WO2022142966A1 - 波长测量芯片及波长测量系统 - Google Patents

波长测量芯片及波长测量系统 Download PDF

Info

Publication number
WO2022142966A1
WO2022142966A1 PCT/CN2021/134467 CN2021134467W WO2022142966A1 WO 2022142966 A1 WO2022142966 A1 WO 2022142966A1 CN 2021134467 W CN2021134467 W CN 2021134467W WO 2022142966 A1 WO2022142966 A1 WO 2022142966A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave signal
interferometer
wavelength
wavelength measurement
Prior art date
Application number
PCT/CN2021/134467
Other languages
English (en)
French (fr)
Inventor
李志伟
潘超
达玛万·史提芬
汪绍武
王谦
秦华强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023540612A priority Critical patent/JP2024501712A/ja
Priority to EP21913707.2A priority patent/EP4257939A4/en
Publication of WO2022142966A1 publication Critical patent/WO2022142966A1/zh
Priority to US18/344,303 priority patent/US20230341266A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0246Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0226Fibres
    • G01J2009/023Fibres of the integrated optical type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/028Types
    • G01J2009/0288Machzehnder

Definitions

  • the invention relates to the field of optical chips, in particular to a wavelength measurement chip and a wavelength measurement system using the wavelength measurement chip.
  • a wavelength meter is a commonly used measurement tool in microwave measurement to measure the wavelength or frequency of a microwave signal source (such as electromagnetic waves).
  • the traditional wavelength meter is an independent instrument, including the optical path structure built by multiple discrete components such as lens, curved mirror, optical fiber, grating, etc.
  • the traditional wavelength meter is bulky and occupies a large space due to multiple discrete components.
  • the traditional wavelength meter has a low overall integration level and poor device reliability due to multiple discrete components.
  • One aspect of the present application provides a wavelength measurement chip, including:
  • an optical splitter for receiving the first electromagnetic wave signal and for dividing the first electromagnetic wave signal into two electromagnetic wave signal outputs
  • the beam splitter, the first interferometer and the second interferometer are coupled in sequence, and the first interferometer and the second interferometer are used to receive the One of the two electromagnetic wave signals causes two interferences to output multiple second electromagnetic wave signals;
  • the other electromagnetic wave signal of the two electromagnetic wave signals is output as a third electromagnetic wave signal, and the second electromagnetic wave signal and the third electromagnetic wave signal can be used to obtain wavelength information of the first electromagnetic wave signal after photoelectric conversion. .
  • the above-mentioned wavelength measurement chip includes a substrate and a spectroscope, a first interferometer and a second interferometer arranged on the substrate.
  • the wavelength measurement chip is used to receive the first electromagnetic wave signal and output multiple second electromagnetic waves according to the first electromagnetic wave signal. signal and a third electromagnetic wave signal, by converting the second electromagnetic wave signal and the third electromagnetic wave signal into an electrical signal, the wavelength information of the first electromagnetic wave signal can be obtained according to the electrical signal, the above wavelength measurement chip does not need to build a complex optical system, Compared with the wavelength meter in the prior art, the structure is simpler, which is conducive to reducing the volume and the occupied space, and the devices in the wavelength measurement chip are compact in structure, which is also conducive to improving the reliability of the wavelength measurement chip.
  • the wavelength measurement chip defines a first channel and a second channel, the two electromagnetic wave signals are transmitted in the first channel and the second channel respectively, and the electromagnetic wave propagates in the first channel The loss is greater than the loss of the electromagnetic wave propagating in the second channel;
  • the optical splitter divides the first electromagnetic wave signal into two channels of electromagnetic wave signal output according to a preset ratio, and the proportion of the electromagnetic wave signal propagating in the first channel in the first electromagnetic wave is larger than that in the second channel The proportion of the electromagnetic wave signal propagating in the first electromagnetic wave.
  • the specific value of the preset ratio is determined according to the optical loss of the first channel and the second channel, and the electromagnetic wave propagation in the first channel has a larger intensity loss than that in the second channel. Therefore, in this embodiment, The intensity ratio of the electromagnetic wave signal output to the first channel by the optical splitter in the first electromagnetic wave is set higher than the intensity ratio of the electromagnetic wave signal output to the second channel in the first electromagnetic wave, so as to balance the electromagnetic wave signal between the first channel and the second channel. Intensity loss difference in the second channel.
  • the first channel includes the first interferometer and the second interferometer.
  • the first channel includes a first interferometer and a second interferometer.
  • the electromagnetic wave signal propagates in the first channel, it needs to pass through more devices than in the second channel, so the electromagnetic wave propagates in the first channel.
  • the intensity ratio of the electromagnetic wave signal output to the first channel by the optical splitter in the first electromagnetic wave is higher than that of the electromagnetic wave signal output to the second channel in the first electromagnetic wave.
  • the intensity ratio of so as to balance the difference in intensity loss of the electromagnetic wave signal in the first channel and in the second channel.
  • the first interferometer is a Mach-Zehnder interferometer
  • the second interferometer is a multimode interferometer
  • the multiplex second electromagnetic wave signals output by the second interferometer have preset phase shifts, and the multiplex second electromagnetic waves can be adjusted by adjusting the number of the second electromagnetic waves output by the second interferometer.
  • the preset phase shift between the two electromagnetic wave signals are preset phase shifts.
  • the preset phase shift between the multiple second electromagnetic wave signals can be adjusted by adjusting the number of second electromagnetic waves output by the second interferometer, and the more the number of second electromagnetic waves, the more accurate the wavelength measurement.
  • the second interferometer outputs four second electromagnetic wave signals, and the preset phase shift between the four electromagnetic wave signals is ⁇ /2.
  • a coupler is further included for receiving the first electromagnetic wave and transmitting the first electromagnetic wave to the optical splitter.
  • the manner in which the coupler receives the first electromagnetic wave signal and transmits it to the optical splitter is more conducive to reducing the input loss of the first electromagnetic wave signal, thereby improving the accuracy of the wavelength information measured by the wavelength measurement chip.
  • a higher-order mode filter is further included, the higher-order mode filter is coupled between the beam splitter and the first interferometer.
  • the high-order mode filter can reduce the high-order mode of the electromagnetic wave transmitted in the first channel.
