WO2022142382A1 - 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统 - Google Patents

一种甲醇重整燃料电池发电系统变动负载工况下的控制系统 Download PDF

Info

Publication number
WO2022142382A1
WO2022142382A1 PCT/CN2021/113394 CN2021113394W WO2022142382A1 WO 2022142382 A1 WO2022142382 A1 WO 2022142382A1 CN 2021113394 W CN2021113394 W CN 2021113394W WO 2022142382 A1 WO2022142382 A1 WO 2022142382A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power
module
methanol reforming
methanol
Prior art date
Application number
PCT/CN2021/113394
Other languages
English (en)
French (fr)
Inventor
赵青
张宸
王勤
吴荣生
Original Assignee
宁波申江科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波申江科技股份有限公司 filed Critical 宁波申江科技股份有限公司
Publication of WO2022142382A1 publication Critical patent/WO2022142382A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to the technical field of fuel cells, in particular to a control system for a methanol reforming fuel cell power generation system under variable load conditions.
  • the methanol reforming fuel cell is a fuel cell system that uses the hydrogen-rich gas generated by the methanol reforming reaction as a fuel. It is composed of a methanol reforming module and a proton exchange membrane fuel cell stack. The high power density and high energy efficiency of the stack; at the same time, methanol is used as the input energy of the fuel cell, and the hydrogen is produced and used immediately, which avoids the high pressure danger in the hydrogen storage process, the low efficiency in the transportation process and the high cost of use.
  • the methanol steam reforming reaction is an endothermic reaction, so an external heat source is required to maintain the energy required for the endothermic reforming and the preheating of the raw materials. The method provides heat to the methanol reforming system.
  • the combustion exhaust gas and the high-temperature exhaust gas of the fuel cell are usually recovered by preheating the raw materials, so it is a multi-heat and mass transfer system, but the heat and mass transfer is a relatively slow process. , the system output power regulation is also slow, so frequent changes in fuel cell output will affect the stability of the methanol reforming fuel cell system operation.
  • the methanol reforming module usually operates at a temperature of 250°C, and the high-temperature proton membrane fuel cell stack also operates at a temperature of about 140-180°C.
  • the cold start of the system usually takes more than 30 minutes.
  • a certain capacity energy storage module is required to provide energy during system startup. The user needs power supply, and at the same time provides the same power for system startup.
  • the purpose of the present invention is to provide a control system for a methanol reforming fuel cell power generation system under variable load conditions.
  • the invention can make the methanol reforming fuel cell system recover quickly and maintain a good state for a long time, make up for the shortcoming of slow response of the methanol reforming fuel cell system, avoid the impact of changing user demand power on the methanol reforming fuel cell system, and satisfy the user's overall change
  • the power demand of users and the demand for intermittent power consumption can also ensure the efficient and stable operation of the entire power generation system; especially in the case of an island-type power generation system or a mobile power consumption occasion without basic power, the system needs to be kept in a good state all the time.
  • the solution of the present invention is: a control system for a methanol reforming fuel cell power generation system under variable load conditions, including a fuel supply module, a methanol reforming module, a fuel cell module, an energy storage module and a control module .
  • the control module is connected in communication with the fuel supply module, the fuel cell module and the energy storage module.
  • the control module uses the sum of the output power PB of the energy storage module and the output power Pmfc of the fuel cell as the required power Pr and/or the remaining capacity value SOC of the energy storage module to control the fuel supply module and the fuel cell module respectively.
  • the control steps are as follows .
  • the remaining capacity regionalization process is performed to form the remaining capacity regional variable Cj.
  • the output of the fuel cell DCDC is adjusted, and at the same time, the liquid inlet amount and air flow rate of methanol water in the fuel supply module are adjusted.
  • a control system of the present invention under the condition of variable load of a methanol reforming fuel cell power generation system has the following advantages compared with the prior art: by performing regionalized treatment on the demanded power, it is possible to effectively avoid the use of The impact of small-scale power fluctuations of electrical equipment on the methanol reforming fuel cell system, and at the same time, it can respond to changes in user demand power to a certain extent, and adjust the output power of the methanol reforming fuel cell system in time; regionalize the remaining capacity of the energy storage module
  • the treatment can effectively reduce the adjustment frequency of the methanol reforming fuel cell, reduce the fluctuation of the internal temperature and flow of the system, enable the power generation system to operate efficiently and smoothly, and at the same time keep the energy storage module in a better state; the use of fuel cell output hysteresis
  • the performance adjustment method can effectively filter the short-term on-off of some electrical equipment to interfere with the methanol reforming fuel cell system.
  • the user demand power is regionalized into at least five, and the remaining capacity is regionalized into at least five.
  • multiple groups of user demand power areas and remaining capacity areas are set up respectively, and the corresponding fuel cell output power is obtained by comparing with the f(Ui, Cj) fuzzy rule database.
  • the division of multiple groups of areas can improve the system performance. Applicability and functionality.
  • the remaining capacity area variable Cj, C ⁇ C1, C2,..., Cn-1, Cn ⁇ , where C1 is [0 ⁇ 0.7Pmax], C1 is the risk area, C2 ⁇ Cn-1 is the normal area, Cn is [0.9-1Pmax]; Cn is the warning area.
  • the maximum output power of the system is Pmax.
  • Pmax the required power area variable and the remaining capacity area variable as multiple groups respectively.
  • the delay time is 0; when Ui changes and Cj does not change, the delay time is 1.5-3 minutes.
  • Adopting the differentiated hysteresis adjustment scheme can make the system respond to the change of user demand power in time, adjust the output power of the methanol reforming fuel cell system in time, and at the same time, it can effectively filter the short-term on-off of some electrical equipment to the methanol reforming fuel cell system. It can also maintain the best state of charge of the energy storage battery.
