WO2022141498A1 - 一种计费方法、装置和系统 - Google Patents

一种计费方法、装置和系统 Download PDF

Info

Publication number
WO2022141498A1
WO2022141498A1 PCT/CN2020/142373 CN2020142373W WO2022141498A1 WO 2022141498 A1 WO2022141498 A1 WO 2022141498A1 CN 2020142373 W CN2020142373 W CN 2020142373W WO 2022141498 A1 WO2022141498 A1 WO 2022141498A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
network element
charging
identification information
type
Prior art date
Application number
PCT/CN2020/142373
Other languages
English (en)
French (fr)
Inventor
徐艺珊
诸华林
朱浩仁
周彧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/142373 priority Critical patent/WO2022141498A1/zh
Priority to PCT/CN2021/117836 priority patent/WO2022142465A1/zh
Priority to CN202180087053.XA priority patent/CN116648883A/zh
Priority to EP21913212.3A priority patent/EP4258604A4/en
Priority to KR1020237025837A priority patent/KR20230122158A/ko
Publication of WO2022141498A1 publication Critical patent/WO2022141498A1/zh
Priority to US18/344,051 priority patent/US20230345212A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/41Billing record details, i.e. parameters, identifiers, structure of call data record [CDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/44Augmented, consolidated or itemized billing statement or bill presentation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/51Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP for resellers, retailers or service providers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/58Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP based on statistics of usage or network monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/67Transmitting arrangements for sending billing related information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/80Rating or billing plans; Tariff determination aspects
    • H04M15/8016Rating or billing plans; Tariff determination aspects based on quality of service [QoS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/82Criteria or parameters used for performing billing operations
    • H04M15/8207Time based data metric aspects, e.g. VoIP or circuit switched packet data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/93Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP using near field or similar technologies

Definitions

  • the present application relates to the field of communications, and in particular, to a charging method, device and system.
  • Radio Frequency Identification technology
  • RFID Radio Frequency Identification
  • Passive Internet of Things Passive Internet of Things
  • RFID tag will be simply referred to as a tag for description.
  • the reader can read the data information in the tag, which can realize the purpose of identifying the target and exchanging data.
  • the reader can also have the function of writing.
  • RFID has the advantages of easy operation, convenient reading, high flexibility, and dynamic real-time. This technology is widely used in various fields, the most common application scenarios such as warehouse management, logistics transportation or fixed asset management. Taking logistics and transportation as an example, RFID technology can help managers to automatically collect product information. Managers can quickly query product information in the system to improve the speed and accuracy of goods handover. If there are abnormal situations such as lost goods, managers can also be the first. time to know and process. Businesses or services using RFID technology have the characteristics of small signaling traffic and services that do not occur continuously.
  • RFID or passive IoT Due to the small amount of signaling traffic transmitted by RFID or passive IoT, it is not suitable for billing by statistical traffic; RFID or passive IoT services do not occur continuously, so it is not suitable for billing by statistical time, nor is it suitable for charging by statistical time. In addition, for RFID or passive IoT services, the number of request messages cannot reasonably quantify the network resources occupied by RFID or passive IoT services, so it is not possible to count the number of messages. Reasonable billing for RFID.
  • the present application provides a charging method to implement reasonable charging under the network deployment architecture of RFID and cellular fusion, or to perform reasonable charging under the network deployment architecture of passive Internet of Things and cellular fusion.
  • the embodiments of the present application adopt the following technical solutions:
  • an embodiment of the present application provides a charging method.
  • a first network element obtains charging information, and the charging information includes type information and first quantity information.
  • the type information indicates the type of the first operation, and the first quantity information Indicates the first number of terminals on which the first operation is performed, and the first network element sends charging information.
  • the first network element obtains the type information of the first operation and the information on the number of terminals that perform this type of operation, the charging information can reasonably reflect the resources occupied by the first operation, and the charging process is based on the charging information. Perform charging, so that the charging process is more compatible with the first operation, and the charging behavior is more reasonable.
  • the first number here refers to the number of terminals that perform a certain operation without being repeatedly calculated. Quantity obtained after deduplication and integration of the double counted quantities.
  • acquiring the charging information by the first network element includes: the first network element receives type information and second quantity information from the first access network device, where the second quantity information indicates that the first operation is performed by the first network element.
  • the second number of terminals of the first set For example, the first quantity is equal to the second quantity. That is to say, the first access network device may perform deduplication and integration on the first set of terminals on which the first operation is performed, and report the first set of terminals on which the first operation is performed that have not been repeatedly calculated to the first network element.
  • the number of terminals, that is, the second number whereby the first network element can directly determine the received second number information as charging information.
  • the first network element directly obtains the quantity information, and the first network element does not need to deduplicate and integrate.
  • acquiring the charging information by the first network element includes: the first network element receives type information and first identification information from the first access network device, where the first identification information is used to identify that the first identification information is executed. A terminal of the first set of operations; the first network element determines the first quantity information according to the first identification information.
  • the first access network device may de-duplicate the identities of the terminals in the first set that are performing the first operation, and report to the first network element the identities of the terminals in the first set that are performing the first operation that have not been repeatedly calculated. Therefore, the first network element can determine the quantity information according to the received identification information of the terminals of the first set.
  • the first network element does not need to be deduplicated, but only needs to be integrated.
  • acquiring the charging information by the first network element includes: the first network element receives type information and first identification information from the first access network device, where the first identification information is used to identify that the first identification information is executed. A terminal of the first set of operations; the first network element receives type information and second identification information from the second access network device, and the second identification information is used to identify the terminals of the second set of the first operation; the first The network element determines the first quantity information according to the first identification information and the second identification information.
  • the first access network device may de-duplicate the identities of the terminals in the first set that are performing the first operation, and report to the first network element the identities of the terminals in the first set that are performing the first operation that have not been repeatedly calculated.
  • the second access network device can deduplicate the identifications of the terminals in the second set of terminals that are to perform the first operation, and report to the first network element the identifiers of the terminals of the second set of terminals that are subjected to the first operation that have not been repeatedly calculated. identification, thus, the first network element deduplicates the received identifications of the terminals in the first set and the terminals in the second set, and obtains the identification information of the terminals that are not repeatedly calculated to perform the first operation, and the first A network element may determine quantity information according to the identification information after deduplication.
  • the first access network device and the second access network device perform deduplication, and each report the identification information of the terminal without redundancy to the first network element, which can reduce the complexity of deduplication of the first network element.
  • acquiring the charging information by the first network element includes: the first network element receiving first information and second information, where the first information indicates the type of the first operation and the terminal on which the first operation is performed The second information indicates the type of the first operation and the identifier of the terminal on which the first operation is performed; the first network element determines the charging information according to the first information and the second information. For example, the first network element receives the first information and the second information from the first access network device; or the first network element receives the first information from the first access network device; the first network element receives the first information from the second access network device The device receives the second information. The first network element determines charging information according to the first information and the second information.
  • the first network element performs deduplication according to the identifiers of the terminals in the received first information and the second information, and obtains the identifier information of the terminal performing the first operation that has not been repeatedly calculated.
  • the first network element may The quantity information is determined according to the identification information after deduplication.
  • the first network element supports a charging trigger function
  • sending the charging information by the first network element includes: the first network element sends the charging information to the charging function network element. That is to say, the first network element supporting the charging trigger function directly exchanges charging information with the charging function network element responsible for charging.
  • This embodiment does not forward charging information through other network elements, which reduces signaling overhead on the network side and reduces changes to other network elements.
  • the sending of the charging information by the first network element includes: the first network element sending the charging information to the network element supporting the charging trigger function.
  • the network elements supporting the charging trigger function include session management function network elements or access and mobility management function network elements. That is to say, no matter how the first network element is deployed, the first network element sends the acquired charging information to the network element supporting the charging trigger function, and the network element supporting the charging trigger function interacts with the network element supporting the charging function. billing.
  • the first network element is co-located with the user plane function network element, and the first network element sends charging information to the session management function network element supporting the charging trigger function.
  • the first network element (which may also be understood as a user plane functional network element) may interact with the access network device through a user plane channel.
  • the first network element does not need to support the charging trigger function, and changes to the core network side due to the addition of the charging function are also reduced.
  • the first network element is independently deployed as a control plane network element, and the first network element sends the acquired data to the session management function network element supporting the charging trigger function or the access and mobility management function network element supporting the charging trigger function. billing information.
  • the first network element may interact with the session management function network element or the access and mobility management function network element through the serviced interface.
  • the first network element does not need to support the charging trigger function, and changes to the core network side due to the addition of the charging function are also reduced.
  • an embodiment of the present application provides a charging method, in which an access network device obtains type information and identification information, where the type information indicates the type of the first operation, and the identification information identifies the terminal on which the first operation is performed;
  • the network device sends a first message to the first network element according to the type information and the identification information; wherein, the first message includes the above-mentioned type information and identification information, and the identification information is used to determine the number of terminals that perform the first operation; or , the first message includes the above-mentioned type information and quantity information determined according to the identification information, where the quantity information indicates the quantity of the terminals on which the first operation is performed.
  • the first message reported by the access network device is used by the first network element to obtain the type information of the first operation and the information on the number of terminals that perform this type of operation, and the charging information can reasonably reflect the resources occupied by the first operation.
  • the charging process performs charging according to the charging information, so that the charging process is more compatible with the first operation and the charging behavior is more reasonable.
  • acquiring the type information and the identification information by the access network device includes: acquiring the first identification information and the second identification information by the access network device, where the first identification information indicates the first identification information on which the first operation is performed.
  • the identification of the terminal of the set, the second identification information indicates the identification of the terminal of the second set of which the first operation is performed.
  • the access network device determines the identification information according to the first identification information and the second identification information. That is, the access network device removes the repeatedly calculated identification information according to the obtained first identification information and the second identification information, determines the identification information that is not repeatedly calculated, and sends the first message accordingly.
  • the first message reported by the access network device is used by the first network element to obtain the type information of the first operation and the number of terminals that perform this type of operation, and the first message reported by the access network device has no Redundant information to reduce signaling overhead.
  • the access network device determines the quantity information according to the type information and the identification information, and sends a first message to the first network element, where the first message includes the type information and the quantity information. That is, the access network device performs deduplication according to the identification information, removes the repeatedly calculated identification information, and calculates the number of terminals according to the identification information that has not been repeatedly calculated to obtain the quantity information, and sends the first message accordingly.
  • the first message reported by the access network device is used by the first network element to obtain the type information of the first operation and the information on the number of terminals that perform this type of operation, and the first message reported by the access network device is not redundant
  • the first network element does not need to deduplicate and integrate the first message.
  • an embodiment of the present application provides a charging method, wherein a policy control function network element receives a policy and charging control rule request message from a session management function network element, and sends a first operation message to the session management function network element.
  • the policy and charging control rule includes a type parameter and a quantity parameter.
  • the type parameter and quantity parameter are used to instruct the session management function network element to notify the user plane function network element to report the type of the first operation and the terminal that performs the first operation. quantity.
  • the method is applicable to the implementation manner in which the first network element and the user plane function network element are co-located, and the session management function network element supports the charging trigger function. According to the above solution, the use of policies and charging control rules in the method can help reduce changes to core network side devices due to the addition of charging functions.
  • an embodiment of the present application provides a charging method, wherein the session management function network element receives a policy and charging control rule from the policy control function network element, and the session management function network element sends the policy and charging control rule to the network element according to the policy and charging control rule.
  • the user plane functional network element sends a usage reporting rule, and the usage reporting rule instructs the user plane functional network element to report the type of the first operation and the number of terminals on which the first operation is performed.
  • the session management function network element generates an N4 rule according to the policy and charging control rule sent by the policy control function network element, where the N4 rule includes a usage reporting rule, wherein the usage reporting rule includes the type of the first operation and the first operation to be executed.
  • the session management function network element sends the N4 rule to the user plane function network element, where the N4 rule instructs the user plane function network element to report the type of the first operation and the number of terminals that perform the first operation.
  • the method is applicable to the implementation manner in which the first network element and the user plane function network element are co-located, and the session management function network element supports the charging trigger function.
  • the first network element can report the usage reporting rule to the session management function network element, and the usage reporting rule includes the type of the first operation and the number of terminals that perform the first operation, thereby reducing billing due to increased billing. Changes to core network side devices due to functions.
  • the first network element in the above aspects may be a middleware device
  • the access network device may be a RAN device
  • the terminal may be a label.
  • an embodiment of the present application provides a communication device, including a processor, where the processor is configured to read and run a program from a memory to implement the method ( For example, when the communication apparatus is a first network element), or, to implement the method in the second aspect or any of the possible implementation manners (for example, when the communication apparatus is an access network device), or, to implement The method of the third aspect above (eg, when the communication device is a policy control function network element), or to implement the method of the fourth aspect (eg, when the communication device is a session management function network element).
  • an embodiment of the present application provides a communication system, including a first network element and an access network device, where the first network element can execute the method of the first aspect or any possible implementation manner, the connection The network access device may execute the method of the second aspect or any possible implementation manner.
  • an embodiment of the present application provides a communication system, including a policy control function network element and a session management function network element, the policy control function network element can execute the method of the third aspect, and the session management function network element can The method of the fourth aspect is performed.
  • embodiments of the present application provide a computer program product comprising instructions, which, when run on a computer, cause the computer to execute the method of the first aspect or any possible implementation, or the second aspect Or the method of any possible embodiment, or the method of the embodiment of the third aspect, or the method of the embodiment of the fourth aspect.
  • the embodiments of the present application provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the processor causes the processor to perform the first aspect or any one of the possible , or the method of the second aspect or any possible embodiment, or the method of the embodiment of the third aspect, or the method of the embodiment of the fourth aspect.
  • Fig. 1 is the structure diagram of RFID communication system
  • Fig. 2 is the flow chart of the inventory operation of tags in RFID communication
  • Fig. 3 is the flow chart of the read-write operation of the tag in RFID communication
  • FIG. 4 is a schematic diagram of an RFID transceiver and separation architecture
  • FIG. 5 is a schematic diagram of the architecture of a 5G communication system to which the embodiments of the present application are applicable;
  • FIG. 6 is a schematic diagram of a network architecture of RFID and cellular fusion applicable to an embodiment of the present application
  • FIG. 7 is a schematic diagram of another network architecture of RFID and cellular fusion applicable to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another network architecture of RFID and cellular fusion applicable to the embodiment of the application.
  • FIG. 9 is a schematic diagram of another network architecture of RFID and cellular fusion applicable to the embodiment of the application.
  • FIG. 10 is a schematic flowchart of RFID charging provided according to an embodiment of the present application.
  • FIG. 11 is another schematic flowchart of RFID charging provided according to an embodiment of the present application.
  • FIG. 12 is another schematic flowchart of RFID charging provided according to an embodiment of the present application.
  • FIG. 13 is another schematic flowchart of RFID charging provided according to an embodiment of the present application.
  • FIG. 15 is a schematic flowchart of RFID charging provided according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a communication apparatus provided according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another communication apparatus provided according to an embodiment of the present application.
  • Radio frequency identification technology is an automatic identification technology in wireless communication.
