WO2022142140A1 - 石墨放射性测量设备、取样装置和取样方法 - Google Patents

石墨放射性测量设备、取样装置和取样方法 Download PDF

Info

Publication number
WO2022142140A1
WO2022142140A1 PCT/CN2021/098807 CN2021098807W WO2022142140A1 WO 2022142140 A1 WO2022142140 A1 WO 2022142140A1 CN 2021098807 W CN2021098807 W CN 2021098807W WO 2022142140 A1 WO2022142140 A1 WO 2022142140A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
graphite
sample
sampling device
actuator
Prior art date
Application number
PCT/CN2021/098807
Other languages
English (en)
French (fr)
Inventor
李睿之
张立军
张兴旺
吴杰
Original Assignee
中国原子能科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国原子能科学研究院 filed Critical 中国原子能科学研究院
Priority to EP21759225.2A priority Critical patent/EP4043857B1/en
Publication of WO2022142140A1 publication Critical patent/WO2022142140A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/08Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to a sampling device, in particular, to a remote sampling device for the side wall of a deep hole of a graphite block.
  • the present application provides a sampling device for obtaining a graphite sample block from a reactor graphite block
  • the sampling device includes: a support, the support is placed on the reactor graphite block; a lifter, the lifting and lowering A sampler can be inserted into the reactor graphite block along a first direction; a sampling actuator is provided at the end of the lifter for obtaining a graphite sample block from the reactor graphite block; the sampling actuator is along the A second direction is inserted into the reactor graphite block, and the first direction is substantially perpendicular to the second direction.
  • the sampling device disclosed in the present application can complete the task of sampling the side wall of the deep hole of the vertical graphite block.
  • FIG. 1 shows a schematic longitudinal cross-sectional view of a reactor graphite block masonry structure according to some embodiments
  • FIG. 2 shows a schematic horizontal cross-sectional view of a reactor graphite block masonry structure according to some embodiments
  • FIG. 3 shows a schematic diagram of the location of deep-hole sampling of the reactor graphite block according to some embodiments
  • FIG. 4 shows a schematic diagram of sampling locations of reactor graphite blocks according to some embodiments
  • FIG. 5 shows an overall schematic diagram of a reactor graphite block deep hole sidewall sampling device according to some embodiments
  • FIG. 6 is a schematic diagram showing the state of the reactor graphite block deep hole sidewall sampling device in place and in operation according to some embodiments;
  • FIG. 7 shows a schematic diagram of a graphite block deep hole side wall drilling sampling actuator of a reactor graphite block deep hole side wall sampling device according to some embodiments
  • FIG. 8 shows a partially enlarged schematic diagram of a graphite block deep hole side wall drilling sampling actuator of a reactor graphite block deep hole side wall sampling device according to some embodiments.
  • FIG. 9 is a schematic diagram showing the working state of the cutting cam of the graphite block deep hole side wall drilling sampling actuator of the reactor graphite block deep hole side wall sampling device according to some embodiments.
  • graphite Due to the long-term operation of the reactor, graphite is radioactive, and before the reactor is dismantled, the reactor structure must not be damaged, and sampling can only be carried out by remote operation.
  • a certain weight of graphite block sample needs to be taken from the inner sidewall of the vertical through hole on the graphite block.
  • the sampling point is far away from the operation position, for example, the sampling hole is about 3.5m away from the upper surface of the graphite block.
  • a graphite block sample of a certain weight needs to be drilled from the specified position on the inner wall of the ⁇ 55mm deep hole in the vertical direction of the graphite block in the reactor.
  • the graphite block sample is required to be complete and the weight is not less than 3g. For example, it is required that the temperature of the graphite surface during drilling should not exceed 50°C.
  • the applicant of the present application successfully completed the long-distance sampling of the deep hole side wall of the graphite block, took out a graphite sample with a length of 10 mm and a diameter of 8 mm, and met the requirements of subsequent experimental analysis.
  • the specifications of the samples obtained above are only examples, which do not constitute a limitation on the sampling device of the present invention.
  • the sampling device provided by the present invention can also sample graphite samples of other specifications.
  • the reactor has a ring structure composed of graphite masonry, and the schematic diagram of the graphite block structure is shown in Figures 1 and 2.
  • Figure 1 shows a schematic diagram of a longitudinal section of the reactor graphite block masonry structure;
  • Figure 2 shows a schematic diagram of a horizontal section of the reactor graphite block masonry structure.
  • the parameters of the graphite block masonry are as follows:
  • the inner diameter is ⁇ 1.43m
  • the outer diameter is 2.63m
  • the height is 3m
  • the graphite density is 2.4g/cm 3 .
  • a vertical through hole of ⁇ 55mm is arranged on the graphite block.
  • the operating position is, for example, 3.5 m above the upper part of the graphite block.
  • Figure 3 shows the schematic diagram of the sampling position of the deep hole of the reactor graphite
  • Figure 4 shows the schematic diagram of the sampling position of the reactor graphite block
  • Figures 3 and 4 show the position of the reclaiming hole.
  • a sampling device for obtaining a graphite sample block from a reactor graphite block, the sampling device comprising: a support, the support being placed on the reactor graphite block, with reference to FIG. 6
  • a graphite sidewall sampler 10 is placed on the reactor graphite block 11; a lifter, by way of example but not limitation, such as the sampling lift rotation mechanism 3 shown in FIG. 5 .
  • the lifter can be inserted into the reactor graphite block along a first direction; a sampling actuator is provided at the end of the lifter for obtaining a graphite sample block from the reactor graphite block; the sampling execution
  • the reactor is inserted into the reactor graphite block along a second direction, the first direction being substantially perpendicular to the second direction.
  • the first direction is the direction in which the graphite sidewall sampling machine 10 ascends and descends in the reactor graphite block 11
  • the second direction is the feeding direction of the sampling actuator in the reactor graphite block 11 .
  • Casters are installed at the bottom of the support, so that the support can move on the reactor graphite block, so that the lifter is aligned with the sampling position of the reactor graphite block.
  • the sampling position is a vertical through hole of the reactor graphite block, and the lifter can perform a lifting motion in the vertical through hole of the reactor graphite block along a first direction.
  • the stent further comprises:
  • lifting and fixing bracket 2 said lifting and fixing bracket 2 is fixed on the upper part of said bracket 1;
  • the guide rail is provided on the lift fixing bracket 2, and the lifter can move on the guide rail along the first direction;
  • a locking device capable of locking the lifter on the guide rail.
  • the lifter includes:
  • a lift rod such as, by way of example and not limitation, the sampling lever 4 shown in FIG. 5 .
  • the lift rod is inserted into the reactor graphite block along a first direction from the sampling position of the reactor graphite block.
  • the lift rod is a telescopic rod
  • the telescopic rod is composed of multi-section segments that can be extended and retracted in the first direction.
  • Each of the multi-section segments includes: a mandrel disposed at the center of the telescopic rod; and a sleeve disposed around the mandrel at the periphery of the mandrel; Telescoping in the first direction to achieve the desired length of the telescopic rod.
  • the mandrel can be driven hydraulically or electrically.
  • the sampling actuator 5 is installed at the bottom of the lifting rod, and a sampling operation wheel 6, such as a manual sampling operation wheel, is installed at the top of the lifting rod for actuating all the The sampling actuator described above.
  • a sampling operation wheel 6 such as a manual sampling operation wheel
  • the sampling operation wheel can also be powered.
