WO2022142288A1 - 一种区域功能特异性临床牙周缺损修复模块 - Google Patents

一种区域功能特异性临床牙周缺损修复模块 Download PDF

Info

Publication number
WO2022142288A1
WO2022142288A1 PCT/CN2021/107646 CN2021107646W WO2022142288A1 WO 2022142288 A1 WO2022142288 A1 WO 2022142288A1 CN 2021107646 W CN2021107646 W CN 2021107646W WO 2022142288 A1 WO2022142288 A1 WO 2022142288A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional domain
periodontal
regeneration
alveolar bone
defect
Prior art date
Application number
PCT/CN2021/107646
Other languages
English (en)
French (fr)
Inventor
雷利红
韦应明
韩佳吟
蒋晓健
陈莉丽
孙伟莲
吴燕岷
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022142288A1 publication Critical patent/WO2022142288A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2875Skull or cranium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2875Skull or cranium
    • A61F2002/2889Maxillary, premaxillary or molar implants

Definitions

  • the invention belongs to periodontal tissue repair materials, and relates to a regional function-specific clinical periodontal defect repair module.
  • Periodontitis is one of the most common oral diseases, which can cause progressive and irreversible destruction of periodontal supporting tissues such as gums, alveolar bone, periodontal ligament and cementum, resulting in gingival swelling and bleeding, gingival recession, and alveolar bone resorption. , tooth loosening and displacement, or even tooth loss.
  • periodontitis has become the primary and major cause of tooth loss in adults in my country and even in the world.
  • the ideal treatment of periodontitis is not only to remove the cause and risk factors to eliminate inflammation and control the development of the disease; more importantly, to repair and rebuild the damaged periodontal tissue structure, that is, to achieve periodontal tissue regeneration. Periodontal tissue regeneration is the only way to achieve real periodontitis cure.
  • GTR guided tissue regeneration
  • periodontal bone grafting The combined application of guided tissue regeneration (GTR) and periodontal bone grafting is the most commonly used method for periodontal regeneration.
  • a large number of studies have confirmed the regenerative repair effect of the combined application of the two surgical methods in II wall, III wall and II degree bifurcation lesions and other inclusive bone defects.
  • the above two surgical methods have poor efficacy, and the key problem is that it is difficult to create and maintain a stable space for bone defect repair.
  • GTR The principle of GTR is to use the membranous material as a barrier to block the growth of gingival epithelial cells and connective tissue cells to the root surface, and to form a certain submembrane repair space to induce periodontal ligament cells with periodontal tissue regeneration potential to occupy the root surface and form New alveolar bone, periodontal ligament and cementum.
  • GTR and periodontal bone grafting are often used in combination, that is, after implanting bone substitute materials in the defect area, a barrier film with a suitable shape is trimmed to cover the surface of the implant material.
  • the implant material can support the barrier film and stabilize the bone. Repair the role of space.
  • periodontal bone defects are complex and diverse, and it is difficult for the barrier film trimmed by doctors to completely fit the shape of the bone defect.
  • the barrier film is prone to collapse or shift.
  • Intraoperative trimming and shaping of the barrier film is bound to increase the sensitivity of regenerative surgery techniques, prolong the operation time, and increase the pain of patients.
  • the displacement and collapse of the postoperative barrier membrane will affect the healing effect after periodontal regeneration.
  • Periodontal regeneration cells from four sources of gingival epithelium, gingival connective tissue, periodontal ligament and alveolar bone attach to the root surface successively, corresponding to four kinds of healing outcomes.
  • the final healing method depends on the growth rate of the above cells. and conditions. Under normal circumstances, the epithelium grows fastest, occupying the root surface first, forming a long junctional epithelium to heal.
  • the periodontal ligament cells preferentially occupy the root surface and form periodontal ligament fibers with both ends embedded in the root surface cementum and new alveolar bone respectively, which is the most ideal way of healing.
  • periodontal ligament cells are slower than that of the epithelium, and only the periodontal ligament cells near the bottom of the pocket can preferentially occupy the root surface, so this kind of healing has little chance, and the healing of long combined epithelium is still the most common healing after periodontal surgery. Way.
  • the healing of the long junctional epithelium cannot endow the periodontal tissue with the physiological function of bearing external chewing forces in all directions, and its long-term stability is insufficient.
  • the repaired periodontal tissue can easily be damaged again.
  • the combined regeneration of periodontal ligament and alveolar bone in periodontal defects is still a clinical bottleneck that needs to be broken through. Therefore, we consider the specific induction of periodontal ligament regeneration at the same time as periodontal regeneration surgery to create local conditions conducive to periodontal ligament regeneration, promote the integrated regeneration of periodontal ligament and alveolar bone, and achieve optimal tissue healing.
  • the membrane regeneration functional domain consists of three components, see Figure 1.
  • the gingival surface of the alveolar bone regeneration functional domain (that is, the surface of the alveolar bone regeneration functional domain close to the gingiva after implantation in the defect, see the black dotted line in Figure 1) has the function of a barrier membrane to prevent the growth of gingival epithelial cells to the alveolar bone defect area.
  • the barrier membrane functional domain is combined with the gingival surface of the alveolar bone regeneration functional domain, and the edge of the barrier membrane functional domain exceeds the gingival surface edge of the alveolar bone regeneration functional domain by 2-3 mm.
  • the gingival surface pore structure of the alveolar bone regeneration functional domain forms a micromechanical lock with the barrier membrane functional domain.
  • the root surface of the alveolar bone regeneration functional domain (that is, the surface of the alveolar bone regeneration functional domain close to the root, see the white dotted line in Figure 1) has a periodontal ligament regeneration functional domain that promotes the regeneration of periodontal ligament on the root surface.
  • the barrier membrane functional domain is pre-formed on the gingival surface of the alveolar bone regeneration functional domain to fit the defect shape, and the barrier membrane functional domain can effectively isolate gingival epithelial cells.
  • the material of the alveolar bone regeneration functional domain is magnesium-doped wollastonite (6% Mg-doped wollastonite, CSi-Mg6) with a molar ratio of magnesium substituted calcium about 6%
  • the material of the periodontal ligament regeneration functional domain is the A modified polycaprolactone (PCL)/gelatin electrospun membrane modified by micro-nano bio-glass (MNBG)
  • the material of the functional domain of the barrier membrane is a silane photocured in a mold Silanized hydroxypropyl methylcellulose (Si-HPMC)/carboxymethyl chitosan methacrylate (methacrylated carboxymethyl chitosan, MA-CMCS) hydrogel barrier film.
  • the alveolar bone regeneration domain provides mechanical support for the barrier membrane domain, preventing the barrier membrane domain from collapsing into the defect.
  • the shape of the alveolar bone regeneration functional domain fits the alveolar bone defect of clinical patients, and the thickness of the periodontal ligament regeneration functional domain is 1-2 mm; the thickness of the barrier membrane functional domain is 1.5-2.5 mm.
  • the periodontal ligament regeneration functional domain and the alveolar bone regeneration functional domain are combined with the pore structure of the root surface in a melting manner, and the barrier membrane functional domain and the alveolar bone regeneration functional domain are combined with the gingival surface pore structure in a micro-mechanical lock. It is formed when the hydrogel barrier film is photocured.
  • the preparation method of a regional function-specific clinical periodontal defect repair module according to the present invention is realized by the following preparation steps:
  • the functional domain of alveolar bone regeneration was designed and manufactured (3D printing) to match the shape of the bone defect.
  • Membrane regeneration functional domains were melt-bonded with alveolar bone regeneration functional domains.
  • the photocured Si-HPMC/MA-CMCS hydrogel barrier membrane was integrated in the form of barrier membrane functional domains in the form of barrier membrane functional domains.
  • a periodontal defect repair module with regional function specificity was obtained on the alveolar bone regeneration functional domain of the membrane regeneration functional domain.
  • the periodontal ligament regeneration domain can provide favorable local conditions for periodontal ligament regeneration.
  • the barrier membrane functional domain can block the ingrowth of epithelial cells into the defect and provide a stable environment for tissue regeneration in the periodontal defect.
