WO2022141633A1 - 数据传输方法及装置、存储介质 - Google Patents

数据传输方法及装置、存储介质 Download PDF

Info

Publication number
WO2022141633A1
WO2022141633A1 PCT/CN2021/070147 CN2021070147W WO2022141633A1 WO 2022141633 A1 WO2022141633 A1 WO 2022141633A1 CN 2021070147 W CN2021070147 W CN 2021070147W WO 2022141633 A1 WO2022141633 A1 WO 2022141633A1
Authority
WO
WIPO (PCT)
Prior art keywords
data transmission
idle period
period
terminal
duration
Prior art date
Application number
PCT/CN2021/070147
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180000139.4A priority Critical patent/CN115039504B/zh
Priority to PCT/CN2021/070147 priority patent/WO2022141633A1/zh
Publication of WO2022141633A1 publication Critical patent/WO2022141633A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a data transmission method and device, and a storage medium.
  • the transmitter On the unlicensed spectrum, the transmitter generally needs to monitor the channel before occupying the channel to send data, that is, CCA (Clear Channel Assessment). If the transmitter determines that the channel is idle after CCA detection, it can occupy the channel to send data, otherwise it cannot occupy the channel. Its MCOT (Maximum Channel Occupy Time, maximum channel occupation duration) can be specified by the protocol, or can be configured or indicated by the base station. The above process is generally referred to as the channel access mechanism of LBT (Listen Before Talk) on unlicensed frequency bands.
  • CCA Carrier Channel Assessment
  • the embodiments of the present disclosure provide a data transmission method and device, and a storage medium.
  • a data transmission method is provided, and the method is used in a base station, including:
  • the target channel access mechanism includes that the transmitting end does not listen first and then send before data transmission, and the idle period is the time period for stopping data transmission;
  • the idle period parameter is sent.
  • the determining the idle period parameter for the terminal using the target channel access mechanism includes:
  • the idle period parameter includes at least one of the following:
  • the period duration of the idle period the offset value of the start time of the idle period in each period relative to the start time of each period, and the duration of the idle period in each period.
  • a data transmission method is provided, and the method is used for a terminal, including:
  • Data transfer is performed, and data transfer is stopped during idle periods.
  • the method also includes any of the following:
  • the idle period is determined based on a protocol agreement.
  • the determining the idle period based on a protocol agreement includes:
  • the idle period is determined based on at least one of the idle period parameters agreed in the protocol and the specified terminal parameter.
  • the idle period parameter includes at least one of the following:
  • the period duration of the idle period the offset value of the start time of the idle period in each period relative to the start time of each period, and the duration of the idle period in each period.
  • a data transmission method is provided, and the method is used for a terminal, including;
  • the second transmission process of continuous data transmission is entered at an interval of at least the target duration.
  • the method further includes:
  • the target duration is determined.
  • the method further includes:
  • the target duration corresponding to the transmission duration of the first transmission process is determined.
  • a data transmission apparatus the apparatus being used in a base station, including:
  • the parameter configuration module is configured to determine idle period parameters for the terminal that adopts the target channel access mechanism; wherein, the target channel access mechanism includes that the sender does not listen first and then sends before performing data transmission, and the idle period is to stop data the time period of the transmission;
  • a sending module configured to send the idle period parameter.
  • a data transmission apparatus the apparatus being used in a terminal, including:
  • the first data transmission module is configured to perform data transmission and stop data transmission during idle periods.
  • a data transmission apparatus the apparatus being used in a terminal, including:
  • the second data transmission module is configured to enter the first transmission process of continuous data transmission
  • the third data transmission module is configured to, in response to the end of the first transmission process, enter into a second transmission process of continuous data transmission at an interval of at least a target duration.
  • a computer-readable storage medium where the storage medium stores a computer program, and the computer program is used to execute the data transmission method according to any one of the foregoing first aspects.
  • a computer-readable storage medium where the storage medium stores a computer program, and the computer program is used to execute the data according to any one of the second aspect or the third aspect. transfer method.
  • a data transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the data transmission method according to any one of the above-mentioned first aspect.
  • a data transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the data transmission method according to any one of the second aspect or the third aspect.
  • the base station may determine the idle period parameter for the terminal that adopts the target channel access mechanism, so that the terminal that does not listen first before transmitting before data transmission stops data transmission in the idle period, avoiding the use of unlicensed spectrum.
  • the terminal of the no-LBT mechanism occupies the channel for a long time, which improves the fairness of the terminal occupying the channel.
  • the terminal can directly perform data transmission on the unlicensed spectrum, and stop data transmission during the idle period, so as to avoid the terminal using the no-LBT mechanism on the unlicensed spectrum from occupying the channel for a long time, and improve the fairness of the terminal occupying the channel .
  • the terminal may directly enter the first transmission process of continuous data transmission on the unlicensed spectrum, and after the first transmission process ends, enter the second transmission process of continuous data transmission after at least a target time interval.
  • the purpose of avoiding long-term occupancy of the channel by the terminal using the no-LBT mechanism is realized, and the fairness of the occupied channel by the terminal is improved.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an exemplary embodiment.
  • Fig. 2 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • FIG. 4 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 5 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • FIG. 7 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • FIG. 9 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • Fig. 12 is a block diagram of another data transmission apparatus according to an exemplary embodiment.
  • Fig. 13 is a block diagram of another data transmission apparatus according to an exemplary embodiment.
  • FIG. 14 is a schematic structural diagram of a data transmission apparatus according to an exemplary embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another data transmission apparatus according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the data transmission method provided by the embodiment of the present disclosure is first introduced from the base station side below.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment, and the method may include the following steps:
  • step 101 an idle period parameter is determined for the terminal using the target channel access mechanism.
  • the target channel access mechanism includes that the transmitting end does not listen first and then send before performing data transmission, that is, the target channel access mechanism may be a no-LBT mechanism.
  • the idle period is a period of time during which data transmission is stopped, and the idle period parameter is a relevant parameter required by the terminal to determine the idle period.
  • step 102 the idle period parameter is sent.
  • the base station may send the idle period parameter to the terminal through but not limited to high-layer signaling or physical-layer signaling.
  • the high-level signaling may include but is not limited to RRC (Radio Resource Control, radio resource control) signaling, and MAC (Media Access Control Address, media access control address) signaling.
  • the base station can determine the idle period parameter for the terminal that adopts the target channel access mechanism, so that the terminal that does not listen first before transmitting before data transmission stops data transmission in the idle period, avoiding the use of no on unlicensed spectrum.
