WO2022142453A1 - 一种水空两栖立体式搜救系统及方法 - Google Patents

一种水空两栖立体式搜救系统及方法 Download PDF

Info

Publication number
WO2022142453A1
WO2022142453A1 PCT/CN2021/117161 CN2021117161W WO2022142453A1 WO 2022142453 A1 WO2022142453 A1 WO 2022142453A1 CN 2021117161 W CN2021117161 W CN 2021117161W WO 2022142453 A1 WO2022142453 A1 WO 2022142453A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
bionic
aircraft
searched
boat
Prior art date
Application number
PCT/CN2021/117161
Other languages
English (en)
French (fr)
Inventor
马勇
江海洋
李�昊
王京
赵玉蛟
栾凤凯
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Publication of WO2022142453A1 publication Critical patent/WO2022142453A1/zh
Priority to US18/344,846 priority Critical patent/US20240169848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/01Air-sea rescue devices, i.e. equipment carried by, and capable of being dropped from, an aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/02Lifeboats, life-rafts or the like, specially adapted for life-saving
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to the technical field of unmanned aerial vehicle and unmanned ship search and rescue, in particular to an amphibious three-dimensional search and rescue system and method.
  • Water rescue includes maritime water rescue, flood disaster water rescue and other water rescue, and its content covers water emergency rescue command, detection, information collection, material supply and rescue plan, water rescue. life-saving methods, etc.
  • the invention provides an amphibious three-dimensional search and rescue system, comprising a flight power module, a navigation power module, a bionic boat module, an aircraft and an integrated control module;
  • the integrated control module is used for acquiring weather information, and selecting whether to send a flight signal to the flight power module or to send a flight signal to the flight power module according to the weather information; the flight power module is used to make the aircraft after receiving the flight signal Flight to the area to be searched and rescued; the navigation power module is used to make the aircraft navigate to the area to be searched and rescued after receiving the navigation signal; the integrated control module is also used to make the aircraft fly or sail to the area to be searched and rescued.
  • the aircraft puts the bionic boat module; the aircraft is used for flying or sailing to the area to be searched and rescued, and throws the bionic boat module; the bionic boat module is used for search and rescue work in the area to be searched and rescued.
  • the integrated control module includes a fleet positioning unit, and the fleet positioning unit is configured to acquire the position information of the bionic boat module and transmit the position information to the user terminal.
  • the fleet positioning unit acquires the position information of the bionic boat module, which specifically includes generating a short-energy pulse sequence, and using orthogonal frequency division modulation or direct sorting to extend the short-energy pulse sequence to a frequency range,
  • the expanded short energy pulse sequence is obtained, and the arrival time difference of radio signals of different base stations on the bionic boat module is measured by the expanded short energy pulse sequence, and the position information of the bionic boat module is obtained.
  • the integrated control module also includes a collision avoidance unit and an alarm unit; the collision avoidance unit is used to judge the distance between the bionic boat module and the obstacle, and if the distance is less than a set threshold, the alarm unit will be notified. Sending an alarm signal; the alarm unit is used for alarming after receiving the alarm signal.
  • the collision avoidance unit includes an ultrasonic sensor and a single-chip microcomputer, and the collision avoidance unit judges the distance between the bionic boat module and the obstacle, and if the distance is less than a set threshold, sends an alarm signal to the alarm unit, which specifically includes: , send a high level through the ultrasonic sensor control port, start timing when the ultrasonic sensor receiving port has output, re-time when the ultrasonic sensor receiving port output becomes low level, obtain the ranging time according to the time difference between the two timings, and measure the time.
  • the distance is sent to the single-chip microcomputer, and the single-chip computer calculates the distance measurement and determines whether the distance measurement is smaller than the set threshold value, and if it is smaller than the set threshold, an alarm signal is sent to the alarm unit.
  • the integrated control module further includes an underwater image acquisition unit and a water surface image acquisition unit, and the underwater image acquisition unit and the water surface image acquisition unit are respectively used to collect underwater image information and water surface image information.
  • the bionic boat module includes a plurality of bionic unmanned boats; the integrated control module makes the aircraft drop the bionic boat module when the aircraft flies or sails to the area to be searched and rescued, specifically including, the integrated control module When the aircraft flies or sails to the area to be searched and rescued, the aircraft is made to drop corresponding bionic unmanned boats at different locations in the search and rescue area.
  • the bionic boat module performs search and rescue work in the area to be searched and rescued, specifically including, the bionic unmanned boat performs search and rescue work in the area to be searched and rescued, and if the bionic unmanned boat finds the person to be searched and rescued, the bionic unmanned boat will send the The aircraft sends positioning information and converts it into an airbag.
  • the aircraft approaches the corresponding bionic UAV and carries out rescue.
  • the present invention also provides a water-air amphibious three-dimensional search and rescue method, comprising the following steps:
  • the flight power module makes the aircraft fly to the area to be searched and rescued after receiving the flight signal; the flight power module After receiving the navigation signal, the aircraft will sail to the area to be searched and rescued; when the aircraft is flying or sailed to the area to be searched and rescued, the aircraft will be put into the bionic boat module; the bionic boat module will perform search and rescue work in the area to be searched and rescued.
  • the amphibious three-dimensional search and rescue method further includes, if the bionic boat module finds the person to be searched and rescued, the bionic boat module sends the positioning information to the aircraft and converts it into an airbag, and the aircraft approaches the corresponding bionic boat module and launches rescue.
  • the beneficial effects of the present invention include: obtaining weather information through the integrated control module, and selecting whether to send a flight signal to the flight power module or to the flight power module according to the weather information; After receiving the flight signal, the power module makes the aircraft fly to the area to be searched and rescued; after receiving the navigation signal through the navigation power module, the aircraft sails to the area to be searched and rescued; through the integrated control module, the aircraft flies or sails When reaching the area to be searched and rescued, the aircraft is put into the bionic boat module; the aircraft travels or sails to the area to be searched and rescued, and the bionic boat module is released; the bionic boat module performs search and rescue work in the area to be searched and rescued; efficiency of maritime search and rescue.
  • Fig. 1 is the structural representation of the amphibious three-dimensional search and rescue system provided by the present invention
  • Fig. 2 is the model schematic diagram of the aircraft provided by the present invention.
  • Fig. 3 is the working flow chart of the collision avoidance unit provided by the present invention.
  • FIG. 4 is a schematic flowchart of a three-dimensional search and rescue method for amphibious amphibious type provided by the present invention.
  • An embodiment of the present invention provides an amphibious three-dimensional search and rescue system, the schematic diagram of which is shown in FIG. 1 , the system includes a flight power module 1, a navigation power module 2, a bionic boat module 3, a vehicle 4 and an integrated control module 5;
