ablation fiber or the rotation angle of other components that are the same as the rotation angle of the ablation fiber, and sends the detected rotation angle to the controller.
  • the above-mentioned stereotaxic system further includes a front and rear translation drive device
  • the rotary drive device is slidably connected to the front and rear translation drive device.
  • the front and rear translation drive device is connected in communication with the controller
  • the controller sends a front-to-back translation command to the front-to-back translation drive device
  • the front-to-back translation drive device drives the rotation drive device to translate back and forth according to the front-to-back translation command, and then drives the ablation fiber to translate back and forth.
  • the rotary drive device further includes a rotary device base;
  • the first driver is mounted on the rotating device base.
  • the rotation driving device further includes an ablation fiber adapter
  • the first driver drives the ablation fiber adapter to rotate, and the distal end of the ablation fiber adapter is connected to the ablation fiber.
  • the guiding device includes a hollow elongated structural guide member and a clamping assembly, the distal end of the clamping assembly is connected with the proximal end of the hollow elongated structural guide member, and the clamping assembly is used for After the sleeve protrudes from the distal end of the hollow and elongated structure guide, the relative positions of the sleeve and the hollow and elongated structure guide are fixed.
  • the clamping assembly includes an elastic plug, a clamping adapter, a jack screw and a screw;
  • the screw connection is screwed with the ejector, the distal end of the ejector is inserted into the clamping adapter and contacts with the elastic plug, and the distal end of the screw can be connected to the
  • the proximal end of the clamping adapter is threadedly connected, the distal end of the clamping adapter is connected with the proximal end of the hollow elongated structure guide, and the elastic plug is arranged on the hollow elongated structure guide inside the proximal cavity;
  • the tightening member is screwed to the ejector screw member and the clamping adapter, the ejector screw member presses the elastic plug, and the sleeve passes through the ejector screw member and the clamping adapter.
  • the elastic plug and the hollow elongated structural guide, the distal end of the sleeve can extend from the distal end of the hollow elongated structural guide, the elastic plug fixes the position of the sleeve.
  • the connector is a hollow casing, and the proximal end of the sleeve is connected to the hollow casing.
  • the connector includes a sealing plug, an ablation fiber connector, and a sealing nut, a Luer connector, a water inlet adapter, and a water outlet adapter sequentially connected in the direction from the proximal end to the distal end;
  • the ablation optical fiber connector is connected with the transmission part of the rotary drive device, the sealing plug is arranged in the luer connector, and the inner boss of the sealing nut is in contact with the sealing plug;
  • the sealing nut In the use state, the sealing nut is tightened on the Luer connector, the inner boss of the sealing nut presses the sealing plug, and the ablation fiber passes through the ablation fiber connector, the sealing nut, and the The sealing plug and the water inlet adapter enter the sleeve.
  • the connector further includes a first water pipe and a second water pipe, and the sleeve includes an inner water circulation pipe and an outer water circulation pipe;
  • the inner water circulation pipe is arranged in the outer water circulation pipe with a gap therebetween, the first water pipe passes through the water inlet adapter and communicates with the inner water circulation pipe, and the second water pipe passes through the
  • the water outlet adapter is communicated with the outer water circulation pipe;
  • the ablation optical fiber enters the inner water circulation pipe through the ablation optical fiber connector, the sealing nut and the sealing plug.
  • a first strength enhancement structure is arranged between the outer water circulation pipe and the inner water circulation pipe, and a second strength enhancement structure is arranged between the inner water circulation pipe and the ablation optical fiber.
  • At least a first portion of the ablation fiber is provided with a rigid structure outside, or at least a first portion of the ablation fiber has a reinforced outer surface structure, wherein the first portion includes the ablation fiber self-adjacent. Ending to a portion within the sealing plug and a portion beyond the sealing plug, when the distal end of the ablation fiber is at the most distal end of the system, the length of the portion beyond the sealing plug is greater than the ablation plug The travel distance of the fiber.
  • the front and rear translation drive device includes a front and rear translation drive device base, at least one sliding rail, a lead screw, a sliding block and a second driver;
  • the at least one sliding rail and the lead screw are arranged in parallel and pass through the sliding block, both ends of the at least one sliding rail are fixedly mounted on the base of the front and rear translation drive device, and the lead screw is rotatably connected to the base.
  • the front and rear translation drive device base, the second driver drives the lead screw to rotate, the second driver is installed on the front and rear translation drive device base, and the rotation drive device is installed on the sliding block.
  • the workstation can communicate with the laser ablation device and the stereotaxic system, adjust the parameters of the laser generator and the cooling device, control the position and rotation angle of the ablation fiber, perform ablation under the magnetic resonance detection, and feedback according to the magnetic resonance image.
  • the temperature and ablation information are obtained, and feedback control is performed on the laser ablation device and the stereotaxic system.
  • an embodiment of the present invention provides another magnetic resonance guided laser ablation therapy system, including:
  • an optical fiber cooling assembly that houses and cools the ablation optical fiber
  • Laser ablation equipment which contains a laser generator and cooling means
  • a stereotaxic system that houses and controls the position and angle of rotation of the ablation fiber
  • a workstation which is configured to: control the movement of the stereotaxic device, and use magnetic resonance temperature imaging technology to generate and display the ablation information of the target site during the operation of the magnetic resonance guided laser ablation treatment system.
  • the workstation is connected with the image archiving and communication system of the hospital, obtains digital images before surgery, generates a surgical plan according to the digital images, sends the surgical plan to the laser ablation device, and uses it during the operation.
  • the magnetic resonance temperature imaging technology fuses to generate a real-time temperature image of the lesion area, generates control information according to the real-time temperature image, and sends the control information to the laser ablation device to adjust the laser power and cooling power of the laser ablation device in real time ;
  • the laser ablation equipment is connected with the workstation, and is used for generating and adjusting laser light according to the operation plan and the control information, and driving and controlling the circulation of the cooling interstitium.
  • the laser ablation equipment includes a medical switch device, a laser generator, and a cooling device. , sensor module, interaction module and main control module;
  • a sensor module connected with the main control module, for collecting working parameter information of the laser hyperthermia device, and sending the working parameter information to the main control module;
  • an interaction module connected with the main control module, for acquiring operation instruction information, sending the operation instruction information to the main control module, and displaying the working state of the laser hyperthermia device;
  • the main control module is connected to the workstation and is used to control the cooling device and the laser generator according to the operation plan, the working parameter information, the operation instruction information and the control information, wherein the control information includes the first Control information and second control information, the main control module is also used to monitor the safe operation parameters of the laser generator and the cooling device, and make the laser hyperthermia device emergency stop and/or adjust the cooling device when the safe operation parameters exceed the safety threshold;
  • a laser generator connected to the main control module, for generating and adjusting the first laser for ablation and the second laser for auxiliary positioning according to the first control information
  • a cooling device connected with the main control module, is used for driving and controlling the circulation of the cooling medium according to the second control information.
  • the medical switching device is connected with the main control module and is used for converting the AC power supply into the DC power supply.
  • the cooling device includes a peristaltic pump, a cooling medium and a cooling medium conveying pipe, and can also include an incubator.
  • the ablation optical fiber includes an ablation probe capable of directing light
  • the optical fiber cooling assembly includes a cooling liquid delivery tube, a cooling sleeve, a water circulation adapter assembly, and a sealing plug.
  • Stereotactic systems include:
  • a guide comprising a cooling jacket guide and a guide housing
  • the sensor assemblies including angle sensors
  • the rotary drive device drives the ablation fiber to rotate
  • a controller which is connected in communication with the sensor assembly and the rotary drive device, receives the angle information of the sensor assembly, and controls the movement of the rotary drive device, and the controller can also receive control information input;
  • the distal end of the ablation fiber passes through the fiber cooling assembly, the angle sensor is fixedly connected to a device or structure that does not rotate with the ablation fiber, and the stereotaxic system can make the ablation fiber at different sensors
  • the rotation angle remains the same or substantially the same.
  • the sensor assembly further includes a rotation positioning device, so that the ablation fiber can move along the longitudinal axis while the rotation angle is measured, and the said ablation fiber can be moved along the longitudinal axis in the use state
  • the rotation positioning device clamps the ablation optical fiber according to a preset pressure
  • the ablation optical fiber drives the rotation positioning device to rotate
  • the angle sensor detects the rotation angle of the rotation positioning device, and sends the rotation angle to the control device device.
  • the stereotaxic system also includes a cannula that maintains a fixed length of the ablation fiber between the first set of sensor assemblies and the second set of sensor assemblies, allows the ablation fiber to rotate therein about its long axis and Move along the long axis.
  • the stereotaxic system further includes a longitudinal motion device, the rotation driving device can move relative to the longitudinal motion device, and the controller sends control information to the longitudinal motion device, so that the ablation fiber moves along the long axis; further Ground, the longitudinal movement device is connected to the second sensor assembly.
  • the guide device housing includes a bone screw cap, a guide device housing main body and a guide device housing back cover; the proximal end of the cooling sleeve guide and the distal end of the bone screw cap threaded connection, the proximal end of the bone nail cap is connected with the distal end of the guide device housing body, the guide device housing rear cover is covered with the proximal end of the guide device housing body, the guide device The rear cover of the casing is connected with the distal end of the sleeve, and the optical fiber cooling assembly is arranged in the main body of the casing of the guide device; in the use state, the ablation optical fiber passes through the rear cover of the casing of the guide device, The guide housing body, the nail cap, and the cooling jacket guide.
  • the guide device housing body includes a guide device housing body fixing part and a guide device housing body sliding part, the proximal end of the bone nail cap is connected with the distal end of the guide device housing body fixing part, the The proximal end of the fixing part of the main body of the guiding device is connected with the distal end of the sliding part of the main body of the guiding device, and the rear cover of the guiding device is covered with the proximal end of the sliding part of the main body of the guiding device.
  • the stereotaxic system of the magnetic resonance guided laser ablation treatment system includes: a guide device, a cannula, an insert, a rotation drive device and a longitudinal movement drive device;
  • the guide includes a cooling jacket guide and a guide housing that includes a nail cap, a guide housing body, and a guide housing back cover, the guide housing body including a guide
  • the fixing part of the housing body and the sliding part of the housing body of the guide device, the proximal end of the bone nail cap is connected with the distal end of the fixing part of the housing body of the guide device, and the proximal end of the fixing part of the housing body of the guide device is connected to the distal end of the fixing part of the housing body of the guide device.
  • the distal end of the sliding part of the main body of the guiding device is connected, the rear cover of the guiding device is covered with the proximal end of the sliding part of the main body of the guiding device, the fixing part of the main body of the guiding device and/or the
  • the sliding part of the main body of the guide device housing is provided with a scale, the fixed part of the main body of the guiding device and the sliding part of the main body of the guiding device can move relative to each other, and the scale shows the distance of the relative movement.
  • a first group of sensor assemblies is provided, and the angle sensors of the first group of sensor assemblies are connected to the housing main body of the guide device;
  • a second group of sensor assemblies is arranged in the plug-in, the angle sensor of the second group of sensor assemblies is connected with the casing of the plug-in, and the plug-in is connected with the longitudinal movement driving device, so that the plug-in and the longitudinal The relative position of the mobile drive device remains unchanged;
  • the proximal end of the sleeve is connected to the rear cover of the guide device, and the distal end of the sleeve is connected to the insert, so that the length of the ablation optical fiber between the rear cover of the guide and the insert remains unchanged;
  • the rotary drive device is slidably connected to the longitudinal movement drive device
  • the optical fiber cooling assembly is arranged in the housing main body of the guide device.
  • the host or the controller may be loaded with a program of the method for accurately adjusting the rotation angle of the ablation fiber;
  • One method of precisely adjusting the rotation angle of the ablation fiber includes the following steps:
  • the controller rotates the ablation fiber in one direction by rotating the drive device, and when the rotation of the ablation fiber measured by the first group of sensor assemblies reaches a preset angle, the controller receives and records the second group of sensor assemblies at this time.
  • the ablation optical fiber rotates, and at the same time, the rotation driving device is controlled to stop rotating and rotate in a reverse direction, so that the ablation optical fiber near the second group of sensor assemblies rotates reversely by an angle, the angle being the difference between the second angle and the first angle the absolute value of .
  • the second method of precisely adjusting the rotation angle of the ablation fiber includes the following steps:
  • the controller rotates the ablation optical fiber in one direction by rotating the driving device, and the first group of sensor assemblies measures the rotation angle of the ablation fiber when the ablation optical fiber starts to rotate, and records the rotation angle measured by the second group of sensor assemblies at this time as the basic rotation
  • the rotation driving device is controlled to stop rotating and rotate in the reverse direction, so that the ablation fiber near the second group of sensor assemblies rotates the ablation fiber in the reverse direction.
  • the base rotation angle is controlled to stop rotating and rotate in the reverse direction, so that the ablation fiber near the second group of sensor assemblies rotates the ablation fiber in the reverse direction.
  • ablation can be divided into multiple steps, that is, it may be necessary to rotate multiple times, stay at different positions for different times, monitor the progress of ablation by magnetic resonance temperature imaging, and then continue to rotate.
  • the above methods can be performed continuously or intermittently. Second-rate.
  • the magnetic resonance guided laser ablation treatment system of the present invention uses magnetic resonance temperature imaging technology to fuse and generate a real-time temperature image of the lesion area during the operation, and controls the laser power and cooling power in real time through the temperature values of the lesion and surrounding healthy tissues, thereby realizing the regulation of Effective ablation of irregular lesions and intraoperative ablation prediction, real-time adjustment of the ablation boundary, to achieve the purpose of conformal ablation.
  • the magnetic resonance guided laser ablation therapy system of the present invention can generate a surgical plan, wherein the surgical plan includes information corresponding to the laser, and the information includes but is not limited to: planned ablation volume, laser power, light output time, light output mode, cooling liquid Flow rate, fiber optic catheter insertion path planning;
  • Real-time control calculating the temperature based on the magnetic resonance image, correcting the temperature image by using the temperature measuring structure, regulating the ablation optical fiber assembly in working state, and the working parameters of the treatment light source module and the cooling device in real time, and performing ablation monitoring in real time;
  • the content of the comparison includes the following: planned ablation area or volume, and actual ablation area or volume after operation; the ablation result information at least includes but is not limited to: ablation area percentage, ablation volume percentage, and comparison charts before and after ablation.
  • the rotation of the ablation fiber is driven by the rotary drive device to control the rotation of the ablation fiber.
  • the guiding device can guide the direction of the ablation fiber implantation, and the ablation fiber can be directionally controlled without installing an additional support structure at the skull, reducing the number of patients. Painful and easy to install.
  • the rotation angle of the drive shaft or the rotation angle of the ablation fiber can be detected and fed back to the controller; when the rotation driving device includes the first angle sensor, it can be detected that it has a rigid structure or has a passing
  • the rotation angle of the ablation fiber of the strengthened outer surface structure is sent to the controller, so as to realize the rotation control of the ablation fiber.
  • the controller can control the front and rear translation drive device to drive the rotation drive device to translate back and forth, so that the ablation fiber moves with the movement of the rotation drive device, thereby realizing the control of the front and rear translation of the ablation fiber.
  • the relative position of the sleeve and the hollow elongated structure guide can be fixed; the distal end of the ejector wire is inserted into the clamping adapter and connected to the elastic The way the plug contacts, so that when the screw is tightened on the ejector screw and the clamping adapter, the ejector screw can press the elastic plug so that the elastic plug squeezes the inner sleeve, so as to achieve the purpose of fixing the sleeve.
  • the cooling and sealing of the ablation optical fiber is realized by setting the sealing plug and setting the connector to include the first water pipe and the second water pipe, and setting the sleeve to include the inner water circulation pipe and the outer water circulation pipe.
  • the strength of the ablation fiber is enhanced by arranging at least a first portion of the ablation fiber to have a rigid structure or a reinforced outer surface structure, and by arranging the first portion includes the ablation fiber from the proximal end to the end of the ablation fiber located in the sealing plug. Part and the part beyond the sealing plug, when the distal end of the ablation fiber is located at the most distal end of the system, the length of the part beyond the sealing plug is greater than the moving distance of the ablation fiber, so as to ensure that even after the ablation fiber is moved, it is located in the sealing plug
  • the ablation fiber still has a rigid structure or has a reinforced outer surface structure, which eliminates the effect of friction between the sealing plug and the ablation fiber on the rotation of the ablation fiber.
  • the strength and puncturing ability of the sleeve are increased to prevent deformation when squeezed by external force, and block the circulation of cooling fluid.
  • the guide device has a simple structure, light weight and high reliability. Only the cooling sleeve guide (such as a hollow bone nail) can bear the weight of the guide device, and there is no need to install other auxiliary structures, which reduces the number of bone nails installed. , alleviate the pain of the patient and increase the compliance;
  • the occupied area of the head mounting structure is too large, which hinders or severely limits the implantation distance of different optical fibers, restricts the planning of the implantation site, and cannot carry out the solution that the distance between the implantation sites is too small.
  • Other structures of auxiliary guides are avoided, and the distance between the cooling sleeve guides can be very close, providing more options for the situation that requires dense implantation of ablation fibers for large-scale tissue ablation
  • the cooling sleeve does not move relative to the brain tissue after implantation, only the ablation fiber in it rotates, and the brain tissue will not be damaged by adjusting the rotation of the ablation fiber;
  • the sealing plug at the end will cause the ablation fiber to continue to rotate after rotating to a predetermined angle, resulting in an orientation error, which seriously affects the expectation and planning of the operation, and cannot achieve accurate ablation .
  • FIG. 1 is a schematic diagram of a magnetic resonance guided laser ablation treatment system provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an assembly structure of a first stereotaxic system provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an explosion structure of a first stereotaxic system provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a rotary drive device
  • Fig. 5 is the sectional view of the partial structure of Fig. 4;
  • FIG. 6 is a cross-sectional view of an assembly structure of a guide device provided in an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an explosive structure of a guiding device provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an assembly structure of a plug connector provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an exploded structure of a plug connector provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a sleeve provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a front and rear translation drive device provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a second stereotaxic system according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a guide device provided by an embodiment of the present invention.
  • Fig. 16 is the sectional view of Fig. 13;
  • Fig. 17 is a kind of structural representation of plug-in
  • Fig. 18 is another structural schematic diagram of the plug-in.
  • the proximal end refers to the end of the structure away from the ablation site along the axial direction of the ablation fiber; on the contrary, the proximal end refers to the end of the structure away from the target site along the axial direction of the ablation fiber.
  • the magnetic resonance guided laser ablation treatment system of the present invention includes a workstation 100, a laser ablation device 200, a stereotaxic system 300 and a fiber cooling assembly 400 (or ablation fiber 400), and the positional relationship is not a real physical structure
  • the laser ablation device 200 is connected to the workstation 100 in communication, and it can be located in it, or it can exist independently; the laser ablation device 200 and the stereotaxic system 300 are connected to the workstation 100 in communication, and are not necessarily directly connected in structure. no limit.
  • the workstation 100 is configured to receive medical image information (such as CT, MRI, etc.), establish a three-dimensional model according to one or more kinds of medical image information, and extract image point clouds based on the three-dimensional model. Control is performed, the progress of ablation is calculated and displayed, and it contains an ablation estimation module loaded with a program capable of performing the ablation estimation method.
  • medical image information such as CT, MRI, etc.
  • the workstation can generate a surgical plan, wherein the surgical plan includes information corresponding to the laser, the information including but not limited to: planned ablation volume, laser power, light output time, light output mode, cooling fluid flow rate, and fiber optic catheter insertion path planning;
  • Real-time control calculating the temperature based on the magnetic resonance image, correcting the temperature image by using the temperature measuring structure, regulating the ablation optical fiber assembly in a working state, and the working parameters of the treatment light source module and the cooling device in real time, and performing ablation monitoring in real time;
  • the content of the comparison includes the following: planned ablation area or volume, and actual ablation area or volume after operation; the ablation result information at least includes but is not limited to: ablation area percentage, ablation volume percentage, and comparison charts before and after ablation.
