WO2022143617A1 - 竹柏内酯类的化合物及其在抗肿瘤药物制备中的应用 - Google Patents

竹柏内酯类的化合物及其在抗肿瘤药物制备中的应用 Download PDF

Info

Publication number
WO2022143617A1
WO2022143617A1 PCT/CN2021/141946 CN2021141946W WO2022143617A1 WO 2022143617 A1 WO2022143617 A1 WO 2022143617A1 CN 2021141946 W CN2021141946 W CN 2021141946W WO 2022143617 A1 WO2022143617 A1 WO 2022143617A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
alkyl
compound
Prior art date
Application number
PCT/CN2021/141946
Other languages
English (en)
French (fr)
Inventor
叶阳
李佳
姚胜
高安慧
柯昌强
胡小蓓
Original Assignee
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所 filed Critical 中国科学院上海药物研究所
Publication of WO2022143617A1 publication Critical patent/WO2022143617A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/16Peri-condensed systems

Definitions

  • the invention belongs to the field of medicinal chemistry, more specifically, relates to cypress lactone compounds and their application in the preparation of antitumor drugs, more specifically, relates to cypress lactones in the preparation of compounds for treating multiple myeloma application in medicine.
  • MM Multiple myeloma
  • MM is a malignant clonal tumor of plasma cells characterized by plasma cell colonization and destruction of bone marrow, which can cause a series of pathophysiological changes in the body, such as anemia, bone disease, hypercalcemia, renal function Not all equal.
  • MM is the second most common hematological malignancy after non-Hodgkin lymphoma, accounting for 1% of all cancers and 10% of hematological malignancies. According to statistics, in 2015, about 26,850 people in the United States were diagnosed with multiple myeloma, and about 11,240 people died of the disease. In November 2015, the US FDA successively approved three new drugs for the treatment of multiple myeloma [2] .
  • the incidence of multiple myeloma in my country is about 1 in 100,000 to 2 in 100,000, surpassing acute leukemia and ranking second in the incidence of hematological malignancies.
  • 80% of multiple myeloma cases occur in people over the age of 60.
  • the incidence of multiple myeloma has shown a slow upward trend year by year.
  • Newer treatments also cause more treatment-related complications, such as bortezomib, which can cause severe peripheral nerve damage, and thalidomide and lenalidomide regimens that significantly increase the risk of deep vein thrombosis .
  • These side effects not only affect the quality of life of patients and even lead to treatment failure.
  • the prices of these new drugs are still expensive for Chinese patients. Therefore, it is very necessary to find new active drugs with higher efficacy, fewer side effects and relatively low cost to treat multiple myeloma.
  • Traditional Chinese herbal medicine has a long history of application in my country. Practice has proved that traditional Chinese herbal medicine has a certain therapeutic effect on a variety of malignant tumors including multiple myeloma.
  • baicalein flavonoids such as baicalein in Scutellaria baicalensis can significantly inhibit the growth of multiple myeloma cells and promote their apoptosis. Further research has confirmed that the anti-multiple myeloma effect of baicalein is mainly due to its inhibition of IL-6-mediated signaling Triterpenoids, a diterpenoid in the traditional Chinese medicine Tripterygium wilfordii, have been confirmed to cause G0/G1 phase arrest and Casepase-dependent cell regulation in multiple myeloma cells by changing the methylation status of histones H3K9 and H3K27. Death.
  • Emodin in traditional Chinese medicine rhubarb can selectively inhibit the IL-6-mediated JAK2/STAT pathway, thereby downregulating MCL-1 and causing MM cell apoptosis.
  • arsenic trioxide also showed good antitumor effect on multiple myeloma.
  • curcumin derived from ginger plants has entered clinical trials as a drug for the treatment of MM.
  • the current screening method for anti-multiple myeloma activity is mainly to perform cytotoxicity test on myeloma from different species to observe the inhibitory effect of the compound on myeloma cells. Because myeloma cells are in the middle stage of differentiation from B cells to mature plasma cells, they are not fully differentiated plasma cells. Studies have shown that XBP-1 plays an important role in plasma cell differentiation (Nature, 2001, 412, 300-307; Nat Immunol 2003, 4, 321-329.). Inositol-requiring enzyme 1 ⁇ (IRE1 ⁇ ) cleaves XBP1 into transcriptionally active XBP1s, which provides a key signal for the growth and survival of myeloma cells. Therefore, inhibiting the cleavage of XBP1 can also inhibit the growth of myeloma cells, and compounds with corresponding activities can be used for the treatment of multiple myeloma.
  • Inositol-requiring enzyme 1 ⁇ IRE1 ⁇
  • bamboo cypress is a plant of the genus Podocarpus in the Podocarpaceae family.
  • the genus Lohan pine includes 13 species and 3 varieties of trees and shrubs. It is an evergreen species and is mainly distributed in Asia, Guangdong, Guangxi, Yunnan, Taiwan province, Sri, India and other places in China.
  • the roots, stems, leaves and seeds of Lohan pine are Chinese folk medicines, which can relax tendons and activate blood, treat lumbar muscle strain, stop bleeding and connect bones, traumatic fractures, knife wounds, gunshot wounds, and are also used to treat mental diseases, body odor, eye diseases, For colds, etc., appropriate amount of fresh bark or roots, decoction, fumigation and washing of the affected area to treat rheumatoid arthritis.
  • the chemical constituents of this genus are mainly flavonoids, diterpenes and sesquiterpenes.
  • bamboo cypress (Podocarpus nagi) is also known as coconut tree, Luohan Chai, linden tree, mountain cedar, sugar chicken, boat family tree, Baofang, iron armor tree, pig liver tree, large fruit bamboo and cypress, up to 20 meters, with opposite leaves, leathery, with Most juxtaposed thin veins, no midrib, spherical seeds, flowering from March to April, and seeds mature in October. They are distributed in Zhejiang, Fujian, Jiangxi, Hunan, Guangdong, Guangxi, Sichuan and other regions of China.
  • the inventors of the present invention isolated and extracted the following compounds with the structure shown in formula I from bamboo cypress, or pharmaceutically acceptable salts, esters, optical isomers, stereoisomers, polymorphs and solvents thereof. compounds, N-oxides, isotopically labeled compounds, metabolites, chelates, complexes, clathrates or prodrugs, and pharmaceutically acceptable carriers,
  • A is selected from the group consisting of: NR, O; wherein, R is selected from the group consisting of H, C 1 -C 4 acyl, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, substituted or unsubstituted C 6 -C 10 aryl, substituted or unsubstituted C 1 -C 10 heteroaryl;
  • R 1 is selected from the group consisting of H, substituted or unsubstituted C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, substituted or unsubstituted C 1 -C 4 alkyl (such as 2-hydroxyethyl group, 2-hydroxymethylethyl), substituted or unsubstituted vinyl;
  • R 2 is selected from the following group: H, oxygen atom, -OR, wherein, the R is selected from the following group: H, substituted or unsubstituted C 2 -C 10 aliphatic acyl group, substituted or unsubstituted C 5 -C 20 aromatic acyl group, or substituted or unsubstituted C 1 -C 10 alkyl group;
  • R is selected from the group consisting of H, halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, -OH, substituted or unsubstituted C 2 -C 10 ester, -NH-R ; wherein, R is selected from the group consisting of H, C 1 -C 4 acyl groups, substituted or unsubstituted C 1 -C 4 alkyl groups;
  • R 4 is selected from the group consisting of H, halogen, oxygen atom, cyano, hydroxyl, carboxyl, C 1 -C 4 alkoxy, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, substituted or unsubstituted C 2 -C 10 ester group, -OC(O)-R, -NH-R; wherein, R is selected from the group consisting of H, C 1 -C 4 acyl group, substituted or unsubstituted C 1 -C 4 alkyl;
  • R 5 is selected from the group consisting of H, halogen, cyano, hydroxy, -OR, -COOR, substituted or unsubstituted C 1 -C 10 alkyl, substituted or unsubstituted C 1 -C 10 haloalkyl, substituted or unsubstituted Substituted C 2 -C 30 ester group, substituted or unsubstituted (preferably substituted) C 7 -C 11 aryl-acyl, -NH-R; wherein R is selected from the group consisting of H, C 1 -C 4 acyl, substituted or unsubstituted C 1 -C 4 alkyl;
  • R 6 is selected from the group consisting of H, halogen, oxygen atom, cyano group, carboxyl group, hydroxyl group, -OR, -COOR, substituted or unsubstituted C 1 -C 10 alkyl, substituted or unsubstituted C 1 -C 10 haloalkane base, substituted or unsubstituted C 2 -C 10 ester group, substituted or unsubstituted (preferably substituted) C 7 -C 11 aryl acyl, -NH-R; wherein, R is selected from the group consisting of H, C 1 -C 4 acyl, substituted or unsubstituted C 1 -C 4 alkyl;
  • R 5 and R 6 can together form a -OR"-O- group, wherein, the R" is a C 1 -C 4 alkylene group;
  • R 7 is selected from the group consisting of H, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl;
  • R 8 is H, or R 8 and R 2 together form -R"-OR"-, wherein said R" is none or C 1 -C 4 alkylene;
  • R 1 to R 8 Any two adjacent groups in R 1 to R 8 can be combined into one and form an oxirane ring together with the carbon atoms connecting them;
  • substitution in the "substituted or unsubstituted” refers to the substitution of one or more hydrogen atoms on the group by a substituent selected from the group consisting of carboxyl, unsubstituted or halogenated C 1 -C 6 alkyl , unsubstituted or halogenated C 3 -C 6 cycloalkyl, unsubstituted or halogenated C 2 -C 10 ester group, halogen, C 1 -C 10 alkyl-oxyl, C 2 -C 10 Acyl, hydroxy, hydroxy-C 1 -C 10 alkylene, unsubstituted or halogenated phenyl, glucosyloxy.
  • C n-n+m or C n -C n+m in the present invention includes any specific situation of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , also including any range from n to n+m, such as C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12 , etc.
  • n-membered to n+m-membered means that the number of atoms on the ring is n to n+m, for example, a 3-12-membered ring includes a 3-membered ring, a 4-membered ring, a 5-membered ring, a 6-membered ring, and a 7-membered ring.
  • 3-12-membered rings include 3-6-membered rings, 3- 9-membered rings, 5-6-membered rings, 5-7-membered rings, 6-7-membered rings, 6-8-membered rings, and 6-10-membered rings, and the like.
  • C1-3alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy and the like.
  • Examples of C 1-3 alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C 1 -C 4 alkyl or "C 1 -C 10 alkyl” refers to a straight or branched chain alkyl group having 1 to 4 or 1 to 10 carbon atoms, such as methyl , ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, or similar groups.
  • C3 - C6cycloalkyl refers to a cycloalkyl group having 3 to 6 carbon atoms, such as cyclopropyl, cyclobutyl, methylcyclobutyl, cyclopentyl, or the like.
  • C 1 -C 10 acyl or “C 1 -C 4 acyl” refers to a linear or branched chain alkyl/cycloalkyl having 0-9 or 0-3 carbon atoms in the form /aryl/heteroaryl/alkenyl/alkynyl-carbonyl" structure, such as acetyl, propionyl, butyryl, or similar groups.
  • C 2 -C 30 ester group refers to a group having a structure represented by -OOC-R', wherein said R' is a group with 1 to 9 carbon atoms selected from the group consisting of: straight Substituents to chain or branched alkyl, cycloalkyl, alkenyl, alkynyl, aryl or heteroaryl structures such as acetyl, propionyl, butyryl, or the like.
  • the R' can be further substituted, for example, by one or more substituents selected from the group consisting of halogen, -OH, -COOH, -COO (C 1 -C 6 alkyl), unsubstituted Substituted or halogenated phenyl, unsubstituted or halogenated C1-C6 alkyl, unsubstituted or halogenated C2 - C6 acyl, unsubstituted or halogenated C1 - C6 alkyl-hydroxy.
  • substituents selected from the group consisting of halogen, -OH, -COOH, -COO (C 1 -C 6 alkyl), unsubstituted Substituted or halogenated phenyl, unsubstituted or halogenated C1-C6 alkyl, unsubstituted or halogenated C2 - C6 acyl, unsubstituted or halogenated C1
  • C 1 -C 4 alkylene refers to a group formed by the loss of a hydrogen atom from a C 1 -C 4 alkyl group as described above, such as -CH 2 -, -CH 2 -CH 2 -, or the like .
  • halogen refers to F, Cl, Br and I.
  • C 6 -C 10 aryl refers to an aryl group having 6-10 carbon atoms, such as phenyl, naphthyl, etc., which may be substituted or unsubstituted.
  • C 1 -C 10 heteroaryl refers to a heteroaryl group having 1-10 carbon atoms and one or more heteroatoms selected from O, S and/or N, preferably a C2-C8 heteroaryl group.
  • the heteroaryl groups can be substituted or unsubstituted.
  • the terms “comprising”, “comprising” or “including” mean that the various ingredients can be used together in the mixture or composition of the present invention.
  • the terms “consisting essentially of” and “consisting of” are encompassed by the term “comprising”.
  • the term "pharmaceutically acceptable” ingredients refers to substances that are suitable for use in humans and/or animals without excessive adverse side effects (such as toxicity, irritation and allergy), ie, have a reasonable benefit/risk ratio.
  • the term "effective amount" refers to an amount of a therapeutic agent that treats, alleviates or prevents a target disease or condition, or an amount that exhibits a detectable therapeutic or prophylactic effect.
  • the precise effective amount for a subject depends on the size and health of the subject, the nature and extent of the disorder, and the therapeutic agent and/or combination of therapeutic agents selected for administration. Therefore, it is useless to prespecify the exact effective amount. However, for a given situation, routine experimentation can be used to determine the effective amount, as is the judgment of the clinician.
  • substituted refers to the replacement of one or more hydrogen atoms on a group with a substituent selected from the group consisting of halogen, -OH, -COOH, -COO(C 1 -C 6 alkyl), unsubstituted or halogenated phenyl, unsubstituted or halogenated C1-C6 alkyl, unsubstituted or halogenated C2 - C6 acyl, unsubstituted or halogenated C1 - C6 Alkyl-hydroxy.
  • each chiral carbon atom can optionally be in the R configuration or the S configuration, or a mixture of the R and S configurations.
  • the term “compounds of the present invention” refers to compounds of formula I.
  • the term also includes the various crystalline forms, pharmaceutically acceptable salts, hydrates or solvates of the compounds of formula I.
  • pharmaceutically acceptable salt refers to a salt of a compound of the present invention with an acid or base suitable for use as a medicament.
  • Pharmaceutically acceptable salts include inorganic and organic salts. A preferred class of salts are the salts of the compounds of the present invention with acids.
  • Acids suitable for forming salts include, but are not limited to, inorganic acids such as hydrochloric, hydrobromic, hydrofluoric, sulfuric, nitric, phosphoric, formic, acetic, propionic, oxalic, malonic, succinic, fumaric, Maleic acid, lactic acid, malic acid, tartaric acid, citric acid, picric acid, methanesulfonic acid, benzenemethanesulfonic acid, benzenesulfonic acid and other organic acids; and acidic amino acids such as aspartic acid and glutamic acid.
  • inorganic acids such as hydrochloric, hydrobromic, hydrofluoric, sulfuric, nitric, phosphoric, formic, acetic, propionic, oxalic, malonic, succinic, fumaric, Maleic acid, lactic acid, malic acid, tartaric acid, citric acid, picric acid, methanesulfonic acid, benzene
  • the compound of formula I has the structure shown in the following formula Ia:
  • R 1 is selected from the group consisting of substituted or unsubstituted C 1 -C 4 alkyl, C 1 -C 4 haloalkyl; wherein, the substitution means that one or more hydrogen atoms on the group are replaced by C 1 -C 4 ester group substitution;
  • R 2 is -OH, -OR' or a substituted or unsubstituted C 2 -C 10 ester group
  • R 7 is selected from the group consisting of C 1 -C 4 alkyl, C 1 -C 4 haloalkyl; the rest The definition of each group is as described above.
  • the compound of the formula I can also be mentioned as a compound having the structure represented by the following formula Ib,
  • R 1 is selected from the following group: substituted or unsubstituted C 1 -C 4 alkyl, C 1 -C 4 haloalkyl; R 2 and R 8 together form -O-; R 7 is selected from the following group: C 1 -C 4 alkyl, C 1 -C 4 haloalkyl; the remaining groups are as defined above.
  • R 2 is selected from the following group: O-R', wherein said R' is selected from the following group: H, substituted or unsubstituted C 2 -C 10 acyl group, or substituted or unsubstituted C 1 -C 10 alkyl;
  • R 4 is selected from the group consisting of H, halogen, cyano, carboxyl, hydroxy, C 1 -C 4 alkoxy, substituted or unsubstituted C 2 -C 10 ester;
  • R 5 is selected from the group consisting of H, halogen, cyano, hydroxy, C 1 -C 4 alkoxy, -COOR, substituted or unsubstituted C 2 -C 10 ester group, substituted or unsubstituted C 1 - C 10 alkyl, substituted or unsubstituted C 1 -C 10 haloalkyl, -NH-R; wherein, R is selected from the group consisting of H, C 1 -C 4 acyl, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, substituted or unsubstituted (preferably substituted) C 7 -C 11 aryl-acyl;
  • R 6 is selected from the group consisting of H, halogen, cyano, carboxyl, hydroxy, C 1 -C 4 alkoxy, substituted or unsubstituted C 2 -C 10 ester, substituted or unsubstituted C 1 -C 10 alkyl, substituted or unsubstituted C 1 -C 10 haloalkyl, substituted or unsubstituted (preferably substituted) C 7 -C 11 aryl-acyl, -NH-R; wherein R is selected from the group consisting of: H, C 1 -C 4 acyl group, C 1 -C 4 alkyl group, C 1 -C 4 haloalkyl group;
  • substitution in the "substituted or unsubstituted” refers to the substitution of one or more hydrogen atoms on the group by a substituent selected from the following group: carboxyl, phenyl, C 3 -C 6 cycloalkyl, C 1 -C 10 ester, halogen, C 1 -C 10 alkyl-oxy, C 2 -C 10 acyl, hydroxy, hydroxy-C 1 -C 10 alkylene.
  • said R 2 and R 5 are each independently a group selected from -OR', and said R' is selected from H or the following group:
  • the wavy line in it represents the connection position to the O.
  • the term "pharmaceutically acceptable” refers to those compounds, materials, compositions and/or dosage forms that, within the scope of sound medical judgment, are suitable for use in contact with human and animal tissue , without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • salts refers to salts of the compounds of the present invention, prepared from compounds with specific substituents discovered by the present invention and relatively non-toxic acids or bases.
  • base addition salts can be obtained by contacting such compounds with a sufficient amount of base in neat solution or in a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting such compounds with a sufficient amount of acid in neat solution or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts including, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-toluenesulfonic, citric, tartaric, and methanesulfonic acids; also include salts of amino acids such as arginine, etc. , and salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain both basic and acidic functional groups and thus can be converted into either base
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the acid or base containing parent compound by conventional chemical methods. Generally, such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of the two.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and racemic mixtures thereof and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which belong to this within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • enantiomers or “optical isomers” refer to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” result from the inability to rotate freely due to double bonds or single bonds to ring carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the molecules are in a non-mirror-image relationship.
  • tautomer or “tautomeric form” refers to isomers of different functional groups that are in dynamic equilibrium and are rapidly interconverted at room temperature.
  • a chemical equilibrium of tautomers can be achieved if tautomers are possible (eg, in solution).
  • proton tautomers also called prototropic tautomers
  • Valence tautomers include interconversions by recombination of some bonding electrons.
  • keto-enol tautomerization is the interconversion between two tautomers, pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in one enantiomer” refer to one of the isomers or pairs
  • the enantiomer content is less than 100%, and the isomer or enantiomer content is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or Greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
  • isomeric excess or “enantiomeric excess” refer to the difference between two isomers or relative percentages of two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the content of the other isomer or enantiomer is 10%, the isomer or enantiomeric excess (ee value) is 80% .
  • Optically active (R)- and (S)-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the present invention is desired, it can be prepared by asymmetric synthesis or derivatization with a chiral auxiliary, wherein the resulting mixture of diastereomers is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereomeric salt is formed with an appropriate optically active acid or base, followed by conventional methods known in the art
  • the diastereoisomers were resolved and the pure enantiomers recovered.
  • separation of enantiomers and diastereomers is usually accomplished by the use of chromatography employing a chiral stationary phase, optionally in combination with chemical derivatization (eg, from amines to amino groups) formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • deuterated drugs can be formed by replacing hydrogen with deuterium, and the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon. Compared with undeuterated drugs, deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All transformations of the isotopic composition of the compounds of the present invention, whether radioactive or not, are included within the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable of.
  • oxygen it means that two hydrogen atoms are substituted. Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the type and number of substituents may be arbitrary on a chemically achievable basis.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with up to two Rs, with independent options for R in each case.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • substituents When a substituent is vacant, it means that the substituent does not exist. For example, when X in A-X is vacant, it means that the structure is actually A. When the listed substituents do not indicate through which atom it is attached to the substituted group, such substituents may be bonded through any of its atoms, for example, pyridyl as a substituent may be through any one of the pyridine ring The carbon atom is attached to the substituted group.
  • any one or more sites in the group can be linked to other groups by chemical bonds.
  • the chemical bond connecting the site to other groups can be represented by straight solid line bonds straight dotted key or wavy lines express.
  • a straight solid bond in -OCH 3 indicates that it is connected to other groups through the oxygen atom in this group;
  • the straight dashed bond in the group indicates that it is connected to other groups through the two ends of the nitrogen atom in the group;
  • the wavy lines in the phenyl group indicate connections to other groups through the 1 and 2 carbon atoms in the phenyl group.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl groups, such as alkanoyl groups (eg, acetyl, trichloroacetyl, or trifluoroacetyl); alkoxycarbonyl groups, such as tert-butoxycarbonyl (Boc) ; Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); Arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups such as trimethylsilyl (TMS) and tert-
  • hydroxy protecting group refers to a protecting group suitable for preventing hydroxyl side reactions.
  • Representative hydroxy protecting groups include, but are not limited to: alkyl groups such as methyl, ethyl and tert-butyl; acyl groups such as alkanoyl (eg acetyl); arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and the like.
  • alkyl groups such as methyl, ethyl and tert-butyl
  • acyl groups such as alkanoyl (eg acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenyl
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed by their combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • aq stands for water
  • HATU O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethylurea hexafluorophosphate
  • EDC represents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride
  • m-CPBA 3-chloroperoxybenzoic acid
  • eq represents equivalent, equivalent
  • CDI represents Carbonyldiimidazole
  • DCM for dichloromethane
  • PE for petroleum ether
  • DIAD diisopropyl azodicarboxylate
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • EtOAc for ethyl acetate Esters
  • EtOH for ethanol
  • MeOH for methanol
  • CBz benzyloxycarbonyl
  • the present invention also provides the use of the above compound or a pharmaceutically acceptable salt or ester thereof in the preparation of a medicament for treating multiple myeloma.
