WO2022142384A1 - 一种船舶锚泊面积计算方法及装置 - Google Patents

一种船舶锚泊面积计算方法及装置 Download PDF

Info

Publication number
WO2022142384A1
WO2022142384A1 PCT/CN2021/113468 CN2021113468W WO2022142384A1 WO 2022142384 A1 WO2022142384 A1 WO 2022142384A1 CN 2021113468 W CN2021113468 W CN 2021113468W WO 2022142384 A1 WO2022142384 A1 WO 2022142384A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
anchoring
trajectory
mooring
area
Prior art date
Application number
PCT/CN2021/113468
Other languages
English (en)
French (fr)
Inventor
周春辉
赵俊男
刘宗杨
甘浪雄
徐言民
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Publication of WO2022142384A1 publication Critical patent/WO2022142384A1/zh
Priority to US17/901,868 priority Critical patent/US20220412743A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B2021/003Mooring or anchoring equipment, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids

Definitions

  • the invention relates to the technical field of mooring area calculation, in particular to a method, device and computer storage medium for calculating the mooring area of a ship.
  • the present invention provides a method for calculating the mooring area of a ship, comprising the following steps:
  • the ship trajectory including the anchoring process is screened out, and the trajectory points in the non-anchored state in the ship trajectory including the anchoring process are eliminated to obtain the anchoring trajectory of the anchored ship;
  • a corresponding Thiessen polygon is set for each anchoring position point in the set of anchoring ship points, and the area of each of the Thiessen polygons is calculated to obtain the anchoring area of the corresponding ship.
  • the AIS data includes static information and dynamic information
  • the dynamic information includes ship position, speed and heading
  • the ship trajectories are generated in combination with the ship position, ship speed and heading, and the ship trajectories of different ships are marked based on the static information.
  • obtaining the ship trajectories of each ship within a certain period of time in the anchorage area also includes:
  • the track points in the ship track are stored in time sequence.
  • the ship trajectory including the anchoring process is screened out, and the trajectory points in the non-anchored state in the ship trajectory including the anchoring process are eliminated to obtain the anchoring trajectory of the anchored ship, specifically:
  • a sliding window of a set size is used to traverse each of the ship's trajectories respectively.
  • the average ship speed of all trajectory points in each sliding interval is calculated, and it is judged whether the ship's trajectory includes the average ship speed less than the speed.
  • the interval segment of the threshold value if yes, determine that the corresponding ship includes the mooring process, and remove the interval segment in which the average speed of the corresponding ship's trajectory is not less than the speed threshold to obtain the anchoring trajectory of the corresponding ship, otherwise it is determined that the corresponding ship does not include the mooring process.
  • anchoring points in each anchoring trajectory are clustered respectively, and the cluster center is used as the anchoring position point of the corresponding ship, specifically:
  • the cluster center of each mooring trajectory is obtained, and the mooring position of the corresponding ship is obtained.
  • an anchoring data set is established in combination with the anchoring position points of each ship, specifically:
  • the anchoring data set is established in combination with the anchoring data records of the anchored ships.
  • the present invention also provides a device for calculating the mooring area of a ship, which includes a processor and a memory, and the memory stores a computer program.
  • the computer program is executed by the processor, the method for calculating the mooring area of the ship is implemented.
  • the present invention also provides a computer storage medium on which a computer program is stored, and when the program is executed by a processor, the computer realizes the method for calculating the mooring area of a ship.
  • the present invention firstly screens out the trajectory of the ship that does not exist in the mooring state, and at the same time, screens out the trajectory points in the non-anchored state in the trajectory of the ship in the moored state, and obtains the mooring trajectory of the anchored ship when it is in the mooring state. Accurate description is convenient for subsequent calculation of mooring area. Secondly, the anchoring process of each ship is clustered, and the cluster center is used as the anchoring position of the ship to realize the extraction of the anchoring position.
  • a set of anchoring ship points in a period of time is constructed, and the corresponding Thiessen polygon of the anchoring point is used as the description of the anchoring area of the corresponding ship, and the area of the Thiessen polygon is calculated to obtain the anchoring area of the corresponding ship.