  • the integration of the functional domain of barrier membrane and the functional domain of alveolar bone regeneration can simplify the surgical operation and reduce the sensitivity of regenerative surgery techniques.
  • the novel periodontal regeneration operation based on the present invention will improve the certainty of periodontal tissue regeneration, reduce the technical sensitivity of the periodontal regeneration operation, and provide more possibilities for preserving periodontitis-affected teeth.
  • the integrated module of the alveolar bone regeneration functional domain and the barrier membrane functional domain can also be used to repair the jaw defect caused by clinical trauma, cyst and tumor resection.
  • the alveolar bone regeneration functional domain uses CSi-Mg6 as raw material and is formed by 3D printing technology.
  • the alveolar bone regeneration functional domain can effectively fill the defect in the bone, create a stable regeneration and repair space for the non-contained bone defect, and promote the alveolar bone defect. Bone tissue repair and regeneration.
  • the CSi-Mg6 can be gradually degraded during periodontal regeneration, and then replaced by new bone tissue.
  • the alveolar bone regeneration functional domain has controllable pore size and porosity, and the penetrating pore structure can play an osteoconductive role.
  • the gingival surface of the alveolar bone regeneration functional domain (see the black dotted line in Figure 1) has a barrier membrane functional domain that blocks the growth of gingival epithelial cells to the alveolar bone defect area, and the barrier membrane functional domain and the alveolar bone regeneration functional domain The gingival surface is combined, and the edge of the barrier membrane functional domain exceeds the gingival surface edge of the alveolar bone regeneration functional domain by 2-3 mm.
  • the pore structure of the gingival surface of the alveolar bone regeneration functional domain forms a micromechanical lock with the barrier membrane functional domain.
  • the barrier membrane functional domain is combined with the gingival surface of the alveolar bone regeneration functional domain, which fits the defect shape and avoids surgery. The operation of trimming and shaping barrier films.
  • the barrier membrane functional domain can effectively isolate gingival epithelial cells, and after being combined with the alveolar bone regeneration functional domain, the barrier membrane functional domain can obtain mechanical support to avoid post-operative collapse into the defect.
  • the periodontal ligament regeneration functional domain is prepared by improved electrospinning technology, and has a bionic guiding structure of periodontal ligament fibers, which is combined with the pore structure of the root surface of the alveolar bone regeneration functional domain (refer to the white dotted line in Figure 1) in a molten manner. .
  • the shape of the periodontal ligament regeneration functional domain is consistent with the root surface of the alveolar bone regeneration functional domain, and fits with the root surface of the defect area, which can provide favorable conditions for periodontal ligament regeneration and promote the regeneration of periodontal tissue complexes.
  • the present invention takes the mesial and distal contact points of the teeth as the boundary, and designs the functional-specific clinical periodontal defect repair module of the labial and buccal region and the functional-specific clinical teeth of the lingual and palatal region according to the anatomical position of the defect.
  • the periodontal defect repair module is respectively used for repairing the labial and buccal and lingual and palatal sides of the same defect, so as to solve the interference of the contact points of the adjacent tooth surfaces when the region-specific clinical periodontal defect repair module is implanted.
  • the repair module includes the alveolar bone regeneration functional domain, the periodontal ligament regeneration functional domain and the barrier membrane functional domain, and can be integrated through flaps and debridement during periodontal regeneration, and can be used in the repair of alveolar bone defects.
  • the repair module includes the alveolar bone regeneration functional domain, the periodontal ligament regeneration functional domain and the barrier membrane functional domain, and can be integrated through flaps and debridement during periodontal regeneration, and can be used in the repair of alveolar bone defects.
  • the repair module can also repair the jaw defect caused by clinical trauma, cyst and tumor resection, and can be implanted integrally after flapping and debridement during the operation to guide bone tissue regeneration.
  • the repair module can only be composed of the alveolar bone regeneration functional domain and the barrier membrane functional domain, which is called regional function-specific clinical jaw. Bone defect repair module.
  • the invention is a regional function-specific clinical periodontal defect repair module, which can avoid the influence of the operator's experience and technology on periodontal regeneration. Filling intraosseous defects can also create a stable regeneration and repair space for non-contained bone defects, thereby significantly broadening the indications for periodontal regeneration surgery.
  • the multifunctional domain is integrated, and the periodontal ligament regeneration functional domain is integrated with the alveolar bone regeneration functional domain, which provides favorable conditions for periodontal ligament regeneration and promotes the regeneration of periodontal tissue complexes.
  • the alveolar bone regeneration functional domain was designed according to the preoperative periodontal defect morphology, and on this basis, the barrier membrane functional domain and the periodontal ligament regeneration functional domain were combined with it.
  • the periodontal ligament regeneration functional domain provides more favorable local conditions for periodontal ligament regeneration and promotes the regeneration of the periodontal tissue complex; the barrier membrane functional domain can greatly simplify the operation of periodontal regeneration and reduce the technical sensitivity of regeneration surgery.
  • a new type of periodontal regeneration surgery based on the regional function-specific clinical periodontal defect repair module is expected to significantly improve the prognosis of teeth with severe periodontal attachment loss, preserve and restore their tissue morphology and physiological function, and provide the preservation of periodontitis-affected teeth. more possibilities.
  • the integrated module of the alveolar bone regeneration functional domain and the barrier membrane functional domain in the present invention can also be used for the repair of jawbone defects after clinical trauma, cyst and tumor resection.
  • the present invention 3D prints the alveolar bone regeneration functional domain based on the bone defect data, which can effectively fill the bone defect, and can also construct a regeneration and repair space for the non-contained bone defect.
  • the barrier membrane functional domain is pre-formed on the gingival surface of the alveolar bone regeneration functional domain, which can effectively isolate the gingival epithelial cells. It exceeds the gingival surface edge of the alveolar bone regeneration functional domain by 2-3 mm, which can perfectly fit the defect shape and avoid intraoperative trimming. , The operation of shaping the barrier film. After the barrier membrane functional domain and the surface pore structure of the alveolar bone regeneration functional domain are combined by micromechanical locking, mechanical support can be obtained to avoid postoperative collapse into the defect.
  • the bionic guiding structure of periodontal ligament fibers was prepared by improved electrospinning technology, and the functional domain of periodontal ligament regeneration was obtained, which was combined with the root surface of the functional domain of alveolar bone regeneration by melting.
  • the periodontal ligament regeneration domain can provide favorable conditions for periodontal ligament regeneration and promote the regeneration of periodontal tissue complex.
  • the regional function-specific clinical periodontal defect repair module is bounded by the mesial and distal contact points of the teeth, and is made into the labial and buccal region functional-specific clinical periodontal defect repair module and the lingual and palatal region function-specific respectively.
  • the clinical periodontal defect repair module is respectively used to repair the labial and buccal and lingual and palatal sides of the same defect, so as to relieve the interference of the contact points of the adjacent tooth surfaces when the functional-specific clinical periodontal defect repair module is implanted.
  • the integrated module of alveolar bone regeneration functional domain and barrier membrane functional domain can also be used to repair jaw defects caused by clinical trauma, cyst and tumor resection.
  • Figure 1 is a schematic diagram of the longitudinal cross-sectional structure of the regional function-specific clinical periodontal defect repair module.
  • the black dotted line in the upper right area of the module in the figure is the gingival surface of the alveolar bone regeneration functional domain; the white dotted line on the left side of the module is the root surface of the alveolar bone regeneration functional domain; 1 is the alveolar bone regeneration functional domain; 2 is the periodontal ligament regeneration functional domain; 3 is the functional domain of the barrier membrane.
