WO2022142542A1 - 滑环装置、偏航系统及风力发电机组 - Google Patents

滑环装置、偏航系统及风力发电机组 Download PDF

Info

Publication number
WO2022142542A1
WO2022142542A1 PCT/CN2021/121337 CN2021121337W WO2022142542A1 WO 2022142542 A1 WO2022142542 A1 WO 2022142542A1 CN 2021121337 W CN2021121337 W CN 2021121337W WO 2022142542 A1 WO2022142542 A1 WO 2022142542A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
conductive ring
slip ring
temperature
contact
Prior art date
Application number
PCT/CN2021/121337
Other languages
English (en)
French (fr)
Inventor
岑先富
顾伟峰
褚建坤
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to AU2021412148A priority Critical patent/AU2021412148A1/en
Priority to EP21913287.5A priority patent/EP4262033A1/en
Priority to CA3203898A priority patent/CA3203898A1/en
Priority to KR1020237025232A priority patent/KR20230124058A/ko
Priority to US18/260,233 priority patent/US20240072503A1/en
Publication of WO2022142542A1 publication Critical patent/WO2022142542A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/08Slip-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/101Nacelles
    • F03D1/181Nacelles characterised by the connection to the tower, e.g. yaw systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • F03D80/85Cabling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/022Details for dynamo electric machines characterised by the materials used, e.g. ceramics
    • H01R39/025Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/14Fastenings of commutators or slip-rings to shafts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/18Contacts for co-operation with commutator or slip-ring, e.g. contact brush
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/46Auxiliary means for improving current transfer, or for reducing or preventing sparking or arcing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/58Means structurally associated with the current collector for indicating condition thereof, e.g. for indicating brush wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the field of wind power generation, and more particularly, to a slip ring device, a yaw system and a wind turbine.
  • the generators used in wind turbines mainly include direct-drive permanent magnet generators, medium-speed permanent magnet generators, and doubly-fed asynchronous generators (electric excitation). These three generator sets need to be equipped with electric pitch in the impeller system Slip rings or electro-hydraulic slip rings are used to transmit power and signals. In addition, a motor collector ring needs to be configured on the doubly-fed asynchronous generator set for electrical excitation and transmission of rotor-side electrical energy. Electric pitch slip rings or electro-hydraulic slip rings or motor collector rings have similar structures, including conductive rings and brushes.
  • the pitch slip ring works in a sliding electrical contact state at low speed (average speed 10 rpm to 20 rpm), and the motor collector ring works in a high speed (average speed 1500 rpm) electrical contact state.
  • the slip ring used in the yaw system of the wind turbine works in the electrical contact state of low frequency and ultra-low speed.
  • the electrical contact between the conductive ring in the slip ring or the collector ring and the corresponding contact brush in each of the above-mentioned different application scenarios has different design characteristics and failure modes.
  • the pitch slip ring works in medium and low speed conditions, and is mainly used to transmit high-frequency communication signals, and reliable signal transmission is the focus of its attention;
  • the motor collector ring works in high-speed conditions, mainly used to transmit rotor side electric energy, brush
  • the high-speed wear, heat, and mechanical runout are the focus of its attention;
  • the slip ring used in the yaw system may be stationary for a long time (working in sliding conditions for a small part of the time), ultra-low speed and intermittent sliding conditions, Its heat generation and increase in contact resistance are the focus of its research.
  • the speed of the collector ring of the yaw system is about 0.05r/min, the linear speed of the brush is about 1mm/s, and it belongs to the intermittent working system.
  • the wear law of low speed is in line with the fretting wear. Wear, mechanical and chemical wear is caused by the relative movement of the two contact objects with a small amplitude (below 1 mm), when the two contact objects rub, fatigue cracks or adhesive wear are generated in the friction surface layer, causing the metal to peel off and form wear debris Or wear particles, and the high temperature on the friction surface oxidizes the wear debris.
  • the conductive ring of the yaw system collector ring and the brush contact pair appear fretting wear during long-term low-speed and intermittent rotation, and the wear particles are attached between the contact surface of the brush and the conductive ring. It is large, and the roughness of the brush contact surface is large, the fretting stroke is small, and the wear particles are rarely discharged during the rotation process. , and finally an oxide film layer that hinders the passage of current is formed, resulting in an increase in the film resistance in the fretting contact resistance, resulting in an excessively rapid increase in the fretting contact resistance.
  • the fretting contact resistance is the resistance formed between the guide ring and the brush contact pair during low-speed, intermittent rotation.
  • the present disclosure has been made in view of the above-mentioned problems.
  • the purpose of the present disclosure is to provide a slip ring device, which can suppress the increase of the fretting contact resistance between the conductive ring and the brush in the slip ring device.
  • the present disclosure provides a slip ring device, the slip ring device includes a rotating part and a fixed part, the rotating part can rotate relative to the fixed part, the rotating part is provided with a conductive ring, so A brush is provided on the fixing part, and a chute is provided on at least one of the conductive ring and the brush, so that when the conductive ring and the brush are in contact, the chute can be discharged Wear debris generated when the conductive ring is in contact with the brush.
  • the present disclosure also provides a yaw system, the yaw system includes: the above-mentioned slip ring device, arranged on a yaw platform in the middle of the installation position of the tower and the nacelle; a control unit, arranged on the slip ring The fixed part of the device is used to control the start and stop of the heat sink according to the temperature signal measured by the temperature sensor.
  • the present disclosure also provides a wind turbine comprising the yaw system as described above.
  • the slip ring device reduces the formation of wear debris, discharges the wear debris in time, and further reduces the occurrence of wear debris through the material selection of related components, the improvement of the surface processing technology and structure, and the control and optimization of the working temperature and the working current.
  • the oxide film and the softened oxide film can effectively suppress the increase of the fretting contact resistance between the conductive ring and the brush in the slip ring device.
  • FIG. 1 is a diagram showing the composition of a yaw system according to the present disclosure.
  • FIG. 2 is a partial structural diagram illustrating a conductive ring and a brush in the slip ring device according to the present disclosure.
  • 10-tower 20-nacelle, 30-yaw platform, 40-slip ring device, 41-rotating part, 411-conducting ring, 42-fixed part, 421-brush, 412, 422-chutes, 43- Heat sink, 44 - temperature sensor, 45 - control unit.
  • the present disclosure provides a slip ring device that can suppress the increase in fretting contact resistance.
  • the slip ring device will be described below by taking a yaw system collector ring as an example.
  • the slip ring device includes a conductive ring and a brush.
  • the present disclosure It is not limited to this, but the following description can be correspondingly applicable to other similar devices in which it is necessary to suppress the increase of the fretting contact resistance between the contact pairs.
  • a yaw system for a wind turbine is shown, the yaw system includes a yaw platform 30 located between the tower 10 and the nacelle 20, and a slip ring device 40 ( In this example the yaw system slip ring).
  • the slip ring device 40 includes a rotating part 41 and a fixed part 42, the connection between the rotating part 41 and the fixed part 42 is similar to the rotor and stator in the generator, the fixed part 42 is similar to the stator, has a cylindrical shape, and the inside is a cylinder
  • the rotating part 41 is similar to a rotor, has a cylindrical shape, is arranged in the cavity inside the fixed part 42 , and the rotating part 41 can rotate relative to the fixed part 42 .