  • the method for calculating the anchorage area of the anchored ship proposed by the present invention can effectively measure the size of the anchorage area, and then can evaluate the utilization of the anchorage and the safety status of the ship at anchoring. Compared with the prior art, it has the advantages of dynamic, fast and accurate .
  • Fig. 1 is the method flow chart of the first embodiment of the ship mooring area calculation method provided by the present invention
  • FIG. 2 is a schematic diagram of the mooring trajectory of the first embodiment of the method for calculating the mooring area of a ship provided by the present invention
  • FIG. 3 is a schematic diagram of the clustering result of the first embodiment of the method for calculating the mooring area of a ship provided by the present invention
  • FIG. 4 is a schematic diagram of a set of anchoring ship positions according to the first embodiment of the method for calculating the anchoring area of a ship provided by the present invention
  • FIG. 5 is a schematic diagram of a Thiessen polygon according to the first embodiment of the method for calculating the mooring area of a ship provided by the present invention.
  • Embodiment 1 of the present invention provides a method for calculating the mooring area of a ship, including the following steps:
  • the embodiment of the present invention starts with ship trajectory data and a spatial analysis method, and proposes a calculation method for constructing the anchorage area of a moored ship based on a Voronoi diagram (ie, a Thiessen polygon). Specifically, firstly, the trajectories of ships that do not exist in an anchored state are screened out, and at the same time, the trajectory points that are in a non-anchored state in the trajectories of ships with an anchored state are filtered out, and the anchored trajectories of the anchored ships in the anchored state are obtained to achieve an accurate description of the anchored state. , which is convenient for subsequent calculation of mooring area.
  • a Voronoi diagram ie, a Thiessen polygon
  • the anchoring process of each ship is clustered, and the cluster center is used as the anchoring position of the ship to realize the extraction of the anchoring position.
  • a set of anchoring ship points in a period of time is constructed, and the corresponding Thiessen polygon of the anchoring point is used as the description of the anchoring area of the corresponding ship, and the area of the Thiessen polygon is calculated to obtain the anchoring area of the corresponding ship.
  • the method for calculating the anchorage area of the anchored ship proposed by the present invention can effectively measure the size of the anchorage area, and then can evaluate the utilization of the anchorage and the safety status of the ship at anchoring. Compared with the prior art, it has the advantages of dynamic, fast and accurate .
  • the ship trajectories of each ship within a certain period of time in the anchorage area are obtained, specifically:
  • the AIS data includes static information and dynamic information
  • the dynamic information includes ship position, speed and heading
  • the ship trajectories are generated in combination with the ship position, ship speed and heading, and the ship trajectories of different ships are marked based on the static information.
  • AIS system Auto Identification System
  • VHF communication machine a GPS locator
  • a communication controller connected to the onboard display and sensors, which can automatically exchange important information such as ship position, speed, heading, ship name, and call sign.
  • the AIS system installed on the ship also receives the information of other ships within the coverage of the VHF communication machine while sending the information to the outside, thus realizing the automatic response.
  • the AIS data is collected and provided by the AIS system on the ship.
  • the AIS system can provide static information and dynamic information of the ship.
  • the static information includes the name of the ship, the MMSI number, the ship type, and the size of the ship. coordinates), ship speed, heading, timestamp, etc.
  • the collected ship AIS data is used to generate a ship trajectory, which is used for subsequent acquisition of anchored ship trajectory data. When the ship breaks down, one piece of AIS data is obtained in about 3 minutes. With the popularization and application of AIS system equipment, a large amount of anchored ship trajectory data has been accumulated.
  • acquiring the ship trajectories of each ship within a certain period of time in the anchorage area further includes:
  • the track points in the ship track are stored in time sequence.
  • Preprocess the collected ship trajectory data After removing obvious abnormal data such as ship position and ship speed, it is grouped according to the MMSI identification code of the ship, and the trajectory data of each ship is obtained, and then the data is stored according to the time series.
  • the ship trajectory including the anchoring process is screened out, and the trajectory points in the non-anchoring state in the ship trajectory including the anchoring process are eliminated to obtain the anchoring trajectory of the anchored ship, specifically:
  • a sliding window of a set size is used to traverse each of the ship's trajectories respectively.
  • the average ship speed of all trajectory points in each sliding interval is calculated, and it is judged whether the ship's trajectory includes the average ship speed less than the speed.
  • the interval segment of the threshold value if yes, determine that the corresponding ship includes the mooring process, and remove the interval segment in which the average speed of the corresponding ship's trajectory is not less than the speed threshold to obtain the anchoring trajectory of the corresponding ship, otherwise it is determined that the corresponding ship does not include the mooring process.
  • the preprocessed ship trajectory data is used for mooring identification using the sliding window algorithm. Select a window of a certain size to traverse each ship trajectory, calculate the average speed v in each interval during the sliding process, and give a speed threshold v th , compare the size of the two speed values, if the ship trajectory includes the average speed less than If the interval segment of the speed threshold value indicates that the ship is in the mooring process, then extract all the interval segments whose average speed is less than the speed threshold value to obtain the anchoring trajectory. There is no anchoring process, just delete the corresponding ship track directly.
  • the anchoring points in each anchoring trajectory are clustered respectively, and the cluster center is used as the anchoring position point of the corresponding ship, specifically:
  • the cluster center of each mooring trajectory is obtained, and the mooring position of the corresponding ship is obtained.
  • the K-means clustering algorithm is used to perform density clustering on the trajectory points to obtain the cluster center, that is, the mooring position. point, as shown in Figure 3.
  • an anchoring data set is established in combination with the anchoring position points of each ship, specifically:
  • the anchoring data set is established in combination with the anchoring data records of the anchored ships.
  • anchoring data set with a set time period, such as every hour as the time scale, select the anchoring ship data in each hour in the anchoring data set, and construct the corresponding anchoring ship position set, as shown in Figure 4, which is in Figure 4.
  • Figure 4 A set of anchoring vessel locations within an hour.
  • a Voronoi region in the shape of a convex polygon is assigned to each anchoring position point in Figure 4, and the Thiessen polygons of some anchoring position points are shown in Figure 5.
  • the mooring area of each ship is calculated according to the convex polygon area.
  • the identification and screening process of the ship's mooring state is carried out based on the sliding window, then the ship's anchoring position is obtained based on the clustering algorithm, and finally the single ship's mooring area is constructed based on the Voronoi diagram, so as to realize the calculation of the mooring area.
  • the method for calculating the anchorage area of the anchored ship proposed by the present invention can effectively measure the size of the anchorage area, and then can evaluate the utilization of the anchorage and the safety status of the ship at anchoring. Compared with the prior art, it has the advantages of dynamic, fast and accurate .
  • Embodiment 2 of the present invention provides a device for calculating the mooring area of a ship, including a processor and a memory, where a computer program is stored in the memory, and when the computer program is executed by the processor, the mooring area of the ship provided in Embodiment 1 is realized calculation method.
  • the device for calculating the mooring area of a ship provided by the embodiment of the present invention is used to realize the method for calculating the mooring area of a ship. Therefore, the technical effect of the method for calculating the mooring area of a ship is also provided by the device for calculating the mooring area of a ship, which will not be repeated here.
  • Embodiment 3 of the present invention provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for calculating the mooring area of a ship provided in Embodiment 1 is implemented.
  • the computer storage medium provided by the embodiment of the present invention is used to implement the method for calculating the mooring area of a ship. Therefore, the technical effects of the method for calculating the mooring area of a ship are also possessed by the computer storage medium, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Optimization (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Fuzzy Systems (AREA)
  • Geometry (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种船舶锚泊面积计算方法,包括以下步骤:获取锚地区域一定时间段内各船舶的船舶轨迹;筛选出包括锚泊过程的船舶轨迹,并剔除包括锚泊过程的船舶轨迹中处于非锚泊状态的轨迹点,得锚泊船舶的锚泊轨迹;分别对每一条锚泊轨迹中的锚泊点进行聚类,以聚类中心作为相应船舶的锚泊位置点;结合各船舶的锚泊位置点建立锚泊数据集,选取所述锚泊数据集中设定时间段内锚泊数据记录,构建对应时间段的锚泊船位点集;为所述锚泊船位点集中每一锚泊位置点设置相应的泰森多边形,计算各所述泰森多边形的面积,得到相应船舶的锚泊面积。本发明提供了一种锚泊面积的有效计算方法,计算过程快速,计算结果动态、准确。