  • it is beneficial to increase the extinction ratio of the interferometer in the first channel, thereby further improving the accuracy of the wavelength information measured by the wavelength measurement chip.
  • the beam splitter, the first interferometer and the second interferometer are formed on a substrate.
  • a wavelength measurement system comprising:
  • a wavelength measurement chip is the wavelength measurement chip described in any one of the above;
  • a photodetector coupled to the wavelength measurement chip, for receiving the second electromagnetic wave signal and the third electromagnetic wave signal, and for converting the second electromagnetic wave signal and the third electromagnetic wave signal into electrical signals ;
  • the processor is electrically connected to the photodetector and configured to acquire wavelength information of the first electromagnetic wave signal according to the electrical signal.
  • the wavelength measurement system includes a wavelength measurement chip, the wavelength measurement chip includes a substrate, a spectroscope, a first interferometer and a second interferometer arranged on the substrate, and the wavelength measurement chip is used for receiving the first electromagnetic wave signal, According to the first electromagnetic wave signal, multiple second electromagnetic wave signals and one third electromagnetic wave signal are output.
  • the wavelength measurement system also includes a photodetector and a processor that are electrically connected to each other. The signal is converted into an electrical signal, and the wavelength information of the first electromagnetic wave signal is obtained by the processor according to the electrical signal.
  • the above wavelength measurement system does not need to build a complex optical system. Compared with the wavelength meter in the prior art, the structure is simpler, which is beneficial to The volume and the occupied space are reduced, and each device in the wavelength measurement chip 11 has a compact structure, which is also beneficial to improve the reliability of the wavelength measurement system.
  • the processor is configured to obtain a plurality of wavelength values according to the multiplexed second electromagnetic wave signal output by the second interferometer, and obtain a plurality of wavelength values from the plurality of wavelength values according to the third electromagnetic wave signal output by the optical splitter A wavelength value is determined as the wavelength value of the first electromagnetic wave signal.
  • Spectral images are regularly arranged periodically, a certain signal intensity can correspond to multiple wavelength values, and a wavelength value can be uniquely determined according to the third electromagnetic wave signal output by the optical splitter.
  • the photodetector has a sensing area
  • the wavelength measurement chip has a coupling surface for outputting the second electromagnetic wave signal and the third electromagnetic wave signal
  • the coupling surface is parallel to the plane where the sensing area is located.
  • the transmission direction of the second electromagnetic wave signal and the third electromagnetic wave signal is perpendicular to the coupling surface, that is, perpendicular to the photosensitive area, then the second electromagnetic wave signal and the third electromagnetic wave signal can be output from the coupling surface and directly incident on the photodetector, There is no need to change its transmission direction deliberately.
  • the photodetector has a sensing area, and the plane where the sensing area is located is parallel to the propagation plane of the second electromagnetic wave and the third electromagnetic wave signal on the wavelength measurement chip.
  • the wavelength measurement chip, the photodetector and the three are stacked in sequence, and there is no protruding structure in the direction perpendicular to the wavelength measurement chip, which is beneficial to simplify the subsequent packaging process.
  • Figure 1 is a schematic diagram of the propagation process of electromagnetic waves.
  • FIG. 2 is a schematic structural diagram of a module of a wavelength measurement system according to an embodiment of the present application.
  • FIG. 3 is a schematic plan view of the wavelength measurement chip in FIG. 2 .
  • FIG. 4 is a schematic diagram of the spectrum of the electromagnetic wave output by the first interferometer in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of a wavelength measurement system according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a wavelength measurement system according to a modified embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a wavelength measurement system according to another modified embodiment of the present application.
  • FIG. 8 is a schematic diagram of the spectrum of the electromagnetic wave output by the second interferometer in FIG. 3 .
  • FIG. 9 is another schematic plan view of the wavelength measurement chip in FIG. 2 .
  • the horizontal axis represents the propagation direction of the electromagnetic wave
  • the vertical axis represents the vibration direction of the electromagnetic wave.
  • the wavelength ⁇ of an electromagnetic wave is defined as the distance the electromagnetic wave travels in one vibration period. That is, the wavelength ⁇ of the electromagnetic wave is the distance between two adjacent points whose vibration phase differs by 2 ⁇ along the propagation direction of the electromagnetic wave. The distance between two adjacent valleys is also one wavelength.
  • the wavelength measurement system 10 provided in this embodiment is used to measure the wavelength of electromagnetic waves, and can be applied to scenarios such as ultra-dense wavelength division systems, wavelength selective switches, and lasers.
  • the wavelength measurement system 10 includes a wavelength measurement chip 11 , a plurality of photodetectors 12 , and a processor 13 .
  • the photodetector 12 is coupled to the wavelength measurement chip 11 and is electrically connected to the processor 13 .
  • the wavelength measurement chip 11 is used for receiving the first electromagnetic wave signal, and outputting multiple (“multi-channel” in this application refers to two or more) second electromagnetic wave signal and one third electromagnetic wave signal according to the first electromagnetic wave signal.
  • the photodetector 12 is used to receive the multiple second electromagnetic wave signals and the third electromagnetic wave signal, and generate electrical signals according to the multiple second electromagnetic wave signals and the third electromagnetic wave signal.
  • the processor 13 is configured to acquire wavelength information of the first electromagnetic wave signal according to the electrical signal.
  • the wavelength measurement chip 11 is a wavelength measurement chip based on a planar optical waveguide. Referring to FIG. 3 , the wavelength measurement chip 11 includes a beam splitter 112 , a first interferometer 113 and a second interferometer 114 .
  • a first channel and a second channel are defined on the wavelength measurement chip 11 .
  • the first channel includes a first interferometer 113 and a second interferometer 114 .
  • the first channel further includes a waveguide structure (for example, between the optical splitter 112 and the first interferometer 113 and between the first interferometer 113 and the second interferometer 114 ) for guiding electromagnetic wave signals ( 3 is not shown).
  • the second channel includes a waveguide structure (not shown in FIG. 3 ) for guiding electromagnetic wave signals.
  • the above-mentioned waveguide structure is a waveguide structure having a high refractive index difference.
  • the above-mentioned waveguide structure includes a waveguide core layer and a cladding layer cladding the waveguide core layer.