  • the terminal of the LBT mechanism occupies the channel for a long time, which improves the fairness of the terminal occupying the channel.
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment, and the method may include the following steps:
  • step 201 in response to the number of the terminals adopting the target channel access mechanism being multiple, different idle period parameters are respectively determined for the multiple terminals.
  • the number of terminals using the no-LBT mechanism may be multiple, and accordingly, the base station may configure different idle period parameters for the multiple terminals, so that the multiple terminals stop data in different idle periods respectively. transmission.
  • the base station can configure different idle period parameters for multiple terminals using the target channel access mechanism, so that multiple terminals are silent in different idle periods, that is, stop data transmission, reduce channel interference, and have high availability. .
  • the idle period parameters include, but are not limited to, at least one of the following: the period duration of the idle period, the offset value of the start time of the idle period in each period relative to the start time of each period, The offset value of the start time of the idle period in each cycle relative to the reference point, and the duration of the idle period in each cycle.
  • the period configured by the base station for the terminal using the target channel access mechanism is 10 milliseconds
  • the duration of the idle period in each period is 1 millisecond
  • the start time of the idle period in each period is relative to the start time of each period.
  • the offset value of the initial time is 9 milliseconds
  • the terminal can stop data transmission at the 9th to 10th milliseconds, 19th to 20th milliseconds, 29th to 30th milliseconds...
  • the base station may configure different idle period parameters for the multiple terminals.
  • different idle period parameters mean that each parameter in the idle period parameters is different from each other, or At least one of the idle period parameters is different.
  • the cycle duration configured by the base station for terminal 1 and terminal 2 using the target channel access mechanism is both 10 milliseconds
  • the duration of the idle period in each cycle is 1 millisecond
  • the offset value of terminal 1 is 8 milliseconds
  • the terminal The offset value of 2 is 9 milliseconds
  • Terminal 1 can stop data transmission at the 8th to 9th milliseconds, 18th to 19th milliseconds, 28th to 29th milliseconds
  • Terminal 2 can stop data transmission at the 9th to 10th milliseconds ms, 19th to 20th ms, 29th to 30th ms... Stop data transmission.
  • the base station may configure different terminals to stop data transmission in different idle periods as required.
  • the base station can configure multiple terminals of the sampling target channel access mechanism to stop data transmission in different idle time periods, which reduces channel interference and provides high availability.
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment.
  • the method can be used in a terminal, and the method can include the following steps:
  • step 301 data transmission is performed, and data transmission is stopped in an idle period.
  • the terminal can directly transmit data on the unlicensed spectrum, and stop data transmission during the idle period, so as to avoid the terminal using the no-LBT mechanism on the unlicensed spectrum from occupying the channel for a long time, and improve the fairness of the terminal occupying the channel.
  • FIG. 4 is a flowchart of a data transmission method according to an embodiment, and the method may include the following steps:
  • step 401 an idle period is determined based on the received idle period parameter.
  • the idle period parameter of the terminal may be configured by the base station, and the terminal determines the idle period corresponding to itself based on the received idle period parameter.
  • the idle period parameter includes at least one of the following: the period length of the idle period, the offset value of the start time of the idle period in each period relative to the start time of each period, the length of the idle period in each period. The offset value of the start time relative to the reference point, and the duration of the idle period in each cycle.
  • step 402 data transmission is performed, and data transmission is stopped during an idle period.
  • the terminal does not need to perform LBT, and can directly perform data transmission, and stop data transmission in an idle period.
  • the terminal can directly perform data transmission on the unlicensed spectrum, and determine the idle time period based on the idle time period parameter configured by the base station, so as to stop data transmission during the idle time period, and avoid using the no-LBT mechanism on the unlicensed spectrum.
  • the terminal occupies the channel for a long time, which improves the fairness of the terminal occupying the channel.
  • Fig. 5 is a flow chart of a data transmission method shown according to an embodiment, and the method may include the following steps:
  • step 501 the idle period is determined based on a protocol agreement.
  • the terminal may determine its own idle period according to the agreement.
  • step 502 data transmission is performed, and data transmission is stopped during idle periods.
  • the terminal does not need to perform LBT, and can directly perform data transmission, and stop data transmission in an idle period.
  • the terminal can directly perform data transmission on the unlicensed spectrum, and determine the idle period according to the agreement, so as to stop the data transmission in the idle period, and avoid the terminal using the no-LBT mechanism on the unlicensed spectrum from occupying the channel for a long time. , which improves the fairness of the channel occupied by the terminal.
  • FIG. 6 is a flowchart of a data transmission method according to an embodiment, and the method may include the following steps:
  • the idle period is determined based on at least one of the idle period parameters agreed in the protocol.
  • the idle period parameter may include, but is not limited to, at least one of the following: the period duration of the idle period, the offset value of the start time of the idle period in each period relative to the start time of each period, The duration of the idle period in each cycle.
  • the terminal may determine its own idle period according to at least one of the above-mentioned idle period parameters agreed in the protocol.
  • step 602 data transmission is performed, and data transmission is stopped during an idle period.
  • the terminal does not need to perform LBT, and can directly perform data transmission, and stop data transmission in an idle period.
  • the terminal can directly perform data transmission on the unlicensed spectrum, and determine its own idle time period according to at least one of the idle time period parameters agreed in the protocol, so as to stop data transmission during the idle time period to avoid the unlicensed spectrum.
  • the terminal using the no-LBT mechanism occupies the channel for a long time, which improves the fairness of the terminal occupying the channel.
  • FIG. 7 is a flowchart of a data transmission method according to an embodiment, and the method may include the following steps:
  • the idle period is determined based on at least one of the idle period parameters agreed in the protocol and a specified terminal parameter.
  • the idle period parameter may include, but is not limited to, at least one of the following: the period duration of the idle period, the offset value of the start time of the idle period in each period relative to the start time of each period, The duration of the idle period in each cycle.
  • the specified terminal parameters include, but are not limited to, a terminal identification, where the terminal identification may be a terminal physical layer identification, or the terminal identification may be a wireless network temporary identification of the terminal, which is not limited in the present disclosure.
  • the idle period parameters stipulated in the protocol include a period of 10 milliseconds, the duration of the idle period in each period of 1 millisecond, and the offset of the start time of the idle period in each period relative to the start time of each period
  • the value is 9 milliseconds.
  • the terminal may determine the idle period according to at least one of the idle period parameters agreed in the protocol and the specified terminal parameter, so as to stop data transmission during the idle period.