  • the integrated control module 5 is used to obtain weather information, and according to the weather information, select whether to send a flight signal to the flight power module 1 or to send a flight signal to the flight power module 2; the flight power module 1 is used to receive the flight signal after receiving the flight signal. Then make the aircraft 4 fly to the area to be searched and rescued; the sailing power module 2 is used to make the aircraft 4 sail to the area to be searched and rescued after receiving the navigation signal; the integrated control module 5 is also used in the aircraft 4 When flying or sailing to the area to be searched and rescued, the aircraft 4 is put into the bionic boat module 3; the aircraft 4 is used to fly or sail to the area to be searched and rescued, and put the bionic boat module 3; the bionic boat module 3. It is used for search and rescue work in the area to be searched and rescued.
  • the integrated control module starts the aircraft, and selects the movement mode of the aircraft according to the weather conditions. If the weather is bad weather with high winds and rough waves, the aircraft will quickly fly to the area to be searched. If it is normal weather, the aircraft will fly quickly. Navigate to the area to be searched; after the vehicle reaches the area to be searched, the vehicle will lift up and drop the bionic boat module for search and rescue work;
  • the aircraft is a dual-body double-track wave-breaking amphibious vehicle, and a schematic diagram of the model of the aircraft is shown in Figure 2.
  • the aircraft includes a vehicle body and a bionic boat module (including a number of bionic unmanned boat); the vehicle uses PWM dual-signal communication to control the amphibious power module (flight power module, navigation power module), and the front infrared obstacle avoidance module to improve safety.
  • the storage box is used to store first-aid supplies;
  • the quad-rotor part of the aircraft is made of aluminum alloy material, which has the advantages of easy processing, high durability and light weight, which can realize the use of light weight.
  • the aircraft quadrotor chose the more stable "X" type quadrotor wing structure, and changed the way its wings are folded, and designed alloy joints in the middle of the wing to divide the complete wing beam into one part. For the second, a "swastika"-shaped fold is finally formed.
  • the weight of the folded quadrotor can be distributed in the four directions of the aircraft, which can effectively avoid rollover, and because the aluminum alloy is used for the flight control bracket It can effectively reduce the weight and is more conducive to navigation and stability, and it is consistent with the design of the rectangular hull; the main body of the aircraft is designed as a double-body rectangular hollow, and the single-chip part that controls the hull is placed at the rear of the hull, so that the empty space in the middle can be increased.
  • the buoyancy of the hull is also used to carry the bionic boat module.
  • the integrated control module includes a fleet positioning unit, and the fleet positioning unit is configured to acquire the position information of the bionic boat module and transmit the position information to the user terminal.
  • the fleet positioning unit acquires the position information of the bionic boat module, which specifically includes generating a short-energy pulse sequence, and using orthogonal frequency division modulation or direct sorting to extend the short-energy pulse sequence to a frequency range,
  • the expanded short energy pulse sequence is obtained, and the arrival time difference of radio signals of different base stations on the bionic boat module is measured by the expanded short energy pulse sequence, and the position information of the bionic boat module is obtained.
  • the fleet positioning unit uses a short-energy pulse sequence, and extends the pulses into a frequency range through quadrature frequency division modulation or direct sequencing; the fleet positioning unit obtains the time difference of arrival, which is measured by ultra-wideband. The time difference between the positioning tag relative to the radio signal propagation between two different positioning base stations, so as to obtain the distance difference between the positioning tag relative to the four groups of positioning base stations;
  • base stations No. 1 and 2 are the first group
  • base stations No. 2 and 3 are the second group
  • base stations No. 3 and 4 are the third group
  • base stations No. 4 and 1 are the fourth group
  • d i,12 to d i,41 are the distance differences between the measured positioning tags relative to the four groups of base stations, and ri ,1 to ri ,4 are the distances from target i to base stations 1-4;
  • (x i , y i , z i ) are the coordinates of target i
  • (x 1 , y 1 , z 1 )-(x 4 , y 4 , z 4 ) are the coordinates of base stations 1-4 respectively
  • the specific coordinates of the positioning tag can be obtained.
  • the number of base stations is only one, only distance measurement can be performed; when the number of base stations is two, two-dimensional coordinate measurement can be performed; when the number of base stations is three Three-dimensional coordinate measurement can be performed only when there are more than three base stations, and the more the number of base stations, the more accurate the measurement results;
  • the integrated control module further includes a collision avoidance unit and an alarm unit; the collision avoidance unit is used to determine the distance between the bionic boat module and the obstacle, and if the distance is less than a set threshold, the alarm unit will be sent to the alarm unit. Sending an alarm signal; the alarm unit is used for alarming after receiving the alarm signal;
  • the collision avoidance unit includes an ultrasonic sensor and a single-chip microcomputer, and the collision avoidance unit judges the distance between the bionic boat module and the obstacle, and if the distance is less than a set threshold, sends an alarm signal to the alarm unit, which specifically includes , send a high level through the ultrasonic sensor control port, start timing when the ultrasonic sensor receiving port has output, re-time when the ultrasonic sensor receiving port output becomes low level, obtain the ranging time according to the time difference between the two timings, and measure the time.
  • the distance is sent to the single-chip microcomputer, and the single-chip microcomputer calculates the distance measurement and determines whether the distance measurement is less than the set threshold value, and if it is less than the set threshold, then sends an alarm signal to the alarm unit;
  • the main components of the collision avoidance unit are STC89C52/51 single-chip microcomputer, Bluetooth serial port, ultrasonic sensor, PNP driving transistor, DC5V active buzzer, 11.0592Mhz crystal oscillator and LED power indicator;
  • the triode selects the PNP type;
  • the working flow chart of the collision avoidance unit is shown in Figure 3.
  • the collision avoidance unit sends a high level of more than 10 ⁇ s through a control port of the ultrasonic sensor, and can wait for a high level at the receiving port of the ultrasonic sensor.
  • the timer can be started; when the receiving port of the ultrasonic sensor becomes low, the value of the timer can be read, and the value of the timer is the time of ranging; the time is transmitted to the single-chip microcomputer , calculate the distance (half of the product of the ranging time and the propagation speed of the ultrasonic wave in the air, that is, the distance) through the single-chip microcomputer and judge whether the distance is less than the set threshold;
  • the bluetooth serial port is transmitted to the receiving end of the integrated control module through the bluetooth serial port; if it is smaller than that, the single-chip microcomputer controls the driving triode to make the buzzer alarm, and at the same time transmits the distance and preset alarm information to the bluetooth, and then transmits it to the integrated control module via bluetooth Receiving end.
  • the integrated control module further includes an underwater image acquisition unit and a water surface image acquisition unit, and the underwater image acquisition unit and the water surface image acquisition unit are respectively used for acquiring underwater image information and water surface image information.
  • the bionic boat module includes a plurality of bionic unmanned boats; the integrated control module makes the aircraft drop the bionic boat module when the aircraft flies or sails to the area to be searched and rescued, specifically including, the integrated control module When the aircraft flies or sails to the area to be searched and rescued, make the aircraft drop the corresponding bionic unmanned boats at different locations in the search and rescue area;
  • the bionic unmanned boat is equipped with a camera, a sensor and a main control chip, which can perform position positioning, path planning, and information exchange with the aircraft;
  • the main control chip is a device that can communicate with mobile phones via Bluetooth. forever-12 chip; use 2.4GHZ frequency to control the stepper motor and its connected propeller as the power of the bionic unmanned boat; set the propeller-quad-rotor amphibious power system, the underwater propeller is the screw pump-propeller dual power, using the screw