  • a revolution counter is installed on the upper part of the sampling operation wheel to record the feeding depth of the sampling actuator.
  • the lifter includes:
  • a clamping mechanism clamps the telescopic rod.
  • the clamping mechanism consists of a clamping wheel, a clamping mechanism reducer, and a clamping mechanism servo motor;
  • a rotating mechanism the rotating mechanism pushes the movement of the telescopic rod in the first direction through rotation.
  • the rotating mechanism is composed of a gear, a rotating mechanism reducer and a rotating mechanism servo motor.
  • the sampling actuator includes:
  • a connecting sleeve 5-1 which connects the sampling actuator 5 to the lifter
  • Transmission shaft 5-4 described transmission shaft 5-4 is arranged in described connecting sleeve 5-1, is used for transmitting rotational power;
  • a rotary drill 5 - 11 which is rotatable and travels in the second direction, is used to cut away the graphite around the graphite sample 12 .
  • At least one cutting blade for example but not limitation, a sampling blade 5-12 shown in FIG. 7, is arranged on the outer circumference of the rotary drill bit 5-11.
  • the transmission shaft transmits rotational power to make the rotary drill move between a feeding state and a cutting state.
  • the rotary drill rotates in the forward direction, and the cutting cams 5-14
  • the rotary drill follows the rotary drill bit and rotates against the graphite sample; in the cut state, the rotary drill bit rotates in the opposite direction and applies radial force toward the graphite sample to cut the graphite sample from the reactor graphite block.
  • a cutting cam 5-14 is provided at the end of the rotary drill bit for cutting the graphite sample from the reactor graphite block.
  • the cutting cam is fixed on the rotary drill by the fixing pin 5-15, and the cutting cam 5-14 moves in the opposite direction with the rotating drill with the fixing pin 5-15 as the center;
  • the rotation of the cams 5-14 increases the linear distance between the abutting surface of the cutting cam and the graphite sample and the fixing pin, so the cutting cam exerts a radial force toward the graphite sample to cut the graphite sample.
  • the rotary drill bit 5-11 is a hollow structure with a hollow inner cavity, and the cut graphite sample 12 falls into the inner cavity of the rotary drill bit 5-11.
  • the cutting cam is provided with a toothed surface on the side that is in close contact with the graphite sample.
  • the trimming cam is sized to prevent the graphite sample from falling out of the inner cavity of the rotary drill.
  • the sampling device 10 is a reactor graphite deep hole remote sampling device, see FIG. 5 , for example, the graphite side wall sampling device 10 includes: a fixed bracket 1 , a lifting and fixed bracket 2 , a sampling lifting and rotating mechanism 3 , Sampling operation lever 4 , sampling actuator 5 , manual sampling operation wheel 6 , operation control panel 7 , safety fence 8 and distribution box 9 .
  • casters are installed at the bottom of the fixed bracket 1 to facilitate the movement of the sampling device 10 and alignment with the sampling hole; the lifting and fixing bracket 2 is welded on the upper part of the fixing bracket 1; The clamping device is installed on the lifting and fixing bracket 2 and can move up and down along the guide rail.
  • the sampling operation rod clamping mechanism and the rotating mechanism are installed on it.
  • the sampling operation rod clamping mechanism is composed of a clamping wheel, a reducer and a servo motor.
  • the rotating mechanism It is composed of gears, reducers and servo motors;
  • the sampling operation rod 4 is composed of multi-section stainless steel round tubes and mandrels.
  • a sampling actuator 5 is installed at the bottom and a manual sampling operation wheel 6 is installed at the top.
  • the length of the sampling operation rod 4 Determined by the number of installation sections; the sampling actuator 5 is responsible for the sampling work of the side wall graphite 11; the manual sampling operation wheel 6 is used as the power for the sampling work of the side wall graphite 11, and the upper part is equipped with a circle counter to record the feeding of the sampling actuator 5 Depth; operating the control panel 7, raising the buttons arranged on the operating control panel 7 can control operations such as the lifting and rotating of the sampling operating rod 4; the safety fence 8, welded by ordinary steel pipes, can prevent irrelevant personnel from approaching the operating position; Electric box 9, install electrical components such as servo motor controller.
  • the sampling actuator 5 is the key component of the device, and the overall design is shown in Figure 7. The main functions of each part of the actuator are described as follows: the connecting sleeve 5-1 is connected with the sampling operating rod 4 in Figure 5; the upper fixing seat 5-2 and the connecting sleeve 5-1 are fixed with screws; the lower fixing seat 5-3 is also used for The screws are fixed on the upper fixing base 5-2; the upper fixing base 5-2 and the lower fixing base 5-3 simultaneously fix the rotating sampling device.
  • the transmission shaft 5-4 transmits the upper rotary power to the rotary drill bit 5-11, and is connected with the driving helical gear 5-6 by screws;
  • the bearing 5-5 is a pair of angular contact bearings, which prevents the transmission shaft 5-4 from moving up and down;
  • the driven helical gear 5-7 is a welding piece, which is welded together by a spline sleeve and a helical gear, and transmits the power of the driving helical gear 5-6 to the screw rod 5-10;
  • the screw rod 5-10 is fixed to the fixing bracket 5-13
  • the outer diameter of the screw 5-10 is processed into a special pitch external thread;
  • the bearing 5-8 and the bearing 5-9 are radially fixed to the driven helical gear 5-7;
  • the outer diameter of the rotary drill bit 5-11 is processed with a spline sleeve to match
  • the inner diameter is processed into an inner thread that matches the special outer thread of the screw 5-10, and the sampling knife 5-12 is welded on the
  • a set of cutting cams is designed in this application, and the schematic diagrams are shown in Figures 8-9.
  • the cutting cam When the cutting cam is in the feeding state, the rotary drill bit 5-11 rotates, and the cutting cam 5-14 follows the rotary drill bit 5-11 and rotates close to the graphite sample 12; after a certain number of rotations, the cutting cam reaches the cutting state; the cutting cam In the cutting state, the rotary drill bit 5-11 rotates in the opposite direction; the cutting cam 5-14 is centered on the fixing pin 5-15 due to the specially designed tooth surface on the side of the cutting cam 5-14 that is in close contact with the graphite sample 12 With the rotation of the drill bit 5-11 in the reverse motion, with the rotation of the cutting cam 5-14, the straight line distance between the abutment surface of the cutting cam 5-14 and the graphite sample 12 and the fixing pin 5-15 increases, and the cutting cam 5-15 14 applies a radial force toward the graphite sample 12. When the radial force is large
  • the operation of the graphite sidewall sampling device 10 is described in detail.
  • Figure 6 shows the state of the graphite sidewall sampling device in operation after it has been installed.
  • the connecting sleeve 5-1 is connected with the sampling lever 4; the drive shaft 5-4 is rotated to transmit the power to the driving helical gear 5-6, and the driving helical gear 5-6 transmits the power to the driven helical gear 5-7, and the driven
  • the helical gear 5-7 drives the rotary drill bit 5-11 to rotate through the spline, and the rotary drill bit 5-11 moves axially through the screw 5-10 to realize the sampling feed of the rotary drill bit 5-11; the rotary drill bit 5-11
  • the sampling knife 5-12 at the top cuts the graphite around the graphite sample 12.
  • the rotary drill bit 5-11 After the transmission shaft 5-4 rotates a certain number of times, the rotary drill bit 5-11 reaches the maximum stroke and stops feeding; then, the rotary drill bit 5-11 starts to reverse Rotate and the rotary drill bit 5-11 begins to retract. At this time, the cutting cam 5-14 installed on the top of the rotary drill 5-11 cuts the graphite sample 12 under the action of the reverse force, and prevents the graphite sample 12 from falling out of the inner cavity of the rotary drill 5-11. After the transmission shaft 5-4 rotates the same number of turns in the opposite direction, rotate the drill bit 5-11 back to the original position. The graphite sample 12 can be taken out by lifting the graphite sidewall sampling device 10 .