  • the middleware device is hereinafter referred to simply as middleware.
  • the RFID system architecture includes a tag 101 , a reader 102 , a middleware 103 and a server 104 .
  • the tag 101 is attached to the object to identify the target object, the information of the object is stored in the tag, and each tag has a globally unique Electronic Product Code (EPC), and the tags are divided into passive tags and active tags.
  • EPC Electronic Product Code
  • the reader 102 reads the information stored in the specified tag through the radio frequency signal according to the instruction issued by the server, and if it is a read operation, the reader reads the data in the storage area of the tag.
  • the reader may also have the function of writing. In other words, the reader 102 may also be called a reader at this time. If it is a write operation, the reader will write the data into the storage area of the tag.
  • the middleware 103 is a functional piece that connects the reader and the server respectively, and has the functions of filtering information and collecting information. In addition, the middleware can also reduce the security risk when the server is attacked.
  • the server 104 issues an RFID operation instruction according to requirements, and obtains the final result of the RFID tag execution, including but not limited to the type of tags read, the number of tags, and whether the read operation is successful.
  • the server 104 may be located in a local network.
  • the server 104 may also be referred to as an application system.
  • middleware 103 and the server 104 may be co-located, or the middleware 103 may be deployed independently of the server 104, and these two deployment methods do not affect the respective functions of the middleware and the server.
  • the main application scenarios of RFID include warehouse management, inventory, logistics, etc.
  • the processes related to RFID technology include inventory process and read-write process.
  • the inventory process is used for tag management, and the inventory process of tags is to inventory the existing tags.
  • Figure 2 shows the inventory process for tags.
  • a reader (such as the reader 102 in FIG. 1) sends a selection command to a tag (such as the tag 101 in FIG. 1).
  • the reader when the reader receives the inventory command sent by the server (or, the inventory command can be sent by the server to the reader through middleware), a selection command is generated, and the selection command carries the range of tags (such as EPC codes of certain specific ranges). ).
  • the tag After receiving the selection command, the tag determines whether it belongs to the range of the tag indicated by the selection command. If the tag belongs to the range of the indicated tag, it will feedback information after receiving the query command subsequently. If the tag does not belong to the range of tags that should be judged, it is not necessary to feed back information after receiving the query command.
  • step 202 the reader sends a query command to the tags within the specified range.
  • step 203 when the tag finds that it belongs to the tag range in the selection command, it feeds back a random number to the reader.
  • the tag can feed back a random number to the reader in a competitive manner, for example, the random number can be a 16-bit random number (RN16).
  • the random number can be a 16-bit random number (RN16).
  • step 204 after the reader receives the random number sent from the tag, it sends a response command to the tag, and the command contains the random number received in step 203.
  • step 205 when the tag receives the response command sent by the reader and verifies that the random number is correct, it feeds back its EPC code to the reader.
  • the above is the inventory process for a range of labels.
  • FIG. 3 shows a process of reading and writing tags. Steps 301 to 305 in this process can refer to the description of steps 201 to 205 in FIG. 2 , which belong to the inventory operation process. The difference between step 302 and step 202 in FIG. 2 is that the label for receiving the query command in step 302 is the label of a specific EPC code.
  • the read and write process includes the following steps:
  • step 306 the reader sends a request random number command (Req_RN) to the tag, wherein the request random number command carries the random number received in step 303, such as RN16;
  • step 307 the tag verifies that the random number is correct, and sends the handle to the reader.
  • the handle is used to identify the identifiers of different readers.
  • the read command or the write command carries the handle;
  • the reader sends a read command or a write command to the tag, and the read command or write command carries a handle. If it is a write command, the write command also carries the data to be written into the tag storage area;
  • step 309 if step 308 is a read command, the tag feeds back the data in its own storage area while carrying the handle described in step 307. If step 308 is a write command, this step may not be required.
  • FIG. 4 shows an RFID transceiver separation architecture.
  • the reader 102 in the RFID system shown in Figure 1 can be split into two components: a reader 401 and an excitation source 402.
  • the excitation source 402 can be integrated in a user equipment (user equipment, UE).
  • the reader 401 sends the downlink message of the tag to the excitation source 402 through the dedicated frequency spectrum, and then the excitation source 402 sends the message to the tag 403; the tag 403 uses the RFID
  • the air interface directly sends the upstream message to the reader 401 .
  • the farthest communication distance between the reader and the tag is only ten meters, and the architecture shown in FIG.
  • the excitation source 402 separates transceivers, by increasing the distance between the reader 401 and the excitation source 402, the range of the covered tag is extended to 100 meters, It also reduces the interference between the uplink and downlink message links on the reader 401 side; and the excitation source 402 does not receive the uplink message compared with the reader that both receives the uplink message and sends the downlink message, which can further reduce the power consumption, so that the excitation source 402 does not receive the uplink message. 402 continuous working time is longer than usual readers.
  • FIG. 5 is a schematic diagram of the network architecture of the 5G system, which includes user equipment (UE), access network (AN) equipment, core network elements, and data network (DN).
  • UE user equipment
  • AN access network
  • DN data network
  • the user equipment in this application is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the user equipment may also be referred to as a terminal, and may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal , wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the label in this application can exist in an independent form, can also be integrated in the above-mentioned terminal, can also be integrated in a sensor, etc. In the following, the term “label” can be interchanged with "terminal”, which does not affect the essence of this application. content.
  • the access network device may also be a radio access network (radio access network, RAN) device.
  • the main function of the RAN equipment is to control the user to access the mobile communication network through wireless.
  • RAN is a part of a mobile communication system. It implements a wireless access technology. Conceptually, it resides between some device (such as a mobile phone, a computer, or any remote control machine) and provides a connection to its core network.
  • RAN equipment includes but is not limited to: 5G (g nodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), Base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BaseBand Unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc., in addition, can also include wireless fidelity (wireless fidelity, wifi) access point (access point, AP) and the like.
  • the RAN equipment may also be referred to as a RAN device, hereinafter referred to as RAN for short.
  • the core network element may include at least one of the following network elements: a user plane function (UPF) network element, an access and mobility management function (AMF) network element, a session Management function (session management function, SMF) network element, policy control function (policy control function, PCF) network element and charging function (Charging Function, CHF) network element.
  • UPF network element, SMF network element, AMF network element, CHF network element and PCF network element may also be referred to as UPF device, SMF device, AMF device, CHF device and PCF device, hereinafter referred to as UPF, SMF, AMF, CHF and PCF.
  • Core network network elements can be divided into control plane network elements and user plane network elements.
  • the user plane network element is the UPF, which is mainly responsible for packet data packet forwarding, quality of service (QoS) control, and charging information statistics. Charging information may also be referred to as charging data, charging message, charging content, etc., and is collectively referred to as charging information in this application.
  • the network element of the control plane is mainly responsible for the interaction of the business process, the delivery of the data packet forwarding policy and the QoS control policy to the user plane.
  • the control plane network elements involved in the embodiments of this application mainly include these network elements: AMF, SMF, PCF, and CHF. Among them, AMF is mainly responsible for user access and mobility management.
  • the SMF is responsible for managing the creation and deletion of user protocol data unit (PDU) sessions, and maintaining the PDU session context and user plane forwarding pipe information.
  • PCF is used to generate and manage users, sessions, and QoS flow processing policies.
  • CHF is responsible for user billing, quota credit, etc. It also supports integrated online and offline billing.
  • the Charging Trigger Function (CTF) is embedded in the charging-related network elements, such as SMF and AMF, and collects charging information about the UE's use of network resources in the charging-related network elements.
  • network elements can be co-located.
  • the access and mobility management network element may be co-located with the session management network element; the session management network element may be co-located with the user plane network element.
  • the network architecture shown in FIG. 5 also indicates the communication interfaces between various network elements.
  • the communication interfaces involved in the embodiments of the present application include: N2, the communication interface between the access network device and the AMF; N3, the access network device The communication interface with UPF is used to transmit user data; N4, the communication interface between SMF and UPF, is used for policy configuration of UPF, etc.; N6, the communication interface between DN and UPF.
  • N2 the communication interface between the access network device and the AMF
  • N3 the access network device
  • the communication interface with UPF is used to transmit user data
  • N4 the communication interface between SMF and UPF, is used for policy configuration of UPF, etc.
  • N6 the communication interface between DN and UPF.
  • the communication interface between each network element may also have other names, which are not limited in this application.
  • RFID technology or passive IoT technology can be integrated with the network architecture of 5G systems. If an enterprise uses traditional RFID technology or passive IoT technology, a dedicated network system should be deployed. Therefore, the integration of RFID technology and cellular network, or the integration of passive IoT technology and cellular network, can reduce the two systems. deployment and operation costs.
  • the RFID billing is completed by the CHF. After the billing is triggered, the network element that supports the CTF sends the billing data to the billing function network element through the billing information. Sending, the charging function network element saves the charging information and creates a charging data record (CDR, Charging Data Record). After the charging is completed, the charging function network element sends a message corresponding to the charging information to the network element supporting the CTF.
  • CDR Charging Data Record
  • RFID or passive IoT Due to the small amount of signaling traffic transmitted by RFID or passive IoT, it is not suitable for billing by statistical traffic; RFID or passive IoT services do not occur continuously, so it is not suitable for billing by statistical time, nor is it suitable for charging by statistical time.
  • the billing method is based on statistics of traffic and time; in addition, for RFID or passive IoT services, the number of request messages cannot reasonably quantify the network resources occupied by RFID or passive IoT services, so the billing method is based on the number of statistical messages There is also no reasonable billing for RFID.
  • FIG. 6 is a schematic diagram of a network architecture of RFID and cellular fusion applicable to the embodiment of the present application.
  • the middleware 605 is respectively connected to the RAN and the server, and the middleware is independent of the core network.
  • the middleware 605 is connected to multiple RANs.
  • the RAN integrates the functionality of the reader 603 (eg reader 102 in FIG. 1 or reader 401 in FIG. 4 ).
  • the server 606 sends the downlink message to the middleware 605, then the middleware 605 sends the downlink message to the RAN (reader 603), and then the RAN (reader 603) sends the downlink message to the tag 601 (if When the incentive source 602 is deployed, the RAN first sends the downlink message to the incentive source 602, and then the incentive source 602 sends the downlink message to the tag 601).
  • the tag 601 sends the upstream message to the RAN (reader 603 ), the RAN sends the upstream message to the middleware, and then the middleware 605 sends the upstream message to the server 606 .
  • the core network does not participate in RFID communication.
  • FIG. 7 is a schematic diagram of another network architecture of RFID or passive IoT and cellular fusion to which the embodiments of the present application are applicable.
  • the middleware 704 is co-located with the UPF.
  • the middleware 704 acts as a function of the UPF.
  • the RFID data is transmitted through the user plane channel, and the data is transmitted between the server and the UPF through the N6 interface.
  • the server 705 sends downlink messages to the UPF (that is, the co-located middleware 704 ) through the N6 interface, and then the UPF sends downlink messages to the RAN (reader 703 ), and finally the RAN (reader 703 ) Send the downlink message to the tag 701 (if the incentive source 702 is deployed, the RAN first sends the downlink message to the incentive source 702, and then the incentive source 702 sends the downlink message to the tag 701).
  • the UPF that is, the co-located middleware 704
  • the RAN sends downlink messages to the RAN (reader 703 )
  • the RAN sends the downlink message to the tag 701 (if the incentive source 702 is deployed, the RAN first sends the downlink message to the incentive source 702, and then the incentive source 702 sends the downlink message to the tag 701).
  • the uplink message is directly sent by the tag 701 to the reader 703, and then sent by the RAN (the reader 703) to the UPF (the middleware 704) through the user plane channel, and then sent by the UPF (the middleware 704) to the server through the N6 interface.
  • FIG. 8 is a schematic diagram of another network architecture of RFID and cellular fusion applicable to the embodiment of the present application.
  • the middleware 804 is deployed in the data network, that is, the UPF communicates with the middleware 804 through the N6 interface.
  • the server 805 sends a downlink message to the middleware 804, the middleware 804 sends a downlink message to the UPF through the N6 interface, and then the UPF sends a downlink message to the RAN (reader 803), and finally the RAN (reader 803) 803) Send a downlink message to the tag 801 (if the excitation source 802 is deployed, the RAN first sends the downlink message to the excitation source 802, and then the excitation source 802 sends the downlink message to the tag 801).
  • the tag 801 directly sends the uplink message to the RAN (reader 803), and then the RAN (reader 803) sends the uplink message to the UPF through the user plane channel, and then the UPF sends the uplink message to the middleware 804 through the N6 interface, Finally, the middleware 804 sends the upstream message to the server 805 .
  • middleware and server can be co-located. When the middleware and the server are co-located, the interaction between the two devices provided by the embodiments of the present application becomes the internal operation of the co-located device or can be omitted.
  • FIG. 9 is a schematic diagram of another network architecture of RFID and cellular fusion applicable to the embodiment of the present application.
  • the middleware 904 is deployed as a network element in the core network and is independently deployed.
  • the middleware 904 may be a control plane network element deployed in the core network.
  • the downlink message is sent by the server 905 to the middleware 904, and then the middleware 904 sends the downlink message to the RAN (reader 903).
  • the middleware 904 may first send the downlink message to the AMF, and then the AMF may send the downlink message to the RAN (reader 903).
  • the middleware 904 may first send the downlink message to the SMF, then the SMF sends the downlink message to the AMF, and then the AMF sends the downlink message to the RAN (reader 903). Regardless of the above method, after the RAN receives the downlink message, the RAN (reader 903 ) sends the downlink message to the tag 901 . If the incentive source 902 is deployed, the RAN (reader 903) first sends the downlink message to the incentive source 902, and then the incentive source 902 sends the downlink message to the tag 901.
  • the uplink message is directly sent by the tag 901 to the RAN (reader 903 ), and then the RAN (reader 903 ) sends the uplink message to the middleware 904 .
  • the RAN (reader 903) may first send the upstream message to the AMF, and then the AMF may send the upstream message to the middleware 904; or, the RAN (reader 903) may first send the upstream message to the AMF, and then The AMF sends the upstream message to the SMF, and then the SMF sends the upstream message to the middleware 904 .
  • the middleware 904 sends the upstream message to the server 905 .
  • the network architecture described in the embodiments of the present invention is to more clearly describe the technical solutions of the embodiments of the present invention, and does not constitute a limitation on the technical solutions provided by the embodiments of the present invention. With the emergence of new business scenarios, the technical solutions provided by the embodiments of the present invention are also applicable to similar technical problems.
  • the charging method is described below by taking RFID technology as an example, but the charging method in this application is not limited to RFID technology, and can also be applied to technologies such as passive Internet of Things.
  • FIG. 10 shows a charging method under an RFID cellular fusion network architecture provided according to an embodiment of the present invention.
  • the middleware obtains charging information
  • the charging information includes type information and quantity information
  • the type information indicates the operation type
  • the quantity information indicates the number of tags that perform the operation of the operation type
  • the middleware reports the accounting information to the CHF. fee information.
  • the middleware supports CTF, and the middleware directly interacts with CHF to complete charging.