  • the power adjustment rate is 0.005Pmax/s-0.01Pmax/s, and the step-by-step power adjustment method can make the output power of the fuel cell rise and fall steadily, ensuring the stability of the system.
  • the fuel cell polarization damage will not be caused by the rapid consumption of hydrogen produced by methanol reforming, and the temperature of methanol reforming will not be insufficient due to the insufficient amount of backburning hydrogen.
  • the methanol reforming temperature is too high, which in turn increases the CO content in the exhaust gas and poisons the electrodes of the fuel cell.
  • the methanol reforming module is connected to the fuel cell module to provide hydrogen for the fuel cell, and the unused hydrogen of the fuel cell enters the methanol reforming module for combustion, which can effectively improve the system efficiency of the fuel cell system , while avoiding the emission of harmful or flammable gases.
  • control module collects data such as the remaining capacity, current, voltage, power, etc. of the energy storage module, collects and adjusts the inflow volume and air flow of methanol water in the fuel supply module, and collects the data of the fuel cell module. parameters and controls the regulation of DCDC.
  • the steps of reducing the output power of the methanol reforming fuel cell are as follows: a: After receiving the command to reduce the output power, firstly adjust the fuel pump to reduce the input amount of methanol water, and the methanol water is first reduced to 80 of the target value Q ⁇ 90%, and then increase to the target value Q to reduce the output power of the fuel cell system.
  • the step of increasing the output power of the methanol reforming fuel cell is b: after receiving the command to increase the output power, firstly adjust the fuel pump to increase the liquid inlet of methanol water, and the methanol water is first raised to the target value Q 110 ⁇ 120% of the target value, and then reduce to the target value Q.
  • the present invention has the following beneficial effects.
  • the methanol reforming fuel cell system can be adjusted in a timely manner in response to changes in user demand power to a certain extent.
  • the regionalized treatment of the remaining capacity of the energy storage module can effectively reduce the adjustment frequency of the methanol reforming fuel cell, reduce the fluctuation of the internal temperature and flow of the system, and enable the power generation system to operate efficiently and smoothly.
  • the energy module is maintained in a better state; the fuel cell output hysteresis adjustment method can effectively filter the interference of some electrical equipment on and off the methanol reforming fuel cell system in a short time.
  • the number of fuel cell adjustments is small, and the system is stable for a long time. While satisfying the customer's electrical power, it can keep the battery in a good state of charge. In addition, the load can be lifted and lowered at a reasonable speed, so that the system can stably reach the required power. .
  • slow charging and slow discharging of the energy storage module can effectively reduce the output adjustment frequency of the methanol reforming fuel cell, reduce the fluctuation of the internal temperature and flow of the system, and enable the power generation system to be efficient and efficient. Smooth operation. Especially when it is used as an island-type power generation system or mobile power consumption without basic power, it is necessary to keep the system in a good state to prevent the equipment from being paralyzed due to the failure to provide the starting power and the power required by the user at the next startup.
  • FIG. 1 is a schematic diagram of the system structure of the methanol reforming fuel cell of the present invention.
  • FIG. 2 is a schematic diagram of the operation stage of the methanol reforming fuel cell system of the present invention.
  • FIG. 3 is a schematic diagram of the control implementation of the fuel supply module and the fuel cell module according to the present invention.
  • FIG. 4 is a schematic diagram of temperature during operation of the methanol reforming module of the present invention.
  • FIG. 5 is a schematic diagram of temperature during operation of the methanol reforming module in the prior art.
  • a control system for a methanol reforming fuel cell power generation system under variable load conditions includes a fuel supply module, a methanol reforming module, a fuel cell module, an energy storage module, and a control module.
  • the control module is connected in communication with the fuel supply module, the fuel cell module and the energy storage module.
  • the control module uses the sum of the output power PB of the energy storage module and the output power Pmfc of the fuel cell as the required power Pr and/or the remaining capacity value SOC of the energy storage module to control the fuel supply module and the fuel cell module respectively.
  • the control steps are as follows .
  • the remaining capacity regionalization process is performed to form the remaining capacity regional variable Cj.
  • the output of the fuel cell DCDC is adjusted, and at the same time, the liquid inlet amount and air flow rate of methanol water in the fuel supply module are adjusted.
  • the energy storage module is a battery.
  • the methanol reforming module is connected to the fuel cell module to provide hydrogen for the fuel cell module, and at the same time the unused hydrogen of the fuel cell module enters the methanol reforming module for combustion.
  • the control module collects data such as remaining capacity, current, voltage, power, etc. of the energy storage module, collects and adjusts the methanol water inflow volume and air flow in the fuel supply module, collects parameters of the fuel cell module and controls the adjustment of the DCDC.
  • the operation of the methanol reforming fuel cell system is divided into startup, rapid system recovery phase, normal operation, and shutdown phase.
  • the user's electricity demand and the start-up electricity of the methanol reforming fuel cell system are provided by the energy storage module.
  • the user's electricity demand is provided by the methanol reforming fuel cell system, and the methanol reforming fuel cell system quickly charges the energy storage module.
  • the electricity demand of users is provided by the methanol reforming fuel cell system and the energy storage module.
  • the power demanded by the user is 0, and the shutdown power of the methanol reforming fuel cell system is provided by the energy storage module.
  • the fast recovery phase of the system is different from the normal operation phase of the control algorithm.
