WO2022143773A1 - 苯并咪唑类化合物及其应用 - Google Patents

苯并咪唑类化合物及其应用 Download PDF

Info

Publication number
WO2022143773A1
WO2022143773A1 PCT/CN2021/142486 CN2021142486W WO2022143773A1 WO 2022143773 A1 WO2022143773 A1 WO 2022143773A1 CN 2021142486 W CN2021142486 W CN 2021142486W WO 2022143773 A1 WO2022143773 A1 WO 2022143773A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
added
reaction solution
solution
stirred
Prior art date
Application number
PCT/CN2021/142486
Other languages
English (en)
French (fr)
Inventor
沈春莉
朱玉川
刘金鑫
吴成德
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to US18/269,901 priority Critical patent/US20240109879A1/en
Priority to CN202180087839.1A priority patent/CN116670129A/zh
Publication of WO2022143773A1 publication Critical patent/WO2022143773A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5355Non-condensed oxazines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to a class of benzimidazole compounds and applications thereof, in particular to a compound represented by formula (P) and a pharmaceutically acceptable salt thereof.
  • the p300/CBP family consisting of the highly homologous HAT adenovirus E1A-related 300kDa protein (adenovral E1A binding protein of 300kDa, p300) and cyclic adenosine monophosphate response element binding protein (CREB binding protein, CBP) is HAT One of the main members of the family. p300/CBP is involved in cell cycle progression and cell growth, differentiation and development, and is a very important coactivator.
  • p300 and CBP are positive regulators of cancer progression and are closely related to various human tumor diseases.
  • the high expression of p300 in breast cancer may promote tumor recurrence and correlate with the aggressive characteristics of breast cancer.
  • high expression of p300 is associated with enhanced vascular invasion, intrahepatic metastasis and shortened threshold.
  • androgen-induced androgen receptor (AR) recruitment to chromatin is closely related to H3K27 acetylation, preventing the coactivator function of p300/CBP on AR by preventing H3K27 acetylation , thereby blocking the expression of key proliferation genes and tumor growth, showing the potential of p300/CBP inhibitors in the field of prostate cancer therapy.
  • AML acute myeloid leukemia
  • the present invention provides a compound represented by formula (P) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from H, F, Cl, Br, I and C 1-3 alkyl optionally substituted with 1 , 2 or 3 Ra ;
  • n is selected from 1, 2 and 3;
  • s is selected from 0, 1 and 2;
  • Y is selected from -CH2O- , -CH2CH2- , -N( Rb ) - , -CH2S- and -cyclopropyl-;
  • Ring A is selected from cyclohexane, The cyclohexane group, optionally substituted with 1, 2 or 3 R2;
  • Ring B is selected from said optionally substituted with 1, 2 or 3 R3 ;
  • Ring C is selected from phenyl and 5-6 membered heteroaryl optionally substituted with 1, 2 or 3 R4;
  • R 2 , R 3 and R 4 are each independently selected from H, F, Cl, Br, I, OH, COOH, C 1-3 alkyl and C 1-3 alkoxy, said C 1-3 alkyl and C 1-3 alkoxy is optionally substituted with 1 , 2 or 3 R c ;
  • R a and R c are each independently selected from F, Cl, Br, I and OH;
  • R b is independently selected from H and CH 3 ;
  • Ring A is not selected from cyclohexyl.
  • R 1 is selected from H, F, Cl, Br, I and CH 3 , said CH 3 is optionally substituted with 1, 2 or 3 Ra , and other variables are as defined in the present invention.
  • R 1 is selected from H, F, Cl, Br, I, CH 3 , CH 2 F, CHF 2 and CF 3 , and other variables are as defined in the present invention.
  • R 2 , R 3 and R 4 are independently selected from H, F, Cl, Br, I, OH, CH 3 and OCH 3 , and said CH 3 and OCH 3 are optionally separated by 1 , 2 or 3 R c substitutions and other variables are as defined in the present invention.
  • R 2 , R 3 and R 4 are independently selected from H, F, Cl, Br, I, OH, CH 3 , CH 2 OH, CH 2 F, CHF 2 , CF 3 and OCH3 , other variables are as defined in the present invention.
  • the above Y is selected from -CH 2 O-, -CH 2 CH 2 -, -NH, -N(CH 3 )-, -CH 2 S-, Other variables are as defined in the present invention.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from Other variables are as defined in the present invention.
  • the above-mentioned ring C is selected from Other variables are as defined in the present invention.
  • the above-mentioned ring structural unit selected from Other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (P-1) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from H, F, Cl, Br, I and C 1-3 alkyl optionally substituted with 1 , 2 or 3 Ra ;
  • n is selected from 1, 2 and 3;
  • R 4 is selected from H, F, Cl, Br, I and C 1-3 alkyl optionally substituted with 1 , 2 or 3 Ra ;
  • n is selected from 1, 2, 3 and 4;
  • Y is selected from -CH2O- , -CH2CH2- , -N( Rb )-, -CH2N ( Rb )-, -CH2S- and -cyclopropyl-;
  • Ring A is selected from said optionally substituted with 1, 2 or 3 R2;
  • Ring B is selected from said optionally substituted with 1, 2 or 3 R3 ;
  • R 2 and R 3 are each independently selected from H, F, Cl, Br, I, OH, COOH, C 1-3 alkyl and C 1-3 alkoxy, the C 1-3 alkyl and C 1 -3 alkoxy optionally substituted with 1, 2 or 3 R c ;
  • R a and R c are each independently selected from F, Cl, Br, I and OH;
  • R b is independently selected from H and CH 3 ;
  • R 1 is selected from H, F, Cl and CH 3 , said CH 3 is optionally substituted with 1, 2 or 3 Ra , and other variables are as defined in the present invention.
  • R 1 is selected from H, F, Cl, CH 3 , CH 2 F, CHF 2 and CF 3 , and other variables are as defined in the present invention.
  • R 4 is selected from H, F, Cl and CH 3 , said CH 3 is optionally substituted with 1, 2 or 3 Ra , and other variables are as defined in the present invention.
  • R 4 is selected from H, F, Cl, CH 3 , CH 2 F, CHF 2 and CF 3 , and other variables are as defined in the present invention.
  • R 2 and R 3 are independently selected from H, F, Cl, Br, I, OH, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally selected by 1, 2 or 3 R c substitutions, other variables are as defined in the present invention.
  • R 2 and R 3 are independently selected from H, F, Cl, Br, I, OH, CH 3 , CH 2 OH, CH 2 F, CHF 2 , CF 3 and OCH 3 , Other variables are as defined in the present invention.
  • the above Y is selected from -CH 2 O-, -CH 2 CH 2 -, -NH, -N(CH 3 )-, -CH 2 NH-, -CH 2 N(CH 3 )- , -CH 2 S-, Other variables are as defined in the present invention.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from Other variables are as defined in the present invention.
  • the above-mentioned ring structural unit selected from Other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected from H, F, Cl, Br and C 1-3 alkyl optionally substituted with 1 , 2 or 3 R a ;
  • n is selected from 1, 2 and 3;
  • Y is selected from -CH2O- , -CH2CH2- , -N( Rb )-, -CH2N ( Rb )-, -CH2S- and -cyclopropyl-;
  • Ring A is selected from cyclohexane, The cyclohexane group, optionally substituted with 1, 2 or 3 R2;
  • Ring B is selected from said optionally substituted with 1, 2 or 3 R3 ;
  • R 2 and R 3 are each independently selected from H, F, Cl, Br, I, OH, COOH, C 1-3 alkyl and C 1-3 alkoxy, the C 1-3 alkyl and C 1 -3 alkoxy optionally substituted with 1, 2 or 3 R c ;
  • R a and R c are each independently selected from F, Cl, Br and OH;
  • R b is independently selected from H and CH 3 ;
  • Ring A is not selected from cyclohexyl.
  • R 1 is selected from H, F, Cl, Br and CH 3 , said CH 3 is optionally substituted with 1, 2 or 3 Ra , and other variables are as defined in the present invention.
  • R 1 is selected from H, F, Cl, Br, CH 3 , CH 2 F, CHF 2 and CF 3 , and other variables are as defined in the present invention.
  • R 2 and R 3 are independently selected from H, F, Cl, Br, I, OH, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally selected by 1, 2 or 3 R c substitutions, other variables are as defined in the present invention.
  • R 2 and R 3 are independently selected from H, F, Cl, Br, I, OH, CH 3 , CH 2 OH, CH 2 F, CHF 2 , CF 3 and OCH 3 , Other variables are as defined in the present invention.
  • the above Y is selected from -CH 2 O-, -CH 2 CH 2 -, -NH, -N(CH 3 )-, -CH 2 NH-, -CH 2 N(CH 3 )- , -CH 2 S-, Other variables are as defined in the present invention.
  • the above-mentioned ring A is selected from Other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from Other variables are as defined in the present invention.
  • the above-mentioned ring structural unit selected from Other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • R 1 , R 2 , R 3 and Y are as defined in the present invention.
  • the present invention also provides a compound represented by the following formula or a pharmaceutically acceptable salt thereof,
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from:
  • the compounds of the present invention have great application prospects in the treatment of tumors, and the compounds of the present invention show good p300/CBP inhibitory activity.
  • the compounds of the present invention have short half-life, wide distribution in plasma and moderate bioavailability.
  • the term "pharmaceutically acceptable” refers to those compounds, materials, compositions and/or dosage forms that, within the scope of sound medical judgment, are suitable for use in contact with human and animal tissue , without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • salts refers to salts of the compounds of the present invention, prepared from compounds with specific substituents discovered by the present invention and relatively non-toxic acids or bases.
  • base addition salts can be obtained by contacting such compounds with a sufficient amount of base in neat solution or in a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting such compounds with a sufficient amount of acid in neat solution or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts including, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-toluenesulfonic, citric, tartaric, and methanesulfonic acids; also include salts of amino acids such as arginine, etc. , and salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain both basic and acidic functional groups and thus can be converted into either base or
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the acid or base containing parent compound by conventional chemical methods. Generally, such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of the two.
  • the term “isomer” is intended to include geometric isomers, cis-trans isomers, stereoisomers, enantiomers, optical isomers, diastereomers and tautomers isomer.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and racemic mixtures thereof and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which belong to this within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • enantiomers or “optical isomers” refer to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” result from the inability to rotate freely due to double bonds or single bonds to ring carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the molecules are in a non-mirror-image relationship.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in one enantiomer” refer to one of the isomers or pairs
  • the enantiomer content is less than 100%, and the isomer or enantiomer content is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or Greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
  • isomeric excess or “enantiomeric excess” refer to the difference between two isomers or relative percentages of two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the content of the other isomer or enantiomer is 10%, the isomer or enantiomeric excess (ee value) is 80% .
  • Optically active (R)- and (S)-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the present invention is desired, it can be prepared by asymmetric synthesis or derivatization with a chiral auxiliary, wherein the resulting mixture of diastereomers is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereomeric salt is formed with an appropriate optically active acid or base, followed by conventional methods known in the art
  • the diastereoisomers were resolved and the pure enantiomers recovered.
  • separation of enantiomers and diastereomers is usually accomplished by the use of chromatography employing a chiral stationary phase, optionally in combination with chemical derivatization (eg, from amines to amino groups) formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • deuterated drugs can be formed by replacing hydrogen with deuterium, and the bonds formed by deuterium and carbon are stronger than those formed by ordinary hydrogen and carbon. Compared with non-deuterated drugs, deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All transformations of the isotopic composition of the compounds of the present invention, whether radioactive or not, are included within the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable.
  • oxygen it means that two hydrogen atoms are substituted. Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the type and number of substituents may be arbitrary on a chemically achievable basis.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with up to two Rs, with independent options for R in each case.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • the substituent can bond to any atom on the ring, for example, a structural unit It means that the substituent R can be substituted at any position on cyclohexyl or cyclohexadiene.
  • substituents do not specify through which atom it is attached to the substituted group, such substituents may be bonded through any of its atoms, for example, pyridyl as a substituent may be through any one of the pyridine rings. The carbon atom is attached to the substituted group.
  • the direction of attachment is arbitrary, for example,
  • the linking group L in the middle is -MW-, at this time -MW- can connect ring A and ring B in the same direction as the reading order from left to right. It is also possible to connect ring A and ring B in the opposite direction to the reading order from left to right.
  • Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • any one or more sites in the group can be linked to other groups by chemical bonds.
  • connection method of the chemical bond is not located, and there is an H atom at the linkable site, when the chemical bond is connected, the number of H atoms at the site will be correspondingly reduced with the number of chemical bonds connected to the corresponding valence. the group.
  • the chemical bond connecting the site to other groups can be represented by straight solid line bonds straight dotted key or wavy lines express.
  • a straight solid bond in -OCH 3 indicates that it is connected to other groups through the oxygen atom in this group;
  • the straight dashed bond in the group indicates that it is connected to other groups through the two ends of the nitrogen atom in the group;
  • the wavy line in the phenyl group indicates that it is connected to other groups through the 1 and 2 carbon atoms in the phenyl group;
  • the number of atoms in a ring is generally defined as the number of ring members, eg, "5-7 membered ring” refers to a “ring” of 5-7 atoms arranged around it.
  • C 1-3 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (eg methyl), divalent (eg methylene) or multivalent (eg methine) .
  • Examples of C1-3 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C1-3alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms attached to the remainder of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy and the like.
  • Examples of C 1-3 alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • the terms “5-6 membered heteroaryl ring” and “5-6 membered heteroaryl” are used interchangeably in the present invention, and the term “5-6 membered heteroaryl” means from 5 to 6 ring atoms It is composed of a monocyclic group with a conjugated ⁇ electron system, wherein 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from O, S and N, and the rest are carbon atoms. Where the nitrogen atom is optionally quaternized, the nitrogen and sulfur heteroatoms may be optionally oxidized (ie, NO and S(O) p , p is 1 or 2).
  • a 5-6 membered heteroaryl group can be attached to the remainder of the molecule through a heteroatom or a carbon atom.
  • the 5-6 membered heteroaryl groups include 5- and 6-membered heteroaryl groups.
  • Examples of the 5-6 membered heteroaryl include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl and 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl, etc.) azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,4
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed by their combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • the solvent used in the present invention is commercially available.
  • Analytical method Chiralpak AS-3 100 ⁇ 4.6 mm I.D., 3 ⁇ m; Mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; Gradient: B from 5% to 40% in 4 minutes, 40 % maintained for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • Analytical method Chiralpak AS-3 100 ⁇ 4.6 mm I.D., 3 ⁇ m; Mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; Gradient: B from 5% to 40% in 4 minutes, 40 % maintained for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • Critical carbon dioxide, B 0.05% diethylamine in ethanol
  • Gradient B from 5% to 40% in 4 minutes, 40% for 2.5 minutes, 1.5 minutes from 5% to 1.5%
  • flow rate: 2.8 mL/min column temperature: 35°C; wavelength: 220 nm
  • Analytical method Chiralpak OD-3 100 ⁇ 4.6 mm I.D., 3 ⁇ m; Mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; Gradient: B from 5% to 40% in 4 minutes, 40 % maintained for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • Paste sodium sulfate was added to the reaction solution in batches, filtered, the filtrate was spin-dried, ethyl acetate (200 mL) and water (100 mL) were added, after separation, the aqueous phase was extracted with ethyl acetate (100 mL*3), and the combined All the above organic phases were dried with anhydrous sodium sulfate, filtered, and the filtrate was spin-dried to obtain compound 6-4.
  • n-BuLi (2.5M, 16.00 mL, 1.01 eq) was added to compound 6-4 (8 g, 39.56 mmol, 1 eq) in anhydrous tetrahydrofuran (80 mL) at 0 °C, and after stirring at 0 °C for 30 minutes, the Tosyl chloride (7.55g, 39.60mmol, 1eq) in anhydrous tetrahydrofuran (15mL) was added dropwise to the above reaction solution, gradually raised to 25°C and stirred for 1 hour, the reaction solution was cooled to 0°C again, the n-BuLi (2.5M, 23.73mL, 1.5eq) was added dropwise to the above reaction solution, raised to 70°C (reflux) and stirred for 16h.
  • Cesium carbonate (5.32g, 16.33mmol, 3.03eq) was added to a solution of compound 1-3 (1.90g, 8.04mmol, 1.49eq) and compound 6-8 (760mg, 5.38mmol, 1eq) in dry tetrahydrofuran (50mL) in the mixture, stirring at 70°C for 16 hours.
  • the reaction solution was cooled to room temperature, poured into water (50 mL), and the solution was separated.
  • LCMS MS (ESI) m/z (M+H) + : 358.2.
  • Compound 6 was separated by SFC (column: DAICEL CHIRALPAK AS (250mm*30mm, 10 ⁇ m); mobile phase: [0.1% NH 3 H 2 O EtOH]; 35%-35%) to obtain chiral isomer compounds 6A and 6B .
  • Analytical method Chiralpak AS-3 100 ⁇ 4.6 mm I.D., 3 ⁇ m; Mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; Gradient: B from 5% to 40% in 4 minutes, 40 % maintained for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • Analytical method Chiralpak OD-3 100 ⁇ 4.6 mm I.D., 3 ⁇ m; Mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; Gradient: B from 5% to 40% in 4 minutes, 40 % maintained for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • Compound 8 was separated by SFC (chromatographic column: DAICEL CHIRALPAK AS (250mm*30mm, 10 ⁇ m); mobile phase: [0.1% NH 3 H 2 O EtOH]; 30%-30%, min) to obtain chiral isomer Compound 8A , 8B and 8C.
  • SFC chromatographic column: DAICEL CHIRALPAK AS (250mm*30mm, 10 ⁇ m); mobile phase: [0.1% NH 3 H 2 O EtOH]; 30%-30%, min) to obtain chiral isomer Compound 8A , 8B and 8C.
  • Analytical method Chiralpak AS-3 100 ⁇ 4.6mm I.D., 3um, mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; gradient: B from 5% to 40% in 4 minutes, 40 % maintained for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • Compound 9 was separated by SFC (column: DAICEL CHIRALPAK AS (250mm*30mm, 10 ⁇ m); mobile phase: [0.1% NH 3 H 2 O EtOH]; 25%-25%) to obtain chiral isomers compounds 9A and 9B .
  • Analytical method Chiralpak AS-3 100 ⁇ 4.6 mm I.D., 3 ⁇ m; Mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; Gradient: B from 5% to 40% in 4 minutes, 40 % maintained for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • the organic phase was washed successively with 1M hydrochloric acid solution (pH about 2), saturated sodium bicarbonate solution (20 mL) and saturated brine (20 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure.
  • Analytical method Chiralpak AS-3 100 ⁇ 4.6mm OD., 3 ⁇ m; Mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; Gradient: B from 5% to 40% in 4 minutes, 40% hold for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • Compound 11 was separated by SFC (column: DAICEL CHIRALCEL OD-H (250mm*30mm, 5 ⁇ m); mobile phase: [0.1% NH 3 H 2 O EtOH]; 45%-45%) to obtain chiral isomer compound 11A and 11B.
  • Analytical method Chiralpak OD-3 100 ⁇ 4.6 mm I.D., 3 ⁇ m; mobile phase: A: supercritical carbon dioxide, B: 0.05% diethylamine in ethanol; gradient: B from 5% to 40% in 4 minutes, 40 % maintained for 2.5min, 1.5min from 5% to 1.5%; flow rate: 2.8mL/min; column temperature: 35°C; wavelength: 220nm.
  • Reaction buffer 25 mM HEPES, pH 7.5, 25 mM NaCl, 0.025% CHAPS, 0.025% BSA, 0.5% DMSO.
  • the compound in 100% DMSO was delivered into the BRD mixture by acoustic technology (Echo550; nanoliter range). Rotate down. Incubate for 30 min at room temperature.
  • top must be less than 120
  • CD-1 mice Male, 5-6 weeks old, Shanghai Institute of Family Planning Science
  • the pharmacokinetic characteristics of rodents after intravenous injection of the compounds were tested according to the standard protocol.
  • the candidate compounds were formulated into clear solutions and administered to mice by a single intravenous injection.
  • the vehicle for intravenous injection is a mixed vehicle of 5% dimethyl sulfoxide and 95% 10% hydroxypropyl beta cyclodextrin.
  • This project uses two male CD-1 mice for intravenous injection at a dose of 0.5mg/kg, and collects plasma samples at 0.083, 0.25, 0.5, 1, 2, 4, 8, and 24 hours after administration.
  • the oral vehicle is a mixed vehicle of 5% dimethyl sulfoxide and 95% 0.5% methylcellulose.
  • two male CD-1 mice were administered by oral gavage at a dose of 3 mg/kg.
  • Plasma samples were collected at 0.25, 0.5, 1, 2, 4, 8, and 24 hours after administration, and collected within 24 hours.
  • the whole blood sample was centrifuged at 3000g for 15 minutes, the supernatant was separated to obtain the plasma sample, 20 times the volume of acetonitrile solution containing internal standard was added to precipitate the protein, vortexed, centrifuged to take the supernatant for injection, and quantitative analysis by LC-MS/MS analysis method Blood concentration, and calculate pharmacokinetic parameters, such as peak concentration (C max ), half-life (T 1/2 ), area under the drug-time curve (AUC 0-last ), etc.
  • C max peak concentration
  • T 1/2 half-life
  • AUC 0-last area under the drug-time curve
  • test compound on hERG potassium channel was detected by fully automatic patch clamp method.
  • CHO-hERG cells were cultured in a 175cm 2 culture flask. After the cell density had grown to 60-80%, the culture medium was removed, washed with 7mL PBS (Phosphate Buffered Saline phosphate buffered saline), and then 3mL of Detachin was added for digestion. .
  • PBS Phosphate Buffered Saline phosphate buffered saline
  • Single-cell high-impedance sealing and whole-cell pattern formation are all performed automatically by the Qpatch instrument. After obtaining the whole-cell recording pattern, the cell is clamped at -80 mV, before a 5-second +40 mV depolarizing stimulus is given. , given a pre-voltage of -50 mV for 50 ms, then repolarized to -50 mV for 5 seconds, and then returned to -80 mV. This voltage stimulus was applied every 15 seconds, and the extracellular fluid was recorded for 2 minutes and then recorded for 5 minutes. Then the dosing process was started. The compound concentration started from the lowest test concentration, and each test concentration was administered for 2.5 minutes. After all concentrations were continuously administered, the administration Positive control compound 3 ⁇ M Cisapride. At least 3 cells were tested at each concentration (n ⁇ 3).
  • the highest test concentration is 40 ⁇ M, which are 40, 13.3, 4.4, 1.48, 0.494, and 0.165 ⁇ M in order of 6 concentrations.
  • the DMSO content in the final test concentration should not exceed 0.2%, and this concentration of DMSO has no effect on the hERG potassium channel.
  • the experimental data were analyzed by GraphPad Prism 5.0 software.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