Description

一种船舶锚泊面积计算方法及装置 技术领域
本发明涉及锚泊面积计算技术领域,尤其涉及一种船舶锚泊面积计算方法、装置及计算机存储介质。
背景技术
内河港口锚地运行中,抛锚船舶较多,锚地异常拥挤。锚泊船舶实际占用锚位面积能够反映船舶锚泊的安全程度,目前尚缺少船舶锚位面积有效的度量方法。
《河港总体设计规范》中虽然给出了内河水域不同锚泊方式条件下船舶锚位面积的计算公式。但目前内河水域船舶锚位面积研究较少,规范中关于船舶锚位面积的计算是笼统的给出一定的取值参数或相应的经验公式,缺少明确的理论依据,已不能适应内河航运发展趋势的需求。
发明内容
有鉴于此,有必要提供一种船舶锚泊面积计算方法及装置,用以解决船舶锚泊面积无法实现有效测量的问题。
本发明提供一种船舶锚泊面积计算方法,包括以下步骤:
获取锚地区域一定时间段内各船舶的船舶轨迹;
筛选出包括锚泊过程的船舶轨迹,并剔除包括锚泊过程的船舶轨迹中处于非锚泊状态的轨迹点,得锚泊船舶的锚泊轨迹;
分别对每一条锚泊轨迹中的锚泊点进行聚类,以聚类中心作为相应船舶的锚泊位置点;
结合各船舶的锚泊位置点建立锚泊数据集,选取所述锚泊数据集中设定时间段内锚泊数据记录,构建对应时间段的锚泊船位点集;
为所述锚泊船位点集中每一锚泊位置点设置相应的泰森多边形,计算各所述泰森多边形的面积,得到相应船舶的锚泊面积。
进一步的,获取锚地区域一定时间段内各船舶的船舶轨迹,具体为:
获取锚地区域一定时间段内各船舶的AIS数据,所述AIS数据包括静态信息以及动态信息,所述动态信息包括船位、船速以及航向;
结合所述船位、船速以及航向生成所述船舶轨迹,并基于所述静态信息对不同船舶的船舶轨迹进行标注。
进一步的,获取锚地区域一定时间段内各船舶的船舶轨迹,还包括:
筛除所述船舶轨迹中船位不在预设范围内或船速大于预设速度的轨迹点;
按照MMSI识别码对所述船舶轨迹进行分组,得到每一艘船舶的船舶轨迹;
针对每一艘船舶的船舶轨迹,按时间顺序对所述船舶轨迹中轨迹点进行存储。
进一步的,筛选出包括锚泊过程的船舶轨迹,并剔除包括锚泊过程的船舶轨迹中处于非锚泊状态的轨迹点,得锚泊船舶的锚泊轨迹,具体为:
采用设定大小的滑动窗口分别遍历每一所述船舶轨迹,滑动过程中计算每一次滑动的区间段内所有轨迹点的船速平均值,判断所述船舶轨迹中是否包含船速平均值小于速度阈值的区间段,如果是,判定相应船舶包括锚泊过程,并剔除相应船舶轨迹中船速平均值不小于速度阈值的区间段,得到相应船舶的锚泊轨迹,否则判定相应船舶不包括锚泊过程。
进一步的,分别对每一条锚泊轨迹中的锚泊点进行聚类,以聚类中心作为相应船舶的锚泊位置点,具体为:
基于K-means聚类算法求取每一条锚泊轨迹的聚类中心,得到相应船舶的锚泊位置点。
进一步的,结合各船舶的锚泊位置点建立锚泊数据集,具体为:
记录每一锚泊船舶的锚泊位置点、船舶长度、船舶类型、下锚时刻、起锚时刻,得到每一锚泊船舶的锚泊数据记录;
结合各所述锚泊船舶的锚泊数据记录,建立所述锚泊数据集。
本发明还提供一种船舶锚泊面积计算装置,包括处理器以及存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现所述船舶锚泊面积计算方法。
本发明还提供一种计算机存储介质,其上存储有计算机程序,所述计算机该程序被处理器执行时,实现所述船舶锚泊面积计算方法。
有益效果:本发明首先筛除不存在锚泊状态的船舶轨迹,同时,筛除存在锚泊状态的船舶轨迹中处于非锚泊状态的轨迹点,得到锚泊船舶在锚泊状态时的锚泊轨迹,实现锚泊状态的准确描述,便于后续锚泊面积的计算。其次,对每一条船舶的锚泊过程进行聚类,采用聚类中心作为船舶的锚泊位置,实现锚泊位置的提取。最后构建一时间段内的锚泊船位点集,以锚泊位置点相应的泰森多边形作为相应船舶的锚泊区域描述,计算泰森多边形的面积,即可得到相应船舶的锚泊面积。本发明提出的锚泊船舶锚位面积的计算方法,能够有效度量锚位面积的大小,进而能够评估锚地的利用情况及船舶锚泊的安全状况,相比现有技术,具有动态、快速和准确的优点。