  • FIG. 10 can be applied to the cellular fusion architecture of FIG. 6 , FIG. 8 or FIG. 9 .
  • the method includes the following steps:
  • the server sends an RFID operation instruction to the middleware.
  • the operation instruction can be used to indicate the operation type of the RFID, for example, the operation type includes an inventory operation, a read operation, or a write operation, and the like.
  • the operation instruction contains the identification of the tag on which the RFID operation should be performed.
  • the tag identification can be a set of EPC codes, or a number or character string used to identify the tag. For example, if the tag identification set is 1-100, the tag identification of the tag to which the RFID operation is performed should belong to 1-100. For example, the tag identification is 1; then the tag identification of the tag that performs the RFID operation is 1.
  • the tag identifier is an EPC code set
  • the EPC code set may be urn:epc:id:sgtin:0614141.112345.400-urn:epc:id:sgtin:0614141.112345.600, where urn:epc:id is an EPC code
  • sgtin means that the object identified by the label is a commodity
  • 0614141 means the manufacturer that produced the label
  • 112345 means a specific type of commodity, such as clothes
  • 400 and 600 are both serial numbers, which are used to identify the label itself.
  • the middleware parses the operation instruction, and sends the RFID operation instruction to the RAN corresponding to the tag identified by the tag identifier in step S1001.
  • the middleware when the method is applied to the network architecture shown in Fig. 6, since the RAN is directly connected to the middleware, the middleware directly sends operation instructions to the RAN; when the method is applied to the network architecture shown in Fig. 8, the middleware The middleware forwards the operation instructions to the RAN through the UPF; when the method is applicable to the network architecture shown in Figure 9, and the middleware is used as the control plane network element of the core network, the middleware can send the operation instructions to the RAN through the AMF, or through the SMF and the AMF in turn. operating instructions.
  • the RAN After receiving the operation instruction, the RAN executes the RFID operation.
  • the RAN interacts with tags to complete an inventory operation, a read operation, or a write operation.
  • tags to complete an inventory operation, a read operation, or a write operation.
  • the operation of the RFID also involves the interaction of the RAN with the excitation source.
  • the RAN sends the downlink message to the tag through the excitation source, and the tag directly sends the uplink message to the RAN. If the excitation source does not exist, the uplink and downlink messages are directly interacted with the tag by the RAN.
  • the RAN receives the tag message.
  • the tag message may be an uplink message sent by the tag to the RAN, and there may be one or more tags.
  • tag messages include tag identification.
  • the uplink message sent by the tag may further include the operation type performed by the tag.
  • the tag may be operated periodically, in which case the RAN will receive the tag message periodically during the execution of the RFID operation.
  • the RAN may receive the tag message from the tag during the RFID operation.
  • the RAN sends the first message to the middleware.
  • the RAN directly sends the first message to the middleware.
  • the RAN sends the middleware through the UPF.
  • Sending the first message when this embodiment is applicable to the network architecture shown in FIG. 9 , the RAN sends the first message to the middleware through the AMF, or through the AMF and the SMF in sequence.
  • the RAN may also send the second message to the middleware.
  • the middleware obtains charging information according to a message received from the RAN (for example, the first message, and optionally, the second message).
  • the billing information includes type information indicating the operation type of the first operation and quantity information, the quantity information indicating the number of tags on which the first operation is performed.
  • the quantity information in this application refers to the quantity information obtained by the tag that performs a specific operation without being repeatedly calculated, or, when the tag that performs a specific operation is reported multiple times, the Quantity information integrated after deduplication of double-counted quantities.
  • the quantity indicated by the quantity information obtained by the middleware is processed in two steps: the first step is deduplication, and the second step is integration.
  • the first step is deduplication
  • the second step is integration.
  • both can be performed by the RAN, or by the RAN and the middleware respectively, or both by the middleware.
  • the above steps S1004 to S1006 can be implemented in the following three specific ways, which will be described in detail below. description of:
  • both the steps of deduplication and integration are performed by the RAN.
  • the RAN deduplicates and integrates the tag messages reported by the tags received, obtains the type information of the first operation and the quantity information indicating that the first operation is performed, and passes the first operation in step S1005.
  • the message sends the type information and quantity information to the middleware. Therefore, in step S1006, the middleware can directly acquire the charging information according to the type information and quantity information contained in the first message.
  • the above implementation manner may be applicable to a scenario where the middleware is connected to one RAN.
  • the RAN may count the tags in a certain period of time during the inventory operation. Therefore, the RAN may obtain at least two pieces of information in the tag message in step S1004.
  • the RAN receives two pieces of information through step S1004, wherein the first piece of information indicates that the tags to be counted include label 1, label 3 and label 4, and the second piece of information indicates that the labels to be counted include label 1, label 2 , Label 3 and Label 5.
  • the RAN removes the double-counted label 1 and label 3 in the two pieces of information, and integrates the deduplicated label 1, label 2, label 3, label 4, and label 5 to obtain the number of labels that have been counted as 5. Therefore, the type information reported by the RAN in step S1005 is used to indicate that the operation type is an inventory operation, and the quantity information is 5, thereby indicating that a total of 5 tags have been subjected to an inventory operation.
  • integration can also be referred to as summarizing, statistic or counting, which is not limited in this application.
  • the first message may further include a label identifier on which the first operation is performed, and the middleware further performs deduplication and integration according to the label identifier. That is to say, multiple RANs (for example, the first RAN and the second RAN) respectively send their respective first messages (or the first RANs) to the middleware through step S1005 according to the tag messages received from their respective ranges. The first message is sent, and the second RAN sends the second message).
  • the first messages sent by multiple RANs all include the type information of the first operation reported by the tags in their respective ranges and the non-repetitive tag identifier indicating that the first operation is performed.
  • the middleware further performs deduplication and integration according to the type information of the first operation obtained from the multiple RANs and the non-duplicated label identifier of the first operation to be performed, thereby obtaining charging information.
  • the middleware removes the duplicated label 1 and label 3 in the two pieces of information, and integrates the deduplicated label 1, label 2, label 3, label 4 and label 5 to obtain the number of labels that are counted. is 5. Therefore, in step S1006, the middleware obtains the type information in the billing information indicating that the operation type is an inventory operation, and the quantity information is 5, thereby indicating that a total of 5 tags have been subjected to an inventory operation.
  • the RAN performs the step of deduplication, and the middleware performs the step of integration.
  • the RAN deduplicates the uplink message sent by the received tag, obtains the type information of the first operation and the tag identification information indicating that the first operation is performed, and sends the message to the middleman through the first message in step S1005. file to send the type information and identification information. Therefore, in step S1006, the middleware may determine the number of tags to which the first operation is performed according to the type information and identification information contained in the first message, so as to obtain charging information.
  • the above implementation manner may be applicable to a scenario where the middleware is connected to one RAN.
  • the RAN may count the tags in a certain period of time during the inventory operation. Therefore, the RAN obtains at least two pieces of information from the tag message in step S1004.
  • the RAN receives two pieces of information through step S1004, wherein the first piece of information indicates that the tags for performing the inventory operation include tag 1, tag 3 and tag 4, and the second copy of information indicates that the tags for performing the inventory operation include tag 1, tag 2, and tag 4. 3 and label 5.
  • the RAN removes the repeatedly calculated tag 1 and tag 3 in the two pieces of information, and obtains the identifications of the tags to be counted as tag 1, tag 2, tag 3, tag 4, and tag 5.
  • the type information reported by the RAN through step S1005 is used to indicate that the operation type is an inventory operation, and the identification information is label 1, label 2, label 3, label 4 and label 5, thereby indicating label 1, label 2, label 3, label 4 and tag 5 was performed an inventory operation.
  • the middleware determines the quantity information according to the type information and identification information reported in step S1005, the type information in the charging information indicates that the operation type is an inventory operation, and the quantity information is 5, thereby indicating that a total of 5 tags have been performed an inventory operation.
  • the middleware performs de-duplication and integration according to type information and identification information reported by multiple RANs (eg, the first RAN and the second RAN). That is to say, the first RAN and the second RAN both send first messages to the middleware through step S1005 according to the tag messages received from their respective ranges, where the first messages are the type information of the first operation and the indication of the respective The non-repeated tag identifier in the range where the first operation was performed.
  • the label identifiers reported by multiple RANs may also be duplicated.
  • step S1006 the middleware further performs deduplication and integration according to the type information of the first operation obtained from multiple RANs and the non-duplicated tag identifier indicating that the first operation is to be performed, thereby obtaining charging information.
  • the middleware deduplication operation is similar to the RAN deduplication operation, and will not be repeated here.
  • the middleware removes the duplicated label 1 and label 3 in the two pieces of information, and integrates the deduplicated label 1, label 2, label 3, label 4 and label 5 to obtain the number of labels that are counted. is 5. Therefore, in step S1006, the middleware determines that the type information in the charging information indicates that the operation type is an inventory operation, and the quantity information is 5, thereby indicating that a total of 5 tags have been subjected to an inventory operation.
  • the steps of deduplication and integration are performed by middleware.
  • the RAN sends the tag message received in step S1004 to the middleware directly through the first message in step S1005, where the first message includes type information of the first operation and tag identification information indicating that the first operation is performed.
  • the RAN also sends the second message.
  • the middleware acquires charging information according to the type information and identification information contained in the first message (optionally, the first message and the second message).
  • the above implementation manner may be applicable to a scenario where the middleware is connected to one or more RANs.
  • the middleware first acquires at least two pieces of information, wherein each piece of information includes type information of the first operation and identification information indicating the RFID tag on which the first operation is performed.
  • the at least two pieces of information may be obtained from one message sent by one RAN (for example, the above-mentioned first message), or may be multiple messages sent by the same RAN (for example, the above-mentioned first message and second message) ), or it may be obtained from multiple messages sent by different RANs respectively, which is not limited in this application.
  • the middleware deduplicates and integrates the two pieces of information. How to deduplicate and integrate middleware can refer to the previous description, and will not be repeated here.
  • the RAN may count the tags in a certain period of time during the inventory operation. Therefore, the RAN obtains at least two pieces of information from the tag messages reported by the tags in step S1004.
  • the RAN receives two pieces of information through step S1004, wherein the type information in the first piece of information indicates that the operation to be performed is an inventory operation, and the identification information indicates that the label identifiers of the inventory operation to be performed include label 1, label 3 and label 4.
  • the type information in the secondary information indicates that the operation to be performed is an inventory operation, and the identification information indicates that the label identifiers for which the inventory operation is performed include label 1 , label 2 , label 3 and label 5 .
  • the RAN sends the two pieces of information to the middleware in the first message through step S1005.
  • the RAN sends the first piece of information to the middleware through the first message, and the RAN sends the second piece of information to the middleware through the second message. pieces.
  • the middleware first deduplicates according to the type information and identification information reported in step S1005, the middleware removes the duplicated label 1 and label 3 in the two pieces of information, and deduplicates the label 1, label 2, label 3, Tag 4 and tag 5 are integrated, and the number of tags to be counted is 5.
  • the type information in the charging information finally obtained by the middleware indicates that the operation type is an inventory operation, and the quantity information is 5, thereby indicating that a total of 5 tags have been subjected to an inventory operation.
  • the middleware performs de-duplication and integration according to type information and identification information reported by multiple RANs (eg, the first RAN and the second RAN). That is to say, the first RAN and the second RAN respectively send a first message to the middleware through step S1005 according to the tag messages received from their respective ranges, where the first messages are the type information of the first operation and indicate their respective ranges The tag within which the first operation was performed is identified.
  • the label identifiers reported by multiple RANs may also be duplicated, and a certain label may be in the coverage of the first RAN and the second RAN at the same time. Therefore, in step S1006, the middleware further performs deduplication and integration according to the type information of the first operation obtained from multiple RANs and the non-duplicated tag identifier indicating that the first operation is to be performed, thereby obtaining charging information.
  • the middleware removes the duplicated label 1 and label 3 in the two pieces of information, and integrates the deduplicated label 1, label 2, label 3, label 4 and label 5 to obtain the number of labels that are counted. is 5. Therefore, in step S1006, the middleware obtains the type information in the billing information indicating that the operation type is an inventory operation, and the quantity information is 5, thereby indicating that a total of 5 tags have been subjected to an inventory operation.
  • step S1007 the middleware may also acquire charging information in other manners, which are not limited in this application. After that, the middleware executes step S1007.
  • the middleware sends a charging data request to the CHF, where the charging data request carries the charging information in step S1006.
  • the CHF receives the charging information and creates a CDR according to the charging information.
  • the CHF sends a charging data response to the middleware, where the charging data response is used to notify the middleware of the result of whether the charging data request is completed or not.
  • the middleware sends the RFID operation result to the server, where the operation result is used to respond to the RFID operation instruction issued by the server to the middleware in step S1001.
  • the operation result of the RFID includes the operation type of the tag, and may also include at least one of the identification of the tag to perform the operation or the number of tags to perform the operation; optionally, if the operation type is a read operation, the operation result Also includes the data read from the tag storage area, which can be done after S1005.
  • the middleware described in this embodiment can obtain the type information indicating the operation type of the first operation and the number of tags actually performed the first operation, and report the billing information to the CHF, so that the billing information matches the RFID service better , the billing behavior is more reasonable.
  • the billing model based on event billing will characterize the number of times of service execution according to the number of RFID operation instructions issued by the server, and perform billing based on this, but the device supporting CTF does not know what the operation order is and cannot obtain it.
  • the information of the operation type performed on the tag, and the quantity information of the tags that need to perform the operation cannot be obtained, so that the charging cannot be performed according to the actually used network resources.
  • the server sends an instruction to perform an inventory operation and another instruction to perform a write operation, and each instruction charges 10 yuan. Therefore, the user will be charged a total of 20 yuan for the inventory operation. Yuan. Therefore, with the solution of the embodiment of the present application, since the acquisition of the operation type and the number of tags performed on the operation type can better reflect the actually used network resources, the charging method based on the present application is more reasonable.
  • the middleware supporting CTF directly reports the charging information to the CHF, so that the charging information can not be forwarded through other network elements, which reduces the signaling overhead on the network side and reduces changes to other network elements.
  • the embodiment shown in FIG. 10 is described by taking RFID as an example, and the solution shown in FIG. 10 is also applicable to other technologies such as passive Internet of Things technology.
  • the middleware in this embodiment is the first network element in the passive IoT technology, and the tag may be a terminal in the passive IoT technology,
  • the operation instruction may be an operation instruction in the passive Internet of Things technology.
  • FIG. 11 and FIG. 12 in this application show a charging method under an RFID cellular fusion architecture provided according to an embodiment.
  • the SMF supports CTF, and the SMF interacts with the CHF to implement the charging function, so that the middleware does not need to support CTF.
  • the embodiment shown in FIG. 11 applies to the network architecture shown in FIG. 7 , that is, the scenario in which the middleware and UPF are co-located; while the embodiment shown in FIG. 12 applies to the network architecture shown in FIG. 9 , that is, the middleware is used as the core network
  • the control plane NEs are deployed independently.
  • the embodiment shown in Figure 11 includes the following steps:
  • the RAN completes the tag registration process, and the reader also completes the registration process.