  • the motion relationship between the rotating part 41 and the fixed part 42 shown in the figure can be interchanged, that is, the rotating part 41 can be fixed, and the fixed part 42 can rotate relative to the rotating part 41 .
  • the specific structures of the rotating part 41 and the fixed part 42 are only examples, and other structures may be provided as long as they can perform relative movement. relative rotation.
  • An annular conductive ring 411 is provided on the outer peripheral surface of the rotating portion 41, and a brush 421 is provided on the inner peripheral surface of the fixed portion 42 at a position corresponding to the conductive ring 411.
  • the conductive ring 411 and the brush 421 are in contact with each other and rotate relative to each other. They are respectively connected with the cables of different sections of the wind turbine (shown by the thick solid line in Figure 1), so that the current generated by the generator is transmitted through the two.
  • FIG. 1 shows three sets of conductive rings and corresponding brushes, but not limited thereto, more or less sets of conductive rings and brushes can be provided according to actual engineering applications.
  • the slip ring device 40 further includes a heat dissipation device 43 disposed outside the fixing portion 42 for dissipating heat to the slip ring device 40 , but not limited to this, the heat dissipation device 43 may also be disposed inside the fixing portion 42 to dissipate heat to the conductive ring 411 and the brush 421 to dissipate heat.
  • the slip ring device 40 further includes a temperature sensor 44 disposed on the brush 421 for detecting the temperature of the brush 421, but not limited thereto, the temperature sensor 44 can also be disposed on the conductive ring 411, for example, embedded in the conductive ring 411 , for detecting the temperature of both the conductive ring 411 and the brush 421 .
  • the yaw system also includes a control unit 45 disposed on the fixed part 42 of the slip ring device 40 , for controlling the start and stop of the heat dissipation device 43 according to the temperature signal measured by the temperature sensor 44 to realize heat dissipation of the slip ring device 40 .
  • the fretting contact resistance between the contact pair of the conductive ring 411 and the brush 421 in the slip ring device 40 is mainly due to the fretting wear between the contact pairs to generate wear debris, and the wear debris cannot be discharged in time and accumulates between the contact surfaces of the contact pair. During this time, it gradually oxidizes into an oxide film with oxygen and high temperature, and the oxide film hinders the passage of current.
  • the slip ring device 40 of the present disclosure suppresses the contact pair by reducing the generation of wear debris, discharging the wear debris to reduce the accumulation of the wear debris, controlling the working temperature to slow down the oxidation of the wear debris, and controlling the optimized working current to soften the oxide film.
  • the fretting contact resistance between them increases.
  • FIG. 2 a partial structure of the conductive ring 411 and the brush 421 of the slip ring device 40 is shown.
  • the conductive ring 411 and the brush 421 are not shown in actual size and scale, but are exaggerated or reduced for schematic illustration. specific details.
  • At least one of the conductive ring 411 and the brush 421 can be provided with an oblique groove. The purpose of the oblique groove is to discharge the wear debris generated when the conductive ring 411 and the brush 421 are in contact in time to avoid the contact between the wear debris. stacked on the surface.
  • the conductive ring 411 and the brush 421 are provided with inclined grooves 412 and 422 respectively, and these inclined grooves are inclined at a certain angle relative to the circumferential extension direction of the conductive ring 411 and the brush 421 , wherein the conductive ring 411
  • the inclined groove 412 on the upper can be in the form of a spiral groove, and the processing of the inclined groove can be realized by a horizontal milling machine.
  • the wear debris on the 411 is smoothly discharged along the chute under the action of its own gravity, reducing the accumulation of wear debris on the contact surface and in the chute.
  • the angle of repose is a concept related to the fluidity of the material.
  • the material When the material is placed on the inclined plane, when the inclination angle of the inclined plane relative to the horizontal direction is smaller than the angle of repose, the material remains in a stable state, and when the inclination angle of the inclined plane is greater than the angle of repose , under the action of its own gravity, the material overcomes the friction between it and the inclined plane and flows along the inclined plane.
  • the angle of repose is related to the physical and chemical properties such as the density and molecular structure of the material, as well as factors such as the type, particle size, shape and moisture content of the material particles. Different materials have different angles of repose and can be obtained through reference books or through experimental measurements. .
  • the brush material and the conductive ring material have different properties, so the two have different repose angles.
  • the larger repose angle of the two materials shall prevail.
  • the brush material is used. It is described as an example, that is, the inclination angle of the chute is greater than the repose angle of the brush material, for example, the inclination angle of the chute can range from 45 degrees to 90 degrees, preferably 60 degrees, but not limited to this.
  • the angle of repose of the brush material and the conductive ring material can be comprehensively considered to set the inclination angle of the chute to facilitate the discharge of wear debris.
  • the directions of the inclined grooves on the conductive ring 411 and the brush 421 may be the same, so that when the conductive ring 411 and the brush 421 are in contact with each other and rotate relative to each other, the inclined grooves 412 on the conductive ring 411 and the inclined grooves 422 on the brush 421 are mutually
  • the cross forms scissors to provide shearing action to ensure that the two rotate in the forward or reverse direction when they are in micro-motion contact.
  • the crossed slant grooves are like scissors to remove the generated wear debris and oxides formed by them to reduce their damage. adhesion.
  • the depth of the inclined groove can be, for example, 1 mm to 4 mm, preferably 3 mm to accommodate the formed wear debris;
  • the width of the inclined groove can be set so that the area occupied by all the inclined grooves formed on the conductive ring 411 and the brush 421 It is a certain proportion of the area of the contact surface of the conductive ring 411 and the brush 421, so as to facilitate the driving of the formed wear debris into the inclined groove by the shearing action.
  • the inclined grooves When the inclined grooves are provided on both the conductive ring 411 and the brush 421, the inclined grooves can be distributed more evenly, and when the inclined grooves are provided on one of the conductive ring 411 and the brush 421, the inclined grooves are distributed more densely, and
  • the area occupied by all the inclined grooves may be, for example, 1/6 to 1/5 of the area of the contact surface of the conductive ring 411 and the brush 421, but is not limited thereto. It can be adjusted accordingly according to the actual project.
  • the area of the contact surface between the conductive ring 411 and the brush 421 mentioned here refers to the area of the contact surface between the conductive ring 411 and the brush 421 when the inclined groove is not provided on both.
  • the arrangement of the inclined groove is also beneficial to the heat dissipation of the brush 421 and the conductive ring 411, and at the same time, the travel of the wear debris from the center position of the contact surface to the edge position can be greatly reduced, thereby reducing the probability of the accumulation of the wear debris as a whole.
  • the materials of the conductive ring 411 and the brushes 421 may be selected so as to reduce wear when the two rotate in contact.
  • the conductive ring 411 can be made of a material with relatively high hardness
  • the brush 421 can be made of a material with relatively small hardness and low friction coefficient.
  • the brush 421 can be made of copper-carbon composite material, wherein the copper content in the copper-carbon composite material is more than 80%, but not limited to this, this is only an example, the conductive ring 411 and the brush 421 can be made of other Made of suitable material.
  • the roughness of the surface of the conductive ring 411 and the brush 421 in contact with each other can be reduced, so that during the contact rotation process, the generation of wear debris can be reduced.