附图说明
图1为本发明提供的船舶锚泊面积计算方法第一实施例的方法流程图;
图2为本发明提供的船舶锚泊面积计算方法第一实施例的锚泊轨迹示意图;
图3为本发明提供的船舶锚泊面积计算方法第一实施例的聚类结果示意图;
图4为本发明提供的船舶锚泊面积计算方法第一实施例的锚泊船位点集示意图;
图5为本发明提供的船舶锚泊面积计算方法第一实施例的泰森多边形示意图。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
实施例1
如图1所示,本发明的实施例1提供了船舶锚泊面积计算方法,包括以下步骤:
S1、获取锚地区域一定时间段内各船舶的船舶轨迹;
S2、筛选出包括锚泊过程的船舶轨迹,并剔除包括锚泊过程的船舶轨迹中处于非锚泊状态的轨迹点,得锚泊船舶的锚泊轨迹;
S3、分别对每一条锚泊轨迹中的锚泊点进行聚类,以聚类中心作为相应船舶的锚泊位置点;
S4、结合各船舶的锚泊位置点建立锚泊数据集,选取所述锚泊数据集中设定时间段内锚泊数据记录,构建对应时间段的锚泊船位点集;
S5、为所述锚泊船位点集中每一锚泊位置点设置相应的泰森多边形,计算各所述泰森多边形的面积,得到相应船舶的锚泊面积。
本发明实施例从船舶轨迹数据与空间分析方法入手,提出了基于Voronoi图(即泰森多边形)构建锚泊船舶锚位面积的计算方法。具体的,首先筛除不存在锚泊状态的船舶轨迹,同时,筛除存在锚泊状态的船舶轨迹中处于非锚泊状态的轨迹点,得到锚泊船舶在锚泊状态时的锚泊轨迹,实现锚泊状态的准确描述,便于后续锚泊面积的计算。其次,对每一条船舶的锚泊过程进行聚类,采用聚类中心作为船舶的锚泊位置,实现锚泊位置的提取。最后构建一时间段内的锚泊船位点集,以锚泊位置点相应的泰森多边形作为相应船舶的锚泊区域 描述,计算泰森多边形的面积,即可得到相应船舶的锚泊面积。
本发明提出的锚泊船舶锚位面积的计算方法,能够有效度量锚位面积的大小,进而能够评估锚地的利用情况及船舶锚泊的安全状况,相比现有技术,具有动态、快速和准确的优点。
优选的,获取锚地区域一定时间段内各船舶的船舶轨迹,具体为:
获取锚地区域一定时间段内各船舶的AIS数据,所述AIS数据包括静态信息以及动态信息,所述动态信息包括船位、船速以及航向;
结合所述船位、船速以及航向生成所述船舶轨迹,并基于所述静态信息对不同船舶的船舶轨迹进行标注。
船舶自动识别系统(Automatic Identification System,简称AIS系统),AIS系统是指一种应用于船和岸、船和船之间的海事安全与通信的新型助航系统。常由VHF通信机、GPS定位仪和与船载显示器及传感器等相连接的通信控制器组成,能自动交换船位、航速、航向、船名、呼号等重要信息。装在船上的AIS系统在向外发送这些信息的同时,同样接收VHF通信机覆盖范围内其它船舶的信息,从而实现了自动应答。
本实施例中AIS数据由船舶上的AIS系统进行采集提供,AIS系统可以提供船舶的静态信息和动态信息,静态信息包括船名、MMSI号、船型、船舶尺寸等,船舶动态信息包括船位(经纬度坐标)、船速、航向、时间戳等。本实施例利用采集到的船舶AIS数据生成船舶轨迹,用于后续锚泊船舶轨迹数据的获取。当船舶抛锚时,大约3分钟获得一条AIS数据,随着AIS系统设备的普及应用,积累了大量的锚泊船舶轨迹数据。
优选的,获取锚地区域一定时间段内各船舶的船舶轨迹,还包括:
筛除所述船舶轨迹中船位不在预设范围内或船速大于预设速度的轨迹点;
按照MMSI识别码对所述船舶轨迹进行分组,得到每一艘船舶的船舶轨迹;
针对每一艘船舶的船舶轨迹,按时间顺序对所述船舶轨迹中轨迹点进行存储。
对采集得到的船舶轨迹数据进行预处理。去除船位、船速等明显异常数据后按照船舶的MMSI识别码进行分组,得到每一艘船舶的轨迹数据,之后按照时间序列进行数据存储。
优选的,筛选出包括锚泊过程的船舶轨迹,并剔除包括锚泊过程的船舶轨迹中处于非锚泊状态的轨迹点,得锚泊船舶的锚泊轨迹,具体为:
采用设定大小的滑动窗口分别遍历每一所述船舶轨迹,滑动过程中计算每一次滑动的区间段内所有轨迹点的船速平均值,判断所述船舶轨迹中是否包含船速平均值小于速度阈值的区间段,如果是,判定相应船舶包括锚泊过程,并剔除相应船舶轨迹中船速平均值不小于速度阈值的区间段,得到相应船舶的锚泊轨迹,否则判定相应船舶不包括锚泊过程。
利用滑动窗口算法对预处理后的船舶轨迹数据进行锚泊识别。选取一定大小的窗口遍历每一条船舶轨迹,在滑动过程中计算每个区间段内速度平均值v,给定一个速度阈值v th,比较两速度值的大小,如果船舶轨迹中包括速度平均值小于速度阈值的区间段,则说明该船舶存在锚泊过程,则提取所有速度平均值小于速度阈值的区间段得到锚泊轨迹,如果船舶轨迹中不包括速度平均值小于速度阈值的区间段,则说明该船舶不存在锚泊过程,直接删除相应船舶轨迹即可。
迭代求取每一艘船舶的状态后,剔除非锚泊状态的轨迹点,形成所有锚泊船舶的锚泊轨迹数据,见附图2。
优选的,分别对每一条锚泊轨迹中的锚泊点进行聚类,以聚类中心作为相应船舶的锚泊位置点,具体为:
基于K-means聚类算法求取每一条锚泊轨迹的聚类中心,得到相应船舶的锚泊位置点。
应该理解的,对锚泊轨迹中轨迹点进行聚类,可以采用不同的聚类算法实现,本实施例选用K-means聚类算法,对轨迹点进行密度聚类,得到聚类中心,即锚泊位置点,如图3所示。
优选的,结合各船舶的锚泊位置点建立锚泊数据集,具体为:
记录每一锚泊船舶的锚泊位置点、船舶长度、船舶类型、下锚时刻、起锚时刻,得到每一锚泊船舶的锚泊数据记录;
结合各所述锚泊船舶的锚泊数据记录,建立所述锚泊数据集。
记录每条锚泊船舶的聚类中心与锚泊船舶AIS轨迹数据中的船舶长度、船舶类型、船舶下锚时刻、船舶起锚时刻,形成锚泊船舶的锚泊数据集。
根据锚泊数据集,以设定时间段,例如每小时为时间刻度,选取锚泊数据集中每个小时里的锚泊船舶数据,构建对应的锚泊船位点集,如图4所示,图4中为其中一个小时内的锚泊船位点集。
为图4中每一个锚泊位置点分配一个凸多边形形状的Voronoi区域,部分锚泊位置点的泰森多边形如图5所示。
根据凸多边形区域计算得到每艘船舶锚泊面积。
本发明实施例,首先基于滑动窗口的进行船舶锚泊状态的识别筛选过程,然后基于聚类算法获取船舶锚泊位置,最后基于Voronoi图构建的单船锚泊区域,从而实现锚泊面积的计算。本发明提出的锚泊船舶锚位面积的计算方法,能够有效度量锚位面积的大小,进而能够评估锚地的利用情况及船舶锚泊的安全状况,相比现有技术,具有动态、快速和准确的优点。
实施例2
本发明的实施例2提供了船舶锚泊面积计算装置,包括处理器以及存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现实施例1提供的船舶锚泊面积计算方法。
本发明实施例提供的船舶锚泊面积计算装置,用于实现船舶锚泊面积计算方法,因此,船舶锚泊面积计算方法所具备的技术效果,船舶锚泊面积计算装置同样具备,在此不再赘述。
实施例3
本发明的实施例3提供了计算机存储介质,其上存储有计算机程序,所述 计算机程序被处理器执行时,实现实施例1提供的船舶锚泊面积计算方法。
本发明实施例提供的计算机存储介质,用于实现船舶锚泊面积计算方法,因此,船舶锚泊面积计算方法所具备的技术效果,计算机存储介质同样具备,在此不再赘述。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种船舶锚泊面积计算方法,其特征在于,包括以下步骤:
    获取锚地区域一定时间段内各船舶的船舶轨迹;
    筛选出包括锚泊过程的船舶轨迹,并剔除包括锚泊过程的船舶轨迹中处于非锚泊状态的轨迹点,得锚泊船舶的锚泊轨迹;
    分别对每一条锚泊轨迹中的锚泊点进行聚类,以聚类中心作为相应船舶的锚泊位置点;
    结合各船舶的锚泊位置点建立锚泊数据集,选取所述锚泊数据集中设定时间段内锚泊数据记录,构建对应时间段的锚泊船位点集;