  • the methanol reforming fuel cell system charges the energy storage module with a high current, so that the energy storage module can quickly recover to a better state; Coupled power supply, slow charge and slow discharge of the energy storage module can effectively reduce the output adjustment frequency of the methanol reforming fuel cell, reduce the fluctuation of the internal temperature and flow of the system, and enable the power generation system to operate efficiently and smoothly.
  • it is used as an island-type power generation system or mobile power consumption without basic power, it is necessary to keep the system in a good state to prevent the equipment from being paralyzed due to the failure to provide the starting power and the power required by the user at the next startup.
  • the control module takes the sum of the output power of the energy storage module and the output power of the fuel cell as the required power, and performs power regionalization processing on the required power.
  • the control module performs residual capacity regionalization processing according to the residual capacity value of the energy storage module.
  • the power area Ui or the remaining capacity area Cj changes, the corresponding fuel cell output current value is obtained by comparing the database according to the user's required power area and remaining capacity area.
  • the DCDC output of the fuel cell is adjusted and adjusted at the same time.
  • the liquid inlet and air flow of methanol water in the fuel supply module is adjusted.
  • the methanol reforming fuel cell system can be adjusted in a timely manner in response to changes in user demand power to a certain extent.
  • the regionalized treatment of the remaining capacity of the energy storage module can effectively reduce the adjustment frequency of the methanol reforming fuel cell, reduce the fluctuation of the internal temperature and flow of the system, and enable the power generation system to operate efficiently and smoothly.
  • the energy module is maintained in a better state; the fuel cell output hysteresis adjustment method can effectively filter the interference of some electrical equipment on and off the methanol reforming fuel cell system in a short time.
  • Fig. 5 is a schematic diagram of the temperature curve of the methanol reforming module in the prior art during normal operation, it can be seen that the temperature fluctuation range of the methanol reforming module in the prior art is relatively large, causing the methanol reforming module Insufficient hydrogen production will damage the fuel cell electrodes. On the other hand, when there is too much hydrogen backburning, the generation of hot spots will easily lead to excessive CO content in the methanol reforming tail gas, thereby poisoning the fuel cell electrodes and reducing the The stability of the system operation affects the service life of the system. At the same time, the system adjustment frequency is too high, which reduces the stability of the system, reduces the fuel utilization rate of the system, and reduces the system efficiency.
  • Pr is the power demanded by the user
  • Pmfc is the output power of the methanol reforming fuel cell system
  • PB is the input and output power of the battery
  • Pr PB+Pmfc
  • SOC is the remaining power of the energy storage module
  • Pmax the maximum output power of the system
  • the power generation efficiency of the methanol reforming fuel cell system in this power section is low, and the fuel cell system output The power setting is greater than 0.3Pmax, and the system in this area is almost unresponsive.
  • U2 ⁇ U5 are high-efficiency regions, and the power generation efficiency of the methanol reforming fuel cell system in this power stage is relatively high.
  • mobile applications require small size and light weight, and will not be equipped with many energy storage batteries.
  • C1 The area is large, and the insufficient remaining power in this area will affect the next startup and shorten the standby time.
  • C2 ⁇ C4 are normal areas.
  • C5 is a high-risk area. The battery charge in this area is relatively large and cannot accept a short-term high current. If the user turns off the sudden load, the fuel cell power will have nowhere to release, which will cause system damage.
  • both the equipment startup electricity and the user electricity are provided by the battery.
  • the methanol reforming fuel cell system warms up to the working temperature, it starts to output electricity.
  • the methanol reforming fuel cell enters the power generation state, its output power is jointly determined by Cj and Ui. Take a 5kW methanol fuel cell system as an example.
  • Pr fluctuates in the range of 0.15 ⁇ 0.2Pmax and SOC ⁇ 0.5
  • Pr ⁇ U1 when Pr fluctuates in the range of 0.15 ⁇ 0.2Pmax and SOC ⁇ 0.5, Pr ⁇ U1.
  • Pfc5 is obtained by comparing the fuel cell output power in the database, Pfc5 ⁇ 0.3 Pmax+Pr.
  • step a is executed quickly without delay; with the further charging, when SOC>0.9, according to U1, C5, the fuel cell output power in the database is compared to Pfc1, Pfc1 ⁇ Pr-PB, and the battery starts to be consumed
  • the SOC is less than 0.85, according to the fuzzy database rules C1 and C4, the fuel cell needs to increase the power to charge the battery as the battery power is continuously consumed, and the cycle is repeated.
  • the number of fuel cell adjustments is small, and the system is stable for a long time. While satisfying the customer's electric power, it can keep the battery in a good state of charge. In addition, the load can be lifted and lowered at a reasonable speed, so that the system can meet the demand stably. power.
  • the steps for reducing the output power of the methanol reforming fuel cell are: a: After receiving the command to reduce the output power, firstly adjust the fuel pump to reduce the input amount of methanol water.
  • the target value Q in turn reduces the output power of the fuel cell system. It can neutralize the excessive residual hydrogen inside the fuel cell in a short time during the load reduction process, and prevent excessive unused hydrogen from entering the methanol reforming module for combustion, resulting in a rapid temperature rise, ensuring a smooth transition in the load reduction process of the system.
  • the step of increasing the output power of the methanol reforming fuel cell is b: after receiving the instruction to increase the output power, firstly adjust the fuel pump to increase the inflow of methanol water. When it drops to the target value Q, it can quickly make up for the shortage of hydrogen inside the fuel cell during the loading process, reduce the electrode polarization damage caused by insufficient fuel, and prevent the temperature of the methanol reforming module from being too low due to insufficient hydrogen backburning. The process transitions smoothly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开一种甲醇重整燃料电池发电系统变动负载工况下的控制系统,所述甲醇重整燃料电池系统变动用户需求功率控制系统包括燃料供给模块、甲醇重整模块、燃料电池模块、储能模块、控制模块。本发明根据甲醇重整燃料电池系统特点进行分阶段控制,对用户需求功率、储能模块剩余容量进行区域化处理,将甲醇重整燃料电池系统输出功率根据用户需求功率区域、储能模块剩余容量区域进行差别、迟滞调整。本发明能够使甲醇重整燃料电池系统快速恢复并长期保持较佳状态,弥补甲醇重整燃料电池系统响应慢的缺点,规避变动用户需求功率对甲醇重整燃料电池系统的冲击,满足用户全域变动用户需求功率和间断用电需求,又能保证整个发电系统高效、平稳运行。