  • the roughness of the surface of the conductive ring 411 and the brush 421 in contact with each other The roughness is less than or equal to 0.1 ⁇ m, but not limited to this, this value is only an example, and the corresponding roughness can be selected according to the specific engineering practice, wherein, the surface of the conductive ring 411 and the brush 421 can be processed by lathe and grinding. device implementation.
  • the slip ring device 40 of the present disclosure can also control the operating temperature to suppress the increase in the fretting contact resistance.
  • the temperature of the brush 421 is relatively higher than that of the conductive ring 411 due to its material. Therefore, the following description will take the brush 421 as an example, but it is not limited to this, and similar measures can also be applied.
  • Conductive ring 411 is a relatively higher than that of the conductive ring 411 due to its material. Therefore, the following description will take the brush 421 as an example, but it is not limited to this, and similar measures can also be applied.
  • the temperature control of the brush 421 is mainly realized through heat dissipation design, for example, the temperature of the brush 421 is controlled to be lower than the critical rapid oxidation temperature of the brush 421 by using the heat dissipation device 43 (for example, a fan), wherein the temperature of the brush 421 is
  • the critical rapid oxidation temperature means that when the temperature is higher than the critical rapid oxidation temperature, the fretting contact resistance between the conductive ring 411 and the brush 421 increases rapidly, and the critical rapid oxidation temperature is obtained through experimental measurement.
  • the conductive ring 411 and the brush 421 were rotated to be in micro-motion contact state, and the conductive ring 411 and the brush 421 were passed through (ie, current was made to flow through both), so that The temperature of the conductive ring 411 and the brush 421 increases, the temperature is measured in real time by the temperature sensor 44, and the voltage and current between the conductive ring 411 and the brush 421 are measured in real time by the voltmeter and the galvanometer, respectively, and then the two are calculated.
  • the fretting contact resistance between the two, or the fretting contact resistance between the two can be measured directly through a resistance measuring device (such as a resistance meter), and a curve is drawn with the temperature as the independent variable and the fretting contact resistance as the dependent variable, and the resistance and temperature are obtained.
  • a resistance measuring device such as a resistance meter
  • the resistance increase rate curve (that is, the resistance increase rate curve), from this curve, it can be seen that with the increase of brush temperature (or brush temperature rise) the rate of resistance increase, find the inflection point of the curve, which is smaller than the inflection point (that is, lower than the inflection point) temperature inflection point), the resistance increases slowly, greater than the inflection point (ie higher than the temperature inflection point), the resistance increases rapidly, the temperature inflection point is called the critical rapid oxidation temperature of the brush 421, which means that when the temperature is higher than this, the wear debris It is rapidly oxidized into an oxide film layer, which makes the fretting contact resistance increase rapidly. Therefore, the temperature of the brush should be controlled to be lower than this temperature to avoid a rapid increase in the fretting contact resistance.
  • the control unit 45 performs feedforward control on the brush 421, that is, when the brush temperature is higher than the threshold temperature (The threshold temperature is lower than the critical rapid oxidation temperature of the brush), the control unit 45 enables the heat sink 43 to dissipate heat to the brush 421, and when the brush temperature is lower than the threshold temperature, the heat sink 43 can be disabled, The heat dissipation of the brushes is suspended, so that the temperature of the brushes 421 is always controlled to be lower than the critical rapid oxidation temperature of the brushes 421 .
  • the temperature rise of the brush can be controlled not to be higher than 20K, to ensure that the temperature of the brush is not higher than 85°C for a long time, where K represents the temperature in Kelvin, and the specific values of the temperature rise of the brush and the temperature of the brush are only examples. , not limited to this, but depends on the critical rapid oxidation temperature of the brushes 421 and conductive rings 411 used.
  • the wear debris By using low temperature to slow down the rapid formation of oxides by the wear debris, the wear debris can be discharged before the oxides are generated, reducing the existence of the wear debris between the contact pairs, and reducing the oxidation rate at the same time, so that the oxide film has a softening condition, although the wear debris particles Slow oxidation in the open space is unavoidable, but the above measures can control the oxidation to be slower and the oxide film layer to be thinner, so that it can maintain controllable electrical contact performance.
  • the slip ring device 40 of the present disclosure can also suppress the increase in the fretting contact resistance by controlling the current within an optimal flow value range.
  • a small current cannot break down, and a large current has a softening effect on the thinner oxide film, but an excessive current will cause the contact surface between the conductive ring 411 and the brush 421 to melt.
  • the fretting contact resistance increases, the contact voltage under the superposition of high current is higher, and the thin oxide film can be softened by high current.
  • the aforementioned discharge prevents the formation of multilayer oxide films, and finally makes the fretting contact resistance stabilized at a lower equilibrium state.
  • the brush 421 is used as an example for description below. Specifically, for the oxide film formed by the brush material, the magnitude of the current is controlled to soften the oxide film, but at the same time, the contact surface between the conductive ring 411 and the brush 421 will not be melted, that is, the conductive ring 411 and the electric brush 421 will not be melted.
  • the current I flowing between the brushes 421 satisfies the following conditions: Ua/Rs ⁇ I ⁇ Ub/Rs, wherein Ua is the softening voltage of the brush material, Ub is the melting voltage of the brush material, and Rs is the conductive ring 411 and the electric current.
  • the static contact resistance between the brushes 421, the static contact resistance is the resistance between the conductive ring 411 and the brush 421 in the non-operating state (ie the static state), for a specific brush material, Ua and Ub It can be obtained from the reference book, and Rs can be obtained by experimental measurement. For example, a voltage is applied between the conductive ring 411 and the brush 421 and measured, and the current flowing between the two is measured at the same time.
  • the static contact resistance Rs between the conductive ring 411 and the brush 421 is obtained.
  • the voltage applied between the brushes 421 is controlled so that the current I flowing through each brush 421 satisfies Ua/Rs ⁇ I ⁇ Ub/Rs.
  • the brush material is copper
  • the softening voltage of copper is 0.12V
  • the melting voltage is 0.43V
  • the current passing through the brush 421 should make the contact voltage loaded on both ends of the brush 421 slightly higher than the softening voltage of copper and Much smaller than the melting voltage of copper.
  • the slip ring device can reduce the formation of wear debris and discharge the wear debris in time through material selection of related components, improvement of surface processing technology and structure, and optimization of operating temperature and operating current control. , and then reduce the oxide film formed by wear debris, soften the oxide film, and effectively suppress the increase in the fretting contact resistance between the conductive ring and the brush in the slip ring device.
  • the present disclosure also provides a yaw system
  • the yaw system includes: the above-mentioned slip ring device 40, arranged on the yaw platform 30 in the middle of the installation position of the tower 10 and the nacelle 20; a control unit 45, arranged The fixed part 42 of the slip ring device 40 is used to control the start and stop of the heat dissipation device 43 according to the temperature signal measured by the temperature sensor 44 .
  • the present disclosure also provides a wind turbine comprising the yaw system as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本公开提供一种滑环装置、偏航系统及风力发电机组。滑环装置包括旋转部和固定部,旋转部能够相对于固定部旋转,旋转部上设置有导电环,固定部上设置有电刷,在导电环和电刷中的至少一个上设置有斜槽,使得导电环和电刷二者接触时,斜槽能够排放导电环和电刷接触时产生的磨屑,抑制了导电环和电刷之间的微动接触电阻的增加。