    为所述锚泊船位点集中每一锚泊位置点设置相应的泰森多边形,计算各所述泰森多边形的面积,得到相应船舶的锚泊面积。
  2. 根据权利要求1所述的船舶锚泊面积计算方法,其特征在于,获取锚地区域一定时间段内各船舶的船舶轨迹,具体为:
    获取锚地区域一定时间段内各船舶的AIS数据,所述AIS数据包括静态信息以及动态信息,所述动态信息包括船位、船速以及航向;
    结合所述船位、船速以及航向生成所述船舶轨迹,并基于所述静态信息对不同船舶的船舶轨迹进行标注。
  3. 根据权利要求2所述的船舶锚泊面积计算方法,其特征在于,获取锚地区域一定时间段内各船舶的船舶轨迹,还包括:
    筛除所述船舶轨迹中船位不在预设范围内或船速大于预设速度的轨迹点;
    按照MMSI识别码对所述船舶轨迹进行分组,得到每一艘船舶的船舶轨迹;
    针对每一艘船舶的船舶轨迹,按时间顺序对所述船舶轨迹中轨迹点进行存储。
  4. 根据权利要求1所述的船舶锚泊面积计算方法,其特征在于,筛选出包括锚泊过程的船舶轨迹,并剔除包括锚泊过程的船舶轨迹中处于非锚泊状态的 轨迹点,得锚泊船舶的锚泊轨迹,具体为:
    采用设定大小的滑动窗口分别遍历每一所述船舶轨迹,滑动过程中计算每一次滑动的区间段内所有轨迹点的船速平均值,判断所述船舶轨迹中是否包含船速平均值小于速度阈值的区间段,如果是,判定相应船舶包括锚泊过程,并剔除相应船舶轨迹中船速平均值不小于速度阈值的区间段,得到相应船舶的锚泊轨迹,否则判定相应船舶不包括锚泊过程。
  5. 根据权利要求1所述的船舶锚泊面积计算方法,其特征在于,分别对每一条锚泊轨迹中的锚泊点进行聚类,以聚类中心作为相应船舶的锚泊位置点,具体为:
    基于K-means聚类算法求取每一条锚泊轨迹的聚类中心,得到相应船舶的锚泊位置点。
  6. 根据权利要求1所述的船舶锚泊面积计算方法,其特征在于,结合各船舶的锚泊位置点建立锚泊数据集,具体为:
    记录每一锚泊船舶的锚泊位置点、船舶长度、船舶类型、下锚时刻、起锚时刻,得到每一锚泊船舶的锚泊数据记录;
    结合各所述锚泊船舶的锚泊数据记录,建立所述锚泊数据集。
  7. 一种船舶锚泊面积计算装置,其特征在于,包括处理器以及存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现如权利要求1-6任一项所述的船舶锚泊面积计算方法。
  8. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机该程序被处理器执行时,实现如权利要求1-6任一项所述的船舶锚泊面积计算方法。
PCT/CN2021/113468 2020-12-29 2021-08-19 一种船舶锚泊面积计算方法及装置 WO2022142384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/901,868 US20220412743A1 (en) 2020-12-29 2022-09-02 Method and device for calculating anchoring area of ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011595861.0 2020-12-29
CN202011595861.0A CN112686944B (zh) 2020-12-29 2020-12-29 一种船舶锚泊面积计算方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/901,868 Continuation US20220412743A1 (en) 2020-12-29 2022-09-02 Method and device for calculating anchoring area of ship