  • the RAN can initiate a registration request message to the AMF on behalf of the tag to complete the tag registration process.
  • the purpose of RAN generation label registration is to establish a channel with a control plane network element or a channel with a user plane network element for the label generation, and the channel is used for the transmission of the label's uplink message or downlink message.
  • the RAN may complete a device-level registration process, that is, the RAN may establish a shared control plane channel or user plane channel for transmitting uplink or downlink data of tags within the coverage of the RAN.
  • the incentive source if the incentive source is deployed in the system, the incentive source also completes the registration process as the user equipment.
  • the RAN sends a session establishment request to the AMF.
  • the RAN sends a PDU session establishment request to the AMF.
  • the AMF sends a session context creation request to the SMF.
  • the SMF feeds back a response message to the AMF.
  • the SMF sends a policy and charging control (Policy and Charging Control, PCC) rule request message to the PCF.
  • Policy and Charging Control, PCC Policy and Charging Control
  • the PCC rule request message includes access type information, and the access type information is used to indicate the RFID type.
  • the access type information is used to indicate the passive IoT type.
  • the PCF identifies the RFID-related according to the access type information, and feeds back the RFID-related PCC rules to the SMF.
  • the PCC rule includes a type parameter and a quantity parameter, where the type parameter and the quantity parameter are used to instruct the SMF to notify the UPF to report the type of RFID operation and the number of tags that perform the RFID operation.
  • the SMF sends a usage reporting rule (URR) to the UPF.
  • URR usage reporting rule
  • the SMF generates an N4 rule according to the PCC rule sent by the PCF, where the N4 rule includes a URR, where the URR instructs the UPF to report the RFID operation type and the number of tags that perform the RFID operation.
  • the URR includes the above-mentioned type parameter and the above-mentioned quantity parameter, thereby instructing the UPF to report the RFID operation type and the number of tags on which the RFID operation is performed.
  • the SMF can deliver the N4 rule to the UPF through the N4 interface.
  • S1107 , RAN, AMF, PCF, UDM, UPF, and SMF complete the session establishment process.
  • the server sends an RFID operation instruction to the UPF.
  • the operation instruction can be used to indicate the operation type of the RFID, for example, the operation type includes an inventory operation, a read operation, or a write operation.
  • This instruction contains the identification of the tag on which the RFID operation should be performed.
  • the tag identification may be a set of EPC codes.
  • the UPF (the middleware is co-located with the UPF) sends an RFID operation instruction to the corresponding RAN.
  • the RAN performs an RFID operation on the tags within the set range according to the RFID operation instruction. If the excitation source is not deployed in the system, the RAN directly performs the RFID operation on the tags within the set range. If the excitation source is deployed in the system, the RAN performs the RFID operation on the tags within the set range through the excitation source.
  • the RAN receives a label message, where the label message is an uplink message sent by the label to the RAN.
  • the RAN sends the first message to the middleware (which may also be understood as UPF).
  • middleware which may also be understood as UPF.
  • the RAN also sends the second message to the middleware (which may also be understood as UPF).
  • middleware which may also be understood as UPF.
  • the middleware (which may also be understood as UPF) acquires charging information according to the first message (optionally, the second message) received from the RAN.
  • the billing information includes type information indicating the operation type of the first operation and quantity information, the quantity information indicating the number of RFID tags on which the first operation is performed.
  • steps S1108 to S1113 reference may be made to the description of steps S1001 to S1006 in FIG. 10 , which will not be repeated here.
  • the UPF reports the operation type of the first operation and the number of RFID tags that perform the first operation to the SMF.
  • the SMF supporting the CTF sends a charging data request to the CHF, where the charging data request carries the operation type of the first operation and the number of RFID tags on which the first operation is performed.
  • the CHF creates a CDR.
  • step S1118 the middleware sends the operation result of the RFID to the server.
  • step S1010 in FIG. 10 This step may be performed after step S1112.
  • the middleware according to the embodiment shown in FIG. 11 can obtain the type information indicating the operation type of the first operation and the information on the number of tags actually performed the first operation, and report the charging information to the CHF, according to the operation performed by the tag
  • the type and the number of tags actually executed are billed, so that the billing result is more accurate, matches the RFID service better, and the billing behavior is more reasonable.
  • the middleware can use the channel between the UPF and the SMF (eg, the N4 interface) to report the URR to the SMF.
  • the type parameter and quantity parameter are added to the PCC rule.
  • the type parameter and quantity parameter are used to instruct the SMF to notify the UPF to report the operation type and the number of tags that are executed, thereby reducing the need for RFID or passive IoT, etc. Changes to the device on the core network side due to the function of service billing.
  • the embodiment shown in Figure 12 includes the following steps:
  • step S1201 the RAN completes the registration process of the tag, and the reader also completes the registration process.
  • step S1101 in FIG. 11 reference may be made to the description of step S1101 in FIG. 11 , which will not be repeated here.
  • the server sends an RFID operation instruction to the middleware deployed in the core network.
  • the operation instruction may be used to indicate the operation type of the RFID, for example, the operation type is an inventory operation, a read operation, or a write operation.
  • the instruction contains the tag identification for which the RFID operation should be performed; alternatively, the tag identification may be a set of EPC codes.
  • the middleware as a control plane network element, sends the RFID operation instruction to the SMF and the AMF in sequence, and finally the AMF sends the RFID operation instruction to the corresponding RAN.
  • the RAN performs an RFID operation on the tags within the set range according to the RFID operation instruction.
  • the RAN receives the tag message, where the tag message is an uplink message sent by the tag to the RAN.
  • the RAN sends the first message to the middleware through the AMF and the SMF in sequence through the control plane channel.
  • the RAN also sends the second message to the middleware.
  • the middleware acquires charging information according to the first message (optionally, the second message) received from the RAN.
  • the billing information includes type information indicating the operation type of the first operation and quantity information, the quantity information indicating the number of RFID tags on which the first operation is performed.
  • steps S1205 to S1207 reference may be made to the description of steps S1004 to S1006 in FIG. 10 , which will not be repeated here.
  • the middleware reports the operation type of the first operation and the number of RFID tags on which the first operation is performed to the SMF.
  • the SMF supporting the CTF sends a charging data request to the CHF, where the charging data request carries the operation type of the first operation and the number of RFID tags that perform the first operation.
  • the CHF creates a CDR.
  • the CHF After the CHF completes charging, it sends a charging data response to the SMF, where the charging data response is used to notify the SMF of the result of whether the charging data request is completed or not.
  • the middleware sends the operation result of the RFID to the server.
  • the middleware sends the operation result of the RFID to the server.
  • This step may be performed after step S1206.
  • the middleware can obtain the type information indicating the operation type of the first operation and the number of tags actually performed the first operation, and report the charging information to the CHF.
  • the number of tags executed is billed, so that the billing result is more accurate, the billing information is more matched with the RFID service, and the billing behavior is more reasonable.
  • the embodiment of the present application provides another charging method under the RFID cellular fusion architecture.
  • the cellular fusion architecture of FIG. 9 is applied.
  • the middleware reports the charging data to the AMF supporting CTF, and the AMF and the CHF interaction completes billing.
  • the method includes the following steps:
  • step S1301 the RAN completes the registration process of the tag, and the reader also completes the registration process.
  • step S1101 in FIG. 11 reference may be made to the description of step S1101 in FIG. 11 , which will not be repeated here.
  • the server sends an RFID operation instruction to the middleware deployed in the core network.
  • the operation instruction can be used to indicate the operation type of the RFID, for example, the operation type includes an inventory operation, a read operation, or a write operation.
  • This instruction contains a set of tag EPC codes that should be subjected to RFID operations.
  • the middleware sends the RFID operation instruction to the AMF, and then the AMF sends the RFID operation instruction to the RAN.
  • the RAN performs the RFID operation on the tags within the set range according to the RFID operation instruction.
  • the RAN receives the tag message, where the tag message is an uplink message sent by the tag to the RAN.
  • the RAN sends the first message to the middleware through the AMF.
  • the RAN also sends the second message to the middleware through the AMF.
  • the middleware acquires charging information according to the first message (optionally, the second message) received from the RAN.
  • the billing information includes type information indicating the operation type of the first operation and quantity information indicating the number of RFID tags on which the first operation is performed.
  • steps S1305 to S1307 reference may be made to the description of steps S1004 to S1006 in FIG. 10 , which will not be repeated here.
  • the middleware reports the operation type of the first operation and the number of RFID tags on which the first operation is performed to the AMF.
  • the AMF supporting the CTF sends a charging data request to the CHF, where the charging data request carries the operation type of the first operation and the number of RFID tags on which the first operation is performed.
  • the CHF creates a CDR.
  • the CHF After the CHF completes the charging, it sends a charging data response to the AMF, where the charging data response is used to notify the AMF of the result of whether the charging data request is completed or not.
  • the middleware sends the operation result of the RFID to the server.
  • the middleware sends the operation result of the RFID to the server.
  • This step may be performed after step S1306.
  • the middleware according to the embodiment shown in FIG. 13 can obtain the type information indicating the operation type of the first operation and the number of tags that actually perform the first operation, and report the charging information to the CHF, according to the operation performed by the tag.
  • the type and the number of tags actually executed are billed, so that the billing result is more accurate, the billing information is more matched with the RFID service, and the billing behavior is more reasonable.
  • the difference between this embodiment and the embodiment shown in FIG. 12 is that there is no SMF participation in the transmission over the control plane channel. In this embodiment, the middleware does not need to support CTF, and meanwhile, changes to the network elements of the core network are reduced.
  • FIG. 14 shows a schematic flowchart of an embodiment of the present application. This schematic will be described in conjunction with FIGS. 10 to 13 .
  • Figure 14 relates to the interaction between the terminal, the first network element and the access network equipment.
  • the terminal is the label in FIGS. 10 to 13
  • the first network element may be the middleware in FIGS. 10 to 13
  • the access network device may be the RAN in FIGS. 10 to 13 .
  • the method includes the following steps:
  • Step S1401 The first network element acquires charging information, where the charging information includes type information and first quantity information.
  • step S1006 in FIG. 10 For this step, reference may be made to the descriptions in step S1006 in FIG. 10 , step S1113 in FIG. 11 , step S1207 in FIG. 12 , and step S1307 in FIG. 13 .
  • this step includes the following situations:
  • the first network element receives the type information and the second quantity information from the access network device, and the second quantity information indicates the second quantity of the terminals of the first set of which the first operation is performed. quantity.
  • the first number is equal to the second number.
  • the first network element receives the type information and the first identification information from the access network device.
  • the first network element determines the first quantity information according to the first identification information.
  • the first network element receives the first information and the second information from the access network device (for example, the first information includes type information and first identification information, and the second information includes type information and second identification information) .
  • the first network element determines the first quantity information according to the first information and the second information.
  • the first network element receives the first information and the second information from at least two access network devices, and the first identification information in the first information is used to indicate the service of the first access network device.
  • the identifiers of the terminals in the first set of the terminals where the first operation is performed, and the second identifier information in the second information is used to indicate the terminals where the first operation is performed among the terminals served by the second access network device.
  • the first network element determines the first quantity information according to the first identification information and the second identification information. For this situation, reference may be made to the implementation of multiple access network devices in the implementation of step S1006 in FIG. 10 .
  • Step S1402 the first network element sends the charging information.
  • This step can include the following situations:
  • the first network element that supports CTF sends the obtained charging information to the CHF.
  • the description in step S1007 in FIG. 10 reference may be made to the description in step S1007 in FIG. 10 .
  • the first network element sends the acquired charging information to the network element or device supporting CTF, and the network element or device supporting CTF sends the charging information to the CHF to complete the interaction.
  • This situation includes the following situations:
  • the first network element sends the acquired charging information to the SMF supporting CTF.
  • the SMF supporting CTF For this step, reference may be made to the description of step S1114 in FIG. 11 and step S1208 in FIG. 12 .
  • the first network element sends the acquired charging information to the AMF supporting CTF.
  • the AMF supporting CTF For this step, reference may be made to the description of step S1308 in FIG. 13 .
  • FIG. 15 shows a schematic flowchart of an embodiment of the present application. This schematic will be described in conjunction with FIGS. 10 to 13 .
  • Figure 15 relates to the interaction between the terminal, the first network element and the access network equipment.
  • the terminal is the label in FIGS. 10 to 13
  • the first network element may be the middleware in FIGS. 10 to 13
  • the access network device may be the RAN in FIGS. 10 to 13 .
  • the method includes the following steps:
  • Step S1501 the access network device acquires type information and identification information.
  • step S1004 in FIG. 10 For this step, reference may be made to the description of step S1004 in FIG. 10 , step S1111 in FIG. 11 , step S1205 in FIG. 12 , and step S1305 in FIG. 13 .
  • Step S1502 the access network device sends the first message to the first network element according to the type information and the identification information in step S1501.
  • step S1005 in FIG. 10 For this step, reference may be made to the description of step S1005 in FIG. 10 , step S1112 in FIG. 11 , step S1206 in FIG. 12 , and step S1306 in FIG. 13 .
  • the above steps S1501 and S1502 may include the following situations:
  • the access network device obtains type information and identification information without deduplicating the tag message received from the tag, and at this time, the access network device sends the first message to the first network element,
  • the first message includes the type information and identification information.
  • the access network device sends a second message to the first network element.
  • the third option in step S1006 in FIG. 10 way of implementation.
  • the access network device deduplicates the tag message received from the tag, obtains the identification information of the tag without repeated calculation, and obtains the type information and identification information.
  • the first network element sends a first message, where the first message includes the type information and identification information. For this situation, reference may be made to the second optional implementation manner of step S1006 in FIG. 10 .
  • the access network device deduplicates and integrates the tag message received from the tag, obtains the identification information of the tag without repeated calculation, obtains the type information and identification information, and the access network device according to the The identification information determines the quantity information.
  • the access network device sends a first message to the first network element, and the first message includes the type information and quantity information. For this situation, refer to step S1006 in FIG. 10 .
  • an embodiment of the present application further provides a communication device
  • the communication device may be the middleware in the above method embodiments, or a device including the function of the above middleware, or a component that can be used for the middleware; or, the communication device It may be the RAN in the foregoing method embodiments, or a device including the foregoing RAN function, or a component usable in the RAN.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • FIG. 16 is a schematic diagram of a communication apparatus provided according to an embodiment of the present application.
  • the communication device includes a processing module 1601 , a receiving module 1602 and a sending module 1603 .
  • the processing module 1601 is used to implement data processing by the communication device.
  • the receiving module 1602 is used to receive the content of the communication device and other units or network elements, and the sending module 1603 is used to receive the content of the communication device and other units or network elements.
  • the processing module 1601 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component (or referred to as a processing circuit), and the receiving module 1602 may be implemented by a receiver or a receiver-related circuit component.
  • the sending module 1603 may be implemented by a transmitter or a transmitter-related circuit component.
  • the communication device may be a communication device device, or a chip applied in the communication device device or other combined devices, components, etc. having the functions of the above-mentioned communication device device.
  • the communication apparatus may be the middleware or the first network element in any of FIG. 10 to FIG. 15 , may also be the RAN or access network device in any of FIG. 10 to FIG. 15 , or may be the The SMF in FIG. 12 may also be the PCF in FIG. 11 or FIG. 13 .