  • the pump-propeller dual-power propeller has a strong ability of three-dimensional action in water and air, so that the main body of the aircraft has three navigation modes: water navigation, air hovering, and near-ground flight.
  • the bionic boat module performs search and rescue work in the area to be searched and rescued, specifically including, the bionic unmanned boat performs search and rescue work in the area to be searched and rescued, and if the bionic unmanned boat finds the person to be searched and rescued, the bionic unmanned boat will send the The aircraft sends positioning information and converts it into an airbag, and the aircraft approaches the corresponding bionic UAV and carries out rescue;
  • the first-level aircraft forms a first-level search and rescue network.
  • the second-level bionic boat module takes the main body of the aircraft as the center and conducts intensive searches around it. This search and rescue method can ensure The real-time control of each search and rescue unit can ensure the comprehensive and efficient search and rescue, and can complete the search for the search and rescue area in the shortest time.
  • An embodiment of the present invention provides an amphibious three-dimensional search and rescue method.
  • a schematic flowchart of the method, as shown in FIG. 4 includes the following steps:
  • S1 obtain weather information, S2, select according to the weather information to send a flight signal to the flight power module or to send a flight signal to the flight power module;
  • S3 the flight power module makes the aircraft fly to the area to be searched and rescued after receiving the flight signal;
  • S4 the navigation power module makes the aircraft sail to the area to be searched and rescued after receiving the navigation signal;
  • S5 makes the aircraft drop the bionic boat module when the aircraft flies or sails to the area to be searched and rescued;
  • S6 the bionic boat module is in the waiting area Search and rescue area to carry out search and rescue work.
  • the amphibious three-dimensional search and rescue method further includes: if the bionic boat module finds the person to be searched and rescued, the bionic boat module sends positioning information to the aircraft and converts it into an airbag, and the aircraft approaches the corresponding bionic boat module and Carry out rescue.
  • the bionic unmanned boat does not find the person to be searched and rescued, it will be automatically recovered into the shipboard compartment of the aircraft; the main body of the aircraft can be simultaneously with the main aircraft of the same fleet and the sub-fleet when sailing.
  • the unmanned boat module and the rescue personnel of the search and rescue center realize synchronous information exchange;
  • the main body of the aircraft is designed as a double-body rectangular empty warehouse (double-door shipboard warehouse), and the integrated control module is placed at the rear of the hull, so that the empty warehouse can be used to carry bionic unmanned boats while increasing the buoyancy of the hull.
  • the fish-like bionic is equipped with a detachable port on the top to make it suitable for various sensing elements. It can carry sensors with different functions when performing different tasks, and realize automatic recovery through the communicable forever-12 chip carried by the bionic unmanned boat.
  • the bionic unmanned boat transmits a signal to the aircraft. After receiving the signal, the aircraft opens the shipboard warehouse, the bionic unmanned boat goes to the shipboard warehouse, and the aircraft closes the shipboard warehouse door to realize the automatic recovery of the bionic boat. .
  • the information collected by the unmanned boat module can be processed in real time, the distribution of personnel and ocean currents in the danger area can be judged, and the information can be fed back to the integrated control module in time to fine-tune the attitude of the aircraft, and the processed
  • the key information is sent back to the rescue center to assist rescuers to make new plans in time;
  • the main body of the aircraft acts as a signal base station to ensure that the bionic boat module can perform real-time positioning and coordinate feedback based on it, so as to realize a blanket search without omissions ;
  • This kind of system in which the aircraft sets sail, the unmanned boat fleet searches, rescues and gives feedback, and the rescuers arrive and rescue according to the feedback coordinates, which is the "three-in-one linkage search and rescue system";
  • the aircraft lifts up and drops the bionic boat module for search and rescue work.
  • the dropped bionic boat module diverges to conduct a mesh fleet search, and the main body of the aircraft obtains the aerial view by adjusting the camera; if the bionic boat is unmanned If the boat does not find the person to be searched and rescued, it will be automatically recovered to the shipboard compartment; if the bionic unmanned boat finds the person to be searched and rescued, it will send the positioning information to the aircraft and convert it into an airbag, the aircraft will approach and carry out rescue; Communicate with rescue personnel and give feedback on the collected search and rescue information. Through this information, search and rescue personnel can quickly and accurately arrive at the scene to carry out three-dimensional and efficient rescue work.
  • the invention discloses an amphibious three-dimensional search and rescue system and method.
  • the integrated control module is used to obtain weather information, and according to the weather information, a flight signal is selected to be sent to a flight power module or a navigation signal to be sent to a flight power module;
  • the flight power module makes the aircraft fly to the area to be searched and rescued after receiving the flight signal;
  • the aircraft is sailed to the area to be searched and rescued after receiving the navigation signal through the navigation power module;
  • the integrated control module is used to fly the aircraft in the area to be searched and rescued.
  • the aircraft when navigating to the area to be searched and rescued, the aircraft is put into the bionic boat module; the aircraft travels or sails to the area to be searched and rescued, and the bionic boat module is released; the bionic boat module performs search and rescue work in the area to be searched and rescued; Improve the efficiency of maritime search and rescue.
  • the technical solution of the present invention better integrates the flight control and the unmanned boat, and at the same time gives full play to their respective advantages, realizes three-dimensional, efficient and unmanned search and rescue, thereby significantly improving the efficiency of maritime search and rescue, Reduce the cost of rescue and protect the personal and property safety of marine workers to the greatest extent.
  • the technical solution of the present invention designs and adopts a "three-in-one linkage search and rescue system system", and is committed to creating a system that significantly improves the efficiency of marine search and rescue and reduces the cost required for rescue , and to protect the personal and property safety of marine workers to the greatest extent, the amphibious three-dimensional bionic unmanned boat search and rescue system.
  • the main body of the aircraft of the present invention adopts the "multi-information feedback technology", so that it can simultaneously synchronize the information with the main aircraft of the same fleet, the unmanned bionic boats of the secondary fleet, and the rescuers of the search and rescue center when sailing.
  • the information collected by each fleet can be processed in real time, the distribution of personnel and ocean currents in the danger area can be judged, and the information can be fed back to the main control board processor in time to fine-tune the attitude of the aircraft and process it.
  • the main aircraft will serve as a signal base station to ensure that the fleet of bionic unmanned boats can perform real-time positioning and coordinate feedback based on it. Carpet search without omission.
  • the bionic unmanned boat searches, rescues and gives feedback, and the rescuers arrive and rescue according to the feedback coordinates, and realize the effective rescue of people in distress.
  • various types of information collection equipment on land have begun to extend wirelessly to the water. These equipment can be combined with the system to achieve more reliable detection and positioning. Promote the development of maritime work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种水空两栖立体式搜救系统及方法,系统包括飞行动力模块(1)、航行动力模块(2)、仿生艇模块(3)、航行器(4)及集成控制模块(5);集成控制模块(5),用于获取天气信息,并根据天气信息选择向飞行动力模块(1)发送飞行信号还是向航行动力模块(2)发送航行信号;飞行动力模块(1),用于在接收到飞行信号后使航行器(4)飞行至待搜救区域;航行动力模块(2),用于在接收到航行信号后使航行器(4)航行至待搜救区域;集成控制模块(5),还用于在航行器(4)飞行或航行至待搜救区域时使航行器(4)投放仿生艇模块(3);航行器(4),用于飞行或航行至待搜救区域,并投放仿生艇模块(3);仿生艇模块(3),用于在待搜救区域进行搜救工作。

