WO2022142181A1 - 一种脱硫废水零排放装置及系统 - Google Patents

一种脱硫废水零排放装置及系统 Download PDF

Info

Publication number
WO2022142181A1
WO2022142181A1 PCT/CN2021/101472 CN2021101472W WO2022142181A1 WO 2022142181 A1 WO2022142181 A1 WO 2022142181A1 CN 2021101472 W CN2021101472 W CN 2021101472W WO 2022142181 A1 WO2022142181 A1 WO 2022142181A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization wastewater
film evaporator
falling film
steam
zero
Prior art date
Application number
PCT/CN2021/101472
Other languages
English (en)
French (fr)
Inventor
刘克成
夏彦卫
高燕宁
张立军
周慧波
Original Assignee
国网河北省电力有限公司电力科学研究院
国家电网有限公司
国网河北能源技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网河北省电力有限公司电力科学研究院, 国家电网有限公司, 国网河北能源技术服务有限公司 filed Critical 国网河北省电力有限公司电力科学研究院
Publication of WO2022142181A1 publication Critical patent/WO2022142181A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents

Definitions

  • the invention relates to the technical field of desulfurization wastewater treatment, in particular to a desulfurization wastewater zero discharge device and system.
  • the desulfurization wastewater treatment system configured in the prior art adopts conventional treatment processes such as neutralization-flocculation-settling-clarification, etc. After treatment, the discharge standard is reached, and the system operates basically normally.
  • the treated desulfurization wastewater is mainly to reduce the turbidity, heavy metals and a small amount of hardness of the desulfurization wastewater.
  • the salt content of the wastewater is not significantly reduced. It is difficult to reuse the desulfurization wastewater. The main reason is that the desulfurization wastewater can be reused. Less water and unstable water consumption at each water point, less water consumption.
  • the water points of thermal power plants that can receive desulfurized pretreated high-salinity wastewater are mainly as follows:
  • Ash storage Different plants dispose of ash differently. Most power plants use dry ash comprehensively without humidification, that is, without water. When a few power plants need to be transported to the ash yard, they are mixed with water to prevent dust, and the water consumption is less than 2.5m 3 /h.
  • Ash field It is mainly used for dust suppression and spraying in the ash field.
  • Coal conveying system It is mainly used for coal yard spraying and flushing of coal conveying system. Since the coal yard spraying and flushing water is recycled to the coal water treatment system for recycling after treatment, the required water replenishment is small, about 1.0m 3 /h.
  • Slag removal system water consumption is about 6.0-8.0m 3 per hour, and corrosion problem has been found in the slag removal system.
  • the purpose of the present invention is to provide a zero-discharge device and system for desulfurization wastewater, so as to solve the problems raised in the above-mentioned background art.
  • the present invention provides the following technical solutions:
  • a zero-discharge device and system for desulfurization wastewater including a horizontal falling film evaporator used for concentration and crystallization of desulfurization wastewater, the left and right sides of the horizontal falling film evaporator are respectively equipped with a steam box and a condensation box, and the steam box and the condensation box.
  • a number of heat exchange tube bundles are arranged between them, the heat exchange tube bundles are located inside the horizontal falling film evaporator, and the two ends of the heat exchange tube bundles are respectively connected to the steam box and the condensing box; the top inside the horizontal falling film evaporator is installed
  • a liquid inlet is provided on the outer side of the horizontal falling film evaporator, and the liquid inlet is communicated with the liquid inlet pipe.
  • the upper part of the condensation box is provided with a non-condensable gas outlet, and the lower part of the condensation box is provided with a condensed water outlet.
  • the top of the horizontal falling film evaporator is provided with a secondary steam outlet
  • the steam box is provided with a steam inlet
  • a steam compressor is arranged between the secondary steam outlet and the steam inlet.
  • the inlet end of the steam compressor is communicated with the secondary steam outlet, and the exhaust end of the steam compressor is communicated with the steam inlet.
  • a mist eliminator is also installed on the top inside the horizontal falling film evaporator.
  • a manhole is provided on the outer side of the horizontal falling film evaporator, and a sight glass is also installed on the outer side of the horizontal falling film evaporator.
  • a desulfurization wastewater zero-discharge system includes a desulfurization wastewater concentration module and a desulfurization wastewater crystallization module using the above-mentioned desulfurization wastewater zero-discharge device.
  • it also includes a desulfurization wastewater pretreatment module and a fixed waste treatment module.
  • the desulfurization wastewater pretreatment module, the desulfurization wastewater concentration module, the desulfurization wastewater crystallization module and the fixed waste treatment module are connected in sequence.
  • the beneficial effects of the present invention are: the present invention realizes zero-discharge treatment of desulfurization wastewater by being provided with a desulfurization wastewater pretreatment module, a desulfurization wastewater concentration module, a desulfurization wastewater crystallization module and a fixed waste treatment module.
  • the present invention has the technical characteristics of being convenient for inspection and maintenance, low requirements for construction and installation, strong adaptability to fouling water quality, low investment cost, small footprint, and can obtain high-quality products. industrial salt.
  • Figure 1 shows the appearance of the zero-discharge device for desulfurization wastewater and the horizontal falling film evaporator in the system.
  • Figure 2 is a cross-sectional view of the zero-discharge device for desulfurization wastewater and the horizontal falling film evaporator in the system.
  • Fig. 3 is the working flow chart of the zero-discharge device for desulfurization wastewater and the horizontal falling-film evaporator in the system.
  • FIG. 4 is a system block diagram of the zero-discharge device for desulfurization wastewater and the zero-discharge system for desulfurization wastewater in the system.
  • a device for zero discharge of desulfurization wastewater includes a horizontal falling film evaporator 1 for concentrating and crystallization of desulfurization wastewater.