Description

一种甲醇重整燃料电池发电系统变动负载工况下的控制系统 技术领域
本发明涉及燃料电池技术领域,特别涉及一种甲醇重整燃料电池发电系统变动负载工况下的控制系统。
背景技术
甲醇重整燃料电池是一种以甲醇重整反应生成的富氢气体作为燃料的燃料电池系统,由甲醇重整模块与质子交换膜燃料电池电堆组成,该架构利用了氢质子膜燃料电池电堆的高功率密度、高能效特点;同时,采用甲醇作为燃料电池输入能源,氢气即产即用,避免了氢气储存过程中的高压危险、运输过程中的效率低下及使用成本高等问题。甲醇水蒸气重整反应是一个吸热反应,所以需要外部提供热源,以维持重整吸热以及原料预热所需的能量,为了提高系统效率,通常使用燃料电池未利用的氢气通过回烧利用方式给甲醇重整系统供热,燃烧尾气和燃料电池高温废气通常以给原料预热的方式进行回收热量,所以其是一个多热质传输的系统,但传热传质是一个相对缓慢的过程,系统输出功率调节也是缓慢的,所以燃料电池输出频繁变化会影响甲醇重整燃料电池系统运行的稳定性。
技术问题
甲醇重整模块通常工作温度在250℃,高温质子膜燃料电池堆的工作温度也在140-180℃左右,系统冷启动通常需要30min以上,通常要搭配一定容量的储能模块在系统启动期间给用户需求功率供电,同时提供系统启动同电。在很多移动用电场合,例如房车、移动设备检测车、军用指挥车辆,受用户使用习惯、环境和空调的影响其用户需求功率通常是变化的,用电也是间断的;为了减小体积重量,甲醇燃料电池系统内部配备的储能模块容量有限,需要储能模块一直保持较佳的剩余容量,以备下次启动用。
技术解决方案
针对现有技术的不足,本发明的目的在于提供一种甲醇重整燃料电池发电系统变动负载工况下的控制系统。本发明能够使甲醇重整燃料电池系统快速恢复并长期保持较佳状态,弥补甲醇重整燃料电池系统响应慢的缺点,规避变动用户需求功率对甲醇重整燃料电池系统的冲击,满足用户全域变动用户需求功率和间断用电需求,又能保证整个发电系统高效、平稳运行;特别在作为孤岛型发电系统使用,或者无基础电力的移动式用电场合,需要让系统始终维持较佳状态。
为了达成上述目的,本发明的解决方案是:一种甲醇重整燃料电池发电系统变动负载工况下的控制系统,包括燃料供给模块、甲醇重整模块、燃料电池模块及储能模块及控制模块。
所述控制模块与燃料供给模块、燃料电池模块、储能模块通信连接。
所述控制模块以储能模块输出功率PB、燃料电池输出功率Pmfc之和作为需求功率Pr和/或储能模块剩余容量数值SOC以实现对燃料供给模块、燃料电池模块分别进行控制,控制步骤如下。
1)对需求功率值进行功率区域化处理,形成需求功率区域变量Ui。
2)根据储能模块剩余容量数值进行剩余容量区域化处理,形成剩余容量区域变量Cj。
3)当功率区域变量Ui和/或剩余容量区域变量Cj变化时,根据相应的需求功率区域值与和/或剩余容量区域值与f(Ui,Cj)规则数据库进行比对得出对应燃料电池输出功率。
迟滞预定时间后,再对燃料电池DCDC的输出进行调整,同时调节燃料供给模块中甲醇水的进液量、空气流量。
采用以上方法后,本发明的一种甲醇重整燃料电池发电系统变动负载工况下的控制系统,与现有技术相比,具有以下优点:通过对需求功率进行区域化处理,能够有效规避用电设备小范围功率波动对甲醇重整燃料电池系统的影响,同时又能在一定程度上响应用户需求功率变化,及时调整甲醇重整燃料电池系统的输出功率;对储能模块剩余容量进行区域化处理,能够有效减少甲醇重整燃料电池调整频率,减少系统内部温度和流量的波动性,让发电系统能够高效、平稳运行,同时又能让储能模块维持在较佳状态;采用燃料电池输出迟滞性调整方法能够有效过滤部分用电设备短时通断对甲醇重整燃料电池系统的干扰。
作为本发明的一种改进,将用户需求功率区域化处理为至少5个,将剩余容量区域化处理为至少5个。通过上述改进,分别设置多组用户需求功率区域以及剩余容量区域,并通过与f(Ui,Cj)模糊规则数据库进行比对得出对应燃料电池输出功率,多组区域的划分,能够提升系统的适用性以及功能性。
作为本发明的一种改进,将所述功率区域变量Ui分为n个子集Ui,i=1……n,将所述剩余容量区域变量Cj分为n个模子集Cj,j=1……n,任一对组合(Ui,Cj)推理得到控制模块的信号的模糊子集Pmfc,m=1……n,从而形成模糊推理规则((Ui,Cj)-- Pmfc)。
作为本发明的一种改进,所述需求功率区域变量为Ui,U={U1,U2,……,Un-1,Un}其中U1为[0~0.3Pmax],U1为非灵敏区, U2~ Un;且U1的分段区域范围最大。
所述剩余容量区域变量Cj,C={ C1,C2,……,Cn-1,Cn },其中C1为[0~0.7Pmax], C1为风险区 ,C2~ Cn-1为正常区, Cn为[0.9-1Pmax];Cn为警戒区。
其中,系统的最大输出功率为Pmax。 将需求功率区域变量以及剩余容量区域变量分别设置为多组。
作为本发明的一种改进,当Ui不变,Cj变化时,所述迟滞时间为0;当Ui变化,Cj不变时,所述迟滞时间为1.5-3分钟。采用区分迟滞调整方案,可以使系统及时响应用户需求功率变化,及时调整甲醇重整燃料电池系统的输出功率,同时能够有效过滤部分用电设备短时通断对甲醇重整燃料电池系统的干扰,又能保持储能电池的较佳荷电状态。
作为本发明的一种改进,功率调整速率为0.005Pmax /s -0.01Pmax /s,步进级调整功率方法能够使燃料电池输出功率平稳上升,平稳下降,保证系统的稳定性。不会因为甲醇重整产生的氢气急剧消耗导致燃料电池极化损伤,回烧氢气量不足导致甲醇重整温度不够;同时也不会因为甲醇重整产生的氢气急剧过剩,导致回烧的氢气急剧增加而引起甲醇重整温度过高,进而增加尾气中CO的含量,毒化燃料电池的电极。