  • the terminal may perform data transmission and stop data transmission during idle periods. Further, if the idle period ends and the terminal still has data to send, data transmission can be performed again.
  • the terminal using the no-LBT mechanism on the unlicensed spectrum can be prevented from occupying the channel for a long time, and the availability is high.
  • the embodiment of the present disclosure also provides another data transmission manner.
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment.
  • the method can be used in a terminal, and the method can include the following steps:
  • step 801 a first transmission process of continuous data transmission is entered.
  • the terminal does not need to perform LBT, and can directly enter the continuous data transmission process, that is, the first transmission process.
  • step 802 in response to the end of the first transmission process, the second transmission process of continuous data transmission is entered at least with an interval of the target duration.
  • the terminal itself may be at least separated by a target duration between two adjacent continuous data transmission processes.
  • the terminal can directly enter the first transmission process of continuous data transmission on the unlicensed spectrum, and after the first transmission process ends, enter the second transmission process of continuous data transmission after at least the target duration.
  • the purpose of avoiding long-term occupancy of the channel by the terminal using the no-LBT mechanism is realized, and the fairness of the occupied channel by the terminal is improved.
  • FIG. 9 is a flowchart of a data transmission method according to an embodiment, and the method may include the following steps:
  • step 901 a first transmission process of continuous data transmission is entered.
  • the terminal does not need to perform LBT, and can directly enter the continuous data transmission process, that is, the first transmission process.
  • step 902 the target duration is determined based on the agreement.
  • the present disclosure does not limit the execution order of the above steps 901 and 902 .
  • step 903 in response to the end of the first transmission process, the second transmission process of continuous data transmission is entered at least with an interval of the target duration.
  • the terminal may directly enter the first transmission process of continuous data transmission on the unlicensed spectrum, and after the first transmission process ends, enter the second transmission process of continuous data transmission at least at intervals of the target duration determined based on the protocol agreement. transfer process.
  • the purpose of avoiding long-term occupancy of the channel by the terminal using the no-LBT mechanism is realized, and the fairness of the occupied channel by the terminal is improved.
  • FIG. 10 is a flowchart of a data transmission method according to an embodiment, and the method may include the following steps:
  • step 1001 a first transmission process of continuous data transmission is entered.
  • the terminal does not need to perform LBT, and can directly enter the continuous data transmission process, that is, the first transmission process.
  • step 1002 the target duration corresponding to the transmission duration of the first transmission process is determined based on the correspondence between the transmission duration and the interval duration.
  • the present disclosure does not limit the execution order of the above steps 1001 and 1002 .
  • the corresponding relationship between the transmission duration and the interval duration may be proportional.
  • the minimum interval duration may be set to avoid that the transmission duration of the first transmission process is too short, resulting in the target duration being close to 0, thus causing the first transmission process and the second transmission process to be performed continuously.
  • the maximum interval duration can be set to avoid a long interval between the first transmission process and the second transmission process, which affects terminal services.
  • the minimum interval duration and the maximum interval duration can be set at the same time, so as to prevent the first transmission process and the second transmission process from being continuously performed, and to avoid the long interval between the first transmission process and the second transmission process, which affects the service of the terminal .
  • step 1003 in response to the end of the first transmission process, the second transmission process of continuous data transmission is entered at least with an interval of the target duration.
  • the terminal can directly enter the first transmission process of continuous data transmission on the unlicensed spectrum, and after the first transmission process ends, enter the continuous data transmission at least at a target duration corresponding to the transmission duration based on the first transmission process.
  • the second transmission process of data transmission The purpose of avoiding long-term occupancy of the channel by the terminal using the no-LBT mechanism is realized, and the fairness of the occupied channel by the terminal is improved.
  • the present disclosure further provides an application function implementation device embodiment.
  • FIG. 11 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • the apparatus is used in a base station, including:
  • the parameter configuration module 1110 is configured to determine idle period parameters for the terminal that adopts the target channel access mechanism; wherein, the target channel access mechanism includes that the sender does not listen first and then sends before performing data transmission, and the idle period is to stop the time period of the data transfer;
  • the sending module 1120 is configured to send the idle period parameter.
  • the parameter configuration module includes:
  • the configuration sub-module is configured to, in response to the number of the terminals adopting the target channel access mechanism being multiple, configure different idle period parameters for the multiple terminals respectively.
  • the idle period parameter includes at least one of the following:
  • the period duration of the idle period the offset value of the start time of the idle period in each period relative to the start time of each period, and the duration of the idle period in each period.
  • FIG. 12 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • the apparatus is used in a terminal, including:
  • the first data transmission module 1210 is configured to perform data transmission and stop data transmission during idle periods.
  • the device also includes any of the following:
  • a first determining module configured to determine the idle period based on an idle period parameter configured by the base station
  • the second determination module is configured to determine the idle period based on a protocol agreement.
  • the second determining module includes:
  • a first determining submodule configured to determine the idle period based on at least one of the idle period parameters agreed in the protocol
  • the second determination submodule is configured to determine the idle period based on at least one of the idle period parameters agreed in the protocol and a specified terminal parameter.
  • the idle period parameter includes at least one of the following:
  • the period duration of the idle period the offset value of the start time of the idle period in each period relative to the start time of each period, and the duration of the idle period in each period.
  • FIG. 13 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • the apparatus is used in a terminal, including:
  • the second data transmission module 1310 is configured to enter the first transmission process of continuous data transmission
  • the third data transmission module 1320 is configured to, in response to the end of the first transmission process, enter into a second transmission process of continuous data transmission with at least a target duration.
  • the device further includes:
  • the third determining module is configured to determine the target duration based on the agreement.
  • the device further includes:
  • the fourth determining module is configured to determine the target duration corresponding to the transmission duration of the first transmission process based on the correspondence between the transmission duration and the interval duration.
  • the present disclosure also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute any one of the data transmission methods described above for the base station side.
  • the present disclosure also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute any one of the data transmission methods described above for the terminal side.
  • a data transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the data transmission methods described above on the base station side.
  • FIG. 14 is a schematic structural diagram of another data transmission apparatus 1400 according to an exemplary embodiment.
  • the apparatus 1400 may be provided as a base station.
  • apparatus 1400 includes a processing component 1422, a wireless transmit/receive component 1424, an antenna component 1426, and a signal processing portion specific to a wireless interface, and the processing component 1422 may further include one or more processors.
  • One of the processors in the processing component 1422 may be configured to execute any one of the data transmission methods described above on the base station side.