  • the laser ablation device 200 is connected in communication with the workstation 100, and the actual spatial position is not required. It can be integrated with the workstation or can be separated from the workstation. It includes a laser generator and a cooling device, and can independently or receive information from the workstation to update the laser generator and cooling device. The device is controlled to adjust the working power of the laser generator and the cooling interstitial flow rate of the cooling device.
  • the laser ablation device 200 further includes a sensor module, an interaction module and a main control module, and the sensor module is used for receiving information from the end of the optical fiber, For example, the temperature sensor set at the end of the optical fiber and the temperature sensor set in the cooling jacket to monitor the laser output power and cooling; the interactive module is used to communicate with the workstation, and the main control module sends commands to the laser generator and cooling device.
  • the six parts included in the laser ablation device 200 are as follows:
  • a laser generator for generating laser light for ablation and laser light for auxiliary positioning can be gas, solid, semiconductor or fiber laser generators.
  • the type of laser can be infrared, ultraviolet or visible light.
  • the main application band of ablation is around 980nm and 1064nm, the power is adjustable, the maximum is not more than 30W, continuous laser, and can be modulated into pulsed laser, the pulse width can be 10ms ⁇ 100000ms, and the pulse frequency can be 0.01Hz ⁇ 100Hz.
  • the laser band used for auxiliary positioning is mainly around 640nm, the power is not more than 2W, continuous laser.
  • the cooling device is used to drive and control the circulation of the cooling interstitium, so as to realize the cooling of the laser ablation probe and the cooling of the surrounding tissue of the probe.
  • the cooling device is mainly composed of a constant temperature box, a peristaltic pump, a cooling medium and a cooling medium conveying pipe.
  • the pipe wall pressure sensor is installed in the loop part of the inlet and outlet of the cooling pipe; there is a temperature sensor in the part where the cooling pipe is connected with the inlet and outlet of the constant temperature box.
  • the incubator is used to keep the temperature of the cooling interstitial in the cooling pipe at the set temperature.
  • the peristaltic pump is used to provide the circulating power for cooling the interstitial, and it can provide the interstitial circulation speed of 0-60ml/min.
  • the cooling medium can be normal saline, or other light-transmitting liquid.
  • the cooling pipe can be made of medical rubber materials such as polycarbonate, polyurethane, polyethylene, polypropylene, silicone, nylon, PVC, PET, PTFE, ABS, PES, PEEK, FEP, and the like.
  • Sensor module used to collect necessary working parameter information in the device. Collect the pipe wall pressure of the cooling pipe inlet and outlet loop parts to determine whether there is leakage in the cooling loop; collect the temperature of the cooling interstitial in the cooling pipe at the inlet and outlet of the incubator to determine whether the temperature setting of the incubator is reasonable; collect the laser generator The temperature near the laser chip determines the working state of the laser generator. Temperature measurement can use thermocouples, Pt resistors, etc.; pressure measurement uses ceramic or thin-film pressure sensors.
  • the data collected by the sensor module is transmitted to the main control module through the data interface.
  • the interaction module is the input and output module of the laser ablation device, which is composed of buttons and a display screen, and is electrically connected to the main control module to obtain the operation instruction information on the user side, and send the operation instruction information to the main control module. . It is used to display the working status of the output laser ablation equipment, peristaltic pump speed, laser power, pulse frequency and sensor parameters, etc. At the same time, parameter setting commands and switch status commands can be input.
  • the main control module is the data collection, delivery, storage and calculation module of the laser ablation equipment, and is electrically connected with the interaction module, the sensor module, the cooling device, the laser generator and the medical switch device. Complete the storage, display and transmission of various data during surgery. Control the laser generator and cooling device to operate according to the input parameters, and transmit the laser, cooling device operating status and sensor parameters to the workstation and interactive module. At the same time, the main control module can set and monitor the safe operating parameters of the laser and cooling device. When the operating parameters of the equipment exceed the set safety threshold, the main control module will quickly control the equipment to emergency stop.
  • the first magnetic resonance guided laser ablation treatment system of the present invention includes: a workstation 100 , a laser ablation device 200 , a stereotaxic assembly 300 and an ablation optical fiber 400 .
  • a cooling assembly is included in the orientation assembly 300 , and a cooling device is provided in the laser ablation apparatus 200 .
  • FIG. 2 is a schematic diagram of an assembly structure of a first stereotaxic system provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an explosion structure of a first stereotaxic system provided by an embodiment of the present invention.
  • the first stereotaxic system provided by the embodiment of the present invention includes: a guiding device 1 , a sleeve 2 , a plug-in part 3 and a rotary driving device 4 .
  • the proximal end of the cannula 2 is connected to the plug 3, and the distal end of the cannula 2 can extend from the distal end of the guide device 1, wherein the distal end of the cannula 2 can be a blind end.
  • the ablation optical fiber 5 is arranged in the cannula 2, and the rotation driving device 4 drives the ablation optical fiber 5 to rotate.
  • the plug 3 can be fixed to any structure, as long as the proximal end of the plug 3 is opposite to the distal end of the rotary drive device 4 after fixing, so that the rotary drive device 4 can drive the ablation fiber 5 to rotate, and the ablation fiber 5 can be inserted
  • the connector 3 can rotate around its own axis and/or move along its own axial direction.
  • the plug 3 is fixed on a special bracket or the plug 3 can be connected with the rotary drive device 4 , or the plug 3 can be connected with the front and rear translation drive device 6 through the connecting member 7 .
  • the stereotaxic system provided by the embodiment of the present invention includes a guiding device 1, a sleeve 2, a plug 3 and a rotary drive device 4.
  • the proximal end of the sleeve 2 is connected to the plug 3, and the The distal end can be protruded from the distal end of the guiding device 1.
  • the ablation optical fiber 5 is arranged in the cannula 2, and the rotation driving device 4 drives the ablation optical fiber 5 to rotate.
  • the rotation driving device drives the ablation optical fiber to rotate to realize the rotation control of the ablation optical fiber
  • the direction of implantation of the ablation optical fiber can be guided by the guiding device
  • the orientation of the ablation optical fiber can be realized without installing an additional support structure at the skull. Control, reduce patient pain, easy installation.
  • FIG. 4 is a schematic structural diagram of the rotation driving device 4 .
  • the rotation driving device 4 includes a first driver 41 , which is connected to the ablation fiber 5 , and drives the ablation fiber 5 to rotate around its axis.
  • first driver 41 There are various structural forms of the first driver 41, including but not limited to electric motors, hydraulic forms, and pneumatic forms, which are not limited in this embodiment of the present invention.
  • the rotation driving device 4 may further include a first transmission mechanism, the first driver 41 is connected to the first transmission mechanism, and the first transmission mechanism is connected to the ablation optical fiber 5 . connected, so that the first driver 41 drives the ablation optical fiber 5 to rotate around its own axis through the connection of the first transmission mechanism.
  • first transmission mechanism including but not limited to a gear form and a belt form.
  • the ablation fiber 5 is driven to rotate around its own axis by the first driver 41 .
  • the rotary driving device 4 may further include a rotary device base 42 , and the first driver 41 is mounted on the rotary device base 42 .
  • FIG. 5 is a cross-sectional view of the partial structure of FIG. 4. Referring to FIG. 41 drives the ablation fiber adapter 43 to rotate, and the distal end of the ablation fiber adapter 43 is connected to the ablation fiber 5 .
  • the ablation fiber adapter 43 Since the distal end of the ablation fiber adapter 43 is connected to the ablation fiber 5 , when the first driver 41 drives the ablation fiber adapter 43 to rotate, the ablation fiber adapter 43 drives the ablation fiber 5 to rotate accordingly.
  • the stereotaxic system provided by the embodiment of the present invention further includes a controller, and the first driver 41 is connected in communication with the controller.
  • the controller sends a motion control command to the first driver 41, and the first driver 41 drives the ablation fiber 5 to rotate around its own axis according to the motion control command. That is, the rotation of the ablation fiber 5 about its own axis is controlled by the controller.
  • the controller can be an autonomous controller or a signal receiving end.
  • the motion control command is determined by the stereotaxic transmission system itself; when the controller is a signal receiving end, the controller can receive stereoscopic Directs control signals external to the drivetrain, such as a workstation, to determine motion control commands based on the received control signals.
  • the first driver 41 can directly drive the ablation optical fiber 5 to rotate around its own axis.
  • the motion control command may include the number of target rotations, the end angle position or relative rotation angle of each rotation, and the dwell time after each rotation, etc.
  • the first driver 41 drives the ablation fiber 5 to rotate around its own axis according to the motion control command. :
  • the first driver 41 drives the ablation optical fiber 5 to rotate around its own axis for a target number of rotations, and stays for a dwell time after the rotation when reaching the end angular position or relative rotation angle of each rotation.
  • the angular position of the end point of each rotation is determined based on the initial angular position, and the initial angular position may be calibrated.
  • the initial angle position is the position corresponding to 0°
  • the end angle position of the first rotation is the position corresponding to 30°
  • the end angle position of the second rotation is the position corresponding to 60°.
  • the dwell time after each rotation is 5s; then the first driver 41 drives the ablation fiber 5 to rotate around its own axis to a position corresponding to the end angle position of 30° and stays for 5s, and then drives the ablation fiber 5 to rotate around its own axis to the end angle position It is the position corresponding to 60° and stays for 5s.
  • the angle and the stop position of the multiple rotations can be the same or different, and the combination of the angle and the stop time can be various, which are all included in the scope of the present invention.
  • the controller can control the first driver to drive the ablation fiber 5 to rotate.
  • the rotation driving device 4 further includes a first angle sensor , the first angle sensor is connected in communication with the controller.
  • the first driver 41 is an ultrasonic motor.
  • the first angle sensor is connected to the drive shaft of the first driver 41 or the ablation fiber 5;
  • the first angle sensor detects the rotation angle of the ablation fiber 5 or the rotation angle of other components that are the same as the rotation angle of the ablation fiber 5, and sends the detected rotation angle to the controller.
  • the rotation angle of the ablation fiber 5 or the rotation angle of the ablation fiber 5 needs to be determined by the first angle sensor. and send the detected rotation angle to the controller, and the controller receives the detected rotation angle so as to know the rotation angle of the ablation fiber 5 .
  • Other components may be the drive shaft of the first driver 41 .
  • the other components may be the ablation fiber adapter 43 .
  • the rotation angle of the drive shaft or the rotation angle of the ablation fiber 5 can be detected and fed back to the controller.
  • the stereotaxic system provided by the embodiment of the present invention includes a controller
  • the stereotaxic system provided by the embodiment of the present invention further includes a front-rear translation drive device 6
  • the rotation drive device 4 is slidably connected to the front and rear.
  • Translation drive 6 There are various ways in which the rotary drive device 4 is slidably connected to the front and rear translation drive device 6 , which is not limited in the embodiment of the present invention.
  • the front and rear translation driving device 6 can drive the rotary driving device 4 to translate back and forth, so that the ablation fiber 5 moves with the movement of the rotary driving device 4 .
  • the plug connector 3 can be fixed to the front and rear translation drive device 6, and the plug connector 3 and the front and rear translation drive device 6 can be fixedly connected in various ways.
  • the stereotaxic system provided in the embodiment of the present invention may further include a plug-in connector 7, one end of the plug-in connector 7 is fixedly connected to the front-rear translation drive device 6, and the other end is fixedly connected to the plug-in member 3, whereby the plug-in member 3 passes through
  • the plug connector 7 realizes a fixed connection with the front and rear translation drive device 6 .
  • the front and rear translation driving device 6 can drive the rotary driving device 4 to translate back and forth, so that the ablation fiber 5 moves with the movement of the rotary driving device 4 Therefore, the forward and backward translation control of the ablation optical fiber 5 is realized by the forward and backward translation driving device 6 .
  • front and rear translation drive device 6 is connected to the controller in communication, and the method for the front and rear translation drive device 6 to realize the control of the front and rear translation of the ablation fiber 5 may be:
  • the controller sends front and rear translation commands to the front and rear translation drive device 6;
  • the front and rear translation drive device 6 drives the rotation drive device 4 to translate back and forth according to the front and rear translation commands, and then drives the ablation optical fiber 5 to translate back and forth.
  • the front-to-back translation command may include a translation direction and a translation distance
  • the front-to-back translation drive device 6 drives the rotation drive device 4 to translate back and forth according to the front-to-back translation command:
  • the front and rear translation drive device 6 drives the rotation drive device 4 to move the translation distance along the translation direction.
  • the translation direction includes front and rear, and the front and rear are preset, for example, the distal end is set as the front, and the proximal end is set as the rear.
  • the controller can control the front and rear translation drive device 6 to drive the rotation drive device 4 to translate back and forth, so that the ablation fiber 5 moves with the movement of the rotation drive device 4, thereby realizing the ablation fiber. 5. Control the forward and backward translation.
  • the structure of the guiding device 1 will be introduced as follows:
  • FIG. 6 is a cross-sectional view of the assembly structure of the guide device 1 provided by the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the explosion structure of the guide device 1 provided by the embodiment of the present invention.
  • the guide device 1 includes a hollow elongated structural guide member 11 and a clamping assembly 12, the distal end of the clamping assembly 12 is connected with the proximal end of the hollow elongated structural guide member 11, and the clamping assembly 12 is used for After the sleeve 2 protrudes from the distal end of the hollow elongated structure guide 11 , the relative positions of the sleeve 2 and the hollow elongated structure guide 11 are fixed.
  • the hollow elongated structure guide 11 is hollow and can guide and orient the ablation optical fiber 5 .
  • the clamping assembly 12 is an assembly that can play a clamping role.
  • the relative positions of the sleeve 2 and the hollow elongated structure guide 11 can be fixed by means of the hollow elongated structure guide 11 and the clamping assembly 12 .
  • the clamping assembly 12 may include an elastic plug 121 , a clamping adapter 122 , a jacking member 123 and a tightening member 124 .
  • the tightening member 124 is threadedly connected with the ejector screw 123, the distal end of the ejector screw 123 is inserted into the clamping adapter 122 and contacts with the elastic plug 121, and the distal end of the tightening member 124 can be threaded with the clamping adapter 122
  • the distal end of the clamping adapter 122 is connected with the proximal end of the hollow elongated structural guide member 11
  • the elastic plug 121 is disposed in the proximal end cavity of the hollow elongated structural guide member 11 .
  • the tightening member 124 and the jacking member 123 may be an integral structure, and the integral structure is threadedly connected with the clamping adapter 122 .
  • the tightening member 124 is tightened on the ejector screw 123 and the clamping adapter 122 , the ejector screw 123 presses the elastic plug 121 , and the sleeve 2 passes through the ejector screw 123 .
  • the elastic plug 121 and the hollow elongated structure guide member 11 the distal end of the sleeve 2 protrudes from the distal end of the hollow elongated structure guide member 11, and the elastic plug 121 is squeezed because the ejector wire member 123 presses the elastic plug 121
  • the inner sleeve 2 further enables the elastic plug 121 to fix the position of the sleeve 2 .
  • the elastic plug 121 may be a rubber plug.
  • the ejector screw 123 can press the elastic plug 121 so that the elastic plug 121 presses the inner sleeve 2 , so as to achieve the purpose of fixing the sleeve 2 .
  • FIG. 8 is a schematic diagram of the assembly structure of the plug connector 3 according to the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an exploded structure of a plug connector 3 provided in an embodiment of the present invention.
  • the plug connector 3 may include a sealing plug 31, an ablation fiber connector 32, and a sealing nut 33, a luer connector 34, a water inlet adapter 35, and a sealing nut 33, a luer connector 34, and an ablation fiber connector 32 connected in sequence from the proximal end to the distal end.
  • Water outlet adapter 36 is a sealing plug 31, an ablation fiber connector 32, and a sealing nut 33, a luer connector 34, a water inlet adapter 35, and a sealing nut 33, a luer connector 34, and an ablation fiber connector 32 connected in sequence from the proximal end to the distal end.
  • Water outlet adapter 36 .
  • the sealing plug 31 is arranged in the luer connector 34 , and the inner boss 331 of the sealing nut 33 is in contact with the sealing plug 31 .
  • the sealing nut 33 is tightened on the Luer connector 34, the inner boss 331 of the sealing nut 33 presses the sealing plug 31, and the ablation fiber 5 passes through the ablation fiber connector 32, the sealing nut 33, the sealing plug 31 and the water inlet adapter 35 Enter casing 2.
  • the ablation fiber joint 32 is connected with the transmission part of the rotation driving device 4, so that the ablation optical fiber 5 in the ablation optical fiber joint 32 moves together with the ablation optical fiber joint 32, wherein the transmission part of the rotation driving device 4 can be an ablation optical fiber adapter 43; the sealing nut 33 is threadedly connected with the luer joint 34; the luer joint 34 is threadedly connected with the water inlet adapter 35; the connection between the water inlet adapter 35 and the water outlet adapter 36 can be threaded or welded or glued.
  • the embodiment of the present invention does not make any limitation on this.
  • the sealing nut 33 Since the sealing nut 33 is tightened on the Luer connector 34 during use, the inner boss 331 of the sealing nut 33 presses the sealing plug 31, and the sealing plug 31 squeezes the internal ablation optical fiber 5 to prevent the cooling fluid from flowing out, but the pressing does not Affects the rotation and movement of the ablation fiber 5 .
  • the pipe 2 can include an inner water circulation pipe 21 and an outer water circulation pipe 22, wherein the first water pipe 37 can be a water inlet pipe or a water outlet pipe.
  • the second water pipe 38 can be a water inlet pipe or a water outlet pipe, but One of the two is the outlet pipe, and the other is the inlet pipe.
  • the functions of the water inlet adapter 35 and the water outlet adapter 36 can also be reversed. That is, the water inlet adapter 35 can be used for water inlet or water outlet, and the water outlet adapter 36 can be used for water inlet or water outlet, but one of the two is used for water inlet and the other is used for water outlet.
  • the inner water circulation pipe 21 is arranged in the outer water circulation pipe 22 with a gap between them.
  • the first water pipe 37 is communicated with the inner water circulation pipe 21 through the water inlet adapter 35, and the second water pipe 38 is connected with the outer water circulation pipe through the water outlet adapter 36. 22 Connected.
  • the ablation fiber 5 enters the inner water circulation pipe 21 through the ablation fiber connector 32 , the sealing nut 33 and the sealing plug 31 .
  • the cooling liquid is transported through one of the first water pipe 37 and the second water pipe 38, so that the cooling liquid passes through the gap between the inner water circulation pipe 21 and the outer water circulation pipe 22 and passes from the first water pipe 37 and the second water pipe 38.
  • the other one outputs cooling liquid, so that the cooling liquid can cool the ablation optical fiber 5 in the inner water circulation pipe 21, and because of the existence of the sealing plug 31, the ablation optical fiber 5 can be cooled and sealed. .
  • the cooling of the ablation optical fiber 5 is achieved by setting the sealing plug 31 and setting the plug 3 to include the first water pipe 37 and the second water pipe 38 , and setting the sleeve 2 to include the inner water circulation pipe 21 and the outer water circulation pipe 22 . seal.
  • a rigid structure may be provided outside at least the first part of the ablation fiber 5, or the ablation fiber 5 may be provided with a rigid structure.
  • At least a first portion of the ablation fiber 5 has a strengthened outer surface structure, wherein the first portion includes the portion of the ablation fiber 5 from the proximal end to the portion located in the sealing plug 31 and the portion beyond the sealing plug 31, and the distal end of the ablation fiber 5 is located in the system. At the most distal end, the length of the portion beyond the sealing plug 31 is greater than the moving distance of the ablation fiber 5 .
  • the ablation optical fiber 5 is not fixed, but can be moved back and forth.
  • the moving distance of the ablation fiber 5 is the forward movement distance;
  • the movement distance of the ablation fiber 5 is the retreat distance, and the front and rear directions can be calibrated.
  • the direction of the end is the front, and the direction of the proximal end is the rear.
  • the length of the part beyond the sealing plug 31 is set to be greater than the moving distance of the ablation fiber 5, so as to ensure that during the forward and backward movement of the ablation fiber 5, the sealing plug 31 can always be connected with the ablation fiber 5.
  • the first part of the optical fiber 5 is in contact.
  • the strength of the ablation fiber 5 is enhanced by arranging at least the first portion of the ablation fiber 5 to have a rigid structure or to have a reinforced outer surface structure, and by arranging the first portion including the ablation fiber 5 from the proximal end to the In the part inside the sealing plug 31 and the part beyond the sealing plug 31, when the distal end of the ablation fiber is located at the most distal end of the system, the length of the part beyond the sealing plug 31 is greater than the moving distance of the ablation fiber 5, which ensures that even during ablation After the optical fiber 5 is moved, the ablation optical fiber 5 in the sealing plug 31 still has a rigid structure or a reinforced outer surface structure, which eliminates the effect of friction between the sealing plug 31 and the ablation fiber 5 on the rotation of the ablation fiber 5 .
  • the rotation driving device 4 includes the first angle sensor
  • the rotation angle of the ablation optical fiber 5 having a rigid structure or a reinforced outer surface structure can be detected, and sent to the controller, so as to accurately monitor the rotation angle of the ablation optical fiber 5 .
  • the rotation angle realizes the rotation control of the ablation fiber 5 .
  • FIG. 10 is a schematic structural diagram of the casing 2 provided by the embodiment of the present invention.
  • a first strength enhancing structure 23 may also be provided between the outer water circulation pipe 22 and the inner water circulation pipe 21,
  • a second strength enhancing structure 24 is disposed between the inner water circulation pipe 21 and the ablation optical fiber 5 .
  • the first strength enhancement structure 23 may be a plurality of reinforcement frames, and the plurality of reinforcement frames may be evenly distributed between the outer water circulation pipe 22 and the inner water circulation pipe 21.
  • the second strength enhancement structure 24 may also be a plurality of reinforcement frames. A plurality of reinforcing frames can be evenly distributed between the inner water circulation tube 21 and the ablation optical fiber 5 .
  • a gap is provided between the second strength enhancement structure 24 and the ablation fiber 5, and the surface of the reinforcement frame that may contact the ablation fiber 5 is set as a convex surface.
  • the strength and puncturing ability of the sleeve 2 are increased, the deformation is prevented when squeezed by an external force, and the circulation of the cooling fluid is blocked.
  • the front and rear translation drive device 6 may include a front and rear translation drive device base 61 , at least one sliding rail 62 , a lead screw 63 , and a sliding block 64 and the second driver 65 .
  • At least one sliding rail 62 and the lead screw 63 are arranged in parallel and pass through the sliding block 64. Both ends of the at least one sliding rail 62 are fixedly mounted on the front and rear translation drive device base 61, and the lead screw 63 is rotatably connected to the front and rear translation drive device base. 61 , the second driver 65 drives the lead screw 63 to rotate, the second driver 65 is installed on the base 61 of the front and rear translation drive device, and the rotary drive device 4 is installed on the sliding block 64 .