作为本发明的一种改进,所述甲醇重整模块与燃料电池模块连接,为燃料电池提供氢气,同时燃料电池未利用的氢气进入甲醇重整模块进行燃烧,能够有效提高燃料电池系统的系统效率,同时避免有害或者可燃气体的排放。
作为本发明的一种改进,所述控制模块采集储能模块剩余容量、电流、电压、功率等数据,采集燃料供给模块中甲醇水的进液量、空气流量并进行调节,采集燃料电池模块的参数并控制DCDC的调节。
作为本发明的一种改进,甲醇重整燃料电池降低输出功率步骤为:a:接收到降低输出功率指令后,首先调节燃料泵,降低甲醇水的输入量,甲醇水先降到目标值Q的80~90%,然后再升到目标值Q进而降低燃料电池系统的输出功率。通过上述改进,能短时中和降载过程中燃料电池内部残余氢气过多的状况,防止未利用氢气过多进入甲醇重整模块燃烧,导致急剧升温的状况,保征系统降载过程平稳过渡。
作为本发明的一种改进,甲醇重整燃料电池升高输出功率步骤为b:接受到升高输出功率指令后,首先调节燃料泵,增加甲醇水的进液量,甲醇水先升到目标值Q的110~120%,然后再降到目标值Q。通过上述改进,能迅速弥补加载过程中燃料电池内部氢气不足的状况,减小因燃料不足导致电极极化损伤,同时防止回烧氢气不足导致甲醇重整模块温度过低,保征系统加过程平稳过渡。
有益效果
本发明相较于现有技术取得的有益效果为。
通过对需求功率进行区域化处理,能够有效规避用电设备小范围功率波动对甲醇重整燃料电池系统的影响,同时又能在一定程度上响应用户需求功率变化,及时调整甲醇重整燃料电池系统的输出功率;对储能模块剩余容量进行区域化处理,能够有效减少甲醇重整燃料电池调整频率,减少系统内部温度和流量的波动性,让发电系统能够高效、平稳运行,同时又能让储能模块维持在较佳状态;采用燃料电池输出迟滞性调整方法能够有效过滤部分用电设备短时通断对甲醇重整燃料电池系统的干扰。
整个过程中,燃料电池调节次数较少,系统平稳时间长,满足客户用电功率的同时,又能使电池处于良好的荷电状态,另外以合理的速度升降载,可以使系统平稳的达到需求功率。
通过在甲醇重整燃料电池正常运行阶段下,对储能模块慢充、慢放能够有效的减少甲醇重整燃料电池输出调整频率,减少系统内部温度和流量的波动性,让发电系统能够高效、平稳运行。特别在作为孤岛型发电系统使用,或者无基础电力的移动式用电场合,需要让系统维持较佳状态,防止下次启动时无法提供启动用电和用户需求功率供电,导致设备瘫痪。
附图说明
图1为本发明的甲醇重整燃料电池的系统结构示意图。
图2为本发明的甲醇重整燃料电池系统的运行阶段示意图。
图3为本发明的对燃料供给模块、燃料电池模块的控制实施示意图。
图4为本发明的甲醇重整模块运行时的温度示意图。
图5为现有技术中甲醇重整模块运行时的温度示意图。
本发明的最佳实施方式
以下结合附图实施例对本发明做进一步详细描述。
请参阅图1所示,一种甲醇重整燃料电池发电系统变动负载工况下的控制系统,包括燃料供给模块、甲醇重整模块、燃料电池模块、储能模块及控制模块。
所述控制模块与燃料供给模块、燃料电池模块、储能模块通信连接。
所述控制模块以储能模块输出功率PB、燃料电池输出功率Pmfc之和作为需求功率Pr和/或储能模块剩余容量数值SOC以实现对燃料供给模块、燃料电池模块分别进行控制,控制步骤如下。
1)对需求功率值进行功率区域化处理,形成需求功率区域变量Ui。
2)根据储能模块剩余容量数值进行剩余容量区域化处理,形成剩余容量区域变量Cj。
3)当功率区域变量Ui和/或剩余容量区域变量Cj变化时,根据相应的需求功率区域值与和/或剩余容量区域值与f(Ui,Cj)规则数据库进行比对得出对应燃料电池输出功率。
迟滞预定时间后,再对燃料电池DCDC的输出进行调整,同时调节燃料供给模块中甲醇水的进液量、空气流量。
所述储能模块为蓄电池。所述甲醇重整模块与燃料电池模块连接,为燃料电池模块提供氢气,同时燃料电池模块未利用的氢气进入甲醇重整模块进行燃烧,所述燃料供给模块、燃料电池模块、储能模块与控制模块通信连接。
所述控制模块采集储能模块剩余容量、电流、电压、功率等数据,采集燃料供给模块中甲醇水的进液量、空气流量并进行调节,采集燃料电池模块的参数并控制DCDC的调节。
请参阅图1、图2和图3所示,所述甲醇重整燃料电池系统运行分为启动、系统快速恢复阶段、正常运行、关机阶段。
启动阶段,用户用电需求和甲醇重整燃料电池系统启动用电由储能模块提供。
系统快速恢复阶段,用户用电需求由甲醇重整燃料电池系统提供,同时甲醇重整燃料电池系统对储能模块进行快速充电。
正常运行阶段,用户用电需求由甲醇重整燃料电池系统与储能模块共同提供。
关机阶段,用户需求功率为0,甲醇重整燃料电池系统关机用电由储能模块提供。
所述系统快速恢复阶段与正常运行阶段控制算法不同。系统快速恢复阶段,甲醇重整燃料电池系统对储能模块进行大电流充电,使储能模块能够快速恢复较佳状态;正常运行阶段,甲醇重整燃料电池系统与储能模块对用户需求功率进行耦合供电,储能模块慢充、慢放能够有效的减少甲醇重整燃料电池输出调整频率,减少系统内部温度和流量的波动性,让发电系统能够高效、平稳运行。特别在作为孤岛型发电系统使用,或者无基础电力的移动式用电场合,需要让系统维持较佳状态,防止下次启动时无法提供启动用电和用户需求功率供电,导致设备瘫痪。