  • Both the core layer and the cladding layer are made of silicon oxide material, but the core layer is doped so that its refractive index is higher than that of the cladding layer. refractive index, so the waveguide structure can guide electromagnetic waves.
  • the optical splitter 112 is a Y-type optical splitter, which is used for receiving the first electromagnetic wave signal, and is used for dividing the first electromagnetic wave signal into two electromagnetic wave signal outputs, wherein one electromagnetic wave signal is guided to the first channel, and the other is guided. to the second channel.
  • the optical splitter 112 divides the two electromagnetic wave signals according to a preset ratio. That is, the intensity of the two electromagnetic wave signals has a preset ratio.
  • the present application does not limit the specific preset ratio.
  • the specific value of the preset ratio is determined according to the optical losses of the first channel and the second channel.
  • the first channel includes the first interferometer 113 , the second interferometer 114 and the waveguide structure 115
  • the second channel only includes the waveguide structure 116 . Therefore, when the electromagnetic wave signal propagates in the first channel, compared with Propagating in the second channel requires more devices to pass through, so the electromagnetic wave propagates in the first channel with greater intensity loss than that in the second channel.
  • the intensity of the electromagnetic wave signal output by the optical splitter 112 to the first channel is set to be greater than that of the electromagnetic wave output to the second channel, that is, the electromagnetic wave signal output by the optical splitter 112 to the first channel is set to have a higher intensity in the first electromagnetic wave.
  • the intensity ratio is higher than the intensity ratio of the electromagnetic wave signal output to the second channel in the first electromagnetic wave, so as to balance the difference in intensity loss of the electromagnetic wave signal in the first channel and in the second channel.
  • the electromagnetic wave signal output to the first channel is guided to the first interferometer 113 and the second interferometer 114 in sequence by the waveguide structure 115 .
  • the first interferometer 113 is a Mach-Zehnder interferometer (MZI).
  • MZI Mach-Zehnder interferometer
  • the first interferometer 113 is used for receiving and interfering with the electromagnetic wave signal, so as to output two electromagnetic wave signals according to the electromagnetic wave signal.
  • the spectrum of the two electromagnetic wave signals output by the first interferometer 113 is shown in FIG. 4 , in which the abscissa is the wavelength and the ordinate is the signal intensity.
  • the two electromagnetic wave signals output by the first interferometer 113 are transmitted to the second interferometer 114 .
  • the second interferometer 114 is a multimode interferometer (MMI).
  • MMI multimode interferometer
  • the second interferometer 114 is used for receiving the two-channel electromagnetic wave signals and causing them to interfere, so as to output four-channel electromagnetic wave signals.
  • Each channel of electromagnetic wave signal output by the second interferometer 114 is defined as the aforementioned second electromagnetic wave signal.
  • the number of input signals of the second interferometer 114 may not be two, and the number of output signals of the second interferometer 114 may not be four.
  • the second interferometer 114 may have four inputs and six outputs; in another embodiment, the second interferometer 114 may have two inputs and two outputs; in another embodiment, The second interferometer 114 has four inputs and four outputs; and so on.
  • the multiple channels of the second electromagnetic wave signals output by the second interferometer 114 are sequentially numbered as 1, 2, 3 .
  • the second interferometer 114 outputs four second electromagnetic wave signals, and the four second electromagnetic wave signals sequentially have a preset phase shift of ⁇ /2.
  • the second interferometer 114 has two outputs, there is a preset phase shift of ⁇ between the two second electromagnetic wave signals.
  • the second interferometer 114 has six outputs, the six second electromagnetic wave signals have a preset phase shift of ⁇ /3 in sequence. That is, in each channel of the second electromagnetic wave signal output by the second interferometer 114, the phase shift is at most 2 ⁇ . Therefore, by adjusting the quantity of the second electromagnetic wave signals output by the second interferometer 114, the preset phase shift between the second electromagnetic wave signals of each channel can be adjusted.
  • the maximum phase shift between the multiple channels of the second electromagnetic wave signals output by the second interferometer 114 is fixed, the more channels the second electromagnetic wave signals output by the second interferometer 114 are divided into, the greater the number of channels between the two adjacent channels of the second electromagnetic wave signals.
  • the preset phase shift is smaller.
  • the second interferometer 114 outputs at least two channels of second electromagnetic wave signals. The more the number of second electromagnetic wave signals output by the second interferometer 114 is, the more accurate the wavelength information of the first electromagnetic wave signal measured by the wavelength measurement system 10 is.
  • four second electromagnetic wave signals can be transmitted to the photodetector 12 ; the electromagnetic wave signals of the second channel propagate through the waveguide structure 116 and are transmitted to the photodetector 12 as a third electromagnetic wave signal.
  • the photodetector 12 is used for converting the received multiple second electromagnetic wave signals and one third electromagnetic wave signal into electrical signals respectively through photoelectric conversion.
  • the processor 13 is disposed on a printed circuit board (Printed Circuit Board, PCB) 20 .
  • Conductive lines are formed on the PCB 20 , and the plurality of photodetectors 12 and the processor 13 are electrically connected through the conductive lines.
  • the processor 13 is configured to receive the electrical signal generated by the photodetector 12, and to obtain the wavelength of the first electromagnetic wave signal with a preset algorithm according to the electrical signal.
  • the end face of the wavelength measuring chip 11 coupled with the plurality of photodetectors 12 is defined as the coupling face S1.
  • Each photodetector 12 has a sensing area S2.
  • the sensing area S2 is an area on the photodetector 12 that can effectively receive electromagnetic wave signals for photoelectric conversion. In order to effectively utilize the area of the sensing area S2, the area where the coupling surface S1 outputs the second electromagnetic wave signal and the third electromagnetic wave signal should be aligned with the sensing area S2 as much as possible.
  • the packaging difficulty of the wavelength measurement chip 11 is adjusted by setting the coupling mode between the photodetector 12 and the wavelength measurement chip 11 .
  • the photodetector 12 is disposed on the PCB 20 , and the plane where the photosensitive area S2 of the photodetector 12 is located is parallel to the propagation plane of the second electromagnetic wave signal and the third electromagnetic wave signal on the wavelength measurement chip 11 .
  • the second electromagnetic wave signal and the third electromagnetic wave signal output by the wavelength measuring chip 11 need to be changed in transmission direction on the coupling surface S1 so as to be incident on the photodetector 12 in the direction of the photosensitive region S2 of the photodetector 12 .