提供一类苯并咪唑类化合物及其作为300/CBP抑制剂的应用,具体地,提供式(P)所示化合物及其药学上可接受的盐。

Description

苯并咪唑类化合物及其应用
本申请主张如下优先权
CN202011643388.9,申请日:2020年12月31日。
技术领域
本发明涉及一类苯并咪唑类化合物及其应用,具体涉及式(P)所示化合物及其药学上可接受的盐。
背景技术
由高度同源的HAT腺病毒E1A相关的300kDa蛋白(adenoviral E1A binding protein of 300kDa,p300)和环磷酸腺苷反应元件结合蛋白的结合蛋白(CREB binding protein,CBP)组成的p300/CBP家族是HAT家族的主要成员之一。p300/CBP参与细胞周期进展和细胞的生长、分化和发展,是一类非常重要的辅激活因子。
p300和CBP是癌症进展的积极调节因子,与各种人类肿瘤疾病密切相关。在乳腺癌中高表达的p300可能促进肿瘤的复发,与乳腺癌的侵袭性特征相关。在肝细胞癌中,p300的高表达与血管浸润增强、肝内转移和阈值缩短有关。在前列腺癌中,雄激素诱导的雄激素受体(androgen receptor,AR)向染色质募集与H3K27乙酰化密切相关,通过阻止H3K27乙酰化以阻止p300/CBP在AR上的共激活因子功能的发挥,从而阻断关键增殖基因的表达和肿瘤的生长,显示了p300/CBP抑制剂在前列腺癌治疗领域的潜力。多项研究还表明,突变的p300/CBP与许多血液恶性肿瘤相关。在小鼠模型中使用体外和体内的基因敲除等实验证明了表观遗传调控因子p300/CBP在诱导和维持急性髓系白血病(acute myeloid leukemia,AML)中的作用,使用p300/CBP小分子抑制剂诱导细胞周期阻滞和凋亡,在多种AML亚型中具有疗效。急性淋巴细胞白血病(acute lymphoblastic leukaemia,ALL)是最常见的儿童期恶性肿瘤,有研究表明p300/CBP参与了复发性ALL相关染色体易位,是肿瘤细胞生长的关键调控因子。
发明内容
本发明提供了式(P)所示化合物或其药学上可接受的盐,
Figure PCTCN2021142486-appb-000001
其中,
R 1选自H、F、Cl、Br、I和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R a取代;
n选自1、2和3;
s选自0、1和2;
Y选自-CH 2O-、-CH 2CH 2-、-N(R b)-、-CH 2S-和-环丙基-;
环A选自环己烷基、
Figure PCTCN2021142486-appb-000002
所述环己烷基、
Figure PCTCN2021142486-appb-000003
任选被1、2或3个R 2取代;
环B选自
Figure PCTCN2021142486-appb-000004
所述
Figure PCTCN2021142486-appb-000005
任选被1、2或3个R 3取代;
环C选自苯基和5-6元杂芳基,所述苯基和5-6元杂芳基任选被1、2或3个R 4取代;
R 2、R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、COOH、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1- 3烷氧基任选被1、2或3个R c取代;
R a和R c分别独立地选自F、Cl、Br、I和OH;
R b独立地选自H和CH 3
条件是,当Y选自-CH 2CH 2-和-CH 2O-时,环A不选自环己烷基。
本发明的一些方案中,上述R 1选自H、F、Cl、Br、I和CH 3,所述CH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自H、F、Cl、Br、I、CH 3、CH 2F、CHF 2和CF 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 2、R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、CH 3和OCH 3,所述CH 3和OCH 3任选被1、2或3个R c取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 2、R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、CH 3、CH 2OH、CH 2F、CHF 2、CF 3和OCH 3,其他变量如本发明所定义。
本发明的一些方案中,上述Y选自-CH 2O-、-CH 2CH 2-、-NH、-N(CH 3)-、-CH 2S-、
Figure PCTCN2021142486-appb-000006
其他变量如本发明所定义。
本发明的一些方案中,上述环A选自
Figure PCTCN2021142486-appb-000007
Figure PCTCN2021142486-appb-000008
其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2021142486-appb-000009
其他变量如本发明所定义。
本发明的一些方案中,上述环C选自
Figure PCTCN2021142486-appb-000010
其他变量如本发明所定义。
本发明的一些方案中,上述环结构单元
Figure PCTCN2021142486-appb-000011
选自自
Figure PCTCN2021142486-appb-000012
Figure PCTCN2021142486-appb-000013
其他变量如本发明所定义。
本发明提供了式(P-1)所示化合物或其药学上可接受的盐,
Figure PCTCN2021142486-appb-000014
其中,
R 1选自H、F、Cl、Br、I和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R a取代;
n选自1、2和3;
R 4选自H、F、Cl、Br、I和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R a取代;
m选自1、2、3和4;
Y选自-CH 2O-、-CH 2CH 2-、-N(R b)-、-CH 2N(R b)-、-CH 2S-和-环丙基-;
环A选自
Figure PCTCN2021142486-appb-000015
所述
Figure PCTCN2021142486-appb-000016
任选被1、2或3个R 2取代;
环B选自
Figure PCTCN2021142486-appb-000017
所述
Figure PCTCN2021142486-appb-000018
任选被1、2或3个R 3取代;
R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、COOH、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R c取代;
R a和R c分别独立地选自F、Cl、Br、I和OH;
R b独立地选自H和CH 3
本发明的一些方案中,上述R 1选自H、F、Cl和CH 3,所述CH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自H、F、Cl、CH 3、CH 2F、CHF 2和CF 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 4选自H、F、Cl和CH 3,所述CH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 4选自H、F、Cl、CH 3、CH 2F、CHF 2和CF 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CH 3和OCH 3,所述CH 3和OCH 3任选被1、2或3个R c取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CH 3、CH 2OH、CH 2F、CHF 2、CF 3和OCH 3,其他变量如本发明所定义。
本发明的一些方案中,上述Y选自-CH 2O-、-CH 2CH 2-、-NH、-N(CH 3)-、-CH 2NH-、-CH 2N(CH 3)-、-CH 2S-、
Figure PCTCN2021142486-appb-000019
其他变量如本发明所定义。
本发明的一些方案中,上述环A选自
Figure PCTCN2021142486-appb-000020
其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2021142486-appb-000021
其他变量如本发明所定义。
本发明的一些方案中,上述环结构单元
Figure PCTCN2021142486-appb-000022
选自自
Figure PCTCN2021142486-appb-000023
Figure PCTCN2021142486-appb-000024
其他变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021142486-appb-000025
其中,
R 1选自H、F、Cl、Br和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R a取代;
n选自1、2和3;
Y选自-CH 2O-、-CH 2CH 2-、-N(R b)-、-CH 2N(R b)-、-CH 2S-和-环丙基-;
环A选自环己烷基、
Figure PCTCN2021142486-appb-000026
所述环己烷基、
Figure PCTCN2021142486-appb-000027
任选被1、2或3个R 2取代;
环B选自
Figure PCTCN2021142486-appb-000028
所述
Figure PCTCN2021142486-appb-000029
任选被1、2或3个R 3取代;
R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、COOH、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R c取代;
R a和R c分别独立地选自F、Cl、Br和OH;
R b独立地选自H和CH 3
条件是,当Y选自-CH 2CH 2-时,环A不选自环己烷基。
本发明的一些方案中,上述R 1选自H、F、Cl、Br和CH 3,所述CH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自H、F、Cl、Br、CH 3、CH 2F、CHF 2和CF 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CH 3和OCH 3,所述CH 3和OCH 3任选被1、2或3个R c取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CH 3、CH 2OH、CH 2F、CHF 2、CF 3和OCH 3,其他变量如本发明所定义。
本发明的一些方案中,上述Y选自-CH 2O-、-CH 2CH 2-、-NH、-N(CH 3)-、-CH 2NH-、-CH 2N(CH 3)-、-CH 2S-、
Figure PCTCN2021142486-appb-000030
其他变量如本发明所定义。
本发明的一些方案中,上述环A选自
Figure PCTCN2021142486-appb-000031
Figure PCTCN2021142486-appb-000032
其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2021142486-appb-000033
其他变量如本发明所定义。
本发明的一些方案中,上述环结构单元
Figure PCTCN2021142486-appb-000034
选自自
Figure PCTCN2021142486-appb-000035
Figure PCTCN2021142486-appb-000036
其他变量如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure PCTCN2021142486-appb-000037
其中,R 1、R 2、R 3和Y如本发明所定义。
本发明还提供了下式所示化合物或其药学上可接受的盐,
Figure PCTCN2021142486-appb-000038
Figure PCTCN2021142486-appb-000039
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021142486-appb-000040
Figure PCTCN2021142486-appb-000041
Figure PCTCN2021142486-appb-000042
技术效果
本发明化合物作为一类高活性的p300/CBP抑制剂,在治疗肿瘤中具有较大的应用前景,本发明化合物表现出较好的p300/CBP抑制活性。本发明化合物的半衰期较短,血浆外分布较广,生物利用度适中。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、 丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除非另有说明,术语“异构体”意在包括几何异构体、顺反异构体、立体异构体、对映异构体、旋光异构体、非对映异构体和互变异构体。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2021142486-appb-000043
和楔形虚线键
Figure PCTCN2021142486-appb-000044
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2021142486-appb-000045
和直形虚线键
Figure PCTCN2021142486-appb-000046
表示立体中心的相对构型,用波浪线
Figure PCTCN2021142486-appb-000047
表示楔形实线键
Figure PCTCN2021142486-appb-000048
或楔形虚线键
Figure PCTCN2021142486-appb-000049
或用波浪线
Figure PCTCN2021142486-appb-000050
表示直形实线键
Figure PCTCN2021142486-appb-000051
或直形虚线键
Figure PCTCN2021142486-appb-000052
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体 过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当一个取代基数量为0时,表示该取代基是不存在的,比如-A-(R) 0表示该结构实际上是-A。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基的键可以交叉连接到一个环上的两一个以上原子时,这种取代基可以与这个环上的任意 原子相键合,例如,结构单元
Figure PCTCN2021142486-appb-000053
表示其取代基R可在环己基或者环己二烯上的任意一个位置发生取代。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2021142486-appb-000054
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2021142486-appb-000055
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2021142486-appb-000056
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021142486-appb-000057
直形虚线键
Figure PCTCN2021142486-appb-000058
或波浪线
Figure PCTCN2021142486-appb-000059
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2021142486-appb-000060
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021142486-appb-000061
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2021142486-appb-000062
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2021142486-appb-000063
Figure PCTCN2021142486-appb-000064
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2021142486-appb-000065
仍包括
Figure PCTCN2021142486-appb-000066