  • the second driver 65 drives the lead screw 63 to rotate, and the lead screw 63 drives the sliding block 64 to move along the slide rail. Since the rotary driving device 4 is installed on the sliding block 64, the sliding block 64 can drive the rotary driving device 4 to move forward and backward.
  • the second driver 65 there are various structural forms of the second driver 65, including but not limited to electric motors, hydraulic forms, and pneumatic forms, which are not limited in this embodiment of the present invention.
  • the front and rear translation drive device 6 may further include a second transmission mechanism, the second driver 65 is connected with the second transmission mechanism, and the second transmission mechanism is connected with the lead screw The other end of 63 is connected, so that the second driver 65 drives the lead screw 63 to rotate through the connection of the second transmission mechanism.
  • the second transmission mechanism includes a gear form and a belt form.
  • the second transmission mechanism includes a driven wheel 66, a driving wheel 67 and a belt, and the second driver 65 drives the driving wheel 67 to rotate, so that the driving wheel 67 is connected with the driven wheel 66 through the belt, so that the driving wheel 67 drives the driven wheel 67.
  • the wheel 66 rotates, the driven wheel 66 is connected with the other end of the lead screw 63, and the driven wheel 66 drives the lead screw 63 to rotate.
  • the sliding block 64 can drive the rotary driving device 4 to move forward and backward.
  • the second magnetic resonance guided laser ablation treatment system of the present invention includes: a workstation 100 , a laser ablation device 200 , a stereotaxic assembly 300 and an optical fiber cooling assembly 400 .
  • the fiber cooling assembly 400 is illustrated separately and is no longer described as part of the stereotaxic assembly 300, and the ablation fiber is disposed in the fiber cooling assembly 400 in use.
  • FIG. 12 is a schematic structural diagram of a second stereotaxic system according to an embodiment of the present invention.
  • a stereotaxic system provided by an embodiment of the present invention includes a guide device 8 , a transmission sleeve 9 , an insert 10 and a rotary drive device 4 .
  • the guide device 8 is connected to the distal end of the drive sleeve 9 , and the proximal end of the drive sleeve 9 is connected to the distal end of the insert 10 .
  • the ablation fiber passes through the insert 10, the transmission sleeve 9 and the guide device 8, the distal end of the ablation fiber can be extended from the distal end of the guide device 8, and the rotation driving device 4 drives the ablation fiber to rotate.
  • the insert 10 can be fixed to any structure, as long as the proximal end of the insert 10 is opposite to the distal end of the rotary drive device 4 after being fixed, so that the rotary drive device 4 can drive the ablation fiber to rotate, and the ablation fiber 5 can rotate along its own axis in the insert 10. Just move in the direction and rotate around its own axis.
  • the insert 10 is fixed to a dedicated bracket.
  • the stereotaxic system provided by the embodiment of the present invention includes a guide device 8, a transmission sleeve 9, an insert 10, and a rotary drive device 4.
  • the guide device 8 is connected with the distal end of the transmission sleeve 9, and the The proximal end is connected to the distal end of the plug-in 10.
  • the ablation optical fiber 5 passes through the plug-in 10, the transmission sleeve 9 and the guide device 8. 4. Drive the ablation fiber to rotate.
  • the rotation driving device drives the ablation optical fiber to rotate to control the rotation of the ablation optical fiber
  • the direction of implantation of the ablation optical fiber can be guided by the guiding device
  • the ablation optical fiber can be oriented without installing an additional support structure at the skull. Control, less pain for patients, easy installation.
  • the stereotaxic system provided by the embodiment of the present invention may further include a front-rear translation drive device 6 , the rotation drive device 4 is slidably connected to the front-rear translation drive device 6 , and the rotation drive device 4 is slidably connected to the front-rear translation drive device 6 .
  • the rotation driving device 4 is slidably connected to the front and rear translation driving device 6
  • the front and rear translation driving device 6 can drive the rotation driving device 4 to move along the length of the ablation fiber, so that the ablation fiber moves with the movement of the rotation driving device 4 .
  • the plug-in 10 may also be fixed to the front-rear translation drive device 6, and the plug-in 10 and the front-rear translation drive device 6 can be fixedly connected in various ways.
  • the stereotaxic system provided by the embodiment of the present invention may also include a plug-in One end of the connector 7 is fixedly connected to the front and rear translation drive device 6 , and the other end is fixedly connected to the plug 10 .
  • the front and rear translation driving device 6 can drive the rotary driving device 4 to move back and forth along the length direction of the ablation fiber, so that the ablation fiber rotates with the driving device. 4 to move, thereby realizing the control of the movement of the ablation fiber along the length direction through the front and rear translation drive device.
  • FIG. 13 is a schematic structural diagram of a guide device 8 provided by an embodiment of the present invention.
  • the guide device 8 includes a hollow elongated structural guide member 81 and a guide device housing.
  • the proximal end of the hollow elongated structural guide member 81 is connected to The distal end of the guide device housing is connected, and the proximal end of the guide device housing is connected with the distal end of the transmission sleeve 9 .
  • the ablation fiber passes through the guide housing and the hollow elongated structure guide 81 from which the distal end of the ablation fiber 5 can protrude.
  • the hollow elongated structure guide 81 is hollow and can guide and orient the ablation optical fiber.
  • the hollow elongated structure guide 81 can be a hollow bone nail.
  • the guide housing there are various structures of the guide housing, including but not limited to the following:
  • the housing of the guide device is the first bone screw cap, the proximal end of the hollow elongated structure guide member 81 is threadedly connected with the distal end of the first bone screw cap, and the proximal end of the first bone screw cap is connected with the distal end of the transmission sleeve 9 .
  • the guide device 8 may further include a second angle sensor and a second rotation positioning device, both of which are mounted on the guide device housing.
  • the ablation optical fiber passes through the second rotational positioning device and the second angle sensor.
  • the second angle sensor is detachably connected to the second rotation positioning device, and the ablation optical fiber passes through the second rotation positioning device and the second angle sensor and can move in the axial direction and rotate around its own axis.
  • the second rotation positioning device clamps the ablation fiber according to the preset pressure, allows the ablation fiber to move along its own length direction, and at the same time makes the ablation fiber drive the second rotation positioning device to rotate, and the second angle sensor detects the position of the second rotation positioning device.
  • the rotation angle since the ablation fiber drives the second rotation positioning device to rotate, the rotation angle of the second rotation positioning device detected by the second angle sensor is also the rotation angle of the ablation fiber, and the second angle sensor sends the detected rotation angle to control device.
  • the rotation angle of the ablation optical fiber located in the guide device housing can be detected.
  • FIG. 14 is an exploded view of one angle of the second rotary positioning device and the second angle sensor provided by the embodiment of the present invention
  • FIG. 15 is another angle of the second rotary positioning device and the second angle sensor provided by the embodiment of the present invention. Explosion diagram.
  • the second rotational positioning device may include a main body 51 , at least one adjustable jack 52 , two bearings 53 , a first shaft 54 and a second shaft 55 .
  • the side of the main body 51 is provided with two holes, one end of the main body 51 is provided with a groove, the groove divides the two holes into two parts, the bottom of the groove is provided with a through hole, and one end face of the main body 51 is provided with a
  • the first hole 56 adapted to the presser 52 is mobilized, one of the two holes close to the first hole 56 is communicated with the first hole 56, the two bearings 53 are arranged in the groove, and the first shaft 54 passes through the two holes
  • One of the bearings 53 is arranged in one of the two holes, the second shaft 55 is arranged in the other of the two holes through the other of the two bearings 53, and the top pressure can be adjusted.
  • the device 52 is arranged in the first hole 56, and the ablation optical fiber 5 is arranged between the two bearings 53 and passes through the through hole at the bottom of the groove.
  • the centerlines of the two holes are parallel to each other.
  • the adjustable top pressure device 52 In the use state, tighten the adjustable top pressure device 52, the two bearings 53 clamp the ablation fiber 5, and the pressure between the two bearings 53 and the ablation fiber 5 reaches a predetermined value, that is, the adjustable top pressure can be adjusted by tightening Adjust the position of the shaft in the hole communicating with the first hole 56 among the two holes, so that the shaft in the hole communicating with the first hole 56 drives the bearing 53 through which it passes to apply pressure to the ablation fiber 5, and at the same time , the shafts in the two holes that are not communicated with the first hole 56 also apply pressure to the ablation fiber 5 through the bearing 53 through which they pass, thereby, by tightening the adjustable pusher 52, the two The pressure between the bearing 53 and the ablation fiber 5 is adjusted to a predetermined value.
  • the size of the hole communicating with the first hole 56 among the two holes needs to be larger than that in the hole. the size of the axis.
  • the shaft in the hole that is not communicated with the first hole 56 among the two holes can be fixedly arranged in the hole, which is not limited in the embodiment of the present invention, as long as the shaft in the hole can pass through the bearing through which it passes. 53 is sufficient to apply pressure to the ablation fiber 5 .
  • the type of the bearing 53 is not limited in any way in the embodiment of the present invention.
  • the bearing 53 may be a bushing.
  • the number of the adjustable pushers 52 may be two, and the number of the first holes 56 may be two.
  • the two first holes 56 may be located on both sides of the groove.
  • the second rotational positioning device includes a main body 51 , at least one adjustable top pressure device 52 , two bearings 53 , a first shaft 54 and a second shaft 55 , the other end of the main body 51
  • a protrusion 511 is provided, the protrusion 511 is provided with a through hole, the through hole of the protrusion 511 communicates with the through hole at the bottom of the groove, the ablation optical fiber 5 passes through the through hole of the protrusion 511, and the second angle sensor is provided with a card hole 50, The protrusion 511 is clamped with the clamping hole 50 .
  • the second angle sensor and the second rotation positioning device can be detachably connected in a way that a protrusion 511 is provided at the other end of the main body 51, and a snap hole 50 is provided on the second angle sensor.
  • the two angle sensors are connected with the second rotary positioning device.
  • the left and right sides of the protrusion 511 are arc-shaped, the clamping hole 50 of the second angle sensor is a horseshoe-shaped, and the protrusion 511 is clamped with the horseshoe-shaped clamping hole 50.
  • the embodiment of the present invention does not The specific shapes of the protrusion 511 and the clamping hole 50 are limited, as long as the two can be clamped.
  • the guide housing may include a second bone screw cap 82 , a guide housing body, and a drive sleeve mounting base 83 .
  • the proximal end of the hollow elongated structural guide member 81 is threadedly connected with the distal end of the second bone screw cap 82, the proximal end of the second bone screw cap 82 is connected with the distal end of the guide device housing body, and the transmission sleeve is mounted on the base 83 It is arranged at the proximal end of the main body of the guide device housing, the transmission sleeve installation base 83 is connected to the distal end of the transmission sleeve 9, and the ablation optical fiber 5 passes through the transmission sleeve installation base 83, the main body of the guiding device housing and the second bone Nail cap 82.
  • the transmission sleeve installation base 83 is arranged on the proximal end of the guide device housing body, and the transmission sleeve installation base 83 is connected with the distal end of the drive sleeve 9 , and then the distal end of the second bone screw cap 82 is threadedly connected with the proximal end of the hollow elongated structural guide member 81 .
  • the main body of the guide device housing and the transmission sleeve mounting base 83 may have an integrated structure or a non-integrated structure, which is not limited in the embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of FIG. 13 .
  • the guide device housing body may include a guide device housing body fixing portion 84 and a guide device housing.
  • the body main body sliding part 85, the proximal end of the second bone nail cap 82 is connected with the distal end of the guide device housing main body fixing part 84, and the proximal end of the guiding device housing body fixing part 84 is connected to the guide device housing main body sliding part 85.
  • the distal end is connected.
  • the transmission sleeve mounting base 83 is disposed at the proximal end of the sliding part 85 of the main body of the guide device.
  • the guide device housing body fixing portion 84 and/or the guide device housing body sliding portion 85 are provided with a scale 86 , and the guide device housing body fixing portion 84 and the guide device housing body sliding portion 85 can move relative to each other.
  • the scale 86 shows the relative movement distance, that is to say, when in use, the sliding part 85 of the main body of the guiding device can be pulled away from the fixed part 84 of the main body of the guiding device. The pull-out distance is read from the scale 86, and in FIG. 16, the scale 86 is provided on the sliding portion 85 of the guide housing main body.
  • the guide case body fixing portion 84 and/or the guide case body sliding portion 85 can be displayed.
  • the relative motion distance between them can be provided.
  • the guide device housing on the basis that the guide device housing includes the second bone nail cap 82 , the guide device housing main body and the transmission sleeve installation base 83 , the guide device housing also includes the bone nail adapter bolts 87 , the second When the screw cap 82 is tightened to the hollow elongated structural guide member 81, the distal end of the screw transfer bolt 87 is fixed in the second bone screw cap 82, and the proximal end of the bone screw transfer bolt 87 is in contact with the main body of the guide device housing. The distal end is threaded, and the ablation optical fiber 5 is passed through the bone screw adapter bolt 87 .
  • the bone nail adapter bolt 87 is provided with a bolt protrusion 871, and the size of the bolt protrusion 871 is larger than the size of the opening at the proximal end of the second bone nail cap 82.
  • the opening at the proximal end of the second bone screw cap 82 clamps the bolt protrusion 871 , so that the distal end of the bone screw adapter bolt 87 is fixed in the second bone screw cap 82 .
  • the bone nail transfer bolt 87 In use, firstly insert the bone nail transfer bolt 87 into the second bone nail cap 82, then screw the proximal end of the bone nail transfer bolt 87 with the distal end of the guide device housing body, and finally connect the second bone nail
  • the cap 82 is screwed to the hollow elongated structural guide 81 such that the opening at the proximal end of the second screw cap 82 and the hollow elongated structural guide 81 catch the bolt projection 871 .
  • the guide device 8 may further include a second angle sensor 88 and a second rotation positioning device 89 , both of which are the second angle sensor 88 and the second rotation positioning device 89 .
  • the ablation fiber 5 passes through the second rotational positioning device 89 and the second angle sensor 88 .
  • the guide device 8 may also include a cooling sleeve 60, a cooling circulation assembly 70 and a sealing plug 31, the cooling circulation assembly 70 and the sealing plug 31 along the distal The direction to the proximal end is sequentially installed in the guide device housing, the cooling sleeve 60 passes through the sealing plug 31 and the cooling circulation assembly 70 in sequence, and the ablation optical fiber 5 is arranged inside the cooling sleeve 60 .
  • the guide device 8 may further include a cooling cycle assembly cap 90, which is provided at the proximal end of the sealing plug 31 and installed in the guide device housing. 60 passes through the cooling cycle assembly cap 90 .
  • cooling and sealing of the ablation optical fiber is achieved by arranging the cooling jacket 60 , the cooling circulation assembly 70 and the sealing plug 31 .
  • the cooling circulation assembly 70 is clamped in the sliding part 85 of the main body of the guiding device, and the sliding part 85 of the main body of the guiding device can drive the cooling jacket 60 to perform longitudinal movement of a fixed distance relative to the fixing part 84 of the main body of the guiding device.
  • the structure of the plug-in 10 is introduced as follows:
  • FIG. 17 is a schematic view of the structure of the plug-in 10 .
  • the plug-in 10 may include a plug-in housing 101 and a plug-in transmission sleeve installation base 102 .
  • the plug-in drive sleeve installation base 102 is disposed at the distal end of the plug-in housing 101, the plug-in drive sleeve installation base 102 is connected to the proximal end of the drive sleeve 9, and the ablation optical fiber 5 passes through the plug-in housing 101 and the plug-in drive sleeve
  • the base 102 is installed, the ablation fiber 5 is provided with an ablation fiber plug 501 , and the ablation fiber plug 501 can protrude from the proximal end of the insert housing 101 .
  • the plug-in housing 101 and the plug-in drive sleeve mounting base 102 may be an integral structure.
  • FIG. 18 is another schematic diagram of the structure of the insert 10.
  • the guide device 8 includes the sealing plug 31, the frictional force between the sealing plug 31 and the ablation fiber 5 and the stress accumulation in the longitudinal direction of the ablation fiber 5 , after the rotation angle of the ablation optical fiber 5 at the second angle sensor reaches the preset requirement, the rotation angle is unstable. Therefore, when the guide device 8 further includes the cooling sleeve 60, the cooling circulation assembly 70 and the sealing plug 31, the insert 10 may also include a third angle sensor 103 and a third rotation positioning device 104, the third rotation positioning device 104 and the third angle sensor 103 are both installed in the plug-in housing 101, and the ablation optical fiber 5 passes through the third rotation positioning device 104 and 104.
  • the third angle sensor 103 The specific structures and connection methods of the third rotary positioning device 104 and the third angle sensor 103 are the same as the specific structures and connection methods of the second rotary positioning device and the second angle sensor, the only difference being that the direction is different: the second angle sensor is located far away
  • the second rotation positioning device is located at the proximal end; the third angle sensor 103 is located at the proximal end, and the third rotation positioning device 104 is located at the distal end.
  • the guide device housing is the first structure above, here No longer.
  • the third angle sensor 103 detects the rotation angle of the third rotation positioning device 104 and sends it to the control device. After receiving the rotation angle of the third rotation positioning device 104, the control device performs subsequent control operations to make the rotation of the second rotation positioning device. The angle is the same as the rotation angle of the third rotary positioning device 104 .
  • the rotation angle of the ablation fiber located in the plug-in housing 83 can be detected, so that the control device can perform subsequent control operations so that the ablation fiber 5 is positioned in the second
  • the rotation angle at the angle sensor is the same as the rotation angle at the third angle sensor 103 .
  • the plug-in housing 101 may include an upper plug-in housing 1011 and a lower plug-in housing 1012.
  • the lower shell 1012 includes an extension part 10121 and a lower connecting part 10122 connected to each other.
  • the upper shell 1011 and the lower connecting part 10122 of the plug-in cover each other to form an accommodating cavity.
  • the third rotation positioning device 104 and the third angle sensor 103 are installed in the accommodating cavity. Into the cavity.
  • the rotary drive device 4 will be introduced below:
  • the rotation driving device 4 includes a first driver 41 , the first driver 41 is connected with the ablation optical fiber 5 , and the first driver 41 drives the ablation optical fiber 5 to rotate around its own axis.
  • first driver 41 There are various structural forms of the first driver 41, including but not limited to electric motors, hydraulic forms, and pneumatic forms, which are not limited in this embodiment of the present invention.
  • the rotation driving device 4 may further include a first transmission mechanism, the first driver 41 is connected to the first transmission mechanism, and the first transmission mechanism is connected to the ablation optical fiber 5 . connected, so that the first driver 41 drives the ablation optical fiber 5 to rotate around its own axis through the connection of the first transmission mechanism.
  • first transmission mechanism including but not limited to a gear form and a belt form.
  • the ablation fiber 5 is driven to rotate around its own axis by the first driver 41 .
  • the rotary driving device 4 may further include a rotary device base 42 , and the first driver 41 is mounted on the rotary device base 42 .
  • FIG. 5 is a cross-sectional view of FIG. 4.
  • the first driver 41 drives the ablation fiber adapter 43 to rotate, and the distal end of the ablation fiber adapter 43 is connected to the ablation fiber 5 .
  • the ablation fiber adapter 43 Since the distal end of the ablation fiber adapter 43 is connected to the ablation fiber 5 , when the first driver 41 drives the ablation fiber adapter 43 to rotate, the ablation fiber adapter 43 drives the ablation fiber 5 to rotate accordingly.
  • the ablation optical fiber 5 is an optical fiber
  • the ablation optical fiber is connected to the distal end of the ablation optical fiber adapter 43, and also includes a transmission optical fiber
  • the distal end of the transmission optical fiber is connected with the proximal end of the jumper fiber connector 44.
  • the proximal end of the transmission fiber is connected to the laser generator.
  • the distal end of the jumper fiber optic connector 44 is connected with the ablation fiber optic adapter 43, and the jumper fiber optic connector 44 is fixedly connected to the rotating device base 42 through the jumper fiber optic sleeve 45, and then the jumper fiber optic connector 44 is connected.
  • the distal end is disconnected from the distal end of the ablation fiber adapter 43, and the ablation fiber adapter 43 is then connected to the ablation fiber.
  • the ablation fiber adapter 43 can drive the ablation optical fiber connected to it to rotate along with it, and the ablation treatment can be performed through the ablation optical fiber.
  • the front and rear translation driving device 6 may include a front and rear translation driving device base 61 , at least one sliding rail 62 , a lead screw 63 , a sliding block 64 and a second driver 65 .
  • At least one sliding rail 62 and the lead screw 63 are arranged in parallel and pass through the sliding block 64. Both ends of the at least one sliding rail 62 are fixedly mounted on the front and rear translation drive device base 61, and the lead screw 63 is rotatably connected to the front and rear translation drive device base. 61 , the second driver 65 drives the lead screw 63 to rotate, the second driver 65 is installed on the base 61 of the front and rear translation drive device, and the rotary drive device 4 is installed on the sliding block 64 .
  • the second driver 65 drives the lead screw 63 to rotate, and the lead screw 63 drives the sliding block 64 to move along the slide rail. Since the rotary driving device 4 is installed on the sliding block 64, the sliding block 64 can drive the rotary driving device 4 along the ablation fiber. 5 moves in the length direction.
  • the second driver 65 there are various structural forms of the second driver 65, including but not limited to electric motors, hydraulic forms, and pneumatic forms, which are not limited in this embodiment of the present invention.
  • the front and rear translation drive device 6 may further include a second transmission mechanism, the second driver 65 is connected with the second transmission mechanism, and the second transmission mechanism is connected with the lead screw The other end of 63 is connected, so that the second driver 65 drives the lead screw 63 to rotate through the connection of the second transmission mechanism.
  • the second transmission mechanism includes a gear form and a belt form.
  • the second transmission mechanism includes a driven wheel 66, a driving wheel 67 and a belt, and the second driver 65 drives the driving wheel 67 to rotate, so that the driving wheel 67 is connected with the driven wheel 66 through the belt, so that the driving wheel 67 drives the driven wheel 67.
  • the wheel 66 rotates, the driven wheel 66 is connected with the other end of the lead screw 63, and the driven wheel 66 drives the lead screw 63 to rotate.
  • the sliding block 64 can drive the rotary driving device 4 to move back and forth along the length direction of the ablation fiber 5 .
  • the laser hyperthermia device based on magnetic resonance guidance provided by the embodiments of the present invention has the same technical features as the laser hyperthermia device based on magnetic resonance guidance provided by the above-mentioned embodiments, so it can also solve the same technical problems and achieve the same technical effect.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.