  • a data transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the data transmission methods described above on the terminal side.
  • FIG. 15 is a block diagram of an electronic device 1500 according to an exemplary embodiment.
  • the electronic device 1500 may be a terminal such as a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle terminal, an ipad, and a smart TV.
  • an electronic device 1500 may include one or more of the following components: a processing component 1502, a memory 1504, a power supply component 1506, a multimedia component 1508, an audio component 1510, an input/output (I/O) interface 1512, a sensor component 1516, and communication component 1518.
  • the processing component 1502 generally controls the overall operation of the electronic device 1500, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1502 may include one or more processors 1520 to execute instructions to perform all or part of the steps of the data transmission method described above.
  • processing component 1502 may include one or more modules that facilitate interaction between processing component 1502 and other components.
  • processing component 1502 may include a multimedia module to facilitate interaction between multimedia component 1508 and processing component 1502.
  • the processing component 1502 may read executable instructions from the memory to implement the steps of a data transmission method provided by the foregoing embodiments.
  • Memory 1504 is configured to store various types of data to support operation at electronic device 1500 . Examples of such data include instructions for any application or method operating on electronic device 1500, contact data, phonebook data, messages, pictures, videos, and the like. Memory 1504 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 1506 provides power to various components of electronic device 1500 .
  • Power supply components 1506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 1500 .
  • Multimedia component 1508 includes a display screen that provides an output interface between the electronic device 1500 and the user.
  • the multimedia component 1508 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 1510 is configured to output and/or input audio signals.
  • audio component 1510 includes a microphone (MIC) that is configured to receive external audio signals when electronic device 1500 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 1504 or transmitted via communication component 1518.
  • audio component 1510 also includes a speaker for outputting audio signals.
  • the I/O interface 1512 provides an interface between the processing component 1502 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 1516 includes one or more sensors for providing various aspects of status assessment for electronic device 1500 .
  • the sensor assembly 1516 can detect the open/closed state of the electronic device 1500, the relative positioning of the components, such as the display and the keypad of the electronic device 1500, the sensor assembly 1516 can also detect the electronic device 1500 or one of the electronic device 1500 The location of components changes, the presence or absence of user contact with the electronic device 1500 , the orientation or acceleration/deceleration of the electronic device 1500 and the temperature of the electronic device 1500 changes.
  • Sensor assembly 1516 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1516 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1516 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1518 is configured to facilitate wired or wireless communications between electronic device 1500 and other devices.
  • the electronic device 1500 may access wireless networks based on communication standards, such as Wi-Fi, 2G, 3G, 4G, 5G or 6G, or a combination thereof.
  • the communication component 1518 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1518 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • electronic device 1500 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmed gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented for performing the above data transmission method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmed gate array