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1- 3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,本发明术语“5-6元杂芳环”和“5-6元杂芳基”可以互换使用,术语“5-6元杂芳基”表示由5至6个环原子组成的具有共轭π电子体系的单环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-6元杂芳基包括5元和6元杂芳基。所述5-6元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基或嘧啶基(包括2-嘧啶基和4-嘧啶基等)。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:aq代表水;eq代表当量、等量;DCM代表二氯甲烷;PE代表石油醚;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;DMF代表N,N-二甲基甲酰胺;Cbz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基,是一种胺保护基团;r.t.代表室温;HATU代表2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯;CbzCl代表氯甲酸苄酯;DBU代表1,8-二氮杂环十一烯;Pd(dppf)Cl 2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯;CU-TMEDA CATALYST(II)代表氯化二羟基-双四甲基亚乙基二胺铜。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021142486-appb-000067
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情 况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
Figure PCTCN2021142486-appb-000068
化合物1-3的制备:
向1-1(5.0g,22.73mmol,2.79mL,1eq),1-2(4.80g,34.06mmol,1.5eq),碳酸钾(9.42g,68.18mmol,3.0eq),1,4-二氧六环(60mL)和水(12mL)的混合液中加入Pd(dppf)Cl 2(1.66g,2.27mmol,0.1eq),氮气置换三次,加热到80℃搅拌16小时。反应液垫硅藻土过滤,滤液减压浓缩。向浓缩残留中加入乙酸乙酯(150mL)和饱和食盐水(100mL),萃取分液,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(石油醚/乙酸乙酯=5/1~1/1)分离纯化,得到化合物1-3。LCMS:MS(ESI)m/z(M+H) +:236.9。
化合物1-5的制备:
向1-3(5.2g,22.02mmol,1eq)的四氢呋喃(60mL)溶液中加入三乙胺(6.68g,66.05mmol,9.19mL,3eq)和1-4(3.70g,28.62mmol,1.3eq),所得反应液加热到70℃下搅拌16小时。将反应液倒入水(150mL)中,用乙酸乙酯(100mL*3)萃取。合并有机相用饱和食盐水(150mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,浓缩残留物用柱层析(石油醚/乙酸乙酯=3/1~1/1)分离纯化,得到化合物1-5。LCMS:MS(ESI)m/z(M+H) +:346.1。
化合物1-6的制备:
向保险粉(17.14g,98.42mmol,10eq),氨水(24.66g,197.03mmol,27.1mL,28%纯度,20.02eq),四氢呋喃(50mL)和水(50mL)的溶液中加入化合物1-5(3.4g,9.84mmol,1eq),所得反应液15℃下搅拌2小时。将反应液倒入加水(150mL)中,用乙酸乙酯(200mL*2)萃取。合并有机相经饱和食盐水(150mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩干,得到化合物1-6。LCMS:MS(ESI)m/z(M+H) +:316.0。
化合物1-8的制备:
0℃下,向化合物1-7(1.0g,8.39mmol,1eq),氢氧化钠(2.04g,51.00mmol,6.08eq)和水(25.5mL)的混合液中滴加溶有三光气(2.59g,8.73mmol,1.04eq)的1,4-二氧六环(12.5mL)溶液(保持在0~5℃),所 得反应液缓慢升至15℃搅拌48小时。将反应液减压浓缩,加入乙腈(20mL),并加热到60℃搅拌0.5小时,趁热过滤,滤液浓缩至约10mL有沉淀析出,过滤收集滤饼,得到化合物1-8。LCMS:MS(ESI)m/z(M+H) +:145.8。
实施例2
Figure PCTCN2021142486-appb-000069
合成路线:
Figure PCTCN2021142486-appb-000070
化合物2-2的制备:
向化合物2-1(1.0g,6.17mmol,1eq)的甲苯(25mL)溶液中加入叠氮磷酸二苯酯(2.55g,9.25mmol,2.00mL,1.5eq),三乙胺(1.25g,12.34mmol,1.72mL,2eq),所得反应液15℃下搅拌0.5小时后加入叔丁醇(5.81g,78.42mmol,7.5mL,12.71eq),所得反应液加热到100℃搅拌3小时。向反应液中加入乙酸乙酯(60mL),依次经水(50mL),饱和碳酸氢钠溶液(30mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(石油醚/乙酸乙酯=1/0~3/1)分离纯化,得到化合物2-2。 1H NMR(400MHz,CDCl 3)δ4.43-4.24(m,1H),4.04-3.83(m,1H),2.30(br dd,J=7.5,13.6Hz,2H),1.91-1.84(m,2H),1.73-1.64(m,2H),1.36(s,9H)。
化合物2-3的制备:
将化合物2-2(0.5g,2.14mmol,1eq)和盐酸/乙酸乙酯(4M,5mL,9.33eq)的混合溶液20℃下搅拌16小时。反应液减压浓缩。向浓缩残留物中加入石油醚/乙酸乙酯(10.1ml,v:v=10:0.1),打浆,过滤,收集滤饼得到化合物2-3的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ8.30(br s,3H),2.68(br s,1H),2.36-2.19(m,4H),2.17-2.04(m,2H)。
化合物2-4的制备:
向化合物1-3(50mg,211.69μmol,1eq)的四氢呋喃(2mL)溶液中加入三乙胺(65mg,642.36μmol,89.41μL,3.03eq)和化合物2-3(47mg,277.12μmol,1.31eq,盐酸盐),所得反应液加热到70℃下搅拌16小时。将反应液倒入水(10mL)中,用乙酸乙酯(15mL*3)萃取。合并有机相经饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩用柱层析(石油醚/乙酸乙酯=3/1~1/1)分离纯化,得到化合物2-4。LCMS:MS(ESI)m/z(M+H) +:350.0。
化合物2-5的制备:
向保险粉(748mg,4.30mmol,935.00μL,10.01eq),氨水(1.09g,8.72mmol,1.2mL,28%纯度,20.32eq),四氢呋喃(5mL)和水(5mL)的溶液中加入化合物2-4(150mg,429.39μmol,1eq),所得反应液20℃下搅拌2小时。将反应液倒入水(15mL)中,乙酸乙酯(20mL*2)萃取。有机相经饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物2-5。LCMS:MS(ESI)m/z(M+H) +:320.0。
化合物2-7的制备:
向化合物2-6(45mg,314.38μmol,1eq)的N,N-二甲基甲酰胺(2mL)溶液中加入HATU(132mg,347.16μmol,1.11eq),化合物2-5(100mg,313.14μmol,1eq)和三乙胺(95mg,938.83μmol,130.67μL,3eq),所得反应液25℃下搅拌16小时。:向反应液中加入水(20mL)和乙酸乙酯(30mL),分液。有机相依次经1N盐酸溶液(20mL),饱和碳酸氢钠溶液(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/甲醇=10/1~20/1)分离纯化,得到化合物2-7。LCMS:MS(ESI)m/z(M+H) +:445.1。
化合物2-8的制备:
将化合物2-7(50mg,112.49μmol,1eq)和醋酸(2mL)的溶液加热到80℃搅拌16小时。将反应液减压浓缩干,加入二氯甲烷(30mL),经饱和碳酸氢钠溶液(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。得到化合物2-8。LCMS:MS(ESI)m/z(M+H) +:427.1。
化合物2A&2B的制备:
25℃下,向化合物2-8(50mg,117.24μmol,1eq),二氯甲烷(1mL)和乙腈(2mL)的溶液中加入DBU(40mg,262.75μmol,39.60μL,2.24eq),搅拌15分钟,加入CU-TMEDA CATALYST(II)(27mg,58.14μmol,4.96e-1eq)搅拌15分钟,加入化合物1-11(40mg,253.31μmol,2.16eq),所得反应液25℃下搅拌48小时。向反应液中补加化合物1-11(40mg,253.31μmol,2.16eq)和CU-TMEDA CATALYST(II)(27mg,58.14μmol,4.96e-1eq),所得所得反应液25℃下搅拌16小时。将反应液过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=1/0~2/1)分离纯化,经过超临界流体色谱检测(Chiralpak AS-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物2(推测在制备2-7或2-8或化合物2时发生消旋)。化合物2经SFC分离(色谱柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O EtOH];25%-25%)得到手性异构体化合物2A和化合物2B。化合物2A(保留时间为2.256min,ee=997.84%): 1H NMR(400MHz,DMSO-d 6)δ7.74(d,J=1.3Hz,1H),7.48(d,J=8.3Hz,1H),7.43-7.29(m,2H),7.23(dd,J=1.5,8.5Hz,1H),7.13-7.06(m,1H),5.72(t,J=4.5Hz,1H),4.92-4.86(mz,1H),2.73-2.57(m,4H),2.41(s,6H),2.35-2.32(m,1H),2.24(s,3H),2.16-2.00(m,2H),1.92(br s,1H),1.81(br s,1H);LCMS:MS(ESI)m/z(M+H) +:539.4。
化合物2B(保留时间为3.080min,ee=99.36%): 1H NMR(400MHz,DMSO-d 6)δ7.80(d,J=1.3Hz,1H),7.53(d,J=8.3Hz,1H),7.49-7.35(m,2H),7.29(dd,J=1.5,8.5Hz,1H),7.15-7.01(m,1H),5.78(t,J=4.5Hz,1H),4.91-4.87(m,1H),2.77-2.61(m,4H),2.51-2.42(m,6H),2.42-2.37(m,1H),2.30(s,3H),2.21-2.06(m,2H),1.97(br s,1H),1.87(br s,1H);LCMS:MS(ESI)m/z(M+H) +:539.4。
分析方法:Chiralpak AS-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实施例3
Figure PCTCN2021142486-appb-000071
合成路线:
Figure PCTCN2021142486-appb-000072
化合物3-2的制备:
0℃下,向甲醇(65mL)中加入化合物3-1(5.0g,44.61mmol,1eq)和三乙胺(4.51g,44.61mmol,6.21mL,1eq),所得反应液升至20℃搅拌1小时。将反应液减压浓缩,浓缩残留物于乙酸乙酯(150mL),依次经 1N HCl溶液(50mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物3-2。 1H NMR(400MHz,CDCl 3)δ3.72(s,3H),2.19-2.07(m,2H),1.70(dt,J=5.3,6.8Hz,1H),1.35(dt,J=5.1,8.5Hz,1H)。
化合物3-3的制备:
0℃下,向化合物3-2(5.9g,40.94mmol,1eq)的四氢呋喃(20mL)溶液中滴加硼烷-二甲硫醚(10M,4.91mL,1.2eq),所得反应液升至20℃搅拌16小时。将反应液置于冰水浴中,滴加甲醇(15mL),搅拌30分钟后,加入甲醇(100mL)并减压浓缩得到化合物3-3。 1H NMR(400MHz,CDCl 3)δ3.96(dd,J=5.0,11.8Hz,1H),3.76(dd,J=8.0,11.8Hz,1H),3.71(s,3H),2.20-2.04(m,1H),1.79(dt,J=5.9,8.2Hz,1H),1.68-1.56(m,1H),1.20-1.10(m,2H)。
化合物3-4的制备:
0℃下,向化合物3-3(2.36g,18.13mmol,1eq),三苯基膦(8.56g,32.64mmol,1.8eq),咪唑(2.33g,34.29mmol,1.89eq),乙腈(30mL)和四氢呋喃(45mL)的溶液中加入单质碘(9.21g,36.27mmol,7.31mL,2eq),所得反应液0℃下搅拌2小时。向反应液中加入甲叔醚(200mL),依次用20%硫代硫酸钠水溶液(200mL*2)和饱和食盐水(200mL)洗涤,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩。向浓缩残留物中加入正己烷(100mL)室温下搅拌1小时,过滤,滤液减压浓缩后用柱层析(石油醚/乙酸乙酯=1/0~5/1)分离纯化,得到化合物3-4。 1H NMR(400MHz,CDCl 3)δ3.76(s,3H),3.58(dd,J=6.9,9.9Hz,1H),3.38(t,J=9.5Hz,1H),1.99(dt,J=5.8,8.2Hz,1H),1.93-1.82(m,1H),1.33(dt,J=5.0,8.2Hz,1H),1.22-1.13(m,1H);LCMS:MS(ESI)m/z(M+H) +:241.0。
化合物3-6的制备:
-78℃下,向化合物3-4(2.35g,7.94mmol,1eq)的四氢呋喃(20mL)溶液中加入叔丁醇钠(900mg,8.02mmol,1.01eq),-78℃下搅拌0.5小时后,滴加化合物3-5(1.9g,7.92mmol,1eq)的四氢呋喃(10mL)溶液,所得反应液缓慢升至室温(20℃)搅拌16小时。将反应液倒入冰水(50mL)中,甲叔醚(50mL*3)萃取。合并有机相经水(50mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物3-6。LCMS:MS(ESI)m/z(M+H) +:408.3。
化合物3-7的制备:
0℃下,向化合物3-6(3.0g,7.36mmol,1eq)的四氢呋喃(40mL)溶液中加入柠檬酸(8.49g,44.17mmol,8.49mL,6eq)的水(20mL)溶液,所得反应液升至20℃搅拌2小时。向反应液中加入正己烷(100mL),分液。向水相中加入饱和碳酸氢钠溶液,乙酸乙酯(100mL)萃取。有机相经饱和食盐水(80mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物3-7。 1H NMR(400MHz,CDCl 3)δ3.62(s,3H),3.31-3.24(m,1H),1.95-1.70(m,2H),1.70-1.65(m,1H),1.56-1.51(m,2H),1.40(d,J=1.0Hz,9H),1.36-1.25(m, 1H),1.05-0.99(m,1H),0.96-0.87(m,1H);LCMS:MS(ESI)m/z(M+H) +:244.1。
化合物3-8的制备:
向化合物3-7(1.4g,5.75mmol,1eq)的甲苯(40mL)溶液中加入浓盐酸(56mg,568.28μmol,55μL,37%纯度,9.88e-2eq),所得反应液加热到105℃搅拌16小时。将反应液减压浓缩得到化合物3-8。LCMS:MS(ESI)m/z(M+H) +:212.1。
化合物3-9的制备:
向化合物3-8(1.2g,5.68mmol,1eq)的四氢呋喃(10mL)和水(10mL)溶液中加入一水合氢氧化锂(480mg,11.44mmol,2.01eq),所得反应液20℃下搅拌16小时。向反应液中加入水(30mL),直接冷冻干燥,得到化合物3-9。LCMS:MS(ESI)m/z(M+H) +:156.1。
化合物3-10的制备:
向化合物3-9(0.45g,2.90mmol,3.05eq)的N,N-二甲基甲酰胺(10mL)溶液中加入HATU(1.20g,3.16mmol,3.32eq),化合物1-6(300mg,951.15μmol,1eq)和三乙胺(300mg,2.96mmol,412.65μL,3.12eq),所得反应液30℃下搅拌16小时。向反应液倒入水(40mL)中,用乙酸乙酯(50mL*2)萃取分液。合并有机相依次经饱和碳酸氢钠溶液(50mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=1/0~0/1)分离纯化,得到化合物3-10。LCMS:MS(ESI)m/z(M+H) +:453.4。
化合物3-11的制备:
将化合物3-10(100mg,220.97μmol,1eq)和醋酸(2mL)的溶液加热到80℃搅拌16小时。反应液减压浓缩。向浓缩残留物中加入二氯甲烷(30mL),经饱和碳酸氢钠溶液(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=5/1~0/1)分离纯化,得到化合物3-11。LCMS:MS(ESI)m/z(M+H) +:435.3。
化合物3A、化合物3B、化合物3C和化合物3D的制备:
向化合物3-11(60mg,138.08μmol,1eq),二氯甲烷(2mL)和乙腈(2mL)的溶液中加入DBU(50mg,328.44μmol,49.50μL,2.38eq),搅拌15分钟,加入CU-TMEDA CATALYST(II)(13mg,27.99μmol,2.03e-1eq)搅拌15分钟,加入化合物1-11(44mg,278.64μmol,2.02eq),所得反应液30℃下搅拌16小时。向反应液中补加化合物1-11(30mg,189.98μmol,1.38eq)和CU-TMEDA CATALYST(II)(13mg,27.99μmol,2.03e-1eq),所得反应液30℃下继续搅拌16小时。将反应液过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=5/1~0/1)分离纯化,经过超临界流体色谱检测(Chiralpak AS-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物3(推测在制备3- 10或3-11或化合物3时发生消旋)。化合物3经SFC分离(色谱柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O EtOH];25%-25%)得到手性异构体化合物3A、化合物3B、化合物3C和化合物3D。
化合物3A(保留时间为1.794min,ee=100%): 1H NMR(400MHz,DMSO-d 6)δ7.74-7.68(m,1H),7.61(s,1H),7.36-7.19(m,2H),7.12-7.03(m,1H),6.89-6.74(m,1H),5.40-5.32(m,1H),4.47-4.38(m,1H),3.30(s,3H),2.70-2.65(m,1H),2.39(s,3H),2.37-2.23(m,2H),2.22(s,3H),2.20-2.04(m,3H),1.85-1.73(m,2H),1.65-1.57(m,2H),1.58-1.17(m,3H),1.17-1.10(m,1H),1.05-0.93(m,1H);LCMS:MS(ESI)m/z(M+H) +:547.3。化合物3B(保留时间为1.924min,ee=100%): 1H NMR(400MHz,DMSO-d 6)δ7.74-7.65(m,1H),7.61(s,1H),7.36-7.19(m,2H),7.12-7.00(m,1H),6.89-6.75(m,1H),5.40-5.30(m,1H),4.47-4.31(m,1H),3.30(s,3H),2.70-2.65(m,1H),2.39(s,3H),2.37-2.23(m,2H),2.22(s,3H),2.20-2.04(m,3H),1.85-1.73(m,2H),1.65-1.52(m,2H),1.58-1.17(m,3H),1.17-1.10(m,1H),1.05-0.94(m,1H);LCMS:MS(ESI)m/z(M+H) +:547.4。化合物3C(保留时间为2.454min,ee=99.68%): 1H NMR(400MHz,DMSO-d 6)δ7.89-7.47(m,2H),7.28(br s,2H),7.12-7.01(m,1H),6.90(br s,1H),5.40(br s,1H),4.47(br s,1H),3.29-3.24(m,3H),2.68(br s,1H),2.39-2.31(m,5H),2.27-2.04(m,7H),1.90-1.56(m,4H),1.43-1.40(m,2H),1.20-0.96(m,2H);LCMS:MS(ESI)m/z(M+H) +:547.3。
化合物3D(保留时间为3.234min,ee=99.37%): 1H NMR(400MHz,DMSO-d 6)δ7.81-7.73(m,1H),7.69(s,1H),7.49-7.41(m,1H),7.40-7.30(m,1H),7.16-7.06(m,2H),5.77-5.50(m,1H),4.48-4.39(m,1H),3.30(s,3H),2.89-2.81(m,1H),2.42(s,3H),2.39-2.27(m,2H),2.25(s,3H),2.23-2.11(m,3H),2.07-2.18(m,1H),1.95-1.91(m,1H),1.88-1.79(m,1H),1.73(br s,1H),1.49-1.30(m,4H),0.91-0.86(m,1H);LCMS:MS(ESI)m/z(M+H) +:547.4。
分析方法:Chiralpak AS-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实施例4
Figure PCTCN2021142486-appb-000073
合成路线:
Figure PCTCN2021142486-appb-000074
化合物4-2的制备:
0℃下,向化合物4-1(10.0g,75.69mmol,1eq),Na 2CO 3(16.04g,151.38mmol,2eq),1,4-二氧六环(60mL)和水(60mL)的溶液中加入CbzCl(16.20g,94.96mmol,13.5mL,1.25eq),所得反应液升至20℃搅拌16小时。反应液倒入水(300mL)中,加入石油醚(200mL)分液。向水相中加入2N HCl,有白色固体析出,过滤,得到化合物4-2。LCMS:MS(ESI)m/z(M+H) +:266.9。
化合物4-3的制备:
20℃下,向化合物4-2(1.5g,5.63mmol,1eq),二氯甲烷(30mL)和甲醇(3mL)的溶液中加入三甲基硅重氮甲烷(2M,4.20mL,1.49eq),所得反应液20℃下搅拌16小时。将反应液减压浓缩,得到化合物4-3。 LCMS:MS(ESI)m/z(M+H) +:281.1。
化合物4-4的制备:
0℃下,向DBU(2.93g,19.24mmol,2.9mL,2.57eq)的四氢呋喃(160mL)溶液中加入化合物4-3(2.1g,7.49mmol,1eq),然后加入(二乙酰氧基碘)苯(4.83g,15.00mmol,2eq),所得反应液0℃下搅拌15分钟,加入水(1.00g,55.51mmol,1mL,7.41eq),搅拌30分钟。将反应液减压浓缩,向浓缩残留物中加入乙酸乙酯(50mL),经水(50mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。向浓缩残留物中加入正己烷/甲叔醚/乙酸乙酯(5mL,v:v:v=2:2:1),室温搅拌15分钟后过滤,收集滤饼得到化合物4-4。LCMS:MS(ESI)m/z(M+H) +:279.1。
化合物4-5的制备:
30℃下,向化合物4-4(1.4g,5.03mmol,1eq)的乙腈(20mL)溶液中加入碳酸钾(1.40g,10.13mmol,2.01eq)和碘甲烷(4.56g,32.13mmol,2.0mL,6.39eq),所得反应液30℃下搅拌16小时。向反应液中补加碘甲烷(2.28g,16.06mmol,1.0mL,3.19eq),所得反应液30℃下继续搅拌16小时。将反应液过滤,加入乙酸乙酯(100mL),经水(50mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩干,得到化合物4-5。LCMS:MS(ESI)m/z(M+H) +:293.1。
化合物4-6的制备:
向化合物4-5(0.6g,2.05mmol,1eq)的四氢呋喃(3mL)溶液中加入一水合氢氧化锂(180mg,4.29mmol,2.09eq)的水(3mL)溶液,所得反应液30℃下搅拌16小时。向反应液中加入水(20mL),直接真空冻干。得到化合物4-6。LCMS:MS(ESI)m/z(M+H) +:145.1。
化合物4-7的制备:
向化合物4-6(400mg,2.67mmol,4.20eq)的N,N-二甲基甲酰胺(6mL)溶液中加入HATU(1.00g,2.63mmol,4.15eq),化合物1-6(200mg,634.10μmol,1eq)和三乙胺(290.80mg,2.87mmol,0.4mL,4.53eq),所得反应液30℃下搅拌16小时。向反应液中加入乙酸乙酯(30mL)和水(30mL),分液。有机相经饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=1/0~0/1)分离纯化,得到化合物4-7。LCMS:MS(ESI)m/z(M+H) +:442.2。
化合物4-8的制备:
将化合物4-7(270mg,611.52μmol,1eq)和醋酸(3mL)的溶液加热到80℃搅拌16小时。反应液减压浓缩,得到化合物4-8。LCMS:MS(ESI)m/z(M+H) +:424.1。
化合物4A和4B的制备:
30℃下,向化合物4-8(100mg,236.12μmol,1eq),二氯甲烷(2mL)和乙腈(2mL)的溶液中加入DBU(80mg,525.50μmol,79.21μL,2.23eq),搅拌15分钟,加入CU-TMEDA CATALYST(II)(22mg,47.37μmol, 2.01e-1eq)搅拌15分钟,加入化合物1-11(75mg,474.95μmol,2.01eq),所得反应液30℃下搅拌16小时。将反应液过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=1/0~0/1)分离纯化,经过超临界流体色谱检测(Chiralpak OD-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物4(推测在制备4-7或4-8或化合物4时发生消旋)。化合物4经SFC分离(色谱柱:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:[0.1%NH 3H 2O EtOH];40%-40%)得到手性异构体化合物4A和4B。
化合物4A(保留时间为3.367min,ee=98.46%): 1H NMR(400MHz,CDCl 3)δ7.68-7.56(m,2H),7.52(d,J=8.5Hz,1H),7.20-7.09(m,2H),7.01-6.92(m,1H),5.78-5.70(m,1H),4.46-4.34(m,1H),4.06(t,J=10.0Hz,1H),3.56(dd,J=7.2,9.4Hz,1H),3.41(s,3H),3.35-3.25(m,1H),3.04(s,3H),2.43(s,3H),2.41-2.33(m,1H),2.29(s,3H),2.27-2.10(m,2H),1.91-1.86(m,1H),1.53-1.41(m,2H),1.41-1.31(m,2H);LCMS:MS(ESI)m/z(M+H) +:536.3。
化合物4B(保留时间为3.735min,ee=84.6%): 1H NMR(400MHz,CDCl 3)δ7.66-7.56(m,2H),7.52(d,J=8.5Hz,1H),7.20-7.09(m,2H),7.06-6.96(m,1H),5.78-5.68(m,1H),4.47-4.37(m,1H),4.06(t,J=10.0Hz,1H),3.56(dd,J=7.2,9.4Hz,1H),3.41(s,3H),3.35-3.26(m,1H),3.04(s,3H),2.43(s,3H),2.41-2.33(m,1H),2.29(s,3H),2.27-2.11(m,2H),1.91-1.87(m,1H),1.44-1.35(m,4H);LCMS:MS(ESI)m/z(M+H) +:536.4。
分析方法:Chiralpak OD-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实施例6
Figure PCTCN2021142486-appb-000075
合成路线:
Figure PCTCN2021142486-appb-000076
化合物6-3的制备:
将化合物6-1(24g,112.01mmol,1eq)溶于无水四氢呋喃(750mL)中,冷却至-78℃,将二异丙基氨基锂(2M,73mL,1.3eq)加入到上述反应液中,在-78℃下搅拌1小时,升至(0℃,瓶子提升至液面)搅拌10分钟,再次冷却至-78℃,将化合物6-2(20g,184.29mmol,17.54mL,1.65eq)加入到上述反应液中,在-78℃下搅拌1hr后逐渐升至25℃后,继续搅拌16小时。用饱和氯化铵(100mL)淬灭反应,加水(200mL) 分液,水相用乙酸乙酯(200mL*3)萃取,合并上述所有有机相,用饱和食盐水(200mL)洗后,用无水硫酸钠干燥,过滤,滤液旋干,浓缩残留物用柱层析(石油醚/乙酸乙酯=1:0~9:1)分离纯化,得到化合物6-3。LCMS:MS(ESI)m/z(M+H) +:287.2。
化合物6-4的制备:
将化合物6-3(34g,118.75mmol,1eq)加入到0℃的四氢化铝锂(5.44g,143.33mmol,1.21eq)的无水四氢呋喃(500mL)悬浊液中,在0℃下搅拌1小时后,再将LAH(5.44g,143.33mmol,1.21eq)加入到上述反应液中,在25℃下搅拌1小时。向反应液中分批加入糊状的硫酸钠,过滤,滤液旋干,加乙酸乙酯(200mL)和水(100mL),分液后,水相用乙酸乙酯(100mL*3)萃取,合并上述所有有机相,用无水硫酸钠干燥,过滤,滤液旋干,得到化合物6-4。LCMS:MS(ESI)m/z(M+H) +:203.2。
化合物6-5的制备:
将n-BuLi(2.5M,16.00mL,1.01eq)加入到0℃的化合物6-4(8g,39.56mmol,1eq)的无水四氢呋喃(80mL)中,0℃下搅拌30分钟后,将对甲苯磺酰氯(7.55g,39.60mmol,1eq)的无水四氢呋喃(15mL)溶液滴加到上述反应液中,逐渐升至25℃搅拌1小时,将反应液再次冷却至0℃,将n-BuLi(2.5M,23.73mL,1.5eq)滴加到上述反应液中,升至70℃(回流)搅拌16h小时。将反应液冷却至室温后,用饱和碳酸氢钠(~5mL)淬灭反应,加水(50mL)和乙酸乙酯(50mL),分液,水相再用乙酸乙酯(50mL*3)萃取,合并上述所有有机相,用饱和食盐水(50mL)洗后再用无水硫酸钠干燥,过滤,滤液旋干,浓缩残留物用柱层析(石油醚/乙酸乙酯=1:0~0:1)分离纯化,得到化合物6-5。LCMS:MS(ESI)m/z(M+H) +:185.1。
化合物6-6的制备:
将HCl(29.58g,1.62mmol,29mL,0.2%质量分数,1.49e-1eq)加入到化合物6-5(2g,10.86mmol,1eq)的无水四氢呋喃(15mL)溶液中,25℃搅拌16小时。用饱和碳酸氢钠溶液调至pH=7,加乙酸乙酯(20mL),分液,水相用乙酸乙酯(10mL*3)萃取,合并上述所有有机相,用饱和食盐水(20mL)洗后用无水硫酸钠干燥,过滤,滤液旋干,浓缩残留物用柱层析(石油醚/乙酸乙酯=1:0~1:1)分离纯化,得到化合物6-6。 1HNMR(400MHz,CDCl 3)δppm 4.56(s,4H),2.31-2.37(m,4H),2.15-2.21(m,4H)。
化合物6-7的制备:
将苄胺(1.60g,14.93mmol,1.63mL,1.31eq)和醋酸硼氢化钠(2.88g,13.59mmol,1.19eq)加入到化合物6-6(1.6g,11.41mmol,1eq)的1,2-二氯乙烷(30mL)溶液中,25℃搅拌1小时。反应液中加饱和碳酸氢钠(10mL)淬灭反应,过滤,分液,水相用二氯甲烷(30mL*3)萃取,合并上述所有有机相,用无水硫酸钠干燥,过滤,滤液旋干,浓缩残留物用柱层析(二氯甲烷/甲醇=1:0~10:1)分离纯化,得到化合物6-7。LCMS:MS(ESI)m/z(M+H) +:232.2。
化合物6-8的制备:
将湿Pd/C(1.4g,10%纯度)加入到化合物6-7(0.7g,3.03mmol,1eq)的无水甲醇(20mL)溶液中,在氢气球氛围下,20℃搅拌16小时。将反应液直接过滤,滤液旋干,得到化合物6-8。LCMS:MS(ESI)m/z(M+H) +:142.1
化合物6-9的制备:
将碳酸铯(5.32g,16.33mmol,3.03eq)加入到化合物1-3(1.90g,8.04mmol,1.49eq)和化合物6-8(760mg,5.38mmol,1eq)的无水四氢呋喃(50mL)溶液中,70℃搅拌16小时。将反应液冷却至室温后倒入水(50mL)中,分液,水相用乙酸乙酯(20mL*3)萃取,合并上述所有有机相,用饱和食盐水(20mL)洗后,用无水硫酸钠干燥,过滤,滤液旋干,浓缩残留物用柱层析(石油醚/二氯甲烷=1:0~0:1)分离纯化,得到化合物6-9。LCMS:MS(ESI)m/z(M+H) +:358.2。
化合物6-10的制备:
将化合物6-9(1.3g,3.64mmol,1eq)加入到氨水(9.10g,72.70mmol,10mL,28%纯度,19.99eq)和保险粉(6.4g,36.76mmol,8.00mL,10.11eq)的四氢呋喃(10mL)和水(10mL)的溶液中,20℃搅拌2小时。将反应液倒入水(10mL)中,用乙酸乙酯(10*3)萃取,合并所有有机相,用饱和食盐水(20mL)洗后,用无水硫酸钠干燥。过滤,滤液旋干,得到6-10。LCMS:MS(ESI)m/z(M+H) +:328.2。
化合物6-11的制备:
将化合物2-6(870.00mg,6.08mmol,1.99eq),HATU(2.32g,6.10mmol,2eq)和三乙胺(1.45g,14.37mmol,2mL,4.70eq)加入到化合物6-10(1g,3.05mmol,1eq)的无水DMF(50mL)溶液中,20℃搅拌2小时。将反应液减压浓缩,得到粗品,将水(50mL)和二氯甲烷(100mL)加入到上述粗品中,加HCl(1M)调至pH=4,分液,有机相再用饱和碳酸氢钠水溶液调至pH=7,分液后,有机相用饱和食盐水(50mL)洗后,用无水硫酸钠干燥,过滤,滤液旋干,浓缩残留物用柱层析(二氯甲烷/甲醇=1:0~10:1),分离纯化,得到化合物6-11。LCMS:MS(ESI)m/z(M+H) +:453.4。
化合物6-12的制备:
将化合物6-11(1.33g,2.94mmol,1eq)溶于AcOH(20mL),加热至80℃搅拌16小时。将反应液合并后旋干,浓缩残留物用柱层析(石油醚/乙酸乙酯=1:0~0:1)分离纯化,得到化合物化合物6-12。LCMS:MS(ESI)m/z(M+H) +:435.3。
化合物6A和6B的制备:
将DBU(606.00mg,3.98mmol,600μL,3.14eq)加入到化合物6-12(550mg,1.27mmol,1eq)的二氯甲烷(5mL)和乙腈(10mL)溶液中,20℃搅拌15分钟后,将CU-TMEDA CATALYST(II)(800mg,1.72mmol,1.36eq)加入到上述反应液中,继续在20℃搅拌15分钟,再将化合物1-11(1g,6.33mmol,5eq)加入到上述反应液中,继续在20℃下搅拌20小时。反应液过滤,滤液减压浓缩,浓缩残留物用柱层析(二氯甲 烷/四氢呋喃=1:0~1:1)分离纯化,经过超临界流体色谱检测(Chiralpak AS-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物6(推测在制备6-11或6-12或化合物6时发生消旋)。化合物6经SFC分离(色谱柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O EtOH];35%-35%)得到手性异构体化合物6A和6B。
化合物6A(保留时间为2.804min,ee=100%):1H NMR(400MHz,DMSO-d 6)δppm 7.69(s,1H),7.50-4.48(m,1H),7.40-7.29(m,2H),7.18-7.13(m,1H),7.04-7.02(m,1H),5.73-5.71(m,1H),4.56-4.47(m,2H),4.35-4.28(m,1H),4.27(s,2H),2.56-2.49(m,1H),2.40(s,3H),2.33-2.31(m,1H),2.23(s,3H),2.21-2.18(m,1H),2.13-2.11(m,2H),2.06-1.92(m,4H),1.77-1.74(m,2H),1.71-1.57(m,2H),1.13-1.10(m,1H);LCMS:MS(ESI)m/z(M+H) +:547.4。
化合物6B(保留时间为4.150min,ee=100%):1H NMR(400MHz,DMSO-d 6)δppm 7.69(s,1H),7.50-4.47(m,1H),7.41-7.29(m,2H),7.15-7.11(m,1H),7.04-7.00(m,1H),5.73-5.72(m,1H),4.55-4.48(m,2H),4.35-4.28(m,1H),4.27(s,2H),2.56-2.48(m,1H),2.40(s,3H),2.34-2.30(m,1H),2.23(s,3H),2.22-2.16(m,1H),2.13-2.10(m,,2H),2.08-1.93(m,4H),1.77-1.75(m,2H),1.70-1.59(m,2H),1.13-1.11(m,1H);LCMS:MS(ESI)m/z(M+H) +:547.4。
分析方法:Chiralpak AS-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实施例7
Figure PCTCN2021142486-appb-000077
合成路线:
Figure PCTCN2021142486-appb-000078
化合物7-2的制备:
向化合物7-1(940mg,5.10mmol,1eq)的N,N-二甲基甲酰胺(15mL)溶液中加入钠氢(300mg,7.50mmol,60%纯度,1.47eq)和碘甲烷(5.70g,40.16mmol,2.50mL,7.87eq),所得反应液15℃下搅拌16小时。将反应液倒入水(60mL)中,乙酸乙酯(60mL*3)萃取。有机相经饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物7-2。 1H NMR(400MHz,CDCl 3)δ3.57(s,3H),3.11(s,3H),1.89-1.79(m,6H),1.65-1.56(m,6H)。
化合物7-3的制备:
向化合物7-2(950mg,4.79mmol,1eq)的四氢呋喃(10mL)溶液中进入一水合氢氧化锂(410mg,9.77mmol,2.04eq)的水(10mL)溶液,所得反应液15℃下搅拌16小时。向反应液中加入乙酸乙酯(10mL)和水(10mL),萃取分液。向水相中滴加浓盐酸(pH约为3),乙酸乙酯(15mL*3)萃取。合并有机相经饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物7-3。 1H NMR(400MHz,CDCl 3)δ3.19(s,3H),1.99-1.90(m,6H),1.75-1.64(m,6H)。
化合物7-4的制备:
向化合物7-3(800mg,4.34mmol,1eq)的1,4-二氧六环(10mL)溶液中加入N,N-二异丙基乙胺(1.14g,8.84mmol,1.54mL,2.04eq),叠氮磷酸二苯酯(1.79g,6.51mmol,1.41mL,1.5eq)和苄醇(2.35g,21.71mmol,2.26mL,5eq),所得反应液加热到80℃搅拌16小时。将反应液减压浓缩。浓缩残留物用柱层析(石油醚/乙 酸乙酯=1/0~3/1)分离纯化,得到化合物7-4。 1H NMR(400MHz,CDCl 3)δ7.34-7.28(m,5H),5.03(br s,2H),4.57(br s,1H),3.18(s,3H),2.02-1.92(m,6H),1.80-1.74(m,6H);LCMS:MS(ESI)m/z(M+H) +:290.1。
化合物7-5的制备:
向化合物7-4(1.5g,5.18mmol,1eq)的甲醇(20mL)溶液中加入钯碳(150mg,10%纯度),所得反应液经氢气置换三次,氢气球氛围下15℃搅拌16小时。反应液过滤,滤液减压浓缩得到化合物7-5。 1H NMR(400MHz,CDCl 3)δ3.18(s,3H),1.79-1.60(m,12H);LCMS:MS(ESI)m/z(M+H) +:156.2。
化合物7-6的制备:
向化合物1-3(300mg,1.27mmol,1eq)的四氢呋喃(12mL)溶液中加入三乙胺(390mg,3.85mmol,536.45μL,3.03eq)和化合物7-5(900mg,5.80mmol,4.56eq),所得反应液加热到70℃下搅拌16小时。将反应液减压浓缩。浓缩残留物用柱层析(石油醚/乙酸乙酯=1/0~1/1)分离纯化,得到化合物7-6。LCMS:MS(ESI)m/z(M+H) +:372.3。
化合物7-7的制备:
向保险粉(938mg,5.39mmol,1.17mL,10.01eq),氨水(10.91mmol,1.5mL,20.25eq),四氢呋喃(5mL)和水(5mL)的溶液中加入化合物7-6(200mg,538.46μmol,1eq),所得反应液15℃下搅拌1小时。将反应液倒入水(15mL)中,乙酸乙酯(20mL*2)萃取。有机相经饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物7-7。LCMS:MS(ESI)m/z(M+H) +:342.3。
化合物7-8的制备:
向化合物2-6(120mg,838.34μmol,1.91eq),乙腈(5mL)和N,N-二甲基甲酰胺(1mL)的溶液中加入1-甲基咪唑(180mg,2.19mmol,174.76μL,4.99eq),化合物7-7(150mg,439.31μmol,1eq)和HATU(275mg,980.12μmol,2.23eq),所得反应液15℃下搅拌18小时。将反应液倒入水(30mL)中,乙酸乙酯(30mL*2)萃取分液。有机相依次经饱和碳酸氢钠溶液(30mL)和饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=1/0~0/1)分离纯化,得到化合物7-8。LCMS:MS(ESI)m/z(M+H) +:467.4。
化合物7-9的制备:
向微波管中加入化合物7-8(270mg,578.69μmol,1eq)和醋酸(3mL),所得反应液加热到150℃微波反应0.5小时。反应液减压浓缩。向浓缩残留中加入二氯甲烷(50mL),经饱和碳酸氢钠溶液(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=5/1~0/1)分离纯化,得到化合物7-9。LCMS:MS(ESI)m/z(M+H) +:449.3。
化合物7A和7B的制备
15℃下,向化合物7-9(100mg,222.94μmol,1eq)和甲醇(2mL)的溶液中加入DBU(75mg,492.65μmol, 74.26μL,2.21eq),搅拌15分钟,加入CU-TMEDA CATALYST(II)(21mg,45.22μmol,2.03e-1eq)搅拌15分钟,加入化合物1-11(150mg,949.91μmol,4.26eq),所得反应液10℃下搅拌16小时。反应液过滤,滤液减压浓缩。浓缩残留经柱层析(二氯甲烷/四氢呋喃=5/1~0/1)分离纯化,经过超临界流体色谱检测(Chiralpak OD-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物7(推测在制备7-8或7-9或化合物7时发生消旋)。化合物7经SFC分离(色谱柱:DAICEL CHIRALCEL OD-H(250mm*30mm,5um);流动相:[0.1%NH 3H 2O EtOH];35%-35%)得到手性异构体化合物7A和7B。
化合物7A(保留时间为3.861min,ee=99.54%): 1H NMR(400MHz,CDCl 3)δ7.60(s,1H),7.55(d,J=8.8Hz,1H),7.05-6.93(m,3H),6.87-6.84(m,1H),5.44(br s,1H),3.15(s,3H),2.78-2.71(m,1H),2.58-2.45(m,1H),2.39(s,3H),2.35-2.07(m,12H),1.84-1.81(m,6H),1.73-1.67(m,1H);LCMS:MS(ESI)m/z(M+H) +:561.4。化合物7B(保留时间为4.012min,ee=94.40%): 1H NMR(400MHz,CDCl 3)δ7.60(s,1H),7.55(d,J=8.8Hz,1H),7.06-6.93(m,3H),6.86-6.81(m,1H),5.44(br s,1H),3.15(s,3H),2.78(m,1H),2.58-2.46(m,1H),2.39(s,3H),2.35-2.07(m,12H),1.84-1.81(m,6H),1.73-1.68(m,1H);LCMS:MS(ESI)m/z(M+H) +:561.4。
分析方法:Chiralpak OD-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实施例8
Figure PCTCN2021142486-appb-000079
合成路线:
Figure PCTCN2021142486-appb-000080
化合物8-2的制备:
向微波管中加入化合物8-1(900mg,3.85mmol,2.79mL,1eq),化合物1-2(810mg,5.75mmol,1.49eq),碳酸钾(1.60g,11.59mmol,3.01eq),1,4-二氧六环(10mL),水(2mL)和Pd(dppf)Cl 2(282mg,385.40μmol,0.1eq),反应液经氮气置换,微波加热到100℃反应0.5小时。反应液经硅藻土过滤,滤液减压浓缩。向浓缩残留中加入乙酸乙酯(30mL)和饱和食盐水(30mL)。分液,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留用柱层析(石油醚/乙酸乙酯=1/0~3/1)分离纯化,得到化合物8-2。LCMS:MS(ESI)m/z(M+H) +:251.1。
化合物8-3的制备:
向微波管中加入化合物8-2(380mg,1.52mmol,1eq),N,N-二甲基甲酰胺(10mL),Cs 2CO 3(1.48g,4.55mmol,3eq)和化合物1-4(380mg,2.29mmol,1.51eq),所得反应液加热到120℃微波反应1小时。反应液过滤,滤液减压浓缩。浓缩残留物用柱层析(石油醚/乙酸乙酯=3/1~1/1)分离纯化,得到化合物8-3。LCMS:MS(ESI)m/z(M+H) +:360.3。
化合物8-4的制备:
向保险粉(1.27g,7.27mmol,1.58mL,10.05eq),氨水(14.54mmol,2mL,20.10eq),四氢呋喃(4mL)和水 (4mL)的溶液中加入化合物8-3(260mg,723.39μmol,1eq),所得反应液15℃下搅拌16小时。反应液倒入水(15mL)中,乙酸乙酯(20mL*2)萃取。有机相经饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物8-4。LCMS:MS(ESI)m/z(M+H) +:330.3。
化合物8-5的制备:
向化合物3-9(480mg,3.09mmol,4.25eq),乙腈(5mL)和N,N-二甲基甲酰胺(1mL)的溶液中加入N-甲基咪唑(288mg,3.51mmol,279.61μL,4.82eq),化合物8-4(240mg,728.52μmol,1eq)和HATU(456mg,1.63mmol,2.23eq),所得反应液10℃下搅拌16小时。向反应液中补加化合物3-9(480mg,3.09mmol,4.25eq),反应液10℃下继续搅拌18小时。将反应液倒入水(30mL)中,乙酸乙酯(30mL*2)萃取分液。有机相依次经饱和碳酸氢钠溶液(30mL)和饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=1/0~0/1)分离纯化,得到化合物8-5。LCMS:MS(ESI)m/z(M+H) +:467.3。
化合物8-6的制备:
向微波管中加入化合物8-5(70mg,150.03μmol,1eq)和醋酸(2mL),所得反应液加热到100℃微波反应0.5小时。反应液减压浓缩。向浓缩残留中加入二氯甲烷(20mL),经饱和碳酸氢钠溶液(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物8-6。LCMS:MS(ESI)m/z(M+H) +:449.4。
化合物8A和8B和8C的制备:
向化合物8-6(90mg,200.64μmol,1eq)和甲醇(2mL)的溶液中加入DBU(72mg,472.94μmol,71.29μL,2.36eq),搅拌15分钟,加入CU-TMEDA CATALYST(II)(20mg,43.06μmol,2.15e-1eq)搅拌15分钟,加入化合物1-11(130mg,823.25μmol,4.10eq),所得反应液10℃下搅拌16小时。反应液过滤,滤液减压浓缩。浓缩残留经柱层析(二氯甲烷/四氢呋喃=5/1~0/1)分离纯化,经过超临界流体色谱检测(Chiralpak IC-3100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:40%B;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物8(推测在制备8-5或8-6或化合物8时发生消旋)。化合物8经SFC分离(色谱柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O EtOH];30%-30%,min)得到手性异构体化合物8A、8B和8C。
化合物8A(保留时间为2.463min,ee=100%): 1H NMR(400MHz,CDCl 3)δ7.16(br s,1H),7.02(brs,1H),6.96-6.80(m,3H),5.05-5.49(m,1H),4.00(brs,1H),3.34(brs,3H),3.22-3.18(m,1H),2.71-2.66(m,1H),2.35(s,4H),2.18-2.15(m,7H),2.07-1.96(m,4H),1.65(br s,1H),1.43-1.19(m,6H);LCMS:MS(ESI)m/z(M+H) +:561.4。
化合物8B(保留时间为3.443min,ee=98.34%): 1H NMR(400MHz,CDCl 3)δ7.17-7.10(m,1H),7.02(br s,1H),6.86-6.81(m,3H),5.05-5.47(m,1H),4.00(brs,1H),3.34(br s,3H),3.22-3.17(m,1H),2.71-2.65(m,1H), 2.35(br s,4H),2.18-2.13(m,7H),2.04(br s,3H),1.64(br s,2H),1.42-1.22(m,5H),0.77(br s,1H);LCMS:MS(ESI)m/z(M+H) +:561.4。
化合物8C(保留时间为5.808,ee=100%):LCMS:MS(ESI)m/z(M+H) +:561.3。
分析方法:Chiralpak AS-3 100×4.6mm I.D.,3um,流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实施例9
Figure PCTCN2021142486-appb-000081
合成路线:
Figure PCTCN2021142486-appb-000082
化合物9-2的制备:
0℃下,向化合物9-1(0.1g,739.73μmol,1eq),氢氧化钠(180mg,4.50mmol,6.08eq)和水(2.5mL)的混合液中滴加三光气(220mg,741.37μmol,1.00eq)的1,4-二氧六环(1.2mL)溶液(保持在0~5℃),所得反应液缓慢升至15℃搅拌40小时。反应液减压浓缩。加入乙腈(5mL),并加热到60℃搅拌0.5小时,趁热过滤,滤液减压浓缩。得到化合物9-2。LCMS:MS(ESI)m/z(M+H) +:162.0。
化合物9-3的制备:
向化合物9-2(100mg,620.43μmol,1.80eq),N,N-二甲基甲酰胺(2mL)和乙腈(2mL)的溶液中加入N-methylimidazole(88mg,1.07mmol,85.44μL,3.10eq),化合物1-6(109mg,345.58μmol,1eq)和N,N,N′,N′-四甲基氯代脲六氟磷酸酯(175mg,623.71μmol,1.8eq),所得反应液15℃下搅拌16小时。向反应液中加入水(20mL)和乙酸乙酯(30mL),分液。有机相依次经1N盐酸溶液(20mL),饱和碳酸氢钠溶液(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(二氯甲烷/四氢呋喃=1/0~0/1)分离纯化,得到化合物9-3。LCMS:MS(ESI)m/z(M+H) +:459.3。