请参阅图1、图2和图3所示,所述控制模块以储能模块输出功率、燃料电池输出功率之和作为需求功率,并对需求功率进行功率区域化处理。所述控制模块根据储能模块剩余容量数值进行剩余容量区域化处理。当功率区域Ui或剩余容量区域Cj变化时,根据用户需求功率区域、剩余容量区域进行数据库比对得出对应燃料电池输出电流数值,迟滞一定时间后,对燃料电池的DCDC输出进行调整,同时调节燃料供给模块中甲醇水的进液量、空气流量。通过对需求功率进行区域化处理,能够有效规避用电设备小范围功率波动对甲醇重整燃料电池系统的影响,同时又能在一定程度上响应用户需求功率变化,及时调整甲醇重整燃料电池系统的输出功率;对储能模块剩余容量进行区域化处理,能够有效减少甲醇重整燃料电池调整频率,减少系统内部温度和流量的波动性,让发电系统能够高效、平稳运行,同时又能让储能模块维持在较佳状态;采用燃料电池输出迟滞性调整方法能够有效过滤部分用电设备短时通断对甲醇重整燃料电池系统的干扰。
结合实施例说明:图5为现有技术中甲醇重整模块正常运行时的温度曲线示意图,由此可见,现有技术中的甲醇重整模块运行时温度波动幅度较大,引起甲醇重整模块的产气量会发生相应变化,产氢不足时会损伤燃料电池电极,另一方面回烧氢气过多时,热点的产生容易导致甲醇重整尾气中CO含量过大,进而毒化燃料电池电极,降低了系统运行的稳定性,影响系统使用寿命。同时系统调节频率过高,使得系统稳定性降低,也会使得系统的燃料利用率降低,降低系统效率。
将所述功率区域变量Ui分为n个子集Ui,i=1……n,将所述剩余容量区域变量Cj分为n个模子集Cj,j=1……n,任一对组合(Ui,Cj)推理得到控制模块的信号的模糊子集Pmfcx,x=1……n,从而形成模糊推理规则((Ui,Cj)-- Pmfcx)。
请参阅图1、图2、图3和图4所示,Pr为用户需求功率,Pmfc为甲醇重整燃料电池系统输出功率,PB为蓄电池输入输出功率,且Pr=PB+Pmfc ,SOC为储能模块剩余电量,系统的最大输出功率为Pmax。用户需求功率区域函数为Ui,U={U1,U2,U3,U4,U5}其中U1为[0~0.3Pmax], U2为[0.3~0.5Pmax], U3为[0.5~0.7Pmax],U4为[0.7~0.9Pmax],U5为[0.9~1Pmax],其中U1为非灵敏区,其范围略大于其他区域范围,此功率段甲醇重整燃料电池系统的发电效率较低,燃料电池系统输出功率设置大于0.3Pmax,此区域段的系统几乎不响应。U2~ U5为高效区,此功率段甲醇重整燃料电池系统的发电效率较高。储能模块剩余容量区域函数为Cj,C={C1,C2,C3,C4,C5},其中C1为[0~0.7Pmax], C2为[0.7~0.8Pmax], C3为[0.8~0.85Pmax],C4为[0.85~0.9Pmax],C5为[0.9~1Pmax],通常移动式应用场合要求体积小、重量轻,不会配备较多的储能电池,其中C1区域范围较大,此区域剩余电量不足会影响下次启动以及缩短待机时间,C2~ C4正常区。其中C5为高风险区域,此区域电池荷电量比较足,无法接受短时大电流,如果用户关闭突然负载,燃料电池电能无处释放,会导致系统损坏。
系统启动时,设备启动用电和用户用电都由蓄电池提供,当甲醇重整燃料电池系统预热到工作温度后,开始输出电能。当甲醇重整燃料电池进入发电状态时,其输出功率由Cj、Ui共同决定。以5kW甲醇燃料电池系统为例。
例如,当Pr在0.15~0.2Pmax范围内波动,SOC<0.5时,Pr∈U1。根据U1、 C1,比对数据库中燃料电池输出功率得出Pfc5,Pfc5≈0.3 Pmax+Pr,此时燃料电池给用户供电,并对蓄电池快速充电;随着蓄电池充电的进行,0.8<SOC<0.85,根据U1,C3,比对数据库中燃料电池输出功率得出Pfc2,Pfc2≈ 0.05 Pmax+Pr,该状况下用户用电仍单独由燃料电池提供,并对蓄电池小电流充电,其中Pfc5降到Pfc2过程中,不延时,迅速执行步骤a;随着充电进一步进行,SOC>0.9时,根据U1,C5,比对数据库中燃料电池输出功率得出为Pfc1, Pfc1≈Pr-PB,开始消耗蓄电池的用电,随着持续消耗蓄电池电量,SOC<0.85时 ,此时根据模糊数据库规则C1,C4,燃料电池需要增大功率对蓄电池充电,执行步骤b,如此反复循环。在整个过程中,燃料电池调节次数较少,系统平稳时间长,满足客户用电功率的同时,又能使电池处于良好的荷电状态,另外以合理的速度升降载,可以使系统平稳的达到需求功率。
又如当Pr在0.55~0.6Pmax功率范围内波动,此时0.8<SOC<0.85时, 此时根据规则C1,C3,比对数据库中燃料电池以输出功率Pfc11运行,运行过程中,假设用户短期使用某用电设备(时间为20S), 根据规则库数据燃料电池输出为Pfc15,此时应调节Pfc,但是由于设置延时判断时间为2min,系统并不会执行步骤a。所以延时调节能有效过滤掉用户需求功率短期变化带来的干扰,另外甲醇重整燃料电池系统升降载过程中需要额外提高温度,会降低系统发电效率,所以延时调节一定程度上能保证系统的高效、稳定性。
甲醇重整燃料电池降低输出功率步骤为:a:接收到降低输出功率指令后,首先调节燃料泵,降低甲醇水的输入量,甲醇水先降到目标值Q的80~90%,然后再升到目标值Q进而降低燃料电池系统的输出功率。能短时中和降载过程中燃料电池内部残余氢气过多的状况,防止未利用氢气过多进入甲醇重整模块燃烧,导致急剧升温的状况,保征系统降载过程平稳过渡。
甲醇重整燃料电池升高输出功率步骤为b:接受到升高输出功率指令后,首先调节燃料泵,增加甲醇水的进液量,甲醇水先升到目标值Q的110~120%,然后再降到目标值Q,能迅速弥补加载过程中燃料电池内部氢气不足的状况,减小因燃料不足导致电极极化损伤,同时防止回烧氢气不足导致甲醇重整模块温度过低,保征系统加过程平稳过渡。
以上仅就本发明的控制方法实施例作了说明,但不能理解为是对权利要求的限制。本发明不局限于以上实施例,其具体数据允许有变化,但凡在本发明独立权利要求的保护范围内所作的各种变化均在本发明保护范围内。