  • the coupling surface S1 is an inclined surface.
  • FIG. 6 shows another structure of the coupling surface S1.
  • the structure of the coupling surface S1 shown in FIG. 6 is similar to the structure of the coupling surface S1 shown in FIG.
  • the inclination directions are different and will not be repeated here.
  • FIG. 7 shows another structure of the coupling surface S1.
  • the coupling surface S1 is arranged parallel to the plane where the photosensitive region S2 of the photodetector 12 is located.
  • the transmission direction of the second electromagnetic wave signal and the third electromagnetic wave signal is perpendicular to the coupling surface S1, that is, perpendicular to the photosensitive area S2, then the second electromagnetic wave signal and the third electromagnetic wave signal can be output from the coupling surface S1 and then directly incident on the photodetector 12. No need to change its transmission direction deliberately.
  • the positional relationship between the coupling surface S1 and the photodetector 12 shown in FIG. 7 does not need to change the second electromagnetic wave signal and
  • the transmission direction of the third electromagnetic wave signal is beneficial to simplify the manufacturing process of the wavelength measurement chip 11 .
  • the wavelength measurement chip 11 , the photodetector 12 and the PCB 20 are stacked in sequence, and there is no protruding structure in the direction perpendicular to the wavelength measurement chip 11 .
  • the height of the photodetector 12 is greater than the height of the wavelength measurement chip 11 , so there is a protruding structure in the direction perpendicular to the wavelength measurement chip 11 at the position where the photodetector 12 is arranged when the chip is packaged.
  • the structures of FIGS. 5 and 6 are more convenient for packaging.
  • the photodetector 12 can be set at the same height as the packaged wavelength measurement chip 11 by disposing a pad layer.
  • setting the photodetector 12 at the same height as the packaged wavelength measuring chip 11 is also beneficial to make the second electromagnetic wave signal and the third electromagnetic wave signal output to the photosensitive area S2 of the photodetector 12 as much as possible, so as to facilitate sufficient
  • the photosensitive area S2 of the photodetector 12 is utilized.
  • the four channels of second electromagnetic wave signals output by the second interferometer 114 can form a spectral image as shown in FIG. 8 .
  • the abscissa is the wavelength
  • the ordinate is the signal intensity.
  • the spectral images of the four second electromagnetic wave signals are displayed in four different lines respectively.
  • the value ⁇ 1 of the abscissa corresponds to multiple ordinates (that is, one wavelength value corresponds to multiple intensity values).
  • the abscissa ⁇ 1 is determined, its corresponding multiple intensity values are determined.
  • the spectral images are regularly arranged periodically.
  • the aforementioned ⁇ 1 corresponding to multiple intensity values will appear repeatedly in each subsequent cycle.
  • the multiple intensity values corresponding to ⁇ 2 are the same as
  • the multiple intensity values corresponding to ⁇ 1 are the same. Therefore, when a set of intensity values is determined, a wavelength value cannot be uniquely determined.
  • a wavelength value is uniquely determined according to the output of the second channel and the third electromagnetic wave signal.
  • the intensity of the electromagnetic wave signal output by the second channel and the third electromagnetic wave signal is inversely proportional to its wavelength, and there is a unique correspondence between the intensity and the value of the wavelength.
  • the processor 13 can obtain a plurality of wavelength values according to the spectrum shown in FIG. A unique wavelength value is obtained from the intensity, and among the plurality of obtained wavelength values, a wavelength value closest to the obtained unique wavelength value is demarcated as the wavelength value of the first electromagnetic wave.
  • the wavelength measurement chip 11 in this embodiment includes a substrate 111 , and the substrate 111 is a semiconductor material, such as silicon oxide.
  • the substrate 111 is used for carrying the beam splitter 112 , the first interferometer 113 , the second interferometer 114 , and the waveguide structures 115 and 116 .
  • the wavelength measurement chip 11 further includes a coupler 117 disposed on the substrate 111 .
  • the coupler 117 is a fiber mode spot converter (SSC grating).
  • the coupler 117 is coupled to the optical splitter 112 through a waveguide structure.
  • the coupler 117 is disposed close to the end face of the wavelength measuring chip 11 for receiving the first electromagnetic wave signal, and is used for coupling the first electromagnetic wave signal to the optical splitter 112 .
  • setting the coupler 117 to receive the first electromagnetic wave signal and transmit it to the optical splitter 112 is more conducive to reducing the input loss of the first electromagnetic wave signal, thereby improving the wavelength measurement.
  • the accuracy of the wavelength information measured by the chip 11 is more conducive to reducing the input loss of the first electromagnetic wave signal, thereby improving the wavelength measurement. The accuracy of the wavelength information measured by the chip 11 .
  • the wavelength measurement chip 11 in this embodiment further includes a high-order mode filter 118 disposed on the substrate 111 .
  • the high-order mode filter 118 is coupled between the beam splitter 112 and the first interferometer 113 for reducing the high-order mode of the electromagnetic wave transmitted in the first channel.
  • By setting the high-order mode filter 118 it is beneficial to increase the extinction ratio of the interferometers (the first interferometer 113 and the second interferometer 114 ) in the first channel, thereby further improving the accuracy of the wavelength information measured by the wavelength measurement chip 11 .
  • the wavelength measurement system 10 includes a wavelength measurement chip 11 , the wavelength measurement chip 11 includes a substrate 111 , a spectroscope 112 , a first interferometer 113 and a second interferometer 114 disposed on the substrate 111 , and the wavelength measurement chip 11 is used to receive the first electromagnetic wave signal, and output multiple second electromagnetic wave signals and a third electromagnetic wave signal according to the first electromagnetic wave signal.
  • the wavelength measurement system 10 also includes a photodetector 12 and a processor 13 that are electrically connected to each other. The photodetector 12 converts the second electromagnetic wave signal and the third electromagnetic wave signal into electrical signals, and the processor 13 obtains wavelength information of the first electromagnetic wave signal according to the electrical signals.
  • the above wavelength measurement chip 11 does not need to build a complex optical system. Compared with the wavelength meter in the prior art, the structure is simpler, which is beneficial to reduce the volume and the occupied space, and each device in the wavelength measurement chip 11 has a compact structure. It is also beneficial to improve the reliability of the wavelength measurement chip 11 and the wavelength measurement system 10 .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种波长测量芯片(11),包括:分光器(112),用于接收第一电磁波信号,并用于将第一电磁波信号分为两路电磁波信号输出;第一干涉仪(113)及第二干涉仪(114),分光器(112)、第一干涉仪(113)及第二干涉仪(114)依次耦接,第一干涉仪(113)和第二干涉仪(114)用于接收两路电磁波信号中的其中一路电磁波信号,使之产生两次干涉,以输出多路第二电磁波信号;两路电磁波信号中的另一路电磁波信号作为一路第三电磁波信号被输出,第二电磁波信号和第三电磁波信号可用于进行光电转换后获取第一电磁波信号的波长信息。还提供一种波长测量系统(10)。