Description

滑环装置、偏航系统及风力发电机组 技术领域
本公开涉及风力发电领域,更具体地,涉及一种滑环装置、偏航系统及风力发电机组。
背景技术
当前风力发电机组采用的发电机主要有直驱永磁发电机、中速永磁发电机、双馈异步发电机(电励磁),这三种发电机机组在叶轮系统中均需要配置电变桨滑环或者电液滑环用来传输动力及信号,另外,在双馈异步发电机机组上还需要配置电机集电环用来电励磁及传输转子侧电能。电变桨滑环或者电液滑环或电机集电环具有类似的结构,包括导电环和电刷。变桨滑环工作在低速(平均转速10转/分至20转/分)滑动电接触状态,电机集电环工作在高速(平均转速1500转/分)电接触状态。而用在风力发电机组的偏航系统中的集电环则工作在低频超低速的电接触状态。上述每种不同应用场景的滑环或集电环中的导电环与对应接触的电刷之间的电接触均有其不同的设计特点及失效模式。
变桨滑环工作在中低速工况,主要用来传输高频通信信号,可靠的信号传输是其关注的重点;电机集电环工作在高速工况,主要用来传输转子侧电能,电刷的高速磨损、发热、机械跳动是其关注的重点;而用在偏航系统中的集电环处于长时间可能静止(少部分时间工作在滑动工况)、超低速且间歇性滑动工况,其发热、接触电阻增加是其关注研究的重点。
在研制偏航系统集电环的过程中,发现导电环和电刷接触对之间随着运行时间增加逐步附着黑色膜层,其接触电阻有增加过快的现象,而运行在高速工况下的电机集电环并没有出现这类现象。
偏航系统集电环转速约为0.05r/min,电刷线速度约1mm/s,且属于间歇性工作制,低转速的磨损规律符合微动磨损,微动磨损是一种典型的复合式磨损,由于两个接触物体进行振幅(1毫米以下)很小的相对运动而引起机械化学磨损,在两个接触物体摩擦时,在摩擦表面层产生了疲劳裂纹或粘着 磨损使金属剥落形成磨屑或磨损颗粒,进而摩擦表面上的高温使磨屑氧化。
偏航系统集电环的导电环和电刷接触对在长期的低速、间歇性旋转过程中出现微动磨损,磨损颗粒附着在电刷与导电环的接触面之间,由于电刷接触面较大,且电刷接触面粗糙度较大,微动行程小,旋转过程中磨损颗粒很少被排出,磨损颗粒夹杂在接触对之间反复研磨,并随着杂质、氧气、高温环境而逐步氧化,最终形成阻碍电流通过的氧化膜层,造成微动接触电阻中的膜电阻增加,从而导致微动接触电阻过快增加。其中,微动接触电阻是指导电环和电刷接触对在低速、间歇性旋转过程中二者之间形成的电阻。
发明内容
鉴于上述问题而提出本公开。本公开的目的在于提供一种滑环装置,实现了抑制滑环装置中的导电环和电刷之间的微动接触电阻的增加。
为了实现上述目的,本公开提供一种滑环装置,所述滑环装置包括旋转部和固定部,所述旋转部能够相对于所述固定部旋转,所述旋转部上设置有导电环,所述固定部上设置有电刷,在所述导电环和所述电刷中的至少一个上设置有斜槽,使得所述导电环和所述电刷二者接触时,所述斜槽能够排放所述导电环和所述电刷接触时产生的磨屑。
本公开还提供一种偏航系统,所述偏航系统包括:如上所述的滑环装置,设置在塔筒与机舱的安装位置中间的偏航平台上;控制单元,设置在所述滑环装置的固定部上,用于根据温度传感器测量的温度信号,控制散热装置的启停。
本公开还提供一种风力发电机组,包括如上所述的偏航系统。
根据本公开的滑环装置通过相关部件的材料选择、对表面加工工艺以及结构的改进、对工作温度以及工作电流的控制优化,减少磨屑的形成、及时排出磨屑、进而减少磨屑形成的氧化膜、软化氧化膜,有效地实现了抑制滑环装置中的导电环和电刷之间的微动接触电阻的增加。
附图说明
通过下面结合附图对示例性实施例进行的详细描述,本公开的上述和其他方面、特点及其他优点将会变得清楚和更加容易理解,在附图中:
图1是示出根据本公开的偏航系统的组成示图。
图2是示出根据本公开的滑环装置中的导电环与电刷的部分结构示图。
附图标号说明:
10-塔筒,20-机舱,30-偏航平台,40-滑环装置,41-旋转部,411-导电环,42-固定部,421-电刷,412、422-斜槽,43-散热装置,44-温度传感器,45-控制单元。
具体实施方式
以下,参照附图来详细说明本公开的优选实施例。应当清楚的是,在下面对实施例的说明和附图中,对相同部件标注相同符号,并省略重复的说明。
本公开提供一种滑环装置,实现对微动接触电阻增加的抑制,下文中将以偏航系统集电环为例描述该滑环装置,该滑环装置包括导电环和电刷,本公开不限于此,而是下文的描述也可以相应地适用于需要抑制接触对之间的微动接触电阻增加的其他类似装置中。
如图1所示,示出了用于风力发电机组的偏航系统,偏航系统包括位于塔筒10与机舱20之间的偏航平台30,偏航平台30中设置有滑环装置40(在本示例中为偏航系统集电环)。
滑环装置40包括旋转部41和固定部42,旋转部41和固定部42之间的连接类似于发电机中的转子和定子,固定部42类似于定子,具有圆筒形形状,内部为圆柱形空腔,旋转部41类似于转子,具有圆柱体形状,设置在固定部42内部的空腔中,旋转部41能够相对于固定部42旋转。图中示出的旋转部41和固定部42之间的运动关系可以互换,即旋转部41可以是固定的,固定部42可以相对于旋转部41旋转。此外,旋转部41和固定部42的具体结构仅是示例,还可以具有其他结构,只要二者能够进行相对运动即可,例如,旋转部41和固定部42可以类似于一对外啮合的齿轮进行相对旋转。