Claims (10)

  1. 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,包括燃料供给模块、甲醇重整模块、燃料电池模块、储能模块及控制模块;
    所述控制模块与燃料供给模块、燃料电池模块、储能模块通信连接;
    所述控制模块以储能模块输出功率PB、燃料电池输出功率Pmfc之和作为需求功率Pr和/或储能模块剩余容量数值SOC以实现对燃料供给模块、燃料电池模块分别进行控制,控制步骤如下:
    对需求功率值进行功率区域化处理,形成需求功率区域变量Ui;
    根据储能模块剩余容量数值进行剩余容量区域化处理,形成剩余容量区域变量Cj;
    当功率区域变量Ui和/或剩余容量区域变量Cj变化时,根据相应的需求功率区域值与和/或剩余容量区域值与f(Ui,Cj)规则数据库进行比对得出对应燃料电池输出功率;
    迟滞预定时间后,再对燃料电池DCDC的输出进行调整,同时调节燃料供给模块中甲醇水的进液量、空气流量。
  2. 根据权利要求1所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,将用户需求功率区域化处理为至少5个,将剩余容量区域化处理为至少4个。
  3. 根据权利要求2所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,将所述功率区域变量Ui分为n个子集Ui,i=1……n,将所述剩余容量区域变量Cj分为n个模子集Cj,j=1……n,任一对组合(Ui,Cj)推理得到控制模块的信号的模糊子集Pmfcx,x=1……n,从而形成模糊推理规则((Ui,Cj)-- Pmfcx)。
  4. 根据权利要求3所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,所述需求功率区域变量为Ui,U={U1,U2,……,Un-1,Un}其中U1为[0~0.3Pmax],U1为非灵敏区, U2~ Un为高效区;
    所述剩余容量区域变量Cj,C={ C1,C2,……,Cn-1,Cn },其中C1为[0~0.7Pmax], C1为风险区 ,C2~ Cn-1为正常区, Cn为[0.9-1Pmax];Cn为警戒区;
    其中,系统的最大输出功率为Pmax。
  5. 根据权利要求4所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,当Ui不变,Cj变化时,所述迟滞时间为0;当Ui变化,Cj不变时,所述迟滞时间为1.5-3分钟。
  6. 据权利要求1所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,功率调整速率为0.005Pmax /s -0.02Pmax /s。
  7. 根据权利要求1所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,所述甲醇重整模块与燃料电池模块连接,为燃料电池提供氢气,同时燃料电池未利用的氢气进入甲醇重整模块进行燃烧。
  8. 根据权利要求1所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,所述控制模块采集储能模块剩余容量、电流、电压、功率等数据,采集燃料供给模块中甲醇水的进液量、空气流量并进行调节,采集燃料电池模块的参数并控制DCDC的调节。
  9. 据权利要求8所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,甲醇重整燃料电池降低输出功率步骤为:a:接收到降低输出功率指令后,首先调节燃料泵,降低甲醇水的输入量,甲醇水先降到目标值Q的80~90%,然后再升到目标值Q进而降低燃料电池系统的输出功率。
  10. 据权利要求8所述的甲醇重整燃料电池发电系统变动负载工况下的控制系统,其特征在于,甲醇重整燃料电池升高输出功率步骤为b:接受到升高输出功率指令后,首先调节燃料泵,增加甲醇水的进液量,甲醇水先升到目标值Q的110~120%,然后再降到目标值Q提高燃料电池系统的输出功率。
PCT/CN2021/113394 2020-12-31 2021-08-19 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统 WO2022142382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011634102.0 2020-12-31
CN202011634102.0A CN112820913B (zh) 2020-12-31 2020-12-31 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统