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种取样装置、取样方法及石墨放射性测量设备,用于从反应堆石墨块中获取石墨样块,该取样装置包括:支架(1),该支架(1)放置在反应堆石墨块(11)上;升降器(3),该升降器(3)能够沿着第一方向插入反应堆石墨块(11)中;取样执行器(5),设置在升降器(3)的末端处,用于从反应堆石墨块(11)中获取石墨样块;取样执行器(5)沿着第二方向插入反应堆石墨块(11)中,第一方向大致垂直于第二方向。石墨放射性测量设备将取得的样本进行制样并分析。通过该取样装置和取样方法能够完成在垂直石墨块深孔侧壁取样的任务。

Description

石墨放射性测量设备、取样装置和取样方法 技术领域
本申请涉及取样装置,具体地,涉及一种石墨块深孔侧壁远距离取样装置。
背景技术
在需要从石墨块上的垂直通孔内侧壁上取一定重量的石墨块样本时,由于反应堆长期运行,石墨存在放射性,且在反应堆拆除前,不得破坏反应堆结构,因此只能采取远距离操作方式进行取样,根据反应堆结构和取样要求,设计一套远距离取样工具,完成在垂直石墨块深孔侧壁取样的任务。
发明内容
在下文中给出了关于本申请的简要概述,以便提供关于本申请的某些方面的基本理解。应当理解,这个概述并不是关于本申请的穷举性概述。它并不是意图确定本申请的关键或重要部分,也不是意图限定本申请的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
鉴于上述需求,本申请提供一种取样装置,用于从反应堆石墨块中获取石墨样块,所述取样装置包括:支架,所述支架放置在所述反应堆石墨块上;升降器,所述升降器能够沿着第一方向插入所述反应堆石墨块中;取样执行器,设置在所述升降器的末端处,用于从所述反应堆石墨块中获取石墨样块;所述取样执行器沿着第二方向插入所述反应堆石墨块中,所述第一方向大致垂直于所述第二方向。通过本申请公开的取样装置能够完成在垂直石墨块深孔侧壁取样的任务。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。
在附图中:
图1显示根据一些实施例的反应堆石墨块砌体结构纵向剖面示意图;
图2显示根据一些实施例的反应堆石墨块砌体结构水平剖面示意图;
图3显示根据一些实施例的反应堆石墨块深孔取样位置示意图;
图4显示根据一些实施例的反应堆石墨块取样位置示意图;
图5显示根据一些实施例的反应堆石墨块深孔侧壁取样装置总体示意图;
图6显示根据一些实施例的反应堆石墨块深孔侧壁取样装置就位并在工作时的状态示意图;
图7显示根据一些实施例的反应堆石墨块深孔侧壁取样装置的石墨块深孔侧壁钻孔取样执行器示意图;
图8显示根据一些实施例的反应堆石墨块深孔侧壁取样装置的石墨块深孔侧壁钻孔取样执行器局部放大示意图;和
图9显示根据一些实施例的反应堆石墨块深孔侧壁取样装置的石墨块深孔侧壁钻孔取样执行器的裁断凸轮工作状态示意图。
附图标记:
1固定支架
2升降固定支架
3取样升降旋转机构
4取样操作杆
5取样执行器
6手动取样操作轮
7操作控制面板
8安全围栏
9配电箱
10石墨侧壁取样机
11石墨
12石墨样本
5-1连接套
5-2上固定座
5-3下固定座
5-4传动轴
5-5轴承
5-6主动斜齿轮
5-7从动斜齿轮
5-8轴承
5-9轴承
5-10螺杆
5-11旋转钻头
5-12取样刀
5-13固定支架
5-14裁断凸轮
5-15固定销
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统 及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本申请内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
由于反应堆长期运行,石墨存在放射性,且在反应堆拆除前,不得破坏反应堆结构,只能采取远距离操作方式进行取样。需要从石墨块上的垂直通孔内侧壁上取一定重量的石墨块样本。取样点距离操作位置较远,例如,取样孔位置距离石墨块的上表面大约3.5m。例如,需要从反应堆内石墨块的垂直方向的Φ55mm深孔内壁指定位置钻取一定重量的石墨块样本,要求石墨块样本完整,重量不少于3g。例如,要求钻取过程中石墨表面温度不得超过50℃。
目前还没有一种针对反应堆内放射性石墨块深孔侧壁取样的专用工具。由于目前国内尚无成熟工具或技术可直接利用。国外由于也没有公开发表的论文或专利技术可借鉴。因此,只能根据反应堆结构和取样要求,设计一套远距离取样工具,完成在垂直石墨块深孔侧壁取样的任务。
本申请的申请人在不破坏反应堆石墨结构的前提下,顺利完成了石墨块深孔侧壁远距离取样,取出一根长10mm,直径8mm的石墨样本,而且满足后续实验分析要求。上述获取的样本的规格仅仅是举例,这里不构成对本发明的取样装置的限定,根据本发明所提供的取样装置也可以对其他规格的石墨样本进行取样。