  • the present invention also provides a pharmaceutical composition for treating multiple myeloma, comprising a therapeutically effective amount of one or more compounds selected from the above-mentioned compounds or pharmaceutically acceptable salts or esters thereof, and pharmaceutically acceptable Accessories.
  • the compound of the present invention has multiple myeloma inhibitory activity
  • the compound of the present invention and its various crystal forms, pharmaceutically acceptable inorganic or organic salts, hydrates or solvates, as well as containing the compound of the present invention are the main activities
  • the pharmaceutical composition of the components can be used for the treatment of tumor diseases caused by multiple myeloma.
  • the pharmaceutical composition of the present invention comprises the compound of the present invention or a pharmacologically acceptable salt thereof and a pharmacologically acceptable excipient or carrier within a safe and effective amount.
  • the "safe and effective amount” refers to: the amount of the compound is sufficient to significantly improve the condition without causing serious side effects.
  • the pharmaceutical composition contains 1-3000 (active dose range 3-30 mg/kg) mg of the compound of the present invention/dose, more preferably 10-2000 mg of the compound of the present invention/dose.
  • the "one dose” is a capsule or tablet.
  • “Pharmaceutically acceptable carrier” refers to one or more compatible solid or liquid filler or gelling substances which are suitable for human use and which must be of sufficient purity and sufficiently low toxicity. "Compatibility” as used herein means that the components of the composition can be admixed with the compounds of the present invention and with each other without significantly reducing the efficacy of the compounds.
  • Examples of pharmaceutically acceptable carrier moieties include cellulose and its derivatives (such as sodium carboxymethyl cellulose, sodium ethyl cellulose, cellulose acetate, etc.), gelatin, talc, solid lubricants (such as stearic acid) , magnesium stearate), calcium sulfate, vegetable oils (such as soybean oil, sesame oil, peanut oil, olive oil, etc.), polyols (such as propylene glycol, glycerol, mannitol, sorbitol, etc.), emulsifiers (such as Tween) ), wetting agents (such as sodium lauryl sulfate), colorants, flavors, stabilizers, antioxidants, preservatives, pyrogen-free water, etc.
  • cellulose and its derivatives such as sodium carboxymethyl cellulose, sodium ethyl cellulose, cellulose acetate, etc.
  • gelatin such as sodium carboxymethyl cellulose, sodium ethyl cellulose, cellulose acetate
  • the mode of administration of the compounds or pharmaceutical compositions of the present invention is not particularly limited, and representative modes of administration include, but are not limited to: oral, intratumoral, rectal, parenteral (intravenous, intramuscular or subcutaneous) and topical.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules.
  • the active compound is mixed with at least one conventional inert excipient (or carrier), such as sodium citrate or dicalcium phosphate, or with (a) fillers or compatibilizers, for example, starch, lactose, sucrose, glucose, mannitol and silicic acid; (b) binders such as, for example, hydroxymethylcellulose, alginate, gelatin, polyvinylpyrrolidone, sucrose and acacia; (c) humectants, For example, glycerol; (d) disintegrants such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates and sodium carbonate; (e) slow solvents such as paraffin; (f) absorption Accelerators, eg, quaternary amine compounds; (g) wetting agents, eg, cetyl alcohol and glycerol, or
  • Solid dosage forms such as tablets, dragees, capsules, pills and granules can be prepared using coatings and shell materials, such as enteric coatings and other materials well known in the art. They may contain opacifying agents, and the release of the active compound or compounds in such compositions may be in a certain part of the digestive tract in a delayed manner. Examples of embedding components that can be employed are polymeric substances and waxes. If desired, the active compound may also be in microencapsulated form with one or more of the above-mentioned excipients.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or tinctures.
  • liquid dosage forms may contain inert diluents conventionally employed in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1 , 3-butanediol, dimethylformamide and oils, especially cottonseed oil, peanut oil, corn germ oil, olive oil, castor oil and sesame oil or mixtures of these substances, and the like.
  • inert diluents conventionally employed in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1 , 3-butanediol, dimethylform
  • compositions can also contain adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
  • Suspensions in addition to the active compounds, may contain suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances and the like.
  • suspending agents such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances and the like.
  • compositions for parenteral injection may comprise physiologically acceptable sterile aqueous or anhydrous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
  • Suitable aqueous and non-aqueous carriers, diluents, solvents or excipients include water, ethanol, polyols and suitable mixtures thereof.
  • Dosage forms for topical administration of the compounds of this invention include ointments, powders, patches, sprays and inhalants.
  • the active ingredient is mixed under sterile conditions with a physiologically acceptable carrier and any preservatives, buffers, or propellants that may be required if necessary.
  • sterile liquids such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil , soybean oil, mineral oil, sesame oil, etc.
  • Water is an exemplary carrier when the pharmaceutical composition is administered intravenously.
  • Physiological saline and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, maltose, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, nonfat dry milk, glycerin, propylene glycol, water, Ethanol etc.
  • the composition may also contain minor amounts of wetting agents, emulsifying agents or pH buffering agents as desired.
  • Oral formulations may contain standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. Examples of suitable pharmaceutically acceptable carriers are described in Remington's Pharmaceutical Sciences (1990).
  • compositions of the present invention may act systemically and/or locally.
  • they may be administered by a suitable route, for example by injection (eg intravenous, intraarterial, subcutaneous, intraperitoneal, intramuscular injection, including instillation) or transdermally; or by oral, buccal, transdermal Nasal, transmucosal, topical, in ophthalmic formulations or by inhalation.
  • compositions of the present invention may be administered in suitable dosage forms.
  • Such dosage forms include, but are not limited to, tablets, capsules, lozenges, hard candies, powders, sprays, creams, ointments, suppositories, gels, pastes, lotions, ointments, aqueous suspensions , injectable solutions, elixirs, syrups.
  • an effective amount refers to the amount of a compound which, when administered, will alleviate to some extent one or more symptoms of the condition being treated.
  • Dosage regimens can be adjusted to provide the optimal desired response. For example, a single bolus may be administered, several divided doses may be administered over time, or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is noted that dosage values may vary with the type and severity of the condition to be alleviated, and may include single or multiple doses. It is further understood that for any particular individual, the specific dosing regimen should be adjusted over time according to the needs of the individual and the professional judgment of the person administering or supervising the administration of the composition.
  • the amount of the compound of the invention administered will depend on the individual being treated, the severity of the disorder or condition, the rate of administration, the disposition of the compound, and the judgment of the prescribing physician. In general, an effective dose will range from about 0.0001 to about 50 mg per kg of body weight per day, eg, from about 0.01 to about 10 mg/kg/day (single or divided administration). For a 70 kg person, this would add up to about 0.007 mg/day to about 3500 mg/day, eg, about 0.7 mg/day to about 700 mg/day.
  • dose levels not higher than the lower end of the foregoing ranges may be sufficient, while in other cases larger doses may be employed without causing any deleterious side effects, provided that the larger dose is first
  • the dose is divided into several smaller doses to be administered throughout the day.
  • treating means reversing, alleviating, inhibiting the progression of the disorder or condition to which such term is applied or one or more symptoms of such disorder or condition, or preventing such A disorder or condition or one or more symptoms of such a disorder or condition.
  • an “individual” as used herein includes a human or non-human animal.
  • exemplary human subjects include human subjects (referred to as patients) or normal subjects with a disease (eg, a disease described herein).
  • Non-human animals in the present invention include all vertebrates such as non-mammals (eg birds, amphibians, reptiles) and mammals such as non-human primates, livestock and/or domesticated animals (eg sheep, dogs) , cats, cows, pigs, etc.).
  • the compounds of the present invention may be administered alone or in combination with other pharmaceutically acceptable compounds.
  • a safe and effective amount of the compound of the present invention is suitable for mammals (such as people) in need of treatment, and the dose is a pharmaceutically considered effective dose when administered, and for a person with a body weight of 60kg, the daily dose is
  • the administration dose is usually 1 to 2000 mg, preferably 6 to 600 mg.
  • the specific dosage should also take into account the route of administration, the patient's health and other factors, which are all within the skill of the skilled physician.
  • Figure 1 is a graph showing the evaluation of the anti-tumor activity of specific compound 18 on SCID mouse MM.1S xenografts;
  • Figure 2 is a graph showing the evaluation of antitumor activity of specific compound 18 on RPMI 8226 xenografts in SCID mice.
  • HPLC-MS Waters 2695Separate Model , Waters PDA 2998 detector coupled with Alltch ELSD 2424 detector, 3100Ms detector, SunFireTM C-18column (4.6 ⁇ 100mm, 3.5 ⁇ m, Waters), flow rate 1.0ml/min, CH3CN (Merck, Germany), pure water; Jasco HPLC (Chiralcel IA column, 5 ⁇ m, 150 ⁇ 4.6mm), flow rate 0.6ml/min, hexane/ethanol (7:3).
  • Electrophoresis apparatus and semi-dry electrotransfer bath Bio-Rad Laboratories, Hercules, CA); PCR machine (Bio-Rad Laboratories, Hercules, CA); desktop refrigerated centrifuge (Hettich, Germany); 752C UV-Vis spectrophotometer (Shanghai The third analytical instrument); DK-8B electric heating constant temperature water tank (Shanghai Jinghong Experimental Equipment Co., Ltd.); REVCO carbon dioxide incubator (REVCO company in the United States).
  • TLC thin layer preparation board HSGF254 is produced by Yantai Chemical Plant.
  • MCI resin CHP20P (75-150 ⁇ m) produced by Mitsubishi Corporation; Sephadex LH-20: Pharmacia Biotech AB, Uppsala, Sweden.
  • Color developer 10% sulfuric acid-vanillal solution, iodine;
  • the ethyl acetate fraction was treated with MCI column chromatography, eluted with 20, 40, 60, 80, and 95% ethanol-water to obtain five fractions, wherein the 40% ethanol-water fraction was further coagulated with silica gel and Sephadex LH-20. Separation and purification were carried out by means of gel column chromatography, preparative TLC and preparative HPLC. Through the analysis and separation of the ethyl acetate moiety and the water moiety, the above-mentioned compounds 1 to 38 were obtained in total, and the above-mentioned compound 4-1 was also obtained.
  • RPMI8226 cells and MM1S cells were cultured in RPMI1640 medium containing 100ml/L inactivated newborn calf serum, placed in a 50ml/L CO 2 saturated humidity, 37°C incubator In suspension culture, the medium was changed once every 2-3 days, and the experimental cells were in the logarithmic growth phase.
  • SpectraMAX 340 was used to measure the absorbance value at 490nm (L1), and the reference wavelength was 690nm (L2). Vorinostat was used as a positive control and the results are summarized in Table 1 below.
  • Myeloma cells are in the middle stage of differentiation from B cells to mature plasma cells, and they are not fully differentiated plasma cells. Studies have shown that XBP-1 plays an important role in plasma cell differentiation (Nature, 2001, 412, 300-307; Nat Immunol 2003, 4, 321-329.). Inositol-requiring enzyme 1 ⁇ (IRE1 ⁇ ) cleaves XBP1 into transcriptionally active XBP1s, which provides a key signal for the growth and survival of myeloma cells. Therefore, inhibiting the cleavage of XBP1 can also inhibit the growth of myeloma cells.
  • Inositol-requiring enzyme 1 ⁇ IRE1 ⁇
  • Plasmid construction The pCAX-F-XBP1 ⁇ DBDvenus plasmid was digested with BamHI and BglII, and the large fragment was recovered by gel. At the same time, the luciferase gene was double-digested by BamHI and BglII, ligated with T4 DNA ligase, transformed into JM109 competent cells, and cultured at 37°C overnight.
  • Colony PCR primary sequences: GGCAGATCTGAAGACGCCAAAAAC; TGCGGATCCTTACACGGC GATCTTTC
  • sequencing verification Sangon Bioengineering (Shanghai) Co., Ltd.
  • b Cell culture: human embryonic kidney cell line HEK293, using high glucose DMEM medium containing 10% fetal bovine serum, 100kU/L penicillin and 100 mg/L streptomycin, human lung cancer cell line A549 using 10% fetal bovine serum , 100kU/L penicillin and 100mg/L streptomycin F12 medium, placed in a 37°C, 5% CO2 incubator for cultivation.
  • the human embryonic kidney cell line HEK293 was cultured to a density of about 90% for passage.
  • the culture conditions of HEK293-XBP1 ⁇ DBD-luc stably expressing cell line were the same as HEK293, and the amount of cells in 96-well plate and 384-well plate were 5000 cells/50 ⁇ l/well and 2000 cells/25 ⁇ l/well, respectively.
  • EK293-XBP1 ⁇ DBD-luc stable expression cell line The pCAX-F-XBP1 ⁇ DBD-luc plasmid and pcDNA3.1 plasmid were co-transfected into HEK293 cells at a ratio of 10:1 with Lipofectamine2000, and inoculated at a ratio of 1:100 after 24 hours Cultured in a 100mm petri dish, and then used 800 ⁇ g/ml G418 for resistance screening after adherence. After 2 to 3 weeks, multiple single clones were obtained and transferred to a 24-well plate for expansion. After the cell density in the 24-well plate reached 90%, each monoclonal was connected to the 96-well plate, and the fluorescence signal value was read.
  • the clones with fluorescent signals were further expanded and cultured, connected to 96-well plates, cultured overnight, and treated with endoplasmic reticulum stress inducer TM (0.1 ⁇ g/ml, 0.5 ⁇ g/ml and 1 ⁇ g/ml) for 8 hours to determine the fluorescent signal.
  • TM endoplasmic reticulum stress inducer
  • Activation multiplier Considering the absolute fluorescence signal value and activation fold, the final monoclonal cell line for high-throughput screening is determined, and the clone is expanded and cryopreserved.
  • HEK293-XBP1 ⁇ DBD-luc stably expressing cell line was seeded in 96 or 384-well plates, and factors such as cell seeding amount, DMSO concentration, and TM concentration and time were optimized. Screening of small molecule compounds after optimization of conditions: Cells were seeded into 96-well plates with Biomek FX and incubated overnight. Biomek FX Plus TM and compounds to be tested. After compound superimposed treatment for 8 hours, the Steady-Glo Luciferase Assay System was added according to the volume ratio of 1:1, and Envision read the fluorescence signal value and plotted the (L1-L2) value against different concentrations of the inhibitor, and obtained the IC 50 by formula fitting. The results are summarized in Table 2 below.
  • Non-SCID mice female, 5-6 weeks old, body weight 20 ⁇ 3g, purchased from Shanghai Lingchang Biotechnology Co., Ltd., production certificate number: SCXK (Shanghai) 2013-0018. Animals are kept in SPF animal room with barrier system, laboratory temperature is 24 ⁇ 2°C; relative humidity is 60%-80%; air exchange times per hour: 10-15 times/hour; light cycle: 12(day)/12( night) hours.
  • b. Cell line The human myeloma MM1S cell line is preserved in the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. The cell line was used to inoculate the right armpit of SCID mice subcutaneously, and the cell inoculation amount was 1 ⁇ 10 7 / mouse, and the experiment could be started after the formation of transplanted tumor.
  • Test method and evaluation standard The diameter of the transplanted tumor in SCID mice was measured with a vernier caliper. After the tumor grew to 100-300 mm 3 , the animals were randomly divided into 3 groups. The solvent control group (vehicle) was given the same amount of blank solvent, and the administration group was administered 15 mg/kg and 30 mg/kg by intraperitoneal injection, once a day, for 2 weeks. During the whole experiment, the diameter of the transplanted tumor was measured twice a week, and the mice were weighed at the same time.
  • V 0 is the tumor volume measured in separate cages (ie d 0 )
  • V t is the tumor volume at each measurement.
  • test results showed that the intraperitoneal injection of compound 18 at 15 mg/kg was ineffective against the transplanted tumor of human myeloma MM.1S SCID mice, and the T/C% was 67.42; The T/C% was 12.85, and there was a significant difference between the relative tumor volume and the solvent control (P ⁇ 0.05).
  • mice were sacrificed, and the tumor mass was dissected and weighed.
  • Compound 18 was injected intraperitoneally at a dose of 15 mg/kg to human myeloma MM1S SCID mice, and the tumor inhibition rate was 23.61; Compound 18 was injected intraperitoneally at a dose of 30 mg/kg.
  • the tumor inhibition rate % of transplanted tumor in myeloma MM1S SCID mice was 61.72, and there was a significant difference between the relative tumor weight and the solvent control (P ⁇ 0.01).
  • Cell line The human myeloma RPMI 8226 cell line was preserved by the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. The cell line was used to inoculate the right axilla of NOD/SCID mice subcutaneously, and the cell inoculation amount was 1 ⁇ 10 7 / mouse, and the experiment could be started after the transplanted tumor was formed.
  • the test is the above compound 18, the solvent is 2% DMSO, 1% tween 80, 0.5% MC.
  • the diameter of the transplanted tumor in NOD/SCID mice was measured with a vernier caliper. After the tumor grew to 100-300 mm 3 , the animals were randomly divided into two groups. The solvent control group (vehicle) was given the same amount of blank solvent, and the administration groups were administered 20 mg/kg by intraperitoneal injection. During the whole experiment, the diameter of the transplanted tumor was measured twice a week, and the mice were weighed at the same time.
  • V 0 is the tumor volume measured in separate cages (ie d 0 )
  • V t is the tumor volume at each measurement.
  • Dissolve compound 18 (20 mg, 0.057 mmol) in anhydrous pyridine (1 ml), add acetyl chloride (0.004 ml, 1.5 eq.), stir at room temperature overnight, TLC detection confirms the end of the reaction, 2N dilute hydrochloric acid is added to the reaction solution for medium and pyridine, ethyl acetate was added for extraction, the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B1 as a white solid powder (6 mg, 27%).
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add propionyl chloride (0.008 ml, 2.6 eq.), stir at room temperature overnight, TLC detection confirms the end of the reaction, and 2N dilute hydrochloric acid is added to the reaction solution to neutralize the pyridine , ethyl acetate was added for extraction, the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B2 as a white solid powder (5 mg, 22%).
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add isobutyryl chloride (0.008 ml, 2.2 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, and 2N dilute hydrochloric acid is added to the reaction solution to neutralize the pyridine , ethyl acetate was added for extraction, the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B3 as a white solid powder (12 mg, 50%).
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add n-butyryl (0.008 ml, 2.2 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, and 2N dilute hydrochloric acid is added to the reaction solution to neutralize the pyridine , ethyl acetate was added for extraction, the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B4 as a white solid powder (8 mg, 34%).
  • Dissolve compound 18 (10 mg, 0.029 mmol) in 1 ml of anhydrous pyridine, add n-hexanoyl chloride (0.06 ml, 1.5 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, 2N dilute hydrochloric acid is added to the reaction solution to neutralize the pyridine, Ethyl acetate was added for extraction, and the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B8 as a white solid powder (8 mg, 51%).
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add cyclopropylcarbonyl chloride (0.008 ml, 1.5 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, and 2N dilute hydrochloric acid is added to the reaction solution for medium and pyridine, ethyl acetate was added for extraction, the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B9 as a white solid powder (12 mg, 51%). 18-B9:ESIMS m/z:417.2[M+H] + ,461.2[M+HCOO] - .
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add cyclopentanoyl chloride (0.008 ml, 1.2 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, and 2N dilute hydrochloric acid is added to the reaction solution for neutralization Pyridine was added to extract with ethyl acetate. The organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B10 as a white solid powder (10 mg, 40%). 18-B10:ESIMS m/z:445.3[M+H] + ,489.2[M+HCOO] - .
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add cyclohexanecarbonyl chloride (0.008 ml, 1.2 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, and 2N dilute hydrochloric acid is added to the reaction solution for neutralization Pyridine was added to extract with ethyl acetate. The organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B11 as a white solid powder (10 mg, 40%). 18-B11:ESIMS m/z:459.3[M+H] + ,503.3[M+HCOO] - .
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add cyclobutyl formic acid (0.008 ml, 1.5 N), stir at room temperature, add DCC (50 mg, 4.6 N), react overnight, TLC detection confirms the end of the reaction, 2N dilute hydrochloric acid was added to the reaction solution to neutralize pyridine, and ethyl acetate was added for extraction. The organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B14 as a white solid powder (17 mg, 58%). 18-B14:ESIMS m/z:513.3[M+H] + ,557.2[M+HCOO] - .
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add glutaric anhydride (20 mg, 3.1 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, 2N dilute hydrochloric acid is added to the reaction solution to neutralize the pyridine, Ethyl acetate was added for extraction, and the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B16 as a white solid powder (7 mg, 27%).
  • Dissolve compound 18 (20 mg, 0.057 mmol) in 1 ml of anhydrous pyridine, add benzoyl chloride (0.010 ml, 1.5 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, and 2N dilute hydrochloric acid is added to the reaction solution to neutralize the pyridine , ethyl acetate was added for extraction, the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B25 as a white solid powder (13 mg, 51%). 18-B25:ESIMS m/z:453.3[M+H] + ,497.2[M+HCOO] - .
  • Dissolve compound 18 (10 mg, 0.029 mmol) in 1 ml of anhydrous pyridine, add benzoyl chloride (0.005 ml, 1.5 N), stir at room temperature overnight, TLC detection confirms the end of the reaction, and 2N dilute hydrochloric acid is added to the reaction solution to neutralize the pyridine , ethyl acetate was added for extraction, the organic layer was washed with saturated NaCl and pure water, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to give 18-B30 as a white solid powder (7 mg, 51%).
  • Example 5 Inhibitory activity test of 18B series compounds synthesized in Example 4 on multiple myeloma cells RPMI-8826
  • Example 4 Based on the same method as in Example 2.1, the compound synthesized in Example 4 was tested for the inhibitory activity of multiple myeloma cells RPMI-8826, and the results are summarized in Table 3.
  • Example 6 The 18B and 23B series compounds synthesized in Example 4 were tested for the inhibitory activity of XBP1 cleavage
  • Example 4 Based on the same method as in Example 2.2, some compounds synthesized in Example 4 were subjected to XBP-1 cleavage inhibitory activity test, and the results are summarized in Table 4.
  • the compounds of the present invention show obvious multiple myeloma inhibitory effect in in vitro cell screening and in vivo experiments using mice, so in terms of anti-tumor, they have extremely high clinical application value and new drug development. potential.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