  • Figure 2 is a schematic diagram of the design of the lip-buccal, lingual-palate side of the regional function-specific clinical periodontal defect repair module.
  • the arrow in the lower left corner indicates the implantation direction of the labial and buccal module; the arrow in the upper right corner indicates the implantation direction of the lingual and palatal module;
  • 4 is the functional-specific clinical periodontal defect repair module in the labial and buccal region;
  • 5 is the lingual and palatal module.
  • FIG. 3 is a schematic diagram of the longitudinal cross-sectional structure of the regional function-specific clinical jaw defect repair module.
  • the module contains only two functional domains: 1 is the functional domain of alveolar bone regeneration; 3 is the functional domain of barrier membrane; the dotted line at the upper right of the module is the functional domain of alveolar bone regeneration and the gingival surface.
  • Fig. 4 is a schematic diagram showing the repair of periodontal defects with the regional function-specific clinical periodontal defect repair module.
  • A The dashed circle is the clinical periodontal defect;
  • B The repair module is the schematic diagram of repairing the periodontal defect; 1 is the alveolar bone regeneration functional domain; 2 is the periodontal ligament regeneration functional domain; 3 is the barrier membrane functional domain; 6 is the functional domain of the periodontal ligament regeneration Crown; 7 is root; 8 is gum; 9 is alveolar bone.
  • Figure 5 is a schematic diagram of repairing bone defects with a region-specific function-specific clinical jaw defect repair module.
  • a regional function-specific clinical periodontal defect repair module provided by the present invention is composed of an alveolar bone regeneration functional domain 1 , a periodontal ligament regeneration functional domain 2 and a barrier membrane functional domain 3 .
  • the alveolar bone regeneration functional domain 1 is designed according to the patient's periodontal bone defect morphology.
  • the alveolar bone regeneration functional domain 1 can effectively fill the intraosseous defects, create a stable regeneration and repair space for non-contained bone defects, and promote the repair and regeneration of alveolar bone tissue.
  • the alveolar bone regeneration functional domain has a certain pore size and porosity, and the penetrating pore structure can play an osteoconductive role.
  • the bone repair material CSi-Mg6 is gradually degraded during the periodontal regeneration, and then replaced by new bone tissue.
  • the gingival surface of the alveolar bone regeneration functional domain 1 (that is, the surface of the alveolar bone regeneration functional domain close to the gingiva, the area indicated by the black dotted line in Figure 1) has a barrier membrane functional domain 3 that blocks the growth of gingival epithelial cells to the alveolar bone defect area.
  • the edge of the barrier membrane functional domain 3 exceeds the gingival surface edge of the alveolar bone regeneration functional domain by 2-3 mm, forming a micromechanical lock with the gingival surface pore structure of the alveolar bone regeneration functional domain.
  • the barrier membrane functional domain is combined with the gingival surface of the alveolar bone regeneration functional domain, which fits the defect shape and avoids the operation of trimming and shaping the barrier membrane during surgery.
  • the barrier membrane functional domain is composed of Si-HPMC/MA-CMCS light-cured hydrogel, which can effectively isolate gingival epithelial cells; after combining with the alveolar bone regeneration functional domain, the barrier membrane functional domain can obtain mechanical support to avoid postoperative defects. Collapse inside.
  • the root surface of the alveolar bone regeneration functional domain (that is, the surface of the alveolar bone regeneration functional domain close to the root, the area indicated by the white dotted line in Figure 1) has a periodontal ligament regeneration functional domain 2 that promotes the regeneration of periodontal ligament on the root surface.
  • the periodontal ligament regeneration functional domain 2 is prepared by improved electrospinning technology, and has a bionic guiding structure of periodontal ligament fibers, which can provide favorable conditions for periodontal ligament regeneration and promote the regeneration of periodontal tissue complexes.
  • the morphology of the periodontal ligament regeneration functional domain is consistent with the root surface of the alveolar bone regeneration functional domain, fits with the root surface of the defect area, and is combined with the root surface pore structure of the alveolar bone regeneration functional domain in a molten manner.
  • the present invention takes the mesial and distal contact points of the teeth as the boundary, and designs and manufactures the functional-specific clinical periodontal defect repair module of the labial and buccal region and the functional-specific clinical lingual and palatal region respectively according to the anatomical position of the defect.
  • the periodontal defect repair module is respectively used to repair the labial and buccal and lingual and palatal sides of the same defect, so as to solve the interference of the contact points of the adjacent tooth surfaces when the region-specific clinical periodontal defect repair module is implanted.
  • the functional-specific clinical periodontal defect repair module in the labial and buccal region and the functional-specific clinical periodontal defect repair module in the lingual and palatal region are composed of three parts: the alveolar bone regeneration functional domain, the periodontal ligament regeneration functional domain and the barrier membrane functional domain. , both of which are the same repair module, and are named differently only because of the different repair locations.
  • the repair module can only be composed of the alveolar bone regeneration functional domain 1 and barrier membrane functional domain 3, and the repair consists of clinical trauma,
  • the jaw defect caused by cyst and tumor resection is called the regional function-specific clinical jaw defect repair module.
  • the present invention can be used to repair periodontal tissue defects, and the method is as follows:
  • the alveolar bone regeneration functional domain 1 was designed according to the defect shape and buccolingual gingival conditions, that is, to construct a printing model with the largest volume that can be implanted during the operation, and make the gingival surface of the model include a 2.5 mm thick barrier film mold structure and a 1 mm thick root surface.
  • Periodontal ligament regeneration functional domain 2 compound space.
  • Computer model design software was used to design a through pore structure inside the alveolar bone regeneration functional domain, and the pore diameter of the model was adjusted to 480 ⁇ m and the porosity to 55%.
  • the CSi-Mg6 powder was prepared by wet chemical precipitation method, and 30 g of CSi-Mg6 powder was taken, and the improved alveolar bone regeneration functional domain was printed by light-curing 3D printing technology.
  • the prepared mixed solution was injected into the mold containing the hydrogel barrier film on the gingival surface of the alveolar bone regeneration functional domain, and the hydrogel film was made by surface irradiation with dental light curing light (1200mw/cm 2 , 420-480nm), and then the hydrogel film was removed. After surface mold, the barrier membrane functional domain was obtained.
  • the regional function-specific clinical periodontal defect repair module is obtained.
  • the present invention can be used to repair the jaw defect caused by clinical trauma, cyst and tumor resection, and the steps are as follows:
  • the alveolar bone regeneration functional domain was designed according to the defect shape and peripheral soft tissue conditions, that is, to construct a printing model with the largest volume that can be implanted during the operation, and make the gingival surface of the model contain a 2.5 mm thick barrier film mold structure.
  • Computer model design software was used to design a through pore structure inside the alveolar bone regeneration functional domain, and the pore diameter of the model was adjusted to 480 ⁇ m and the porosity to 55%.
  • the CSi-Mg6 powder was prepared by wet chemical precipitation method, and 30 g of CSi-Mg6 powder was taken, and the improved alveolar bone regeneration functional domain was printed by light-curing 3D printing technology.
  • the prepared mixed solution was injected into the mold containing the hydrogel barrier film on the gingival surface of the alveolar bone regeneration functional domain, and the hydrogel film was made by surface irradiation with dental light curing light (1200mw/cm 2 , 420-480nm), and then the hydrogel film was removed. After surface mold, the barrier membrane functional domain was obtained.
  • the regional function-specific clinical jaw defect repair module is obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Neurosurgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种区域功能特异性临床牙周缺损修复模块,由牙槽骨再生功能域(1)、牙周膜再生功能域(2)和屏障膜功能域(3)三者集成。牙槽骨再生功能域(1)基于牙周炎患者骨缺损形态个性化设计并制作,与缺损外形吻合,可构建稳定的骨缺损修复空间;牙周膜再生功能域(2)利用仿牙周纤维引导结构设计制备,为牙周膜新生提供更有利的局部条件;屏障膜功能域(3)与牙槽骨再生功能域(1)集成,可阻挡上皮细胞向缺损内长入,并简化手术操作,降低再生手术技术敏感性。基于牙周缺损修复模块的新型牙周再生手术,将提高牙周组织再生的确定性,降低牙周再生手术的技术敏感性,为保存牙周炎患牙提供更多可能。