反应堆石墨深孔结构
反应堆内具有一个石墨砌体组成的圆环结构,石墨块结构示意图见图1和2。图1显示反应堆石墨块砌体结构纵向剖面示意图;图2显示反应堆石墨块砌体结构水平剖面示意图。在一些实施例中,石墨块砌体的参数如下:
内径Φ1.43m,外径Φ2.63m,高3m,石墨密度2.4g/cm 3
在石墨块上设置有Ф55mm的垂直通孔。
操作位置例如距离石墨块上部高度3.5m。在每个石墨块上都有Φ55mm和Φ33mm的垂直圆孔,但可用于取样的只有Φ55mm圆孔,参见图3和图4。图3显示反应堆石墨深孔取样位置示意图;图4显示反应堆石墨块取样位置示意图;图3和图4显示了取料孔位置。
取样要求
(1)石墨孔直径只有55mm,空间狭小;
(2)从石墨孔侧壁钻孔后,通过取样执行器将石墨样本裁断并取出;
(3)取样过程中石墨温度不能超过50℃。
根据本申请的一些实施例,提供一种取样装置,用于从反应堆石墨块中获取石墨样块,所述取样装置包括:支架,所述支架放置在所述反应堆石墨块上,参照附图6所示,例如,石墨侧壁取样机10放置在所述反应堆石墨块11上;升降器,示例地但非限制地,例如附图5中所示的取样升降旋转机构3。所述升降器能够沿着第一方向插入所述反应堆石墨块中;取样执行器,设置在所述升降器的末端处,用于从所述反应堆石墨块中获取石墨样块;所述取样执行器沿着第二方向插入所述反应堆石墨块中,所述第一方向大致垂直于所述第二方向。参照附图6所示,第一方向为石墨侧壁取样机10在反应堆石墨块11中升降的方向,第二方向为取样执行器在反应堆石墨块11中进给的方向。
在所述支架的底部处安装有脚轮,便于所述支架在所述反应堆石墨块上移动,以使所述升降器对准所述反应堆石墨块的取样位置。
所述取样位置为所述反应堆石墨块的垂直通孔,所述升降器能够沿着第一方向在所述反应堆石墨块的垂直通孔中进行升降运动。
根据本申请的一些实施例,支架还包括:
升降固定支架2,所述升降固定支架2固定在所述支架1的上部;
导轨,所述导轨设置在所述升降固定支架2上,所述升降器能够 沿着所述第一方向在所述导轨上移动;和
锁紧装置,所述锁紧装置能够将所述升降器锁紧在所述导轨上。
根据本申请的一些实施例,所述升降器包括:
升降杆,示例地但非限制地,例如附图5中所示的取样操作杆4。
所述升降杆从所述反应堆石墨块的取样位置处沿着第一方向插入所述反应堆石墨块中。
根据本申请的一些实施例,所述升降杆为伸缩杆,所述伸缩杆由能够在所述第一方向上伸缩的多节分段组成。所述多节分段的每一分段都包括:芯轴,设置在所述伸缩杆的中心位置处;和套管,在所述芯轴的外围围绕所述芯轴设置;芯轴在所述第一方向上伸缩以达到期望的伸缩杆的长度。本领域技术人员应该知道芯轴能够采取液压或电动驱动。
根据本申请的一些实施例,所述取样执行器5安装在所述升降杆的底部处,在所述升降杆的顶部处安装有取样操作轮6,例如手动取样操作轮,用于致动所述取样执行器。本领域技术人员应该知道取样操作轮也可以是电动的。
根据本申请的一些实施例,在所述取样操作轮的上部安装圈数计数器,以记录取样执行器的进给深度。
根据本申请的一些实施例,所述升降器包括:
夹紧机构,所述夹紧机构夹紧所述伸缩杆。示例地但非限制地,所述夹紧机构由夹紧轮、夹紧机构减速机和夹紧机构伺服电机组成;和
旋转机构,所述旋转机构通过旋转以推动所述伸缩杆在所述第一方向上的移动。示例地但非限制地,所述旋转机构由齿轮、旋转机构减速机和旋转机构伺服电机组成。
根据本申请的一些实施例,所述取样执行器包括:
连接套5-1,所述连接套5-1将所述取样执行器5连接到所述升降器;
传动轴5-4,所述传动轴5-4设置在所述连接套5-1内,用于传 输旋转动力;
旋转钻头5-11,所述旋转钻头5-11能够旋转并且在所述第二方向上行进,所述旋转钻头用于切削掉石墨样本12周围的石墨。
根据本申请的一些实施例,在所述旋转钻头5-11的外周布置至少一个切削刀片,示例地但非限制地,如附图7所示的取样刀5-12。
根据本申请的一些实施例,所述传动轴传输旋转动力使得旋转钻头在进给的状态和在裁断的状态之间运动,在进给的状态时,旋转钻头正向转动,裁断凸轮5-14跟随旋转钻头并紧贴石墨样本转动;在裁断的状态时,旋转钻头反向转动并且朝向石墨样本施加径向力,以将石墨样本从所述反应堆石墨块中裁断。
根据本申请的一些实施例,在所述旋转钻头的末端设置有裁断凸轮5-14,用于将石墨样本从所述反应堆石墨块中裁断。所述裁断凸轮通过固定销5-15被固定在旋转钻头上,所述裁断凸轮5-14以所述固定销5-15为中心随着所述旋转钻头做反向运动;随着所述裁断凸轮5-14的旋转,所述裁断凸轮和石墨样本的贴合面与所述固定销的直线距离加大,因而裁断凸轮朝向石墨样本施加径向力,以将石墨样本裁断。
根据本申请的一些实施例,所述旋转钻头5-11是中空结构,具有中空的内腔,被裁断的石墨样本12掉入所述旋转钻头5-11的内腔中。
根据本申请的一些实施例,所述裁断凸轮在与石墨样本紧贴的一面设置有齿形面。所述裁断凸轮的尺寸设置为能够阻止石墨样本掉出旋转钻头的内腔。