具有式I所示的结构的化合物,或其药学上可接受的盐或酯,以及其在抗肿瘤药物制备中的应用。

Description

竹柏内酯类的化合物及其在抗肿瘤药物制备中的应用 技术领域
本发明属于药物化学领域,更具体而言,涉及竹柏內酯类的化合物及其在抗肿瘤药物制备中的应用,更具体而言,涉及竹柏內酯类的化合物在制备治疗多发性骨髓瘤的药物中的应用。
背景技术
多发性骨髓瘤(multiple myeloma,MM)是以浆细胞定植并破坏骨髓为特征的浆细胞恶性克隆性肿瘤,可引起机体发生一系列病理生理改变,如贫血、骨病、高血钙、肾功能不全等。MM是继非霍奇金淋巴瘤之后的第二种常见血液系统恶性疾病,其发病在所有癌症中占1%,在恶性血液疾病中占10%。据统计,2015年全美国约有26850人被诊断出罹患多发性骨髓瘤,约有11240人死于该疾病。美国FDA在2015年11月份连续批准了3种治疗多发性骨髓瘤的新药 [2]
目前,多发性骨髓瘤在我国的发病率约为十万分之一到十万分之二,已经超过急性白血病,位居血液系统恶性肿瘤发病率的第二位。多发性骨髓瘤80%的病例发生于60岁以上的老人。随着我国老龄化社会的到来,以及体检和医疗诊断水平的提高,多发性骨髓瘤的发病状况表现出逐年缓慢上升的趋势。
近十几年来,新的药物比如硼替佐米、carfilzomib(蛋白酶体抑制剂)、沙利度胺、pomalidomide(免疫调节剂)、Elotuzumab(单抗)、Orinosta(组蛋白去乙酰化酶抑制剂)等的使用,大剂量化疗联合自体干细胞移植,以及年轻病人中异基因干细胞移植的开展,使多发性骨髓瘤取得越来越好的治疗效果。但是,多发性骨髓瘤目前依然是不可治愈的疾病。新的治疗方法也造成更多治疗相关的并发症,比如硼替佐米可使患者出现严重的周围神经损害,沙利度胺和来那度胺的治疗方案可使深静脉血栓形成的风险显著增加。这些副作用不仅影响了患者的生活质量甚至导致治疗失败。此外,这些新药的价格对我国患者来说仍显昂贵。因此,寻找疗效更高,副作用更少且相对低廉的新的活性药物治疗多发性骨髓瘤,显得十分必要。传统中草药在我国有着悠久的应用历史。实践证明,传统中草药对包括多发性骨髓瘤在内的多种恶性肿瘤具有一定的治疗作用。目前研究发现黄芩中黄芩素等黄酮类物质能明显抑制多发性骨髓瘤细胞的生长并促进其调亡,进一步的研究证实黄芩素的抗多发性骨髓瘤作用主要与其抑制IL-6介导的信号通路有关;中药雷公藤中的二萜类成分雷公藤内酯,被证实可以通过改变组蛋白H3K9和H3K27的甲基化状态,引起多发性骨髓瘤细胞G0/G1期阻滞和Casepase依赖的细胞调亡。中药大黄中的大黄素可以选择性抑制IL-6介导的JAK2/STAT通路,从而下调MCL-1,引起MM细胞调亡。另外,三氧化二砷对多发性骨髓瘤也显示出较好的抗肿瘤作用。而来源于姜科植物的姜黄素已经作为治疗MM的药物进入临床试验阶段。
当前抗多发性骨髓瘤活性的筛选方法主要是针对不同种属来源的骨髓瘤进行细胞毒测试观察化合物对骨髓瘤细胞的抑制效果。由于骨髓瘤细胞处于B细胞向成熟浆细胞的分化中间阶段,是一种尚没有分化完全的浆细胞。研究表明,XBP-1在浆细胞分化过程中起重要作用(Nature,2001,412,300-307;Nat Immunol 2003,4,321-329.)。肌醇需求酶1α(inositol-requiring enzyme 1α,IRE1α)使XBP1剪切为有转录活性的XBP1s,为骨髓瘤细胞的生长和生存提供了关键信号。因此抑制XBP1的剪切,同样能够抑制骨髓瘤细胞的生长,有相应活性的化合物可用于多发性骨髓瘤的治疗。
竹柏是罗汉松科(Podocarpaceae)罗汉松属(Podocarpus)植物。罗汉松属包括乔木和灌木共13种3变种,为常绿树种,主要分布在亚洲,中国的广东、广西、云南、台湾省、缅甸、越南、印度等地。罗汉松属植物的根、茎、叶及种子是我国民间药物,可以舒筋活血,治疗腰肌劳损、止血接骨,外伤骨折、刀伤、枪伤,也用于治疗精神疾病,狐臭、眼疾,感冒等,鲜树皮或根适量,水煎熏洗患处,治风湿性关节炎。本属植物所含化学成分主要是黄酮、二萜和倍半萜。竹柏(Podocarpus nagi)别称椰树、罗汉柴、椤树、山杉、糖鸡子、船家树、宝芳、铁甲树、猪肝树、大果竹柏,高达20米,叶对生,革质,有多数并列的细脉,无中脉,种子圆球形,花期3-4月,种子10月成熟,在中国浙江、福建、江西、湖南、广东、广西、四川等地区均有分布。
本发明的发明人在研究来自竹柏的天然化合物过程中,发现其中多种成分有着优异的抗肿瘤 (具体为多发性骨髓瘤)活性,揭示了其在制备抗肿瘤的药物中的应用前景,从而完成了本发明。
发明内容
本发明的发明人从竹柏中分离提取获得了以下具有式I所示的结构的化合物,或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,以及药学上可接受的载体,
Figure PCTCN2021141946-appb-000001
式I中,
Figure PCTCN2021141946-appb-000002
为双键或单键,其中的两个
Figure PCTCN2021141946-appb-000003
不同时为双键,当其中的一个为双键时,R 8不存在;
A选自下组:N-R、O;其中,R选自下组:H、C 1-C 4的酰基、C 1-C 4的烷基、C 1-C 4的卤代烷基、取代或未取代的C 6-C 10芳基、取代或未取代的C 1-C 10杂芳基;
R 1选自下组:H、取代或未取代的C 1-C 4的烷基、C 1-C 4的卤代烷基、取代或未取代的C 1-C 4烷基(如2-羟基乙基,2-羟甲基乙基)、取代或未取代的乙烯基;
R 2选自下组:H、氧原子、-OR,其中,所述的R选自下组:H、取代或未取代的C 2-C 10的脂肪族酰基、取代或未取代的C 5-C 20的芳香族酰基、或取代或未取代的C 1-C 10烷基;
R 3选自下组:H、卤素、C 1-C 4的烷基、C 1-C 4的卤代烷基、-OH、取代或未取代的C 2-C 10的酯基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、取代或未取代的C 1-C 4的烷基;
R 4选自下组:H、卤素、氧原子、氰基、羟基、羧基、C 1-C 4的烷氧基、C 1-C 4的烷基、C 1-C 4的卤代烷基、取代或未取代的C 2-C 10的酯基、-OC(O)-R、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、取代或未取代的C 1-C 4的烷基;
R 5选自下组:H、卤素、氰基、羟基、-OR、-COOR、取代或未取代C 1-C 10烷基、取代或未取代的C 1-C 10卤代烷基、取代或未取代的C 2-C 30的酯基、取代或未取代(优选为取代)的C 7-C 11芳香基-酰基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、取代或未取代的C 1-C 4的烷基;
R 6选自下组:H、卤素、氧原子、氰基、羧基、羟基、-OR、-COOR、取代或未取代C 1-C 10烷基、取代或未取代的C 1-C 10卤代烷基、取代或未取代的C 2-C 10的酯基、取代或未取代(优选为取代)的C 7-C 11芳基酰基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、取代或未取代的C 1-C 4的烷基;
其中,R 5和R 6可以共同构成-O-R”-O-基团,其中,所述的R”为C 1-C 4的亚烷基;
R 7选自下组:H、C 1-C 4的烷基、C 1-C 4的卤代烷基;
R 8为H、或R 8与R 2共同构成-R”-O-R”-,其中,所述的R”为无或C 1-C 4的亚烷基;
R 1至R 8中的任意相邻的两个基团,可以合二为一与连接它们的碳原子一起形成环氧乙烷环;
所述的“取代或未取代”中的取代,是指基团上的一个或多个氢原子被选自下组的取代基取代:羧基、未取代或卤代的C 1-C 6烷基、未取代或卤代的C 3-C 6的环烷基、未取代或卤代的C 2-C 10的酯基、卤素、C 1-C 10烷基-氧基、C 2-C 10酰基、羟基、羟基-C 1-C 10的亚烷基、未取代或卤代的苯基、葡萄糖基氧基。
在将具有上述通式I结构的化合物利用体外抑制多发性骨髓瘤细胞活性评价实验进行评价中,此类化合物普遍显示了对人骨髓瘤细胞系RPMI8226细胞以及MM1S细胞的抑制活性,具体可以参照后述的实施例。因此可以推测具有通式I结构的化合物普遍具有治疗多发性骨髓瘤的生物活性。
需要说明的是,除非另有规定本发明中的C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情 况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
例如,如果本发明中出现术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
更具体而言,术语“C 1-C 4烷基”或“C 1-C 10烷基”指具有1~4个或1-10个碳原子的直链或支链烷基,例如甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基,或类似基团。
术语“C 3-C 6环烷基”指具有3~6个碳原子的环烷基,例如环丙基、环丁基、甲基环丁基、环戊基,或类似基团。
如本文所用,术语“C 1-C 10酰基”或“C 1-C 4酰基”指形如“具有0~9个或0-3个碳原子的直链或支链烷基/环烷基/芳基/杂芳基/烯基/炔基-羰基”结构的取代基,如乙酰基、丙酰基、丁酰基,或类似基团。
术语“C 2-C 30酯基”指形如-OOC-R'所示结构的基团,其中,所述的R'为具有1~9个碳原子的选自下组的基团:直链或支链烷基、环烷基、烯基、炔基、芳基或杂芳基结构的取代基,如乙酰基、丙酰基、丁酰基,或类似基团。其中,所述的R'还可以进一步被取代,例如被选自下组的一个或多个取代基所取代:卤素、-OH、-COOH、-COO(C 1-C 6烷基)、未取代或卤代的苯基、未取代或卤代的C1-C6烷基、未取代或卤代的C 2-C 6酰基、未取代或卤代的C 1-C 6烷基-羟基。
术语“C 1-C 4亚烷基”指如上文所述的C1~C4烷基失去一个氢原子之后形成的基团,例如-CH 2-、-CH 2-CH 2-,或类似基团。
术语“卤素”指F、Cl、Br和I。
术语“C 6-C 10芳基”指具有6-10个碳原子的芳基,例如苯基、萘基等,所述的芳基可以是取代或未取代的。
术语“C 1-C 10杂芳基”指具有1-10个碳原子和一个或多个选自O、S和/或N的杂原子的杂芳基,优选C2-C8杂芳基。所述的杂芳基可以是取代或未取代的。
本发明中,术语“含有”、“包含”或“包括”表示各种成分可一起应用于本发明的混合物或组合物中。因此,术语“主要由...组成”和“由...组成”包含在术语“含有”中。
本发明中,术语“药学上可接受的”成分是指适用于人和/或动物而无过度不良副反应(如毒性、刺激和变态反应),即有合理的效益/风险比的物质。
本发明中,术语“有效量”指治疗剂治疗、缓解或预防目标疾病或状况的量,或是表现出可检测的治疗或预防效果的量。对于某一对象的精确有效量取决于该对象的体型和健康状况、病症的性质和程度、以及选择给予的治疗剂和/或治疗剂的组合。因此,预先指定准确的有效量是没用的。然而,对于某给定的状况而言,可以用常规实验来确定该有效量,临床医师是能够判断出来的。
在本文中,除特别说明之处,术语“取代”指基团上的一个或多个氢原子被选自下组的取代基取代:卤素、-OH、-COOH、-COO(C 1-C 6烷基)、未取代或卤代的苯基、未取代或卤代的C1-C6烷基、未取代或卤代的C 2-C 6酰基、未取代或卤代的C 1-C 6烷基-羟基。
除非另有说明,用楔形实线键
Figure PCTCN2021141946-appb-000004
和楔形虚线键
Figure PCTCN2021141946-appb-000005
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2021141946-appb-000006
和直形虚线键
Figure PCTCN2021141946-appb-000007
表示立体中心的相对构型,用波浪线
Figure PCTCN2021141946-appb-000008
表示楔形实线键
Figure PCTCN2021141946-appb-000009
或楔形虚线键
Figure PCTCN2021141946-appb-000010
或用波浪线
Figure PCTCN2021141946-appb-000011
表示直形实线键
Figure PCTCN2021141946-appb-000012
和直形虚线键
Figure PCTCN2021141946-appb-000013
除非另有说明,当化合物中存在双键结构,如碳碳双键、碳氮双键和氮氮双键,且双键上的 各个原子均连接有两个不同的取代基时(包含氮原子的双键中,氮原子上的一对孤对电子视为其连接的一个取代基),如果该化合物中双键上的原子与其取代基之间用波浪线
Figure PCTCN2021141946-appb-000014
连接,则表示该化合物的(Z)型异构体、(E)型异构体或两种异构体的混合物。
除非特别说明,本发明中,所有出现的化合物均意在包括所有可能的光学异构体,如单一手性的化合物,或各种不同手性化合物的混合物(即外消旋体)。本发明的所有化合物之中,各手性碳原子可以任选地为R构型或S构型,或R构型和S构型的混合物。
如本文所用,术语“本发明化合物”指式I所示的化合物。该术语还包括及式I化合物的各种晶型形式、药学上可接受的盐、水合物或溶剂合物。如本文所用,术语“药学上可接受的盐”指本发明化合物与酸或碱所形成的适合用作药物的盐。药学上可接受的盐包括无机盐和有机盐。一类优选的盐是本发明化合物与酸形成的盐。适合形成盐的酸包括但并不限于:盐酸、氢溴酸、氢氟酸、硫酸、硝酸、磷酸等无机酸,甲酸、乙酸、丙酸、草酸、丙二酸、琥珀酸、富马酸、马来酸、乳酸、苹果酸、酒石酸、柠檬酸、苦味酸、甲磺酸、苯甲磺酸,苯磺酸等有机酸;以及天冬氨酸、谷氨酸等酸性氨基酸。
从本发明中药物的活性数据看,优选的本发明的化合物中,所述的式I化合物具有以下式Ia所示的结构:
Figure PCTCN2021141946-appb-000015
式中,
R 1选自下组:取代或未取代的C 1-C 4的烷基、C 1-C 4的卤代烷基;其中,所述的取代指基团上的一个或多个氢原子被C 1-C 4的酯基取代;
R 2为-OH、-OR’或取代或未取代的C 2-C 10的酯基;R 7选自下组:C 1-C 4的烷基、C 1-C 4的卤代烷基;其余各基团的定义如上所述。
作为优选的本发明的化合物,还可以举出所述的式I化合物具有以下式Ib所示的结构的化合物,
Figure PCTCN2021141946-appb-000016
式I中,
Figure PCTCN2021141946-appb-000017
为双键或单键,其为双键时,R 8不存在,
R 1选自下组:取代或未取代的C 1-C 4的烷基、C 1-C 4的卤代烷基;R 2与R 8共同构成-O-;R 7选自下组:C 1-C 4的烷基、C 1-C 4的卤代烷基;其余各基团的定义如上所述。
作为进一步优选的本发明的化合物,R 2选自下组:O-R’,其中,所述的R’选自下组:H、取代或未取代的C 2-C 10的酰基、或取代或未取代的C 1-C 10的烷基;
R 4选自下组:H、卤素、氰基、羧基、羟基、C 1-C 4的烷氧基、取代或未取代的C 2-C 10的酯基;
R 5选自下组:H、卤素、氰基、羟基、C 1-C 4的烷氧基、-COOR、取代或未取代的C 2-C 10的酯基、取代或未取代C 1-C 10烷基、取代或未取代的C 1-C 10卤代烷基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、C 1-C 4的烷基、C 1-C 4的卤代烷基、取代或未取代(优选为取代)的C 7-C 11芳基-酰基;
R 6选自下组:H、卤素、氰基、羧基、羟基、C 1-C 4的烷氧基、取代或未取代的C 2-C 10的酯基、取代或未取代C 1-C 10烷基、取代或未取代的C 1-C 10卤代烷基、取代或未取代(优选为取代)的C 7-C 11芳基-酰基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、C 1-C 4的烷基、C 1-C 4的卤代烷基;
所述的“取代或未取代”中的取代,是指基团上的一个或多个氢原子被选自下组的取代基取代:羧基、苯基、C 3-C 6的环烷基、C 1-C 10的酯基、卤素、C 1-C 10烷基-氧基、C 2-C 10酰基、羟基、羟基-C 1-C 10的亚烷基。
在进一步优选的本发明的化合物中,所述的R 2和R 5各自独立地为选自-OR’中的基团,且所述的R’选自H或下组:
Figure PCTCN2021141946-appb-000018
Figure PCTCN2021141946-appb-000019
其中的波浪线代表与O的连接位置。
作为本发明的化合物的具体的例子,可以举出以下的具体化合物:
Figure PCTCN2021141946-appb-000020
Figure PCTCN2021141946-appb-000021
或者选自以下具有通式18B和23B结构的化合物,
Figure PCTCN2021141946-appb-000022
Figure PCTCN2021141946-appb-000023
化合物编号 R c取代基 R d取代基 ESI-MS m/z[M+H] +
18-B1 A1 H 391.2
18-B2 A2 H 405.3
18-B3 A3 H 419.3
18-B4 A4 H 419.3
18-B5 A5 H 447.4
18-B6 A6 H 503.4
18-B7 A1 A1 433.2
18-B8 A5 A5 545.4
18-B9 C1 H 417.2
18-B10 C3 H 445.3
18-B11 C4 H 459.3
18-B12 C5 H 487.4
18-B13 C1 C1 485.3
18-B14 C2 C2 513.3
18-B15 D1 H 449.3
18-B16 D3 H 463.3
18-B17 D2 H 477.4
18-B18 D2 D2 605.5
18-B19 H1 H 443.3
18-B20 H2 H 459.3
18-B21 H3 H 488.3
18-B22 H4 H 509.3
18-B23 H5 H 471.3
18-B24 H6 H 550.3
18-B25 P1 H 453.3
18-B26 P2 H 509.3
18-B27 P3 H 513.3
18-B28 P4 H 479.3
18-B29 P5 H 481.3
18-B30 P1 P1 557.3
18-B31 P6 H 488.3
18-B32 P7 H 471.3
18-B33 P8 H 488.3
18-B34 P9 H 532.3
18-B35 P11 H 532.3
18-B36 P10 H 488.3
18-B37 P6 P6 666.3
18-B38 V1 H 417.3
18-B39 V2 V2 485.3
18-B40 A7 H 467.3
18-B41 H A1 391.2
18-B42 H A2 419.3
18-B43 H A3 419.3
18-B44 H P11 531.3
23-B1 A1 H 391.2
23-B2 A1 A1 433.2
23-B3 A2 H 405.2
23-B4 A2 A2 461.2
作为技术说明的补充,本发明说明书的定义和术语还包括:
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮- 烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021141946-appb-000024
直形虚线键
Figure PCTCN2021141946-appb-000025
或波浪线
Figure PCTCN2021141946-appb-000026
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2021141946-appb-000027
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021141946-appb-000028
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH 3代表氰基硼氢化钠;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc 2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl 2代表氯化亚砜;CS 2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;n-Bu 4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基胺基锂;Et代表乙基。
本发明还提供上述化合物或其药学上可接受的盐或酯在制备治疗多发性骨髓瘤的药物中的应用。
本发明还提供一种用于治疗多发性骨髓瘤的药物组合物,其包含治疗有效量的一种或多种选自上述化合物或其药学上可接受的盐或酯,和药学上可接受的辅料。
由于本发明的化合物具有多发性骨髓瘤的抑制活性,因此本发明化合物及其各种晶型,药学上可接受的无机或有机盐,水合物或溶剂合物,以及含有本发明化合物为主要活性成分的药物组合物可用于治疗多发性骨髓瘤引发的肿瘤疾病。
本发明的药物组合物包含安全有效量范围内的本发明化合物或其药理上可接受的盐及药理上可以接受的赋形剂或载体。其中“安全有效量”指的是:化合物的量足以明显改善病情,而不至于产生严重的副作用。通常,药物组合物含有1-3000(活性剂量范围3-30mg/kg)mg本发明化合物/剂,更佳地,含有10-2000mg本发明化合物/剂。较佳地,所述的“一剂”为一个胶囊或药片。
“药学上可以接受的载体”指的是:一种或多种相容性固体或液体填料或凝胶物质,它们适合于人使用,而且必须有足够的纯度和足够低的毒性。“相容性”在此指的是组合物中各组份能和本发明的化合物以及它们之间相互掺和,而不明显降低化合物的药效。药学上可以接受的载体部分例子有纤维素及其衍生物(如羧甲基纤维素钠、乙基纤维素钠、纤维素乙酸酯等)、明胶、滑石、固体润滑剂(如硬脂酸、硬脂酸镁)、硫酸钙、植物油(如豆油、芝麻油、花生油、橄榄油等)、多元醇(如丙二醇、甘油、甘露醇、山梨醇等)、乳化剂(如吐温
Figure PCTCN2021141946-appb-000029
)、润湿剂(如十二烷基硫酸钠)、着色剂、调味剂、稳定剂、抗氧化剂、防腐剂、无热原水等。
本发明化合物或药物组合物的施用方式没有特别限制,代表性的施用方式包括(但并不限于):口服、瘤内、直肠、肠胃外(静脉内、肌肉内或皮下)和局部给药。
用于口服给药的固体剂型包括胶囊剂、片剂、丸剂、散剂和颗粒剂。在这些固体剂型中,活性化合物与至少一种常规惰性赋形剂(或载体)混合,如柠檬酸钠或磷酸二钙,或与下述成分混合:(a)填料或增容剂,例如,淀粉、乳糖、蔗糖、葡萄糖、甘露醇和硅酸;(b)粘合剂,例如,羟甲基纤维素、藻酸盐、明胶、聚乙烯基吡咯烷酮、蔗糖和阿拉伯胶;(c)保湿剂,例如,甘油;(d)崩解剂,例如,琼脂、碳酸钙、马铃薯淀粉或木薯淀粉、藻酸、某些复合硅酸盐和碳酸钠;(e)缓溶剂,例如石蜡;(f)吸收加速剂,例如,季胺化合物;(g)润湿剂,例如鲸蜡醇和单硬脂酸甘油酯;(h)吸附剂,例如,高岭土;和(i)润滑剂,例如,滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、十二烷基硫酸钠或其混合物。胶囊剂、片剂和丸剂中,剂型也可包含缓冲剂。
固体剂型如片剂、糖丸、胶囊剂、丸剂和颗粒剂可采用包衣和壳材制备,如肠衣和其它本领域公知的材料。它们可包含不透明剂,并且,这种组合物中活性化合物或化合物的释放可以延迟的方式在消化道内的某一部分中释放。可采用的包埋组分的实例是聚合物质和蜡类物质。必要时,活性化合物也可与上述赋形剂中的一种或多种形成微胶囊形式。
用于口服给药的液体剂型包括药学上可接受的乳液、溶液、悬浮液、糖浆或酊剂。除了活性化合物外,液体剂型可包含本领域中常规采用的惰性稀释剂,如水或其它溶剂,增溶剂和乳化剂,例知,乙醇、异丙醇、碳酸乙酯、乙酸乙酯、丙二醇、1,3-丁二醇、二甲基甲酰胺以及油,特别是棉籽油、花生油、玉米胚油、橄榄油、蓖麻油和芝麻油或这些物质的混合物等。