旋转部41的外周表面上设置有环形的导电环411,固定部42的内周表面上在与导电环411对应的位置设置有电刷421,导电环411和电刷421彼此接触并相对旋转,并分别与风力发电机组不同段的电缆(如图1中的粗实线所示)连接,使发电机产生的电流通过二者进行传递。图1中示出了3组导电环以及对应的电刷,但不限于此,可以根据实际工程应用设置更多或更少的导电环和电刷组。
滑环装置40还包括设置在固定部42外部的散热装置43,用于对滑环装 置40进行散热,但不限于此,散热装置43还可以设置在固定部42的内部,以对导电环411和电刷421进行散热。
滑环装置40还包括设置在电刷421上的温度传感器44,用于检测电刷421的温度,但不限于此,温度传感器44还可以设置在导电环411上,例如埋设在导电环411中,用于检测导电环411和电刷421二者的温度。
偏航系统还包括设置在滑环装置40的固定部42上的控制单元45,用于根据温度传感器44测量的温度信号,控制散热装置43的启停,实现对滑环装置40的散热。
滑环装置40中导电环411和电刷421接触对之间的微动接触电阻主要是由于接触对之间的微动磨损产生磨屑,磨屑不能及时排出而积累在接触对的接触面之间,并随着氧气和高温等逐渐氧化成氧化膜层,而氧化膜层阻碍电流的通过。
因此,本公开的滑环装置40通过减少磨屑的生成、排出磨屑以减少磨屑的堆积、控制工作温度以减缓磨屑的氧化,以及控制优化工作电流以软化氧化膜来抑制接触对之间的微动接触电阻增加。
参见图2,示出了滑环装置40的导电环411以及电刷421的部分结构,导电环411以及电刷421未按照真实尺寸和比例示出,而是被夸大或缩小以示意性地示出特定细节。可以在导电环411和电刷421中的至少一个上设置斜槽,斜槽的目的在于将导电环411和电刷421接触时产生的磨屑及时排出,避免磨屑在二者之间的接触面上堆积。
如图1所示,导电环411和电刷421上分别设置有斜槽412、422,这些斜槽相对于导电环411和电刷421的周向延伸方向倾斜一定的角度,其中,导电环411上的斜槽412可以是螺旋槽的形式,斜槽的加工可以通过卧式铣床等实现,斜槽的倾斜角度大于电刷材料和导电环材料的安息角,使得形成在电刷421和导电环411上的磨屑在自身重力的作用下沿着斜槽顺利排出,减少磨屑在接触面上和斜槽中的积累。
其中,安息角是与材料的流动性相关的概念,在材料放置于斜面上时,当斜面相对于水平方向的倾斜角度小于安息角时,材料保持稳定状态,当斜面的倾斜角度大于安息角时,材料在自身重力的作用下克服其与斜面之间的摩擦力而沿着斜面流动。安息角与材料的密度以及分子结构等物理化学属性以及材料颗粒的种类、粒径、形状和含水率等因素有关,不同的材料具有不 同的安息角并且可以通过工具书得到或者可以通过实验测量得到。通常电刷材料与导电环材料具有不同的属性,因此二者具有不同的安息角,在设置斜槽的倾斜角度时,以两种材料中的较大的安息角为准,本文以电刷材料为例进行描述,即,斜槽的倾斜角度大于电刷材料的安息角,例如斜槽的倾斜角度的范围可以是45度至90度,优选地为60度,但不限于此,在具体的工程实践中可以综合考虑电刷材料与导电环材料两者的安息角来设置斜槽的倾斜角度以有利于磨屑的排出。
导电环411和电刷421上的斜槽的方向可以相同,使得当导电环411和电刷421彼此接触并相对旋转时,导电环411上的斜槽412和电刷421上的斜槽422彼此交叉形成剪刀,以提供剪切作用,保证二者在微动接触时无论是正向旋转还是反向旋转,交叉的斜槽如同剪刀去除所产生的磨屑以及由其形成的氧化物以减少它们的粘着。其中,斜槽的深度范围可以为例如1mm至4mm,优选地为3mm以容纳所形成的磨屑;斜槽的宽度可以设置成使得导电环411和电刷421上形成的所有斜槽占据的面积是导电环411和电刷421的接触面的面积的一定比例,从而有利于通过剪切作用将所形成的磨屑驱赶到斜槽中。当在导电环411和电刷421上均设置斜槽时,斜槽可以分布得更均匀,而在导电环411和电刷421中的一个上设置斜槽时,斜槽分布得较密集,并且所有斜槽占据的面积可以是导电环411和电刷421的接触面的面积的例如1/6至1/5,但不限于此,斜槽的深度和宽度的上述数值仅为示例,具体数值可以根据工程实际进行相应地调整。这里提及的导电环411和电刷421的接触面的面积指的是在导电环411和电刷421上均不设置斜槽的情况下两者之间的接触面的面积。
此外,斜槽的设置还有利于电刷421和导电环411的散热,同时能大大减小磨屑从接触面的中心位置到边缘位置的行程,从而整体上减小磨屑堆积的概率。
另外,可以选择导电环411和电刷421的材料,使得在二者接触旋转时减少磨损。导电环411可以由硬度较大的材料制成,电刷421由硬度相对较小、摩擦系数较低的材料制成,例如,导电环411可以由铜镀银锑合金、采用铜镀银锑工艺制成,电刷421可以由铜碳复合材料制成,其中,铜碳复合材料中的铜含量为80%以上,但不限于此,这仅是示例,导电环411和电刷421可以由其他合适的材料制成。
此外,由于导电环411和电刷421接触对在旋转时,在接触面上可能产生疲劳裂纹或粘着磨损,因此,在制造导电环411和电刷421的工艺过程中,不使用粘结剂等粘性材料,以减少成品的导电环411和电刷421在接触旋转时发生的粘着磨损。
此外,可以减小导电环411和电刷421彼此接触的表面的粗糙度,使得二者在接触旋转过程中,减少磨屑的产生,例如,导电环411和电刷421彼此接触的表面的粗糙度均小于等于0.1μm,但不限于此,该数值仅为示例,可以根据具体的工程实际选择相应的粗糙度,其中,对导电环411和电刷421的表面进行加工可以通过车床和磨削装置实现。