根据本申请的一些实施例,取样装置10为反应堆石墨深孔远距离取样装置,参见图5,例如石墨侧壁取样装置10,包括:固定支架1,升降固定支架2,取样升降旋转机构3,取样操作杆4,取样执行器5,手动取样操作轮6,操作控制面板7,安全围栏8和配电箱9。
根据本申请的一些实施例,其中固定支架1的底部安装有脚轮,方便取样装置10移动并对准取样孔;升降固定支架2焊接在固定支 架1上部;取样升降旋转机构3,通过导轨及锁紧装置安装在升降固定支架2上,可以沿着导轨上下运动,其上面安装取样操作杆夹紧机构和旋转机构,取样操作杆夹紧机构由夹紧轮、减速机和伺服电机组成,旋转机构由齿轮、减速机、伺服电机组成;取样操作杆4,由多节不锈钢圆管及芯轴组成,其底部安装有取样执行器5,顶部安装有手动取样操作轮6,取样操作杆4的长度由安装节数决定;取样执行器5,负责侧壁石墨11取样工作;手动取样操作轮6,作为侧壁石墨11取样工作的动力,其上部安装圈数计数器,记录取样执行器5的进给深度;操作控制面板7,提高设置在操作控制面板7上的按钮可以控制取样操作杆4的升降和旋转等操作;安全围栏8,由普通钢管焊接而成,可以防止无关人员靠近操作位置;配电箱9,安装伺服电机控制器等电气元件。
取样执行器5是本装置的关键部件,总体设计图见图7。执行器各部件主要功能说明如下:连接套5-1和图5中取样操作杆4连接;上固定座5-2和连接套5-1之间用螺钉固定;下固定座5-3同样用螺钉固定到上固定座5-2上;上固定座5-2和下固定座5-3同时固定旋转采样装置。传动轴5-4将上部的旋转动力传动到旋转钻头5-11,通过螺钉与主动斜齿轮5-6连接;轴承5-5为一对角接触轴承,防止传动轴5-4上下串动;从动斜齿轮5-7为焊接件,由花键套和一个斜齿轮焊接在一起,将主动斜齿轮5-6的动力传动给螺杆5-10;螺杆5-10固定到固定支架5-13上,螺杆5-10外径加工成特殊节距外螺纹;轴承5-8和轴承5-9在径向固定从动斜齿轮5-7;旋转钻头5-11外径加工有花键套配合的花键,内径加工成为配合螺杆5-10特殊外螺纹的内螺纹,顶部焊接取样刀5-12;取样刀5-12用于切削掉石墨样本12周围的石墨;特殊设计的裁断凸轮5-14可在旋转钻头5-11反转退回时裁断石墨样本12,并阻止石墨样本12掉出旋转钻头5-11的内腔;固定销5-15用于固定裁断凸轮5-14。
为了解决截断石墨样本12这个技术问题,本申请设计了一套裁断凸轮,示意图见附图8-9。裁断凸轮在进给的状态时,旋转钻头5-11 转动,裁断凸轮5-14跟随旋转钻头5-11并紧贴石墨样本12转动;在旋转一定圈数后,裁断凸轮达到裁断状态;裁断凸轮在裁断的状态时,旋转钻头5-11反向转动;裁断凸轮5-14与石墨样本12紧贴的一面因有特殊设计的齿形面,裁断凸轮5-14以固定销5-15为中心随旋转钻头5-11做反向运动,随着裁断凸轮5-14的旋转,裁断凸轮5-14和石墨样本12的贴合面与固定销5-15的直线距离加大,裁断凸轮5-14朝向石墨样本12施加一个径向力,当这个径向力足够大时,石墨样本12被裁断,并掉入旋转钻头5-11的内腔内,完成取样过程。
根据本申请的一些实施例,详细说明石墨侧壁取样装置10的操作过程。图6显示石墨侧壁取样装置安装就位后在工作时的状态。
首先,将石墨侧壁取样装置10移动至11石墨上方,当观察到取样执行器5对准石墨上方取样孔时,固定住石墨侧壁取样装置10;在操作控制面板7上设定取样的深度和取样方向,按下下放按钮,当取样执行器5到达指定深度时,人工操作手动取样操作轮6至指定圈数,然后回转相同圈数;再次按下操作控制面板7上的上升按钮,取样执行器5升到指定高度,即可取下石墨样本。取样时,石墨侧壁取样装置10的操作。连接套5-1和取样操作杆4相连接;转动传动轴5-4使动力传递到主动斜齿轮5-6,主动斜齿轮5-6将动力传动给从动斜齿轮5-7,从动斜齿轮5-7通过花键带动旋转钻头5-11做旋转运动,同时旋转钻头5-11通过螺杆5-10做轴向运动,实现旋转钻头5-11的取样进给;旋转钻头5-11顶部的取样刀5-12切削石墨样本12周围的石墨,当传动轴5-4旋转一定圈数后,旋转钻头5-11达到最大行程并且停止进给;然后,旋转钻头5-11开始反向旋转,并且旋转钻头5-11开始退回。此时,安装在旋转钻头5-11顶部的裁断凸轮5-14在反向力的作用下裁断石墨样本12,并阻止石墨样本12向外掉出旋转钻头5-11的内腔。传动轴5-4反向旋转相同圈数后,旋转钻头5-11回原位。提升石墨侧壁取样装置10,即可取出石墨样本12。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他 变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式做出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (35)