Description

波长测量芯片及波长测量系统 技术领域
本发明涉及光芯片领域,尤其涉及一种波长测量芯片及应用该波长测量芯片的波长测量系统。
背景技术
波长计是一种在微波测量中常用的测量工具,用于测量微波信号源(例如电磁波)的波长或频率。
传统的波长计为独立的仪表,包括透镜、曲面镜、光纤、光栅等多个分立的元器件搭建的光路结构。一方面,多个分立的元器件导致传统的波长计体积大,占用空间较大。另一方面,多个分立的元器件导致传统的波长计整体集成度较低,装置可靠性较差。
发明内容
本申请一方面提供一种波长测量芯片,包括:
分光器,用于接收第一电磁波信号,并用于将所述第一电磁波信号分为两路电磁波信号输出;
第一干涉仪及第二干涉仪,所述分光器、所述第一干涉仪及所述第二干涉仪依次耦接,所述第一干涉仪和所述第二干涉仪用于接收所述两路电磁波信号中的其中一路电磁波信号,使之产生两次干涉,以输出多路第二电磁波信号;
所述两路电磁波信号中的另一路电磁波信号作为一路第三电磁波信号被输出,所述第二电磁波信号和所述第三电磁波信号可用于进行光电转换后获取所述第一电磁波信号的波长信息。
上述波长测量芯片,包括基底以及设置于基底上的分光器、第一干涉仪及第二干涉仪,波长测量芯片用于接收第一电磁波信号,并根据该第一电磁波信号输出多路第二电磁波信号和一路第三电磁波信号,通过将第二电磁波信号和第三电磁波信号转换为电信号,可根据电信号获取该第一电磁波信号的波长信息,上述波长测量芯片的无需搭建复杂的光学系统,相较于现有技术中的波长计,结构更加简单,有利于缩小体积、减小占用空间,且上述波长测量芯片中各器件结构紧凑,还有利于提高波长测量芯片的可靠性。
在一些实施例中,所述波长测量芯片定义有第一通道和第二通道,所述两路电磁波信号分别在所述第一通道和所述第二通道传输,电磁波在所述第一通道传播的损耗大于电磁波在所述第二通道传播的损耗;
所述分光器按照一预设比例将所述第一电磁波信号分为两路电磁波信号输出,所述第一通道中传播的电磁波信号在所述第一电磁波中的占比大于所述第二通道中传播的电磁波信号在所述第一电磁波中的占比。
所述预设比例的具体值依据第一通道和第二通道的光损耗确定,电磁波在第一通道中传播相较于在第二通道中传播存在更大的强度损耗,因此本实施例中,设置分光器输出至第一通道的电磁波信号在第一电磁波中的强度占比高于输出至第二通道的电磁波信号在第一电磁 波中的强度占比,以利于平衡电磁波信号在第一通道和在第二通道中的强度损耗差异。
在一些实施例中,所述第一通道包括所述第一干涉仪和所述第二干涉仪。
第一通道包括第一干涉仪、第二干涉仪,电磁波信号在第一通道中传播时,相较于在第二通道中传播,需要经过更多的器件,则电磁波在第一通道中传播相较于在第二通道中传播存在更大的强度损耗,设置分光器输出至第一通道的电磁波信号在第一电磁波中的强度占比高于输出至第二通道的电磁波信号在第一电磁波中的强度占比,以利于平衡电磁波信号在第一通道和在第二通道中的强度损耗差异。
在一些实施例中,所述第一干涉仪为马赫-增德尔干涉仪,所述第二干涉仪为多模干涉仪。
在一些实施例中,所述第二干涉仪输出的多路第二电磁波信号之间具有预设相移,通过调节所述第二干涉仪输出的第二电磁波的数量可调节所述多路第二电磁波信号之间的预设相移。
通过调节所述第二干涉仪输出的第二电磁波的数量可调节所述多路第二电磁波信号之间的预设相移,且第二电磁波的数量越多,对波长的测量越准确。
在一些实施例中,所述第二干涉仪输出四路第二电磁波信号,所述四路电磁波信号之间的预设相移为π/2。
在一些实施例中,还包括耦合器,所述耦合器用于接收所述第一电磁波并将所述第一电磁波传输至所述分光器。
设置耦合器接收第一电磁波信号并将其传输至分光器的方式更有利于降低第一电磁波信号的输入损耗,从而有利于提升波长测量芯片测量的波长信息的准确性。
在一些实施例中,还包括高阶模过滤器,所述高阶模过滤器耦接于所述分光器和所述第一干涉仪之间。
高阶模过滤器可减少在第一通道中传输的电磁波的高阶模,通过设置高阶模过滤器,有利于增加第一通道中干涉仪的消光比,从而进一步提升波长测量芯片测量的波长信息的准确性。
在一些实施例中,所述分光器、所述第一干涉仪及所述第二干涉仪形成一基底上。
本申请另一方面提供一种波长测量系统,包括:
波长测量芯片,所述波长测量芯片为上述任一项所述的波长测量芯片;
光电探测器,与所述波长测量芯片耦接,用于接收所述第二电磁波信号和所述第三电磁波信号,并用于将所述第二电磁波信号和所述第三电磁波信号转换为电信号;及
处理器,电连接所述光电探测器,用于根据所述电信号获取所述第一电磁波信号的波长信息。
本申请实施例提供的波长测量系统,包括波长测量芯片,波长测量芯片包括基底以及设置于基底上的分光器、第一干涉仪及第二干涉仪,波长测量芯片用于接收第一电磁波信号,并根据该第一电磁波信号输出多路第二电磁波信号和一路第三电磁波信号,波长测量系统还包括相互电连接的光电探测器和处理器,通过光电探测器将第二电磁波信号和第三电磁波信号转换为电信号,通过处理器根据电信号获取该第一电磁波信号的波长信息,上述波长测量系统无需搭建复杂的光学系统,相较于现有技术中的波长计,结构更加简单,有利于缩小体积、减小占用空间,且上述波长测量芯片11中各器件结构紧凑,还有利于提高波长测量系统的可靠性。
在一些实施例中,所述处理器用于根据第二干涉仪输出的多路第二电磁波信号获取多个 波长值,并根据所述分光器输出的第三电磁波信号从所述多个波长值中确定一波长值作为所述第一电磁波信号的波长值。
光谱图像是呈规律的周期性排列的,某确定的信号强度可对应多个波长值,根据分光器输出的第三电磁波信号,可唯一确定一波长值。
在一些实施例中,所述光电探测器具有感测区域,所述波长测量芯片具有输出第二电磁波信号和第三电磁波信号的耦合面,所述耦合面平行于所述感测区域所在平面。
如此,第二电磁波信号和第三电磁波信号的传输方向垂直于耦合面,也即垂直于感光区域,则第二电磁波信号和第三电磁波信号可从耦合面被输出后直接入射至光电探测器,无需特意改变其传输方向。
在一些实施例中,所述光电探测器具有感测区域,所述感测区域所在平面平行于所述第二电磁波和所述第三电磁波信号在所述波长测量芯片上的传播平面。
如此,波长测量芯片、光电探测器及三者之间是依次层叠的位置关系,不存在在垂直于波长测量芯片的方向上凸起的结构,有利于简化后续的封装过程。