  • the left and right sides of the horizontal falling film evaporator 1 are respectively
  • a steam box 101 and a condensation box 103 are installed, and a number of heat exchange tube bundles 110 are arranged between the steam box 101 and the condensation box 103.
  • the high-temperature steam generated by the steam box 101 passes into the horizontal falling film evaporator 1 along the heat exchange tube bundle 110, and exchanges heat with the material concentrate inside the horizontal falling film evaporator 1.
  • the high-temperature steam is pre-cooled and condensed into condensed water and flows into the condensing box 103, and the material concentrate is heated, evaporated and concentrated and collected in the hot well at the bottom of the horizontal falling film evaporator 1;
  • a liquid inlet pipe 106 is installed on the top of the horizontal falling film evaporator 1, and several nozzles 107 are installed in the liquid inlet pipe 106 along a linear direction.
  • the port 113 is communicated with the liquid inlet pipe 106, and the material concentrate flows into the liquid inlet pipe 106 from the liquid inlet port 113, and is sprayed down by the nozzle 107.
  • the upper part of the condensation box 103 is provided with a non-condensable gas outlet 104, and the lower part of the condensation box 103 is provided with a condensed water outlet 105;
  • the top of the horizontal falling film evaporator 1 is provided with a secondary steam outlet 109
  • the steam box 101 is provided with a steam inlet 102
  • a steam compressor is arranged between the secondary steam outlet 109 and the steam inlet 102.
  • the intake end of the machine is connected with the secondary steam outlet 109, and the exhaust end of the steam compressor is communicated with the steam inlet 102.
  • a mist eliminator 108 is also installed on the top inside the horizontal falling film evaporator 1;
  • a manhole 111 is provided on the outer side of the horizontal falling film evaporator 1
  • a sight glass 112 is also installed on the outer side of the horizontal falling film evaporator 1 .
  • a device for zero discharge of desulfurization wastewater includes a horizontal falling film evaporator 1 (horizontal MVC) used for the concentration and crystallization of desulfurization wastewater.
  • the horizontal falling film evaporator 1 A steam box 101 and a condensation box 103 are installed on the left and right sides of the evaporator, and a number of heat exchange tube bundles 110 are arranged between the steam box 101 and the condensation box 103.
  • the heat exchange tube bundles 110 are located inside the horizontal falling film evaporator 1, and heat exchange Both ends of the tube bundle 110 are connected to the steam box 101 and the condensation box 103 respectively.
  • the high-temperature steam generated by the steam box 101 is passed into the horizontal falling film evaporator 1 along the heat exchange tube bundle 110, and is connected with the material inside the horizontal falling film evaporator 1.
  • the concentrated liquid produces heat exchange, the high-temperature steam is pre-cooled and condensed into condensed water and flows into the interior of the condensation box 103, and the material concentrated liquid is heated, evaporated and concentrated and collected in the hot well at the bottom of the horizontal falling film evaporator 1;
  • a liquid inlet pipe 106 is installed on the top of the horizontal falling film evaporator 1, and several nozzles 107 are installed in the liquid inlet pipe 106 along a linear direction.
  • the port 113 is communicated with the liquid inlet pipe 106, and the material concentrate flows into the liquid inlet pipe 106 from the liquid inlet port 113, and is sprayed down by the nozzle 107.
  • the upper part of the condensation box 103 is provided with a non-condensable gas outlet 104, and the lower part of the condensation box 103 is provided with a condensed water outlet 105;
  • the top of the horizontal falling film evaporator 1 is provided with a secondary steam outlet 109
  • the steam box 101 is provided with a steam inlet 102
  • a steam compressor is arranged between the secondary steam outlet 109 and the steam inlet 102.
  • the intake end of the machine is connected with the secondary steam outlet 109, and the exhaust end of the steam compressor is communicated with the steam inlet 102.
  • a mist eliminator 108 is also installed on the top inside the horizontal falling film evaporator 1;
  • a manhole 111 is provided on the outer side of the horizontal falling film evaporator 1
  • a sight glass 112 is also installed on the outer side of the horizontal falling film evaporator 1 .
  • Embodiment 1 Please refer to FIG. 4 , the difference between this embodiment and Embodiment 1 is:
  • a desulfurization wastewater zero discharge system comprising a desulfurization wastewater pretreatment module 2, a desulfurization wastewater concentration module 3, a desulfurization wastewater crystallization module 4 and a fixed waste treatment module 5, a desulfurization wastewater pretreatment module 2, a desulfurization wastewater concentration module 3, and desulfurization wastewater
  • the crystallization module 4 and the fixed waste treatment module 5 are connected in sequence;
  • the desulfurization wastewater pretreatment module 2 adopts the two-stage clarification and softening treatment process of slaked lime and sodium carbonate to pretreat the wastewater to remove suspended solids and harmful pollutants in the water, so that the effluent quality meets the national discharge standards;
  • the desulfurization wastewater concentration module 3 and the desulfurization wastewater crystallization module 4 both use a horizontal falling film evaporator 1 to concentrate and crystallize the wastewater;
  • the stationary waste treatment module 5 discards the sludge produced by the desulfurization wastewater pretreatment module 2 to an ash yard or sends it to a landfill, and the crystalline salt is reused as industrial salt.
  • a method for zero discharge of desulfurization wastewater comprising the following steps:
  • Pretreatment of desulfurization wastewater The wastewater is pretreated by two-stage clarification and softening treatment process of slaked lime and sodium carbonate to remove suspended solids and harmful pollutants in the water;
  • step S3 Fixed waste treatment: the sludge generated in step S1 is discarded to the ash yard or sent to the landfill, and the crystalline salt is reused as industrial salt.
  • Desulfurization wastewater pretreatment system using two-stage clarification and softening process of slaked lime + sodium carbonate;