  1. 一种取样装置,用于从反应堆石墨块中获取石墨样块,所述取样装置包括:
    支架,所述支架放置在所述反应堆石墨块上;
    升降器,所述升降器能够沿着第一方向插入所述反应堆石墨块中;
    取样执行器,设置在所述升降器的末端处,用于从所述反应堆石墨块中获取石墨样块;
    其特征在于:
    所述取样执行器沿着第二方向插入所述反应堆石墨块中,所述第一方向大致垂直于所述第二方向。
  2. 根据权利要求1所述的取样装置,其特征在于:
    在所述支架的底部处安装有脚轮,便于所述支架在所述反应堆石墨块上移动,以使所述升降器对准所述反应堆石墨块的取样位置。
  3. 根据权利要求2所述的取样装置,其特征在于:
    所述取样位置为所述反应堆石墨块的垂直通孔,所述升降器能够沿着第一方向在所述反应堆石墨块的垂直通孔中进行升降运动。
  4. 根据权利要求1所述的取样装置,其特征在于,所述支架还包括:
    升降固定支架,所述升降固定支架固定在所述支架的上部;
    导轨,所述导轨设置在所述升降固定支架上,所述升降器能够沿着所述第一方向在所述导轨上移动;和
    锁紧装置,所述锁紧装置能够将所述升降器锁紧在所述导轨上。
  5. 根据权利要求1所述的取样装置,其特征在于,所述升降器包括:
    升降杆,所述升降杆从所述反应堆石墨块的取样位置处沿着第一方向插入所述反应堆石墨块中。
  6. 根据权利要求5所述的取样装置,其特征在于,
    所述升降杆为伸缩杆,所述伸缩杆由能够在所述第一方向上伸缩的多节分段组成。
  7. 根据权利要求6所述的取样装置,其特征在于,所述多节分段的每一分段都包括:
    芯轴,设置在所述伸缩杆的中心位置处;和
    套管,在所述芯轴的外围围绕所述芯轴设置;
    芯轴在所述第一方向上伸缩以达到期望的伸缩杆的长度。
  8. 根据权利要求5所述的取样装置,其特征在于,
    所述取样执行器安装在所述升降杆的底部处,在所述升降杆的顶部处安装有取样操作轮,用于致动所述取样执行器。
  9. 根据权利要求8所述的取样装置,其特征在于,
    在所述取样操作轮的上部安装圈数计数器,以记录取样执行器的进给深度。
  10. 根据权利要求1所述的取样装置,其特征在于,所述升降器包括:
    夹紧机构,所述夹紧机构夹紧所述伸缩杆;和
    旋转机构,所述旋转机构通过旋转以推动所述伸缩杆在所述第一方向上的移动。
  11. 根据权利要求10所述的取样装置,其特征在于,所述夹紧机构由夹紧轮、夹紧机构减速机和夹紧机构伺服电机组成;所述旋转 机构由齿轮、旋转机构减速机和旋转机构伺服电机组成。
  12. 根据权利要求1所述的取样装置,其特征在于,所述取样执行器包括:
    连接套,所述连接套将所述取样执行器连接到所述升降器;
    传动轴,所述传动轴设置在所述连接套内,用于传输旋转动力;
    旋转钻头,所述旋转钻头能够旋转并且在所述第二方向上行进。
  13. 根据权利要求12所述的取样装置,其特征在于,所述旋转钻头用于切削掉石墨样本周围的石墨。
  14. 根据权利要求12所述的取样装置,其特征在于,
    在所述旋转钻头的外周布置至少一个切削刀片。
  15. 根据权利要求12所述的取样装置,其特征在于,
    所述传动轴传输旋转动力使得旋转钻头能够在进给的状态和在裁断的状态之间运动,在进给的状态时,旋转钻头正向转动;在裁断的状态时,旋转钻头反向转动并且朝向石墨样本施加径向力,以将石墨样本从所述反应堆石墨块中裁断。
  16. 根据权利要求15所述的取样装置,其特征在于,
    在所述旋转钻头的末端设置有裁断凸轮,所述裁断凸轮通过固定销被固定在旋转钻头上,所述裁断凸轮用于将石墨样本从所述反应堆石墨块中裁断。
  17. 根据权利要求16所述的取样装置,其特征在于,
    在所述旋转钻头正向转动时,所述裁断凸轮跟随所述旋转钻头并紧贴所述石墨样本转动;
    在所述旋转钻头反向转动时,所述裁断凸轮以所述固定销为中心 随着所述旋转钻头做反向运动;
    随着所述裁断凸轮的旋转,所述裁断凸轮和石墨样本的贴合面与所述固定销的直线距离加大,使得裁断凸轮朝向石墨样本施加径向力,以将石墨样本裁断。
  18. 根据权利要求17所述的取样装置,其特征在于,
    所述旋转钻头是中空结构,具有中空的内腔,被裁断的石墨样本掉入所述旋转钻头的内腔中。
  19. 根据权利要求17所述的取样装置,其特征在于,
    所述裁断凸轮在与石墨样本紧贴的一面设置有齿形面。
  20. 根据权利要求19所述的取样装置,其特征在于,
    所述裁断凸轮的尺寸设置为能够阻止石墨样本掉出旋转钻头的内腔。
  21. 一种取样装置,用于从测量目标中获取样本,所述取样装置包括:
    支架,所述支架放置在所述测量目标上;