Abstract

磁共振引导激光消融治疗系统,包括光纤冷却组件(400),其容纳并冷却消融光纤(5);激光消融设备(200),其含有激光发生器和冷却装置;立体定向系统(300),其容纳并控制消融光纤(5)的位置和旋转角度;工作站(100),其配置成控制立体定向装置的运动,利用磁共振温度成像技术生成并显示磁共振引导激光消融治疗系统工作过程中目标部位的消融信息。

Description

磁共振引导激光消融治疗系统
本发明要求申请号为202011640255.6,申请日为2020.12.31,发明名称为“磁共振引导激光消融治疗系统”的优先权,其全部内容通过引用并入本文。
技术领域
本发明涉及医疗设备技术领域,具体涉及一种磁共振引导激光消融治疗系统。
背景技术
在脑部的局灶性癫痫、恶性肿瘤和放疗后坏疽等病症治疗中,使用激光间质热疗是一种有潜力的方法,通过激光对病患位置施加能量,实现对组织的消融,然而仍有一些问题没有解决,首先,一些厂家设计对于光纤末端运动控制的机构,然而引导并控制光纤进入颅内的头部安装结构复杂,重量过大,需要使用多个骨钉的辅助装置进行固定与结构加强,病人尤其是儿童对于植入骨钉的创伤难以接受,依从性差;其次,由于激光消融组织的范围有限,有植入多跟光纤进行消融的需求,然后现有头部安装结构占用面积过大,妨碍或者严重限制了不同光纤的植入距离,限制了植入位点的规划,无法进行植入位点距离过小的方案;再次,为了对于不规则体积的目标消融组织进行消融,实现对光纤出光方向的角度和出光时间的精确控制,即旋转进行精确的控制,尤其是在使用冷却套管进行冷却的情况下,冷却套管组件会对经过其中的光纤产生非刚性的固定,导致光纤末端发生不受控旋转,引起激光出射偏离设计的预期位置;最后,消融组件在人体中旋转,对路径周围的组织(尤其是脑组织)会造成损伤。
为解决以上问题中的一个或更多个,本发明提出了一种磁共振引导激光消融治疗系统。
发明内容
有鉴于此,本发明的目的在于提供一种磁共振引导激光消融治疗系统,对规则和不规则的组织均能进行有效消融。
第一方面,本发明实施例提供了第一种磁共振引导激光消融治疗系统,包括:
消融光纤;
激光消融设备,其含有激光发生器和冷却装置;
立体定向系统,其容纳并控制所述消融光纤的位置和旋转角度;
工作站,其配置成:控制所述立体定向装置的运动,利用磁共振温度成像技术生成并显示所述磁共振引导激光消融治疗系统工作过程中目标部位的消融信息。
可选的,消融光纤可以侧向出光。
立体定向系统,包括:
引导装置、套管、插接件和旋转驱动装置;
所述套管的近端连接于所述插接件,所述套管的远端可从所述引导装置的远端伸出;
使用状态下,消融光纤设置于所述套管内,所述旋转驱动装置驱动所述消融光纤旋转。
可选的,所述旋转驱动装置包括第一驱动器;
所述第一驱动器与所述消融光纤连接,所述第一驱动器驱动所述消融光纤围绕自身轴线旋转。
可选的,上述立体定向系统还包括控制器,所述第一驱动器与所述控制器通信连接;
使用状态下,所述控制器发送运动控制命令至所述第一驱动器;
所述第一驱动器根据所述运动控制命令驱动所述消融光纤围绕自身轴线旋转。
可选的,所述旋转驱动装置还包括第一角度传感器,所述第一角度传感器与所述控制器通信连接;
所述第一角度传感器检测所述消融光纤的旋转角度或者与所述消融光纤的旋转角度相同的其他部件的旋转角度,并发送所检测到的旋转角度至所述控制器。
可选的,上述立体定向系统还包括前后平移驱动装置;
所述旋转驱动装置滑动连接于所述前后平移驱动装置。
可选的,所述前后平移驱动装置与所述控制器通信连接;
所述控制器发送前后平移指令至所述前后平移驱动装置;
所述前后平移驱动装置根据所述前后平移指令驱动所述旋转驱动装置前后平移,继而带动所述消融光纤前后平移。
可选的,所述旋转驱动装置还包括旋转装置基座;
所述第一驱动器安装于所述旋转装置基座。
可选的,所述旋转驱动装置还包括消融光纤转接器;
使用状态下,所述第一驱动器驱动所述消融光纤转接器转动,所述消融光纤转接器的远端与所述消融光纤连接。
可选的,所述引导装置包括空心细长结构导向件和夹紧组件,所述夹紧组件的远端与所述空心细长结构导向件的近端连接,所述夹紧组件用于在所述套管伸出所述空心细长结构导向件的远端后,固定所述套管与所述空心细长结构导向件的相对位置。
可选的,所述夹紧组件包括弹性塞、夹紧转接件、顶丝件和旋紧件;
所述旋紧件与所述顶丝件螺纹连接,所述顶丝件的远端插入所述夹紧转接件内并与所述弹性塞接触,所述旋紧件的远端可与所述夹紧转接件的近端螺纹连接,所述夹紧转接件的远端与所述空心细长结构导向件的近端连接,所述弹性塞设置于所述空心细长结构导向件的近端空腔内;
使用状态下,所述旋紧件拧紧于所述顶丝件和所述夹紧转接件,所述顶丝件压紧所述弹性塞,所述套管穿过所述顶丝件、所述弹性塞和所述空心细长结构导向件,所述套管的远端可从所述空心细长结构导向件的远端伸出,所述弹性塞固定所述套管的位置。
可选的,所述插接件为空心壳体,所述套管的近端连接于所述空心壳体。
可选的,所述插接件包括密封塞、消融光纤接头以及沿从近端到远端的方向依次连接的密封螺母、鲁尔接头、入水转接件和出水转接件;
所述消融光纤接头与所述旋转驱动装置的传动部件连接,所述密封塞设置于所述鲁尔接头内,所述密封螺母的内部凸台与所述密封塞接触;
使用状态下,所述密封螺母拧紧于所述鲁尔接头,所述密封螺母的内部凸台压紧所述密封塞,所述消融光纤穿过所述消融光纤接头、所述密封螺母、所述密封塞和所述入水转接件进入所述套管。
可选的,所述插接件还包括第一水管和第二水管,所述套管包括内水循环管和外水循环管;
所述内水循环管设置于所述外水循环管内且两者之间有间隙,所述第一水管穿过所述入水转接件与所述内水循环管连通,所述第二水管穿过所述出水转接件与所述外水循环管连通;
使用状态下,所述消融光纤穿过所述消融光纤接头、所述密封螺母和所述密封塞进入所述内水循环管。
可选的,所述外水循环管与所述内水循环管之间设置有第一强度增强结构,所述内水循环管与所述消融光纤之间设置有第二强度增强结构。
可选的,所述消融光纤的至少第一部分外设置有刚性结构,或者,所述消融光纤的至少第一部分具有经过强化处理的外表面结构,其中,所述第一部分包括所述消融光纤自近端起至位于所述密封塞内的部分 以及超出所述密封塞的部分,所述消融光纤的远端位于所述系统的最远端时,超出所述密封塞的部分的长度大于所述消融光纤的移动距离。
可选的,所述前后平移驱动装置包括前后平移驱动装置基座、至少一个滑轨、丝杠、滑动块和第二驱动器;
所述至少一个滑轨和所述丝杠平行设置且均穿过所述滑动块,所述至少一个滑轨的两端固定安装于所述前后平移驱动装置基座,所述丝杠转动连接于所述前后平移驱动装置基座,所述第二驱动器驱动所述丝杠旋转,所述第二驱动器安装于所述前后平移驱动装置基座,所述旋转驱动装置安装于所述滑动块。
可选的,工作站可以通信连接激光消融设备和立体定向系统,调节激光发生器和冷却装置的参数,控制所述消融光纤的位置和旋转角度,在磁共振检测下进行消融,根据磁共振图像反馈的温度和消融信息,对所述激光消融设备和所述立体定向系统进行反馈控制。
第二方面,本发明实施例提供了另一种磁共振引导激光消融治疗系统,包括:
光纤冷却组件,其容纳并冷却消融光纤;
激光消融设备,其含有激光发生器和冷却装置;
立体定向系统,其容纳并控制所述消融光纤的位置和旋转角度;
工作站,其配置成:控制所述立体定向装置的运动,利用磁共振温度成像技术生成并显示所述磁共振引导激光消融治疗系统工作过程中目标部位的消融信息。
进一步地,工作站与医院的影像归档和通信系统相连接,在术前获取数字影像,并根据所述数字影像生成手术方案,将所述手术方案发送至所述激光消融设备,并在术中利用磁共振温度成像技术融合生成病灶区域的实时温度图像,根据所述实时温度图像生成控制信息,将所述控制信息发送给所述激光消融设备以实时调控所述激光消融设备的激光功率和冷却功率;
激光消融设备与所述工作站相连接,用于根据所述手术方案和所述控制信息产生并调节激光,驱动并控制冷却间质的循环,激光消融设备包括医用开关装置、激光发生器、冷却装置、传感器模块、交互模块和主控模块;
传感器模块,与主控模块相连接,用于收集所述激光热疗装置的工作参数信息,并将所述工作参数信息发送至所述主控模块;
交互模块,与主控模块相连接,用于获取操作指令信息,将所述操作指令信息发送给所述主控模块,并显示所述激光热疗装置的工作状态;
主控模块,与工作站相连接,用于根据所述手术方案、所述工作参数信息、所述操作指令信息和所述控制信息对冷却装置和激光发生器进行控制,其中,控制信息包括第一控制信息和第二控制信息,主控模块还用于监控激光发生器和冷却装置的安全运行参数,在安全运行参数超出安全阈值的情况下使激光热疗装置紧急停止和/或调节冷却装置;
激光发生器,与所述主控模块相连接,用于根据所述第一控制信息产生并调整用于进行消融的第一激光和用于辅助定位的第二激光;
冷却装置,与所述主控模块相连接,用于根据所述第二控制信息驱动并控制所述冷却间质的循环。
医用开关装置,与主控模块相连接,用于将交流电源转换为直流电源。
冷却装置包括蠕动泵、冷却间质和冷却间质输送管,还可以包括恒温箱。
可选的,消融光纤包含能够定向出光的消融探头,光纤冷却组件包括冷却液输送管、冷却套管、水循环转接组件、密封塞。
立体定向系统包括:
导向装置,所述导向装置包括冷却套管引导件和导向装置壳体;
至少两组传感器组件,所述传感器组件包括角度传感器;
旋转驱动装置,所述旋转驱动装置驱动所述消融光纤旋转;
控制器,所述控制器与所述传感器组件和所述旋转驱动装置通讯连接,接收所述传感器组件的角度信息,控制所述旋转驱动装置的运动,所述控制器还可以接收控制信息输入;
使用状态下,所述消融光纤的远端穿过所述光纤冷却组件,所述角度传感器固定连接于不随所述消融光纤旋转的装置或者结构,所述立体定向系统可以使得不同传感器处的消融光纤旋转角度保持相同或基本相同。
在一些实施例中,本发明的磁共振引导激光消融治疗系统中,感器组件还包括旋转定位装置,使得所述消融光纤可以在被测定旋转角度的同时沿纵轴移动,使用状态下所述旋转定位装置按照预设压力夹持所述消融光纤,所述消融光纤带动所述旋转定位装置旋转,所述角度传感器检测所述旋转定位装置的旋转角度,并发送所述旋转角度至所述控制器。
进一步地,立体定向系统还包括套管,所述套管使得所述第一组传感器组件和所述第二组传感器组件之间的消融光纤长度保持固定,允许消融光纤在其中围绕长轴转动和沿长轴移动。
可选地,立体定向系统还包括纵向运动装置,所述旋转驱动装置可以相对所述纵向运动装置运动,所述控制器对所述纵向运动装置发送控制信息,使得消融光纤沿长轴运动;进一步地,所述纵向运动装置与所述第二传感器组件连接。
可选地,立体定向系统中,导向装置壳体包括骨钉帽、导向装置壳体主体和导向装置壳体后盖;所述冷却套管引导件的近端与所述骨钉帽的远端螺纹连接,所述骨钉帽的近端与所述导向装置壳体主体的远端连接,所述导向装置壳体后盖盖合于所述导向装置壳体主体的近端,所述导向装置壳体后盖与所述套管的远端连接,所述光纤冷却组件设置于所述导向装置壳体主体之中;使用状态下,所述消融光纤穿过所述导向装置壳体后盖、所述导向装置壳体主体、所述骨钉帽、和所述冷却套管引导件。
进一步地,导向装置壳体主体包括导向装置壳体主体固定部和导向装置壳体主体滑动部,所述骨钉帽的近端与所述导向装置壳体主体固定部的远端连接,所述导向装置壳体主体固定部的近端与所述导向装置壳体主体滑动部的远端连接,所述导向装置后盖盖合于所述导向装置壳体主体滑动部的近端。
在本发明的另一些实施例中,磁共振引导激光消融治疗系统的立体定向系统包括:导向装置、套管、插件、旋转驱动装置和纵向移动驱动装置;
所述导向装置包括冷却套管引导件和导向装置壳体,所述导向装置壳体包括骨钉帽、导向装置壳体主体和导向装置壳体后盖,所述导向装置壳体主体包括导向装置壳体主体固定部和导向装置壳体主体滑动部,所述骨钉帽的近端与所述导向装置壳体主体固定部的远端连接,所述导向装置壳体主体固定部的近端与所述导向装置壳体主体滑动部的远端连接,所述导向装置后盖盖合于所述导向装置壳体主体滑动部的近端,所述导向装置壳体主体固定部和/或所述导向装置壳体主体滑动部设置有刻度尺,所述导向装置壳体主体固定部和所述导向装置壳体主体滑动部可相对运动,所述刻度尺显示相对运动的距离,所述导向装置中设置第一组传感器组件,所述第一组传感器组件的角度传感器与所述导向装置壳体主体连接;
所述插件中设置第二组传感器组件,所述第二组传感器组件的角度传感器与所述插件的壳体连接,所述插件和所述纵向移动驱动装置连接,使得所述插件与所述纵向移动驱动装置的相对位置不变;
所述套管的近端与所述导向装置后盖连接,所述套管的远端与所述插件连接,使得所述导向装置后盖与所述插件之间的消融光纤的长度不变;
所述旋转驱动装置滑动连接于所述纵向移动驱动装置;
使用状态下,所述光纤冷却组件设置于所述导向装置壳体主体之中。
本发明的另一方面,本发明的磁共振引导激光消融治疗系统中,主机或者控制器可以加载有精确调整消融光纤旋转角度的方法的程序;
精确调整消融光纤旋转角度的方法之一包括以下步骤:
控制器通过旋转驱动装置使得所述消融光纤朝一个方向发生旋转,第一组传感器组件测量的所述消融光纤旋转到达预设角度时,控制器接收并记录此时的第二组传感器组件测量的所述消融光纤旋转,同时控制旋转驱动装置停止转动并反向旋转使得第二组传感器组件附近的消融光纤反向旋转一个角度,该角度是所述第二角度与所述第一角度的差值的绝对值。
精确调整消融光纤旋转角度的方法之二包括以下步骤:
控制器通过旋转驱动装置使得所述消融光纤朝一个方向发生旋转,所述第一组传感器组件测量到所述消融光纤开始旋转时,记录此时第二组传感器组件测量到的旋转角度作为基础旋转角度,待所述第一组传感器组件测量的所述消融光纤旋转到达预设角度时,控制所述旋转驱动装置停止转动并反向旋转使得第二组传感器组件附近的消融光纤反向旋转所述基础旋转角度。
可以理解,消融可以分为多个步骤,即可能需要旋转多次,在不同的位置停留不同的时间,通过磁共振温度成像监控消融进展,然后继续转动,以上的方法可以连续或间断的执行多次。
本发明的磁共振引导激光消融治疗系统在术中利用磁共振温度成像技术融合生成病灶区域的实时温度图像,通过病灶以及周边健康组织的温度数值,实时调控激光功率和冷却功率,实现了对规则和不规则病灶的有效消融,并在术中消融预估,实时调整消融边界,达到适形消融的目的。
本发明的磁共振引导激光消融治疗系统可以生成手术方案,其中,所述手术方案包含激光对应的信息,所述信息包括但不限于:计划消融体积、激光功率、出光时间、出光模式、冷却液流动速率、光纤导管插入路径规划;
实时控制,基于所述磁共振图像计算温度,并使用所述测温结构校正温度图像,实时调控处于工作状态的消融光纤组件,以及治疗光源模块与冷却装置的工作参数,实时进行消融监测;
比对分析,将所述每个激光装置对应的手术方案中的信息与该激光装置在术后的信息进行比对,根据比对结果生成消融结果信息并显示于所述人机交互模块;其中,比对的内容包括以下:计划消融面积或体积、以及术后的实际消融面积或体积;所述消融结果信息至少包含但不限于:消融面积百分比、消融体积百分比、消融前后对比图。
第一方面发明实施例的创新点包括:
1、旋转驱动装置驱动消融光纤旋转实现对消融光纤的转动控制,通过引导装置即可以引导消融光纤植入的方向,无需在颅骨处额外安装支撑结构即可实现对消融光纤进行定向控制,减少患者的痛苦,安装简便。
2、通过设置第一角度传感器的方式,可以检测到驱动轴的旋转角度或消融光纤的旋转角度并反馈给控制器;在旋转驱动装置包括第一角度传感器时,可以检测具有刚性结构或具有经过强化处理的外表面结构的消融光纤的旋转角度,并发送至控制器,从而实现对消融光纤的旋转控制。
3、通过设置控制器的方式,使得控制器可以控制前后平移驱动装置带动旋转驱动装置前后平移,从而使得消融光纤随着旋转驱动装置的移动而移动,由此实现对消融光纤进行前后平移的控制。
4、通过设置空心细长结构导向件和夹紧组件的方式,可以固定套管与空心细长结构导向件的相对位置;通过设置顶丝件的远端插入夹紧转接件内并与弹性塞接触的方式,使得旋紧件拧紧于顶丝件和夹紧转接件时,顶丝件可以压紧弹性塞使得弹性塞挤压内部的套管,从而达到固定套管的目的。
5、通过设置密封塞以及将插接件设置包括第一水管和第二水管,设置套管包括内水循环管和外水循 环管的方式,实现对消融光纤的冷却密封。
6、通过设置消融光纤的至少第一部分具有刚性结构或具有经过强化处理的外表面结构的方式,增强了消融光纤的强度,并且通过设置第一部分包括消融光纤自近端起至位于密封塞内的部分以及超出密封塞的部分,消融光纤的远端位于系统的最远端时,超出密封塞的部分的长度大于消融光纤的移动距离的方式,保证了即使在消融光纤移动后,位于密封塞内的消融光纤仍然具有刚性结构或具有经过强化处理的外表面结构,消除了密封塞与消融光纤之间的摩擦对消融光纤旋转的影响。
7、通过设置第一强度增强结构和第二强度增强结构的方式,增加了套管的强度和穿刺能力,防止受外力挤压时变形,阻断冷却流体循环。
第二方面发明实施例其至少具有以下优点:
1、导向装置结构简单,质量轻,可靠性高,仅需冷却套管引导件(例如中空骨钉)即可承受导向装置的重量,无需在通过安装其他辅助结构,减少了骨钉的安装数量,减轻了病人的痛苦,依从性增加;
2、现有技术中头部安装结构占用面积过大,妨碍或者严重限制了不同光纤的植入距离,限制了植入位点的规划,无法进行植入位点距离过小的方案本发明由于避免了辅助导向装置的其他结构,冷却套管引导件的距离可以距离很近,对于需要密集植入消融光纤进行大范围组织消融的情况提供了更多的选择