附图说明
图1为电磁波的传播过程示意图。
图2为本申请实施例的波长测量系统的模块结构示意图。
图3为图2中波长测量芯片的一平面结构示意图。
图4为图3中第一干涉仪输出的电磁波的光谱示意图。
图5为本申请实施例的波长测量系统的结构示意图。
图6为本申请一变更实施例的波长测量系统的结构示意图。
图7为本申请另一变更实施例的波长测量系统的结构示意图。
图8为图3中第二干涉仪输出的电磁波的光谱示意图。
图9为图2中波长测量芯片的另一平面结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1中横轴表示电磁波的传播方向,纵轴表示电磁波的振动方向。电磁波的波长λ定义为电磁波在一个振动周期内传播的距离。也即,电磁波的波长λ为沿着电磁波的传播方向,相邻两个振动位相相差2π的点之间的距离,例如图1中所示相邻两个波峰之间的距离为一个波长,相邻两个波谷之间的距离也为一个波长。
请参阅图2,本实施例提供的波长测量系统10,用于测量电磁波的波长,可应用于超密集波分系统、波长选择性开关、激光器等场景。
波长测量系统10包括波长测量芯片11、多个光电探测器12以及处理器13。光电探测器12与波长测量芯片11耦接,且与处理器13电连接。波长测量芯片11用于接收第一电磁波信号,并根据该第一电磁波信号输出多路(本申请中“多路”指两路及两路以上)第二电磁波信号和一路第三电磁波信号。光电探测器12用于接收该多路第二电磁波信号和该一路第三电磁波信号,并根据该多路第二电磁波信号和该一路第三电磁波信号生成电信号。处理器13用于根据该电信号获取第一电磁波信号的波长信息。
波长测量芯片11为基于平面光波导的波长测量芯片。请参阅图3,波长测量芯片11包 括分光器112、第一干涉仪113及第二干涉仪114。
根据第一电磁波信号的传播路径不同,波长测量芯片11上定义有第一通道和第二通道。本实施例中,第一通道包括第一干涉仪113和第二干涉仪114。第一通道还包括耦接于相邻器件之间(例如分光器112与第一干涉仪113之间、第一干涉仪113和第二干涉仪114之间)用于引导电磁波信号的波导结构(图3未示出)。本实施例中,第二通道包括引导电磁波信号的波导结构(图3未示出)。上述的波导结构为具备高折射率差的波导结构。也即,上述的波导结构分别包括波导芯层和包覆该波导芯层的包层,芯层和包层皆为氧化硅材料,但是芯层进行了掺杂,从而其折射率高于包层折射率,因此波导结构可实现引导电磁波。
分光器112为Y型分光器,用于接收该第一电磁波信号,并用于将该第一电磁波信号分为两路电磁波信号输出,其中一路电磁波信号被引导至该第一通道,另一路被引导至该第二通道。
分光器112按照一预设比例划分该两路电磁波信号。也即,该两路电磁波信号的强度具有一预设比例。例如,分光器112输出至第一通道的电磁波信号的强度:分光器112输出至第二通道的电磁波信号的强度=9:1或5:5。本申请不对具体的预设比例作限制。
所述预设比例的具体值依据第一通道和第二通道的光损耗确定。本实施例中,第一通道包括第一干涉仪113、第二干涉仪114及波导结构115,而第二通道仅包括波导结构116,因此电磁波信号在第一通道中传播时,相较于在第二通道中传播,需要经过更多的器件,则电磁波在第一通道中传播相较于在第二通道中传播存在更大的强度损耗。因此本实施例中,设置分光器112输出至第一通道的电磁波信号的强度大于输出至第二通道的电磁波强度,也即设置分光器112输出至第一通道的电磁波信号在第一电磁波中的强度占比高于输出至第二通道的电磁波信号在第一电磁波中的强度占比,以利于平衡电磁波信号在第一通道和在第二通道中的强度损耗差异。
输出至第一通道的电磁波信号被波导结构115依次引导至第一干涉仪113和第二干涉仪114。一实施例中,第一干涉仪113为马赫-增德尔干涉仪(Mach–Zehnder interferometer,MZI)。第一干涉仪113用于接收该电磁波信号并使之发生干涉,以根据该电磁波信号输出两路电磁波信号。第一干涉仪113输出的两路电磁波信号的光谱如图4所示,图4中横坐标为波长,纵坐标为信号强度。
请再参阅图3,第一干涉仪113输出的两路电磁波信号被传输至第二干涉仪114。一实施例中,第二干涉仪114为多模干涉仪(multimode interferometer,MMI)。第二干涉仪114用于接收该两路电磁波信号,使之产生干涉,以输出四路电磁波信号。将第二干涉仪114输出的每一路电磁波信号定义为前述的第二电磁波信号。
于其他实施例中,第二干涉仪114的输入信号数量可不为两路,第二干涉仪114的输出信号数量也可不为四路。例如,于一实施例中,第二干涉仪114可具有四路输入和六路输出;于另一实施例中,第二干涉仪114具有两路输入和两路输出;于另一实施例中,第二干涉仪114具有四路输入和四路输出;等。
第二干涉仪114输出的多路第二电磁波信号之间具有一预设相移。也即,将第二干涉仪114输出的多路第二电磁波信号依次编号为1,2,3……每两路编号相邻(例如编号1和编号2相邻、编号2和编号3相邻)的第二电磁波信号之间具有一预设相移,且本实施例中,每两路编号相邻的第二电磁波信号之间的预设相移相同。
本实施例中,第二干涉仪114输出四路第二电磁波信号,四路第二电磁波信号之间依次 具有π/2的预设相移。第二干涉仪114具有两路输出时,两路第二电磁波信号之间具有π的预设相移。第二干涉仪114具有六路输出时,六路第二电磁波信号之间依次具有π/3的预设相移。也即,第二干涉仪114输出的各路第二电磁波信号中,相移最大为2π。因此,通过调节第二干涉仪114输出第二电磁波信号的数量,可调节各路第二电磁波信号之间的预设相移。第二干涉仪114输出的多路第二电磁波信号之间的最大相移固定时,第二干涉仪114输出的第二电磁波信号分成的路数越多,相邻两路第二电磁波信号之间的预设相移越小。
第二干涉仪114至少输出两路第二电磁波信号。第二干涉仪114输出的第二电磁波信号数量越多,波长测量系统10测得的第一电磁波信号的波长信息越准确。
本实施例中,四路第二电磁波信号可被传输至光电探测器12;第二通道的电磁波信号经过波导结构116传播,作为一路第三电磁波信号被传输至光电探测器12。光电探测器12用于通过光电转换将接收到的多路第二电磁波信号和一路第三电磁波信号分别转换为电信号。