  • controller a microcontroller, a microprocessor or other electronic components are implemented for performing the above data transmission method.
  • a non-transitory machine-readable storage medium including instructions such as a memory 1504 including instructions, is also provided, and the instructions can be executed by the processor 1520 of the electronic device 1500 to complete the data transmission method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种数据传输方法及装置、存储介质,其中,所述数据传输方法包括:为采用目标信道接入机制的终端确定空闲时段参数;其中,所述目标信道接入机制包括发送端在进行数据传输之前不进行先听后发,空闲时段是停止数据传输的时间段;发送所述空闲时段参数。本公开可以避免非授权频谱上采用no-LBT机制的终端长期占用信道,提高了终端占用信道的公平性。

Description

数据传输方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及数据传输方法及装置、存储介质。
背景技术
在非授权频谱上,发送端在占用信道发送数据之前,一般都需要对信道进行监听,也即CCA(Clear Channel Assessment,空闲信道评估)。如果发送端进行CCA检测后,判断信道空闲,则可以占用信道发送数据,否则不能占用信道。其MCOT(Maximum Channel Occupy Time,最大信道占用时长)可以由协议约定,或者可以由基站进行配置或指示。以上过程一般被称为非授权频段上LBT(Listen Before Talk,先听后说)的channel access(信道接入)机制。
但在高频频率范围内,由于高频信道衰减较大,即使发送点之间距离较近,其相互之间的干扰也可能比较小。所以在NR(New Radio,新空口)52.6至71GHz(吉赫兹)议题中,已经确定需要支持no-LBT的信道接入机制。也即,发送端在发送数据之前可以不需要进行LBT,而直接发送数据。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种数据传输方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,所述方法用于基站,包括:
为采用目标信道接入机制的终端确定空闲时段参数;其中,所述目标信道接入机制包括发送端在进行数据传输之前不进行先听后发,空闲时段是停止数据传输的时间段;
发送所述空闲时段参数。
可选地,所述为采用目标信道接入机制的终端确定空闲时段参数,包括:
响应于采用目标信道接入机制的所述终端的数目为多个,为多个终端分别确定不同的所述空闲时段参数。
可选地,所述空闲时段参数包括以下至少一项:
空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的持续时长。
根据本公开实施例的第二方面,提供一种数据传输方法,所述方法用于终端,包括:
进行数据传输,并在空闲时段停止数据传输。
可选地,所述方法还包括以下任一项:
基于基站配置的空闲时段参数,确定所述空闲时段;或
基于协议约定,确定所述空闲时段。
可选地,所述基于协议约定,确定所述空闲时段,包括:
基于协议约定的空闲时段参数中的至少一个,确定所述空闲时段;或
基于协议约定的空闲时段参数中的至少一个和指定终端参数,确定所述空闲时段。
可选地,所述空闲时段参数包括以下至少一项:
空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的持续时长。
根据本公开实施例的第三方面,提供一种数据传输方法,所述方法用于终端,包括;
进入连续数据传输的第一传输过程;
响应于所述第一传输过程结束,至少间隔目标时长,进入连续数据传输的第二传输过程。
可选地,所述方法还包括:
基于协议约定,确定所述目标时长。
可选地,所述方法还包括:
基于传输时长与间隔时长之间的对应关系,确定与所述第一传输过程的传输时长对应的所述目标时长。
根据本公开实施例的第四方面,提供一种数据传输装置,所述装置用于基站,包括:
参数配置模块,被配置为为采用目标信道接入机制的终端确定空闲时段参数;其中,所述目标信道接入机制包括发送端在进行数据传输之前不进行先听后发,空闲时段是停止数据传输的时间段;
发送模块,被配置为发送所述空闲时段参数。
根据本公开实施例的第五方面,提供一种数据传输装置,所述装置用于终端,包括:
第一数据传输模块,被配置为进行数据传输,并在空闲时段停止数据传输。
根据本公开实施例的第六方面,提供一种数据传输装置,所述装置用于终端,包括:
第二数据传输模块,被配置为进入连续数据传输的第一传输过程;
第三数据传输模块,被配置为响应于所述第一传输过程结束,至少间隔目标时长,进入连续数据传输的第二传输过程。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第一方面任一项所述的数据传输方法。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第二方面或第三方面任一项所述的数据传输方法。
根据本公开实施例的第九方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述第一方面任一项所述的数据传输方法。
根据本公开实施例的第十方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述第二方面或第三方面任一项所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,基站可以为采用目标信道接入机制的终端确定空闲时段参数,从而使得在进行数据传输之前不进行先听后发的终端在空闲时段停止数据传输,避免非授权频谱上采用no-LBT机制的终端长期占用信道,提高终端占用信道的公平性。
本公开实施例中,终端可以在非授权频谱上,直接进行数据传输,并在空闲时段停止数据传输,避免非授权频谱上采用no-LBT机制的终端长期占用信道,提高终端占用信道的公平性。
本公开实施例中,终端可以在非授权频谱上,直接进入连续数据传输的第一传输过程,在第一传输过程结束后,至少间隔目标时长,再进入连续数据传输的第二传输过程。实现了避免采用no-LBT机制的终端长期占用信道的目的,提高了终端占用信道的公平性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种数据传输方法流程示意图。
图2是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图3是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图4是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图5是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图6是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图7是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图8是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图9是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图10是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图11是根据一示例性实施例示出的一种数据传输装置框图。
图12是根据一示例性实施例示出的另一种数据传输装置框图。
图13是根据一示例性实施例示出的另一种数据传输装置框图。
图14是本公开根据一示例性实施例示出的一种数据传输装置的一结构示意图。
图15是本公开根据一示例性实施例示出的另一种数据传输装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列 出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在相关技术中已经确定需要支持no-LBT的信道接入机制。也即,发送端在发送数据之前可以不需要进行LBT,而直接发送数据。
下面先从基站侧介绍一下本公开实施例提供的数据传输方法。
本公开实施例提供了一种数据传输方法,可以用于基站,参照图1所示,图1是根据一实施例示出的一种数据传输方法流程图,该方法可以包括以下步骤:
在步骤101中,为采用目标信道接入机制的终端确定空闲时段参数。
在本公开实施例中,目标信道接入机制包括发送端在进行数据传输之前不进行先听后发,即目标信道接入机制可以为no-LBT机制。空闲时段是停止数据传输的时间段,空闲时段参数是终端确定空闲时段所需要的相关参数。
在步骤102中,发送所述空闲时段参数。
在本公开实施例中,基站可以通过但不限于高层信令或物理层信令,将空闲时段参数发送给终端。其中,高层信令可以包括但不限于RRC(Radio Resource Control,无线资源控制)信令、MAC(Media Access Control Address,媒体访问控制地址)信令。