3、冷却套管在植入后不在相对脑组织运动,仅其中的消融光纤发生转动,不会因为调节消融光纤旋转增加对脑组织造成的损伤;
4、在使用冷却间质对消融光纤进行冷却的条件下,末端的密封塞会导致消融光纤在旋转到预定角度后继续旋转,产生定向误差,严重影响手术的预期和规划,无法实现准确的消融。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的磁共振引导激光消融治疗系统的示意图;
图2为本发明实施例提供的第一种立体定向系统的组装结构示意图;
图3为本发明实施例提供的第一种立体定向系统的爆炸结构示意图;
图4为旋转驱动装置的结构示意图;
图5为图4部分结构的剖视图;
图6为本发明实施例提供的引导装置的组装结构的剖视图;
图7为本发明实施例提供的引导装置的爆炸结构的剖视图;
图8为本发明实施例提供的插接件的组装结构示意图;
图9为本发明实施例提供的插接件的爆炸结构示意图;
图10为本发明实施例提供的套管的结构示意图;
图11为本发明实施例提供的前后平移驱动装置的结构示意图;
图12为本发明实施例提供的第二种立体定向系统的结构示意图;
图13为本发明实施例提供的导向装置的一种结构示意图;
图14为本发明实施例提供的第二旋转定位装置和第二角度传感器的一个角度的爆炸图;
图15为本发明实施例提供的第二旋转定位装置和第二角度传感器的另一个角度的爆炸图;
图16为图13的剖视图;
图17为插件的一种结构示意图;
图18为插件的另一种结构示意图。
图1-图18中,100工作站,200激光消融设备,300立体定向系统,400光纤冷却组件或消融光纤,1引导装置、11空心细长结构导向件、12夹紧组件、121弹性塞、122夹紧转接件、123顶丝件、124旋紧件、2套管、21内水循环管、22外水循环管、23第一强度增强结构、24第二强度增强结构、3插接件、31密封塞、32消融光纤接头、33密封螺母、34鲁尔接头、35入水转接件、36出水转接件、37第一水管、38第二水管、4旋转驱动装置、41第一驱动器、42旋转装置基座、43消融光纤转接器、5消融光纤、6前后平移驱动装置、61前后平移驱动装置基座、62滑轨、63丝杠、64滑动块、65第二驱动器、66被动轮、67使动轮、7插件连接件、8导向装置、81空心细长结构引导件、82第二骨钉帽、83传动套管安装基座、84导向装置壳体主体固定部、85导向装置壳体主体滑动部、86刻度尺、87骨钉转接螺栓、871螺栓凸起、88第二角度传感器、89第二旋转定位装置、9传动套管、51主体、511凸起、52可调动顶压器、53轴承、54第一轴、55第二轴、56第一孔、10插件、101插件壳体、1011插件上壳体、1012插件下壳体、10121延伸部、10122下连接部、102插件传动套管安装基座、103第三角度传感器、104第三旋转定位装置、44跳线光纤接头、45跳线光纤套管、501消融光纤插头、50卡孔、60冷却套管、70冷却循环组件、90冷却循环组件帽。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中提及近端,表示该结构沿消融光纤的轴向远离消融部位的一端;相反的,提及近端,表示该结构沿消融光纤的轴向远离目标部位的一端。
本发明的磁共振引导激光消融治疗系统,参见图1,其包括工作站100、激光消融设备200、立体定向系统300和光纤冷却组件400(或消融光纤400),其中的位置关系并非真正的物理结构关系,仅作为示意,激光消融设备200与工作站100通讯连接,可以位于其中,也可以单独存在;激光消融设备200和立体定向系统300与工作站100通讯连接,结构上不必然直接连接,对结构关系没有限制。
工作站100,设置成能够接收医学影像信息(例如CT、MRI等),根据一种或更多种医学影像信息建立三维模型,基于三维模型提取影像点云,对激光消融设备200、立体定向系统300进行控制,计算消融的进展并显示,其含有消融估计模块,消融模块加载了能够执行消融预估方法的程序。
工作站可以生成手术方案,其中,所述手术方案包含激光对应的信息,所述信息包括但不限于:计划消融体积、激光功率、出光时间、出光模式、冷却液流动速率、光纤导管插入路径规划;
实时控制,基于所述磁共振图像计算温度,并使用所述测温结构校正温度图像,实时调控处于工作状态的消融光纤组件,以及治疗光源模块与冷却装置的工作参数,实时进行消融监测;
比对分析,将所述每个激光装置对应的手术方案中的信息与该激光装置在术后的信息进行比对,根据比对结果生成消融结果信息并显示于所述人机交互模块;其中,比对的内容包括以下:计划消融面积或体积、以及术后的实际消融面积或体积;所述消融结果信息至少包含但不限于:消融面积百分比、消融体积百分比、消融前后对比图。
激光消融设备200,其与工作站100通讯连接,实际空间位置没有要求,与工作站一体化或者分体均可,其包括激光发生器和冷却装置,可以单独或接受工作站的信息对激光发生器和冷却装置进行控制,调整激光发生器的工作功率和冷却装置的冷却间质流速,可选地,激光消融设备200还包括传感器模块、交互模块和主控模块,传感器模块用于接收光纤末端的信息,例如在光纤末端设置的温度传感器,冷却套管中设置的温度传感器,以监控激光输出功率和冷却情况;交互模块用于与工作站进行通讯,主控模块向激光发生器和冷却装置发送命令。激光消融设备200包括的6部分具体如下:
(1)医用开关装置,用于将110~220V交流电源转换成各模块使用的直流电源。
(2)激光发生器,用于产生用于消融的激光和用于辅助定位的激光。激光类型可以是气体、固体、半导体或者是光纤激光发生器。激光的种类可以是红外线、紫外线或可见光。消融主要应用波段为980nm和1064nm附近,功率可调,最大不大于30W,连续激光,并可以调制成脉冲激光,脉冲宽度可以是10ms~100000ms,脉冲频率可以是0.01Hz~100Hz。用于辅助定位的激光波段主要在640nm附近,功率不大于2W,连续激光。
(3)冷却装置,用于驱动并控制冷却间质的循环,以实现对激光消融探头的冷却和探头周边组织的冷却。
冷却装置主要由恒温箱、蠕动泵、冷却间质和冷却间质输送管组成。在冷却管进出口环路部分装有管壁压力传感器;在冷却管与恒温箱进出口相连的部分有温度传感器。恒温箱用于将冷却管内冷却间质的温度保持在设定温度,设定范围可以是5~30摄氏度,一般可设定为室内温度。蠕动泵用于提供冷却间质的循环动力,可提供0~60ml/min的间质循环速度。冷却间质可以是生理盐水,或其他透光液体。冷却管可以是医用橡胶材质如聚碳酸酯(polycarbonate)、聚氨酯(polyurethane)、聚乙烯、聚丙烯、硅树脂、尼龙、PVC、PET、PTFE、ABS、PES、PEEK、FEP等。
(4)传感器模块:用于收集设备内必要的工作参数信息。收集冷却管进口和出口环路部分的管壁压力,可以判断冷却环路是否存在泄露;收集恒温箱进出口冷却管内冷却间质的温度,可以判断恒温箱温度设定是否合理;收集激光发生器激光芯片附近的温度,判断激光发生器的工作状态。温度测量可以使用热电偶、Pt电阻等;压力测量使用陶瓷或薄膜压力传感器。
传感器模块收集的数据通过数据接口传递给主控模块。
(5)交互模块:交互模块是激光消融设备的输入输出模块,其由按钮和显示屏组成,与主控模块电连接,得到用户侧的操作指令信息,并将操作指令信息发送至主控模块。用于显示输出激光消融设备的工作状态,蠕动泵转速、激光功率、脉冲频率和传感器参数等。同时可以输入参数设定指令和开关状态指令。
(6)主控模块:
主控模块是激光消融设备的数据收集、下发、存储和计算模块,与交互模块、传感器模块、冷却装置、激光发生器和医用开关装置电连接。完成手术中各种数据的存储、显示和传输。控制激光发生器和冷却装置按照输入参数运行,传送激光、冷却装置运行状态和传感器参数到工作站和交互模块。同时,主控模块可以设定并监控激光与冷却装置的安全运行参数,当设备运行参数超出设定安全阈值时,主控模块会快速控制设备紧急停止。
实施例1
本发明第一种磁共振引导激光消融治疗系统,其包括:工作站100,激光消融设备200,立体定向组件300和消融光纤400。冷却组件包含在定向组件300中,冷却装置设置在激光消融设备200中。
下面参照附图对这种磁共振引导激光消融治疗系统的第一种立体定向系统300的结构进行详述:
图2为本发明实施例提供的第一种立体定向系统的组装结构示意图。图3为本发明实施例提供的第一种立体定向系统的爆炸结构示意图。参见图2和图3,本发明实施例提供的第一种立体定向系统,包括:引导装置1、套管2、插接件3和旋转驱动装置4。
套管2的近端连接于插接件3,套管2的远端可从引导装置1的远端伸出,其中,套管2的远端可以为盲端。
使用状态下,消融光纤5设置于套管2内,旋转驱动装置4驱动消融光纤5旋转。
插接件3可以固定于任一结构,只要在固定后插接件3的近端与旋转驱动装置4的远端相对,使得旋转驱动装置4可驱动消融光纤5旋转,消融光纤5可以在插接件3内绕自身轴线旋转和/或沿自身轴向方向移动即可。例如,插接件3固定于专用支架或者插接件3可以与旋转驱动装置4连接,或者插接件3可通过连接件7与前后平移驱动装置6连接。
综上可见,本发明实施例提供的立体定向系统,包括引导装置1、套管2、插接件3和旋转驱动装置4,套管2的近端连接于插接件3,套管2的远端可从引导装置1的远端伸出,使用状态下,消融光纤5设置于套管2内,旋转驱动装置4驱动消融光纤5旋转。本发明实施例中,旋转驱动装置驱动消融光纤旋转实现对消融光纤的转动控制,通过引导装置即可以引导消融光纤植入的方向,无需在颅骨处额外安装支撑结构即可实现对消融光纤进行定向控制,减少患者的痛苦,安装简便。
下面对立体定向系统的各个部件进行详细介绍:
图4为旋转驱动装置4的结构示意图,参见图4,旋转驱动装置4包括第一驱动器41,第一驱动器41与消融光纤5连接,第一驱动器41驱动消融光纤5围绕自身轴线旋转。
第一驱动器41的结构形式有多种,包括但不限于电机、液压形式和气动形式,本发明实施例对此并不做任何限定。
第一驱动器41与消融光纤5连接的方式有多种,示例性的,旋转驱动装置4还可以包括第一传动机构,第一驱动器41与第一传动机构连接,第一传动机构与消融光纤5连接,使得第一驱动器41通过第一传动机构连接带动消融光纤5围绕自身轴线旋转。
第一传动机构的结构形式有多种,包括但不限于齿轮形式和皮带形式。
由此,通过第一驱动器41实现驱动消融光纤5围绕自身轴线旋转。
继续参见图4,旋转驱动装置4还可以包括旋转装置基座42,第一驱动器41安装于旋转装置基座42。
由于在使用中,消融光纤5需要转接器才可以使用图5为图4部分结构的剖视图,参见图5,旋转驱动装置4还可以包括消融光纤转接器43,使用状态下,第一驱动器41驱动消融光纤转接器43转动,消融光纤转接器43的远端与消融光纤5连接。
由于消融光纤转接器43的远端与消融光纤5连接,因此,当第一驱动器41驱动消融光纤转接器43转动时,消融光纤转接器43带动消融光纤5随之转动。
在旋转驱动装置4包括第一驱动器41的情况下,本发明实施例提供的立体定向系统还包括控制器,第一驱动器41与控制器通信连接。
使用状态下,控制器发送运动控制命令至第一驱动器41,第一驱动器41根据运动控制命令驱动消融光纤5围绕自身轴线旋转。也就是说,消融光纤5绕自身轴线旋转是由控制器来控制的。其中,控制器可以为自主控制器或者信号接收端,当控制器为自主控制器时,运动控制命令是由立体定向传动系统自身确定的;当控制器为信号接收端时,控制器可以接收立体定向传动系统外部的控制信号,例如工作站,从而根据接收到的控制信号来确定运动控制命令。
第一驱动器41的类型可以有多种,当第一驱动器41为步进式驱动器时,第一驱动器41直接驱动消融光纤5围绕自身轴线旋转即可。
其中,运动控制命令可以包括目标旋转次数、每次旋转的终点角度位置或相对旋转角度和每次旋转后的停留时间等,第一驱动器41根据运动控制命令驱动消融光纤5围绕自身轴线旋转可以实现:
第一驱动器41驱动消融光纤5围绕自身轴线旋转目标旋转次数,并在到达各次旋转的终点角度位置或相对旋转角度时停留该次旋转后的停留时间。
其中,每次旋转的终点角度位置是以初始角度位置为基准来确定的,初始角度位置可以为标定的。
例如:假设目标旋转次数为2次,初始角度位置为0°对应的位置,第一次旋转的终点角度位置为30°对应的位置,第二次旋转的终点角度位置为60°对应的位置,每次旋转后的停留时间为5s;则第一驱动器41驱动消融光纤5围绕自身轴线旋转至终点角度位置为30°对应的位置并停留5s,然后驱动消融光纤5围绕自身轴线旋转至终点角度位置为60°对应的位置并停留5s。可以理解,多次旋转的角度和停留位置可以相同或不同,角度和停留时间的组合可以有多种,均包括在本发明的范围之内。
由此,通过设置控制器的方式,使得控制器可以控制第一驱动器驱动消融光纤5旋转。
当第一驱动器41不为步进式电机时,需要传感器来检测旋转角度,因此,在本发明实施例提供的立体定向系统还包括控制器的情况下,旋转驱动装置4还包括第一角度传感器,第一角度传感器与控制器通信连接,示例性的,第一驱动器41为超声电机。
第一角度传感器与第一驱动器41的驱动轴或消融光纤5连接;
第一角度传感器检测消融光纤5的旋转角度或者与消融光纤5的旋转角度相同的其他部件的旋转角度,并发送所检测到的旋转角度至控制器。
由于当第一驱动器41不为步进式电机时,其只能旋转或停止旋转,因此,需要通过第一角度传感器来消融光纤5的旋转角度或者与消融光纤5的旋转角度相同的其他部件的旋转角度,并发送所检测到的旋转角度至控制器,控制器接收所检测到的旋转角度以便获知消融光纤5的旋转角度。
其中,与消融光纤5的旋转角度相同的其他部件可以有多种,包括但不限于以下两种:
第一种:
其他部件可以为第一驱动器41的驱动轴。
第二种:
在旋转驱动装置4包括消融光纤转接器43的情况下,其他部件可以为消融光纤转接器43。
由此,通过设置第一角度传感器的方式,可以检测到驱动轴的旋转角度或消融光纤5的旋转角度并反馈给控制器。
继续参见图2和图3,在本发明实施例提供的立体定向系统包括控制器的情况下,本发明实施例提供的立体定向系统还包括前后平移驱动装置6,旋转驱动装置4滑动连接于前后平移驱动装置6。其中,旋转驱动装置4滑动连接于前后平移驱动装置6的方式有多种,本发明实施例对此并不做任何限定。
由于旋转驱动装置4滑动连接于前后平移驱动装置6,因此,前后平移驱动装置6可以带动旋转驱动装置4前后平移,从而使得消融光纤5随着旋转驱动装置4的移动而移动。
在一种实现方式中,插接件3可以固定于前后平移驱动装置6,插接件3和前后平移驱动装置6固定连接的方式有多种,示例性的,继续参见图2和图3,本发明实施例提供的立体定向系统还可以包括插件连接件7,插件连接件7的一端与前后平移驱动装置6固定连接,另一端与插接件3固定连接,由此,插接件3通过插件连接件7实现与前后平移驱动装置6固定连接。
由此,通过将旋转驱动装置4滑动连接于前后平移驱动装置6的方式,使得前后平移驱动装置6可以带动旋转驱动装置4前后平移,从而使得消融光纤5随着旋转驱动装置4的移动而移动,由此通过前后平移驱动装置6实现对消融光纤5进行前后平移的控制。
其中,前后平移驱动装置6与控制器通信连接,前后平移驱动装置6实现对消融光纤5进行前后平移的控制的方式可以为:
控制器发送前后平移指令至前后平移驱动装置6;
前后平移驱动装置6根据前后平移指令驱动旋转驱动装置4前后平移,继而带动消融光纤5前后平移。
具体的,前后平移指令可以包括平移方向和平移距离,前后平移驱动装置6根据前后平移指令驱动旋转驱动装置4前后平移可以为:
前后平移驱动装置6驱动旋转驱动装置4沿平移方向移动平移距离。
其中,平移方向包括前方和后方,前方和后方是预先设定的,例如:设定远端为前方,近端为后方。
由此,通过设置控制器的方式,使得控制器可以控制前后平移驱动装置6带动旋转驱动装置4前后平移,从而使得消融光纤5随着旋转驱动装置4的移动而移动,由此实现对消融光纤5进行前后平移的控制。
下面对引导装置1的结构进行介绍:
图6为本发明实施例提供的引导装置1的组装结构的剖视图。图7为本发明实施例提供的引导装置1的爆炸结构的剖视图。参见图6和图7,引导装置1包括空心细长结构导向件11和夹紧组件12,夹紧组件12的远端与空心细长结构导向件11的近端连接,夹紧组件12用于在套管2伸出空心细长结构导向件11的远端后,固定套管2与空心细长结构导向件11的相对位置。
其中,空心细长结构导向件11为空心的并可对消融光纤5起导引定向作用。夹紧组件12为可以起到夹紧作用的组件。
由此,通过设置空心细长结构导向件11和夹紧组件12的方式,可以固定套管2与空心细长结构导向件11的相对位置。
继续参见图6和图7,夹紧组件12可以包括弹性塞121、夹紧转接件122、顶丝件123和旋紧件124。
旋紧件124与顶丝件123螺纹连接,顶丝件123的远端插入夹紧转接件122内并与弹性塞121接触,旋紧件124的远端可与夹紧转接件122螺纹连接,夹紧转接件122的远端与空心细长结构导向件11的近端连接,弹性塞121设置于空心细长结构导向件11的近端空腔内。其中,夹紧转接件122的远端与空心细长结构导向件11的近端连接的方式有多种,可以为螺纹连接,也可以为焊接等,本发明实施例对此并不做任何限定。
以及,旋紧件124与顶丝件123可以是一体结构,此一体结构与夹紧转接件122螺纹连接。