除了这些惰性稀释剂外,组合物也可包含助剂,如润湿剂、乳化剂和悬浮剂、甜味剂、矫味剂和香料。
除了活性化合物外,悬浮液可包含悬浮剂,例如,乙氧基化异十八烷醇、聚氧乙烯山梨醇和脱水山梨醇酯、微晶纤维素、甲醇铝和琼脂或这些物质的混合物等。
用于肠胃外注射的组合物可包含生理上可接受的无菌含水或无水溶液、分散液、悬浮液或乳液,和用于重新溶解成无菌的可注射溶液或分散液的无菌粉末。适宜的含水和非水载体、稀释剂、溶剂或赋形剂包括水、乙醇、多元醇及其适宜的混合物。
用于局部给药的本发明化合物的剂型包括软膏剂、散剂、贴剂、喷射剂和吸入剂。活性成分在无菌条件下与生理上可接受的载体及任何防腐剂、缓冲剂,或必要时可能需要的推进剂一起混合。
更具体而言,在本发明的药物组合物中可使用的药学上可接受的载体包括但不限于无菌液体,例如水和油,包括那些石油、动物、植物或合成来源的油,例如花生油、大豆油、矿物油、芝麻油等。当所述药物组合物通过静脉内给药时,水是示例性载体。还可以使用生理盐水和葡萄糖及甘油水溶液作为液体载体,特别是用于注射液。适合的药物赋形剂包括淀粉、葡萄糖、乳糖、蔗糖、明胶、麦芽糖、白垩、硅胶、硬脂酸钠、单硬脂酸甘油酯、滑石、氯化钠、脱脂奶粉、甘油、丙二醇、水、乙醇等。所述组合物还可以视需要包含少量的湿润剂、乳化剂或pH缓冲剂。口服制剂可以包含标准载体,如药物级的甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、纤维素、碳酸镁等。适合的药学上可接受的载体的实例如在Remington’s Pharmaceutical Sciences(1990)中所述。
本发明的药物组合物可以系统地作用和/或局部地作用。为此目的,它们可以适合的途径给药,例如通过注射(如静脉内、动脉内、皮下、腹膜内、肌内注射,包括滴注)或经皮给药;或通过口服、含服、经鼻、透粘膜、局部、以眼用制剂的形式或通过吸入给药。
对于这些给药途径,可以适合的剂型给药本发明的药物组合物。
所述剂型包括但不限于片剂、胶囊剂、锭剂、硬糖剂、散剂、喷雾剂、乳膏剂、软膏剂、栓剂、凝胶剂、糊剂、洗剂、软膏剂、水性混悬剂、可注射溶液剂、酏剂、糖浆剂。
如本文中所使用的术语“有效量”指被给药后会在一定程度上缓解所治疗病症的一或多种症状的化合物的量。
可调整给药方案以提供最佳所需响应。例如,可给药单次推注,可随时间给药数个分剂量,或可如治疗情况的急需所表明而按比例减少或增加剂量。要注意,剂量值可随要减轻的病况的类型及严重性而变化,且可包括单次或多次剂量。要进一步理解,对于任何特定个体,具体的给药方案应根据个体需要及给药组合物或监督组合物的给药的人员的专业判断来随时间调整。
所给药的本发明的化合物的量会取决于所治疗的个体、病症或病况的严重性、给药的速率、化合物的处置及处方医师的判断。一般而言,有效剂量在每日每kg体重约0.0001至约50mg,例如约0.01至约10mg/kg/日(单次或分次给药)。对70kg的人而言,这会合计为约0.007mg/日至约3500mg/日,例如约0.7mg/日至约700mg/日。在一些情况下,不高于前述范围的下限的剂量水平 可以是足够的,而在其它情况下,仍可在不引起任何有害副作用的情况下采用较大剂量,条件是首先将所述较大剂量分成数个较小剂量以在一整天中给药。
除非另外说明,否则如本文中所使用,术语“治疗”意指逆转、减轻、抑制这样的术语所应用的病症或病况或者这样的病症或病况的一或多种症状的进展,或预防这样的病症或病况或者这样的病症或病况的一或多种症状。
如本文所使用的“个体”包括人或非人动物。示例性人个体包括患有疾病(例如本文所述的疾病)的人个体(称为患者)或正常个体。本发明中“非人动物”包括所有脊椎动物,例如非哺乳动物(例如鸟类、两栖动物、爬行动物)和哺乳动物,例如非人灵长类、家畜和/或驯化动物(例如绵羊、犬、猫、奶牛、猪等)。
本发明化合物可以单独给药,或者与其他药学上可接受的化合物联合给药。
使用药物组合物时,是将安全有效量的本发明化合物适用于需要治疗的哺乳动物(如人),其中施用时剂量为药学上认为的有效给药剂量,对于60kg体重的人而言,日给药剂量通常为1~2000mg,优选6~600mg。当然,具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
附图说明
图1为表示具体化合物18对SCID小鼠MM.1S移植瘤的抗肿瘤活性评价的图表;
图2为表示具体化合物18对SCID小鼠RPMI 8226移植瘤的抗肿瘤活性评价的图表。
具体实施方式
以下记载本发明的具体实施方式。以下实施例仅是为了通过具体实验进一步说明本发明。以下实施方式仅为示例,并不对本发明范围具有限制作用。
实施例1 天然竹柏内酯类化合物分离与结构鉴定
仪器和器材
此外光谱UV:SHIMADIU UV-2550和Beckman DU-7紫外可见光光谱仪;红外光谱IR:Perkin-Elmer 577型红外分光光度仪;低分辨质谱LR-EIMS:Finnigan MAT-95;高分辨质谱HR-EIMS:Kratos 1H spectrometer;核磁共振谱:Varian INOVA 600型核磁共振仪,Bruker AM-500,AM-400,AM-300型核磁共振仪,δ(ppm),以TMS为内标;LC-MS:Agilent 1100液相偶联Bruker esquire质谱仪;分析型HPLC:Waters 2690Separate Model,Waters PDA 996检测器偶联Alltch ELSD 2000检测器,Millennium 2000操作系统,Waters RP18column(5.0×125mm,5μm,Waters),流速1.0ml/min,CH3CN(Merck,Germany),纯水;Jasco HPLC(Chiralcel IA column,5μm,150×4.6mm),流速0.6ml/min,hexane/ethanol(7:3).HPLC-MS:Waters 2695Separate Model,Waters PDA 2998检测器偶联Alltch ELSD 2424检测器,3100Ms detector,SunFireTM C-18column(4.6×100mm,3.5μm,Waters),流速1.0ml/min,CH3CN(Merck,Germany),纯水;Jasco HPLC(Chiralcel IA column,5μm,150×4.6mm),流速0.6ml/min,hexane/ethanol(7:3)。
制备型HPLC:Varian SD1instrument,Varians 320单波长检测器,C18column(220×25nm,10μm,Waters),流速15ml/min,CH3CN(Merck,Germany),纯水;SpectraMax M2 e多功能酶标仪(美国分子仪器公司);
电泳仪和半干电转印槽(Bio-Rad Laboratories,Hercules,CA);PCR仪(Bio-Rad Laboratories,Hercules,CA);台式冷冻离心机(德国Hettich公司);752C紫外可见分光光度计(上海第三分析仪器);DK-8B电热恒温水槽(上海精宏实验设备有限公司);REVCO二氧化碳培养箱(美国REVCO公司)。
试剂与材料
柱层析硅胶:100-200目,200-300目硅胶和硅胶H均为青岛海洋化工厂生产;
TLC薄层制备板:HSGF254为烟台化工厂生产。MCI树脂:CHP20P(75-150μm)为三菱公司生产;葡聚糖凝胶Sephadex LH-20:Pharmacia Biotech AB,Uppsala,Sweden。显色剂:10%硫酸-香兰醛溶液,碘;
提取与分离
采自中国海南省乐东黎族自治区的竹柏树枝(39.3Kg)晾干、粉碎,使用95%的工业乙醇浸泡三次,每次七天,合并提取液,减压浓缩至无醇味得到黑色浸膏(1.1Kg)。将浸膏转移到25L的龙口瓶中,用10L水分散,搅拌得到悬浮液,并依次用石油醚(10L)、乙酸乙酯(10L)萃取三次,减压浓缩得到石油醚部位85g,乙酸乙酯部位85g。
经过薄层色谱和LC-MS分析,我们判断竹柏内酯类化合物只要集中在乙酸乙酯部位和水部位。水部位通过大孔树脂柱层析,依次以40、70、95%的乙醇-水洗脱,40%乙醇-水部位再经过聚酰胺柱柱层析,依次以20、40、95%的乙醇-水洗脱,得到四个部位。其中20%乙醇-水部位分别进一步用硅胶,Sephadex LH-20凝胶柱层析,制备型TLC以及制备型HPLC等手段进行分离纯化。乙酸乙酯部位以MCI柱层析处理,以20、40、60、80、95%乙醇-水洗脱,得到五个部位,其中对40%乙醇-水部位进一步用硅胶,Sephadex LH-20凝胶柱层析,制备型TLC以及制备型HPLC等手段进行分离纯化。通过对乙酸乙酯部位和水部位的分析、分离,共得到上述的的1~38的化合物,还得到了上述化合物4-1。
上述化合物的理化数据如下
3-deoxy-2β-hydroxynagilactone E(1)
白色针状晶体;
Figure PCTCN2021141946-appb-000030
(c 0.1,MeOH); 1H-NMR和 13C-NMR参见表2.6-2.7;HRESIMS349.1640[M+H] +(理论值:C 19H 25O 6,349.1646)。
3-deoxy-2β,16-dihydroxysnagilactone E(2)
白色针状晶体;
Figure PCTCN2021141946-appb-000031
(c 0.1,MeOH);melt point 243-245℃;IR(KBr)v max 3445,1758,1706cm -11H-NMR和 13C-NMR参见表2.6-2.7;HRESIMS 365.1594[M+H] +(理论值:C 19H 25O 7,365.1595)。
16-O-β-D-glucopyranosylnagilactone E(3)
白色针状晶体;
Figure PCTCN2021141946-appb-000032
(c 0.1,MeOH); 1H-NMR和 13C-NMR参见表2.6-2.7;HRESIMS527.2114[M+H] +(理论值:C 25H 35O 12,527.2123)。
16-hydroxynagilactone E(4)
白色粉末;MF:C 19H 24O 7;MW:364;ESIMS:m/z[M+H] +365.3;
1H-NMR(400MHz,C 5D 5N):δ6.19(s,1H),5.15(dd,J=4.2,1.4Hz,1H),4.89(d,J=5.6Hz,1H),4.40(d,J=1.5Hz,1H),4.32(dd,J=10.6,3.8Hz,1H),4.10(ddd,J=10.4,7.1,1.1Hz,1H),3.85(dd,J=10.7,6.0Hz,1H),2.29(dt,J=6.7,3.3Hz,1H),2.10(m,1H),1.98(m,1H),1.91(d,J=4.2Hz,1H),1.70(m,1H),1.57(s,3H),1.44(m,1H),1.35(d,J=6.8Hz,3H),1.33(s,3H). 13C NMR(125MHz,C 5D 5N):δ178.4,164.4,159.9,117.3,82.9,73.4,72.9,63.0,59.4,55.4,46.2,45.8,37.1,35.1,29.8,29.0,24.4,22.5,16.6。
3-O-β-D-glucopyranosyl-16-hydroxylnagilactone G(5)
白色粉末;
Figure PCTCN2021141946-appb-000033
(c 0.1,MeOH);IR(KBr)v max 3406,1755,1722cm -11H-NMR和 13C-NMR参见表2.6-2.7;HRESIMS 527.2115[M+H] +理论值:C 25H 35O 12,527.2123。
3-O-β-D-glucopyranosylnagilactone G(6)
白色粉末;
Figure PCTCN2021141946-appb-000034
(c 0.1,MeOH); 1H-NMR和 13C-NMR参见表2.7-2.8;HRESIMS 533.1993[M+Na] +理论值:C 25H 34NaO 11,533.1993。
2,3-β-epoxy-16-O-β-D-glucopyranosylnagilactone G(7)
白色粉末;
Figure PCTCN2021141946-appb-000035
(c 0.1,MeOH); 1H-NMR和 13C-NMR参见表2.7-2.8;HRESIMS 525.1959[M+H] +理论值:C 25H 33O 12,525.1959。
Sellowin A(8)
白色粉末;MF:C 19H 22O 7;MW:362;ESIMS:m/z[M+H] +363.3;
1H-NMR(400MHz,C 5D 5N):δ6.19(s,1H),5.21(dd,J=4.6,1.3Hz,1H),4.87(d,J=5.7Hz,1H),4.42(brs,1H),4.29(dd,J=10.6,3.7Hz,1H),3.41(dt,J=3.8,1.9Hz,1H),3.31(d,J=3.8Hz,1H),2.28(ddt,J=5.7,3.1,1.5Hz,1H),2.22(dd,J= 14.7,2.2Hz,1H),1.84(d,J=4.7Hz,1H),1.75(m,1H),1.75(d,J=14.7Hz,1H),1.46(s,3H),1.41(s,3H),1.34(d,J=6.8Hz,3H)。
13C NMR(125MHz,C 5D 5N):δ177.6,164.2,159.1,117.5,82.9,73.8,62.9,58.8,55.2,53.3,52.4,43.7,43.6,36.2,35.1,31.0,26.2,21.6,16.5。
16-O-β-D-glucopyranosylnagilactone G(9)
白色粉末;
Figure PCTCN2021141946-appb-000036
(c 0.1,MeOH);IR(KBr)v max 3426,1765,1716cm -1  1H-NMR和 13C-NMR参见表2.7-2.8;ESIMS:349[M–162] +;HRESIMS 533.1988[M+Na] +(理论值:C 25H 34O 11Na,533.1993)。
2,3-dehydro-16-O-β-D-glucopyranosylnagilactone G(10)
白色粉末;
Figure PCTCN2021141946-appb-000037
(c 0.1,MeOH);IR(KBr)v max 3426,1765,1716cm -11H-NMR和 13C-NMR参见表2.7-2.8;ESIMS:347[M–162] +;HRESIMS 531.1833[M+Na] +(理论值:C 25H 32NaO 11,531.1837)。
16-O-β-D-glucopyranosylnagilactone F(11)
白色粉末;
Figure PCTCN2021141946-appb-000038
(c 0.1,MeOH);IR(KBr)v max 3429,1768,1702,1079,1045cm -11H-NMR和 13C-NMR参见表2.9;ESIMS:333[M–162] +,317[M–162+Na] +;HRESIMS 517.2037([M+Na] +,理论值:C 25H 34O 10Na,517.2050)。
2,3-dehydro-16-O-β-D-glucopyranosylnagilactone F(12)
白色粉末;
Figure PCTCN2021141946-appb-000039
(c 0.1,MeOH);IR(KBr)v max 3429,1771,1600,1383,1081cm -11H-NMR和 13C-NMR参见表2.9;ESIMS:331[M-162] +,537[M+HCOOH] -,317[M–162+Na] +;HRESIMS515.1883([M+Na] +,理论值:C 25H 32O 10Na,515.1893)。
Nagilactone I(13)
白色粉末;MF:C 20H 24O 7;MW:376;ESIMS:m/z[M+H] +377.3;
1H-NMR(500MHz,CDCl 3)δ6.15(dt,J=4.5,1.9Hz,1H),5.83(d,J=1.9Hz,1H),5.23(dt,J=3.9,1.9Hz,1H),5.02(td,J=5.0,1.8Hz,1H),4.11(m,1H),3.71(s,3H,-OCH 3),3.18(qd,J=7.2,4.0Hz,1H),2.41(dd,J=13.6,9.0Hz,1H),2.21(t,J=13.3,1H),1.94(d,J=4.0Hz,1H),1.94(m,1H),1.59(dd,J=13.5,7.0Hz,1H),1.40(s,3H),1.39(d,J=6.8Hz,3H),1.27(s,3H). 13C NMR(126MHz,CDCl 3)δ180.8,172.3,163.2,158.3,132.7,121.8,112.8,79.5,71.9,64.7,52.5,45.7,42.7,42.5,40.3,36.6,36.2,28.2,23.5,12.8。
2β-hydroxynagilactone F(14)
白色粉末;MF:C 19H 24O 5;MW:332;ESIMS m/z[M+H] +333.3;
1H-NMR(400MHz,CD 3OD)δ6.34(d,J=2.5Hz,1H),5.81(t,J=2.1Hz,1H),5.21(d,J=2.7Hz,1H),5.02(m,1H),4.05(m,1H),2.41(m,1H),2.40(m,1H),2.12(m,1H),2.09(m,1H),1.82(dd,J=13.9,5.1Hz,1H),1.51(m,1H),1.39(s,3H),1.22(s,3H),1.16(d,J=6.8Hz,3H),0.95(d,J=6.8Hz,3H)。
13C NMR(126MHz,CD 3OD)δ183.6,166.6,161.2,134.6,123.8,113.0,84.8,74.0,65.1,46.4,43.9,41.2,37.5,37.2,31.3,28.5,23.5,19.9,15.5。
2β,16-dihydroxynagilactone F(15)
白色粉末;MF:C 19H 24O 6;MW:348;ESIMS m/z[M+H] +349.2;
1H-NMR(400MHz,Pyridine-d 5)δ6.53(dd,J=4.8,2.2Hz,1H),6.10(brs,1H),5.15(dd,J=3.0,1.8Hz,1H),5.09(d,J=1.8Hz,1H),4.33(m,1H),4.17(dd,J=10.7,4.3Hz,1H),3.95(dd,J=10.7,7.9Hz,1H),2.58(m,1H),2.56(m,1H),2.52(dd,J=13.6,9.1Hz),2.21(dd,J=13.7,5.1Hz),1.87(m,1H),1.83(d,J=5.1Hz,1H),1.41(d,J=6.8Hz,3H),1.39(s,3H),1.32(s,3H). 13C NMR(126MHz,Pyr)δ182.1,164.6,159.7,134.1,123.1,113.6,82.5,73.0,64.4,62.8,45.9,43.3,41.7,39.1,38.2,36.7,28.5,23.8,15.7。
1-deoxy-1,2-dehydro-3α-hyrdoxynagilactone A(16)
白色针状晶体;
Figure PCTCN2021141946-appb-000040
(c 0.1,MeOH); 1H-NMR和 13C-NMR参见表2.10-2.11;HRESIMS 347.1494[M+H] +(理论值:C 19H 23O 6,347.1489)。
1-deoxy-3α-hyrdoxynagilactone A(17)
白色粉末;
Figure PCTCN2021141946-appb-000041
(c 0.1,MeOH); 1H-NMR和 13C-NMR参见表2.10-2.11;HRESIMS 349.1642 [M+H] +(理论值:C 19H 25O 6,349.1646)。
1-deoxy-2β-hyrdoxynagilactone A(18)
白色针状晶体;
Figure PCTCN2021141946-appb-000042
(c 0.1,MeOH);melt point 298-301℃;IR(KBr)v max 3402,1759,1707,1621,1205cm -11H-NMR和 13C-NMR参见表2.10-2.11;HRESIMS 349.1652[M+H] +(理论值:C 19H 23O 6,349.1646)。
1-deoxy-2,3-dehydro-3α-O-β-D-glucopyranosylnagilactone A(19)
白色粉末;
Figure PCTCN2021141946-appb-000043
(c 0.1,MeOH);IR(KBr)v max 3424,1771,1695cm -11H-NMR和 13C-NMR参见表2.10-2.11;ESIMS 347[M–162] +and 553[M+HCOOH] -;HRESIMS 509.2004[M+H] +(理论值:C 25H 33O 11,509.2017)。
1-deoxy-3α-O-β-D-glucopyranosylnagilactone A(20)
白色粉末;
Figure PCTCN2021141946-appb-000044
(c 0.1,MeOH);IR(KBr)v max 3424,1771,1695cm -11H-NMR和 13C-NMR参见表2.10-2.11;ESIMS 349[M–162] +and 555[M+HCOOH] -;HRESIMS 511.2167[M+H] +(理论值:C 25H 35O 11,509.2174)。
1-deoxy-2β-O-β-D-glucopyranosylnagilactone A(21)
白色粉末;
Figure PCTCN2021141946-appb-000045
(c 0.1,MeOH);IR(KBr)v max 3424,1771,1695cm -11H-NMR和 13C-NMR参见表2.10-2.11;ESIMS 349[M–162] +and 555[M+HCOOH] -;HRESIMS 511.2180[M+H] +(理论值:C 25H 35O 11,511.2174)。
Sellowin C(22)
白色粉末;MF:C 19H 24O 6;MW:348;ESIMS m/z[M+H] +349.2;
1H-NMR(400MHz,Pyr)δ6.16(s,1H),5.66(d,J=8.8Hz,1H),5.21(m,1H),3.83(dd,J=11.2,6.3Hz,1H),3.51(m,1H),2.16(m,1H),2.07(m,1H),1.82(d,J=4.9Hz,1H),1.79(m,1H),1.77(s,3H),1.67(s,3H),1.42(m,1H),1.34(d,J=6.8Hz,3H),1.26(d,J=6.8Hz,3H)。
Nagilactone A(23)
白色粉末;MF:C 19H 24O 6;MW:348;ESIMS m/z[M+H] +349.2;
1H-NMR(400MHz,Pyr)δ7.40(s,1H),5.68(d,J=8.6Hz,1H),5.19(dd,J=8.6,5.9Hz,1H),4.17(t,J=6.3Hz,1H),3.53(m,1H),2.55(dt,J=13.9,6.6Hz),2.06(m,1H),2.03(s,3H),2.02(m,1H),1.84(d,J=5.9Hz,1H),1.57(m,1H),1.34(s,3H),1.33(d,J=6.8Hz,3H),1.27(d,J=6.8Hz,3H)。
1α-hydroxyurbalactone(24)
白色粉末;
Figure PCTCN2021141946-appb-000046
(c 0.1,MeOH); 1H-NMR和 13C-NMR参见表2.12;HRESIMS 381.1537[M+H] +(理论值:C 19H 25O 8,381.1544)。
1-deoxy-2β,16-dihyrdoxynagilactone A(25)
白色粉末;
Figure PCTCN2021141946-appb-000047