化合物9-4的制备:
将化合物9-3(160mg,348.91μmol,1eq)和醋酸(3mL)的溶液加热到80℃搅拌16小时。反应液减压浓缩。向浓缩残留中加入二氯甲烷(20mL),经饱和碳酸氢钠溶液(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩物用柱层析(二氯甲烷/四氢呋喃=1/0~0/1)分离纯化,得到化合物9-4。LCMS:MS(ESI)m/z(M+H) +:441.1。
化合物9A和9B的制备:
15℃下,向化合物9-4(140mg,317.78μmol,1eq)的甲醇(5mL)溶液中加入DBU(110mg,722.54μmol,108.91μL,2.27eq),搅拌15分钟,加入CU-TMEDA CATALYST(II)(30mg,64.60μmol,2.03e-1eq)搅拌15分钟,加入化合物1-11(200mg,1.27mmol,3.99eq),所得反应液15℃下搅拌16小时。反应液过滤,滤液减压浓缩。浓缩残留经柱层析(二氯甲烷/四氢呋喃=5/1~0/1)分离纯化,经过超临界流体色谱检测(Chiralpak AS-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物9(推测在制备9-3或9-4或化合物9时发生消旋)。化合物9经SFC分离(色谱柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O EtOH];25%-25%)得到手性异构体化合物9A和9B。
化合物9A(保留时间为3.012min,ee=100%): 1H NMR(400MHz,CDCl 3)δ7.70(s,1H),7.44(d,J=8.8Hz,1H),7.10-7.03(m,2H),7.03-6.96(m,1H),6.93-6.87(m Hz,1H),5.25(s,1H),3.91(br s,1H),3.49-3.39(m,1H),3.33(s,3H),3.23-3.17(m,1H),2.91-2.82(m,1H),2.79-2.68(m,1H),2.39(s,4H),2.34-2.10(m,8H),1.80-1.75(m,1H),1.36-1.28(m,2H);LCMS:MS(ESI)m/z(M+H) +:553.3。
化合物9B(保留时间为3.502min,ee=100%): 1H NMR(400MHz,CDCl 3)δ7.69(s,1H),7.44(d,J=8.8Hz,1H),7.09-7.04(m,2H),7.02-6.97(m,1H),6.93-6.81(m,1H),5.25(s,1H),3.91(br s,1H),3.49-3.39(m,1H),3.33(s,3H),3.28-3.17(m,1H),2.91-2.87(m,1H),2.79-2.69(m,1H),2.39(s,4H),2.30-2.12(m,8H),1.80-1.75(m,1H),1.37-1.31(m,2H);LCMS:MS(ESI)m/z(M+H) +:553.3。
分析方法:Chiralpak AS-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实施例10
Figure PCTCN2021142486-appb-000083
合成路线:
Figure PCTCN2021142486-appb-000084
化合物10-1的制备:
向化合物3-9(165mg,1.06mmol,3.03eq),乙腈(5mL)和N,N-二甲基甲酰胺(2mL)的溶液中加入1-甲基咪唑(145mg,1.77mmol,140.78μL,5.03eq),化合物7-7(120mg,351.45μmol,1eq)和HATU(222mg,791.23μmol,2.25eq),所得反应液15℃下搅拌2小时。反应液倒入水(10mL)中,乙酸乙酯(20mL*2)萃取分液。有机相依次经饱和碳酸氢钠溶液(20mL)和饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(石油醚/四氢呋喃=1/0~0/1)分离纯化,得到化合物10-1。LCMS:MS(ESI)m/z(M+H) +:479.3。
化合物10-2的制备:
将化合物10-1(200mg,417.90μmol,1eq)和醋酸(3mL)的溶液加热到110℃搅拌16小时。反应液减压浓缩。向浓缩残留中加入二氯甲烷(30mL),经饱和碳酸氢钠溶液(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(石油醚/四氢呋喃=5/1~0/1)分离纯化,得到化合物10-2。LCMS:MS(ESI)m/z(M+H) +:461.3。
化合物10A和10B的制备:
15℃下,向化合物10-2(130mg,282.26μmol,1eq),化合物1-11(130mg,823.25μmol,2.92eq)和二氯甲烷(5mL)的溶液中加入吡啶(245mg,3.10mmol,0.25mL,10.97eq)和一水合醋酸铜(65mg,325.57μmol,65.00μL,1.15eq),所得反应液15℃下搅拌16小时。向反应液中加入饱和氯化铵溶液(15mL)和二氯甲烷(30mL),分液。有机相依次经1M盐酸溶液(pH约为2)、饱和碳酸氢钠溶液(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留经柱层析(石油醚/四氢呋喃=5/1~0/1)分离)纯化,经过超临界流体色谱检测(Chiralpak AS-3 100×4.6mm OD.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物10(推测在制备10-1或10-2或化合物10时发生消旋)。化合物10经SFC分离(色谱柱:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:[0.1%NH 3H 2O EtOH];45%-45%)得到手性异构体化合物10A和10B。
化合物10A(保留时间为3.004min,ee=100%): 1H NMR(400MHz,CDCl 3)δ7.56(s,1H),7.51-7.41(m,1H),7.21-7.15(m,1H),6.95-6.83(m,2H),6.78-6.72(m,1H),5.21-5.10(m,1H),3.16(s,3H),2.82-2.69(m,1H),2.40-2.28(m,7H),2.26-2.19(m,6H),2.05-1.97(m,1H),1.86-1.85(m,6H),1.27-1.12(m,2H),1.00-0.93(m,1H);LCMS:MS(ESI)m/z(M+H) +:573.4。
化合物10B(保留时间为3.959min,ee=93.98%): 1H NMR(400MHz,CDCl 3)δ7.56(s,1H),7.51-7.49(m,1H),7.22-7.13(m,1H),6.95-6.81(m,2H),6.75-6.71(m,1H),5.21-5.14(m,1H),3.16(s,3H),2.82-2.69(m,1H),2.42-2.28(m,7H),2.24(s,6H),2.01-1.98(m,1H),1.86-1.84(m,6H),1.34-1.09(m,2H),1.00-0.95(m,1H);LCMS:MS(ESI)m/z(M+H) +:573.3。
分析方法:Chiralpak AS-3 100×4.6mm OD.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实施例11
Figure PCTCN2021142486-appb-000085
合成路线:
Figure PCTCN2021142486-appb-000086
化合物11-1的制备:
向化合物7-7(120mg,826.94μmol,2.35eq),乙腈(5mL)和N,N-二甲基甲酰胺(2mL)的溶液中加入1-甲基咪唑(145mg,1.77mmol,140.78μL,5.03eq),化合物1-8(120mg,351.45μmol,1eq)和N,N,N′,N′-四甲基氯代脲六氟磷酸酯(222mg,791.22μmol,2.25eq),所得反应液15℃下搅拌2小时。反应液倒入水(10mL)中,乙酸乙酯(15mL*2)萃取分液。有机相依次经饱和碳酸氢钠溶液(10mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(石油醚/四氢呋喃=1/0~0/1)分离纯化,得到化合物11-1。LCMS:MS(ESI)m/z(M+H) +:469.2。
化合物11-2的制备:
将化合物11-1(140mg,298.80μmol,1eq)和醋酸(3mL)的溶液加热到110℃搅拌16小时。反应液减压浓缩。向浓缩残留中加入二氯甲烷(30mL),经饱和碳酸氢钠溶液(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留物用柱层析(石油醚/四氢呋喃=5/1~0/1)分离纯化,得到化合物11-2。LCMS:MS(ESI)m/z(M+H) +:451.4。
化合物11A和11B的制备:
15℃下,向化合物11-2(100mg,221.96μmol,1eq),化合物1-11(150mg,949.91μmol,4.28eq)和二氯甲烷(5mL)的溶液中加入吡啶(176mg,2.23mmol,179.59μL,10.02eq)和醋酸铜(50mg,275.28μmol,1.24eq),所得反应液15℃下搅拌16小时。向反应液中补加化合物1-11(150mg,949.91μmol,4.28eq)和醋酸铜(50mg,275.28μmol,1.24eq),所得反应液15℃下继续搅拌16小时。应液中加入饱和氯化铵溶液(15mL)和二氯甲烷(30mL),分液。有机相依次经1M盐酸溶液、饱和碳酸氢钠溶液(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩残留经柱层析(石油醚/四氢呋喃=5/1~0/1)分离纯化,经过超临界流体色谱检测(Chiralpak OD-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm)分析为外消旋化合物11(推测在制备11-1或11-2或化合物11时发生消旋)。化合物11经SFC分离(色谱柱:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:[0.1%NH 3H 2O EtOH];45%-45%)得到手性异构体化合物11A和11B。
化合物11A(保留时间为4.258min,ee=99.36%): 1H NMR(400MHz,CDCl 3)δ7.63(s,1H),7.58-7.56(m,1H),7.11-6.91(m,4H),5.46-4.41(m,1H),4.83-7.80(m,1H),4.28-4.25(m,1H),3.15(s,3H),2.75-2.64(m,1H),2.39(s,3H),2.28-2.14(m,10H),1.85-1.81(m,6H);LCMS:MS(ESI)m/z(M+H) +:563.4。
化合物11B(保留时间为4.887min,ee=100%): 1H NMR(400MHz,CDCl 3)δ7.63(s,1H),7.58-7.51(m,1H),7.14-6.86(m,4H),5.46-5.40(m,1H),4.83-4.78(m,1H),4.28-4.21(m,1H),3.15(s,3H),2.70-2.65(m,1H),2.39(s,3H),2.26(br s,9H),2.03-2.19(m,1H),1.85-1.74(m,6H);LCMS:MS(ESI)m/z(M+H) +:563.3。
分析方法:Chiralpak OD-3 100×4.6mm I.D.,3μm;流动相:A:超临界二氧化碳,B:0.05%二乙胺的乙醇溶液;梯度:B在4分钟内从5%到40%,40%保持2.5min,1.5min从5%回到1.5%;流速:2.8mL/min;柱温:35℃;波长:220nm。
实验例1:p300、CBP蛋白活性测试
试剂:
反应缓冲液:25mM HEPES,pH 7.5,25mM NaCl,0.025%CHAPS,0.025%BSA,0.5%DMSO。
配体:
组蛋白H4(1-21)K5/8/12/16Ac-GG-Biotin
标准反应条件:
5nM p300-GST,50nM肽配体
反应程序:
1.除无BRD对照孔外添加缓冲液代替,在反应板孔中加入2.5X BRD。
2.通过声学技术(Echo550;纳升范围)将100%DMSO中的化合物递送至BRD混合物中。向下旋转。室温下孵育30min。
3.递送5X肽配体。向下旋转。室温下孵育10min。
4.输送5X HTRF检测混合物。旋转并在暗处孵育2h。
5.使用Envision读取器进行HTRF测量(Ex/Em=320/615,665nm)。
6.计算HTRF比:[em 665nm/em615nm]*10000
数据分析:
将减去背景的信号(无蛋白为背景)转换为相对于DMSO对照的结合%,并使用GraphPad Prism 4和“s形剂量响应(可变斜率)”进行分析;使用Hill斜率进行4个参数分析。
约束条件:
底部=常数等于0
顶部=必须小于120
表1:p300和CBP蛋白活性数据
化合物编号 p300(IC 50,nM) CBP(IC 50,nM)
2B 3.54 0.67
3B 2.88 0.67
3C 14.1 --
4A 11.3 --
6B 2.09 --
7B 4.11 --
8C 10.3 --
9B 11 --
10B 4.08 3.13
11B 5.48 --
注:“—”表示未测
结论:本发明化合物表现出较好的p300/CBP抑制活性。
实验例2:本发明化合物的药代动力学研究
实验材料:
CD-1小鼠(雄性,5~6周龄,上海市计划生育科学研究所)
实验操作:
注射:以标准方案测试化合物静脉注射给药后的啮齿类动物药代特征,实验中候选化合物配成澄清溶液,给予小鼠单次静脉注射给药。静注溶媒为5%二甲基亚砜与95%的10%的羟丙基β环糊精配成的混合溶媒。该项目使用两只雄性CD-1小鼠进行静脉注射给药,给药剂量为0.5mg/kg,收集给药后0.083,0.25,0.5,1,2,4,8,24h的血浆样品,收集24小时内的全血样品,3000g离心15分钟,分离上清得血浆样品,加入20倍体积含内标的乙腈溶液沉淀蛋白,涡旋,离心取上清液进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如清除率(CL),半衰期(T 1/2),组织分布(Vdss),药时曲线下面积(AUC 0-last)等。口服:以标准方案测试化合物口服给药后的啮齿类动物药代特征,实验中候选化合物配成均一不透明混悬液,给予小鼠单次口服给药。口服溶媒为5%二甲基亚砜与95%的0.5%的甲基纤维素配成的混合溶媒。该项目使用两只雄性CD-1小鼠口服灌胃给药,给药剂量为3mg/kg,收集给药后0.25,0.5,1,2,4,8,24h的血浆样品,收集24小时内的全血样品,3000g离心15分钟,分离上清得血浆样品,加入20倍体积含内标的乙腈溶液沉淀蛋白,涡旋,离心取上清液进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度(C max),半衰期(T 1/2),药时曲线下面积(AUC 0-last)等。
表2:药代动力学参数数据汇总
Figure PCTCN2021142486-appb-000087
注:“--”:无;ND:未测。
结论:本发明化合物的半衰期较短,血浆外分布较广,生物利用度适中。
实验例3:hERG钾离子通道的抑制试验
1.实验目的:
用全自动膜片钳的方法检测待测化合物对hERG钾离子通道的影响。
2.实验方法
2.1.细胞准备
2.1.1 CHO-hERG细胞培养于175cm 2培养瓶中,待细胞密度生长到60~80%,移走培养液,用7mL PBS(Phosphate Buffered Saline磷酸盐缓冲液)洗一遍,然后加入3mL Detachin消化。
2.1.2待消化完全后加入7mL培养液中和,然后离心,吸走上清液,再加入5mL培养液重悬,以确保细胞密度为2~5×10 6/mL。
2.2.溶液配制
细胞内液和外液成分见表3。
表3 细胞内外液成分
Figure PCTCN2021142486-appb-000088
2.3电生理记录过程
单细胞高阻抗封接和全细胞模式形成过程全部由Qpatch仪器自动完成,在获得全细胞记录模式后,细胞钳制在-80毫伏,在给予一个5秒的+40毫伏去极化刺激前,先给予一个50毫秒的-50毫伏前置电压,然后复极化到-50毫伏维持5秒,再回到-80毫伏。每15秒施加此电压刺激,记录2分钟后给予细胞外液记录5分钟,然后开始给药过程,化合物浓度从最低测试浓度开始,每个测试浓度给予2.5分钟,连续给完所有浓度后,给予阳性对照化合物3μM Cisapride。每个浓度至少测试3个细胞(n≥3)。
2.4.化合物准备
2.4.1将化合物母液用DMSO进行稀释,取10μL化合物母液加入至20μL DMSO溶液中,3倍连续稀释至6个DMSO浓度。
2.4.2分别取4μL 6个DMSO浓度的化合物,加入至396μL的细胞外液中,100倍稀释至6个中间浓度,再分别取80μL的6个中间浓度化合物,加入至320μL的细胞外液中,5倍稀释至需要测试的最终浓度。
2.4.3最高测试浓度为40μM,依次分别为40,13.3,4.4,1.48,0.494,0.165μM共6个浓度。
2.4.4最终测试浓度中的DMSO含量不超过0.2%,此浓度的DMSO对hERG钾通道没有影响。
2.4.5化合物准备由Bravo仪器完成整个稀释过程。
2.5数据分析
实验数据由GraphPad Prism 5.0软件进行分析。
2.6质量控制
环境:湿度20~50%,温度22~25℃
试剂:所用实验试剂购买于Sigma公司,纯度>98%
报告中的实验数据必须满足以下标准:
全细胞封接阻抗>100MΩ
尾电流幅度>300pA
药理学参数:多浓度Cisapride对hERG通道的抑制效应设为阳性对照。
2.7测试结果:见表4。
表4:实施例化合物hERG IC 50值结果
Figure PCTCN2021142486-appb-000089