使用状态下也就是图6所示的状态下,旋紧件124拧紧于顶丝件123和夹紧转接件122,顶丝件123压紧弹性塞121,套管2穿过顶丝件123、弹性塞121和空心细长结构导向件11,套管2的远端从空心细长结构导向件11的远端伸出,由于顶丝件123压紧弹性塞121,使得弹性塞121挤压内部的套管2,进一步使得弹性塞121固定套管2的位置。示例性的,弹性塞121可以为橡胶塞。
由此,通过设置顶丝件123的远端插入夹紧转接件122内并与弹性塞121接触的方式,使得旋紧件124拧紧于顶丝件123和夹紧转接件122时,顶丝件123可以压紧弹性塞121使得弹性塞121挤压内部的套管2,从而达到固定套管2的目的。
下面对插接件3的结构进行介绍:
图8为本发明实施例提供的插接件3的组装结构示意图。图9为本发明实施例提供的插接件3的爆炸结构示意图。参见图6和图7,插接件3可以包括密封塞31、消融光纤接头32以及沿从近端到远端的方向依次连接的、密封螺母33、鲁尔接头34、入水转接件35和出水转接件36。
密封塞31设置于鲁尔接头34内,密封螺母33的内部凸台331与密封塞31接触。
使用状态下,密封螺母33拧紧于鲁尔接头34,密封螺母33的内部凸台331压紧密封塞31,消融光纤5穿过消融光纤接头32、密封螺母33、密封塞31和入水转接件35进入套管2。
其中,消融光纤接头32与旋转驱动装置4的传动部件连接,使得消融光纤接头32内的消融光纤5和消融光纤接头32一起运动,其中,旋转驱动装置4的传动部件可以为消融光纤转接器43;密封螺母33与鲁尔接头34螺纹连接;鲁尔接头34与入水转接件35螺纹连接;入水转接件35与出水转接件36的连接方式可以为螺纹连接也可以为焊接或者粘接,本发明实施例对此并不做任何限定。
由于使用时密封螺母33拧紧于鲁尔接头34,使得密封螺母33的内部凸台331压紧密封塞31,密封塞31挤压内部的消融光纤5,防止冷却流体流出,但该挤压并不影响消融光纤5的旋转和移动。
由此,通过设置密封塞31、消融光纤接头32以及沿从近端到远端的方向依次连接的密封螺母33、鲁尔接头34、入水转接件35和出水转接件36的方式,实现对消融光纤5的密封。
由于在使用中,消融光纤5需要冷却密封,因此,为了实现对消融光纤5的冷却密封,继续参见图8和图9,插接件3还可以包括第一水管37和第二水管38,套管2可以包括内水循环管21和外水循环管22,其中,第一水管37可以为入水管,也可以为出水管,同理,第二水管38可以为入水管,也可以为出水管,但两者中的一者为出水管,则另一者为入水管。入水转接件35和出水转接件36的功能也可以对调。即入水转接件35可以用于入水也可以用于出水,出水转接件36可以用于入水也可以用于出水,但两者中的一者用于入水,则另一者用于出水。
内水循环管21设置于外水循环管22内且两者之间有间隙,第一水管37经入水转接件35与内水循环管21连通,第二水管38经出水转接件36与外水循环管22连通。
使用状态下,消融光纤5穿过消融光纤接头32、密封螺母33和密封塞31进入内水循环管21。
在使用时,通过第一水管37和第二水管38中的一者输送冷却液,使得冷却液经过内水循环管21与外水循环管22之间有间隙从第一水管37和第二水管38中的另一者输出冷却液,由此,冷却液可以对内水循环管21内的消融光纤5起到冷却的作用,又由于密封塞31的存在,使得可以对消融光纤5起到冷却密封的作用。
由此,通过设置密封塞31以及将插接件3设置包括第一水管37和第二水管38,设置套管2包括内水循环管21和外水循环管22的方式,实现对消融光纤5的冷却密封。
由于密封塞31与消融光纤5之间可能存在摩擦,导致影响消融光纤5旋转,因此,为了避免此情况的发生,可以设置消融光纤5的至少第一部分外设置有刚性结构,或者,消融光纤5的至少第一部分具有经过强化处理的外表面结构,其中,第一部分包括消融光纤5自近端起至位于密封塞31内的部分以及超出密封塞31的部分,消融光纤5的远端位于系统的最远端时,超出密封塞31的部分的长度大于消融光纤5的移动距离。
在使用时,消融光纤5并不是固定不动的,是可以前后移动的。当消融光纤5向前移动时,消融光纤5的移动距离为前移距离;当消融光纤5向后移动时,消融光纤5的移动距离为后撤距离,前后方向可以标定得到,例如:标定远端所在方向为前方,近端所在方向为后方。
消融光纤5的远端位于系统的最远端时,设置超出密封塞31的部分的长度大于消融光纤5的移动距离,可以保证在消融光纤5的前后移动过程中,密封塞31始终可与消融光纤5的第一部分接触。
由此,通过设置消融光纤5的至少第一部分具有刚性结构或具有经过强化处理的外表面结构的方式,增强了消融光纤5的强度,并且通过设置第一部分包括消融光纤5自近端起至位于密封塞31内的部分以及超出密封塞31的部分,消融光纤的远端位于系统的最远端时,超出密封塞31的部分的长度大于消融光纤5的移动距离的方式,保证了即使在消融光纤5移动后,位于密封塞31内的消融光纤5仍然具有刚性结构或具有经过强化处理的外表面结构,消除了密封塞31与消融光纤5之间的摩擦对消融光纤5旋转的影响。
并且,在旋转驱动装置4包括第一角度传感器时,可以检测具有刚性结构或具有经过强化处理的外表面结构的消融光纤5的旋转角度,并发送至控制器,从而精确的监控消融光纤5的旋转角度,实现对消融光纤5的旋转控制。
图10为本发明实施例提供的套管2的结构示意图,参见图10,为了增加套管2的强度,外水循环管22与内水循环管21之间还可以设置有第一强度增强结构23,内水循环管21与消融光纤5之间设置有第二强度增强结构24。
其中,第一强度增强结构23可以为多个增强架,多个增强架可以均布于外水循环管22与内水循环管21之间,同理,第二强度增强结构24也可以为多个增强架,多个增强架可以均布于内水循环管21与消融光纤5之间。
为了避免第二强度增强结构24影响消融光纤5转动,设置第二强度增强结构24与消融光纤5之间有间隙,以及将增强架与消融光纤5可能接触的表面设置为凸面。
由此,通过设置第一强度增强结构23和第二强度增强结构24的方式,增加了套管2的强度和穿刺能力,防止受外力挤压时变形,阻断冷却流体循环。
下面对前后平移驱动装置6进行介绍:
图11为本发明实施例提供的前后平移驱动装置6的结构示意图,参见图11,前后平移驱动装置6可以包括前后平移驱动装置基座61、至少一个滑轨62、丝杠63、滑动块64和第二驱动器65。
至少一个滑轨62和丝杠63平行设置且均穿过滑动块64,至少一个滑轨62的两端固定安装于前后平移驱动装置基座61,丝杠63转动连接于前后平移驱动装置基座61,第二驱动器65驱动丝杠63旋转,第二驱动器65安装于前后平移驱动装置基座61,旋转驱动装置4安装于滑动块64。
使用时,第二驱动器65驱动丝杠63转动,丝杠63带动滑动块64沿滑轨移动,由于旋转驱动装置4安装于滑动块64,因此,滑动块64可以带动旋转驱动装置4前后移动。
第二驱动器65的结构形式有多种,包括但不限于电机、液压形式和气动形式,本发明实施例对此并不做任何限定。
第二驱动器65与丝杠63连接的方式有多种,示例性的,前后平移驱动装置6还可以包括第二传动机构,第二驱动器65与第二传动机构连接,第二传动机构与丝杠63的另一端连接,使得第二驱动器65通过第二传动机构连接带动丝杠63旋转。
第二传动机构的结构形式有多种,包括但不限于齿轮形式和皮带形式。
示例性的,继续参见图11,第二传动机构包括被动轮66、使动轮67和皮带,第二驱动器65驱动使动轮67转动,使动轮67通过皮带与被动轮66连接,使动轮67带动被动轮66转动,被动轮66与丝杠63的另一端连接,被动轮66带动丝杠63旋转。
由此,通过设置滑轨62、丝杠63、滑动块64和第二驱动器65的方式,使得滑动块64可以带动旋转驱动装置4前后移动。
需要说明的是,上述各实施例之间可以任意组合。
实施例2
本发明第二种磁共振引导激光消融治疗系统,其包括:工作站100,激光消融设备200,立体定向组件300和光纤冷却组件400。光纤冷却组件400单独说明,不再作为立体定向组件300的一部分描述,使用时消融光纤设置在光纤冷却组件400中。
下面对该实施例中立体定向系统的另一种结构进行介绍:
图12为本发明实施例提供的第二种立体定向系统的结构示意图。参见图12,本发明实施例提供的立体定向系统,包括:导向装置8、传动套管9、插件10和旋转驱动装置4。
导向装置8与传动套管9的远端连接,传动套管9的近端与插件10的远端连接。
使用状态下,消融光纤穿过插件10、传动套管9和导向装置8,消融光纤的远端可从导向装置8的远端伸出,旋转驱动装置4驱动消融光纤旋转。
插件10可以固定于任一结构,只要在固定后插件10的近端与旋转驱动装置4的远端相对,让旋转驱动装置4可驱动消融光纤旋转,消融光纤5可以在插件10内沿自身轴向方向移动和绕自身轴线旋转即可。例如,插件10固定于专用支架。
综上可见,本发明实施例提供的立体定向系统,包括导向装置8、传动套管9、插件10和旋转驱动装置4,导向装置8与传动套管9的远端连接,传动套管9的近端与插件10的远端连接,使用状态下,消融 光纤5穿过插件10、传动套管9和导向装置8,消融光纤的远端可从导向装置8的远端伸出,旋转驱动装置4驱动消融光纤旋转。本发明实施例中,旋转驱动装置驱动消融光纤旋转实现对消融光纤的转动控制,通过导向装置即可以引导消融光纤植入的方向,无需在颅骨处额外安装支撑结构即可实现对消融光纤进行定向控制,减少患者的痛苦,安装简便。
继续参见图12,本发明实施例提供的立体定向系统还可以包括前后平移驱动装置6,旋转驱动装置4滑动连接于前后平移驱动装置6,旋转驱动装置4滑动连接于前后平移驱动装置6的方式有多种,本发明实施例对此并不做任何限定。由于旋转驱动装置4滑动连接于前后平移驱动装置6,因此,前后平移驱动装置6可以带动旋转驱动装置4沿消融光纤的长度方向移动,从而使得消融光纤随着旋转驱动装置4的移动而移动。
插件10还可以固定于前后平移驱动装置6,插件10和前后平移驱动装置6固定连接的方式有多种,示例性的,继续参见图12,本发明实施例提供的立体定向系统还可以包括插件连接件7,插件连接件7的一端与前后平移驱动装置6固定连接,另一端与插件10固定连接,由此,插件10通过插件连接件7实现与前后平移驱动装置6固定连接。
由此,通过将旋转驱动装置4滑动连接于前后平移驱动装置6的方式,使得前后平移驱动装置6可以带动旋转驱动装置4沿消融光纤的长度方向前后移动,从而使得消融光纤随着旋转驱动装置4的移动而移动,由此通过前后平移驱动装置实现对消融光纤沿长度方向移动的控制。
下面对立体定向系统的各个部件进行详细介绍:
图13为本发明实施例提供的导向装置8的一种结构示意图,参见图3,导向装置8包括空心细长结构引导件81和导向装置壳体,空心细长结构引导件81的近端与导向装置壳体的远端连接,导向装置壳体的近端与传动套管9的远端连接。
消融光纤穿过导向装置壳体和空心细长结构引导件81,消融光纤5的远端可从空心细长结构引导件81的远端伸出。
其中,空心细长结构引导件81为空心的并可对消融光纤起导引定向作用,示例性的,空心细长结构引导件81可以为空心骨钉。
导向装置壳体的结构有多种,包括但不限于以下几种:
第一种:
导向装置壳体为第一骨钉帽,空心细长结构引导件81的近端与第一骨钉帽的远端螺纹连接,第一骨钉帽的近端与传动套管9的远端连接。
在导向装置壳体为第一骨钉帽的情况下,导向装置8还可以包括第二角度传感器和第二旋转定位装置,第二角度传感器和第二旋转定位装置均安装于导向装置壳体也就是第一骨钉帽内,消融光纤穿过第二旋转定位装置和第二角度传感器。
具体的,第二角度传感器与第二旋转定位装置可拆卸连接,消融光纤穿过第二旋转定位装置和第二角度传感器并可沿轴向方向移动以及绕自身轴线旋转。使用状态下,第二旋转定位装置按照预设压力夹持消融光纤,允许消融光纤沿自身长度方向移动,同时使得消融光纤带动第二旋转定位装置旋转,第二角度传感器检测第二旋转定位装置的旋转角度,由于消融光纤带动第二旋转定位装置旋转,因此,第二角度传感器检测到的第二旋转定位装置的旋转角度也就是消融光纤的旋转角度,第二角度传感器发送检测到的旋转角度至控制装置。
由此,通过设置第二旋转定位装置和第二角度传感器的方式,可以检测到位于导向装置壳体内的消融光纤的旋转角度。
下面对第二旋转定位装置的结构进行介绍:
图14为本发明实施例提供的第二旋转定位装置和第二角度传感器的一个角度的爆炸图,图15为本发明实施例提供的第二旋转定位装置和第二角度传感器的另一个角度的爆炸图。参见图14-图15,第二旋转定位装置可以包括主体51、至少一个可调动顶压器52、两个轴承53、第一轴54和第二轴55。
主体51的侧面设置有两个孔,主体51的一端设置有凹槽,凹槽分别将两个孔分为两部分,凹槽的槽底设置有通孔,主体51的一个端面设置有与可调动顶压器52适配的第一孔56,两个孔中靠近第一孔56的一者与第一孔56连通,两个轴承53设置于凹槽内,第一轴54穿过两个轴承53中的一个轴承53设置于两个孔中的一个孔内,第二轴55穿过两个轴承53中的另一个轴承53设置于两个孔中的另一个孔内,可调动顶压器52设置于第一孔56内,消融光纤5设置于两个轴承53之间并穿过槽底的通孔。
示例性的,两个孔的中心线相互平行。
在使用状态下,拧紧可调动顶压器52,两个轴承53夹持消融光纤5,两个轴承53与消融光纤5之间的压力到达预定值,也就是说,可以通过拧紧可调动顶压器52来调节两个孔中与第一孔56连通的孔内的轴的位置,使得与第一孔56连通的孔内的轴带动其所穿过的轴承53向消融光纤5施加压力,同时,两个孔中未与第一孔56连通的孔内的轴也通过其所穿过的轴承53向消融光纤5施加压力,由此,通过拧紧可调动顶压器52的方式,将两个轴承53与消融光纤5之间的压力调节到预定值。
为了可以通过拧紧可调动顶压器52来调节两个孔中与第一孔56连通的孔内的轴的位置,需要设置两个孔中与第一孔56连通的孔的大小大于设置于其中的轴的大小。
两个孔中未与第一孔56连通的孔内的轴可以固定设置于该孔内,本发明实施例对此并不做任何限定,只要该孔内的轴可以通过其所穿过的轴承53向消融光纤5施加压力即可。
并且本发明实施例中对轴承53的类型也不做任何限定,示例性的,轴承53可以为衬套。
示例性的,可调动顶压器52的数量可以为2个,第一孔56的数量可以为2个。两个第一孔56可以分设于凹槽的两侧。
继续参见图14-图15,在第二旋转定位装置包括主体51、至少一个可调动顶压器52、两个轴承53、第一轴54和第二轴55的情况下,主体51的另一端设置有凸起511,凸起511设置有通孔,凸起511的通孔与槽底的通孔连通,消融光纤5穿过凸起511的通孔,第二角度传感器设置有卡孔50,凸起511与卡孔50卡接。
第二角度传感器与第二旋转定位装置可拆卸连接的方式可以为在主体51的另一端设置凸起511,在第二角度传感器设置卡孔50,凸起511与卡孔50卡接就将第二角度传感器与第二旋转定位装置连接在一起。
在一种实现方式中,凸起511的左右两侧为弧形,第二角度传感器的卡孔50为马蹄形,凸起511与马蹄形的卡孔50卡接,当然,本发明实施例中并不限定凸起511与卡孔50的具体形状,只要两者可实现卡接即可。
由此,通过在主体51的另一端设置凸起511,在第二角度传感器设置卡孔50的方式,实现第二角度传感器与第二旋转定位装置之间的可拆卸连接。
第二种:
继续参见图13,导向装置壳体可以包括第二骨钉帽82、导向装置壳体主体和传动套管安装基座83。
空心细长结构引导件81的近端与第二骨钉帽82的远端螺纹连接,第二骨钉帽82的近端与导向装置壳体主体的远端连接,传动套管安装基座83设置于导向装置壳体主体的近端,传动套管安装基座83与传动套管9的远端连接,消融光纤5穿过传动套管安装基座83、导向装置壳体主体和第二骨钉帽82。
在使用时,先将第二骨钉帽82的近端与导向装置壳体主体的远端连接,传动套管安装基座83设置于导向装置壳体主体的近端,传动套管安装基座83与传动套管9的远端连接,然后再将第二骨钉帽82的远端与空心细长结构引导件81的近端螺纹连接。
其中,导向装置壳体主体和传动套管安装基座83可以为一体结构也可以为非一体结构,本发明实施例对此并不做任何限定。
当导向装置壳体主体为非一体结构时,示例性的,图16为图13的剖视图,参见图13和图16,导向装置壳体主体可以包括导向装置壳体主体固定部84和导向装置壳体主体滑动部85,第二骨钉帽82的近端与导向装置壳体主体固定部84的远端连接,导向装置壳体主体固定部84的近端与导向装置壳体主体滑动部85的远端连接,传动套管安装基座83设置于导向装置壳体主体滑动部85的近端,消融光纤5穿过导向装置壳体主体滑动部85和导向装置壳体主体固定部84。
继续参见图16,导向装置壳体主体固定部84和/或导向装置壳体主体滑动部85设置有刻度尺86,导向装置壳体主体固定部84和导向装置壳体主体滑动部85可相对运动,刻度尺86显示相对运动的距离,也就是说,在使用时,可拉动导向装置壳体主体滑动部85使其远离导向装置壳体主体固定部84,每拉出一段距离,就可以从刻度尺86中读出拉出距离,在图16中是导向装置壳体主体滑动部85设置有刻度尺86。
由此,通过在导向装置壳体主体固定部84和/或导向装置壳体主体滑动部85设置刻度尺86的方式,可是显示导向装置壳体主体固定部84和导向装置壳体主体滑动部85之间的相对运动的距离。
继续参见图16,在导向装置壳体包括第二骨钉帽82、导向装置壳体主体和传动套管安装基座83的基础上,导向装置壳体还包括骨钉转接螺栓87,第二骨钉帽82拧紧于空心细长结构引导件81时,骨钉转接螺栓87的远端固定于第二骨钉帽82内,骨钉转接螺栓87的近端与导向装置壳体主体的远端螺纹连接,消融光纤5穿过骨钉转接螺栓87。