(c 0.1,MeOH); 1H-NMR和 13C-NMR参见表2.12;HRESIMS 365.1585[M+H] +(理论值:C 19H 25O 7,365.1595)。
1-deoxy-3β,16-dihyrdoxynagilactone A(26)
白色粉末;MF:C 19H 24O 7;MW:364;
1H-NMR(400MHz,Pyr-d 5)δ6.13(s,1H,H-11),5.96(d,J=8.9Hz,1H,H-7),5.16(dd,J=8.8,4.7Hz,1H,H-6),4.25(t,J=9.7Hz,1H,H-3),3.97(dd,J=10.2,5.4Hz,1H,H-16a),3.90(m,1H,H-15),3.77(dd,J=11.2,6.7Hz,1H,H-16b),2.11(m,1H),2.10(m,1H),1.78(s,3H,H 3-18),1.76(m,1H),1.63(d,J=4.8Hz,1H,H-5),1.60(s,3H,H 3-20),1.38(d,J=6.8Hz,3H,H 3-16),1.32(m,1H),
13C NMR(125MHz,Pyr-d 5):δ179.6(C-19),168.9(C-14),166.6(C-9),162.9(C-12),115.1(C-8),105.1(C-ll),75.0(C-6),74.2(C-3),65.5(C-16),61.6(C-7),52.6(C-5),47.0(C-4),39.1(C-15),36.8(C-10),32.4(C-l),29.4(C-2),23.1and 23.0(C-18and C-20),15.7(C-17)。
Nagilactone Z1(27)
白色粉末;
Figure PCTCN2021141946-appb-000048
(c 0.1,MeOH);IR(KBr)v max 3424,1771,1695cm -11H-NMR和 13C-NMR参见表2.12;HRESIMS 361.1299[M-H] -(理论值:C 19H 21O 7,361.1293)。
Nagilactone Z2(28)
白色针状晶体;
Figure PCTCN2021141946-appb-000049
(c 0.1,MeOH);melt point 290-291℃;IR(KBr)v max 3518,1773, 1712,1632,1203cm -11H-NMR和 13C-NMR参见表2.13;HRESIMS 331.1167[M+H] +(理论值:C 19H 19O 6,331.1176)。
3-epi-nagilactone D(29)
白色粉末;
Figure PCTCN2021141946-appb-000050
(c 0.1,MeOH);IR(KBr)v max 3424,1771,1695cm -1  1H-NMR和 13C-NMR参见表2.13;HRESIMS 333.1333[M+H] +(理论值:C 18H 21O 6,333.1333)。
Nagilactone D(30)
白色粉末;MF:C 18H 20O 6;MW:332;ESIMS m/z[M+H] +333.3;
1H-NMR(400MHz,Pyridine-d 5)δ6.70(s,1H),5.25(m,1H),4.70(m,1H),3.76(d,J=4.3Hz,1H),3.58(dd,J=5.8,4.2Hz,1H),3.45(m,1H),2.77(m,1H),2.47(m,2H),1.91(d,J=6.1Hz,1H),1.57(s,3H),1.46(s,3H),1.11(d,J=7.5Hz,3H)。
13C NMR(126MHz,Pyr-d5)δ178.2,164.9,163.7,162.9,107.8,107.5,73.2,68.1,57.8,52.2,50.9,50.2,38.7,26.6,26.2,25.1,18.2,12.2。
3β-hydroxy-7-deoxy-17-nor-nagilactone(31)
白色粉末;MF:C 18H 22O 7;MW:350;ESIMS m/z[M+Na] +373.3;
1H-NMR(400MHz,Pyridine-d 5)δ7.39(s,1H),5.16(dd,J=9.9,4.9Hz,1H),4.36(m,1H),4.05(m,1H),4.03(m,1H),3.30(dd,J=17.0,10.1Hz,1H),2.95(dd,J=17.0,4.9Hz,1H),2.45(m,2H),1.89(d,J=4.9Hz,1H),1.75(s,3H),1.56(s,3H),1.10(t,J=7.5Hz,3H). 13C NMR(126MHz,Pyr)δ179.1,164.4,163.3,163.0,108.6,108.4,79.2,75.5,75.3,74.4,50.6,46.3,43.2,26.2,25.1,23.7,15.6,12.2。
3-deoxy-nagilactone C(32)
白色粉末;MF:C 19H 24O 6;MW:348;ESIMS m/z[M+H] +349.2;
1H-NMR(400MHz,Pyridine-d 5)δ6.18(s,1H),5.64(d,J=8.8Hz,1H),5.10(dd,J=8.7,5.7Hz,1H),3.45(m,1H),3.43(m,1H),3.33(d,J=3.7Hz,1H),2.37(dd,J=14.5,2.4Hz,1H),1.94(s,3H),1.77(m,1H),1.75(d,J=5.7Hz,1H),1.51(s,3H),1.32(d,J=6.8Hz,3H),1.23(d,J=6.8Hz,3H). 13C NMR(126MHz,Pyr)δ178.6,170.9,166.5,162.6,111.8,105.6,75.8,60.7,53.5,52.8,49.8,44.8,36.3,33.6,30.1,25.3,22.4,21.2,20.5。
Nagilactone C(33)
白色粉末;MF:C 19H 22O 7;MW:362;ESIMS m/z[M+H] +363.3;
1H-NMR(400MHz,Pyridine-d 5)δ6.71(s,1H),5.69(d,J=8.3Hz,1H),5.08(dd,J=8.0,6.5Hz,1H),4.76(d,J=6.2Hz,1H),3.75(d,J=4.3Hz,1H),3.59(dd,J=6.2,4.5Hz,1H),3.50(m,1H),2.14(d,J=6.7Hz,1H),2.14(s,3H),1.52(s,3H),1.34(d,J=6.8Hz,3H),1.25(d,J=6.8Hz,3H)。
Nagilactone B(34)
白色粉末;MF:C 19H 24O 7;MW:364;ESIMS m/z[M+H] +365.3;
1H-NMR(400MHz,Pyridine-d 5)δ7.04(s,1H),5.66(d,J=8.7Hz,1H),5.18(m,1H),4.33(m,1H),4.32(m,1H),3.50(m,1H),2.76(d,J=12.5Hz,1H),2.13(d,J=17.1Hz,1H),2.03(s,3H),1.92(d,J=6.8Hz,1H),1.48(s,3H),1.33(d,J=6.8Hz,3H),1.27(d,J=6.8Hz,3H)。
3β-hydroxy-nagilactone A(35)
白色粉末;MF:C 19H 24O 7;MW:364;ESIMS m/z[M+H] +365.3;
1H-NMR(400MHz,Pyridine-d 5)δ7.51(s,1H),5.73(d,J=8.9Hz,1H),5.34(m,1H),4.20(dd,J=10.7,5.2Hz,1H),4.07(m,1H),3.53(m,1H),2.69(ddd,J=13.3,6.1,4.4Hz,1H),2.52(m,1H),2.16(s,3H),1.94(d,J=5.0Hz,1H),1.73(s,3H),1.34(d,J=6.8Hz,3H),1.28(d,J=6.8Hz,3H)。
Urbalactone A(36)
白色粉末;MF:C 19H 24O 7;MW:364;ESIMS m/z[M+H] +365.3;
1H-NMR(400MHz,Pyridine-d 5)δ7.26(s,1H),5.71(d,J=9.0Hz,1H),5.24(m,1H),5.22(m,1H),4.52(m,1H),3.53(m,1H),2.58(m,1H),2.43(m,1H),2.09(s,3H),2.08(d,J=5.0Hz,1H),1.70(s,3H),1.33(d,J=6.8Hz,3H),1.29(d,J=6.8Hz,3H)。
1,7-deoxy-2β-nagilactone A(37)
白色粉末;
Figure PCTCN2021141946-appb-000051
(c 0.1,MeOH);IR(KBr)v max 3424,1771,1695cm -11H-NMR和 13C NMR参见表2.13;ESIMS;HRESIMS 333.1333[M+H] +(理论值:C 18H 21O 6,333.1333)。
1O,2O-isopropylidene-nagilactone B(38)
白色粉末;MF:C 22H 28O 7;MW:404;ESIMS m/z[M+H] +405.3;
1H-NMR(400MHz,Pyridine-d 5)δ6.81(s,1H),5.66(d,J=7.9Hz,1H),5.16(m,1H),4.53(m,1H),4.24(m,1H),3.46(m,1H),2.42(m,1H),2.36(m 1H),1.90(d,J=7.3Hz,1H),1.52and 1.36(s,6H,H-isopropyl),1.46(s,3H),1.27(d,J=6.8Hz,3H),1.34(d,J=6.8Hz,3H). 13C NMR(126MHz,Pyr)δ182.0,170.4,165.6,162.9,111.9,109.7,108.6,79.7,75.4,73.1,60.6,48.9,42.5,41.7,34.8,30.1,26.8,25.3,24.4,21.2,20.7,18.8。
表2.6  1H-NMR数据,化合物1-3,5(500MHz,δin ppm,J in Hz)
Figure PCTCN2021141946-appb-000052
a氘代吡啶中. b氘代甲醇中
表2.7  13C NMR数据(δin ppm),化合物1-8(125MHz)
Figure PCTCN2021141946-appb-000053
a氘代吡啶中. b氘代甲醇中.
表2.8  1H-NMR数据,化合物6-7,9-10(500MHz,δin ppm,J in Hz)
Figure PCTCN2021141946-appb-000054
a氘代吡啶中. b氘代甲醇中.
表2.9  1H-和 13C-NMR数据(500and 125MHz,resp.δin ppm),化合物11-12in MeOD.
Figure PCTCN2021141946-appb-000055
表2.10  1H-NMR数据(500MHz,δin ppm),化合物16-21.
Figure PCTCN2021141946-appb-000056
a氘代吡啶中. b氘代甲醇中
表2.11. 1H-和 13C-NMR数据(500and 125MHz,resp.δin ppm),化合物16-21.
Figure PCTCN2021141946-appb-000057
a氘代吡啶中. b氘代甲醇中.
表2.12  1H-和 13C-NMR数据(500and 125MHz,resp.δin ppm),化合物24-25,27in C 5D 5N.
Figure PCTCN2021141946-appb-000058
表2.13  1H-和 13C-NMR data(500and 125MHz,resp.δin ppm),化合物28-29,37in C 5D 5N.
Figure PCTCN2021141946-appb-000059
实施例2 化合物抗多发性骨髓瘤机理研究
实施例2.1单体化合物体外抑制多发性骨髓瘤细胞活性评价及作用机制研究
a.细胞培养:人骨髓瘤细胞系RPMI8226细胞、以及MM1S细胞培养于含体积分数为100ml/L灭活新生牛血清的RPMI1640培养液中,置50ml/L CO 2饱和湿度、37℃培养箱中悬浮培养,2~3d换液1次,实验用细胞处于对数生长期。
b.单体化合物对细胞增殖的影响:针对上述化合物1~38,进行细胞增值抑制试验。采用MTS法检测。将生长在对数生长期的细胞,轻轻吹打,计数,以相应的细胞密度接种在96孔板中100ul,加化合物,每一化合物设浓度梯度,每一浓度设三复孔,每一浓度分别加入到对应孔中,5%CO 2 37℃培养箱内培养72小时,加入20ul的MTS。37℃孵育2小时后,使用SpectraMAX 340测490nm(L1)光吸收值,参考波长690nm(L2),将(L1-L2)值对抑制剂不同浓度作图,经公式拟合得IC 50。阳性对照采用伏立诺他,结果汇总在下表1中。
实施例2.2单体化合物体外抑制XBP-1剪切活性评价
骨髓瘤细胞处于B细胞向成熟浆细胞的分化中间阶段,是一种尚没有分化完全的浆细胞。研究表明,XBP-1在浆细胞分化过程中起重要作用(Nature,2001,412,300-307;Nat Immunol 2003,4,321-329.)。肌醇需求酶1α(inositol-requiring enzyme 1α,IRE1α)使XBP1剪切为有转录活性的XBP1s,为骨髓瘤细胞的生长和生存提供了关键信号。因此抑制XBP1的剪切,同样能够抑制骨髓瘤细胞的生长。
XBP-1剪切抑制活性筛选方法如文献(中国生物工程杂志,2012,32(1),73-80.)一致。a:质粒构建:通过BamHⅠ和BglⅡ双酶切pCAX-F-XBP1ΔDBDvenus质粒,胶回收大片段,同时BamHⅠ和BglⅡ双酶切luciferase基因,T4DNA连接酶连接,转化JM109感受态细胞,37℃培养过夜,菌落PCR(引物序列:GGCAGATCTGAAGACGCCAAAAAC;TGCGGATCCTTACACGGC GATCTTTC)与测序验证[生工生物工程(上海)有限公司]。b:细胞培养:人胚肾细胞系HEK293、使用含10%胎牛血清、100kU/L青霉素和100mg/L链霉素的高糖DMEM培养基,人肺癌细胞系A549使用含10%胎牛血清、100kU/L青霉素和100mg/L链霉素的F12培养基,置于37℃,5%CO2培养箱培养。其中人胚肾细胞系HEK293培养至至密度90%左右传代。HEK293-XBP1ΔDBD-luc稳定表达细胞系培养条件同HEK293,接于96孔板和384孔板的细胞量分别为5000个/50μl/孔和2000个/25μl/孔。c:EK293-XBP1△DBD-luc稳定表达细胞株建立:用Lipofectamine2000将pCAX-F-XBP1ΔDBD-luc质粒与pcDNA3.1质粒按10:1比例共转入HEK293细胞,24h后以1:100比例接种到100mm培养皿中培养,贴壁后用800μg/ml G418进行抗性筛选,2~3周后获得多个单克隆,转24孔板扩增。待24孔板中的细胞密度长到90%,将各个单克隆接于96孔板,读取荧光信号值。对有荧光信号的克隆继续扩增培养,接于96孔板,培养过夜,用内质网应激诱导剂TM(0.1μg/ml、0.5μg/ml和1μg/ml)处理8h,确定荧光信号激活倍数。综合考虑绝对荧光信号值与激活倍数,确定最终用于高通量筛选的单克隆细胞株,并对该克隆进行扩增和冻存。d:化合物库筛选:HEK293-XBP1ΔDBD-luc稳定表达细胞株接种于96或384孔板,对细胞接种量、DMSO浓度以及TM作用浓度与时间等因素进行优化。条件优化后对小分子化合物进行筛选:用Biomek FX接种细胞到96孔板,培养过夜。Biomek FX加TM和待测试化合物。化合物叠加处理8h后,按照体积比1:1加入Steady-Glo Luciferase Assay System,Envision读取荧光信号值将(L1-L2)值对抑制剂不同浓度作图,经公式拟合得IC 50。结果汇总在下表2中。
表1 天然竹柏内酯化合物对多发性骨髓瘤细胞RPMI-8826和MMIS细胞的抑制作用
Figure PCTCN2021141946-appb-000060
Figure PCTCN2021141946-appb-000061
实施例3 化合物18的活性化合物小鼠体内药效筛选
3.1人骨髓瘤细胞MM1S皮下移植瘤小鼠模型
a.实验动物:Non-SCID小鼠,雌性,5-6周龄,体重20±3g,购自上海灵畅生物科技有限公司,生产合格证编号:SCXK(沪)2013-0018。动物饲养于屏障系统SPF级动物房中,实验室温度24±2℃;相对湿度60%~80%;每小时空气交换次数:10-15次/小时;光照周期:12(日)/12(夜)小时。
b.细胞株:人骨髓瘤MM1S细胞株保存于中科院上海药物研究所国家新药筛选中心。用该细胞株接种SCID小鼠右侧腋窝皮下,细胞接种量为1×10 7/只,形成移植瘤后即可开始实验。
c.试验方法及评价标准:SCID小鼠皮下移植瘤用游标卡尺测量移植瘤直径,待肿瘤生长至100-300mm 3后将动物随机分3组。溶剂对照组(vehicle)则给等量空白溶剂,给药组分别以腹腔注射的方式给药15mg/kg和30mg/kg,每日给药1次,连续给药2周。整个实验过程中,每周2次测量移植瘤直径,同时称量小鼠体重。
肿瘤体积(tumor volume,TV)的计算公式为:TV=1/2×a×b 2,其中a、b分别表示长、宽。根据测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为:RTV=V t/V 0。其中V 0为分笼给药时(即d 0)测量所得肿瘤体积,V t为每一次测量时的肿瘤体积。抗肿瘤活性的评价指标为1)相对肿瘤增殖率T/C(%),计算公式如下:T/C(%)=(T RTV/C RTV)×100%,T RTV:治疗组RTV;C RTV:阴性对照组RTV;2)肿瘤体积增长抑制率GI%,计算公式如下:GI%=[1-(TVt-TV 0)/(CVt-CT 0)]×100%,TVt为治疗组每次测量的瘤体积;TV 0为治疗组分笼给药时所得瘤体积;CVt为对照组每次测量的瘤体积;CV 0为对照组分笼给药时所得瘤体积;3)瘤重抑制率,计算公式如下:瘤重抑制率%=(Wc-W T)/Wc×100%,Wc:对照组瘤重,W T:治疗组瘤重。
d.数据分析:每组至少6只动物,应用GraphPad软件进行统计分析。实验数据以平均值和标准差表示,统计方法采用t-检验。
试验结果表明,化合物18在15mg/kg腹腔注射对人骨髓瘤MM.1S SCID小鼠移植瘤无效,T/C%为67.42;30mg/kg腹腔注射对人骨髓瘤MM1S SCID小鼠移植瘤有效,T/C%为12.85,相对肿瘤体积与溶剂对照比较,有显著性差异(P<0.05)。
处死小鼠,剖取瘤块称重,化合物18在15mg/kg剂量下腹腔注射对人骨髓瘤MM1S SCID小鼠移植瘤抑瘤率%为23.61;化合物18在30mg/kg剂量下腹腔注射对人骨髓瘤MM1S SCID小鼠移植瘤抑瘤率%为61.72,相对肿瘤重量与溶剂对照比较,有显著性差异(P<0.01)。
结果参见图1。
3.2人骨髓瘤细胞RPMI 8226皮下移植瘤小鼠模型
a.实验动物:NOD/SCID小鼠,雌性,5-6周龄,体重20±3g,由北京维通利华实验动物技术有限公司提供,生产合格证编号:SCXK(京)2012-0001。每组动物数:6只。IACUC号:2013-0007(南模)
b.细胞株:人骨髓瘤RPMI 8226细胞株由中科院上海药物研究所国家新药筛选中心保存。用该细胞株接种NOD/SCID小鼠右侧腋窝皮下,细胞接种量为1×10 7/只,形成移植瘤后即可开始实验。
c.试验方法及评价标准:受试验为上述化合物18,溶剂为2%DMSO,1%tween 80,0.5%MC。NOD/SCID小鼠皮下移植瘤用游标卡尺测量移植瘤直径,待肿瘤生长至100-300mm 3后将动物随机分2组。溶剂对照组(vehicle)给等量空白溶剂,给药组分别以腹腔注射的方式给药20mg/kg。整个实验过程中,每周2次测量移植瘤直径,同时称量小鼠体重。肿瘤体积(tumor volume,TV)的计算公式为:TV=1/2×a×b 2,其中a、b分别表示长、宽。根据测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为:RTV=V t/V 0。其中V 0为分笼给药时(即d 0) 测量所得肿瘤体积,V t为每一次测量时的肿瘤体积。抗肿瘤活性的评价指标为1)相对肿瘤增殖率T/C(%),计算公式如下:T/C(%)=(T RTV/C RTV)×100%,T RTV:治疗组RTV;C RTV:阴性对照组RTV;2)肿瘤体积增长抑制率GI%,计算公式如下:GI%=[1-(TVt-TV 0)/(CVt-CT 0)]×100%,TVt为治疗组每次测量的瘤体积;TV 0为治疗组分笼给药时所得瘤体积;CVt为对照组每次测量的瘤体积;CV 0为对照组分笼给药时所得瘤体积;3)瘤重抑制率,计算公式如下:瘤重抑制率%=(Wc-W T)/Wc×100%,Wc:对照组瘤重,W T:治疗组瘤重。
d.数据分析:化合物18 20mg/kg死亡1只,解剖后无异常发现,可能为给药不当造成的死亡。样品的药效:化合物18 20mg/kg对人骨髓瘤RPMI 8226NOD/SCID小鼠移植瘤T/C%为43.75,相对肿瘤体积与vehicle对照比较,有显著性差异(P<0.01)。处死小鼠,剖取瘤块称重,化合物18的20mg/kg对人骨髓瘤RPMI 8226NOD/SCID小鼠移植瘤抑瘤率%为31.29。
结果参见图2。
实施例4 化合物4、18和23的结构修饰试验
选取上述中活性优异,且具有代表性的化合物4、18和23,进行结构修饰,获得具有通式18B、23B结构的化合物,化合具体结构汇总在表2和表3中。
Figure PCTCN2021141946-appb-000062
表2
化合物编号 R c取代基 R d取代基 ESI-MS m/z[M+H] +
18-B1 A1 H 391.2
18-B2 A2 H 405.3
18-B3 A3 H 419.3
18-B4 A4 H 419.3
18-B5 A5 H 447.4
18-B6 A6 H 503.4
18-B7 A1 A1 433.2
18-B8 A5 A5 545.4
18-B9 C1 H 417.2
18-B10 C3 H 445.3
18-B11 C4 H 459.3
18-B12 C5 H 487.4
18-B13 C1 C1 485.3
18-B14 C2 C2 513.3
18-B15 D1 H 449.3
18-B16 D3 H 463.3
18-B17 D2 H 477.4
18-B18 D2 D2 605.5
18-B19 H1 H 443.3
18-B20 H2 H 459.3
18-B21 H3 H 488.3
18-B22 H4 H 509.3
18-B23 H5 H 471.3
18-B24 H6 H 550.3
18-B25 P1 H 453.3
18-B26 P2 H 509.3
18-B27 P3 H 513.3
18-B28 P4 H 479.3
18-B29 P5 H 481.3
18-B30 P1 P1 557.3
18-B31 P6 H 488.3
18-B32 P7 H 471.3
18-B33 P8 H 488.3
18-B34 P9 H 532.3
18-B35 P11 H 532.3
18-B36 P10 H 488.3
18-B37 P6 P6 666.3
18-B38 V1 H 417.3
18-B39 V2 V2 485.3
18-B40 A7 H 467.3
18-B41 H A1 391.2
18-B42 H A2 419.3
18-B43 H A3 419.3
18-B44 H P11 531.3
23-B1 A1 H 391.2
23-B2 A1 A1 433.2
23-B3 A2 H 405.2
23-B4 A2 A2 461.2
具有通式18B和23B结构的化合物的合成方法如下:
合成例1:18-B1的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶(1ml),加入乙酰氯(0.004ml,1.5eq.),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B1(6mg,27%)。
18-B1:ESIMS m/z:391.2[M+H] +,435.2[M+HCOO] -.