Description

一种区域功能特异性临床牙周缺损修复模块 技术领域
本发明属于牙周组织的修复材料,涉及一种区域功能特异性临床牙周缺损修复模块。
背景技术
牙周炎是最常见的口腔疾病之一,可引起牙龈、牙槽骨、牙周膜和牙骨质等牙周支持组织进行性地不可逆破坏,导致牙龈肿胀出血、牙龈退缩、牙槽骨吸收、牙齿松动移位,甚至牙齿脱落。目前,牙周炎已成为我国乃至全球成年人牙齿丧失的首要原因和主要原因。理想的牙周炎治疗不仅在于去除病因及危险因素以消除炎症、控制疾病发展;更重要的是修复和重建被破坏的牙周组织结构,即实现牙周组织再生。牙周组织再生是实现真正意义牙周炎治愈的必经之路。
引导性牙周组织再生术(guided tissue regeneration,GTR)和牙周植骨术的联合应用是目前最常用的牙周再生手段。大量研究已经证实两种术式联合应用在II壁、III壁及II度根分叉病变等包含型骨缺损中的再生修复效果。而在治疗对骨替代材料容纳度较差的非包含型骨缺损时,以上两种术式疗效欠佳,其关键问题在于难以创造并维持的稳定的骨缺损修复空间。
GTR的原理是将膜性材料作为屏障,阻挡牙龈上皮细胞和结缔组织细胞向根面生长,并形成一定的膜下修复空间,诱导具有牙周组织再生潜力的牙周膜细胞占领根面,形成新的牙槽骨、牙周膜和牙骨质。临床上GTR和牙周植骨术常联合应用,即在缺损区植入骨替代材料后,修剪出适宜外形的屏障膜覆盖在植入材料表面,植入材料可起到支持屏障膜和稳定骨修复空间的作用。但是,牙周骨缺损复杂多样,医生徒手修剪的屏障膜难以完全贴合骨缺损形态;而在手术操作和后期愈合过程中,屏障膜容易发生塌陷或移位。术中修整、塑形屏障膜势必增加再生手术技术敏感性,延长手术时间,增添患者的痛苦。术后屏障膜的移位和塌陷又会影响牙周再生术后愈合效果。
牙周再生术后,牙龈上皮、牙龈结缔组织、牙周膜和牙槽骨四种来源的细胞先后向根面贴附,对应出现四种愈合结局,最终的愈合方式取决于上述细胞的生长速度及条件。一般情况下,上皮生长最快,首先占据根面,形成长结合上皮愈合。而牙周膜细胞优先占领根面,形成两端分别埋入根面牙骨质和新生牙槽骨的牙周膜纤维,才是最理想的愈合方式。可牙周膜细胞的生长速度慢于上皮,只在袋底附近的牙周膜细胞能优先占据根面,因此该种愈合机会很少,长结合上皮愈合仍是牙周手术后最常见的愈合方式。但长结合上皮愈合无法赋予牙周组织承受各向咀嚼外力的生理功能,且其长期稳定性不足,受到重复炎症刺激时,极易导 致修复的牙周组织再次破坏。而实现牙周缺损内牙周膜和牙槽骨的联合再生仍是亟待突破的临床瓶颈。因此我们考虑在牙周再生手术的同期进行牙周膜再生的特定诱导,创造有利于牙周膜新生的局部条件,促进牙周膜、牙槽骨的一体化再生,实现最理想的组织愈合。
发明内容
针对背景技术中提及的临床问题,本发明的目的是提供一种区域功能特异性临床牙周缺损修复模块,该模块由牙槽骨再生功能域和与之结合的屏障膜功能域及牙周膜再生功能域三者构成,参见图1。
牙槽骨再生功能域的牙龈面(即牙槽骨再生功能域在植入缺损后,靠近牙龈的表面,参见图1黑色虚线)有阻挡牙龈上皮细胞向牙槽骨缺损区生长的屏障膜功能域,屏障膜功能域与牙槽骨再生功能域的牙龈面相结合,屏障膜功能域边缘超过牙槽骨再生功能域牙龈面边缘2~3mm。所述牙槽骨再生功能域的牙龈面孔隙结构与所述屏障膜功能域形成微机械锁结。
牙槽骨再生功能域的牙根面(即牙槽骨再生功能域贴近牙根的表面,参见图1白色虚线)有促进牙根表面牙周膜再生的牙周膜再生功能域。
屏障膜功能域预成于牙槽骨再生功能域牙龈面,契合缺损形态,所述屏障膜功能域可有效隔绝牙龈上皮细胞。
所述牙槽骨再生功能域的材料为镁取代钙摩尔比约6%的掺镁硅灰石(6%Mg-doped wollastonite,CSi-Mg6),所述牙周膜再生功能域的材料为经微纳米级生物玻璃(micro-nano bio-glass,MNBG)修饰的改良聚己内酯(Polycaprolactone,PCL)/明胶电纺膜,所述屏障膜功能域的材料为在模具中光固化成型的硅烷化羟丙甲纤维素(silanized hydroxypropyl methylcellulose,Si-HPMC)/羧甲基壳聚糖甲基丙烯酸酯(methacrylated carboxymethyl chitosan,MA-CMCS)水凝胶屏障膜。
牙槽骨再生功能域为屏障膜功能域提供机械支撑,避免屏障膜功能域向缺损内塌陷。
所述牙槽骨再生功能域形态契合临床患者牙槽骨缺损,牙周膜再生功能域的厚度为1-2mm;所述屏障膜功能域厚度为1.5-2.5mm。
所述牙周膜再生功能域与牙槽骨再生功能域牙根面孔隙结构以熔融方式结合,所述屏障膜功能域与牙槽骨再生功能域牙龈面孔隙结构以微机械锁结结合,该结合在水凝胶屏障膜完成光固化成型时形成。
本发明所述的一种区域功能特异性临床牙周缺损修复模块的制备方法,通过以下制备步骤实现:
基于牙周炎患者骨缺损形态数据设计制造(3D打印)与骨缺损外形吻合的牙槽骨再生功能域,在此基础上,利用改良静电纺丝技术制备具有仿牙周纤维引导结构的牙周膜再生功 能域,并将其与牙槽骨再生功能域熔融结合,最后,将光固化成型的Si-HPMC/MA-CMCS水凝胶屏障膜以屏障膜功能域的形式集成在结合了牙周膜再生功能域的牙槽骨再生功能域上,获得具有区域功能特异性的牙周缺损修复模块。
牙周膜再生功能域可为牙周膜新生提供有利的局部条件。
屏障膜功能域可阻挡上皮细胞向缺损内长入,为牙周缺损内组织再生提供稳定的环境。屏障膜功能域与牙槽骨再生功能域集成可简化手术操作,降低再生手术技术敏感性。
基于本发明进行新型牙周再生手术,将提高牙周组织再生的确定性,降低牙周再生手术的技术敏感性,为保存牙周炎患牙提供更多可能。
本发明中牙槽骨再生功能域与屏障膜功能域两者集成一体的模块也可用于修复临床外伤、囊肿、肿瘤切除术后所造成的颌骨缺损。
牙槽骨再生功能域以CSi-Mg6为原料,经3D打印技术成型,所述牙槽骨再生功能域可有效填塞骨内缺损,为非包含型骨缺损创造稳定的再生修复空间,促进牙槽骨组织修复再生。所述CSi-Mg6可在牙周再生过程中逐渐降解,进而被新生骨组织替代。所述牙槽骨再生功能域具有可控的孔径及孔隙率大小,贯通的孔隙结构可发挥骨引导作用。