具体的,骨钉转接螺栓87设置有螺栓凸起871,螺栓凸起871的大小大于第二骨钉帽82近端的开口大小,当第二骨钉帽82拧紧于空心细长结构引导件81时,第二骨钉帽82近端的开口卡住螺栓凸起871,使得骨钉转接螺栓87的远端固定于第二骨钉帽82内。
在使用时,先将骨钉转接螺栓87插入第二骨钉帽82内,然后将骨钉转接螺栓87的近端与导向装置壳体主体的远端螺纹连接,最后将第二骨钉帽82拧紧于空心细长结构引导件81,使得第二骨钉帽82近端的开口和空心细长结构引导件81卡住螺栓凸起871。
继续参见图13,在导向装置壳体为上述第二种结构时,导向装置8还可以包括第二角度传感器88和第二旋转定位装置89,第二角度传感器88和第二旋转定位装置89均安装于导向装置壳体内,消融光纤5穿过第二旋转定位装置89和第二角度传感器88。第二旋转定位装置89和第二角度传感器88的具体结构以及连接方式参见导向装置壳体为上述第一种结构时的相应描述,在此不再赘述。
由于在使用中,消融光纤需要冷却密封,因此,继续参见图16,导向装置8还可以包括冷却套管60、冷却循环组件70和密封塞31,冷却循环组件70和密封塞31沿从远端到近端的方向依次安装于导向装置壳体内,冷却套管60依次穿过密封塞31和冷却循环组件70,消融光纤5设置于冷却套管60内部。
密封的方式有多种,在一种实现方式中,导向装置8还可以包括冷却循环组件帽90,冷却循环组件帽90设置于密封塞31的近端并安装于导向装置壳体内,冷却套管60穿过冷却循环组件帽90。
由此,通过设置冷却套管60、冷却循环组件70和密封塞31的方式,实现对消融光纤的冷却密封。
冷却循环组件70卡在导向装置壳体主体滑动部85中,通过导向装置壳体主体滑动部85相对于导向装置壳体主体固定部84即可带动冷却套管60进行固定距离的纵向运动。
下面对插件10的结构进行介绍:
图17为插件10的一种结构示意图,参见图17,插件10可以包括插件壳体101和插件传动套管安装基座102。插件传动套管安装基座102设置于插件壳体101的远端,插件传动套管安装基座102与传动套管9的近端连接,消融光纤5穿过插件壳体101和插件传动套管安装基座102,消融光纤5设置有消融光 纤插头501,消融光纤插头501可从插件壳体101的近端伸出。在一种实现方式中,插件壳体101和插件传动套管安装基座102可以为整体结构。
图18为插件10的另一种结构示意图,参见图18,由于在导向装置8包括密封塞31的情况下,密封塞31与消融光纤5之间的摩擦力以及消融光纤5在纵向的应力累积,使第二角度传感器处的消融光纤5的旋转角度达到预设要求后旋转角度不稳定,因此,在导向装置8还包括冷却套管60、冷却循环组件70和密封塞31的情况下,插件10还可以包括第三角度传感器103和第三旋转定位装置104,第三旋转定位装置104与第三角度传感器103均安装于插件壳体101内,消融光纤5穿过第三旋转定位装置104和第三角度传感器103。第三旋转定位装置104与第三角度传感器103的具体结构以及连接方式均与第二旋转定位装置和第二角度传感器的具体结构以及连接方式相同,区别仅为方向不同:第二角度传感器位于远端,第二旋转定位装置位于近端;第三角度传感器103位于近端,第三旋转定位装置104位于远端,具体可以参见导向装置壳体为上述第一种结构时的相应描述,在此不再赘述。
第三角度传感器103检测第三旋转定位装置104的旋转角度并发送至控制装置,控制装置在接收到第三旋转定位装置104的旋转角度后,再进行后续控制操作使得第二旋转定位装置的旋转角度与第三旋转定位装置104的旋转角度相同。
由此,通过设置第三旋转定位装置104与第三角度传感器103的方式,可以检测到位于插件壳体83内的消融光纤的旋转角度,以便控制装置进行后续控制操作使得消融光纤5在第二角度传感器处的旋转角度与第三角度传感器103处的旋转角度相同。
插件壳体101的机构有多种,本发明实施例对此并不做任何限定,示例性的,继续参见图18,插件壳体101可以包括插件上壳体1011和插件下壳体1012,插件下壳体1012包括相互连接的延伸部10121和下连接部10122,插件上壳体1011和下连接部10122相互盖合形成容置腔,第三旋转定位装置104与第三角度传感器103安装于容置腔内。
下面对旋转驱动装置4进行介绍:
参见图4,旋转驱动装置4包括第一驱动器41,第一驱动器41与消融光纤5连接,第一驱动器41驱动消融光纤5围绕自身轴线旋转。
第一驱动器41的结构形式有多种,包括但不限于电机、液压形式和气动形式,本发明实施例对此并不做任何限定。
第一驱动器41与消融光纤5连接的方式有多种,示例性的,旋转驱动装置4还可以包括第一传动机构,第一驱动器41与第一传动机构连接,第一传动机构与消融光纤5连接,使得第一驱动器41通过第一传动机构连接带动消融光纤5围绕自身轴线旋转。
第一传动机构的结构形式有多种,包括但不限于齿轮形式和皮带形式。
由此,通过第一驱动器41实现驱动消融光纤5围绕自身轴线旋转。
继续参见图4,旋转驱动装置4还可以包括旋转装置基座42,第一驱动器41安装于旋转装置基座42。
由于在使用中,某些类型的消融光纤需要转接器才可以使用,例如消融光纤5为光纤时,图5为图4的剖视图,参见图5,旋转驱动装置4还可以包括消融光纤转接器43,使用状态下,第一驱动器41驱动消融光纤转接器43转动,消融光纤转接器43的远端与消融光纤5连接。
由于消融光纤转接器43的远端与消融光纤5连接,因此,当第一驱动器41驱动消融光纤转接器43转动时,消融光纤转接器43带动消融光纤5随之转动。
继续参见图5,当消融光纤5为光纤时,上述与消融光纤转接器43的远端连接的为消融光纤,还包括传输光纤,传输光纤的远端与跳线光纤接头44的近端连接,传输光纤的近端与激光发生器连接。使用时,跳线光纤接头44的远端与消融光纤转接器43的连接,跳线光纤接头44通过跳线光纤套管45与旋转装置 基座42固定连接,然后将跳线光纤接头44的远端与消融光纤转接器43的远端解开连接,消融光纤转接器43再与消融光纤连接,此时,当第一驱动器41驱动消融光纤转接器43转动时,消融光纤转接器43可以带动与其连接的消融光纤随之转动,通过消融光纤可以执行消融治疗。
下面对前后平移驱动装置6进行介绍:
参见图11,前后平移驱动装置6可以包括前后平移驱动装置基座61、至少一个滑轨62、丝杠63、滑动块64和第二驱动器65。
至少一个滑轨62和丝杠63平行设置且均穿过滑动块64,至少一个滑轨62的两端固定安装于前后平移驱动装置基座61,丝杠63转动连接于前后平移驱动装置基座61,第二驱动器65驱动丝杠63旋转,第二驱动器65安装于前后平移驱动装置基座61,旋转驱动装置4安装于滑动块64。
使用时,第二驱动器65驱动丝杠63转动,丝杠63带动滑动块64沿滑轨移动,由于旋转驱动装置4安装于滑动块64,因此,滑动块64可以带动旋转驱动装置4沿消融光纤5的长度方向移动。
第二驱动器65的结构形式有多种,包括但不限于电机、液压形式和气动形式,本发明实施例对此并不做任何限定。
第二驱动器65与丝杠63连接的方式有多种,示例性的,前后平移驱动装置6还可以包括第二传动机构,第二驱动器65与第二传动机构连接,第二传动机构与丝杠63的另一端连接,使得第二驱动器65通过第二传动机构连接带动丝杠63旋转。
第二传动机构的结构形式有多种,包括但不限于齿轮形式和皮带形式。
示例性的,继续参见图11,第二传动机构包括被动轮66、使动轮67和皮带,第二驱动器65驱动使动轮67转动,使动轮67通过皮带与被动轮66连接,使动轮67带动被动轮66转动,被动轮66与丝杠63的另一端连接,被动轮66带动丝杠63旋转。
由此,通过设置滑轨62、丝杠63、滑动块64和第二驱动器65的方式,使得滑动块64可以带动旋转驱动装置4沿消融光纤5的长度方向前后移动。
本发明实施例提供的基于磁共振导引的激光热疗装置,与上述实施例提供的基于磁共振导引的激光热疗装置具有相同的技术特征,所以也能解决相同的技术问题,达到相同的技术效果。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种磁共振引导激光消融治疗系统,其特征在于,包括:
    消融光纤;
    激光消融设备,其含有激光发生器和冷却装置;
    立体定向系统,其容纳并控制所述消融光纤的位置和旋转角度;
    工作站,其配置成:控制所述立体定向装置的运动,利用磁共振温度成像技术生成并显示所述磁共振引导激光消融治疗系统工作过程中目标部位的消融信息。
  2. 根据权利要求1所述的磁共振引导激光消融治疗系统,其特征在于,所述立体定向系统包括:引导装置、套管、插接件和旋转驱动装置;
    所述套管的近端连接于所述插接件,所述套管的远端可从所述引导装置的远端伸出;
    使用状态下,所述消融光纤设置于所述套管内,所述旋转驱动装置驱动所述消融光纤旋转。
  3. 如权利要求2所述的磁共振引导激光消融治疗系统,其特征在于,所述旋转驱动装置包括第一驱动器;
    所述第一驱动器与所述消融光纤连接,所述第一驱动器驱动所述消融光纤围绕自身轴线旋转。
  4. 如权利要求3所述的磁共振引导激光消融治疗系统,其特征在于,所述系统还包括前后平移驱动装置;
    所述旋转驱动装置滑动连接于所述前后平移驱动装置。
  5. 如权利要求2-4中任一项所述的磁共振引导激光消融治疗系统,其特征在于,所述引导装置包括空心细长结构导向件和夹紧组件,所述夹紧组件的远端与所述空心细长结构导向件的近端连接,所述夹紧组件用于在所述套管伸出所述空心细长结构导向件的远端后,固定所述套管与所述空心细长结构导向件的相对位置。
  6. 如权利要求2-4中任一项所述的磁共振引导激光消融治疗系统,其特征在于,所述插接件包括密封塞、消融光纤接头以及沿从近端到远端的方向依次连接的密封螺母、鲁尔接头、入水转接件和出水转接件;
    所述消融光纤接头与所述旋转驱动装置的传动部件连接,所述密封塞设置于所述鲁尔接头内,所述密封螺母的内部凸台与所述密封塞接触;
    使用状态下,所述密封螺母拧紧于所述鲁尔接头,所述密封螺母的内部凸台压紧所述密封塞,所述消融光纤穿过所述消融光纤接头、所述密封螺母、所述密封塞和所述入水转接件进入所述套管。
  7. 如权利要求6所述的磁共振引导激光消融治疗系统,其特征在于,所述消融光纤的至少第一部分外设置有刚性结构,或者,所述消融光纤的至少第一部分具有经过强化处理的外表面结构,其中,所述第一部分包括所述消融光纤自近端起至位于所述密封塞内的部分以及 超出所述密封塞的部分,所述消融光纤的远端位于所述系统的最远端时,超出所述密封塞的部分的长度大于所述消融光纤的移动距离。
  8. 如权利要求4所述的磁共振引导激光消融治疗系统,其特征在于,所述前后平移驱动装置包括前后平移驱动装置基座、至少一个滑轨、丝杠、滑动块和第二驱动器;
    所述至少一个滑轨和所述丝杠平行设置且均穿过所述滑动块,所述至少一个滑轨的两端固定安装于所述前后平移驱动装置基座,所述丝杠转动连接于所述前后平移驱动装置基座,所述第二驱动器驱动所述丝杠旋转,所述第二驱动器安装于所述前后平移驱动装置基座,所述旋转驱动装置安装于所述滑动块。
  9. 如权利要求1所述的磁共振引导激光消融治疗系统,其特征在于,所述消融光纤可以侧向出光。
  10. 如权利要求1所述的磁共振引导激光消融治疗系统,所述工作站可以通信连接所述激光消融设备和所述立体定向系统,调节激光发生器和冷却装置的参数,控制所述消融光纤的位置和旋转角度,在磁共振检测下进行消融,根据磁共振图像反馈的温度和消融信息,对所述激光消融设备和所述立体定向系统进行反馈控制。
  11. 一种磁共振引导激光消融治疗系统,其特征在于,包括:
    光纤冷却组件,其容纳并冷却消融光纤;
    激光消融设备,其含有激光发生器和冷却装置;
    立体定向系统,其容纳并控制所述消融光纤的位置和旋转角度;
    工作站,其配置成:控制所述立体定向装置的运动,利用磁共振温度成像技术生成并显示所述磁共振引导激光消融治疗系统工作过程中目标部位的消融信息。
  12. 根据权利要求11所述的磁共振引导激光消融治疗系统,其特征在于,所述光纤冷却组件包括冷却液输送管、冷却套管、水循环转接组件、密封塞。
  13. 根据权利要求11所述的磁共振引导激光消融治疗系统,其特征在于,所述立体定向系统包括:
    导向装置,所述导向装置包括冷却套管引导件和导向装置壳体;
    至少两组传感器组件,所述传感器组件包括角度传感器;
    旋转驱动装置,所述旋转驱动装置驱动所述消融光纤旋转;
    控制器,所述控制器与所述传感器组件和所述旋转驱动装置通讯连接,接收所述传感器组件的角度信息,控制所述旋转驱动装置的运动,所述控制器还可以接收控制信息输入;
    使用状态下,所述消融光纤的远端穿过所述光纤冷却组件,所述角度传感器固定连接于不随所述消融光纤旋转的装置或者结构,所述立体定向系统可以使得不同传感器处的消融光纤旋转角度保持相同或基本相同。
  14. 根据权利要求13所述的磁共振引导激光消融治疗系统,其特征在于,所述立体定向系统还包括套管,所述套管使得所述第一组传感器组件和所述第二组传感器组件之间的消融光纤长度保持固定,允许消融光纤在其中围绕长轴转动和沿长轴移动。
  15. 根据权利要求13所述的磁共振引导激光消融治疗系统,其特征在于,所述传感器组件还包括旋转定位装置,使得所述消融光纤可以在被测定旋转角度的同时沿长轴移动,使用状态下所述旋转定位装置按照预设压力夹持所述消融光纤,所述消融光纤带动所述旋转定位 装置旋转,所述角度传感器检测所述旋转定位装置的旋转角度,并发送所述旋转角度至所述控制器。
  16. 如权利要求13所述的磁共振引导激光消融治疗系统,其特征在于,所述立体定向系统还包括纵向运动装置,所述旋转驱动装置可以相对所述纵向运动装置运动,所述控制器对所述纵向运动装置发送控制信息,使得消融光纤沿长轴运动。
  17. 如权利要求16所述的磁共振引导激光消融治疗系统,其特征在于,所述纵向运动装置与所述第二传感器组件连接。
  18. 如权利要求13所述的磁共振引导激光消融治疗系统,其特征在于,所述立体定向系统中,所述导向装置壳体包括骨钉帽、导向装置壳体主体和导向装置壳体后盖;
    所述冷却套管引导件的近端与所述骨钉帽的远端螺纹连接,所述骨钉帽的近端与所述导向装置壳体主体的远端连接,所述导向装置壳体后盖连接所述导向装置壳体主体的近端,所述导向装置壳体后盖与所述套管的远端连接,所述光纤冷却组件设置于所述导向装置壳体主体之中;
    使用状态下,所述消融光纤穿过所述导向装置壳体后盖、所述导向装置壳体主体、所述骨钉帽、和所述冷却套管引导件。
  19. 如权利要求18所述的磁共振引导激光消融治疗系统,其特征在于,所述立体定向系统中,所述导向装置壳体主体包括导向装置壳体主体固定部和导向装置壳体主体滑动部,所述骨钉帽的近端与所述导向装置壳体主体固定部的远端连接,所述导向装置壳体主体固定部的近端与所述导向装置壳体主体滑动部的远端连接,所述导向装置壳体后盖连接所述导向装置壳体主体滑动部的近端。
  20. 如权利要求13所述的磁共振引导激光消融治疗系统,其特征在于,所述立体定向系统包括:导向装置、套管、插件、旋转驱动装置和纵向移动驱动装置;
    所述导向装置包括冷却套管引导件和导向装置壳体,所述导向装置壳体包括骨钉帽、导向装置壳体主体和导向装置壳体后盖,所述导向装置壳体主体包括导向装置壳体主体固定部和导向装置壳体主体滑动部,所述骨钉帽的近端与所述导向装置壳体主体固定部的远端连接,所述导向装置壳体主体固定部的近端与所述导向装置壳体主体滑动部的远端连接,所述导向装置后盖盖合于所述导向装置壳体主体滑动部的近端,所述导向装置壳体主体固定部和/或所述导向装置壳体主体滑动部设置有刻度尺,所述导向装置壳体主体固定部和所述导向装置壳体主体滑动部可相对运动,所述刻度尺显示相对运动的距离,所述导向装置中设置第一组传感器组件,所述第一组传感器组件的角度传感器与所述导向装置壳体主体连接;
    所述插件中设置第二组传感器组件,所述第二组传感器组件的角度传感器与所述插件的壳体连接,所述插件和所述纵向移动驱动装置连接,使得所述插件与所述纵向移动驱动装置的相对位置不变;
    所述套管的近端与所述导向装置后盖连接,所述套管的远端与所述插件连接,使得所述导向装置后盖与所述插件之间的消融光纤的长度不变;
    所述旋转驱动装置滑动连接于所述纵向移动驱动装置;
    使用状态下,所述光纤冷却组件设置于所述导向装置壳体主体之中。
PCT/CN2021/143786 2020-12-31 2021-12-31 磁共振引导激光消融治疗系统 WO2022143996A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180066103.6A CN116801826A (zh) 2020-12-31 2021-12-31 磁共振引导激光消融治疗系统
US18/270,437 US20240099772A1 (en) 2020-12-31 2021-12-31 Magnetic resonance guided laser ablation treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011640255.6 2020-12-31
CN202011640255.6A CN114681053B (zh) 2020-12-31 2020-12-31 磁共振引导激光消融治疗系统