    升降器,所述升降器能够沿着第一方向插入所述测量目标中;
    取样执行器,设置在所述升降器的末端处;
    其特征在于:
    所述取样执行器沿着第二方向插入所述测量目标中,所述第一方向大致垂直于所述第二方向。
  22. 根据权利要求21所述的取样装置,其特征在于,所述测量目标是石墨样本。
  23. 根据权利要求21所述的取样装置,其特征在于,所述测量 目标用于放射性环境。
  24. 一种石墨放射性测量设备,包括:
    根据权利要求1-23所述的取样装置,用于从石墨中获取样本;
    送样装置,用于将所述取样装置获取的样本传输给制样装置;
    制样装置,接收来自所述送样装置的样本,并对其进行加工。
  25. 根据权利要求24所述的石墨放射性测量设备,包括:
    分析检测单元,所述取样装置设置在所述分析检测单元中。
  26. 根据权利要求24所述的石墨放射性测量设备,其中,所述取样装置包括:
    支架,所述支架放置在待取样的石墨上;
    升降器,所述升降器能够沿着第一方向插入所述石墨中;
    取样执行器,设置在所述升降器的末端处,所述取样执行器沿着第二方向插入所述石墨中,所述第一方向大致垂直于所述第二方向。
  27. 根据权利要求26所述的石墨放射性测量设备,其特征在于,
    所述取样执行器能够在进给的状态和在裁断的状态之间运动,在进给的状态时,所述取样执行器正向转动;在裁断的状态时,所述取样执行器反向转动并且朝向所述样本施加径向力,以将所述样本从所述石墨中裁断。
  28. 根据权利要求27所述的石墨放射性测量设备,其特征在于,
    在所述取样执行器的末端设置有裁断凸轮,当所述取样执行器正向转动时,所述裁断凸轮跟随所述旋转钻头并紧贴所述样本转动;当所述取样执行器反向转动时,所述裁断凸轮随着所述旋转钻头做反向运动,随着所述裁断凸轮的旋转,所述裁断凸轮朝向所述样本施加径向力,以将所述样本从所述石墨中裁断。
  29. 根据权利要求26-28任一项所述的石墨放射性测量设备,其特征在于,
    所述取样执行器具有中空的内腔,被裁断的所述样本掉入所述内腔中。
  30. 一种取样方法,用于从石墨中获取样本,包括:
    将取样装置移动至石墨上方;
    当观察到取样装置对准石墨上的取样孔时,固定所述取样装置;
    将所述取样装置的升降器沿着第一方向插入所述取样孔中,直到所述取样装置到达指定深度;
    将设置在所述升降器的末端处的取样执行器沿着第二方向插入所述石墨中,所述第一方向大致垂直于所述第二方向。
  31. 根据权利要求30所述的方法,其中:
    使所述取样执行器在进给的状态和在裁断的状态之间运动,在进给的状态时,所述取样执行器正向转动;在裁断的状态时,所述取样执行器反向转动并且朝向所述样本施加径向力,以将所述样本从所述石墨中裁断。
  32. 根据权利要求31所述的取样方法,其特征在于,
    在所述取样执行器的末端设置有裁断凸轮,在正向转动所述取样执行器时,所述裁断凸轮跟随所述取样执行器并紧贴所述石墨样本转动;
    在反向转动所述取样执行器时,所述裁断凸轮随着所述取样执行器反向运动;
    随着所述裁断凸轮的旋转,所述裁断凸轮朝向所述样本施加径向力,以将所述样本从所述石墨中裁断。
  33. 根据权利要求31或32所述的取样方法,其特征在于,
    所述取样执行器具有中空的内腔,被裁断的所述样本掉入所述取样执行器的内腔中。
  34. 根据权利要求33所述的取样方法,其特征在于,
    旋转所述取样执行器使其缩回到所述取样装置的所述升降器中。
  35. 根据权利要求34所述的取样方法,其特征在于,
    将所述取样装置的升降器提升到所述石墨上方,以取出所述样本。
PCT/CN2021/098807 2020-12-29 2021-06-08 石墨放射性测量设备、取样装置和取样方法 WO2022142140A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21759225.2A EP4043857B1 (en) 2020-12-29 2021-06-08 Graphite radioactivity measurement device, sampling apparatus, and sampling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011609836.3A CN112557092B (zh) 2020-12-29 2020-12-29 取样装置
CN202011609836.3 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022142140A1 true WO2022142140A1 (zh) 2022-07-07