  • the processing module 1601 is configured to obtain charging information through the type information and identification information received by the receiving module 1602 (for example, step S1006 in FIG. 10 , step S1113 in FIG. 11 , Step S1207 in FIG. 12 , step S1307 in FIG. 13 and step S1401 in FIG. 14 ), the charging information includes type information and first quantity information, the type information indicates the type of the first operation, the first A number information indicates a first number of terminals on which the first operation is performed.
  • the sending module 1603 is configured to send the charging information (eg, step S1007 in FIG. 10 , step S1114 in FIG. 11 , step S1208 in FIG. 12 , step S1308 in FIG. 13 and step S1402 in FIG. 14 ).
  • the processing module 1601 is configured to obtain the type information and identification information through the type information and identification information received by the receiving module 1602 (for example, step S1004 in FIG. 10 , step S1111 in FIG. 11 ) , step S1205 in FIG. 12 , step S1305 in FIG. 13 and step S1501 in FIG. 15 ), the type information indicates the type of the first operation, and the identification information identifies the identification of the terminal performing the first operation .
  • the sending module 1603 is configured to send the first message to the first network element according to the type information and the identification information (for example, step S1005 in FIG. 10 , step S1112 in FIG. 11 , step S1206 in FIG. 12 , and step S1206 in FIG. 13 . in step S1306 and step S1502 in FIG. 15 ).
  • the receiving module 1602 is configured to receive the PCC rule request message from the SMF (eg, step S1104 in FIG. 11 ); the sending module 1603 is configured to deliver the PCC rules related to the first operation to the SMF (eg, FIG. 11 ). Step S1105 in FIG. 11).
  • the various modules described above may also be used to support other processes of the techniques described herein. For the beneficial effects, reference may be made to the foregoing description, which will not be repeated here.
  • the receiving module 1602 is configured to receive PCC rules from PCF (eg, step S1105 in FIG. 11 ); the sending module 1603 is configured to send URR to UPF according to the PCC rules (eg, step S1106 in FIG. 11 ).
  • the various modules described above may also be used to support other processes of the techniques described herein. For the beneficial effects, reference may be made to the foregoing description, which will not be repeated here.
  • FIG. 17 is a schematic diagram of another communication apparatus provided according to an embodiment of the present application.
  • the communication apparatus includes: a processor 1701 , a communication interface 1702 , and a memory 1703 .
  • the processor 1701, the communication interface 1702 and the memory 1703 can be connected to each other through a bus 1704; the bus 1704 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the above-mentioned bus 1704 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in FIG. 17, but it does not mean that there is only one bus or one type of bus.
  • the processor 1701 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (Generic Array Logic, GAL) or any combination thereof.
  • Memory 1703 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • the communication apparatus may be the middleware or the first network element in any of FIG. 10 to FIG. 15 , may also be the RAN or access network device in any of FIG. 10 to FIG. 15 , or may be the The SMF in FIG. 12 may also be the PCF in FIG. 11 or FIG. 13 .
  • the processor 1701 is used for implementing data processing operations of the communication device, and the communication interface 1702 is used for implementing receiving operations and sending operations of the communication device.
  • the processor 1701 is configured to acquire charging information (for example, step S1006 in FIG. 10 , step S1113 in FIG. 11 , step S1207 in FIG. 12 , and step S1207 in FIG. Step S1307 and step S1401 in FIG. 14 ), the charging information includes type information and first quantity information, the type information indicates the type of the first operation, and the first quantity information indicates that the first operation is performed The first number of terminals.
  • the communication interface 1702 is used for sending the charging information (eg step S1007 in FIG. 10 , step S1114 in FIG. 11 , step S1208 in FIG. 12 , step S1308 in FIG. 13 and step S1402 in FIG. 14 ).
  • the various modules described above may also be used to support other processes of the techniques described herein. For the beneficial effects, reference may be made to the foregoing description, which will not be repeated here.
  • the processor 1701 is configured to acquire type information and identification information (eg step S1004 in FIG. 10 , step S1111 in FIG. 11 , step S1205 in FIG. 12 , and step S1205 in FIG. In step S1305 and step S1501 in FIG. 15 ), the type information indicates the type of the first operation, and the identification information identifies the identification of the terminal on which the first operation is performed.
  • the communication interface 1702 is configured to send a first message to the first network element according to the type information and the identification information (for example, step S1005 in FIG. 10 , step S1112 in FIG. 11 , step S1206 in FIG. 12 , and Step S1306 in 13 and step S1502 in FIG. 15 ).
  • the communication interface 1702 When the communication device is a PCF, the communication interface 1702 is used to receive a PCC rule request message from the SMF (for example, step S1104 in FIG. 11 ); the communication interface 1702 is used to issue the PCC rule related to the first operation to the SMF (for example, in FIG. 11 ). Step S1105 in FIG. 11).
  • the various modules described above may also be used to support other processes of the techniques described herein. For the beneficial effects, reference may be made to the foregoing description, which will not be repeated here.
  • the communication interface 1702 is used for receiving PCC rules from the PCF (eg, step S1105 in FIG. 11 ); the communication interface 1702 is used for sending URR to the UPF according to the PCC rules (eg, step S1106 in FIG. 11 ).
  • the various modules described above may also be used to support other processes of the techniques described herein. For the beneficial effects, reference may be made to the foregoing description, which will not be repeated here.
  • An embodiment of the present application provides a communication system, which includes the aforementioned first network element (for example, middleware) and an access network device (for example, a RAN), wherein the first network element executes any of FIG. 10 , FIG. 12 to FIG. 15 .
  • the access network device executes the method executed by the RAN in any of the embodiments shown in FIG. 10 and FIG. 12 to FIG. 15 .
  • An embodiment of the present application further provides a communication system including the aforementioned PCF and SMF, wherein the PCF performs the method performed by the PCF in the embodiment shown in FIG. 11 , and the SMF performs the method performed by the SMF in the embodiment shown in FIG. 11 .
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium.
  • the computer can implement FIGS. 10 to 15 provided by the foregoing method embodiments.
  • the process related to the middleware or the first network element in any of the embodiments shown in the above, or the computer may implement the process related to the RAN in any of the embodiments shown in FIG. 10 to FIG. 15 provided by the above method embodiments. or a process related to an access network device, or the computer can implement the process related to SMF in the embodiment shown in FIG. 11 or FIG. 12 provided by the above method embodiment, or the computer can implement the above method embodiment.
  • the PCF-related flow in the embodiment shown in FIG. 11 or FIG. 13 is provided.