所述牙槽骨再生功能域牙龈面(参见图1黑色虚线)有阻挡牙龈上皮细胞向牙槽骨缺损区生长的屏障膜功能域,所述屏障膜功能域与所述牙槽骨再生功能域牙龈面结合,所述屏障膜功能域边缘超过牙槽骨再生功能域牙龈面边缘2~3mm。
所述牙槽骨再生功能域的牙龈面的孔隙结构与所述屏障膜功能域形成微机械锁结所述屏障膜功能域结合于牙槽骨再生功能域牙龈面,契合缺损形态,避免了术中修整、塑形屏障膜的操作。
所述屏障膜功能域可有效隔绝牙龈上皮细胞,与所述牙槽骨再生功能域结合后,屏障膜功能域可获得机械支撑,避免术后向缺损内塌陷。
所述牙周膜再生功能域采用改良静电纺丝技术制备,具有牙周膜纤维仿生引导结构,与所述牙槽骨再生功能域的牙根面(参见图1白色虚线)孔隙结构以熔融方式结合。
所述牙周膜再生功能域外形与牙槽骨再生功能域牙根面一致,与缺损区根面契合,可为牙周膜新生提供有利条件,促进牙周组织复合体再生。
参见图2,本发明以牙齿的近远中接触点连线为界,依据缺损所处解剖位置分别设计唇颊侧区域功能特异性临床牙周缺损修复模块和舌腭侧区域功能特异性临床牙周缺损修复模块,分别用于修复同一缺损的唇颊、舌腭侧,以解决所述区域功能特异性临床牙周缺损修复模块植入时牙齿邻面接触点的干扰。
所述修复模块包含牙槽骨再生功能域、牙周膜再生功能域和屏障膜功能域,可在牙周 再生术中经翻瓣、清创后一体化植入,在修复牙槽骨缺损的基础上提高牙周组织复合体再生的确定性和降低牙周再生手术技术敏感性。
所述修复模块亦可修复由临床外伤、囊肿、肿瘤切除术所造成的颌骨缺损,可在术中经翻瓣、清创后一体化植入,引导骨组织再生。参见图3,当所述修复模块引导骨组织再生而不涉及牙周组织再生时,修复模块可仅由所述牙槽骨再生功能域和屏障膜功能域构成,称为区域功能特异性临床颌骨缺损修复模块。
本发明为一种区域功能特异性临床牙周缺损修复模块,能够避免术者经验和技术对牙周再生术的影响,植入模块的形态结构可于术前经计算机辅助精确设计,不仅可有效填塞骨内缺损,还能为非包含型骨缺损创造稳定的再生修复空间,由此显著拓宽牙周再生手术的适应症。
本发明采用多功能域集成的方式,牙周膜再生功能域与牙槽骨再生功能域集成,为牙周膜新生提供有利条件,促进牙周组织复合体再生。依据术前牙周缺损形态设计牙槽骨再生功能域,在此基础上将屏障膜功能域和牙周膜再生功能域与之结合。牙周膜再生功能域为牙周膜新生提供更有利局部条件,促进牙周组织复合体再生;屏障膜功能域可大大简化牙周再生手术操作,降低再生手术技术敏感性。基于区域功能特异性临床牙周缺损修复模块的新型牙周再生手术,有望显著改善严重牙周附着丧失患牙的预后,保留并恢复其组织形态和生理功能,为牙周炎患牙的保存提供更多的可能性。本发明中牙槽骨再生功能域与屏障膜功能域的一体化模块也可用于临床外伤、囊肿、肿瘤切除术后所造成的颌骨缺损修复。
本发明的主要特点有:
1.简化手术操作,降低技术敏感性,在术前完成修复模块的设计和制作,术中植入方便快捷。
2.本发明基于骨缺损数据3D打印出牙槽骨再生功能域,可有效填塞骨内缺损,还能为非包含型骨缺损构建再生修复空间。
3.屏障膜功能域预成于牙槽骨再生功能域牙龈面,可有效隔绝牙龈上皮细胞,超过牙槽骨再生功能域牙龈面边缘2~3mm,可完美契合缺损形态,避免了术中修整、塑形屏障膜的操作。屏障膜功能域与所述牙槽骨再生功能域表面孔隙结构经微机械锁结结合后,可获得机械支撑,避免术后向缺损内塌陷。
4.采用改良静电纺丝技术制备牙周膜纤维仿生引导结构,获得牙周膜再生功能域,与牙槽骨再生功能域牙根面以熔融方式结合。牙周膜再生功能域可为牙周膜新生提供有利条件,促进牙周组织复合体再生。
5.区域功能特异性临床牙周缺损修复模块以牙齿的近远中接触点连线为界,被分别制 作成唇颊侧区域功能特异性临床牙周缺损修复模块和舌腭侧区域功能特异性临床牙周缺损修复模块,分别用于修复同一缺损的唇颊、舌腭侧,以解除所述区域功能特异性临床牙周缺损修复模块植入时牙齿邻面接触点的干扰。
6.牙槽骨再生功能域与屏障膜功能域的一体化模块也可用于修复临床外伤、囊肿、肿瘤切除术后所造成的颌骨缺损。
附图说明
图1为区域功能特异性临床牙周缺损修复模块纵剖面结构示意图。图中模块右上区域黑色虚线为牙槽骨再生功能域牙龈面;模块左侧白色虚线为牙槽骨再生功能域牙根面;1为牙槽骨再生功能域;2为牙周膜再生功能域;3为屏障膜功能域。
图2为区域功能特异性临床牙周缺损修复模块唇颊、舌腭侧设计示意图。其中左下角箭头示意唇颊侧模块植入就位方向;右上角箭头示意舌腭侧模块植入就位方向;4为唇颊侧区域功能特异性临床牙周缺损修复模块;5为舌腭侧区域功能特异性临床牙周缺损修复模块。
图3为区域功能特异性临床颌骨缺损修复模块纵剖面结构示意图。模块仅包含两个功能域:1为牙槽骨再生功能域;3为屏障膜功能域;模块右上方虚线为牙槽骨再生功能域牙龈面。
图4为区域功能特异性临床牙周缺损修复模块修复牙周缺损示意图。图中A:虚线圈内为临床牙周缺损;B:修复模块修复牙周缺损示意图;1为牙槽骨再生功能域;2为牙周膜再生功能域;3为屏障膜功能域;6为牙冠;7为牙根;8为牙龈;9为牙槽骨。
图5为区域功能特异性临床颌骨缺损修复模块修复骨缺损示意图。其中A:虚线圈内为临床颌骨缺损;B:修复模块修复临床颌骨缺损示意图;1为牙槽骨再生功能域;3为屏障膜功能域;8为牙龈;9为牙槽骨(颌骨)。
具体实施方式
本发明结合附图和实施例作进一步的说明。
实施例1
参见图1,本发明提供的一种区域功能特异性临床牙周缺损修复模块,该模块由牙槽骨再生功能域1、牙周膜再生功能域2和屏障膜功能域3构成。
牙槽骨再生功能域1依据患者牙周骨缺损形态设计,以可降解性骨修复材料CSi-Mg6为原料,经光固化3D打印技术成型。牙槽骨再生功能域1可有效填塞骨内缺损,为非包含型骨缺损创造稳定的再生修复空间,促进牙槽骨组织修复再生。牙槽骨再生功能域具有一定的孔径及孔隙率,贯通的孔隙结构可发挥骨引导作用。骨修复材料CSi-Mg6在牙周再生过程中逐渐降解,进而被新生骨组织替代。