本公开的滑环装置40还可以控制工作温度实现对微动接触电阻增加的抑制。通常电刷421由于其材料的原因在实际工作过程中温度升高相对于导电环411而言比较明显,因此下面以电刷421为例进行描述,但不限于此,类似的措施可以同样应用于导电环411。对电刷421的温度控制主要是通过散热设计实现的,例如采用散热装置43(例如,风扇)将电刷421的温度控制为低于电刷421的临界快速氧化温度,其中,电刷421的临界快速氧化温度是指高于该临界快速氧化温度时,导电环411和电刷421之间的微动接触电阻快速增加,该临界快速氧化温度通过实验测量得到。
具体地,在该实验中,使导电环411和电刷421旋转作业,二者处于微动接触状态,对导电环411和电刷421进行通流(即,使电流流过二者),使得导电环411和电刷421的温度升高,通过温度传感器44实时测量温度,并同时分别通过电压计和电流计实时测量导电环411和电刷421之间的电压和电流进而计算得到二者之间的微动接触电阻,或者可以直接通过电阻测量装置(例如电阻计)测量二者之间的微动接触电阻,以温度为自变量、微动接触电阻为因变量绘制曲线,得到电阻与温度的关系(即电阻增加速率曲线),从该曲线中可以看出随着电刷温度的升高(或电刷温升)电阻增加的速率,从中找到曲线拐点,小于该拐点(即低于该温度拐点),电阻增加的较慢,大于该拐点(即高于该温度拐点),电阻快速增加,该温度拐点称为电刷421的临界快速氧化温度,它表示高于该温度时,磨屑被快速氧化成氧化膜层,使得微动接触电阻快速增加,因此,应该将电刷的温度控制为低于该温度,避免微动接触电阻的快速增加。
相应地,在导电环411和电刷421实际工作中,通过温度传感器44实时 测量二者的温度,并通过控制单元45对电刷421进行前馈控制,即,当电刷温度高于阈值温度(该阈值温度低于电刷的临界快速氧化温度)时,通过控制单元45启用散热装置43,对电刷421进行散热,当电刷温度低于该阈值温度时,可以停用散热装置43,中止对电刷进行散热,以将电刷421的温度始终控制为低于电刷421的临界快速氧化温度。例如,通过上述散热措施,可以控制电刷温升不高于20K,保证电刷温度长期不高于85℃,其中K表示开尔文温度,该电刷温升和电刷温度的具体数值仅为示例,不限于此,而是取决于所用电刷421和导电环411的临界快速氧化温度。通过利用低温减缓磨屑快速生成氧化物,使得磨屑在生成氧化物之前将其排出,减少磨屑在接触对之间的存在,同时降低氧化速率从而使得氧化膜具备软化条件,虽然磨屑颗粒在开放空间中的缓慢氧化不可避免,但上述措施能够控制其氧化更慢一些,氧化膜层更薄一些,能够使得其保持可控的电接触性能。
本公开的滑环装置40还可以通过将电流控制在最佳通流值范围内来实现对微动接触电阻增加的抑制。对于形成的氧化膜层而言,小电流不能击穿,而大电流对较薄的氧化膜具有软化作用,但过大的电流会造成导电环411和电刷421之间的接触面熔化。当微动接触电阻增大后,大电流叠加下的接触电压较高,能够利用大电流软化较薄的氧化膜层,加上前述的排放阻止多层氧化膜的生成,最终使得微动接触电阻稳定在较低的平衡状态。
由于电刷421的磨损比较明显,所形成的磨屑材料也多数为电刷材料,因此下面以电刷421为例进行描述。具体地,对于电刷材料形成的氧化膜,将电流大小控制为能够软化该氧化膜,但同时不会造成导电环411和电刷421之间的接触面熔化,即,使得导电环411和电刷421之间流过的电流I满足如下条件:Ua/Rs<I<Ub/Rs,其中,Ua为电刷材料的软化电压,Ub为电刷材料的熔化电压,Rs为导电环411和电刷421之间的静态接触电阻,静态接触电阻是指导电环411和电刷421在非工作状态(即静止状态)下二者之间的电阻,对于特定的电刷材料而言,Ua和Ub可以通过工具书得到,Rs可以通过实验测量得到,例如在导电环411和电刷421之间施加电压并进行测量,同时测量二者之间流过的电流,多次测量计算取平均值,最终得到导电环411和电刷421之间的静态接触电阻Rs。
在实际工程运转中,根据电刷421的数量以及测得的静态接触电阻Rs,控制施加在电刷421之间的电压,使得流过每个电刷421的电流I满足 Ua/Rs<I<Ub/Rs。例如,当电刷材料为铜时,铜的软化电压为0.12V,熔化电压为0.43V,则通过电刷421的电流应该使得加载在电刷421两端的接触电压稍高于铜的软化电压而远小于铜的熔化电压。
通过以上描述清楚的是,根据本公开的滑环装置通过相关部件的材料选择、对表面加工工艺以及结构的改进、对工作温度以及工作电流的控制优化,减少磨屑的形成、及时排出磨屑、进而减少磨屑形成的氧化膜、软化氧化膜,有效地实现了抑制滑环装置中的导电环和电刷之间的微动接触电阻的增加。
本公开还提供一种偏航系统,所述偏航系统包括:如上所述的滑环装置40,设置在塔筒10与机舱20的安装位置中间的偏航平台30上;控制单元45,设置在滑环装置40的固定部42上,用于根据温度传感器44测量的温度信号,控制散热装置43的启停。
本公开还提供一种风力发电机组,包括如上所述的偏航系统。
上述实施例中的实施方案可以进一步相互组合或者替换,且实施例仅仅是对本公开的优选实施例进行的描述,并非对本公开的构思和范围进行限定,在不脱离本公开设计思想的前提下,本领域技术人员对本公开的技术方案做出的各种变化和改进,均属于本公开的保护范围。