Family

ID=75034614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098807 WO2022142140A1 (zh) 2020-12-29 2021-06-08 石墨放射性测量设备、取样装置和取样方法

Country Status (3)

Country Link
EP (1) EP4043857B1 (zh)
CN (1) CN112557092B (zh)
WO (1) WO2022142140A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907915A (zh) * 2023-09-14 2023-10-20 广东禹航环境科技有限公司 一种用于土壤污染治理的土壤取样设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151200B (zh) * 2020-08-20 2023-01-10 中国原子能科学研究院 一种放射性石墨深孔远距离取样系统
CN112557092B (zh) * 2020-12-29 2022-08-09 中国原子能科学研究院 取样装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050183886A1 (en) * 2004-02-24 2005-08-25 Independent Administrative Institution Japan Agency For Marine-Earth Science And Technology Method of coring a crustal core sample and flow-able coating material for coring a crustal core sample
CN204789019U (zh) * 2015-06-12 2015-11-18 中钢集团邢台机械轧辊有限公司 一种深盲孔芯棒的切断刀片
CN209040753U (zh) * 2018-08-23 2019-06-28 中交隧道工程局有限公司 一种具备截断齿的牙轮筒钻
CN110398389A (zh) * 2019-06-18 2019-11-01 毕海民 一种岩土工程勘察用岩土取样装置
CN211477679U (zh) * 2019-12-19 2020-09-11 广东天人不动产测绘规划有限公司 一种地质测绘用取样装置
CN112557092A (zh) * 2020-12-29 2021-03-26 中国原子能科学研究院 取样装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1508238A (fr) * 1966-11-21 1968-01-05 Commissariat Energie Atomique Appareil de travail à distance dans un tube
AR016883A1 (es) * 1997-08-28 2001-08-01 Shell Int Research Un trepano rotativo para perforar
DE19811699A1 (de) * 1998-03-10 1999-09-16 Martin Honold Modulare Sonde
US8171808B2 (en) * 2008-05-02 2012-05-08 Johnson Industries, Inc. Material sampling device with rotatable tube assembly
RU2378510C1 (ru) * 2008-07-01 2010-01-10 Открытое акционерное общество "Сибирский химический комбинат" (ОАО "СХК") Устройство горизонтального выбуривания кернов из стенок скважин или каналов
RU2618214C1 (ru) * 2016-04-27 2017-05-03 Акционерное общество Опытно-демонстрационный центр вывода из эксплуатации уран-графитовых ядерных реакторов Устройство для локального выбуривания участков графитовых колонн кладки реактора
CN205614855U (zh) * 2016-05-18 2016-10-05 大同新成新材料股份有限公司 一种石墨产品取样的钻孔装置
CN106246124A (zh) * 2016-07-29 2016-12-21 中国石油天然气股份有限公司 井下检测系统及其方法
CN107829699A (zh) * 2017-10-26 2018-03-23 西南石油大学 一种磨削式防掉岩石取样装置及使用方法
CN108119081A (zh) * 2018-02-28 2018-06-05 山东科技大学 一种新型岩石取样专用水钻钻头
CN209148339U (zh) * 2018-11-30 2019-07-23 重庆工程职业技术学院 地质土壤采集装置
CN109752209A (zh) * 2018-12-30 2019-05-14 孙浩宁 土壤采样装置
CN209432492U (zh) * 2019-01-09 2019-09-24 郑州汇之丰科技有限公司 一种取样方便的土壤采样钻机
JP6618135B1 (ja) * 2019-07-11 2019-12-11 千葉エンジニアリング株式会社 サンプラー
CN211085716U (zh) * 2019-07-25 2020-07-24 徐州天艺制盖有限公司 一种便于石油地质取样检测的钻孔装置
CN111351681B (zh) * 2020-03-16 2023-01-06 东华理工大学 一种土木工程用岩土取样机械装置
CN211825141U (zh) * 2020-03-25 2020-10-30 刘志军 一种岩土工程勘探快速取样装置
CN111350500A (zh) * 2020-04-14 2020-06-30 孟丽杰 一种用于地质勘探的土样采集器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050183886A1 (en) * 2004-02-24 2005-08-25 Independent Administrative Institution Japan Agency For Marine-Earth Science And Technology Method of coring a crustal core sample and flow-able coating material for coring a crustal core sample
CN204789019U (zh) * 2015-06-12 2015-11-18 中钢集团邢台机械轧辊有限公司 一种深盲孔芯棒的切断刀片
CN209040753U (zh) * 2018-08-23 2019-06-28 中交隧道工程局有限公司 一种具备截断齿的牙轮筒钻
CN110398389A (zh) * 2019-06-18 2019-11-01 毕海民 一种岩土工程勘察用岩土取样装置
CN211477679U (zh) * 2019-12-19 2020-09-11 广东天人不动产测绘规划有限公司 一种地质测绘用取样装置
CN112557092A (zh) * 2020-12-29 2021-03-26 中国原子能科学研究院 取样装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIU YONG-MEI, WANG PING, DAN GUI-PING, WEN WEI, SUN YAO-ZHONG : "Development on Analysis and Making Sample Experiment System of 14C in Graphite in Decommissioning of Reactor", ATOMIC ENERGY SCIENCE AND TECHNOLOGY, vol. 44, 30 September 2010 (2010-09-30), pages 119 - 123, XP009531667, ISSN: 1000-6931 *
See also references of EP4043857A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907915A (zh) * 2023-09-14 2023-10-20 广东禹航环境科技有限公司 一种用于土壤污染治理的土壤取样设备
CN116907915B (zh) * 2023-09-14 2023-12-12 广东禹航环境科技有限公司 一种用于土壤污染治理的土壤取样设备

Also Published As

Publication number Publication date
EP4043857A4 (en) 2023-01-25
CN112557092B (zh) 2022-08-09
EP4043857A1 (en) 2022-08-17
CN112557092A (zh) 2021-03-26
EP4043857B1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2022142140A1 (zh) 石墨放射性测量设备、取样装置和取样方法
CN115575165B (zh) 一种地质找矿岩心取样装置
CN104816034A (zh) 自动薄壁圆管切割设备
CN109454677B (zh) 一种模块化线缆切削机床
CN109940188B (zh) 一种小型钻床的高精度钻孔方法
CN116539350A (zh) 一种易于取芯的岩石取芯机及取芯方法
CN117091882A (zh) 一种岩土分层取样装置
CN110761722B (zh) 一种钻机配套用钻具自动化移摆管装置
EP0140586A2 (en) Sleeving of tubes in hostile environments
CN117030336B (zh) 一种土壤修复地深处样本采样无人机
CN117307025B (zh) 一种勘察用分层采样钻机
CN212793161U (zh) 一种门窗型材数控钻孔装置
CN212577544U (zh) 一种超大口径不直线异径六通的钻孔装置
CN211135629U (zh) 一种用于联轴器加工的钻孔装置
CN218904257U (zh) 一种石油管道接箍预拧机
CN110142434B (zh) 一种具有预处理的高效玻璃充电式电钻
CN116124507A (zh) 一种用于混凝土试块芯样钻取的多轴钻机架
CN215213389U (zh) 一种可推芯的取芯钻机钻进装置
CN114700514B (zh) 一种换热管与管板封口焊后内孔加工装置及方法
CN210317276U (zh) 一种石油测井仪器用的旋转底座
CN210589960U (zh) 一种装修用天花板钻孔辅助器
CN112901098A (zh) 一种可推芯的取芯钻机钻进装置
CN117773192B (zh) 一种飞机壳体部件加工设备及操作方法
CN112247173A (zh) 大型永磁电机滚筒内腔盲孔加工设备
CN217813282U (zh) 一种自定心小钻阵列钻进工作装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021759225

Country of ref document: EP

Effective date: 20210903

NENP Non-entry into the national phase

Ref country code: DE