请参阅图5,本实施例中,处理器13设置于印刷电路板(Printed Circuit Board,PCB)20上。PCB20上形成有导电线(图未示),多个光电探测器12和处理器13通过导电线建立电连接。处理器13用于接收光电探测器12生成的电信号,并用于根据该电信号以预设算法获取第一电磁波信号的波长。
定义波长测量芯片11上与多个光电探测器12耦合的端面(也即第二电磁波信号和第三电磁波信号输出的端面)为耦合面S1。每个光电探测器12具有一感测区域S2。感测区域S2为光电探测器12上可有效接收电磁波信号以进行光电转换的区域。为了有效利用感测区域S2的面积,应尽可能使得耦合面S1输出第二电磁波信号和第三电磁波信号的区域与感测区域S2对准。
本实施例中,在满足上述的对准的需要的基础上,还通过设置光电探测器12与波长测量芯片11之间的耦合方式以调节波长测量芯片11的封装难度。
请继续参阅图5,本实施例中,光电探测器12设置于PCB20上,光电探测器12的感光区域S2所在平面平行于第二电磁波信号和第三电磁波信号在波长测量芯片11上的传播平面。波长测量芯片11输出的第二电磁波信号和第三电磁波信号需要在耦合面S1被改变传输方向,从而指向光电探测器12的感光区域S2的方向入射至光电探测器12。则耦合面S1为斜面。
请参阅图6,图6示出了耦合面S1的另一种结构,图6中所示耦合面S1的结构与图5中所示的耦合面S1的结构类似,区别在于,耦合面S1的倾斜方向不同,不再赘述。
请参阅图7,图7示出了耦合面S1的另一种结构。图7中耦合面S1与光电探测器12的感光区域S2所在平面平行设置。第二电磁波信号和第三电磁波信号的传输方向垂直于耦合面S1,也即垂直于感光区域S2,则第二电磁波信号和第三电磁波信号可从耦合面S1被输出后直接入射至光电探测器12,无需特意改变其传输方向。
相较于图5和图6所示的耦合面S1与光电探测器12的位置关系,图7所示的耦合面S1与光电探测器12的位置关系无需在耦合面S1改变第二电磁波信号和第三电磁波信号的传输方向,有利于简化波长测量芯片11的制作过程。
图5和图6所示结构中,波长测量芯片11、光电探测器12及PCB20三者之间是依次层叠的位置关系,不存在在垂直于波长测量芯片11的方向上凸起的结构。而图7所示结构中,光电探测器12高度大于波长测量芯片11的高度,则封装芯片时在设置光电探测器12的位置存在垂直于波长测量芯片11的方向上的凸起结构,因此相较于图7所示结构,图5和图6的结构更利于封装。
为了便于封装,在图7所示结构中,通常可通过设置垫高层以将光电探测器12设置为与封装波长测量芯片11等高。另一方面,设置光电探测器12与封装波长测量芯片11等高,也有利于使得第二电磁波信号和第三电磁波信号尽可能多地被输出至光电探测器12的感光区域S2,以利于充分利用光电探测器12的感光区域S2。
本实施例中,第二干涉仪114输出的四路第二电磁波信号可形成如图8所示的光谱图像,图8中横坐标为波长,纵坐标为信号强度。其中四路第二电磁波信号的光谱图像分别以四种不同的线条展示。
根据图8所示,若在横坐标取一值λ1,该横坐标的值λ1对应多个纵坐标(也即一个波长值对应多个强度值)。横坐标λ1确定时,其对应多个强度值是确定的。但根据图8可知光谱图像是呈规律的周期性排列的,前述的λ1对应多个强度值会在后续的每一个周期中重复出现一次,例如在下一个周期中,λ2对应的多个强度值与λ1对应的多个强度值相同。因此,当确定一组强度值时,并不能唯一确定一波长值。
本实施例中,根据第二通道输出的和第三电磁波信号唯一确定一波长值。第二通道输出的和第三电磁波信号的强度与其波长呈反比,强度与波长的取值具有唯一对应关系。在某一时刻,光电探测器12获取到信号强度时,处理器13可根据图8所示的光谱获取到多个波长值,而处理器13可根据第二通道输出的和第三电磁波信号的强度获取到唯一的波长值,前述的获取的多个波长值中,与获取的该唯一的波长值最接近的一个波长值被标定为第一电磁波的波长值。
请参阅图9,本实施例中的波长测量芯片11,包括基底111,基底111为半导体材料,例如为氧化硅。基底111用于承载分光器112、第一干涉仪113、第二干涉仪114、波导结构115及116。
波长测量芯片11还包括设置于基底111上的耦合器117。耦合器117为光纤模斑转换器(SSC grating)。耦合器117通过波导结构与分光器112耦合。耦合器117靠近波长测量芯片11接收第一电磁波信号的端面设置,用于将第一电磁波信号耦合至分光器112。相较于分光器112直接接收第一电磁波信号,设置耦合器117接收第一电磁波信号并将其传输至分光器112的方式更有利于降低第一电磁波信号的输入损耗,从而有利于提升波长测量芯片11测量的波长信息的准确性。
本实施例中的波长测量芯片11,还包括设置于基底111上的高阶模过滤器118。高阶模过滤器118耦接于分光器112与第一干涉仪113之间,用于减少在第一通道中传输的电磁波的高阶模。通过设置高阶模过滤器118,有利于增加第一通道中干涉仪(第一干涉仪113和第二干涉仪114)的消光比,从而进一步提升波长测量芯片11测量的波长信息的准确性。
本申请实施例提供的波长测量系统10,包括波长测量芯片11,波长测量芯片11包括基底111以及设置于基底111上的分光器112、第一干涉仪113及第二干涉仪114,波长测量芯片11用于接收第一电磁波信号,并根据该第一电磁波信号输出多路第二电磁波信号和一第三电磁波信号,波长测量系统10还包括相互电连接的光电探测器12和处理器13,通过光电探测器12将第二电磁波信号和第三电磁波信号转换为电信号,通过处理器13根据电信号获取该第一电磁波信号的波长信息。上述波长测量芯片11的无需搭建复杂的光学系统,相较于现有技术中的波长计,结构更加简单,有利于缩小体积、减小占用空间,且上述波长测量芯片11中各器件结构紧凑,还有利于提高波长测量芯片11及波长测量系统10的可靠性。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本发明,而并非 用作为对本发明的限定,只要在本发明的实质精神范围之内,对以上实施例所作的适当改变和变化都落在本发明要求保护的范围之内。