Claims (13)

  1. 一种滑环装置,所述滑环装置(40)包括旋转部(41)和固定部(42),所述旋转部(41)能够相对于所述固定部(42)旋转,所述旋转部(41)上设置有导电环(411),所述固定部(42)上设置有电刷(421),其中,在所述导电环(411)和所述电刷(421)中的至少一个上设置有斜槽,使得所述导电环(411)和所述电刷(421)二者接触时,所述斜槽能够排放所述导电环(411)和所述电刷(421)接触时产生的磨屑。
  2. 如权利要求1所述的滑环装置,其中,在所述导电环(411)上设置斜槽(412),在所述电刷(421)上设置斜槽(422),其中,当所述导电环(411)和所述电刷(421)彼此接触时,所述导电环(411)上的斜槽(412)和所述电刷(421)上的斜槽(422)彼此交叉。
  3. 如权利要求1所述的滑环装置,其中,所述斜槽的倾斜角度的范围为45度至90度。
  4. 如权利要求1所述的滑环装置,其中,所述斜槽的深度范围为1毫米至4毫米,所述导电环(411)和所述电刷(421)上形成的所有斜槽占据的面积是所述导电环(411)和所述电刷(421)的接触面的面积的1/6至1/5。
  5. 如权利要求1所述的滑环装置,其中,所述滑环装置(40)还包括设置在所述固定部(42)上的散热装置(43),在工作状态下,通过所述散热装置(43)对所述电刷(421)进行散热,将所述电刷(421)的温度控制为低于所述电刷(421)的临界快速氧化温度。
  6. 如权利要求5所述的滑环装置,其中,所述电刷(421)的临界快速氧化温度是基于电刷温升以及所述导电环(411)和所述电刷(421)之间的微动接触电阻的增加速率计算得到的。
  7. 如权利要求6所述的滑环装置,其中,所述滑环装置(40)还包括设置在所述电刷(421)上的温度传感器(44),用于检测所述电刷(421)的温度,当所述电刷(421)的温度高于阈值温度时,启用所述散热装置(43),当所述电刷(421)的温度低于阈值温度时,停用所述散热装置(43),以将所述电刷(421)的温度控制为低于所述电刷(421)的临界快速氧化温度。
  8. 如权利要求1所述的滑环装置,其中,通过散热装置(43)将所述电刷(421)控制为所述电刷(421)的温升不高于20K,所述电刷(421)的温 度不高于85℃。
  9. 如权利要求1所述的滑环装置,其中,所述导电环(411)和所述电刷(421)之间流过的电流大于电刷材料的软化电压与所述导电环(411)和所述电刷(421)之间的静态接触电阻的比值,并小于所述电刷材料的熔化电压与所述导电环(411)和所述电刷(421)之间的静态接触电阻的比值。
  10. 如权利要求1所述的滑环装置,其中,所述导电环(411)由铜镀银锑合金制成,所述电刷(421)由铜碳复合材料制成。
  11. 如权利要求10所述的滑环装置,其中,所述导电环(411)和所述电刷(421)彼此接触的表面的粗糙度均小于等于0.1μm。
  12. 一种偏航系统,其中,所述偏航系统包括:
    如权利要求1至11中任一项所述的滑环装置(40),设置在塔筒(10)与机舱(20)的安装位置中间的偏航平台(30)上;
    控制单元(45),设置在所述滑环装置(40)的固定部(42)上,用于根据温度传感器(44)测量的温度信号,控制散热装置(43)的启停。
  13. 一种风力发电机组,其中,包括如权利要求12所述的偏航系统。
PCT/CN2021/121337 2020-12-31 2021-09-28 滑环装置、偏航系统及风力发电机组 WO2022142542A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2021412148A AU2021412148A1 (en) 2020-12-31 2021-09-28 Slip ring apparatus, yaw system, and wind turbine generator set
EP21913287.5A EP4262033A1 (en) 2020-12-31 2021-09-28 Slip ring apparatus, yaw system, and wind turbine generator set
CA3203898A CA3203898A1 (en) 2020-12-31 2021-09-28 Slip ring apparatus, yaw system, and wind turbine generator set
KR1020237025232A KR20230124058A (ko) 2020-12-31 2021-09-28 슬립 링 장치, 요 시스템, 및 풍력 터빈 발전기 세트
US18/260,233 US20240072503A1 (en) 2020-12-31 2021-09-28 Slip ring apparatus, yaw system, and wind turbine generator set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011624096.0A CN114696174B (zh) 2020-12-31 2020-12-31 滑环装置、偏航系统及风力发电机组
CN202011624096.0 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142542A1 true WO2022142542A1 (zh) 2022-07-07