  • Desulfurization wastewater concentration system using vertical tube falling film mechanical vapor compression thin film evaporation technology (vertical MVC process);
  • Desulfurization wastewater crystallization system using forced circulation mechanical vapor compression evaporation technology (forced circulation MVC process);
  • Solid waste disposal pretreated sludge is discarded to ash yard or sent to landfill, and crystalline salt is reused as industrial salt.
  • Desulfurization wastewater pretreatment system using two-stage clarification and softening process of slaked lime + sodium carbonate;
  • Desulfurization wastewater concentration system adopt forward osmosis process (MBC process);
  • Desulfurization wastewater crystallization system adopt multi-effect forced circulation evaporation technology (forced circulation MED process);
  • Solid waste disposal pretreated sludge is discarded to ash yard or sent to landfill, and crystalline salt is reused as industrial salt.
  • Example 2 Comparative Example 1 and Comparative Example 3: Take the water quality conditions of the zero-discharge system of wastewater in Heyuan Power Plant as a reference, and compare the total investment, operating costs, and land occupation respectively.
  • the pretreatment system adopts the same water quality and treatment system, and adopts the same investment estimation and chemical consumption and operating cost estimation.
  • the total investment is estimated, including the cost calculation of experiment, design, equipment, installation, civil construction and commissioning.
  • the desulfurization wastewater treatment capacity is 25m 3 /h
  • the pre-treatment system adopts an advanced treatment plan.
  • the total investment is about
  • the total investment of the evaporation crystallization system is 15 million yuan, according to the current quotations provided by Foshan Dejia, GE of the United States, Veolia, Beijing Puren Meihua, and Beijing Votel, etc., about 55-60 million. Therefore, the total project investment of the desulfurization wastewater zero discharge system is about 70-75 million yuan.
  • the scheme of Example 2 is based on the quotation of Foshan Dejia Company, and the civil construction, installation and design are calculated at 10 million yuan;
  • the scheme of Comparative Example 1 is based on the quotation of the domestic supplier Beijing Puren Huamei Co., Ltd.
  • the civil construction, installation and design are based on the quotation Calculated at 10 million yuan;
  • the scheme of Comparative Example 2 is based on the quotation of Beijing Voltaire Company, and the design fee is calculated at 3 million yuan.
  • Operating costs include steam, electricity consumption, drug consumption, spare parts consumption, personnel costs, etc.
  • the survey mainly learned about steam consumption, electricity consumption and pretreatment chemical consumption. Other costs are very small or the same, so we will not compare them for the time being.
  • the MED evaporation system is the existing operating cost of Heyuan Power Plant
  • the steam consumption and power consumption of the riser MVC and horizontal MVC concentration unit use the operation data of Sanshui Power Plant
  • the drug consumption of the pretreatment unit adopts the operation data of the pretreatment system of Heyuan Power Plant.
  • Other figures are supplier estimates.
  • the unit price of steam is calculated at RMB 150/ton (the price of industrial steam in Guangdong);
  • the service life of MBC forward osmosis membrane is not more than 5 years.
  • the cost of the forward osmosis membrane module accounts for about 20% of the total investment. According to 20%, the cost of the membrane module is about 13.2 million yuan. According to With an annual operation of 5,500 hours and a 4-year lifespan, the replacement cost of a ton of water membrane modules is about 24 yuan/m 3 .
  • Depreciation expense is calculated in 15 years according to the total investment.
  • the human resources cost is based on 30 people, and each person is calculated at 60,000 yuan per year.
  • the three programs are the same.
  • the depreciation cost of the Sanshui plan is calculated at the equipment price of 46 million yuan, excluding civil works, installation, design and pre-treatment systems.
  • Heyuan's plan is that the depreciation cost is calculated at 90 million yuan, and the labor cost is provided by Heyuan.
  • Desulfurization wastewater pretreatment + evaporation and crystallization system layout principle refer to the layout of Heyuan, and set up independent areas for separate layout.
  • the desulfurization wastewater of Heyuan Power Plant’s 2 ⁇ 600MW units is equivalent to the scale of Guohua’s 2 ⁇ 1000MW units.
  • the multi-effect standpipe forced circulation evaporation system of Heyuan Power Plant covers an area of about 4000m 2 , including the desulfurization wastewater pretreatment system.
  • the area of other process routes refers to the actual data of Heyuan, and is selected according to the coefficient recommended by the supplier.
  • the equipment of the concentration and crystallization unit of the scheme of Example 2 has large consumption of advanced alloys and complicated equipment, but has the technical characteristics of easy maintenance and maintenance, and has low requirements for construction and installation, and has relatively low water quality for scaling type. Strong adaptability; the concentration and crystallization unit of the comparative example 1 has simple equipment and low consumption of advanced alloys, but it is relatively complex to repair and maintain, has high installation requirements, and is relatively poor in adapting to fouling water quality.
  • the scheme of Example 2 has obvious technical advantages, and the domestic Sanshui Power Plant has 2 years of actual operation experience, which is one of the advantages.
  • the comparative example 2 scheme has slightly lower investment, smaller floor space and higher operating cost.
  • the core process MBC forward osmosis technology is a newly developed commercial process technology in the world. According to the introduction, the four foreign performances that have been put into commercial operation are all in the oil and gas exploration industry, and there is no application performance in the power industry.
  • Example 2 two-stage softening of slaked lime and sodium carbonate + horizontal MVC evaporation and concentration + horizontal MVC evaporation and crystallization
  • the scheme of Example 2 is preferably used to obtain high-quality industrial salt for reuse as a process for a zero-discharge system for desulfurization wastewater in infrastructure projects. Program.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