Description

一种水空两栖立体式搜救系统及方法 技术领域
本发明涉及无人机和无人船搜救技术领域,尤其涉及一种水空两栖立体式搜救系统及方法。
背景技术
国内外航运业务飞速增长,各种自然和人为的海上险情和事故也多发,海难事故发生概率也显著增加,包括船舶海上航行中遇到大风浪、大雾等恶劣气象和海况导致的翻船、碰撞、触礁、搁浅等情况,以及因爆炸、火灾等原因导致船舶沉没。这时就体现出了水上救援的重要性,水上救援包括海事水上救援、洪涝灾害水上救援及其他水上救援,其内容涵盖了水上应急救援指挥、侦测、信息采集、物资供应以及救援方案、水上救生方式方法等内容。
目前,我国海上搜救工作虽在技术层面已有了一定的进步,但整体搜救体系尚未成熟,与已有的搜救技术结合也并不完善;而空中搜救系统与陆地搜救系统的应用虽有一定的局限性,但这两者的搜救技术已是经过了长足的发展。因此现有的海上搜寻与救助的效率较低是我们亟需解决的问题。
发明内容
有鉴于此,有必要提供一种水空两栖立体式搜救系统及方法,用以解决现有技术中海上搜寻与救助的效率较低的问题。
本发明提供一种水空两栖立体式搜救系统,包括飞行动力模块、航行动力模块、仿生艇模块、航行器及集成控制模块;
所述集成控制模块,用于获取天气信息,并根据天气信息选择向飞 行动力模块发送飞行信号还是向航行动力模块发送航行信号;所述飞行动力模块,用于在接收到飞行信号后使航行器飞行至待搜救区域;所述航行动力模块,用于在接收到航行信号后使航行器航行至待搜救区域;所述集成控制模块,还用于在航行器飞行或航行至待搜救区域时使航行器投放所述仿生艇模块;所述航行器,用于飞行或航行至待搜救区域,并投放所述仿生艇模块;所述仿生艇模块,用于在待搜救区域进行搜救工作。
进一步地,所述集成控制模块包括舰队定位单元,所述舰队定位单元,用于获取仿生艇模块的位置信息,并将所述位置信息传送至用户端。
进一步地,所述舰队定位单元,获取仿生艇模块的位置信息,具体包括,生成短能量脉冲序列,并利用正交频分调制或直接排序将所述短能量脉冲序列扩展到一个频率范围内,得到扩展后短能量脉冲序列,利用扩展后短能量脉冲序列测得不同基站无线电信号在仿生艇模块上的达到时间差,获取仿生艇模块的位置信息。
进一步地,所述集成控制模块还包括避碰单元和报警单元;所述避碰单元,用于判断仿生艇模块离障碍物的距离,若所述距离小于设定阈值,则向所述报警单元发送报警信号;所述报警单元,用于在接收到报警信号后进行报警。
进一步地,所述避碰单元包括超声波传感器及单片机,所述避碰单元判断仿生艇模块离障碍物的距离,若所述距离小于设定阈值,则向所述报警单元发送报警信号,具体包括,通过超声波传感器控制口发出高电平,在超声波传感器接收口有输出时开始计时,在超声波传感器接收口输出变为低电平时重新计时,根据两次计时的时间差得到测距时间,并将测距发送至单片机,所述单片机对测距进行计算并判断测距是否小于设定阈值,若小于,则向所述报警单元发送报警信号。
进一步地,所述集成控制模块还包括水下图像采集单元和水面图像采集单元,所述水下图像采集单元和水面图像采集单元分别用于采集水下图像信息及水面图像信息。
进一步地,所述仿生艇模块包括多个仿生无人艇;所述集成控制模块在航行器飞行或航行至待搜救区域时使航行器投放所述仿生艇模块,具体包括,所述集成控制模块在航行器飞行或航行至待搜救区域时,使航行器在搜救区域内不同地点投放对应的仿生无人艇。
进一步地,所述仿生艇模块在待搜救区域进行搜救工作,具体包括,所述仿生无人艇在待搜救区域进行搜救工作,若仿生无人艇寻得待搜救者,则仿生无人艇向航行器发送定位信息,并转化为气囊,航行器接近对应仿生无人艇并开展救援。
本发明还提供了一种水空两栖立体式搜救方法,包括以下步骤:
获取天气信息,并根据天气信息选择向飞行动力模块发送飞行信号还是向航行动力模块发送航行信号;所述飞行动力模块在接收到飞行信号后使航行器飞行至待搜救区域;所述航行动力模块在接收到航行信号后使航行器航行至待搜救区域;在航行器飞行或航行至待搜救区域时使航行器投放仿生艇模块;仿生艇模块在待搜救区域进行搜救工作。
进一步地,所述水空两栖立体式搜救方法还包括,若仿生艇模块寻得待搜救者,则仿生艇模块向航行器发送定位信息,并转化为气囊,航行器接近对应仿生艇模块并开展救援。
与现有技术相比,本发明的有益效果包括:通过所述集成控制模块,获取天气信息,并根据天气信息选择向飞行动力模块发送飞行信号还是向航行动力模块发送航行信号;通过所述飞行动力模块在接收到飞行信号后使航行器飞行至待搜救区域;通过所述航行动力模块在接收到航行信号后使航行器航行至待搜救区域;通过所述集成控制模块在航行器飞 行或航行至待搜救区域时使航行器投放所述仿生艇模块;所述航行器行或航行至待搜救区域,并投放所述仿生艇模块;所述仿生艇模块在待搜救区域进行搜救工作;显著提高了海上搜寻与救助的效率。
附图说明
图1为本发明提供的水空两栖立体式搜救系统的结构示意图;
图2为本发明提供的航行器的模型示意图;
图3为本发明提供的避碰单元的工作流程图;
图4为本发明提供的水空两栖立体式搜救方法流程示意图。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
实施例1
本发明实施例提供了一种水空两栖立体式搜救系统,其结构示意图,如图1所示,所述系统包括飞行动力模块1、航行动力模块2、仿生艇模块3、航行器4及集成控制模块5;