Publications (1)

Publication Number Publication Date
WO2022142382A1 true WO2022142382A1 (zh) 2022-07-07

Family

ID=75856778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113394 WO2022142382A1 (zh) 2020-12-31 2021-08-19 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统

Country Status (2)

Country Link
CN (1) CN112820913B (zh)
WO (1) WO2022142382A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820913B (zh) * 2020-12-31 2021-11-12 宁波申江科技股份有限公司 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统
CN114497650B (zh) * 2022-01-07 2024-02-27 摩氢科技有限公司 一种甲醇重整燃料电池发电系统功率控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315511A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 燃料電池自動車の電力配分制御装置
JP2001339810A (ja) * 2000-05-30 2001-12-07 Nissan Motor Co Ltd 燃料電池システムの制御装置
CN108110282A (zh) * 2017-11-30 2018-06-01 中国第汽车股份有限公司 燃料电池发动机功率控制方法
CN109546185A (zh) * 2019-01-08 2019-03-29 中氢新能技术有限公司 一种甲醇重整燃料电池的控制系统
CN111370738A (zh) * 2020-03-16 2020-07-03 中国兵器装备集团自动化研究所 一种燃料电池发电系统自适应负载控制系统及方法
CN112820913A (zh) * 2020-12-31 2021-05-18 宁波申江科技股份有限公司 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171137A (ja) * 2010-02-19 2011-09-01 Panasonic Corp 燃料電池発電システム、及びそのプログラム
CN104410092B (zh) * 2014-12-08 2017-01-25 国网新疆电力公司经济技术研究院 一种多元互补新能源发电系统的能量协调优化方法
CN106356922B (zh) * 2016-08-31 2018-09-25 南方电网科学研究院有限责任公司 充电站的充电控制方法和系统
CN111987891A (zh) * 2020-10-16 2020-11-24 北京理工大学深圳汽车研究院 用于氢燃料电池动力系统的功率输出控制装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315511A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 燃料電池自動車の電力配分制御装置
JP2001339810A (ja) * 2000-05-30 2001-12-07 Nissan Motor Co Ltd 燃料電池システムの制御装置
CN108110282A (zh) * 2017-11-30 2018-06-01 中国第汽车股份有限公司 燃料电池发动机功率控制方法
CN109546185A (zh) * 2019-01-08 2019-03-29 中氢新能技术有限公司 一种甲醇重整燃料电池的控制系统
CN111370738A (zh) * 2020-03-16 2020-07-03 中国兵器装备集团自动化研究所 一种燃料电池发电系统自适应负载控制系统及方法
CN112820913A (zh) * 2020-12-31 2021-05-18 宁波申江科技股份有限公司 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统

Also Published As

Publication number Publication date
CN112820913B (zh) 2021-11-12
CN112820913A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN105702979B (zh) 一种燃料电池电堆零度以下环境的启动方法
CN111403772B (zh) 一种燃料电池冷启动装置及其控制方法
CN101868881B (zh) 燃料电池系统
WO2022142382A1 (zh) 一种甲醇重整燃料电池发电系统变动负载工况下的控制系统
CN101071864A (zh) 车用燃料电池混合动力装置
CN109572487B (zh) 一种燃料电池混合动力系统的关机控制方法
US20080118798A1 (en) Fuel cell system apparatus
Gang et al. Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles
CN111933973A (zh) 一种质子交换膜燃料电池混合能量管理系统
US8092953B2 (en) Fuel cell system and method of operating the fuel cell system
CN112201806A (zh) 燃料电池的控制系统及方法、装置、存储介质及处理器
CN202712342U (zh) 一种燃料电池装置
CN102473947A (zh) 燃料电池装置
JP2004253220A (ja) 燃料電池車両の制御装置
CN113224354A (zh) 一种燃料电池冬季低温储存氢气路除水干燥控制方法
Manabe et al. Development of fuel cell hybrid vehicle rapid start-up from sub-freezing temperatures
CN101326666B (zh) 燃料电池系统和移动体
WO2014057603A1 (ja) 燃料電池と鉛蓄電池を含む燃料電池システム、およびその充電方法
Zhang et al. Optimization of energy management in hybrid SOFC-based DC microgrid considering high efficiency and operating safety when external load power goes up
Chen et al. A review of plateau environmental adaptation for proton exchange membrane fuel cells
CN100511791C (zh) 一种不需外电源帮助便可实现自起动的燃料电池发电系统
CN100511790C (zh) 一种具有自起动功能的燃料电池发电系统
KR101418422B1 (ko) 선박용 연료전지의 단독 기동 시스템
CN105811443A (zh) 基于甲醇水重整制氢发电系统的削峰填谷供电系统及方法
US20120115058A1 (en) Mitigating electrode erosion in high temperature pem fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913130

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21913130

Country of ref document: EP

Kind code of ref document: A1