本发明公开了一种脱硫废水零排放装置及系统,包括用于脱硫废水浓缩和结晶的卧式降膜蒸发器,卧式降膜蒸发器的左右两侧分别安装有蒸汽箱和冷凝箱,蒸汽箱和冷凝箱之间设置有若干换热管束,换热管束位于卧式降膜蒸发器的内部,且换热管束的两端分别于蒸汽箱及冷凝箱连通;所述卧式降膜蒸发器内部的顶部安装有进液管,进液管沿直线方向安装有若干喷头。本发明通过设置有脱硫废水预处理模块、脱硫废水浓缩模块、脱硫废水结晶模块和固定废弃物处理模块实现对脱硫废水零排放处理,相较于现有的技术方案,本发明具有便于检修、维护的技术特点,施工安装要求低,对结垢型水质有较强的适应性,而且投资成本低,占地面积较小。

Description

一种脱硫废水零排放装置及系统 技术领域
本发明涉及脱硫废水处理技术领域,具体是一种脱硫废水零排放装置及系统。
背景技术
现有技术中配置的脱硫废水处理系统,采用中和-絮凝-沉降-澄清等常规处理工艺,处理后达到排放标准,系统运行基本正常。经过处理的脱硫废水,主要是降低脱硫废水的浊度、重金属和少量的硬度,废水的含盐量没有明显降低,对脱硫废水进行回用比较困难,主要原因是脱硫废水可回用的用水点较少且各用水点用水不稳定、用水量少。
目前火力发电厂可接收脱硫预处理后的高含盐废水的用水点主要有以下几个:
1)灰库:各厂对灰的处置方式不同,大多电厂干灰综合利用,不需加湿,即不需用水,少数电厂需要运往灰场时,用水拌湿以防止扬尘,用水量不足2.5m 3/h。
2)灰场:主要用于灰场抑尘喷洒,用水量不连续,雨天和冬季不需喷洒,用水量不超过0.5m 3/h。
3)输煤系统:主要用于煤场喷洒和输煤系统的冲洗,由于煤场喷洒和冲洗水均回收到煤水处理系统进行处理后循环使用,所需补水量较小,大约为1.0m 3/h。
4)除渣系统:每小时约消耗水6.0-8.0m 3,除渣系统已经发现腐蚀问题。
因此,针对以上现状,迫切需要开发一种脱硫废水零排放装置及系统,以克服当前实际应用中的不足。
发明内容
本发明的目的在于提供一种脱硫废水零排放装置及系统,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种脱硫废水零排放装置及系统,包括用于脱硫废水浓缩和结晶的卧式降膜蒸发器,卧式降膜蒸发器的左右两侧分别安装有蒸汽箱和冷凝箱,蒸汽箱和冷凝箱之间设置有若干换热管束,换热管束位于卧式降膜蒸发器的内部,且换热管束的两端分别于蒸汽箱及冷凝 箱连通;所述卧式降膜蒸发器内部的顶部安装有进液管,进液管沿直线方向安装有若干喷头。
作为本发明进一步的方案:所述卧式降膜蒸发器的外侧开设有进液口,进液口与进液管连通。
作为本发明进一步的方案:所述冷凝箱的上部开设有不凝气体出口,冷凝箱的下部开设有冷凝水出口。
作为本发明进一步的方案:所述卧式降膜蒸发器的顶部开设有二次蒸汽出口,所述蒸汽箱上开设有蒸汽进口,二次蒸汽出口与蒸汽进口之间设置有蒸汽压缩机。
作为本发明进一步的方案:蒸汽压缩机的进气端与二次蒸汽出口连通,蒸汽压缩机的排气端与蒸汽进口连通。
作为本发明进一步的方案:所述卧式降膜蒸发器内部的顶部还安装有除雾器。
作为本发明进一步的方案:所述卧式降膜蒸发器的外侧开设有人孔,卧式降膜蒸发器的外侧还安装有视镜。
一种脱硫废水零排放系统,包括采用上述脱硫废水零排放装置的脱硫废水浓缩模块和脱硫废水结晶模块。
作为本发明进一步的方案:还包括有脱硫废水预处理模块和固定废弃物处理模块。
作为本发明进一步的方案:脱硫废水预处理模块、脱硫废水浓缩模块、脱硫废水结晶模块和固定废弃物处理模块依次连接。
与现有技术相比,本发明的有益效果是:本发明通过设置有脱硫废水预处理模块、脱硫废水浓缩模块、脱硫废水结晶模块和固定废弃物处理模块实现对脱硫废水零排放处理,相较于现有的技术方案,本发明具有便于检修、维护的技术特点,施工安装要求低,对结垢型水质有较强的适应性,而且投资成本低,占地面积较小,能够获得高品质工业盐。
附图说明
图1为脱硫废水零排放装置及系统中卧式降膜蒸发器的外观图。
图2为脱硫废水零排放装置及系统中卧式降膜蒸发器的剖视图。
图3为脱硫废水零排放装置及系统中卧式降膜蒸发器的工作流程图。
图4为脱硫废水零排放装置及系统中脱硫废水零排放系统的系统框图。
图中:1-卧式降膜蒸发器、101-蒸汽箱、102-蒸汽进口、103-冷凝箱、104-不凝气体出口、105-冷凝水出口、106-进液管、107-喷头、108-除雾器、109-二次蒸汽出口、110-换热管束、111-人孔、112-视镜、113-进液口、2-脱硫废水预处理模块、3-脱硫废水浓缩模块、4-脱硫废水结晶模块、5-固定废弃物处理模块。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
下面详细描述本专利的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利,而不能理解为对本专利的限制。
在本专利的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本专利和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利的限制。