所述集成控制模块5,用于获取天气信息,并根据天气信息选择向飞行动力模块1发送飞行信号还是向航行动力模块2发送航行信号;所述飞行动力模块1,用于在接收到飞行信号后使航行器4飞行至待搜救区域;所述航行动力模块2,用于在接收到航行信号后使航行器4航行至待搜救区域;所述集成控制模块5,还用于在航行器4飞行或航行至待搜救区域时使航行器4投放所述仿生艇模块3;所述航行器4,用于飞行或航行至待搜救区域,并投放所述仿生艇模块3;所述仿生艇模块3,用于在待搜救区域进行搜救工作。
一个具体实施例中,集成控制模块启动航行器,根据天气情况来选择航行器的运动方式,若为风高浪急的恶劣天气,航行器快速飞行至待搜索区域,若为常规天气,航行器快速航行至待搜索区域;航行器到达待搜索区域后,航行器升高投放仿生艇模块进行搜救工作;
具体实施时,所述航行器为双体双轨破浪型两栖航行器,所述航行器的模型示意图,如图2所示,图2中,航行器包括航行器主体和仿生艇模块(包括若干仿生无人艇);航行器使用PWM双信号通信控制两栖动力模块(飞行动力模块、航行动力模块),前置红外避障模块,以提高安全性,下设舰载仓,所述舰载仓用于停放仿生艇模块及储物箱,所述储物箱用于存放急救品;航行器四旋翼部分则选用铝合金材料,具有易加工、耐久性高,质轻等优点,可以实现在利用轻质ABS提供较大浮力的前提下,保证航行器自身较为合理的配重,使航行器能够在具有较大浮力的情况下,也具有很好的抗风性,确保了航行器在险情发生,开始出航工作时,能够真正实现在各类特殊情况下的两栖动力切换式作业;
所述航行器四旋翼在选择了更加稳定的“X”型四旋翼的机翼构架的同时,改变了其机翼折叠的方式,在机翼中部设计合金关节,将完整的机翼横梁一分为二,最终形成了“卍”形折叠,航行器工作在时可以将四旋翼折叠后的重量分散在航行器的四个方向,有效避免了侧翻,并且由于采用了铝合金进行飞控支架的定制,可以有效减轻重量更有利于航行和稳定,并与矩形船体设计相吻合;航行器主体设计为双体矩形中空,控制船体的单片机部分置于船体后部,使中部空仓可以在增大船体浮力的同时用于搭载仿生艇模块。
优选的,所述集成控制模块包括舰队定位单元,所述舰队定位单元,用于获取仿生艇模块的位置信息,并将所述位置信息传送至用户端。
优选的,所述舰队定位单元,获取仿生艇模块的位置信息,具体包 括,生成短能量脉冲序列,并利用正交频分调制或直接排序将所述短能量脉冲序列扩展到一个频率范围内,得到扩展后短能量脉冲序列,利用扩展后短能量脉冲序列测得不同基站无线电信号在仿生艇模块上的达到时间差,获取仿生艇模块的位置信息。
一个具体实施例中,所述舰队定位单元使用短能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内;所述舰队定位单元获取到达时间差,通过超宽带测得定位标签相对于两个不同定位基站之间无线电信号传播的时间差,从而得出定位标签相对于四组定位基站的距离差;
一个具体实施例中,1号、2号基站为第一组,2号、3号基站为第二组,3号、4号基站为第三组,4号、1号基站为第四组;
则有
d i,12=r i,1-r i,2
d i,23=r i,2-r i,3
d i,34=r i,3-r i,4
d i,41=r i,4-r i,1
式中d i,12至d i,41为测得的定位标签相对于四组基站的距离差,r i,1至r i,4为目标i到第1-4号基站的距离;
Figure PCTCN2021117161-appb-000001
Figure PCTCN2021117161-appb-000002
Figure PCTCN2021117161-appb-000003
Figure PCTCN2021117161-appb-000004
其中,(x i,y i,z i)为目标i的坐标,(x 1,y 1,z 1)-(x 4,y 4,z 4)分别为第1-4号基站的坐标,通过联立上述任意两个式子可以得出定位标签的具体坐标,当基站数量仅一个时,只能进行距离测量;基站数量有两个时,可以进 行二维坐标测量;当基站数量在三个及三个以上时,方可进行三维坐标测量,且基站数量越多,测量结果越精确;
优选的,所述集成控制模块还包括避碰单元和报警单元;所述避碰单元,用于判断仿生艇模块离障碍物的距离,若所述距离小于设定阈值,则向所述报警单元发送报警信号;所述报警单元,用于在接收到报警信号后进行报警;
优选的,所述避碰单元包括超声波传感器及单片机,所述避碰单元判断仿生艇模块离障碍物的距离,若所述距离小于设定阈值,则向所述报警单元发送报警信号,具体包括,通过超声波传感器控制口发出高电平,在超声波传感器接收口有输出时开始计时,在超声波传感器接收口输出变为低电平时重新计时,根据两次计时的时间差得到测距时间,并将测距发送至单片机,所述单片机对测距进行计算并判断测距是否小于设定阈值,若小于,则向所述报警单元发送报警信号;
一个具体实施例中,所述避碰单元主要元件有STC89C52/51单片机,蓝牙串口、超声波传感器、PNP驱动三极管、DC5V有源蜂鸣器、11.0592Mhz晶振及LED电源指示灯;蜂鸣器的驱动三极管选用PNP型;
另一个具体实施例中,避碰单元的工作流程图,如图3所示,所述避碰单元通过超声波传感器的一个控制口发出10μs以上的高电平,就可以在超声波传感器接收口等待高电平输出,接收口有输出就可以开定时器计时;当此超声波传感器接收口变为低电平时就可以读定时器的值,计时器的数值即为测距的时间;将时间传输给单片机,通过单片机对距离(测距时间与超声波在空气中传播速度的乘积的一半,即为距离)进行计算并判断距离是否小于设定阈值;若不小于,则仅将计算得出的距离传输到蓝牙串口,通过蓝牙串口传输到集成控制模块的接收端;若小于,则单片机控制驱动三极管,使蜂鸣器报警,同时将距离与预设报警 信息传输到蓝牙,再经由蓝牙传输到集成控制模块接收端。