牙槽骨再生功能域1的牙龈面(即牙槽骨再生功能域靠近牙龈的表面,图1中黑色虚线所指区域)有阻挡牙龈上皮细胞向牙槽骨缺损区生长的屏障膜功能域3,屏障膜功能域3边缘超过牙槽骨再生功能域牙龈面边缘2~3mm,与所述牙槽骨再生功能域的牙龈面孔隙结构形成微机械锁结。屏障膜功能域结合于牙槽骨再生功能域牙龈面,契合缺损形态,避免了术中修整、塑形屏障膜的操作。屏障膜功能域由Si-HPMC/MA-CMCS光固化水凝胶构成,可有效隔绝牙龈上皮细胞;与牙槽骨再生功能域结合后,屏障膜功能域可获得机械支撑,避免术后向缺损内塌陷。
牙槽骨再生功能域的牙根面(即牙槽骨再生功能域贴近牙根的表面,图1中白色虚线所指区域)有促进牙根表面牙周膜再生的牙周膜再生功能域2。所述牙周膜再生功能域2采用改良静电纺丝技术制备,具有牙周膜纤维仿生引导结构,可为牙周膜新生提供有利条件,促进牙周组织复合体再生。所述牙周膜再生功能域形态与牙槽骨再生功能域牙根面一致,与缺损区根面契合,与所述牙槽骨再生功能域的牙根面孔隙结构以熔融方式结合。
参见图2,本发明以牙齿的近远中接触点连线为界,依据缺损所处解剖位置分别设计制作唇颊侧区域功能特异性临床牙周缺损修复模块和舌腭侧区域功能特异性临床牙周缺损修复模块,分别用于修复同一缺损的唇颊、舌腭侧,以解决所述区域功能特异性临床牙周缺损修复模块植入时牙齿邻面接触点的干扰。唇颊侧区域功能特异性临床牙周缺损修复模块和舌腭侧区域功能特异性临床牙周缺损修复模块皆由牙槽骨再生功能域、牙周膜再生功能域和屏障膜功能域三部分构成,两者为同种修复模块,仅因修复位置不同而采用不同命名。
参见图3,当本发明仅引导骨组织再生而不涉及牙周组织再生时,修复模块可仅由所述牙槽骨再生功能域1和屏障膜功能域3两部分构成,修复由临床外伤、囊肿、肿瘤切除术所造成的颌骨缺损,称为区域功能特异性临床颌骨缺损修复模块。
实施例2 一种区域功能特异性临床牙周缺损修复模块制备
参见图4,本发明可用于修复牙周组织缺损,方法如下:
一、区域功能特异性临床牙周缺损修复模块设计
将患者锥形束CT(cone beam computed tomography,CBCT)数据导出后,对牙周缺损区进行三维重建,依据骨缺损形态及软组织条件判断是否需要应用牙周缺损修复模块。依据缺损形态及颊舌侧牙龈条件设计牙槽骨再生功能域1,即构建术中可植入最大体积的打印模型,并使模型牙龈面包含2.5mm厚的屏障膜模具结构及牙根面1mm的牙周膜再生功能域2复合空间。采用计算机模型设计软件在牙槽骨再生功能域内部设计贯通的孔隙结构,调节模型孔径至480μm,孔隙率至55%。
二、区域功能特异性临床牙周缺损修复模块制备
(1)牙槽骨再生功能域的制备
采用湿化学沉淀法制备CSi-Mg6粉体,取CSi-Mg6粉体30g,采用光固化3D打印技术,打印出改良的牙槽骨再生功能域。
(2)屏障膜功能域的制备:
将15mL含光引发剂的MA-CMCS溶液4%(w/v)、7.5mL Si-HPMC溶液5%(w/v)和3.75mL酸性缓冲液(含有0.06M HCL,1.8%(w/v)NaCl,6.2%(w/v)4-羟乙基哌嗪乙磺酸)混合,形成浓度4%(w/v)的混合溶液。将制备的混合液注入牙槽骨再生功能域牙龈面容纳水凝胶屏障膜的模具中,通过牙科光固化灯光表面辐照(1200mw/cm 2,420-480nm)制成水凝胶膜,去除表面模具后,获得屏障膜功能域。
(3)牙周膜再生功能域的制备:
将3.0g PCL、1.5g明胶、0.5g生物玻璃纳米颗粒在2,2,2-三氟乙醇/冰醋酸溶剂体系中混合,形成10%均相混合液。在温度40℃,湿度40%的条件下,使用近场静电纺丝技术(15kV,接受距离:15cm)和冷冻干燥处理制成具有序纤维形态的仿生电纺膜。将牙槽骨再生功能域牙根面置于距加热板1cm处加热至60℃,4秒后迅速将电纺膜压于其表面并维持10秒。这一加热步骤可使电纺膜表层部分融化,其在冷却固化后即可与牙槽骨再生功能域牢固结合形成牙周膜再生功能域。
完成牙槽骨再生功能域、牙周膜再生功能域、屏障膜功能域的制备和集成之后,即获得区域功能特异性临床牙周缺损修复模块。
三、基于区域功能特异性临床牙周缺损修复模块的牙周再生手术
(1)对患者牙周缺损术区进行翻瓣清创。
(2)将经消毒灭菌的区域功能特异性临床牙周缺损修复模块植入缺损中,修复模块外形与缺损契合,可获得良好固位.
(3)缝合术区,完成牙周再生手术。
实施例3
参见图5,本发明可用于修复临床外伤、囊肿、肿瘤切除术后所造成的颌骨缺损,步骤如下:
一、区域功能特异性临床颌骨缺损修复模块设计
将颌骨缺损患者CBCT数据导出后,对骨缺损区进行三维重建,依据骨缺损形态及软组织条件判断是否需要应用骨缺损修复模块。依据缺损形态及外周软组织条件设计牙槽骨再生功能域,即构建术中可植入最大体积的打印模型,并使模型牙龈面包含2.5mm厚的屏障膜模具结构。采用计算机模型设计软件在牙槽骨再生功能域内部设计贯通的孔隙结构,调节模型孔径至480μm,孔隙率至55%。
二、区域功能特异性临床颌骨缺损修复模块制备
(1)牙槽骨再生功能域的制备
采用湿化学沉淀法制备CSi-Mg6粉体,取CSi-Mg6粉体30g,采用光固化3D打印技术,打印出改良的牙槽骨再生功能域。
(2)屏障膜功能域的制备:
将15mL含光引发剂的MA-CMCS溶液4%(w/v)、7.5mL Si-HPMC溶液5%(w/v)和3.75mL酸性缓冲液(含有0.06M HCL,1.8%(w/v)NaCl,6.2%(w/v)4-羟乙基哌嗪乙磺酸)混合,形成浓度4%(w/v)的混合溶液。将制备的混合液注入牙槽骨再生功能域牙龈面容纳水凝胶屏障膜的模具中,通过牙科光固化灯光表面辐照(1200mw/cm 2,420-480nm)制成水凝胶膜,去除表面模具后,获得屏障膜功能域。
完成牙槽骨再生功能域、屏障膜功能域的制备和集成之后,即获得区域功能特异性临床颌骨缺损修复模块。
三、基于区域功能特异性临床颌骨缺损修复模块的再生性手术
(1)对患者骨缺损术区进行翻瓣清创.
(2)将经消毒灭菌的区域功能特异性临床颌骨缺损修复模块植入缺损中,修复模块外形与缺损契合,可获得良好固位。
(3)缝合术区,完成再生手术。
在此指明,以上叙述有助于本领域技术人员理解本发明创造,但并非限制本发明创造的保护范围。任何没有脱离本发明创造实质内容的对以上叙述的等同替换、修饰改进和/或删繁从简而进行的实施,均落入本发明创造的保护范围。