合成例2:18-B2的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加丙酰氯(0.008ml,2.6eq.),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B2(5mg,22%)。
18-B2:ESIMS m/z:405.3[M+H] +,449.1[M+HCOO] -.
合成例3:18-B3的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入异丁酰氯(0.008ml,2.2N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B3(12mg,50%)。
18-B3:ESIMS m/z:419.3[M+H] +,463.3[M+HCOO] -.
合成例4:18-B4的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入正丁酰(0.008ml,2.2N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B4(8mg,34%)。
18-B4:ESIMS m/z:419.3[M+H] +,463.3[M+HCOO] -.
合成例5:18-B5的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入正己酰氯(0.012ml,1.5N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B5(18mg,71%)。
18-B5:ESIMS m/z:447.4[M+H] +,491.2[M+HCOO] -.
合成例6:18-B6的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入葵酰氯(0.012ml,1.1N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B6(8mg,28%)。
18-B6:ESIMS m/z:503.4[M+H] +,547.3[M+HCOO] -.
合成例7:18-B7的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入乙酰氯(0.008ml,3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B7(13mg,53%)。
18-B7:ESIMS m/z:433.2[M+H] +,477.2[M+HCOO] -.
合成例8:18-B8的合成
取化合物18(10mg,0.029mmol)溶于无水吡啶1ml,加入正己酰氯(0.06ml,1.5N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B8(8mg,51%)。
18-B8:ESIMS m/z:545.4[M+H] +,590.1[M+HCOO] -.
合成例9:18-B9的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入环丙基甲酰氯(0.008ml,1.5N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B9(12mg,51%)。18-B9:ESIMS m/z:417.2[M+H] +,461.2[M+HCOO] -.
合成例10:18-B10的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入环戊甲酰氯(0.008ml,1.2N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B10(10mg,40%)。18-B10:ESIMS m/z:445.3[M+H] +,489.2[M+HCOO] -.
合成例11:18-B11的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入环己甲酰氯(0.008ml,1.2N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B11(10mg,40%)。18-B11:ESIMS m/z:459.3[M+H] +,503.3[M+HCOO] -.
合成例12:18-B12的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入3-环己基丙酰氯(0.008ml,1.2N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B12(8mg,29%)。18-B12:ESIMS m/z:487.4[M+H] +,531.3[M+CH 3COO] -.
合成例13:18-B13的合成
取化合物18(10mg,0.029mmol)溶于无水吡啶1ml,加入环丙基甲酰氯(0.008ml,3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B13(7mg,50%)。18-B13:ESIMS m/z:485.3[M+H] +,529.3[M+HCOO] -.
合成例14:18-B14的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入环丁基甲酸(0.008ml,1.5N),室温搅拌,加入DCC(50mg,4.6N),反应过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B14(17mg,58%)。18-B14:ESIMS m/z:513.3[M+H] +,557.2[M+HCOO] -.
合成例15:18-B15的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入丁二酸酐(20mg,3.5N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B15(10mg,39%)。
18-B15:ESIMS m/z:449.3[M+H] +,447.2[M+HCOO] -.
合成例16:18-B16的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入戊二酸酐(20mg,3.1N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B16(7mg,27%)。
18-B16:ESIMS m/z:463.3[M+H] +,461.2[M+HCOO] -.
合成例17:18-B17的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入琥珀酸单乙酯酰氯(0.012ml,1.5N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B17(10mg,37%)。18-B17:MF:C 25H 32O 9.MW:476.ESIMS m/z:477.4[M+H] +,521.3[M+HCOO] -.
合成例18:18-B18的合成
取化合物18(10mg,0.029mmol)溶于无水吡啶1ml,加入琥珀酸单乙酯酰氯(0.012ml,3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B18(17mg,97%)。18-B18:ESIMS m/z:605.5[M+H] +,649.4[M+HCOO] -.
合成例19:18-B19的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入2-呋喃甲酰氯(0.010ml,1.8N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B19(12mg,48%)。18-B19:ESIMS m/z:443.3[M+H] +,487.2[M+CH 3COO] -.
合成例20:18-B20的合成
取化合物20(20mg,0.057mmol)溶于无水吡啶1ml,加入2-噻吩甲酰氯(0.010ml,1.6N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B20(10mg,38%)。18-B20:ESIMS m/z:459.3[M+H] +,503.2[M+HCOO] -.
合成例21:18-B21的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入2-氯烟酰氯(12mg,1.2N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B21(14mg,55%)。
18-B21:ESIMS m/z:488.2[M+H] +,532.2[M+HCOO] -.
合成例22:18-B22的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入1-苯并噻吩-3-羰酰氯(12mg,1.1N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B22(13mg,45%)。18-B22:ESIMS m/z:509.3[M+H] +,553.2[M+HCOO] -.
合成例23:18-B23的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入1,5-二甲基-1H-吡唑-3-羰酰氯(10mg,1.1N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B23(9mg,34%)。18-B23:ESIMS m/z:471.3[M+H] +,515.2[M+HCOO] -.
合成例24:18-B24的合成
取化合物B(20mg,0.057mmol)溶于无水吡啶(1ml),加入18-甲基-2-苯基-1,3-噻唑-5-碳酰氯(15mg,1.2N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B24(10mg,35%)。18-B24:ESIMS m/z:550.3[M+H] +,594.2[M+HCOO] -.
合成例25:18-B25的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入苯甲酰氯(0.010ml,1.5N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B25(13mg,51%)。18-B25:ESIMS m/z:453.3[M+H] +,497.2[M+HCOO] -.
合成例26:18-B26的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入18-叔丁基苯甲酰氯(0.015ml,1.3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B26(14mg,48%)。18-B26:ESIMS m/z:509.3[M+H] +,553.2[M+HCOO] -.
合成例27:18-B27的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入18-叔丁基苯甲酰氯(15mg,1.3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化, 得到白色固体粉末18-B27(11mg,38%)。18-B27:ESIMS m/z:513.3[M+H] +,557.2[M+HCOO] -.
合成例28:18-B28的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入反式肉桂酰氯(10mg,1.1N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B28(10mg,37%)。18-B28:ESIMS m/z:479.3[M+H] +,523.2[M+HCOO] -.
合成例29:18-B29的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入3-苯基丙酰氯(0.015ml,1.3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B29(12mg,44%)。18-B29:ESIMS m/z:481.3[M+H] +,525.2[M+HCOO] -.
合成例30:18-B30的合成
取化合物18(10mg,0.029mmol)溶于无水吡啶1ml,加入苯甲酰氯(0.005ml,1.5N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B30(7mg,51%)。
18-B30:ESIMS m/z:557.3[M+H] +,601.2[M+HCOO] -.
合成例31:18-B31的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入2-氯苯甲酰氯(0.010ml,1.4N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B31(11mg,40%)。18-B31:ESIMS m/z:488.3[M+H] +,532.2[M+HCOO] -.
合成例32:18-B32的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入2-氟苯甲酰氯(0.010ml,1.6N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B32(10mg,40%)。18-B32:ESIMS m/z:471.3[M+H] +,515.2[M+HCOO] -.
合成例33:18-B33的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入3-氯苯甲酰氯(0.010ml,1.4N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末B33(11mg,40%)。18-B33:ESIMS m/z:488.3[M+H] +,532.2[M+HCOO] -.
合成例34:18-B34的合成
取化合物18(20mg,0.057mmo)溶于无水吡啶1ml,加入3-溴苯甲酰氯(0.010ml,1.3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B34(11mg,36%)。18-B34:ESIMS m/z:532.3[M+H] +,576.2[M+HCOO] -.
合成例35:18-B35的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入18-溴苯甲酰氯(15mg,1.2N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B35(11mg,36%)。18-B35:ESIMS m/z:532.3[M+H] +,576.2[M+HCOO] -.
合成例36:18-B36的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入18-氯苯甲酰氯(0.010ml,1.4N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B36(11mg,40%)。18-B36:ESIMS m/z:488.3[M+H] +,532.2[M+HCOO] -.
合成例37:18-B37的合成
取化合物18(10mg,0.029mmol)溶于无水吡啶1ml,加入2-氯苯甲酰氯(0.005ml,1.4N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得 到白色固体粉末18-B37(8mg,44%)。18-B37:ESIMS m/z:666.3[M+H] +,670.2[M+HCOO] -.
合成例38:18-B38的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入2-甲基丙烯酰氯(0.010ml,1.8N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B38(10mg,42%)。18-B38:ESIMS m/z:417.3[M+H] +,461.2[M+HCOO] -.
合成例39:18-B39的合成
取化合物18(10mg,0.029mmol)溶于无水吡啶1ml,加入巴豆酰氯(10mg,3.3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B39(12mg,86%)。
18-B39:ESIMS m/z:485.3[M+H] +,529.2[M+HCOO] -.
合成例40:18-B40的合成
取化合物18(20mg,0.057mmol)溶于无水吡啶1ml,加入巴豆酰氯(0.010ml,1.3N),室温搅拌过夜,TLC检测确认反应结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以制备HPLC纯化,得到白色固体粉末18-B40(8mg,30%)。
18-B40:ESIMS m/z:467.3[M+H] +,511.2[M+HCOO] -.
合成例41:18-B41的合成
取化合物18(300mg,0.86mmol)溶于无水吡啶2ml,加入芴甲氧羰酰氯(300mg,1.4N),室温搅拌过夜,反应结束后,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以Sephadex LH-20纯化(氯仿/甲醇=1/1(V/V)),得到黄色固体粉末18-MOC(205mg,42%)。
取化合物18-MOC(20mg,0.035mmol)溶于无水吡啶1ml,加入乙酰氯(0.008ml,3.0N),室温搅拌过夜,反应结束后,减压蒸馏去除大部分吡啶,得到的残余物溶于二氯甲烷,加入二乙胺(0.1ml),室温反应0.5h,减压蒸馏去除溶剂,得到残余物以Sephadex LH-20纯化(氯仿/甲醇=1/1(V/V)),得到黄色固体粉末18-B41(10mg,73%)。18-B41:ESIMS m/z:391.2[M+H] +,435.2[M+HCOO] -.
合成例42:18-B42的合成
取化合物18-MOC(20mg,0.035mmol)溶于无水吡啶1ml,加入异丁酰氯(0.008ml,2.2N),室温搅拌过夜,反应结束后,减压蒸馏去除大部分吡啶,得到的残余物溶于二氯甲烷,加入二乙胺(0.1ml),室温反应0.5h,减压蒸馏去除溶剂,得到残余物以Sephadex LH-20纯化(氯仿/甲醇=1/1(V/V)),得到黄色固体粉末18-B42(10mg,68%)。18-B42:ESIMS m/z:419.3[M+H] +,463.3[M+HCOO] -.
合成例43:18-B43的合成
取化合物18-MOC(20mg,0.035mmol)溶于无水吡啶1ml,加入正丁酰氯(0.008ml,2.2N),室温搅拌过夜,反应结束后,减压蒸馏去除大部分吡啶,得到的残余物溶于二氯甲烷,加入二乙胺0.1ml,室温反应0.5h,减压蒸馏去除溶剂,得到残余物以Sephadex LH-20纯化(氯仿/甲醇1:1),得到黄色固体粉末18-B43(6mg,41%)。18-B43:ESIMS m/z:419.3[M+H] +,463.3[M+HCOO] -.
合成例44:18-B44的合成
取化合物18-MOC(20mg,0.035mmol)溶于无水吡啶1ml,加入对溴苯甲酰氯(12mg,1.5N),室温搅拌过夜,反应结束后,减压蒸馏去除大部分吡啶,得到的残余物溶于二氯甲烷,加入二乙胺0.1ml,室温反应0.5h,减压蒸馏去除溶剂,得到残余物以Sephadex LH-20纯化(氯仿/甲醇1:1),得到黄色固体粉末18-B44(18mg,97%)。
18-B44:ESIMS m/z:531.3,533.2,[M+H] +,575.2,577.1[M+HCOO] -.
合成例45:4-1的合成
取化合物4(75mg,0.22mmol),加入干燥二氯甲烷15ml和3A分子筛,室温搅拌,加入PCC(150mg,3N),TLC监测反应,7h后将溶液中的不溶物过滤,滤液浓缩,经硅胶柱层析纯化后得白色固体4-1(61mg,81%).ESIMS m/z:347.1[M+H]+,369.1[M+Na]+345.1[M+H]+,HRESIMS m/z:369.1319[M+Na]+(理论值:C19H22O6Na,369.1314),1H NMR(300MHz,CDCl3):δ6.11(s,1H,H-11),4.89(d,J=4.4Hz,1H,H-7),4.48(d,J=3.4Hz,1H),4.03(s), 2.70(m,2H),2.42(d,J=4.5Hz,1H),2.11(m,3H),2.12(m,1H),1.54(s,3H),1.14(m,9H),0.90(s,1H).
合成例46:23-B1、23-B2的合成
取化合物23(70mg,0.2mmol)溶于无水吡啶(5ml),加入过量的醋酸酐(0.04ml,2N),室温搅拌过夜,TLC检测反应确认结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以P-TLC纯化(氯仿/甲醇=50/1(V/V))得到白色固体粉末23-B1(20mg,26%)和23-B2(41mg,47%)。以下是两个化合物的理化数据:
23-B1:MF:C21H26O7.MW:390.ESIMS m/z:391.2[M+H] +,389.1[M-H] -.
23-B2:MF:C23H28O8.MW:432.ESIMS m/z:433.2[M+H] +,455.2[M+Na] +.
合成例47:23-B3和B4的合成
取化合物23(22mg,0.06mmol)溶于无水吡啶(5ml),加入过量的丙酸酐(0.02ml,2N),油浴加热40℃,恒温搅拌,TLC检测反应确认结束,反应液中加入2N稀盐酸用于中和吡啶,加入乙酸乙酯萃取,有机层以饱和NaCl、纯水洗涤,无水硫酸钠干燥,过滤,浓缩。残余物以P-TLC纯化(氯仿/甲醇=50/1(V/V))得到白色固体粉末98(8mg,28%)和104(16mg,63%)。
23-B3:MF:C22H28O7.ESIMS m/z:405.1[M+H] +,427.1[M+Na] +,HRESIMS m/z:427.1707[M+Na]+(理论值:C22H28O7Na,427.1733)。
23-B4:MF:C25H32O8.ESIMS m/z:461.2[M+H]+,943.4[2M+Na]+,HRESIMS m/z:483.2004[M+Na]+(理论值:C25H32O8Na,483.1995)。
实施例5 实施例4合成的18B系列化合物对多发性骨髓瘤细胞RPMI-8826的抑制活性试验
基于与实施例2.1中同样的方法,对实施例4合成的化合物进行多发性骨髓瘤细胞RPMI-8826的抑制作用活性测试,结果汇总在表3中。
表3中示出基于18-B系列化合物的一些列化合物的相应活性。
表3 各化合物对RPMI-8826细胞的抑制作用
Figure PCTCN2021141946-appb-000063
Figure PCTCN2021141946-appb-000064
实施例6 实施例4合成的18B、23B系列化合物对XBP1剪切抑制活性试验
基于与实施例2.2中同样的方法,对实施例4合成的部分化合物进行XBP-1剪切抑制作用活性测试,结果汇总在表4中。
表4:天然和合成的竹柏内酯化合物对XBP-1剪切抑制活性
Figure PCTCN2021141946-appb-000065
综上所述,本发明的化合物在体外细胞筛选和利用小鼠的体内实验中,均显示了明显的多发性骨髓瘤抑制效果,因此在抗肿瘤方面,具有极高的临床应用价值和新药开发潜力。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (11)