优选的,所述集成控制模块还包括水下图像采集单元和水面图像采集单元,所述水下图像采集单元和水面图像采集单元分别用于采集水下图像信息及水面图像信息。
优选的,所述仿生艇模块包括多个仿生无人艇;所述集成控制模块在航行器飞行或航行至待搜救区域时使航行器投放所述仿生艇模块,具体包括,所述集成控制模块在航行器飞行或航行至待搜救区域时,使航行器在搜救区域内不同地点投放对应的仿生无人艇;
一个具体实施例中,所述仿生无人艇配备了摄像头、传感器和主控芯片,其自身可以进行位置定位、路径规划以及和航行器进行信息交互;主控芯片为可以与手机实现蓝牙通信的forever-12芯片;使用2.4GHZ频率控制步进电机及其连接的螺旋桨,作为仿生无人艇动力;设置了推进器-四旋翼两栖动力系统,水中推进器为螺杆泵-螺旋桨双动力,使用螺杆泵-螺旋桨双动力推动器后拥有较强的水空立体行动的能力,使得航行器主体具备了水上航行、空中悬停、近地飞行三种航行模式。
优选的,所述仿生艇模块在待搜救区域进行搜救工作,具体包括,所述仿生无人艇在待搜救区域进行搜救工作,若仿生无人艇寻得待搜救者,则仿生无人艇向航行器发送定位信息,并转化为气囊,航行器接近对应仿生无人艇并开展救援;
一个具体实施例中,一级航行器形成第一层搜救网络,在这搜救网络的基础上,二级仿生艇模块以航行器主体为中心,在其四周进行密集搜索,这种搜救方式可以保证对每一个搜救单位的实时控制,同时又可以确保搜救的全面、高效,可以在最短的时间内完成对搜救区域的搜索。
实施例2
本发明实施例提供了一种水空两栖立体式搜救方法,其流程示意图, 如图4所示,所述方法包括以下步骤:
S1、获取天气信息,S2、根据天气信息选择向飞行动力模块发送飞行信号还是向航行动力模块发送航行信号;S3、所述飞行动力模块在接收到飞行信号后使航行器飞行至待搜救区域;S4、所述航行动力模块在接收到航行信号后使航行器航行至待搜救区域;S5、在航行器飞行或航行至待搜救区域时使航行器投放仿生艇模块;S6、仿生艇模块在待搜救区域进行搜救工作。
优选的,所述的水空两栖立体式搜救方法还包括,若仿生艇模块寻得待搜救者,则仿生艇模块向航行器发送定位信息,并转化为气囊,航行器接近对应仿生艇模块并开展救援。
需要说明的是,若仿生无人艇未找到待搜救者,则自动回收至航行器舰载仓内;所述航行器主体在出航时可以同时与同级舰队的主航行器、次级舰队的无人艇模块,以及搜救中心救援人员实现同步的信息交互;
将航行器主体设计为双体矩形空仓(双开门舰载仓),集成控制模块置于船体后部,使空仓可以在增大船体浮力的同时用于搭载仿生无人艇,仿生无人艇为类鱼仿生,其顶端设置可拆卸端口,使其适配各类传感元件,可以在执行不同任务时搭载不同功能传感器,通过仿生无人艇搭载的可通信forever-12芯片实现自动回收。在需要回收的时候,仿生无人艇传输信号给航行器,航行器接收信号后打开舰载仓,仿生无人艇行到舰载仓,航行器关闭舰载仓门,实现仿生艇的自动回收。
一方面,可以将无人艇模块采集到的信息进行实时处理,对出险区域人员分布及洋流情况作出判断,及时将信息反馈至集成控制模块中,对航行器姿态进行微调,并将处理后的关键信息回传至救援中心,辅助救援人员及时作出新方案;另一方面,航行器主体作为信号基站,确保仿生艇模块能以其为依据,进行实时定位与坐标反馈,实现地毯式无遗 漏搜索;此种以航行器出航,无人艇舰队搜寻、急救并反馈,救援人员依据反馈坐标抵达并施救的体系即为“三位一体联动式搜救体系”;
待航行器到达待搜索区域后,航行器升高投放仿生艇模块进行搜救工作,投放的仿生艇模块发散进行网状舰队式搜索,而航行器主体通过调整摄像头来获取空中视野;若仿生无人艇未找到待搜救者,则自动回收至舰载仓内;若仿生无人艇寻得待搜救者,则向航行器发送定位信息,并转化为气囊,航行器接近并开展救援;最后航行器与救援人员进行通信,对收集到的搜救信息进行反馈,搜救人员通过这些信息能快速、准确到达现场展开立体、高效的救援工作。
本发明公开了一种水空两栖立体式搜救系统及方法,通过所述集成控制模块,获取天气信息,并根据天气信息选择向飞行动力模块发送飞行信号还是向航行动力模块发送航行信号;通过所述飞行动力模块在接收到飞行信号后使航行器飞行至待搜救区域;通过所述航行动力模块在接收到航行信号后使航行器航行至待搜救区域;通过所述集成控制模块在航行器飞行或航行至待搜救区域时使航行器投放所述仿生艇模块;所述航行器行或航行至待搜救区域,并投放所述仿生艇模块;所述仿生艇模块在待搜救区域进行搜救工作;提高了海上搜寻与救助的效率。
本发明所述技术方案较好的将飞控与无人艇进行整合,同时又充分发挥了其各自的优势,实现立体、高效、无人化的搜救,从而显著提高海上搜寻与救助的效率,减少救援所需成本,最大程度上保护海上工作人员的人身与财产安全。
本发明所述技术方案针对海洋工作的特点与原有救生体系的不足,设计并采用了“三位一体联动式搜救系体系”,致力于打造一个显著提高海上搜寻与救助的效率,减少救援所需成本,并最大程度上保护海上工作人员的人身与财产安全的水空两栖立体式仿生无人艇搜救体系。