上述实施例中,基站可以为采用目标信道接入机制的终端确定空闲时段参数,从而使得在进行数据传输之前不进行先听后发的终端在空闲时段停止数据传输,避免非授权频谱上采用no-LBT机制的终端长期占用信道,提高终端占用信道的公平性。
在一些可选实施例中,参照图2所示,图2是根据一实施例示出的一种数据传输方法流程图,该方法可以包括以下步骤:
在步骤201中,响应于采用目标信道接入机制的所述终端的数目为多个,为多个终端分别确定不同的所述空闲时段参数。
在本公开实施例中,采用no-LBT机制的终端的数目可以为多个,相应地,基站可以为多个终端分别配置不同的空闲时段参数,使得多个终端分别在不同的空闲时段停止数据传输。
上述实施例中,基站可以为采用目标信道接入机制的多个终端分别配置不同的空闲时段参数,使得多个终端分别在不同的空闲时段静默,即停止数据传输,减少了信道干扰,可用性高。
在一些可选实施例中,空闲时段参数包括但不限于以下至少一项:空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的起始时间相对于基准点的偏移值、每个周期内空闲时段的持续时长。
例如,基站为采用目标信道接入机制的终端配置的周期时长为10毫秒,每个周期内空闲时段的持续时长为1毫秒,每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值为9毫秒,那么终端可以在第9至第10毫秒、第19至第20毫秒、第29至第30毫秒……停止数据传输。如果采用目标信道接入机制的终端数目为多个,基站可以为多个终端配置不同的空闲时段参数,可选地,不同的空闲时段参数指空闲时段参数中的每个参数互不相同,或空闲时段参数中的至少一个参数不同。
例如,基站为采用目标信道接入机制的终端1和终端2配置的周期时长均为10毫秒,每个周期内空闲时段的持续时长均为1毫秒,终端1的偏移值为8毫秒,终端2的偏移值为9毫秒,那么终端1可以在第8至第9毫秒、第18至第19毫秒、第28至第29毫秒……停止数据传输,而终端2可以在第9至第10毫秒、第19至第20毫秒、第29至第30毫秒……停止数据传输。
以上仅为示例性说明,基站可以根据需要,配置不同终端在不同空闲时段停止数据传输。
上述实施例中,基站可以配置多个采样目标信道接入机制的终端在不同的空闲时段停止数据传输,减少了信道干扰,可用性高。
下面再从终端侧介绍一下本公开实施例提供的数据传输方法。
参照图3所示,图3是根据一实施例示出的一种数据传输方法流程图,所述方法可以用于终端,该方法可以包括以下步骤:
在步骤301中,进行数据传输,并在空闲时段停止数据传输。
上述实施例中,终端可以在非授权频谱上,直接进行数据传输,并在空闲时段停止数据传输,避免非授权频谱上采用no-LBT机制的终端长期占用信道,提高终端占用信道的公平性。
在一些可选实施例中,参照图4所示,图4是根据一实施例示出的一种数据传输方法流程图,该方法可以包括以下步骤:
在步骤401中,基于接收到的空闲时段参数,确定空闲时段。
在本公开实施例中,可以由基站配置该终端的空闲时段参数,终端基于接收到的空闲时段参数,确定自身对应的空闲时段。可选地,空闲时段参数包括以下至少一项:空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的起始时间相对于基准点的偏移值、每个周期内空闲时段的持续时长。
在步骤402中,进行数据传输,并在空闲时段停止数据传输。
在本公开实施例中,终端无需进行LBT,可以直接进行数据传输,并在空闲时段停止数据传输。
上述实施例中,终端可以在非授权频谱上,直接进行数据传输,并基于基站配置的空闲时段参数,确定空闲时段,从而在空闲时段停止数据传输,避免非授权频谱上采用no-LBT机制的终端长期占用信道,提高了终端占用信道的公平性。
在一些可选实施例中,参照图5所示,图5是根据一实施例示出的一 种数据传输方法流程图,该方法可以包括以下步骤:
在步骤501中,基于协议约定,确定所述空闲时段。
在本公开实施例中,终端可以根据协议约定,确定自身的空闲时段。
在步骤502中,进行数据传输,并在空闲时段停止数据传输。
在本公开实施例中,终端无需进行LBT,可以直接进行数据传输,并在空闲时段停止数据传输。
上述实施例中,终端可以在非授权频谱上,直接进行数据传输,并根据协议约定,确定空闲时段,从而在空闲时段停止数据传输,避免非授权频谱上采用no-LBT机制的终端长期占用信道,提高了终端占用信道的公平性。
在一些可选实施例中,参照图6所示,图6是根据一实施例示出的一种数据传输方法流程图,该方法可以包括以下步骤:
在步骤601中,基于协议约定的空闲时段参数中的至少一个,确定所述空闲时段。
在本公开实施例中,空闲时段参数可以包括但不限于以下至少一项:空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的持续时长。终端可以根据协议约定的上述空闲时段参数中的至少一个,确定自身的空闲时段。
在步骤602中,进行数据传输,并在空闲时段停止数据传输。
在本公开实施例中,终端无需进行LBT,可以直接进行数据传输,并在空闲时段停止数据传输。
上述实施例中,终端可以在非授权频谱上,直接进行数据传输,并根据协议约定的空闲时段参数中的至少一个,确定自身的空闲时段,从而在空闲时段停止数据传输,避免非授权频谱上采用no-LBT机制的终端长期占用信道,提高了终端占用信道的公平性。
在一些可选实施例中,参照图7所示,图7是根据一实施例示出的一种数据传输方法流程图,该方法可以包括以下步骤:
在步骤701中,基于协议约定的空闲时段参数中的至少一个和指定终端参数,确定所述空闲时段。
在本公开实施例中,空闲时段参数可以包括但不限于以下至少一项:空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的持续时长。指定终端参数包括但不限于终端标识,其中,终端标识可以是终端物理层标识,或者终端标识可以是终端的无线网络临时标识,本公开对此不作限定。
例如,协议约定的空闲时段参数包括周期时长为10毫秒,每个周期内空闲时段的持续时长为1毫秒,每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值为9毫秒。可以对终端指定参数按照协议约定的周期时长取模,所得到的余数作为该终端的周期时长,或者对终端指定参数按照协议约定的偏移值取模,将得到的余数作为该终端的偏移值。
在上述实施例中,终端可以根据协议约定的空闲时段参数中的至少一个和指定终端参数,确定空闲时段,从而在空闲时段停止数据传输。通过上述过程,可以让多个终端在不同空闲时段停止数据传输,减少信道干扰,可用性高。
在一些可选实施例中,终端可以进行数据传输,并在空闲时段停止数据传输。进一步地,如果空闲时段结束,终端仍有数据需要发送,可以再次进行数据传输。
上述实施例中,可以在确保终端业务的同时,避免非授权频谱上采用no-LBT机制的终端长期占用信道,可用性高。
除了上述方式外,本公开实施例还提供了另一种数据传输方式。
参照图8所示,图8是根据一实施例示出的一种数据传输方法流程图,所述方法可以用于终端,该方法可以包括以下步骤:
在步骤801中,进入连续数据传输的第一传输过程。
在本公开实施例中,终端无需进行LBT,可以直接进入连续数据传输过程,即第一传输过程。
在步骤802中,响应于所述第一传输过程结束,至少间隔目标时长,进入连续数据传输的第二传输过程。
在本公开实施例中,可以由终端自己在两次相邻的连续数据传输过程之间,至少间隔目标时长。
上述实施例中,终端可以在非授权频谱上,直接进入连续数据传输的第一传输过程,在第一传输过程结束后,至少间隔目标时长,再进入连续数据传输的第二传输过程。实现了避免采用no-LBT机制的终端长期占用信道的目的,提高了终端占用信道的公平性。
在一些可选实施例中,参照图9所示,图9是根据一实施例示出的一种数据传输方法流程图,该方法可以包括以下步骤:
在步骤901中,进入连续数据传输的第一传输过程。
在本公开实施例中,终端无需进行LBT,可以直接进入连续的数据传输过程,即第一传输过程。
在步骤902中,基于协议约定,确定所述目标时长。
本公开不限定上述步骤901和902的执行顺序。
在步骤903中,响应于所述第一传输过程结束,至少间隔目标时长,进入连续数据传输的第二传输过程。
上述实施例中,终端可以在非授权频谱上,直接进入连续数据传输的第一传输过程,在第一传输过程结束后,至少间隔基于协议约定确定的目标时长,再进入连续数据传输的第二传输过程。实现了避免采用no-LBT机制的终端长期占用信道的目的,提高了终端占用信道的公平性。
在一些可选实施例中,参照图10所示,图10是根据一实施例示出的一种数据传输方法流程图,该方法可以包括以下步骤:
在步骤1001中,进入连续数据传输的第一传输过程。
在本公开实施例中,终端无需进行LBT,可以直接进入连续的数据传输过程,即第一传输过程。
在步骤1002中,基于传输时长与间隔时长之间的对应关系,确定与所 述第一传输过程的传输时长对应的所述目标时长。
本公开不限定上述步骤1001和1002的执行顺序。在本公开实施例中,传输时长与间隔时长之间的对应关系可以是成正比的关系,相应地,第一传输过程的传输时长越长,目标时长也越长,第一传输过程的传输时长越短,目标时长可以越短。
在一个示例中,可以设置最小间隔时长,避免第一传输过程的传输时长过短,导致目标时长接近为0,从而造成第一传输过程和第二传输过程连续进行。
在一个示例中,可以设置最大间隔时长,避免第一传输过程和第二传输过程之间间隔过久,影响终端业务。
在另一个示例中,可以同时设置最小间隔时长和最大间隔时长,避免第一传输过程和第二传输过程连续进行,以及避免第一传输过程和第二传输过程之间间隔过久,影响终端业务。
在步骤1003中,响应于所述第一传输过程结束,至少间隔目标时长,进入连续数据传输的第二传输过程。