  1. 具有式I所示的结构的化合物,或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,以及药学上可接受的载体,
    Figure PCTCN2021141946-appb-100001
    式I中,
    Figure PCTCN2021141946-appb-100002
    为双键或单键,其中的两个
    Figure PCTCN2021141946-appb-100003
    不同时为双键,当其中的一个为双键时,R 8不存在,
    A选自下组:N-R、O;其中,R选自下组:H、C 1-C 4的酰基、C 1-C 4的烷基、C 1-C 4的卤代烷基、取代或未取代的C 6-C 10芳基、取代或未取代的C 1-C 10杂芳基;
    R 1选自下组:H、取代或未取代的C 1-C 4的烷基、C 1-C 4的卤代烷基、取代或未取代的C 1-C 4烷基(如2-羟基乙基,2-羟甲基乙基)、取代或未取代的乙烯基;
    R 2选自下组:H、氧原子、-OR,其中,所述的R选自下组:H、取代或未取代的C 2-C 10的脂肪族酰基、取代或未取代的C 5-C 20的芳香族酰基、或取代或未取代的C 1-C 10烷基;
    R 3选自下组:H、卤素、C 1-C 4的烷基、C 1-C 4的卤代烷基、-OH、取代或未取代的C 2-C 10的酯基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、取代或未取代的C 1-C 4的烷基;
    R 4选自下组:H、卤素、氧原子、氰基、羟基、羧基、C 1-C 4的烷氧基、C 1-C 4的烷基、C 1-C 4的卤代烷基、取代或未取代的C 2-C 10的酯基、-OC(O)-R、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、取代或未取代的C 1-C 4的烷基;
    R 5选自下组:H、卤素、氰基、羟基、-OR、-COOR、取代或未取代C 1-C 10烷基、取代或未取代的C 1-C 10卤代烷基、取代或未取代的C 2-C 30的酯基、取代或未取代(优选为取代)的C 7-C 11芳香基-酰基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、取代或未取代的C 1-C 4的烷基;
    R 6选自下组:H、卤素、氧原子、氰基、羧基、羟基、-OR、-COOR、取代或未取代C 1-C 10烷基、取代或未取代的C 1-C 10卤代烷基、取代或未取代的C 2-C 10的酯基、取代或未取代(优选为取代)的C 7-C 11芳基酰基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、取代或未取代的C 1-C 4的烷基;
    其中,R 5和R 6可以共同构成-O-R”-O-基团,其中,所述的R”为C 1-C 4的亚烷基;
    R 7选自下组:H、C 1-C 4的烷基、C 1-C 4的卤代烷基;
    R 8为H、或R 8与R 2共同构成-R”-O-R”-,其中,所述的R”为无或C 1-C 4的亚烷基;
    R 1至R 8中的任意相邻的两个基团,可以合二为一与连接它们的碳原子一起形成环氧乙烷环,
    所述的“取代或未取代”中的取代,是指基团上的一个或多个氢原子被选自下组的取代基取代:羧基、未取代或卤代的C 1-C 6烷基、未取代或卤代的C 3-C 6的环烷基、未取代或卤代的C 2-C 10的酯基、卤素、C 1-C 10烷基-氧基、C 2-C 10酰基、羟基、羟基-C 1-C 10的亚烷基、未取代或卤代的苯基、葡萄糖基氧基。
  2. 根据权利要求1所述的化合物,或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,以及药学上可接受的载体,其特征在于,所述的式I化合物具有以下式Ia所示的结构:
    Figure PCTCN2021141946-appb-100004
    式中,
    R 1选自下组:取代或未取代的C 1-C 4的烷基、C 1-C 4的卤代烷基;其中,所述的取代指基团上的一个或多个氢原子被C 1-C 4的酯基取代;
    R 2为-OH、-OR’或取代或未取代的C 2-C 10的酯基;
    R 7选自下组:C 1-C 4的烷基、C 1-C 4的卤代烷基;其余各基团的定义如权利要求1中所述。
  3. 根据权利要求1所述的降二萜化合物,或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,以及药学上可接受的载体,其特征在于,所述的式I化合物具有以下式Ib所示的结构:
    Figure PCTCN2021141946-appb-100005
    式I中,
    Figure PCTCN2021141946-appb-100006
    为双键或单键,其为双键时,R 8不存在,
    R 1选自下组:取代或未取代的C 1-C 4的烷基、C 1-C 4的卤代烷基;R 2与R 8共同构成-O-;R 7选自下组:C 1-C 4的烷基、C 1-C 4的卤代烷基;
    其余各基团的定义如权利要求1中所述。
  4. 如权利要求1-3中的任一项所述的化合物,或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,以及药学上可接受的载体,其特征在于,
    R 2选自下组:O-R’,其中,所述的R’选自下组:H、取代或未取代的C 2-C 10的酰基、或取代或未取代的C 1-C 10的烷基;
    R 4选自下组:H、卤素、氰基、羧基、羟基、C 1-C 4的烷氧基、取代或未取代的C 2-C 10的酯基;
    R 5选自下组:H、卤素、氰基、羟基、C 1-C 4的烷氧基、-COOR、取代或未取代的C 2-C 10的酯基、取代或未取代C 1-C 10烷基、取代或未取代的C 1-C 10卤代烷基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、C 1-C 4的烷基、C 1-C 4的卤代烷基、取代或未取代(优选为取代)的C 7-C 11芳基-酰基;
    R 6选自下组:H、卤素、氰基、羧基、羟基、C 1-C 4的烷氧基、取代或未取代的C 2-C 10的酯基、取代或未取代C 1-C 10烷基、取代或未取代的C 1-C 10卤代烷基、取代或未取代(优选为取代)的C 7-C 11芳基-酰基、-NH-R;其中,R选自下组:H、C 1-C 4的酰基、C 1-C 4的烷基、C 1-C 4的卤代烷基;
    所述的“取代或未取代”中的取代,是指基团上的一个或多个氢原子被选自下组的取代基取代:羧基、苯基、C 3-C 6的环烷基、C 1-C 10的酯基、卤素、C 1-C 10烷基-氧基、C 2-C 10酰基、羟基、羟基-C 1-C 10的亚烷基。
  5. 如权利要求1~4中任一项所述的化合物,或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、 包合物或前药,以及药学上可接受的载体,其特征在于,所述的R 2和R 5各自独立地为选自-OR’中的基团:
    Figure PCTCN2021141946-appb-100007
    其中的波浪线代表与O的连接位置。
  6. 如权利要求1所述的化合物,或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,以及药学上可接受的载体,其特征在于,所述的化合物为选自下述结构的化合物:
    Figure PCTCN2021141946-appb-100008
    Figure PCTCN2021141946-appb-100009
    或者选自以下具有通式18B和23B结构的化合物,
    Figure PCTCN2021141946-appb-100010
    化合物编号 R c取代基 R d取代基 ESI-MS m/z[M+H] + 18-B1 A1 H 391.2 18-B2 A2 H 405.3 18-B3 A3 H 419.3 18-B4 A4 H 419.3 18-B5 A5 H 447.4 18-B6 A6 H 503.4 18-B7 A1 A1 433.2 18-B8 A5 A5 545.4 18-B9 C1 H 417.2 18-B10 C3 H 445.3 18-B11 C4 H 459.3 18-B12 C5 H 487.4 18-B13 C1 C1 485.3 18-B14 C2 C2 513.3
    18-B15 D1 H 449.3 18-B16 D3 H 463.3 18-B17 D2 H 477.4 18-B18 D2 D2 605.5 18-B19 H1 H 443.3 18-B20 H2 H 459.3 18-B21 H3 H 488.3 18-B22 H4 H 509.3 18-B23 H5 H 471.3 18-B24 H6 H 550.3 18-B25 P1 H 453.3 18-B26 P2 H 509.3 18-B27 P3 H 513.3 18-B28 P4 H 479.3 18-B29 P5 H 481.3 18-B30 P1 P1 557.3 18-B31 P6 H 488.3 18-B32 P7 H 471.3 18-B33 P8 H 488.3 18-B34 P9 H 532.3 18-B35 P11 H 532.3 18-B36 P10 H 488.3 18-B37 P6 P6 666.3 18-B38 V1 H 417.3 18-B39 V2 V2 485.3 18-B40 A7 H 467.3 18-B41 H A1 391.2 18-B42 H A2 419.3 18-B43 H A3 419.3 18-B44 H P11 531.3 23-B1 A1 H 391.2 23-B2 A1 A1 433.2 23-B3 A2 H 405.2
    23-B4 A2 A2 461.2
  7. 如权利要求1所述的化合物,或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,以及药学上可接受的载体,在制备治疗多发性骨髓瘤的药物中的应用。
  8. 一种用于治疗多发性骨髓瘤的药物组合物,其特征在于,其包含治疗有效量的一种或多种选自权利要求1~6中任一项所述的化合物或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,以及药学上可接受的载体,和药学上可接受的辅料。
  9. 根据权利要求8所述的药物组合物,其特征在于,所述的药物组合物被制成口服剂型、注射剂型。
  10. 根据权利要求8所述的药物组合物,其中,所述药学上可接受的辅料为填充剂、稀释剂、粘合剂、润湿剂、崩解剂、润滑剂、乳化剂或助悬剂。
  11. 治疗多发性骨髓瘤的方法,该方法包括给予需要此治疗的人有效量的权利要求1-6中任一项的化合物或其药学上可接受的盐、酯、光学异构体、立体异构体、多晶型物、溶剂合物、N-氧化物、同位素标记的化合物、代谢物、螯合物、络合物、包合物或前药,或者给予权利要求8~10的药物组合物。
PCT/CN2021/141946 2020-12-28 2021-12-28 竹柏内酯类的化合物及其在抗肿瘤药物制备中的应用 WO2022143617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011583364 2020-12-28
CN202011583364.9 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022143617A1 true WO2022143617A1 (zh) 2022-07-07