本发明所述航行器主体采用了“多信息反馈技术”,使其在出航时可以同时与同级舰队的主航行器、次级舰队的无人仿生艇,以及搜救中心救援人员实现同步的信息交互;一方面,可以将各舰队采集到的信息进行实时处理,对出险区域人员分布及洋流情况作出判断,及时将信息反馈至主控板处理器中,对航行器姿态进行微调,并将处理后的关键信息回传至救援中心,辅助救援人员及时作出新方案;另一方面,主航行器会作为信号基站,确保仿生无人艇舰队能以其为依据,进行实时定位与坐标反馈,实现地毯式无遗漏搜索。以此种航行器出航,仿生无人艇搜寻、急救并反馈,救援人员依据反馈坐标抵达并施救的“三位一体联动式搜救体系”,实现对遇险人员的有效救援。而随着海事信息化的发展以及数据采集设备的日益多样化,陆上的各类信息采集设备开始向水上无线延伸,这些设备均可与该体系进行结合,实现更为可靠的探测、定位,促进海上工作的发展。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种水空两栖立体式搜救系统,其特征在于,包括飞行动力模块、航行动力模块、仿生艇模块、航行器及集成控制模块;
    所述集成控制模块,用于获取天气信息,并根据天气信息选择向飞行动力模块发送飞行信号还是向航行动力模块发送航行信号;所述飞行动力模块,用于在接收到飞行信号后使航行器飞行至待搜救区域;所述航行动力模块,用于在接收到航行信号后使航行器航行至待搜救区域;所述集成控制模块,还用于在航行器飞行或航行至待搜救区域时使航行器投放所述仿生艇模块;所述航行器,用于飞行或航行至待搜救区域,并投放所述仿生艇模块;所述仿生艇模块,用于在待搜救区域进行搜救工作。
  2. 根据权利要求1所述的水空两栖立体式搜救系统,其特征在于,所述集成控制模块包括舰队定位单元,所述舰队定位单元,用于获取仿生艇模块的位置信息,并将所述位置信息传送至用户端。
  3. 根据权利要求1所述的水空两栖立体式搜救系统,其特征在于,所述舰队定位单元,获取仿生艇模块的位置信息,具体包括,生成短能量脉冲序列,并利用正交频分调制或直接排序将所述短能量脉冲序列扩展到一个频率范围内,得到扩展后短能量脉冲序列,利用扩展后短能量脉冲序列测得不同基站无线电信号在仿生艇模块上的达到时间差,获取仿生艇模块的位置信息。
  4. 根据权利要求1所述的水空两栖立体式搜救系统,其特征在于,所述集成控制模块还包括避碰单元和报警单元;所述避碰单元,用于判断仿生艇模块离障碍物的距离,若所述距离小于设定阈值,则向所述报警单元发送报警信号;所述报警单元,用于在接收到报警信号后进行报警。
  5. 根据权利要求4所述的水空两栖立体式搜救系统,其特征在于, 所述避碰单元包括超声波传感器及单片机,所述避碰单元判断仿生艇模块离障碍物的距离,若所述距离小于设定阈值,则向所述报警单元发送报警信号,具体包括,通过超声波传感器控制口发出高电平,在超声波传感器接收口有输出时开始计时,在超声波传感器接收口输出变为低电平时重新计时,根据两次计时的时间差得到测距时间,并将测距发送至单片机,所述单片机对测距进行计算并判断测距是否小于设定阈值,若小于,则向所述报警单元发送报警信号。
  6. 根据权利要求1所述的水空两栖立体式搜救系统,其特征在于,所述集成控制模块还包括水下图像采集单元和水面图像采集单元,所述水下图像采集单元和水面图像采集单元分别用于采集水下图像信息及水面图像信息。
  7. 根据权利要求1所述的水空两栖立体式搜救系统,其特征在于,所述仿生艇模块包括多个仿生无人艇;所述集成控制模块在航行器飞行或航行至待搜救区域时使航行器投放所述仿生艇模块,具体包括,所述集成控制模块在航行器飞行或航行至待搜救区域时,使航行器在搜救区域内不同地点投放对应的仿生无人艇。
  8. 根据权利要求7所述的水空两栖立体式搜救系统,其特征在于,所述仿生艇模块在待搜救区域进行搜救工作,具体包括,所述仿生无人艇在待搜救区域进行搜救工作,若仿生无人艇寻得待搜救者,则仿生无人艇向航行器发送定位信息,并转化为气囊,航行器接近对应仿生无人艇并开展救援。
  9. 一种水空两栖立体式搜救方法,其特征在于,包括以下步骤:
    获取天气信息,并根据天气信息选择向飞行动力模块发送飞行信号还是向航行动力模块发送航行信号;所述飞行动力模块在接收到飞行信号后使航行器飞行至待搜救区域;所述航行动力模块在接收到航行信号 后使航行器航行至待搜救区域;在航行器飞行或航行至待搜救区域时使航行器投放仿生艇模块;仿生艇模块在待搜救区域进行搜救工作。
  10. 根据权利要求9所述的水空两栖立体式搜救方法,其特征在于,还包括,若仿生艇模块寻得待搜救者,则仿生艇模块向航行器发送定位信息,并转化为气囊,航行器接近对应仿生艇模块并开展救援。
PCT/CN2021/117161 2020-12-29 2021-09-08 一种水空两栖立体式搜救系统及方法 WO2022142453A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/344,846 US20240169848A1 (en) 2020-12-29 2023-06-29 Water-Air Integrated Search and Rescue System and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011603766.0A CN112606973B (zh) 2020-12-29 2020-12-29 一种水空两栖立体式搜救系统及方法
CN202011603766.0 2020-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,846 Continuation US20240169848A1 (en) 2020-12-29 2023-06-29 Water-Air Integrated Search and Rescue System and Method