  • Embodiments of the present application further provide a computer program product, where the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement any one of FIGS. 10 to 15 provided by the foregoing method embodiments.
  • the process related to the middleware or the first network element, or the computer may implement the RAN or access in any of the embodiments shown in FIG. 10 to FIG. 15 provided by the above method embodiment.
  • network device-related processes, or the computer may implement the SMF-related processes in the embodiment shown in FIG. 11 or FIG. 12 provided by the foregoing method embodiments, or the computer may implement the diagrams provided by the foregoing method embodiments. 11 or the PCF-related flow in the embodiment shown in FIG. 13 .
  • the present application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory, so as to execute the corresponding operations and/or processes in the middleware, RAN, SMF or PCF in the charging method provided by the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used for reading and executing the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor acquires the data and/or information from the communication interface and processes the data and/or information.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, and the like.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the above-mentioned chip can also be replaced by a chip system, which will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual conditions to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供一种计费的方法、装置和系统。该方法包括:第一网元或接入网设备根据被执行第一操作的终端的标识信息和第一操作的类型信息,确定被执行该第一操作的数量信息,并由第一网元向计费功能网元发送包括该类型信息和数量信息的计费信息。第一网元可以自身支持计费触发功能,并向计费功能网元发送该计费信息,也可以通过支持计费触发功能的会话管理功能网元或接入与移动性管理功能网元向计费功能网元发送该计费信息。通过上述方法,计费信息能够合理体现第一操作占用的资源,计费过程依据该计费信息进行计费,使得该计费过程与第一操作更匹配,计费行为更合理。

Description

一种计费方法、装置和系统 技术领域
本申请涉及通信领域,尤其涉及一种计费方法、装置和系统。
背景技术
无线射频识别(Radio Frequency Identification,RFID)技术,亦可称为射频识别技术,是一种无线通信中自动识别技术。无源物联网(Passive Internet of Thing,Passive IoT)技术与RFID技术具有相似之处,两者均可以利用射频方式实现对终端进行盘点、读或写操作。本申请将以RFID技术为例来阐述,例如,终端为RFID技术中的RFID标签。以下将“RFID标签”简称为标签进行描述。当标签在阅读器(reader)的可阅读的覆盖范围内,阅读器可以读取标签中的数据信息,能够实现识别目标和数据交换的目的。在用到写操作的场景中,阅读器还可以具有写的功能。RFID具有易操作、读取方便、灵活性高、动态实时的优点。该技术广泛应用于各个领域,最常见的应用场景例如仓库管理、物流运输或固定资产管理。以物流运输为例,RFID技术可以帮助管理人员自动采集货品信息,管理人员可以在系统中迅速查询货品信息,提高货品交接速度和准确率,如果有货品丢失等异常情况,管理人员也可以第一时间获知并处理。应用RFID技术的业务或服务具有传输的信令流量小、服务并非持续发生的特点。
由于RFID或无源物联网传输信令流量小,不适合以统计流量的方式计费;RFID或无源物联网的服务不是持续发生的,不适合以统计时间的方式计费,也不适合以统计流量与时间的方式计费;此外,对于RFID或无源物联网服务而言,请求消息的数量无法合理量化RFID或无源物联网服务占用的网络资源,因此以统计消息数量的方式也无法进行RFID的合理计费。
发明内容
本申请提供一种计费方法,用以实现在RFID与蜂窝融合的网络部署架构下进行合理计费,或在无源物联网与蜂窝融合的网络部署架构下进行合理计费。为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供了一种计费方法,第一网元获取计费信息,计费信息包括类型信息和第一数量信息,类型信息指示第一操作的类型,第一数量信息指示被执行第一操作的终端的第一数量,第一网元发送计费信息。根据上述方案,第一网元获取到第一操作的类型信息和被执行此类型操作的终端的数量信息,该计费信息能够合理体现第一操作占用的资源,计费过程依据该计费信息进行计费,使得该计费过程与第一操作更匹配,计费行为更合理。
可以理解的是,此处的第一数量,是指被执行某一特定操作的终端没有被重复计 算得来的数量,或者说,当被执行某一特定操作的终端被上报多次,通过对被重复计算的数量进行去重和整合后得来的数量。
一种可能的实施方式中,第一网元获取计费信息,包括:第一网元从第一接入网设备接收类型信息和第二数量信息,第二数量信息指示被执行第一操作的第一集合的终端的第二数量。例如,第一数量等于第二数量。也就是说,第一接入网设备可以对被执行第一操作的第一集合的终端进行去重和整合,向第一网元上报没有被重复计算的被执行第一操作的第一集合的终端的数量,即,第二数量,由此,第一网元可以直接将收到的第二数量信息确定为计费信息。根据该实施方式,第一网元直接获取数量信息,第一网元无需去重和整合。
在一种可能的实施方式中,第一网元获取计费信息,包括:第一网元从第一接入网设备接收类型信息和第一标识信息,第一标识信息用于标识被执行第一操作的第一集合的终端;第一网元根据第一标识信息确定第一数量信息。例如,第一接入网设备可以对被执行第一操作的第一集合的终端的标识进行去重,向第一网元上报没有被重复计算的被执行第一操作的第一集合的终端的标识,由此,第一网元可以根据收到的第一集合的终端的标识信息确定数量信息。根据该实施方式,第一网元无需进行去重,只需要进行整合。
在一种可能的实施方式中,第一网元获取计费信息,包括:第一网元从第一接入网设备接收类型信息和第一标识信息,第一标识信息用于标识被执行第一操作的第一集合的终端;第一网元从第二接入网设备接收类型信息和第二标识信息,第二标识信息用于标识被执行第一操作的第二集合的终端;第一网元根据第一标识信息和第二标识信息,确定第一数量信息。例如,第一接入网设备可以对被执行第一操作的第一集合的终端的标识进行去重,向第一网元上报没有被重复计算的被执行第一操作的第一集合的终端的标识;第二接入网设备可以对被执行第一操作的第二集合的终端的标识进行去重,向第一网元上报没有被重复计算的被执行第一操作的第二集合的终端的标识,由此,第一网元对收到的第一集合的终端的标识和第二集合的终端的标识进行去重,得到没有被重复计算的被执行第一操作的终端的标识信息,第一网元可以根据去重后的该标识信息确定数量信息。根据该实施方式,第一接入网设备和第二接入网设备进行去重,各自向第一网元上报无冗余的终端的标识信息,可以减少第一网元去重的复杂程度。
在一种可能的实施方式中,第一网元获取计费信息,包括:第一网元接收第一信息和第二信息,第一信息指示第一操作的类型以及被执行第一操作的终端的标识,第二信息指示第一操作的类型以及被执行第一操作的终端的标识;第一网元根据第一信息和第二信息,确定计费信息。例如,第一网元从第一接入网设备接收第一信息和第二信息;或者,第一网元从第一接入网设备接收第一信息;第一网元从第二接入网设备接收第二信息。第一网元根据第一信息和第二信息,确定计费信息。也就是说,第一网元根据收到的第一信息和第二信息中的终端的标识进行去重,得到没有被重复计算的被执行第一操作的终端的标识信息,第一网元可以根据去重后的该标识信息确定数量信息。
一种可能的实施方式中,第一网元支持计费触发功能,第一网元发送计费信息, 包括:第一网元向计费功能网元发送计费信息。也就是说,支持计费触发功能的第一网元直接与负责计费的计费功能网元进行计费信息的交互。该实施方式没有通过其他网元转发计费信息,减少了网络侧的信令开销,且减少了对其他网元的改动。
在另一种可能的实施方式中,第一网元发送计费信息,包括:第一网元向支持计费触发功能的网元发送计费信息。例如,支持计费触发功能的网元包括会话管理功能网元或接入与移动性管理功能网元。也就是说,不论第一网元如何部署,第一网元向支持计费触发功能的网元发送获取的计费信息,由支持计费触发功能的网元与计费功能网元进行交互完成计费。
例如,第一网元与用户面功能网元合设,第一网元向支持计费触发功能的会话管理功能网元发送计费信息。第一网元(也可以理解为用户面功能网元)可以通过用户面通道与接入网设备交互。该实施方式中第一网元无需支持计费触发功能,也减少因增加计费功能而对核心网侧的改动。
再例如,第一网元作为控制面网元独立部署,第一网元向支持计费触发功能的会话管理功能网元或支持计费触发功能的接入与移动性管理功能网元发送获取的计费信息。例如,第一网元可以通过服务化接口与会话管理功能网元或接入与移动性管理功能网元进行交互。该实施方式中第一网元无需支持计费触发功能,也减少因增加计费功能而对核心网侧的改动。
第二方面,本申请实施例提供了一种计费的方法,接入网设备获取类型信息和标识信息,类型信息指示第一操作的类型,标识信息标识被执行第一操作的终端;接入网设备根据类型信息和标识信息,向第一网元发送第一消息;其中,第一消息包括上述类型信息和标识信息,标识信息用于确定被执行所述第一操作的终端的数量;或者,第一消息包括上述类型信息和根据标识信息确定的数量信息,该数量信息指示被执行所述第一操作的终端的数量。根据上述方案,接入网设备上报的第一消息用于第一网元获取第一操作的类型信息和被执行此类型操作的终端数量信息,该计费信息能够合理体现第一操作占用的资源,计费过程依据该计费信息进行计费,使得该计费过程与第一操作更匹配,计费行为更合理。
在一种可能的实施方式中,接入网设备获取类型信息和标识信息,包括:接入网设备获取第一标识信息和第二标识信息,第一标识信息指示被执行第一操作的第一集合的终端的标识,第二标识信息指示被执行第一操作的第二集合的终端的标识。接入网设备根据第一标识信息和第二标识信息,确定标识信息。也就是说,接入网设备根据得到的第一标识信息和第二标识信息,去除被重复计算的标识信息,确定没有被重复计算的标识信息,据此来发送第一消息。根据上述方案,接入网设备上报的第一消息用于第一网元获取到第一操作的类型信息和被执行此类型操作的终端的数量信息,且接入网设备上报的第一消息无冗余信息,减少信令开销。
在一种可能的实施方式中,接入网设备根据类型信息和标识信息,确定数量信息,向第一网元发送第一消息,第一消息包括类型信息和数量信息。也就是说,接入网设备根据标识信息进行去重,去掉被重复计算的标识信息,并根据没有被重复计算的标识信息计算终端的数量,得到数量信息,据此发送第一消息。根据上述方案,接入网设备上报的第一消息用于第一网元获取到第一操作的类型信息和被执行此类型操作的 终端数量信息,且接入网设备上报的第一消息无冗余信息,减少信令开销,除此以外,第一网元无需对第一消息进行去重和整合。
第三方面,本申请实施例提供了一种计费的方法,策略控制功能网元从会话管理功能网元接收策略与计费控制规则请求消息,向会话管理功能网元下发与第一操作相关的策略与计费控制规则。该策略与计费控制规则包括类型参数和数量参数,该类型参数和数量参数用于指示会话管理功能网元通知用户面功能网元进行上报第一操作的类型和被执行该第一操作的终端数量。例如,该方法适用于第一网元与用户面功能网元合设,且会话管理功能网元支持计费触发功能的实施方式。根据上述方案,该方法中的策略与计费控制规则的使用,可以帮助减少因增加计费的功能而对核心网侧装置的改动。
第四方面,本申请实施例提供了一种计费的方法,会话管理功能网元从策略控制功能网元接收策略与计费控制规则,会话管理功能网元根据策略与计费控制规则,向用户面功能网元发送使用量上报规则,使用量上报规则指示用户面功能网元上报第一操作的类型和被执行该第一操作的终端数量。例如,会话管理功能网元根据策略控制功能网元发送的策略与计费控制规则生成N4规则,该N4规则包含使用量上报规则,其中使用量上报规则包括第一操作的类型和被执行该第一操作的终端数量,会话管理功能网元向用户面功能网元发送该N4规则,该N4规则指示用户面功能网元上报第一操作的类型和被执行该第一操作的终端数量。例如,该方法适用于第一网元与用户面功能网元合设,且会话管理功能网元支持计费触发功能的实施方式。根据上述方案,第一网元可以向会话管理功能网元上报使用量上报规则,在使用量上报规则中包括第一操作的类型和被执行该第一操作的终端数量,从而减少因增加计费功能而对核心网侧装置的改动。
例如,以上几种方面中的第一网元可以是中间件装置,接入网设备可以是RAN装置,终端可以是标签。
第五方面,本申请实施例提供了一种通信装置,包括处理器,该处理器用于从存储器中读取并运行程序,以实现如前面第一方面或任一种可能的实施方式的方法(例如,当该通信装置为第一网元),或者,以实现如前面第二方面或任一种可能的实施方式的方法(例如,当该通信装置为接入网设备),或者,以实现如前面第三方面的方法(例如,当该通信装置为策略控制功能网元),或者,以实现如前面第四方面的方法(例如,当该通信装置为会话管理功能网元)。
第六方面,本申请的实施例提供了一种通信系统,包括第一网元以及接入网设备,该第一网元可以执行第一方面或任一种可能的实施方式的方法,该接入网设备可以执行第二方面或任一种可能的实施方式的方法。
第七方面,本申请的实施例提供了一种通信系统,包括策略控制功能网元以及会话管理功能网元,该策略控制功能网元可以执行第三方面的方法,该会话管理功能网元可以执行第四方面的方法。
第八方面,本申请的实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如第一方面或任一种可能的实施方式的方法,或第二方面或任一种可能的实施方式的方法,或第三方面的实施方式的方法,或第四方面的实 施方式的方法。
第九方面,本申请的实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行如第一方面或任一种可能的实施方式的方法,或第二方面或任一种可能的实施方式的方法,或第三方面的实施方式的方法,或第四方面的实施方式的方法。
附图说明
图1为RFID通信系统的结构图;
图2为RFID通信中标签的盘点操作的流程图;
图3为RFID通信中标签的读写操作的流程图;
图4为一种RFID收发分离架构示意图;
图5为本申请实施例适用的5G通信系统的架构示意图;
图6为本申请实施例适用的RFID与蜂窝融合的网络架构的示意图;
图7为本申请实施例适用的RFID与蜂窝融合的另一网络架构的示意图;
图8为本申请实施例适用的RFID与蜂窝融合的又一网络架构的示意图;
图9为本申请实施例适用的RFID与蜂窝融合的又一网络架构的示意图;
图10为根据本申请实施例提供的一种关于RFID计费的流程示意图;
图11为根据本申请实施例提供的一种关于RFID计费的另一流程示意图;
图12为根据本申请实施例提供的一种关于RFID计费的又一流程示意图;
图13为根据本申请实施例提供的一种关于RFID计费的又一流程示意图;
图14为根据本申请实施例提供的一种关于RFID计费的流程示意图;
图15为根据本申请实施例提供的一种关于RFID计费的流程示意图;
图16为根据本申请实施例提供的一种通信装置的示意图;
图17为根据本申请实施例提供的另一种通信装置的示意图。
具体实施方式
无线射频识别技术,或者,也可称为射频识别技术,是一种无线通信中自动识别技术。中间件装置以下简称为中间件。如图1所示,RFID系统架构包括标签101、阅读器102、中间件103以及服务器104。
其中,标签101附着在物体上标识目标对象,标签中存储该物体的信息,且每个标签都有一个全球唯一的电子产品代码(Electronic Product Code,EPC),标签分为无源标签和有源标签两类。RFID技术的工作方式有两种情况,一种情况为当标签进入阅读器有效识别范围内时,标签接收阅读器发出的射频信号,凭借感应电流获得能量发出存储在芯片中的信息(此标签为无源标签),另一种情况为由标签主动发送存储的信息(此标签为有源标签)。阅读器接收信息并解码后送至服务器进行数据处理。
阅读器102通过射频信号根据服务器下发的指令来阅读指定的标签中存储的信息,若为读操作,阅读器则读取该标签存储区中的数据。可选的,在一些需要改写标签内存储的信息的场合下,阅读器还可具有写的功能,换句话说,此时阅读器102也可以称为读写器。若为写操作,则读写器将数据写入标签的存储区中。
中间件103是分别连接阅读器和服务器的功能件,具有过滤信息与收集信息的功能,此外,中间件还可以降低在服务器被攻击的情况下的安全风险。
服务器104依据需求下发RFID操作指令,并获取RFID标签执行的最终结果,包括但不限于读取的标签的类型、标签的数量、读取操作是否成功。服务器104可位于本地网络中,此外,服务器104也可以称为应用系统。