Family

ID=82133613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121337 WO2022142542A1 (zh) 2020-12-31 2021-09-28 滑环装置、偏航系统及风力发电机组

Country Status (7)

Country Link
US (1) US20240072503A1 (zh)
EP (1) EP4262033A1 (zh)
KR (1) KR20230124058A (zh)
CN (1) CN114696174B (zh)
AU (1) AU2021412148A1 (zh)
CA (1) CA3203898A1 (zh)
WO (1) WO2022142542A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360561A (zh) * 2022-09-08 2022-11-18 中船九江精达科技股份有限公司 一种自排屑防摩擦多余物的导电滑环
CN116191776B (zh) * 2023-04-27 2023-07-14 北京金风科创风电设备有限公司 发电系统以及风力发电机组
CN117117748B (zh) * 2023-09-05 2024-03-08 天津沃尔法电力设备有限公司 一种风力发电输电系统
CN117195737B (zh) * 2023-09-21 2024-03-22 江苏中车电机有限公司 永磁风力发电机绕组结构及其智能优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324708A1 (de) * 2003-05-30 2004-12-16 Ltn Servotechnik Gmbh Schleifringelement und Verfahren zu dessen Herstellung
CN200944552Y (zh) * 2006-09-04 2007-09-05 江苏航天动力机电有限公司 一种具有新型滑环结构的三相异步电动机
CN201515292U (zh) * 2009-08-20 2010-06-23 上海曼科电机制造有限公司 一种用于三相异步电动机的滑环结构
CN106887783A (zh) * 2017-03-08 2017-06-23 深圳市晶沛电子有限公司 一种导电滑环
CN207765765U (zh) * 2017-12-29 2018-08-24 江西英智科技有限公司 一种离心机用滑环

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2662492Y (zh) * 2003-12-31 2004-12-08 中国北车集团永济电机厂 直流电动机换向器
CN201113686Y (zh) * 2007-06-18 2008-09-10 祺骅股份有限公司 电动机轴接地用螺纹结构
JP5391657B2 (ja) * 2008-11-14 2014-01-15 株式会社豊田中央研究所 回転電機用ブラシ摺接機構
CN201498859U (zh) * 2009-09-17 2010-06-02 蔡劼 风力机转动接触输电装置
CN102447351A (zh) * 2010-10-09 2012-05-09 溧阳市宏达电机有限公司 风电变桨专用稀土永磁直流伺服电机
CA2816166A1 (en) * 2010-10-29 2012-05-03 3E System for contactless power transfer between nacelle and tower of a windturbine
US20140255151A1 (en) * 2013-03-05 2014-09-11 Ogin, Inc. Fluid Turbine With Slip Ring
CN104330653A (zh) * 2014-10-09 2015-02-04 武汉船用机械有限责任公司 一种船用中心滑环箱智能检测装置
CN210779408U (zh) * 2019-12-11 2020-06-16 新疆金风科技股份有限公司 电刷、集电环系统及电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324708A1 (de) * 2003-05-30 2004-12-16 Ltn Servotechnik Gmbh Schleifringelement und Verfahren zu dessen Herstellung
CN200944552Y (zh) * 2006-09-04 2007-09-05 江苏航天动力机电有限公司 一种具有新型滑环结构的三相异步电动机
CN201515292U (zh) * 2009-08-20 2010-06-23 上海曼科电机制造有限公司 一种用于三相异步电动机的滑环结构
CN106887783A (zh) * 2017-03-08 2017-06-23 深圳市晶沛电子有限公司 一种导电滑环
CN207765765U (zh) * 2017-12-29 2018-08-24 江西英智科技有限公司 一种离心机用滑环

Also Published As

Publication number Publication date
CN114696174B (zh) 2023-04-28
CN114696174A (zh) 2022-07-01
KR20230124058A (ko) 2023-08-24
CA3203898A1 (en) 2022-07-07
AU2021412148A1 (en) 2023-08-10
EP4262033A1 (en) 2023-10-18
US20240072503A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
WO2022142542A1 (zh) 滑环装置、偏航系统及风力发电机组
EP1788241B1 (en) System and method for directing lightning current within a wind turbine
US20090045627A1 (en) Wind turbine assemblies and slip ring assemblies for wind blade pitch control motors
KR101787294B1 (ko) 풍력 발전 설비의 로터 블레이드 그리고 풍력 발전 설비
KR20180049008A (ko) 고정 속도 풍력 터빈 블레이드의 영각 결정 및 제어 방법
TW201602455A (zh) 風車及其停止方法
CN205429914U (zh) 高速永磁电机螺旋式自冷转子结构
JP6227490B2 (ja) ダウンウインド型風車及びその停止方法
JP2018507973A (ja) 発電機用のロータ
CN111502911A (zh) 一种具有调速功能的新能源设备
JP6577334B2 (ja) 気流発生装置、風車翼、および風車
KR102055997B1 (ko) 수평축 풍력발전장치
AMADA et al. Study on VI characteristic in natural graphite brush vs steel slip ring system
JP2016116305A (ja) 発電システムまたは風力発電システム
CN108054852A (zh) 一种电主轴
CN104088755B (zh) 垂直轴风力发电机卸荷装置
JP2004104975A (ja) 風力発電装置
CN111911361A (zh) 一种用于风力发电机的减速装置
CN109639098A (zh) 超高速电涡流制动器
CN106321509B (zh) 应用于发电机的冷却风扇结构
CN109026503A (zh) 一种水力发电设备
CN102465841B (zh) 对转式发电机
CN102904401B (zh) 一种风力发电机
JP5498999B2 (ja) スピンドルモーター
CN206992456U (zh) 一种接地装置使用的摩擦盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3203898

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18260233

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023013246

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021913287

Country of ref document: EP

Effective date: 20230713

ENP Entry into the national phase

Ref document number: 20237025232

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021412148

Country of ref document: AU

Date of ref document: 20210928

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023013246

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230630