Claims (8)

  1. 一种区域功能特异性临床牙周缺损修复模块,其特征在于,该模块由牙槽骨再生功能域(1)和与之结合的屏障膜功能域(3)及牙周膜再生功能域(2)构成。
  2. 根据权利要求1所述的一种区域功能特异性临床牙周缺损修复模块,其特征在于,牙槽骨再生功能域(1)的牙龈面有阻挡牙龈上皮细胞向牙槽骨缺损区生长的屏障膜功能域(3),屏障膜功能域(3)与牙槽骨再生功能域(1)的牙龈面相结合,屏障膜功能域(3)边缘超过牙槽骨再生功能域(1)牙龈面边缘2~3mm,牙槽骨再生功能域(1)的牙根面有促进牙根表面牙周膜再生的牙周膜再生功能域(2)。
  3. 根据权利要求1所述的一种区域功能特异性临床牙周缺损修复模块,其特征在于,所述牙槽骨再生功能域(1)的牙龈面孔隙结构与所述屏障膜功能域(3)形成微机械锁结。
  4. 根据权利要求1所述的一种区域功能特异性临床牙周缺损修复模块,其特征在于,所述屏障膜功能域(3)预成于牙槽骨再生功能域(2)牙龈面,契合缺损形态,所述屏障膜功能域(3)有效隔绝牙龈上皮细胞。
  5. 根据权利要求1所述的一种区域功能特异性临床牙周缺损修复模块,其特征在于,所述牙槽骨再生功能域(1)为屏障膜功能域(3)提供机械支撑,避免屏障膜功能域向缺损内塌陷。
  6. 根据权利要求1所述的一种区域功能特异性临床牙周缺损修复模块,其特征在于,牙周膜再生功能域(2)的厚度为1-2mm;所述屏障膜功能域(3)厚度为1.5-2.5mm。
  7. 根据权利要求1所述的一种区域功能特异性临床牙周缺损修复模块,其特征在于,牙周膜再生功能域(2)与牙槽骨再生功能域(1)牙根面孔隙结构以熔融方式结合,所述屏障膜功能域(3)与牙槽骨再生功能域(1)牙龈面孔隙结构以微机械锁结结合,该结合在水凝胶屏障膜完成光固化成型时形成。
  8. 根据权利要求1所述的一种区域功能特异性临床牙周缺损修复模块,其特征在于,所述牙槽骨再生功能域(1)的材料为镁取代钙摩尔比约6%的掺镁硅灰石,所述牙周膜再生功能域(1)的材料为经微纳米级生物玻璃修饰的改良聚己内酯/明胶电纺膜,所述屏障膜功能域(3)的材料为在模具中光固化成型的硅烷化羟丙甲纤维素/羧甲基壳聚糖甲基丙烯酸酯水凝胶屏障膜。
PCT/CN2021/107646 2020-12-28 2021-07-21 一种区域功能特异性临床牙周缺损修复模块 WO2022142288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011581712.9A CN112716643A (zh) 2020-12-28 2020-12-28 一种区域功能特异性临床牙周缺损修复模块
CN202011581712.9 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022142288A1 true WO2022142288A1 (zh) 2022-07-07

Family

ID=75606692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107646 WO2022142288A1 (zh) 2020-12-28 2021-07-21 一种区域功能特异性临床牙周缺损修复模块