在本专利的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“设置”应做广义理解,例如,可以是固定相连、设置,也可以是可拆卸连接、设置,或一体地连接、设置。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本专利中的具体含义。
实施例1
请参阅图1~3,本发明实施例中,一种脱硫废水零排放装置,包括用于脱硫废水浓缩和结晶的卧式降膜蒸发器1,卧式降膜蒸发器1的左右两侧分别安装有蒸汽箱101和冷凝箱103,蒸汽箱101和冷凝箱103之间设置有若干换热管束110,换热管束110位于卧式降膜蒸发器1的内部,且换热管束110的两端分别于蒸汽箱101及冷凝箱103连通,蒸汽 箱101产生的高温蒸汽沿换热管束110通入卧式降膜蒸发器1,并与卧式降膜蒸发器1内部的物料浓液产生热交换,高温蒸汽预冷后冷凝成冷凝水流入冷凝箱103的内部,物料浓液受热蒸发浓缩后汇集于卧式降膜蒸发器1底部的热井中;
所述卧式降膜蒸发器1内部的顶部安装有进液管106,进液管106沿直线方向安装有若干喷头107,卧式降膜蒸发器1的外侧开设有进液口113,进液口113与进液管106连通,物料浓液由进液口113流入进液管106中,通过喷头107喷射而下,物料浓液凭借重力沿卧式降膜蒸发器1流动时,以膜状分布在卧式降膜蒸发器1上;
具体的,本实施例中,所述冷凝箱103的上部开设有不凝气体出口104,冷凝箱103的下部开设有冷凝水出口105;
所述卧式降膜蒸发器1的顶部开设有二次蒸汽出口109,所述蒸汽箱101上开设有蒸汽进口102,二次蒸汽出口109与蒸汽进口102之间设置有蒸汽压缩机,蒸汽压缩机的进气端与二次蒸汽出口109连通,蒸汽压缩机的排气端与蒸汽进口102连通,物料浓液受热蒸发时,部分浓液转化为蒸汽,由二次蒸汽出口109流入蒸汽压缩机中,压缩后送入蒸汽箱101中作为加热蒸汽;
具体的,本实施例中,所述卧式降膜蒸发器1内部的顶部还安装有除雾器108;
进一步的,本实施例中,所述卧式降膜蒸发器1的外侧开设有人孔111,卧式降膜蒸发器1的外侧还安装有视镜112。
实施例2
请参阅图1~3,本发明实施例中,一种脱硫废水零排放装置,包括用于脱硫废水浓缩和结晶的卧式降膜蒸发器1(卧式MVC),卧式降膜蒸发器1的左右两侧分别安装有蒸汽箱101和冷凝箱103,蒸汽箱101和冷凝箱103之间设置有若干换热管束110,换热管束110位于卧式降膜蒸发器1的内部,且换热管束110的两端分别于蒸汽箱101及冷凝箱103连通,蒸汽箱101产生的高温蒸汽沿换热管束110通入卧式降膜蒸发器1,并与卧式降膜蒸发器1内部的物料浓液产生热交换,高温蒸汽预冷后冷凝成冷凝水流入冷凝箱103的内部,物料浓液受热蒸发浓缩后汇集于卧式降膜蒸发器1底部的热井中;
所述卧式降膜蒸发器1内部的顶部安装有进液管106,进液管106沿直线方向安装有若干喷头107,卧式降膜蒸发器1的外侧开设有进液口113,进液口113与进液管106连通,物料浓液由进液口113流入进液管106中,通过喷头107喷射而下,物料浓液凭借重力沿卧式降膜蒸发器1流动时,以膜状分布在卧式降膜蒸发器1上;
具体的,本实施例中,所述冷凝箱103的上部开设有不凝气体出口104,冷凝箱103的下部开设有冷凝水出口105;
所述卧式降膜蒸发器1的顶部开设有二次蒸汽出口109,所述蒸汽箱101上开设有蒸汽进口102,二次蒸汽出口109与蒸汽进口102之间设置有蒸汽压缩机,蒸汽压缩机的进气端与二次蒸汽出口109连通,蒸汽压缩机的排气端与蒸汽进口102连通,物料浓液受热蒸发时,部分浓液转化为蒸汽,由二次蒸汽出口109流入蒸汽压缩机中,压缩后送入蒸汽箱101中作为加热蒸汽;
具体的,本实施例中,所述卧式降膜蒸发器1内部的顶部还安装有除雾器108;
进一步的,本实施例中,所述卧式降膜蒸发器1的外侧开设有人孔111,卧式降膜蒸发器1的外侧还安装有视镜112。
请参阅图4,本实施例与实施例1的不同之处在于:
一种脱硫废水零排放系统,包括脱硫废水预处理模块2、脱硫废水浓缩模块3、脱硫废水结晶模块4和固定废弃物处理模块5,脱硫废水预处理模块2、脱硫废水浓缩模块3、脱硫废水结晶模块4和固定废弃物处理模块5依次连接;
所述脱硫废水预处理模块2采用熟石灰和碳酸钠两级澄清软化处理工艺对废水进行预处理,去除水中的悬浮固体和有害污染物,使出水水质满足国家排放标准;
所述脱硫废水浓缩模块3和脱硫废水结晶模块4均采用卧式降膜蒸发器1对废水进行浓缩结晶处理;
所述固定废弃物处理模块5将脱硫废水预处理模块2产生的污泥抛弃到灰场或送至垃圾填埋场,结晶盐作为工业盐再利用。
实施例3
一种脱硫废水零排放方法,包括以下步骤:
S1、脱硫废水预处理:采用熟石灰和碳酸钠两级澄清软化处理工艺对废水进行预处理,去除水中的悬浮固体和有害污染物;
S2、脱硫废水浓缩、结晶:采用卧式降膜蒸发器1对废水进行浓缩结晶处理;
S3、固定废弃物处理:将步骤S1产生的污泥抛弃到灰场或送至垃圾填埋场,结晶盐作为工业盐再利用。
对比例1
脱硫废水预处理系统:采用熟石灰+碳酸钠两级澄清软化处理工艺;
脱硫废水浓缩系统:采用立管降膜式机械蒸汽压缩薄膜蒸发技术(立式MVC工艺);
脱硫废水结晶系统:采用强制循环机械蒸汽压缩蒸发技术(强制循环MVC工艺);
固体废弃物处置:预处理污泥抛弃到灰场或送至垃圾填埋场,结晶盐作为工业盐再利用。
对比例2