上述实施例中,终端可以在非授权频谱上,直接进入连续数据传输的第一传输过程,在第一传输过程结束后,至少间隔基于第一传输过程的传输时长对应的目标时长,再进入连续数据传输的第二传输过程。实现了避免采用no-LBT机制的终端长期占用信道的目的,提高了终端占用信道的公平性。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图11,图11是根据一示例性实施例示出的一种数据传输装置框图,所述装置用于基站,包括:
参数配置模块1110,被配置为为采用目标信道接入机制的终端确定空闲时段参数;其中,所述目标信道接入机制包括发送端在进行数据传输之前不进行先听后发,空闲时段是停止数据传输的时间段;
发送模块1120,被配置为发送所述空闲时段参数。
可选地,所述参数配置模块包括:
配置子模块,被配置为响应于采用目标信道接入机制的所述终端的数目为多个,为多个终端分别配置不同的所述空闲时段参数。
可选地,所述空闲时段参数包括以下至少一项:
空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的持续时长。
参照图12,图12是根据一示例性实施例示出的一种数据传输装置框图,所述装置用于终端,包括:
第一数据传输模块1210,被配置为进行数据传输,并在空闲时段停止数据传输。
可选地,所述装置还包括以下任一项:
第一确定模块,被配置为基于基站配置的空闲时段参数,确定所述空闲时段;或
第二确定模块,被配置为基于协议约定,确定所述空闲时段。
可选地,所述第二确定模块包括:
第一确定子模块,被配置为基于协议约定的空闲时段参数中的至少一个,确定所述空闲时段;或
第二确定子模块,被配置为基于协议约定的空闲时段参数中的至少一个和指定终端参数,确定所述空闲时段。
可选地,所述空闲时段参数包括以下至少一项:
空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的持续时长。
参照图13,图13是根据一示例性实施例示出的一种数据传输装置框图,所述装置用于终端,包括:
第二数据传输模块1310,被配置为进入连续数据传输的第一传输过程;
第三数据传输模块1320,被配置为响应于所述第一传输过程结束,至 少间隔目标时长,进入连续数据传输的第二传输过程。
可选地,所述装置还包括:
第三确定模块,被配置为基于协议约定,确定所述目标时长。
可选地,所述装置还包括:
第四确定模块,被配置为基于传输时长与间隔时长之间的对应关系,确定与所述第一传输过程的传输时长对应的所述目标时长。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于基站侧任一所述的数据传输方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于终端侧任一所述的数据传输方法。
相应地,本公开还提供了一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一所述的数据传输方法。
如图14所示,图14是根据一示例性实施例示出的另一种数据传输装置1400的一结构示意图。装置1400可以被提供为基站。参照图14,装置1400包括处理组件1422、无线发射/接收组件1424、天线组件1426、以及 无线接口特有的信号处理部分,处理组件1422可进一步包括一个或多个处理器。
处理组件1422中的其中一个处理器可以被配置为用于执行上述基站侧任一所述的数据传输方法。
相应地,本公开还提供了一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一所述的数据传输方法。
图15是根据一示例性实施例示出的一种电子设备1500的框图。例如电子设备1500可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载终端、ipad、智能电视等终端。
参照图15,电子设备1500可以包括以下一个或多个组件:处理组件1502,存储器1504,电源组件1506,多媒体组件1508,音频组件1510,输入/输出(I/O)接口1512,传感器组件1516,以及通信组件1518。
处理组件1502通常控制电子设备1500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1502可以包括一个或多个处理器1520来执行指令,以完成上述的数据传输方法的全部或部分步骤。此外,处理组件1502可以包括一个或多个模块,便于处理组件1502和其他组件之间的交互。例如,处理组件1502可以包括多媒体模块,以方便多媒体组件1508和处理组件1502之间的交互。又如,处理组件1502可以从存储器读取可执行指令,以实现上述各实施例提供的一种数据传输方法的步骤。
存储器1504被配置为存储各种类型的数据以支持在电子设备1500的操作。这些数据的示例包括用于在电子设备1500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静 态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1506为电子设备1500的各种组件提供电力。电源组件1506可以包括电源管理系统,一个或多个电源,及其他与为电子设备1500生成、管理和分配电力相关联的组件。
多媒体组件1508包括在所述电子设备1500和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件1508包括一个前置摄像头和/或后置摄像头。当电子设备1500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1510被配置为输出和/或输入音频信号。例如,音频组件1510包括一个麦克风(MIC),当电子设备1500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1504或经由通信组件1518发送。在一些实施例中,音频组件1510还包括一个扬声器,用于输出音频信号。
I/O接口1512为处理组件1502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1516包括一个或多个传感器,用于为电子设备1500提供各个方面的状态评估。例如,传感器组件1516可以检测到电子设备1500的打开/关闭状态,组件的相对定位,例如所述组件为电子设备1500的显示器和小键盘,传感器组件1516还可以检测电子设备1500或电子设备1500一个组件的位置改变,用户与电子设备1500接触的存在或不存在,电子设备1500方位或加速/减速和电子设备1500的温度变化。传感器组件1516可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近 物体的存在。传感器组件1516还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1516还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1518被配置为便于电子设备1500和其他设备之间有线或无线方式的通信。电子设备1500可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G,5G或6G,或它们的组合。在一个示例性实施例中,通信组件1518经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1518还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备1500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述数据传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器1504,上述指令可由电子设备1500的处理器1520执行以完成上述数据传输方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种数据传输方法,其特征在于,所述方法用于基站,包括:
    为采用目标信道接入机制的终端确定空闲时段参数;其中,所述目标信道接入机制包括发送端在进行数据传输之前不进行先听后发,空闲时段是停止数据传输的时间段;
    发送所述空闲时段参数。
  2. 根据权利要求1所述的方法,其特征在于,所述为采用目标信道接入机制的终端确定空闲时段参数,包括:
    响应于采用目标信道接入机制的所述终端的数目为多个,为多个终端分别确定不同的所述空闲时段参数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述空闲时段参数包括以下至少一项:
    空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的持续时长。
  4. 一种数据传输方法,其特征在于,所述方法用于终端,包括:
    进行数据传输,并在空闲时段停止数据传输。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括以下任一项:
    基于基站配置的空闲时段参数,确定所述空闲时段;或
    基于协议约定,确定所述空闲时段。
  6. 根据权利要求5所述的方法,其特征在于,所述基于协议约定,确定所述空闲时段,包括:
    基于协议约定的空闲时段参数中的至少一个,确定所述空闲时段;或
    基于协议约定的空闲时段参数中的至少一个和指定终端参数,确定所述空闲时段。
  7. 根据权利要求5或6所述的方法,其特征在于,所述空闲时段参数 包括以下至少一项:
    空闲时段的周期时长、每个周期内空闲时段的起始时间相对于每个周期的起始时间的偏移值、每个周期内空闲时段的持续时长。
  8. 一种数据传输方法,其特征在于,所述方法用于终端,包括;