可以理解的是,中间件103与服务器104可以合设在一起,或中间件103可以独立于服务器104单独部署,这两种部署方式不影响中间件和服务器各自的功能。
RFID的主要应用场景包括仓库管理、盘点、物流等。与RFID技术相关的流程包括盘点流程和读写流程。
其中,对标签管理时用到盘点流程,标签的盘点流程即盘点现有的标签情况。图2示出了标签的盘点流程。
如图2所示,在步骤201中,阅读器(如图1中的阅读器102)向标签(如图1中的标签101)发送选择命令。
例如,当阅读器收到服务器发送的盘点命令(或者,该盘点命令可由服务器通过中间件向阅读器发送),生成选择命令,该选择命令中携带标签的范围(如某些特定范围的EPC码)。标签接收选择命令后,判断自己是否属于该选择命令指示的标签的范围,若该标签属于指示的标签的范围,则在后续接收查询命令后反馈信息。若该标签不属于应判断的标签范围,则在接收查询命令后不必反馈信息。
在步骤202中,阅读器向指定范围内的标签发送查询命令。
在步骤203中,当标签发现自己属于选择命令中的标签范围时,向阅读器反馈一个随机数。
例如,标签可以通过竞争的方式向阅读器反馈随机数,例如,随机数可以是16比特的随机数(16-bit random number,RN16)。
在步骤204中,当阅读器收到来自标签发送的随机数后,向标签发送应答命令,该命令中包含了通过步骤203接收到的随机数。
在步骤205中,当标签收到阅读器发送的应答命令,并验证该随机数正确后,向阅读器反馈其EPC码。
以上为对某一范围的标签的盘点流程。
图3示出了标签的读写流程,该流程中的步骤301-305可参考图2中步骤201至205的描述,属于盘点操作流程。其中,步骤302与图2中步骤202的区别在于,接收步骤302中查询命令的标签为某一特定EPC码的标签。此外,读写流程还包括以下步骤:
在步骤306中,阅读器向该标签发送请求随机数命令(Req_RN),其中,请求随机数命令中携带了步骤303中收到的随机数,如RN16;
在步骤307中,标签验证该随机数正确,则向阅读器发送句柄。句柄用于识别不同的阅读器的标识,在后续的读写流程中,读命令或写命令都携带该句柄;
在步骤308中,阅读器向标签发送读命令或写命令,读命令或写命令中携带句柄。若为写命令,则写命令中还携带待写入标签存储区的数据;
在步骤309中,若步骤308为读命令,则标签反馈自己存储区中的数据的同时携 带步骤307中所述句柄。若步骤308为写命令,则可以无需此步骤。
图4所示为一种RFID收发分离架构,图1所示RFID系统中的阅读器102可拆分成阅读器401与激励源402两个组件,激励源402可以集成在用户设备(user equipment,UE)中。在这种架构下,以图2和图3所示场景为例,阅读器401通过专用频谱向激励源402发送标签的下行消息,再由激励源402向标签403发送该消息;标签403通过RFID空口直接向阅读器401发送上行消息。通常,阅读器与标签的最远通信距离只有十米,而图4所示收发分离的架构,通过增加阅读器401与激励源402之间的距离,使得覆盖的标签的范围扩展至百米,还降低阅读器401侧上行和下行消息链路之间的干扰;且激励源402与既接收上行消息也发送下行消息的阅读器相比,不接收上行消息,可以进一步降低功耗,使得激励源402连续的工作时间比通常的阅读器要长。
图5为5G系统的网络架构示意图,该网络架构包括用户设备(user equipment,UE)、接入网(access network,AN)设备、核心网网元和数据网络(data network,DN)。
本申请中的用户设备,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述用户设备也可称为终端,可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请中的标签可以以独立的形态存在,也可以集成于上述终端中,也可以集成于传感器等等,下文中“标签”可以和“终端”的称谓互换,并不影响本申请的实质内容。
其中,接入网设备也可以是无线接入网(radio access network,RAN)设备。RAN设备的主要功能是控制用户通过无线接入到移动通信网络。RAN是移动通信系统的一部分。它实现了一种无线接入技术。从概念上讲,它驻留某个设备之间(如移动电话、一台计算机,或任何远程控制机),并提供与其核心网的连接。RAN设备包括但不限于:5G中的(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,此外,还可以包括无线保真(wireless fidelity,wifi)接入点(access point,AP)等。RAN设备也可称为RAN装置,下文均简称为RAN。
其中,核心网网元可以包括如下网元中的至少一项:用户面功能(user plane function,UPF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、策略控制功能(policy control function,PCF)网元和计费功能(Charging Function,CHF)网元。 UPF网元、SMF网元、AMF网元、CHF网元和PCF网元也可分别称为UPF装置、SMF装置、AMF装置、CHF装置和PCF装置,以下均分别简称为UPF、SMF、AMF、CHF和PCF。
核心网网元可分为控制面网元和用户面网元。用户面网元即为UPF,主要负责分组数据包的转发、服务质量(quality of service,QoS)控制、计费信息统计等。计费信息又可称为计费数据、计费消息、计费内容等,本申请统一称为计费信息。控制面网元主要负责业务流程交互、向用户面下发数据包转发策略、QoS控制策略等。本申请实施例中涉及的控制面网元主要包括这些网元:AMF、SMF、PCF、CHF。其中,AMF主要负责用户的接入和移动性管理。SMF负责管理用户协议数据单元(protocol data unit,PDU)会话的创建、删除等,维护PDU会话上下文及用户面转发管道信息。PCF用于生成、管理用户、会话、QoS流处理策略。CHF负责用户计费、配额授信等,也支持融合的在线和离线计费。计费触发功能(Charging Trigger Function,CTF)内嵌在计费相关的网元中,如SMF、AMF,在计费相关的网元内收集有关UE使用网络资源的计费信息。在实际部署中,网元可以合设。例如,接入与移动性管理网元可以与会话管理网元合设;会话管理网元可以与用户面网元合设。当两个网元合设的时候,本申请实施例提供的这两个网元之间的交互就成为该合设网元的内部操作或者可以省略。
图5所示的网络架构中还标明了各个网元之间的通信接口,本申请实施例涉及的通信接口包括:N2,接入网设备与AMF之间的通信接口;N3,接入网设备与UPF之间的通信接口,用于传输用户数据;N4,SMF与UPF之间的通信接口,用于对UPF进行策略配置等;N6,DN与UPF之间的通信接口。当然,各个网元之间的通信接口还可以具有其他的名称,本申请在此并不限制。
RFID技术或无源物联网技术可以与5G系统的网络架构进行融合。如果企业使用传统的RFID技术或无源物联网技术,应布置一套专网系统,因此将RFID技术与蜂窝网络进行融合,或,无源物联网技术与蜂窝网络进行融合,可以降低两套系统的部署和运维成本。在RFID技术与5G系统的网络架构进行融合的场景下,RFID的计费是由CHF完成,在触发计费后,支持CTF的网元将计费的数据通过计费信息向计费功能网元发送,计费功能网元保存计费信息并创建计费数据记录(CDR,Charging Data Record),完成计费后计费功能网元向支持CTF的网元发送与计费信息相应的消息。
由于RFID或无源物联网传输信令流量小,不适合以统计流量的方式计费;RFID或无源物联网的服务不是持续发生的,不适合以统计时间的方式计费,也不适合以统计流量与时间的方式计费;此外,对于RFID或无源物联网服务而言,请求消息的数量无法合理量化RFID或无源物联网服务占用的网络资源,因此以统计消息数量的计费方式也无法进行RFID的合理计费。
当RFID系统或无源物联网系统融入蜂窝网络时,以RFID与蜂窝融合的架构为例进行描述,无源物联网系统可参考RFID与蜂窝融合的架构的描述,后续不再赘述。图1或图4所示的阅读器进一步融合至RAN中。中间件在5G系统的网络架构中的部署位置可以有多种选择:
图6为本申请实施例适用的RFID与蜂窝融合的一种网络架构的示意图。在图6 所示的网络架构中,中间件605分别连接RAN与服务器,且中间件独立于核心网。可选的,中间件605与多个RAN进行相连。RAN集成阅读器603(如图1中的阅读器102或图4中的阅读器401)功能。对于RFID的下行消息,服务器606向中间件605发送该下行消息,然后中间件605向RAN(阅读器603)发送该下行消息,再由RAN(阅读器603)向标签601发送该下行消息(若部署了激励源602,则先RAN向激励源602发送下行消息,再由激励源602向标签601发送该下行消息)。而对于RFID上行消息,标签601向RAN(阅读器603)发送该上行消息,RAN向中间件发送该上行消息,然后中间件605向服务器606发送该上行消息。这种架构下核心网并不参与RFID通信。
图7为本申请实施例适用的RFID或无源物联网与蜂窝融合的另一种网络架构的示意图。在图7所示的网络架构中,中间件704与UPF合设。当中间件704与UPF合设时,所述中间件704作为UPF的某一功能,此时,RFID数据通过用户面通道进行传输,服务器与UPF之间通过N6接口进行数据的传输。在两者合设的架构下,服务器705通过N6接口向UPF(即合设的中间件704)发送下行消息,再由UPF向RAN(阅读器703)发送下行消息,最后RAN(阅读器703)向标签701发送该下行消息(若部署了激励源702,则RAN先向激励源702发送下行消息,再由激励源702向标签701发送该下行消息)。上行消息则是标签701向阅读器703直接发送,再由RAN(阅读器703)通过用户面通道向UPF(中间件704)发送,再由UPF(中间件704)通过N6接口向服务器发送。
图8为本申请实施例适用的RFID与蜂窝融合的又一种网络架构的示意图。在图8所示的网络架构中,中间件804部署在数据网络中,即UPF通过N6接口与中间件804通信。在图8所示的架构下,服务器805向中间件804发送下行消息,中间件804通过N6接口向UPF发送下行消息,再由UPF向RAN(阅读器803)发送下行消息,最后RAN(阅读器803)向标签801发送下行消息(若部署了激励源802,则RAN先向激励源802发送下行消息,再由激励源802向标签801发送该下行消息)。对于上行消息,标签801直接向RAN(阅读器803)发送上行消息,再由RAN(阅读器803)通过用户面通道向UPF发送上行消息,然后由UPF通过N6接口向中间件804发送上行消息,最后由中间件804向服务器805发送该上行消息。在实际部署中,中间件和服务器可以合设。当中间件和服务器合设的时候,本申请实施例提供的这两个装置之间的交互就成为该合设装置的内部操作或者可以省略。
图9为本申请实施例适用的RFID与蜂窝融合的又一种网络架构的示意图。在图9所示的网络架构中,中间件904作为网元部署在核心网中且独立部署。例如,中间件904可以是部署在核心网中的控制面网元。下行消息由服务器905向中间件904发送,然后中间件904向RAN(阅读器903)发送下行消息。例如,中间件904可以先向AMF发送该下行消息,再由AMF向RAN(阅读器903)发送下行消息。或者,可选的,中间件904可以先向SMF发送下行消息,再由SMF向AMF发送该下行消息,再由AMF向RAN(阅读器903)发送下行消息。不管是上述哪种方式,当RAN收到下行消息后,RAN(阅读器903)向标签901发送下行消息。若部署了激励源902,则RAN(阅读器903)先向激励源902发送下行消息,再由激励源902向标签901发送该下 行消息。而上行消息是标签901向RAN(阅读器903)直接发送,再由RAN(阅读器903)向中间件904发送该上行消息。类似的,例如,RAN(阅读器903)可以先向AMF发送该上行消息,再由AMF向中间件904发送该上行消息;或者,RAN(阅读器903)可以先向AMF发送该上行消息,再由AMF向SMF发送该上行消息,再由SMF向中间件904发送该上行消息。最后由中间件904向服务器905发送该上行消息。
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
本发明实施例描述的网络架构是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
以下以RFID技术为例阐述该计费方法,但本申请中的计费方法不限于RFID技术,也可适用于无源物联网等技术。
图10所示为根据本发明的实施例提供的一种RFID蜂窝融合网络架构下的计费方法。该方法中,中间件获取计费信息,该计费信息包括类型信息和数量信息,所述类型信息指示操作类型,所述数量信息指示执行操作类型操作的标签数量,中间件向CHF上报该计费信息。在图10提供的方案中,中间件支持CTF,且由中间件直接与CHF交互完成计费。
图10所示的实施例可以适用图6、图8或图9的蜂窝融合架构。如图10所示,该方法包括以下步骤:
S1001、服务器向中间件发送RFID的操作指令。
例如,该操作指令可以用于指示RFID的操作类型,例如,操作类型包括盘点操作、读操作、或写操作等。此外,该操作指令包含应被执行RFID操作的标签标识。标签标识可以是EPC码集合,也可以是用于标识标签的数字或字符串。例如,标签标识集合为1-100,则被执行该RFID操作的标签的标签标识应属于1-100。例如,标签标识为1;则被执行该RFID操作的标签的标签标识为1。再例如,标签标识为EPC码集合,该EPC码集合可以是urn:epc:id:sgtin:0614141.112345.400-urn:epc:id:sgtin:0614141.112345.600,其中,urn:epc:id为EPC码固定的字符开头,sgtin代表该标签标识的对象为商品,0614141代表生产该标签的厂商,112345代表一种特定的商品类型,如衣服,400和600均为序列号,用于标识标签本身。
S1002、中间件收到RFID的操作指令后,解析该操作指令,并向步骤S1001中标签标识所标识的标签对应的RAN发送RFID的操作指令。
例如,当本方法适用于图6所示的网络架构时,由于RAN直接与中间件连接,则中间件直接向RAN发送操作指令;当本方法适用于图8所示的网络架构时,则中间件通过UPF向RAN转发操作指令;当本方法适用于图9所示的网络架构时,中间件作为核心网的控制面网元,则中间件可以通过AMF,或依次通过SMF和AMF向RAN发送操作指令。
S1003、RAN收到操作指令后,执行RFID操作。
例如,RAN与标签进行交互,以完成盘点操作、读操作或写操作。盘点操作可参考图2的描述,读操作或写操作可参考图3的描述,此处不再赘述。可选的,RFID的操作还涉及RAN与激励源的交互。
其中,若激励源存在,则RAN通过激励源向标签发送下行消息,而标签直接向RAN发送上行消息。若激励源不存在,则上下行消息是由RAN直接与标签进行交互。
S1004、RAN接收标签消息。其中,标签消息可以为标签向RAN发送的上行消息,标签可以为一个或多个。
例如,标签消息包括标签标识。可选的,标签发送的上行消息还可以包括标签被执行的操作类型。
例如,标签可以周期性地被执行操作,此时RAN会在执行RFID操作期间周期性地接收该标签消息。或者,若该标签在RAN执行RFID操作期间只被执行操作一次,则RAN会在执行RFID操作期间从该标签接收该标签消息。
S1005,RAN向中间件发送第一消息。
对于该步骤,当该实施例适用于图6所示的网络架构时,RAN直接向中间件发送第一消息,当该实施例适用于图8所示的网络架构时,RAN通过UPF向中间件发送第一消息,当该实施例适用于图9所示的网络架构时,RAN通过AMF,或者,依次通过AMF、SMF,向中间件发送第一消息。
此外,可选的,RAN还可以向中间件发送第二消息。
S1006,中间件根据从RAN收到的消息(例如,第一消息,可选的,第二消息),获取计费信息。所述计费信息包括类型信息和数量信息,所述类型信息指示第一操作的操作类型,所述数量信息指示被执行所述第一操作的标签的数量。
可以理解的是,本申请中的数量信息,是指被执行某一特定操作的标签没有被重复计算得来的数量信息,或者说,当被执行某一特定操作的标签被上报多次,通过对被重复计算的数量进行去重后整合得来的数量信息。
也就是说,中间件获取的数量信息所指示的数量,经过两个步骤的处理:第一步骤为去重,第二步骤为整合。对于这两个步骤,可以都由RAN执行,或者分别由RAN和中间件执行,或者都由中间件执行,例如,上述步骤S1004至S1006可以通过如下三种具体的方式来实现,以下将进行详细的描述:
在第一种可选的实现方式中,去重和整合的步骤都由RAN执行。
例如,RAN在步骤S1004后对收到的标签上报的标签消息进行去重和整合,得到第一操作的类型信息和指示被执行第一操作的标签的数量信息,并通过步骤S1005中的第一消息向中间件发送该类型信息和数量信息。因此,步骤S1006中,中间件可以直接根据第一消息中包含的类型信息和数量信息获取计费信息。
例如,上述实现方式可以适用于中间件连接一个RAN的场景。
举例来说,RAN可以在盘点操作过程中以一定的时间周期对标签进行盘点,因此,RAN可以在步骤S1004中的标签消息中获取至少两份信息。假设RAN通过步骤S1004收到两份信息,其中第一份信息指示被执行盘点操作的标签包括标签1、标签3和标签4,第二份信息指示被执行盘点操作的标签包括标签1、标签2、标签3和标签5。RAN去掉这两份信息中被重复计算的标签1和标签3,并把去重后的标签1、标签2、 标签3、标签4和标签5进行整合,得到被执行盘点操作的标签的数量为5。因此,RAN通过步骤S1005上报的类型信息用于指示操作类型为盘点操作,数量信息为5,从而指示总共有5个标签被执行了盘点操作。
可以理解的是,整合也可以称为是汇总、统计或计数,本申请在此并不限制。
可选的,在中间件连接多个RAN的场景下,第一消息中还可以包括被执行第一操作的标签标识,由中间件进一步根据标签标识进行去重和整合。也就是说,多个RAN(例如,第一RAN和第二RAN)根据从各自范围内接收到的标签消息,分别通过步骤S1005向中间件发送各自的第一消息(也可以说是第一RAN发送第一消息,第二RAN发送第二消息),多个RAN发送的第一消息均包括各自范围内标签上报的第一操作的类型信息和指示被执行第一操作的无重复的标签标识。可以理解的是,虽然每个RAN上报的第一消息中的标签标识是无重复的,但是多个RAN上报的标签标识有可能是有重复的,例如,当某个标签同时在第一RAN和第二RAN的覆盖范围,第一RAN和第二RAN都会上报该标签的标识。因此,步骤S1006中,中间件根据从多个RAN获取的第一操作的类型信息和被执行第一操作的无重复的标签标识,进一步进行去重和整合,从而获取计费信息。