脱硫废水预处理系统:采用熟石灰+碳酸钠两级澄清软化处理工艺;
脱硫废水浓缩系统:采用正渗透工艺(MBC工艺);
脱硫废水结晶系统:采用多效强制循环蒸发技术(强制循环MED工艺);
固体废弃物处置:预处理污泥抛弃到灰场或送至垃圾填埋场,结晶盐作为工业盐再利用。
技术经济比较(实施例2、对比例1和对比例3):以河源电厂废水零排放系统的水质条件为参考,分别进行总投资、运行费用、占地等比较。其中预处理系统均采用相同的水质和处理系统,采用相同的投资估算和药剂消耗运行费用估算。
一、总投资
总投资估算,包括实验、设计、设备、安装、土建、调试所有的费用计算,按照2×600MW机组,脱硫废水处理量为25m 3/h的规模,前处理系统采用深度处理方案,总投资约为1500万元,蒸发结晶系统的总投资,根据目前佛山德嘉、美国GE、威立雅公司、北京普仁美华 公司、北京沃特尔公司等提供的报价,约在5500-6000万。所以,脱硫废水零排放系统的工程总投资约在7000-7500万元。
询价结果统计表
Figure PCTCN2021101472-appb-000001
三个技术方案总投资估算见下表。其中:实施例2方案以佛山德嘉公司报价为基准,土建、安装和设计等按1000万元计;对比例1方案以国内供应商北京普仁华美公司报价为基准,土建、安装和设计等按1000万元计;对比例2方案以北京沃特尔公司报价为基准,设计费按照300万元计。
三种工艺系统总投资对比表(万元)
序号 项目 总投资估算 备注
1 实施例2方案 7300 规模为25m 3/h。
2 对比例1方案 7300 规模为25m 3/h。
3 对比例2方案 6900 规模为25m 3/h。
4 三水方案 6600 规模为22m 3/h。
5 河源方案 9000 规模为22m 3/h
二、直接运行费用
运行费用包括蒸汽、电耗、药品消耗、备件消耗、人员费用等。调研主要了解到蒸汽消耗、电耗和预处理药剂消耗,其他费用很小或相同,暂时不比较。其中:MED蒸发系统是河源电厂现有运行费用,立管MVC和卧式MVC浓缩单元蒸汽消耗、电耗采用三水电厂的运行数据,预处理单元药品消耗采用河源电厂预处理系统的运行数据,其他数据为供货商估算。
三种工艺系统直接运行费用对比表
Figure PCTCN2021101472-appb-000002
说明:
1.蒸汽单价按照150元/吨计(广东工业蒸汽价格);
2.按照上网电价0.5元/度计。
3.MBC正渗透膜寿命不超过5年,6600万的总投资中,其中正渗透膜组件的费用约占总投资的20%,按照20%计,膜组件的费用约为1320万元,按照年运行5500小时和4年寿命计,吨水膜组件更换成本约为24元/m 3
三种工艺系统总经济指标对比表(元/m 3废水)
Figure PCTCN2021101472-appb-000003
说明:
按照年运行5500小时数折算。
折旧费按照总投资分15年折算。
人力资源费用按照30人编制,每人每年60000元计算,三个方案是相同的。
其中三水方案的折旧费按照4600万设备价格计,不含土建、安装、设计和前处理系统。
河源方案为折旧费用按照9000万元计,人力费用来自河源方面提供。
四、系统布置及占地
脱硫废水预处理+蒸发结晶系统布置原则,参考河源的布置情况为设独立区域单独布置。河源电厂2×600MW机组的脱硫废水规模相当于国华公司2×1000MW机组规模,
三种方案工艺系统占地面积对比表
序号 工艺路线 占地面积(m 2)
1 实施例2方案 3300
2 对比例1方案 3300
3 对比例2方案 1200
4 三水电厂 3300
5 河源电厂 4000
说明:
河源电厂的多效立管强制循环蒸发系统占地面积包括脱硫废水预处理系统,实际占地面积约为4000m 2。其他工艺路线的占地面积参考河源的实际数据,按照供货商推荐系数选取。
三种工艺系统方案综合经济比表对比见下表。按照2×1000MW机组规模,高盐废水25m 3/h对比。
三种工艺系统经济指标对比表
Figure PCTCN2021101472-appb-000004
脱硫废水零排放系统综合对比见下表
Figure PCTCN2021101472-appb-000005
Figure PCTCN2021101472-appb-000006
对比结论:
实施例2方案的浓缩和结晶单元的设备与对比例1方案相比,高级合金耗量大,设备复杂,但是具有便于检修、维护的技术特点,施工安装要求低,对结垢型水质有较强的适应性;对比例1方案的浓缩和结晶单元设备简单,高级合金耗量小,但是相对检修维护复杂,安装要求高,对结垢型水质适应相对较差。实施例2方案,具有明显的技术优势,并且国内三水电厂有2年的实际运行经验,是优势条件之一。
对比例2方案与第一、对比例1方案相比,投资略低,占地面积较小,运行成本较高。核心工艺MBC正渗透技术作为国际上新开发的实现商用的工艺技术,根据介绍,国外四个投入商业运行的业绩,均为油气开采行业,没有电力行业的应用业绩。
综上所述,优先选用实施例2方案(熟石灰、碳酸钠两级软化+卧式MVC蒸发浓缩+卧式MVC蒸发结晶),获得高品质工业盐再利用,作为基建项目脱硫废水零排放系统工艺方案。
以上的仅是本发明的优选实施方式,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。