Country Status (2)

Country Link
CN (1) CN112716643A (zh)
WO (1) WO2022142288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115645634A (zh) * 2022-11-08 2023-01-31 四川大学 一种引导骨组织再生膜材料、其制备方法及应用
CN116236323A (zh) * 2023-03-17 2023-06-09 北京大学口腔医学院 一种3d打印牙槽骨植骨结构及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112716643A (zh) * 2020-12-28 2021-04-30 浙江大学 一种区域功能特异性临床牙周缺损修复模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700479A (en) * 1988-12-23 1997-12-23 Guidor Ab Surgical element and method for selective tissue regeneration
CN1181228A (zh) * 1996-05-29 1998-05-13 Mke金属和塑料制品制造有限公司 覆盖骨骼缺陷位置的薄膜或膜片及其制造方法和固定钉子
US20070269769A1 (en) * 2006-05-18 2007-11-22 Marcello Marchesi Method for the guided regeneration of bone and/or periodontal tissues in the medical surgical and dental field and device thus obtainable
CN201164505Y (zh) * 2008-02-05 2008-12-17 林辅谊 骨骼组织再生引导物的改良结构
US20120045735A1 (en) * 2010-08-17 2012-02-23 Warsaw Orthopedic, Inc. Implant repair system and method
CN112716643A (zh) * 2020-12-28 2021-04-30 浙江大学 一种区域功能特异性临床牙周缺损修复模块

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3044352A1 (de) * 1980-11-25 1982-06-24 Johnson & Johnson, 08903 New Brunswick, N.J. Wasserdampfdurchlaessiges, bakterienundurchlaessiges material
SE8804641D0 (sv) * 1988-12-23 1988-12-23 Procordia Oratech Ab Surgical barrier
US6402518B1 (en) * 1999-11-30 2002-06-11 Arthur Ashman Method and apparatus for performing ridge augmentation
KR100823627B1 (ko) * 2006-08-31 2008-04-21 포항공과대학교 산학협력단 히알루론산 유도체를 포함하는 다층막
JP2009067732A (ja) * 2007-09-14 2009-04-02 Medgel Corp 歯周外科処置用ゼラチンハイドロゲル膜
KR101260757B1 (ko) * 2012-04-30 2013-05-06 오스템임플란트 주식회사 다중층 흡수성 치주조직재생유도막
CN104841021B (zh) * 2015-05-07 2017-03-08 浙江大学 一种具有非对称结构的壳聚糖基仿生膜材料的制备方法
CN111330083B (zh) * 2018-12-18 2022-01-11 诺一迈尔(苏州)医学科技有限公司 用于引导骨再生术的屏障膜及其制备方法
CN109876192A (zh) * 2019-03-13 2019-06-14 东华大学 一种骨修复膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700479A (en) * 1988-12-23 1997-12-23 Guidor Ab Surgical element and method for selective tissue regeneration
CN1181228A (zh) * 1996-05-29 1998-05-13 Mke金属和塑料制品制造有限公司 覆盖骨骼缺陷位置的薄膜或膜片及其制造方法和固定钉子
US20070269769A1 (en) * 2006-05-18 2007-11-22 Marcello Marchesi Method for the guided regeneration of bone and/or periodontal tissues in the medical surgical and dental field and device thus obtainable
CN201164505Y (zh) * 2008-02-05 2008-12-17 林辅谊 骨骼组织再生引导物的改良结构
US20120045735A1 (en) * 2010-08-17 2012-02-23 Warsaw Orthopedic, Inc. Implant repair system and method
CN112716643A (zh) * 2020-12-28 2021-04-30 浙江大学 一种区域功能特异性临床牙周缺损修复模块

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115645634A (zh) * 2022-11-08 2023-01-31 四川大学 一种引导骨组织再生膜材料、其制备方法及应用
CN115645634B (zh) * 2022-11-08 2023-10-17 四川大学 一种引导骨组织再生膜材料、其制备方法及应用
CN116236323A (zh) * 2023-03-17 2023-06-09 北京大学口腔医学院 一种3d打印牙槽骨植骨结构及其制备方法
CN116236323B (zh) * 2023-03-17 2023-11-17 北京大学口腔医学院 一种3d打印牙槽骨植骨结构及其制备方法

Also Published As

Publication number Publication date
CN112716643A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022142288A1 (zh) 一种区域功能特异性临床牙周缺损修复模块
CN112675361B (zh) 一种区域功能特异性临床牙周缺损修复模块的制备方法
Mangano et al. Custom-made, selective laser sintering (SLS) blade implants as a non-conventional solution for the prosthetic rehabilitation of extremely atrophied posterior mandible
Abella et al. Outcome of autotransplantation of mature third molars using 3-dimensional–printed guiding templates and donor tooth replicas
Chi et al. Guided tissue regeneration in endodontic surgery by using a bioactive resorbable membrane
Abella Sans et al. Guided tooth autotransplantation in edentulous areas post‐orthodontic treatment
CN111110925B (zh) 一种3d打印个性化牙周组织再生材料的方法
Sans et al. Computer‐aided design and computer‐aided manufacturing poly (methyl methacrylate) interim veneers for immediate esthetic restoration of autotransplanted teeth
Ghomi et al. Oral rehabilitation with removable partial denture of a patient with cleidocranial dysplasia
CN116785000A (zh) 一种骨材料植入导板的制备方法
RU2568102C1 (ru) Способ восстановления жевательной эффективности моляров нижней и верхней челюстей с нарушенной целостностью корня
Husseini et al. The" HAT-TRICK" technique: A modification of soft tissue grafting using volume stable collagen matrix and cross-linked hyaluronic acid. Part A: The pontic site
CN112587258A (zh) 一种用于改良骨皮质切开的工具制作方法
CN112057205A (zh) 一种用于牙槽骨位点保存的3d打印牙根支架及其制备方法
González et al. The three-layer technique for immediate implants on teeth without a buccal bone wall: a case report
CN109758242A (zh) 一种精确种植牙开窗式取模方法
RU2532366C1 (ru) Способ изготовления разобщающего послеоперационного зубочелюстного протеза для верхней челюсти
Hernandez et al. A clinical and histological comparison of two different bone augmentation materials in the atrophic pre-maxilla.
Ji et al. Tooth autotransplantation gives teeth a second chance at life: A case series
RU2532368C1 (ru) Способ изготовления разобщающего послеоперационного зубочелюстного протеза для верхней челюсти
Zucchelli Long-term maintenance of an apparently hopeless tooth: a case report.
Elbokle et al. Assessment of soft tissue expansion using osmed self inflating hydrogel prior to mandibular ridge augmentation
Imam et al. Glass Ionomer Subgingival Matrix Technique to Restore a Tooth with Severe Root Resorption for Implant Site Development
Meda et al. Autotransplantation of Maxillary Third Molar with Its Attached Buccal Cortical Plate Combined with a Connective Tissue Graft
Sanzana-Luengo et al. Histological and Clinical Evidence of Soft Tissue Regeneration from a Porcine Collagen Matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913039

Country of ref document: EP

Kind code of ref document: A1