Publications (1)

Publication Number Publication Date
WO2022142384A1 true WO2022142384A1 (zh) 2022-07-07

Family

ID=75454100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113468 WO2022142384A1 (zh) 2020-12-29 2021-08-19 一种船舶锚泊面积计算方法及装置

Country Status (3)

Country Link
US (1) US20220412743A1 (zh)
CN (1) CN112686944B (zh)
WO (1) WO2022142384A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112686944B (zh) * 2020-12-29 2023-05-23 武汉理工大学 一种船舶锚泊面积计算方法及装置
CN114492086B (zh) * 2022-04-01 2022-08-09 广东海洋大学 一种船舶单锚泊锚位智能检测方法
CN116309708B (zh) * 2023-02-28 2023-10-27 武汉理工大学 一种锚地时空利用效率评价方法和装置
CN116767461B (zh) * 2023-08-25 2023-12-22 太极计算机股份有限公司 船舶抛锚行为检测方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708638A (zh) * 2018-12-03 2019-05-03 江苏科技大学 一种船舶轨迹点提取方法
CN110009937A (zh) * 2019-03-21 2019-07-12 武汉理工大学 一种基于ais数据的船舶碰撞风险分析方法
CN110069582A (zh) * 2017-10-12 2019-07-30 中电科海洋信息技术研究院有限公司 船舶抛锚区域确定方法、装置、设备及存储介质
US20200184828A1 (en) * 2018-12-05 2020-06-11 Windward Ltd. Risk event identification in maritime data and usage thereof
CN111985529A (zh) * 2020-07-06 2020-11-24 东南大学 一种船舶ais轨迹混合聚类方法及系统
CN112686944A (zh) * 2020-12-29 2021-04-20 武汉理工大学 一种船舶锚泊面积计算方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522004B (en) * 2013-11-11 2021-05-19 Tradenet Commercial Networking Ltd A method and system for tracking shipping cargo
JP6623724B2 (ja) * 2015-11-30 2019-12-25 株式会社Ihi 停泊隻数予測システム、停泊隻数予測方法、及び、停泊隻数予測プログラム
CN109615932B (zh) * 2018-10-17 2020-07-10 中国电子科技集团公司第二十八研究所 一种基于外接圆检测的船舶常见锚泊区边界自动提取方法
CN111666686A (zh) * 2020-06-08 2020-09-15 江苏航运职业技术学院 一种基于蒙特卡洛仿真的计算锚地容量的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110069582A (zh) * 2017-10-12 2019-07-30 中电科海洋信息技术研究院有限公司 船舶抛锚区域确定方法、装置、设备及存储介质
CN109708638A (zh) * 2018-12-03 2019-05-03 江苏科技大学 一种船舶轨迹点提取方法
US20200184828A1 (en) * 2018-12-05 2020-06-11 Windward Ltd. Risk event identification in maritime data and usage thereof
CN110009937A (zh) * 2019-03-21 2019-07-12 武汉理工大学 一种基于ais数据的船舶碰撞风险分析方法
CN111985529A (zh) * 2020-07-06 2020-11-24 东南大学 一种船舶ais轨迹混合聚类方法及系统
CN112686944A (zh) * 2020-12-29 2021-04-20 武汉理工大学 一种船舶锚泊面积计算方法及装置

Also Published As

Publication number Publication date
US20220412743A1 (en) 2022-12-29
CN112686944B (zh) 2023-05-23
CN112686944A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2022142384A1 (zh) 一种船舶锚泊面积计算方法及装置
JP6891972B2 (ja) 河川危険度判定装置、河川危険度判定方法、及びプログラム
EP0339527B1 (en) Fingerprint processing system capable of detecting a core of a fingerprint image by curvature parameters
CN109087510A (zh) 交通监测方法及装置
CN108776937B (zh) 一种基于双目云台摄像机的船只违法捕捞行为判别方法及系统
CN109615932B (zh) 一种基于外接圆检测的船舶常见锚泊区边界自动提取方法
DE102018206435A1 (de) Vorrichtung zum Bestimmen einer Drehgeschwindigkeit und einer Schwingung eines Radkopfs eines Fahrzeugs
CN105469052B (zh) 一种车辆检测跟踪方法和装置
CN116485779B (zh) 自适应晶圆缺陷检测方法、装置、电子设备及存储介质
CN112613455A (zh) 一种船舶锚泊聚集区识别方法及装置
CN115100654A (zh) 一种基于计算机视觉算法的水位识别方法及装置
CN115600438A (zh) 适用于水利工程的数据处理方法及系统
CN112669302B (zh) 吊弦缺陷检测方法、装置、电子设备及存储介质
CN112884697A (zh) 晶圆图的辨识方法与计算机可读取记录介质
CN108681702A (zh) 一种集装箱装卸积载贝位信息确定方法及系统
CN117423052A (zh) 一种基于数据分析的监控设备调测系统及方法
CN105445282B (zh) 计数池外部灰尘识别方法、装置及全自动尿液沉渣分析系统
CN108038841A (zh) 一种硅片ld缺陷检测方法及装置
CN116030113A (zh) 一种水位识别方法及监测方法、水位识别系统及监测系统
US20060078221A1 (en) Texture error recovery method using edge preserving spatial interpolation
CN113505776A (zh) 一种用于燃气表读数的智能识别方法及装置
CN117468084B (zh) 晶棒生长控制方法、装置、长晶炉系统和计算机设备
KR101387384B1 (ko) 조위관측 기록지 독취시스템 및 방법
CN111665499A (zh) 一种降低船载雷达海上溢油预警误判率的判定方法
CN117073565B (zh) 一种桥梁变形监测系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913131

Country of ref document: EP

Kind code of ref document: A1