Family

ID=82260212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141946 WO2022143617A1 (zh) 2020-12-28 2021-12-28 竹柏内酯类的化合物及其在抗肿瘤药物制备中的应用

Country Status (1)

Country Link
WO (1) WO2022143617A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131426A1 (zh) * 2015-02-17 2016-08-25 中国科学院上海药物研究所 具有降血脂活性的竹柏內酯类化合物,其制备方法及用途
CN106946903A (zh) * 2017-04-06 2017-07-14 澳门大学 一类降二萜化合物、其提取分离方法及其在制备抗肿瘤药物中的应用
CN107089993A (zh) * 2016-02-17 2017-08-25 中国科学院上海药物研究所 具有降血脂活性的竹柏內酯类化合物,其制备方法及用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131426A1 (zh) * 2015-02-17 2016-08-25 中国科学院上海药物研究所 具有降血脂活性的竹柏內酯类化合物,其制备方法及用途
CN107089993A (zh) * 2016-02-17 2017-08-25 中国科学院上海药物研究所 具有降血脂活性的竹柏內酯类化合物,其制备方法及用途
CN106946903A (zh) * 2017-04-06 2017-07-14 澳门大学 一类降二萜化合物、其提取分离方法及其在制备抗肿瘤药物中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BLOOR STEPHEN J., MOLLOY BRIAN P. J.: "Cytotoxic Norditerpene Lactones from Ileostylus micranthus", JOURNAL OF NATURAL PRODUCTS, AMERICAN CHEMICAL SOCIETY, US, vol. 54, no. 5, 1 September 1991 (1991-09-01), US , pages 1326 - 1330, XP055947428, ISSN: 0163-3864, DOI: 10.1021/np50077a015 *
SATO K., ET AL.: "Cytotoxic Bisnor- and Norditerpene Dilactones Having 7a, 8a-Epoxy-9, 11-Enolide Substructure from Podocarpus Macrophyllus D. DON.", CHEM. PHARM. BULL., vol. 57, no. 7, 17 April 2009 (2009-04-17), pages 668 - 679, XP055947426 *
WANG XIPING, CAI PING, CHANG CHING-JER, HO DAVID K., CASSADY JOHN M.: "Three New Cytotoxic Norditerpenoid Dilactones from Podocarpus Purdieanus Hook", NATURAL PRODUCT LETTERS, vol. 10, no. 1, 31 December 1997 (1997-12-31), CH , pages 59 - 67, XP009537926, ISSN: 1057-5634, DOI: 10.1080/10575639708043697 *
ZHENG YUAN-DONG, BAI GANG, TANG CHUNPING, KE CHANG-QIANG, YAO SHENG, TONG LIN-JIANG, FENG FANG, LI YAN, DING JIAN, XIE HUA, YE YAN: "7 α ,8 α -Epoxynagilactones and their glucosides from the twigs of Podocarpus nagi : Isolation, structures, and cytotoxic activities", FITOTERAPIA, IDB HOLDING, MILAN., IT, vol. 125, 1 March 2018 (2018-03-01), IT , pages 174 - 183, XP055947425, ISSN: 0367-326X, DOI: 10.1016/j.fitote.2018.01.007 *

Similar Documents

Publication Publication Date Title
JP6947644B2 (ja) 重水素化ケノデオキシコール酸誘導体およびこの化合物を含む薬物組成物
CN106083943B (zh) 一种吡喃葡萄糖基衍生物及其制备方法和用途
ES2541589T3 (es) Compuesto de fenantroindolizidina e inhibidor de NFkB que contiene el mismo como principio activo
CA2538905C (en) Withanamide glycoside and compositions and methods of use thereof
CN107405330B (zh) 具有降血脂活性的竹柏內酯类化合物,其制备方法及用途
Liang et al. Coumarin derivatives from the leaves and twigs of Murraya exotica L. and their anti-inflammatory activities
CN106279200B (zh) 具有降血脂活性的松香烷型二萜类化合物,其制备方法及用途
JP6130303B2 (ja) ベニコウジ菌(Monascus)発酵米から分離された化合物、その調製方法及び使用
WO2022143617A1 (zh) 竹柏内酯类的化合物及其在抗肿瘤药物制备中的应用
JP4620652B2 (ja) 新規ポリガラテノシド化合物およびそれを含む抗鬱剤
US6403636B1 (en) Xanthone compounds, their preparation and use as medicament
TW201504213A (zh) 作爲鱗狀癌及肝癌抑制劑的類化合物及其用途
CN114075256B (zh) 具有脂肪酶抑制活性的酰基他定类化合物、其制备方法及应用
KR100564383B1 (ko) 진세노사이드 유도체의 제조방법
EP3255031A1 (en) Compound, and separation method, synthesis method and use thereof
CN107089993B (zh) 具有降血脂活性的竹柏內酯类化合物,其制备方法及用途
KR100547253B1 (ko) 암 예방 및 치료에 유효한 진세노사이드 유도체
CA3029768C (en) Deuterated oliceridine compounds and pharmaceutical compositions thereof useful for treating pain
Zou et al. Platelet-inhibitory phenolic constituents from the fruits of Daemonorops draco
CN111606783B (zh) 化合物3,7,11-西柏三烯-2,6-二醇及其制备方法和应用
CN116217567B (zh) 烃基取代的α-咔啉类似物或其药用盐、其药物组合物及其制备方法和用途
US5962515A (en) Process for isolation and synthesis of 1-(3,4 methylenedioxy-phenyl)-1E-tetradecene and its analogues and their activities against tumors and infections
JP7405855B2 (ja) 生理活性化合物
CN117143027A (zh) 3-苄氧基-6-羟苯基哒嗪类化合物及其制备方法和用途
US10537545B2 (en) Ceramide derivatives as anticancer agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914352

Country of ref document: EP

Kind code of ref document: A1