Publications (1)

Publication Number Publication Date
WO2022142453A1 true WO2022142453A1 (zh) 2022-07-07

Family

ID=75249193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117161 WO2022142453A1 (zh) 2020-12-29 2021-09-08 一种水空两栖立体式搜救系统及方法

Country Status (3)

Country Link
US (1) US20240169848A1 (zh)
CN (1) CN112606973B (zh)
WO (1) WO2022142453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125899A (zh) * 2023-04-19 2023-05-16 北京大学 跨介质航行器的跨域控制系统、方法、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606973B (zh) * 2020-12-29 2023-03-28 武汉理工大学 一种水空两栖立体式搜救系统及方法
CN113777953B (zh) * 2021-08-25 2024-04-30 北京航空航天大学 一种面向水陆两栖飞机的海上搜救任务仿真评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618758A (zh) * 2009-03-11 2010-01-06 黄灿荣 风能太阳能发电海空电动救生艇
CN108945342A (zh) * 2018-05-30 2018-12-07 佛山市神风航空科技有限公司 一种无人船搭载无人机的海上搜救设备
CN109358653A (zh) * 2018-09-03 2019-02-19 济源维恩科技开发有限公司 海上无人机分布式智能搜救系统
CN110481777A (zh) * 2019-08-20 2019-11-22 哈尔滨工程大学 一种水空两栖无人救援平台
US10538340B1 (en) * 2017-03-23 2020-01-21 Rockwell Collins, Inc. Mobile UAV launch and retrieval system for operation within a transportation system
CN112606973A (zh) * 2020-12-29 2021-04-06 武汉理工大学 一种水空两栖立体式搜救系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108564202B (zh) * 2018-03-18 2022-03-18 哈尔滨工程大学 一种基于环境预报信息的无人艇航线优化方法
CN109436247A (zh) * 2018-11-30 2019-03-08 湖南华诺星空电子技术有限公司 一种具有自寻功能的落水目标搜救方法及搜救系统
CN109871022A (zh) * 2019-03-18 2019-06-11 江苏科技大学 一种面向两栖无人搜救器的智能路径规划及避障方法
CN110422302A (zh) * 2019-07-24 2019-11-08 华中科技大学 一种利用子母无人艇的水上遇险人员快速搜救系统及方法
CN210882553U (zh) * 2019-11-15 2020-06-30 贵州剑河中和时代科技有限公司 一种能水面航行和空中飞行的救生圈

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618758A (zh) * 2009-03-11 2010-01-06 黄灿荣 风能太阳能发电海空电动救生艇
US10538340B1 (en) * 2017-03-23 2020-01-21 Rockwell Collins, Inc. Mobile UAV launch and retrieval system for operation within a transportation system
CN108945342A (zh) * 2018-05-30 2018-12-07 佛山市神风航空科技有限公司 一种无人船搭载无人机的海上搜救设备
CN109358653A (zh) * 2018-09-03 2019-02-19 济源维恩科技开发有限公司 海上无人机分布式智能搜救系统
CN110481777A (zh) * 2019-08-20 2019-11-22 哈尔滨工程大学 一种水空两栖无人救援平台
CN112606973A (zh) * 2020-12-29 2021-04-06 武汉理工大学 一种水空两栖立体式搜救系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125899A (zh) * 2023-04-19 2023-05-16 北京大学 跨介质航行器的跨域控制系统、方法、设备及存储介质

Also Published As

Publication number Publication date
CN112606973A (zh) 2021-04-06
US20240169848A1 (en) 2024-05-23
CN112606973B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2022142453A1 (zh) 一种水空两栖立体式搜救系统及方法
CN108563242B (zh) 一种海空自主协同搜救m3u平台
CN108298043B (zh) 一种基于无人机和救生圈联动的水上智能救生装置
CN108583920A (zh) 一种无人机用海上着陆平台及无人机着陆的控制方法
CN111731453A (zh) 一种基于搭载无人机的救生无人船的海上救援方法和系统
CN109188421A (zh) 一种用于无人搜救艇的海上搜救系统及方法
CN109324629A (zh) 空中、水面和水下多栖航行器及其控制方法
CN108413962A (zh) 一种水上搜救机器人快速搜救定位系统
CN110588973B (zh) 一种基于两栖无人航行器的青少年溺水预防和救助平台及其方法
CN111275924B (zh) 一种基于无人机的儿童防溺水监控方法、系统及无人机
CN215707025U (zh) 一种自主搜救无人船
CN109263835B (zh) 海上救生装置及其救生方法
CN208110037U (zh) 一种水底成像无人船控制系统
CN105923127A (zh) 一种集成式水下搜救机器人
CN110626474A (zh) 一种人机协同智能救生圈及其使用方法
CN106920294A (zh) 基于自发电功能的自动返航黑匣子系统
CN108032972A (zh) 一种水上三轴悬挂式搜救机器
Sheu et al. Real-time Alarm, Dynamic GPS Tracking, and Monitoring System for Man Overboard.
CN106864699A (zh) 一种海上搜救器及搜救方法
CN115258098A (zh) 基于声纳探测与gps定位的水中救生系统及控制方法
CN116691967A (zh) 水域救援方法、系统及存储介质
Jian et al. The design and research of intelligent search and rescue device based on sonar detection and Marine Battery
CN205931190U (zh) 一种无人驾驶水上航行器
CN109436267B (zh) 用于水下无人平台的洋流推进方法
Lehmenhecker et al. Flying drone for AUV under-ice missions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913200

Country of ref document: EP

Kind code of ref document: A1