Claims (13)

  1. 式(P)所示化合物或其药学上可接受的盐,
    Figure PCTCN2021142486-appb-100001
    其中,
    R 1选自H、F、Cl、Br、I和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R a取代;
    n选自1、2和3;
    s选自0、1和2;
    Y选自-CH 2O-、-CH 2CH 2-、-N(R b)-、-CH 2S-和-环丙基-;
    环A选自环己烷基、
    Figure PCTCN2021142486-appb-100002
    所述环己烷基、
    Figure PCTCN2021142486-appb-100003
    任选被1、2或3个R 2取代;
    环B选自
    Figure PCTCN2021142486-appb-100004
    所述
    Figure PCTCN2021142486-appb-100005
    任选被1、2或3个R 3取代;
    环C选自苯基和5-6元杂芳基,所述苯基和5-6元杂芳基任选被1、2或3个R 4取代;
    R 2、R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、COOH、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1- 3烷氧基任选被1、2或3个R c取代;
    R a和R c分别独立地选自F、Cl、Br、I和OH;
    R b独立地选自H和CH 3
    条件是,当Y选自-CH 2CH 2-和-CH 2O-时,环A不选自环己烷基。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 1选自H、F、Cl、Br、I和CH 3,所述CH 3任选被1、2或3个R a取代。
  3. 根据权利要求2所述化合物或其药学上可接受的盐,其中,R 1选自H、F、Cl、Br、I、CH 3、CH 2F、CHF 2和CF 3
  4. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 2、R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、CH 3和OCH 3,所述CH 3和OCH 3任选被1、2或3个R c取代。
  5. 根据权利要求4所述化合物或其药学上可接受的盐,其中,R 2、R 3和R 4分别独立地选自H、F、Cl、Br、I、OH、CH 3、CH 2OH、CH 2F、CHF 2、CF 3和OCH 3
  6. 根据权利要求1所述化合物或其药学上可接受的盐,其中,Y选自-CH 2O-、-CH 2CH 2-、-NH、-N(CH 3)-、-CH 2S-、
    Figure PCTCN2021142486-appb-100006
  7. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环A选自
    Figure PCTCN2021142486-appb-100007
    Figure PCTCN2021142486-appb-100008
  8. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环B选自
    Figure PCTCN2021142486-appb-100009
  9. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环C选自
    Figure PCTCN2021142486-appb-100010
  10. 根据权利要求1所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2021142486-appb-100011
    选自
    Figure PCTCN2021142486-appb-100012
    Figure PCTCN2021142486-appb-100013
  11. 根据权利要求1~6任意一项所述化合物或其药学上可接受的盐,其选自
    Figure PCTCN2021142486-appb-100014
    其中,R 1如权利要求1~3任意一项所定义;
    R 2和R 3如权利要求1、4或5任意一项所定义;
    Y如权利要求1或6所定义。
  12. 下式所示化合物或其药学上可接受的盐,
    Figure PCTCN2021142486-appb-100015
    Figure PCTCN2021142486-appb-100016
  13. 根据权利要求12所述化合物或其药学上可接受的盐,其选自
    Figure PCTCN2021142486-appb-100017
    Figure PCTCN2021142486-appb-100018
    Figure PCTCN2021142486-appb-100019
PCT/CN2021/142486 2020-12-31 2021-12-29 苯并咪唑类化合物及其应用 WO2022143773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/269,901 US20240109879A1 (en) 2020-12-31 2021-12-29 Benzimidazole compound and application thereof
CN202180087839.1A CN116670129A (zh) 2020-12-31 2021-12-29 苯并咪唑类化合物及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011643388.9 2020-12-31
CN202011643388 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022143773A1 true WO2022143773A1 (zh) 2022-07-07