Claims (10)

  1. 一种脱硫废水零排放装置,其特征在于,包括用于脱硫废水浓缩和结晶的卧式降膜蒸发器(1),卧式降膜蒸发器(1)的左右两侧分别安装有蒸汽箱(101)和冷凝箱(103),蒸汽箱(101)和冷凝箱(103)之间设置有若干换热管束(110),换热管束(110)位于卧式降膜蒸发器(1)的内部,且换热管束(110)的两端分别于蒸汽箱(101)及冷凝箱(103)连通;所述卧式降膜蒸发器(1)内部的顶部安装有进液管(106),进液管(106)沿直线方向安装有若干喷头(107)。
  2. 根据权利要求1所述的脱硫废水零排放装置,其特征在于,所述卧式降膜蒸发器(1)的外侧开设有进液口(113),进液口(113)与进液管(106)连通。
  3. 根据权利要求2所述的脱硫废水零排放装置,其特征在于,所述冷凝箱(103)的上部开设有不凝气体出口(104),冷凝箱(103)的下部开设有冷凝水出口(105)。
  4. 根据权利要求3所述的脱硫废水零排放装置,其特征在于,所述卧式降膜蒸发器(1)的顶部开设有二次蒸汽出口(109),所述蒸汽箱(101)上开设有蒸汽进口(102),二次蒸汽出口(109)与蒸汽进口(102)之间设置有蒸汽压缩机。
  5. 根据权利要求4所述的脱硫废水零排放装置,其特征在于,蒸汽压缩机的进气端与二次蒸汽出口(109)连通,蒸汽压缩机的排气端与蒸汽进口(102)连通。
  6. 根据权利要求5所述的脱硫废水零排放装置,其特征在于,所述卧式降膜蒸发器(1)内部的顶部还安装有除雾器(108)。
  7. 根据权利要求6所述的脱硫废水零排放装置,其特征在于,所述卧式降膜蒸发器(1)的外侧开设有人孔(111),卧式降膜蒸发器(1)的外侧还安装有视镜(112)。
  8. 一种脱硫废水零排放系统,其特征在于,包括采用如权利要求1-7任一所述的脱硫废水零排放装置的脱硫废水浓缩模块(3)和脱硫废水结晶模块(4)。
  9. 根据权利要求8所述的脱硫废水零排放系统,其特征在于,还包括有脱硫废水预处理模块(2)和固定废弃物处理模块(5)。
  10. 根据权利要求9所述的脱硫废水零排放系统,脱硫废水预处理模块(2)、脱硫废水浓缩模块(3)、脱硫废水结晶模块(4)和固定废弃物处理模块(5)依次连接。
PCT/CN2021/101472 2020-12-28 2021-06-22 一种脱硫废水零排放装置及系统 WO2022142181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011585573.7 2020-12-28
CN202011585573.7A CN112811689A (zh) 2020-12-28 2020-12-28 一种脱硫废水零排放装置及系统

Publications (1)

Publication Number Publication Date
WO2022142181A1 true WO2022142181A1 (zh) 2022-07-07

Family

ID=75854492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101472 WO2022142181A1 (zh) 2020-12-28 2021-06-22 一种脱硫废水零排放装置及系统

Country Status (2)