    进入连续数据传输的第一传输过程;
    响应于所述第一传输过程结束,至少间隔目标时长,进入连续数据传输的第二传输过程。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    基于协议约定,确定所述目标时长。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    基于传输时长与间隔时长之间的对应关系,确定与所述第一传输过程的传输时长对应的所述目标时长。
  11. 一种数据传输装置,其特征在于,所述装置用于基站,包括:
    参数配置模块,被配置为为采用目标信道接入机制的终端确定空闲时段参数;其中,所述目标信道接入机制包括发送端在进行数据传输之前不进行先听后发,空闲时段是停止数据传输的时间段;
    发送模块,被配置为发送所述空闲时段参数。
  12. 一种数据传输装置,其特征在于,所述装置用于终端,包括:
    第一数据传输模块,被配置为进行数据传输,并在空闲时段停止数据传输。
  13. 一种数据传输装置,其特征在于,所述装置用于终端,包括:
    第二数据传输模块,被配置为进入连续数据传输的第一传输过程;
    第三数据传输模块,被配置为响应于所述第一传输过程结束,至少间隔目标时长,进入连续数据传输的第二传输过程。
  14. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-3任一项所述的数据传输方法。
  15. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求4-7或8-10任一项所述的数据传输方法。
  16. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-3任一项所述的数据传输方法。
  17. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求4-7或8-10任一项所述的数据传输方法。
PCT/CN2021/070147 2021-01-04 2021-01-04 数据传输方法及装置、存储介质 WO2022141633A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180000139.4A CN115039504B (zh) 2021-01-04 2021-01-04 数据传输方法及装置、存储介质
PCT/CN2021/070147 WO2022141633A1 (zh) 2021-01-04 2021-01-04 数据传输方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070147 WO2022141633A1 (zh) 2021-01-04 2021-01-04 数据传输方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2022141633A1 true WO2022141633A1 (zh) 2022-07-07

Family

ID=82258840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070147 WO2022141633A1 (zh) 2021-01-04 2021-01-04 数据传输方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN115039504B (zh)
WO (1) WO2022141633A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100225530A1 (en) * 2009-03-03 2010-09-09 Chih-Chung Lin Method of handling radar signals for a wireless communication device
CN102484800A (zh) * 2009-08-27 2012-05-30 三星电子株式会社 有效支持毫微微蜂窝中低占空比模式的方法和系统
CN107079494A (zh) * 2014-11-07 2017-08-18 诺基亚技术有限公司 先听后说信道访问
CN107113905A (zh) * 2014-12-31 2017-08-29 微软技术许可有限责任公司 动态自适应和非自适应模式切换
CN110859013A (zh) * 2018-08-22 2020-03-03 华为技术有限公司 传输控制方法和装置
WO2020091480A1 (en) * 2018-10-31 2020-05-07 Samsung Electronics Co., Ltd. Method and apparatus of system information (si) change notification on unlicensed carrier
CN111988124A (zh) * 2014-08-22 2020-11-24 高通股份有限公司 用于在未许可的射频频带上发射及接收同步信号的技术

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100225530A1 (en) * 2009-03-03 2010-09-09 Chih-Chung Lin Method of handling radar signals for a wireless communication device
CN102484800A (zh) * 2009-08-27 2012-05-30 三星电子株式会社 有效支持毫微微蜂窝中低占空比模式的方法和系统
CN111988124A (zh) * 2014-08-22 2020-11-24 高通股份有限公司 用于在未许可的射频频带上发射及接收同步信号的技术
CN107079494A (zh) * 2014-11-07 2017-08-18 诺基亚技术有限公司 先听后说信道访问
CN107113905A (zh) * 2014-12-31 2017-08-29 微软技术许可有限责任公司 动态自适应和非自适应模式切换
CN110859013A (zh) * 2018-08-22 2020-03-03 华为技术有限公司 传输控制方法和装置
WO2020091480A1 (en) * 2018-10-31 2020-05-07 Samsung Electronics Co., Ltd. Method and apparatus of system information (si) change notification on unlicensed carrier

Also Published As

Publication number Publication date
CN115039504B (zh) 2023-11-28
CN115039504A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2022094907A1 (zh) 信息发送方法及装置、存储介质
WO2019024053A1 (zh) 无人机控制方法及装置、无人机和遥控设备
US20210251010A1 (en) Method and device for determining an uplink-downlink switching point
CN112189352A (zh) 响应指示方法和装置、响应确定方法和装置
WO2019023885A1 (zh) 蜂窝网络中实现全双工传输的方法、装置、设备及基站
CN105163391B (zh) 数据传输方法、终端及无线访问接入点
WO2023097875A1 (zh) 下行控制信息检测、发送方法及装置、存储介质
US11627615B2 (en) UAV indication method and apparatus
WO2022061930A1 (zh) 通信方法及装置、存储介质
WO2022027198A1 (zh) 用于混合自动重传请求harq传输的方法及装置、存储介质
WO2020258050A1 (zh) 确定无线资源的方法及装置
WO2024059979A1 (zh) 子带配置方法及装置
US20220346083A1 (en) Methods and apparatuses for determining network allocation vector, and storage media
WO2022141633A1 (zh) 数据传输方法及装置、存储介质
WO2022082778A1 (zh) 信息上报方法及装置、存储介质
WO2022193191A1 (zh) 资源配置方法、装置、终端设备、接入网设备及存储介质
WO2022204998A1 (zh) 能力上报、信息配置方法及装置
WO2022104512A1 (zh) 确定寻呼原因的方法及装置、存储介质
WO2020252744A1 (zh) 确定随机接入信道机会ro的方法及装置
CN109451803B (zh) 数据传输方法及装置
WO2022141632A1 (zh) 信道接入方法及装置、存储介质
WO2022151140A1 (zh) 信道接入方法及装置、存储介质
WO2022236561A1 (zh) 确定资源的方法、装置及存储介质
WO2022252032A1 (zh) 终端能力上报方法及装置、存储介质
WO2024031690A1 (zh) 随机接入方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912416

Country of ref document: EP

Kind code of ref document: A1