Family

ID=82260263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142486 WO2022143773A1 (zh) 2020-12-31 2021-12-29 苯并咪唑类化合物及其应用

Country Status (3)

Country Link
US (1) US20240109879A1 (zh)
CN (1) CN116670129A (zh)
WO (1) WO2022143773A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107750249A (zh) * 2015-04-20 2018-03-02 塞尔森瑞科有限责任公司 异噁唑基取代的苯并咪唑
CN110036002A (zh) * 2016-10-18 2019-07-19 细胞中心有限公司 药物化合物
CN110049983A (zh) * 2016-10-18 2019-07-23 细胞中心有限公司 药物化合物
CN112574189A (zh) * 2019-09-27 2021-03-30 海创药业股份有限公司 一种ep300/cbp抑制剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107750249A (zh) * 2015-04-20 2018-03-02 塞尔森瑞科有限责任公司 异噁唑基取代的苯并咪唑
CN110036002A (zh) * 2016-10-18 2019-07-19 细胞中心有限公司 药物化合物
CN110049983A (zh) * 2016-10-18 2019-07-23 细胞中心有限公司 药物化合物
CN112574189A (zh) * 2019-09-27 2021-03-30 海创药业股份有限公司 一种ep300/cbp抑制剂

Also Published As

Publication number Publication date
US20240109879A1 (en) 2024-04-04
CN116670129A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
JP2019518754A (ja) フッ素化2−アミノ−4−(置換アミノ)フェニルカルバメート誘導体
WO2022194221A1 (zh) 呋喃稠环取代的戊二酰亚胺类化合物
TWI758999B (zh) 作為erk抑制劑的噻唑并內醯胺類化合物及其應用
EP4116291A1 (en) Synthesis of novel ep4 antagonist and use in cancers and inflammations
WO2019201297A1 (zh) 作为rho激酶抑制剂的苯并吡唑类化合物
CN110092779B (zh) 一种取代的苯基化合物及其应用
US10934256B2 (en) Compounds and methods for treating cancer
WO2022237797A1 (zh) 烷基羧酸化合物及其应用
WO2017162206A1 (zh) 作为雌激素受体降解剂的吲哚并取代哌啶类化合物
WO2021129817A1 (zh) 具有果糖激酶(khk)抑制作用的嘧啶类化合物
WO2021057893A1 (zh) 作为选择性btk激酶抑制剂的吡唑并吡啶类化合物
WO2022143773A1 (zh) 苯并咪唑类化合物及其应用
WO2023016527A1 (zh) 一类苯并噁嗪螺环类化合物及其制备方法
WO2022057836A1 (zh) 苯并脲环衍生物及其制备方法和应用
WO2021004533A1 (zh) 作为irak4和btk多靶点抑制剂的噁唑类化合物
CN114805331A (zh) N连接的杂芳环类化合物
CN113166055B (zh) 雌激素受体拮抗剂
WO2020140924A1 (zh) 与Aβ蛋白和Tau蛋白具有高亲和力的双腙类化合物及其衍生物与应用
WO2019174576A1 (zh) 咪唑并吡咯酮化合物及其应用
WO2023036312A1 (zh) 卤素取代的哒嗪酮类化合物及其应用
WO2022022646A1 (zh) 含硒五元杂芳环化合物
CN116082259B (zh) 氨基甲酸酯基或氨甲酰基取代的5-ht2b拮抗剂
WO2021098734A1 (zh) 作为atm抑制剂的有取代的喹啉吡咯酮类合物及其应用
WO2022233305A1 (zh) 甲基磺酰脲类化合物及其应用
WO2024099404A1 (zh) 一种含氮螺环类化合物、药物组合物以及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269901

Country of ref document: US

Ref document number: 202180087839.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914505

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 11.12.2023