Country Link
CN (1) CN112811689A (zh)
WO (1) WO2022142181A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115400435A (zh) * 2022-09-15 2022-11-29 杭州索孚机械有限公司 废盐蒸发回收处理系统
CN115872571A (zh) * 2023-01-29 2023-03-31 江苏百茂源环保科技有限公司 一种工业污盐水除杂提纯装置及其使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811689A (zh) * 2020-12-28 2021-05-18 国网河北省电力有限公司电力科学研究院 一种脱硫废水零排放装置及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192838A (ja) * 1997-01-13 1998-07-28 Sasakura Eng Co Ltd 蒸発濃縮方法及び装置
CN105314783A (zh) * 2015-10-16 2016-02-10 上海晶宇环境工程股份有限公司 燃煤电厂脱硫废水零排放处理工艺及其专用装置
CN205473143U (zh) * 2016-01-18 2016-08-17 李艳萍 一种高盐废水处理系统
CN106730955A (zh) * 2016-12-28 2017-05-31 广东沃泰环保有限公司 一种卧式降膜蒸发器及其在线除垢装置
CN206325242U (zh) * 2016-12-28 2017-07-14 广东沃泰环保有限公司 一种卧式降膜蒸发器及其在线除垢装置
CN206570143U (zh) * 2016-12-23 2017-10-20 天海能源科技有限公司 一种脱硫废水回收利用及零排放系统
US10259735B1 (en) * 2014-12-22 2019-04-16 Mansour S. Bader De-scaling methods for desalination plants and a new brine-forward multi-stage flash concept
CN112811689A (zh) * 2020-12-28 2021-05-18 国网河北省电力有限公司电力科学研究院 一种脱硫废水零排放装置及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106966537A (zh) * 2017-03-29 2017-07-21 扬州祥发资源综合利用有限公司 一种脱硫废水零排放处理方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192838A (ja) * 1997-01-13 1998-07-28 Sasakura Eng Co Ltd 蒸発濃縮方法及び装置
US10259735B1 (en) * 2014-12-22 2019-04-16 Mansour S. Bader De-scaling methods for desalination plants and a new brine-forward multi-stage flash concept
CN105314783A (zh) * 2015-10-16 2016-02-10 上海晶宇环境工程股份有限公司 燃煤电厂脱硫废水零排放处理工艺及其专用装置
CN205473143U (zh) * 2016-01-18 2016-08-17 李艳萍 一种高盐废水处理系统
CN206570143U (zh) * 2016-12-23 2017-10-20 天海能源科技有限公司 一种脱硫废水回收利用及零排放系统
CN106730955A (zh) * 2016-12-28 2017-05-31 广东沃泰环保有限公司 一种卧式降膜蒸发器及其在线除垢装置
CN206325242U (zh) * 2016-12-28 2017-07-14 广东沃泰环保有限公司 一种卧式降膜蒸发器及其在线除垢装置
CN112811689A (zh) * 2020-12-28 2021-05-18 国网河北省电力有限公司电力科学研究院 一种脱硫废水零排放装置及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115400435A (zh) * 2022-09-15 2022-11-29 杭州索孚机械有限公司 废盐蒸发回收处理系统
CN115400435B (zh) * 2022-09-15 2024-02-13 杭州索孚机械有限公司 废盐蒸发回收处理系统
CN115872571A (zh) * 2023-01-29 2023-03-31 江苏百茂源环保科技有限公司 一种工业污盐水除杂提纯装置及其使用方法
CN115872571B (zh) * 2023-01-29 2024-02-27 江苏百茂源环保科技有限公司 一种工业污盐水除杂提纯装置及其使用方法

Also Published As

Publication number Publication date
CN112811689A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022142181A1 (zh) 一种脱硫废水零排放装置及系统
CN110124500B (zh) 一种深度回收湿烟气中水资源的装置及方法
CN107857321B (zh) 一种用于火力发电厂废水零排放处理的工艺
CN107777820B (zh) 将空冷岛乏汽余热用于火力发电厂废水零排放处理的工艺
CN206069429U (zh) 一种脱硫废水减量浓缩的浓缩塔
CN104874481A (zh) 一种用于半干法(cfb)废水零排放湿式静电除尘器
CN105668669A (zh) 一种发电厂脱硫废水处理系统及工艺
CN213955278U (zh) 基于烟气余热及污染物协同资源化的节能环保一体化系统
CN211595337U (zh) 零排污增容的开路循环冷却水系统
CN104341072A (zh) 一种节能的废水连续蒸发结晶系统
CN105948357B (zh) 一种低成本多次循环换热工业水零排放处理系统
CN108159868B (zh) 一种脱硫废水与烟囱白烟羽协同处理系统
CN100361731C (zh) 一种冷水溶解电解除硬加碱法烟气脱硫装置
CN214299359U (zh) 一种用于纳米银工业废水处理的mvr高效节能蒸发处理系统
CN211004888U (zh) 一种脱硫废水减排与水质处理循环利用工艺装置
CN204151184U (zh) 一种节能的废水连续蒸发结晶系统
CN202880913U (zh) 氯碱车间浓缩工序蒸汽冷凝水回收装置
CN111792775A (zh) 一种多热源蒸发脱硫废水的零排放方法
CN207451835U (zh) Mvr蒸发器的冷凝水资源化处理装置及水资源回收利用系统
CN2846429Y (zh) 氧气转炉烟气纯干式净化装置
CN212701292U (zh) 一种湿法脱硫装置
CN203890082U (zh) 用于蒸发结晶的余热回收装置
CN216321062U (zh) 一种脱硫零补水及烟气水回收系统
CN212222648U (zh) 一种膜法浓缩-高温蒸干工艺脱硫废水装置
CN209451321U (zh) 利用余热处理脱硫废水的新型蒸发浓缩系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912938

Country of ref document: EP

Kind code of ref document: A1