Claims (13)

  1. 一种波长测量芯片,其特征在于,包括:
    分光器,用于接收第一电磁波信号,并用于将所述第一电磁波信号分为两路电磁波信号输出;
    第一干涉仪及第二干涉仪,所述分光器、所述第一干涉仪及所述第二干涉仪依次耦接,所述第一干涉仪和所述第二干涉仪用于接收所述两路电磁波信号中的其中一路电磁波信号,使之产生两次干涉,以输出多路第二电磁波信号;
    所述两路电磁波信号中的另一路电磁波信号作为一路第三电磁波信号被输出,所述第二电磁波信号和所述第三电磁波信号可用于进行光电转换后获取所述第一电磁波信号的波长信息。
  2. 如权利要求1所述的波长测量芯片,其特征在于,所述波长测量芯片定义有第一通道和第二通道,所述两路电磁波信号分别在所述第一通道和所述第二通道传输,电磁波在所述第一通道传播的损耗大于电磁波在所述第二通道传播的损耗;
    所述分光器按照一预设比例将所述第一电磁波信号分为所述两路电磁波信号输出,所述第一通道中传播的所述电磁波信号在所述第一电磁波中的占比大于所述第二通道中传播的所述电磁波信号在所述第一电磁波中的占比。
  3. 如权利要求2所述的波长测量芯片,其特征在于,所述第一通道包括所述第一干涉仪和所述第二干涉仪。
  4. 如权利要求1至3中任意一项所述的波长测量芯片,其特征在于,所述第一干涉仪为马赫-增德尔干涉仪,所述第二干涉仪为多模干涉仪。
  5. 如权利要求4所述的波长测量芯片,其特征在于,所述第二干涉仪输出的所述多路第二电磁波信号之间具有预设相移,通过调节所述第二干涉仪输出的所述多路第二电磁波信号的数量可调节所述多路第二电磁波信号之间的预设相移。
  6. 如权利要求5所述的波长测量芯片,其特征在于,所述第二干涉仪输出四路第二电磁波信号,所述四路电磁波信号之间的预设相移为π/2。
  7. 如权利要求1至3中任意一项所述的波长测量芯片,其特征在于,还包括耦合器,所述耦合器用于接收所述第一电磁波并将所述第一电磁波传输至所述分光器。
  8. 如权利要求1至3中任意一项所述的波长测量芯片,其特征在于,还包括高阶模过滤器,所述高阶模过滤器耦接于所述分光器和所述第一干涉仪之间。
  9. 如权利要求1至3中任意一项所述的波长测量芯片,其特征在于,所述分光器、所述第一干涉仪及所述第二干涉仪形成一基底上。
  10. 一种波长测量系统,其特征在于,包括:
    波长测量芯片,所述波长测量芯片为权利要求1~9任一项所述的波长测量芯片;
    光电探测器,与所述波长测量芯片耦接,用于接收所述第二电磁波信号和所述第三电磁波信号,并用于将所述第二电磁波信号和所述第三电磁波信号转换为电信号;及
    处理器,电连接所述光电探测器,用于根据所述电信号获取所述第一电磁波信号的波长信息。
  11. 如权利要求10所述的波长测量系统,其特征在于,所述处理器用于根据所述第二干涉仪输出的多路第二电磁波信号获取多个波长值,并根据所述分光器输出的第三电磁波信号 从所述多个波长值中确定一波长值作为所述第一电磁波信号的波长值。
  12. 如权利要求10所述的波长测量系统,其特征在于,所述光电探测器具有感测区域,所述波长测量芯片具有输出第二电磁波信号和第三电磁波信号的耦合面,所述耦合面平行于所述感测区域所在平面。
  13. 如权利要求10所述的波长测量系统,其特征在于,所述光电探测器具有感测区域,所述感测区域所在的平面平行于所述第二电磁波信号和所述第三电磁波信号在所述波长测量芯片上的传播平面。
PCT/CN2021/134467 2020-12-30 2021-11-30 波长测量芯片及波长测量系统 WO2022142966A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023540612A JP2024501712A (ja) 2020-12-30 2021-11-30 波長測定チップ及び波長測定システム
EP21913707.2A EP4257939A4 (en) 2020-12-30 2021-11-30 WAVELENGTH MEASURING CHIP AND WAVELENGTH MEASURING SYSTEM
US18/344,303 US20230341266A1 (en) 2020-12-30 2023-06-29 Wavelength measurement chip and wavelength measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011603792.3A CN114689188A (zh) 2020-12-30 2020-12-30 波长测量芯片及波长测量系统
CN202011603792.3 2020-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,303 Continuation US20230341266A1 (en) 2020-12-30 2023-06-29 Wavelength measurement chip and wavelength measurement system

Publications (1)

Publication Number Publication Date
WO2022142966A1 true WO2022142966A1 (zh) 2022-07-07

Family

ID=82132735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134467 WO2022142966A1 (zh) 2020-12-30 2021-11-30 波长测量芯片及波长测量系统

Country Status (5)

Country Link
US (1) US20230341266A1 (zh)
EP (1) EP4257939A4 (zh)
JP (1) JP2024501712A (zh)
CN (1) CN114689188A (zh)
WO (1) WO2022142966A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395866A (zh) * 2009-02-24 2012-03-28 艾迪株式会社 平面光波导傅里叶变换光谱仪
CN103635785A (zh) * 2011-02-15 2014-03-12 勒克思马克斯科技公司 整合cmos-ftir测定及拉曼测定的光谱仪及其方法
US20170227399A1 (en) * 2016-02-10 2017-08-10 Juejun Hu Apparatus, Systems, and Methods for On-Chip Spectroscopy Using Optical Switches
CN111157112A (zh) * 2020-01-15 2020-05-15 浙江工业大学 一种大带宽且分辨率可调的微型芯片光谱仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351043B2 (en) * 2007-03-22 2013-01-08 National Research Council Of Canada Planar waveguide wavelength dispersive devices with multiple waveguide input aperture
US8258476B1 (en) * 2008-07-29 2012-09-04 University Of Washington Radiation detection using a nonlinear phase shift mechanism
US9574941B2 (en) * 2011-05-31 2017-02-21 Tornado Spectral Systems, Inc. Dispersed fourier transform spectrometer, methods and systems
JP2015068854A (ja) * 2013-09-26 2015-04-13 住友電気工業株式会社 光学素子および波長モニタ
US9964703B2 (en) * 2016-10-10 2018-05-08 Juniper Networks, Inc. Integrated wavelength locker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395866A (zh) * 2009-02-24 2012-03-28 艾迪株式会社 平面光波导傅里叶变换光谱仪
CN103635785A (zh) * 2011-02-15 2014-03-12 勒克思马克斯科技公司 整合cmos-ftir测定及拉曼测定的光谱仪及其方法
US20170227399A1 (en) * 2016-02-10 2017-08-10 Juejun Hu Apparatus, Systems, and Methods for On-Chip Spectroscopy Using Optical Switches
CN111157112A (zh) * 2020-01-15 2020-05-15 浙江工业大学 一种大带宽且分辨率可调的微型芯片光谱仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4257939A4 *

Also Published As

Publication number Publication date
CN114689188A (zh) 2022-07-01
US20230341266A1 (en) 2023-10-26
JP2024501712A (ja) 2024-01-15
EP4257939A4 (en) 2024-05-01
EP4257939A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP6491399B2 (ja) マルチチャンネル波長可変レーザの性能試験装置
US9453723B1 (en) Method for testing a photonic integrated circuit including a device under test
CN107884876B (zh) 一种基于波导光栅耦合器的光偏振态检测芯片
CA2175886C (en) Optical wavelength division multiplexer device
US20200284879A1 (en) Amplification of lidar output signals
CN114641720A (zh) 偏振系统和方法
WO2020098577A1 (zh) 一种平面光波导器件及温度测量系统
JP2020021015A (ja) 光デバイス、光送受信モジュール、および光デバイスの製造方法
Poulton Integrated LIDAR with optical phased arrays in silicon photonics
WO2022142966A1 (zh) 波长测量芯片及波长测量系统
US10876896B2 (en) Device and method for determining a polarization state of an electromagnetic wave
CN110989102A (zh) 基于vcsel阵列混合集成和光纤垂直封装的硅基wdm光发送装置
US6876794B2 (en) Multi-waveguide layer H-tree distribution device
JP3317281B2 (ja) アレイ導波路回折格子の光路長測定装置
JP3063138B2 (ja) 導波路型波長測定装置
CN215448235U (zh) 一种硅光芯片温度传感器
JP2020118831A (ja) モード合分波光回路
JP2019058412A (ja) 光センサ装置
CN112665749B (zh) 一种中阶梯光栅硅光芯片温度传感器
CN117192703B (zh) 光芯片、激光雷达及可移动设备
WO2024057982A1 (ja) 光集積回路素子
CN112230336B (zh) 一种支持片上多模式的任意比例分光器
WO2024057980A1 (ja) 光集積回路及び光トランシーバ
JP2010107377A (ja) 光波長多重信号監視装置および方法
JP2010117566A (ja) 光波長多重信号監視装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540612

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021913707

Country of ref document: EP

Effective date: 20230704

NENP Non-entry into the national phase

Ref country code: DE