Publications (1)

Publication Number Publication Date
WO2022143996A1 true WO2022143996A1 (zh) 2022-07-07

Family

ID=82135657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143786 WO2022143996A1 (zh) 2020-12-31 2021-12-31 磁共振引导激光消融治疗系统

Country Status (3)

Country Link
US (1) US20240099772A1 (zh)
CN (2) CN114681053B (zh)
WO (1) WO2022143996A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418337B1 (en) * 2000-06-15 2002-07-09 Autolitt Inc. MRI guided hyperthermia surgery
CN102238921A (zh) * 2008-12-03 2011-11-09 皇家飞利浦电子股份有限公司 用于整合介入规划和导航的反馈系统
CN104602638A (zh) * 2012-06-27 2015-05-06 曼特瑞斯医药有限责任公司 组织的图像引导治疗
CN108805991A (zh) * 2018-06-19 2018-11-13 华科精准(北京)医疗科技有限公司 基于核磁共振引导的激光消融系统的组织消融评估系统
CN108836477A (zh) * 2018-05-14 2018-11-20 华科精准(北京)医疗科技有限公司 基于磁共振导引的激光热疗装置和系统
US20190247120A1 (en) * 2018-02-12 2019-08-15 Desert Medical Imaging, LLC Systems and methods for mri-guided interstitial thermal therapy
CN111773567A (zh) * 2020-08-17 2020-10-16 杭州福嵩科技有限责任公司 一种高强度聚焦超声-穿刺消融的融合治疗设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142586B2 (ja) * 2001-12-14 2008-09-03 モンテリス メディカル インコーポレイティド 温熱治療及びそのためのプローブ
US7232437B2 (en) * 2003-10-30 2007-06-19 Medical Cv, Inc. Assessment of lesion transmurality
US10258285B2 (en) * 2004-05-28 2019-04-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated creation of ablation lesions
EP2363073B1 (en) * 2005-08-01 2015-10-07 St. Jude Medical Luxembourg Holding S.à.r.l. Medical apparatus system having optical fiber load sensing capability
CN105636540B (zh) * 2013-10-15 2019-10-18 尼普洛株式会社 消融系统及消融设备
JP2017509370A (ja) * 2014-02-06 2017-04-06 アキュブレイト, インコーポレイテッド 自己誘導型切除のための装置および方法
CN104382646B (zh) * 2014-12-10 2017-01-11 段凤姣 一种新型多频肿瘤治疗机
EP3496800B1 (en) * 2016-08-14 2020-11-04 Digma Medical Ltd. Apparatus for nerve ablation in the wall of the gastointestinal tract
US11406452B2 (en) * 2018-06-04 2022-08-09 Pavel V. Efremkin Laser device for vascular and intrabody surgery and method of use
CN110755152A (zh) * 2018-07-26 2020-02-07 赛诺微医疗科技(浙江)有限公司 微波消融导管、操控其的机械手及机械手控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418337B1 (en) * 2000-06-15 2002-07-09 Autolitt Inc. MRI guided hyperthermia surgery
US20020193682A1 (en) * 2000-06-15 2002-12-19 Torchia Mark G. Hyperthermia treatment and probe therefor
CN102238921A (zh) * 2008-12-03 2011-11-09 皇家飞利浦电子股份有限公司 用于整合介入规划和导航的反馈系统
CN104602638A (zh) * 2012-06-27 2015-05-06 曼特瑞斯医药有限责任公司 组织的图像引导治疗
US20190247120A1 (en) * 2018-02-12 2019-08-15 Desert Medical Imaging, LLC Systems and methods for mri-guided interstitial thermal therapy
CN108836477A (zh) * 2018-05-14 2018-11-20 华科精准(北京)医疗科技有限公司 基于磁共振导引的激光热疗装置和系统
CN108805991A (zh) * 2018-06-19 2018-11-13 华科精准(北京)医疗科技有限公司 基于核磁共振引导的激光消融系统的组织消融评估系统
CN111773567A (zh) * 2020-08-17 2020-10-16 杭州福嵩科技有限责任公司 一种高强度聚焦超声-穿刺消融的融合治疗设备

Also Published As

Publication number Publication date
CN114681053A (zh) 2022-07-01
CN116801826A (zh) 2023-09-22
CN114681053B (zh) 2023-07-04
US20240099772A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
CN108836477B (zh) 基于磁共振导引的激光热疗装置和系统
US11751956B2 (en) Automated insertion device
BR112020011444A2 (pt) sistemas e métodos para arquiteturas de inserção baseadas em instrumentos
CN104146772B (zh) 一种用于颌面疾病精确诊疗的机器人
US6544257B2 (en) Thermal treatment apparatus
CN103561674B (zh) 对消融导管的独立被动冷却设计
US7615042B2 (en) Transmission for a remote catheterization system
KR20110058770A (ko) 캘리브레이션 팬텀을 갖는 엠알아이 호환성 로봇 및 팬텀
WO2023125246A1 (zh) 一种辅助运动装置、驱动系统及控制方法
CN111904594B (zh) 微波消融针及其微波消融治疗仪
CN217366081U (zh) 一种光纤导管的辅助运动装置
EP3053617B1 (en) Pressure-driven irrigation pump
WO2022143996A1 (zh) 磁共振引导激光消融治疗系统
CN106859766A (zh) 用于骨干骨折髓内复位的导航系统和使用方法
KR101850116B1 (ko) 방사선 영상 촬영용 테이블
CN107929948B (zh) 一种智能化全身微波热疗系统
CN216652443U (zh) 磁共振引导激光消融治疗系统
CN216933456U (zh) 一种丝线辅助运动装置
KR20180116684A (ko) 온도 조절이 가능한 영상 촬영용 베드
CN211534705U (zh) 介入穿刺系统及具有其的诊疗设备
CN114110114A (zh) 一种光纤导管单向步进装置及驱动系统
WO2022143986A1 (zh) 一种用于控制细长构件的立体定向传动系统
WO2017219208A1 (zh) 一种骨科手术机器人的智能骨钻
CN114305698A (zh) 一种丝线辅助运动装置、驱动系统及控制方法
KR102495638B1 (ko) 레이저 조사 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180066103.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18270437

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914725

Country of ref document: EP

Kind code of ref document: A1