举例来说,假设第一RAN发送的第一份信息指示被执行盘点操作的标签包括标签1、标签3和标签4,第二RAN发送的第二份信息指示被执行盘点操作的标签包括标签1、标签2、标签3和标签5。标签1和标签3同时存在于第一RAN和第二RAN的覆盖范围。中间件去掉这两份信息中被重复计算的标签1和标签3,并把去重后的标签1、标签2、标签3、标签4和标签5进行整合,得到被执行盘点操作的标签的数量为5。因此,步骤S1006中,中间件获取计费信息中的类型信息指示操作类型为盘点操作,数量信息为5,从而指示总共有5个标签被执行了盘点操作。
在第二种可选的实现方式中,RAN执行去重的步骤,中间件执行整合的步骤。
例如,RAN在步骤S1004后对收到的标签发送的上行消息进行去重,得到第一操作的类型信息和指示被执行第一操作的标签标识信息,并通过步骤S1005中的第一消息向中间件发送该类型信息和标识信息。因此,步骤S1006中,中间件可以根据第一消息中包含的类型信息和标识信息来确定被执行第一操作的标签的数量,从而获取计费信息。
例如,上述实现方式可以适用于中间件连接一个RAN的场景。
举例来说,RAN可以在盘点操作过程中以一定的时间周期对标签进行盘点,因此,RAN从步骤S1004中由标签消息中获取至少两份信息。假设RAN通过步骤S1004收到两份信息,其中第一份信息指示执行盘点操作的标签包括标签1、标签3和标签4,第二份信息指示执行盘点操作的标签包括标签1、标签2、标签3和标签5。RAN去掉这两份信息中被重复计算的标签1和标签3,得到被执行盘点操作的标签的标识为标签1、标签2、标签3、标签4和标签5。因此,RAN通过步骤S1005上报的类型信息用于指示操作类型为盘点操作,标识信息为标签1、标签2、标签3、标签4和标签5,从而指示标签1、标签2、标签3、标签4和标签5被执行了盘点操作。中间件根据步骤S1005上报的类型信息和标识信息来确定数量信息,计费信息中的类型信息指示操作类型为盘点操作,数量信息为5,从而指示总共有5个标签被执行了盘点操作。
可选的,在中间件连接多个RAN的场景下,中间件根据多个RAN(例如,第一RAN和第二RAN)上报的类型信息和标识信息进行去重和整合。也就是说,第一RAN和第二RAN分别根据从各自范围内接收到的标签消息,均通过步骤S1005向中间件发送第一消息,该第一消息均为第一操作的类型信息和指示各自范围内被执行第一操作的无重复的标签标识。同理,多个RAN上报的标签标识也有可能有重复的。因此,步骤S1006中,中间件根据从多个RAN获取的第一操作的类型信息和指示被执行第一操作的无重复的标签标识进一步进行去重和整合,从而获取计费信息。中间件去重的操作与RAN去重的操作是类似的,此处不再赘述。
举例来说,假设第一RAN发送的第一份去重后的信息指示被执行盘点操作的标签包括标签1、标签3和标签4,第二RAN发送的第二份去重后的信息指示被执行盘点操作的标签包括标签1、标签2、标签3和标签5。标签1和标签3同时存在于第一RAN和第二RAN的覆盖范围。中间件去掉这两份信息中被重复计算的标签1和标签3,并把去重后的标签1、标签2、标签3、标签4和标签5进行整合,得到被执行盘点操作的标签的数量为5。因此,步骤S1006中,中间件确定计费信息中的类型信息指示操作类型为盘点操作,数量信息为5,从而指示总共有5个标签被执行了盘点操作。
在第三种可选的实现方式中,去重和整合的步骤都由中间件执行。
例如,RAN将步骤S1004收到的标签消息直接通过步骤S1005中的第一消息发送给中间件,第一消息包括第一操作的类型信息和指示被执行第一操作的标签标识信息。可选的,RAN还发送第二消息。步骤S1006中,中间件根据第一消息(可选的,第一消息和第二消息)中包含的类型信息和标识信息获取计费信息。
例如,上述实现方式可以适用于中间件连接一个或多个RAN的场景。
例如,中间件首先获取至少两份信息,其中每份信息包括第一操作的类型信息和指示被执行第一操作的RFID标签的标识信息。这至少两份信息,可以是从一个RAN发送的一条消息(例如,上述第一消息)中获取的,或者,可以是同一个RAN发送的多条消息(例如,上述第一消息和第二消息)中获取的,又或者,可以是不同RAN分别发送的多条消息中获取的,本申请并不限制。然后,中间件对这两份信息进行去重和整合。中间件如何去重和整合可参考前面的描述,此处不再赘述。
举例来说,RAN可以在盘点操作过程中以一定的时间周期对标签进行盘点,因此,RAN从步骤S1004中由标签上报的标签消息中获取至少两份信息。假设RAN通过步骤S1004收到两份信息,其中第一份信息中的类型信息指示被执行的操作为盘点操作,标识信息指示被执行盘点操作的标签标识包括标签1、标签3和标签4,第二份信息中的类型信息指示被执行的操作为盘点操作,标识信息指示被执行盘点操作的标签标识包括标签1、标签2、标签3和标签5。RAN将这两份信息通过步骤S1005以第一消息发送给中间件,可选的,RAN将第一份信息通过第一消息发送给中间件,RAN将第二份信息通过第二消息发送给中间件。中间件根据步骤S1005上报的类型信息和标识信息先进行去重,中间件去掉这两份信息中被重复计算的标签1和标签3,并把去重后的标签1、标签2、标签3、标签4和标签5进行整合,得到被执行盘点操作的标签的数量为5。最终中间件获取的计费信息中的类型信息指示操作类型为盘点操作, 数量信息为5,从而指示总共有5个标签被执行了盘点操作。
可选的,在中间件连接多个RAN的场景下,中间件根据多个RAN(例如,第一RAN和第二RAN)上报的类型信息和标识信息进行去重和整合。也就是说,第一RAN和第二RAN分别根据从各自范围内接收到的标签消息,通过步骤S1005向中间件发送第一消息,该第一消息均为第一操作的类型信息和指示各自范围内被执行第一操作的标签标识。其中,多个RAN上报的标签标识也有可能有重复的,某个标签可能同时在第一RAN和第二RAN的覆盖范围。因此,步骤S1006中,中间件根据从多个RAN获取的第一操作的类型信息和指示被执行第一操作的无重复的标签标识进一步进行去重和整合,从而获取计费信息。
举例来说,假设第一RAN发送的第一份信息指示被执行盘点操作的标签包括标签1、标签3和标签4,第二RAN发送的第二信息指示被执行盘点操作的标签包括标签1、标签2、标签3和标签5。标签1和标签3同时存在于第一RAN和第二RAN的覆盖范围。中间件去掉这两份信息中被重复计算的标签1和标签3,并把去重后的标签1、标签2、标签3、标签4和标签5进行整合,得到被执行盘点操作的标签的数量为5。因此,步骤S1006中,中间件获取计费信息中的类型信息指示操作类型为盘点操作,数量信息为5,从而指示总共有5个标签被执行了盘点操作。
以上介绍了步骤S1005和S1006的几种可能的实现方式,当然,中间件还可以通过其他方式来获取计费信息,本申请并不在此限制。之后,中间件执行步骤S1007。
S1007、中间件向CHF发送计费数据请求,计费数据请求携带步骤S1006中的所述计费信息。
S1008、CHF创建CDR。
例如,CHF接收所述计费信息,并根据所述计费信息创建CDR。
S1009、CHF向中间件发送计费数据响应,计费数据响应用于通知中间件关于该计费数据请求完成与否的结果。
S1010、中间件向服务器发送RFID的操作结果,该操作结果用于响应步骤S1001中服务器向中间件下发的RFID的操作指令。所述RFID的操作结果包括的标签操作类型,还可以包括被执行该操作的标签标识或被执行该操作的标签数量中的至少一项;可选的,若操作类型为读操作,该操作结果还包括从标签存储区中读取的数据,此操作可在S1005后进行。
本实施例所述中间件能够获取到指示第一操作的操作类型的类型信息和实际被执行第一操作的标签的数量,并向CHF上报该计费信息,使得计费信息与RFID服务更匹配,计费行为更合理。例如,基于事件计费的计费模型会根据服务器下发的RFID操作指令的数量来表征执行服务次数,并基于此进行计费,但是支持CTF的装置并不清楚该操作指令是什么,无法获取对标签执行的操作类型的信息,也无法获取需要被执行该操作的标签的数量信息,从而无法依据实际使用的网络资源来进行计费。举例来说,基于本申请中的计费方法,假设对单个标签执行一次盘点操作需要用户花费3元,对单个标签执行一次写操作需要用户花费5元,此次共对7个标签执行盘点操作,对3个标签执行写操作,因此该次RFID服务共需要向用户收费36元。若按照基于事件的计费模型计算,服务器下发了一条执行盘点操作的指令,又下发了一条执行写操 作的指令,每条指令收费10元,因此该次盘点操作共需要向用户收费20元。因此,采用本申请实施例的方案,由于获取操作类型以及被执行该操作类型的标签数量更加能够反映出实际使用的网络资源,因此基于本申请的计费方法更加合理。
此外,由支持CTF的中间件将计费信息直接向CHF上报,可以不通过其他网元转发计费信息,减少了网络侧的信令开销,且减少了对其他网元的改动。
图10所示的实施例以RFID为例进行阐述,图10所示的方案也适用于其他技术如无源物联网技术。以无源物联网技术为例,在无源物联网技术中,本实施例中的中间件则为无源物联网技术中的第一网元,标签可以是无源物联网技术中的终端,操作指令可以是无源物联网技术中的操作指令。以下实施例同理,不再赘述。
本申请中图11和图12所示为根据实施例提供的一种RFID蜂窝融合架构下的计费方法。在图11和图12所示的方法中,SMF支持CTF,由SMF与CHF进行交互来实现计费功能,这样中间件可以无需支持CTF。其中,图11所示实施例适用图7所示的网络架构,即中间件与UPF进行合设的场景;而图12所示实施例适用图9所示的网络架构,即中间件作为核心网控制面网元独立部署。
图11所示实施例包括以下步骤:
S1101、RAN完成标签的注册流程,阅读器也完成注册流程。
例如,由于标签没有非接入层(non access stratum,NAS)协议层,RAN可以代标签向AMF发起注册请求消息,来完成标签的注册流程。RAN代标签注册的目的是为标签代建立与控制面网元的通道或与用户面网元的通道,该通道是用于标签的上行消息或下行消息的传输。可选的,RAN可以完成设备粒度的注册流程,即RAN可以建立共享的控制面通道或用户面通道,用于传输RAN覆盖范围内的标签的上行或下行数据。可选的,若系统中部署了激励源,激励源作为用户设备也完成注册流程。
S1102、RAN向AMF发送会话建立请求,例如,一种可选的实施方式,RAN向AMF发送PDU会话建立请求。
S1103、AMF向SMF发送创建会话上下文请求。
可选的,SMF收到创建会话上下文请求后,SMF向AMF反馈响应消息。
S1104、SMF向PCF发送策略与计费控制(Policy and Charging Control,PCC)规则请求消息。
例如,PCC规则请求消息中包括接入类型信息,接入类型信息用于指示RFID类型。一种可选的方式,若采用无源物联网技术,则接入类型信息用于指示无源物联网类型。
S1105、PCF根据接入类型信息识别出与RFID相关,向SMF反馈RFID相关的PCC规则。例如,该PCC规则包括类型参数和数量参数,该类型参数和数量参数用于指示SMF通知UPF上报RFID操作类型和被执行该RFID操作的标签数量。
S1106、SMF向UPF发送使用量上报规则(usage reporting rule,URR)。
例如,SMF根据PCF发送的PCC规则,生成N4规则,该N4规则包含URR,其中,URR指示UPF上报RFID操作类型和被执行该RFID操作的标签数量。例如,URR包括上述类型参数和上述数量参数,从而指示UPF上报RFID操作类型和被执行该RFID操作的标签数量。SMF可以通过N4接口将该N4规则下发给UPF。
S1107、RAN、AMF、PCF、UDM、UPF、SMF完成会话建立流程。
S1108、服务器向UPF发送RFID操作指令。
例如,该操作指令可以用于指示RFID的操作类型,例如,操作类型包括是盘点操作、读操作、或写操作。该指令包含应被执行RFID操作的标签标识。例如,标签标识可以是EPC码集合。
S1109、UPF(中间件与UPF合设)向对应的RAN发送RFID操作指令。
S1110、RAN根据RFID操作指令,对集合范围内的标签执行RFID操作。若系统中没有部署激励源,则RAN直接对集合范围内的标签执行该RFID操作,若系统中部署了激励源,则RAN通过激励源对集合范围内的标签执行该RFID操作。
S1111、RAN接收标签消息,该标签消息为标签向RAN发送的上行消息。
S1112、RAN向中间件(也可理解为UPF)发送第一消息。
可选的,RAN还向中间件(也可理解为UPF)发送第二消息。
S1113、中间件(也可理解为UPF)根据从RAN接收的第一消息(可选的,第二消息),获取计费信息。计费信息包括类型信息和数量信息,所述类型信息指示第一操作的操作类型,所述数量信息指示被执行所述第一操作的RFID标签的数量。
步骤S1108至S1113可参考图10中步骤S1001至S1006的描述,此处不再赘述。
S1114、UPF向SMF上报第一操作的操作类型和被执行所述第一操作的RFID标签的数量。
S1115、支持CTF的SMF向CHF发送计费数据请求,该计费数据请求携带了第一操作的操作类型和被执行所述第一操作的RFID标签的数量。
S1116、CHF创建CDR。
S1117、CHF完成计费后,向SMF发送计费数据响应,计费数据响应用于通知SMF关于该计费数据请求完成与否的结果。
S1118、中间件向服务器发送RFID的操作结果。该步骤可参考图10中步骤S1010的描述。该步骤可以在S1112步骤之后执行。
图11所示实施例所述中间件能够获取到指示第一操作的操作类型的类型信息和实际被执行第一操作的标签数量信息,并向CHF上报该计费信息,根据标签被执行的操作类型以及实际被执行的标签数量进行计费,使得计费结果更精确,与RFID服务更匹配,计费行为更合理。
此外,由于中间件与UPF合设,中间件可以使用UPF和SMF之间的通道(例如N4接口)向SMF上报URR。此场景下在PCC规则中增加类型参数和数量参数,该类型参数和数量参数用于指示SMF通知UPF上报操作类型和被执行该操作的标签数量,从而减少因增加对RFID或无源物联网等服务计费的功能而对核心网侧装置的改动。
图12所示实施例包括以下步骤:
S1201、RAN完成标签的注册流程,阅读器也完成注册流程。此步骤可参考图11中步骤S1101的描述,此处不再赘述。
S1202、服务器向部署在核心网的中间件发送RFID操作指令,例如,该操作指令可以用于指示RFID的操作类型,例如,操作类型是盘点操作、读操作、或写操作。该指令包含应被执行RFID操作的标签标识;可选地,标签标识可以是EPC码集合。
S1203、中间件作为控制面网元依次向SMF、AMF发送该RFID操作指令,最终AMF向对应的RAN发送该RFID操作指令。
S1204、RAN根据RFID操作指令,对集合范围内的标签执行RFID操作。
S1205、RAN接收标签消息,该标签消息为标签向RAN发送的上行消息。
S1206、RAN通过控制面通道依次通过AMF、SMF向中间件发送第一消息。
可选的,RAN还向中间件发送第二消息。
S1207、中间件根据从RAN收到的第一消息(可选的,第二消息),获取计费信息。计费信息包括类型信息和数量信息,所述类型信息指示第一操作的操作类型,所述数量信息指示被执行所述第一操作的RFID标签的数量。
步骤S1205至S1207可参考图10中步骤S1004至S1006的描述,此处不再赘述。
S1208、中间件向SMF上报第一操作的操作类型和被执行所述第一操作的RFID标签的数量。
S1209、支持CTF的SMF向CHF发送计费数据请求,该计费数据请求携带了第一操作的操作类型和被执行所述第一操作的RFID标签的数量。
S1210、CHF创建CDR。
S1211、CHF完成计费后,向SMF发送计费数据响应,计费数据响应用于通知SMF关于该计费数据请求完成与否的结果。
S1212、中间件向服务器发送RFID的操作结果。该步骤可参考图10中步骤S1010的描述。该步骤可以在S1206步骤之后执行。
图12所示实施例所述中间件能够获取到指示第一操作的操作类型的类型信息和实际被执行第一操作的标签的数量,并向CHF上报该计费信息,根据操作类型以及实际被执行的标签数量进行计费,使得计费结果更精确,计费信息与RFID服务更匹配,计费行为更合理。
本申请实施例提供了又一种RFID蜂窝融合架构下的计费方法,如图13中所示,适用图9的蜂窝融合架构,该方法中间件向支持CTF的AMF上报计费数据,AMF与CHF交互完成计费。该方法包括以下步骤:
S1301、RAN完成标签的注册流程,阅读器也完成注册流程。此步骤可参考图11中步骤S1101的描述,此处不再赘述。
S1302、服务器向部署在核心网的中间件发送RFID的操作指令。例如,该操作指令可以用于指示RFID的操作类型,例如,操作类型包括是盘点操作、读操作、或写操作。该指令包含应被执行RFID操作的标签EPC码集合。
S1303、中间件向AMF发送RFID的操作指令,再由AMF向RAN发送RFID的操作指令。
S1304、RAN根据RFID的操作指令,对集合范围内的标签执行RFID操作。
S1305、RAN接收标签消息,该标签消息为标签向RAN发送的上行消息。
S1306、RAN通过AMF向中间件发送第一消息。
可选的,RAN还通过AMF向中间件发送第二消息。
S1307、中间件根据从RAN收到的第一消息(可选的,第二消息),获取计费信息。计费信息包括类型信息和数量信息,所述类型信息指示第一操作的操作类型,所 述数量信息指示被执行所述第一操作的RFID标签的数量。
步骤S1305至S1307可参考图10中步骤S1004至S1006的描述,此处不再赘述。
S1308、中间件向AMF上报第一操作的操作类型和被执行所述第一操作的RFID标签的数量。
S1309、支持CTF的AMF向CHF发送计费数据请求,该计费数据请求携带了第一操作的操作类型和被执行所述第一操作的RFID标签的数量。
S1310、CHF创建CDR。
S1311、CHF完成计费后,向AMF发送计费数据响应,计费数据响应用于通知AMF关于该计费数据请求完成与否的结果。
S1312、中间件向服务器发送RFID的操作结果。该步骤可参考图10中步骤S1010的描述。该步骤可以在S1306步骤之后执行。
图13所示实施例所述中间件能够获取到指示第一操作的操作类型的类型信息和实际被执行第一操作的标签的数量,并向CHF上报该计费信息,根据标签被执行的操作类型以及实际被执行的标签数量进行计费,使得计费结果更精确,计费信息与RFID服务更匹配,计费行为更合理。此实施例与图12所示实施例的区别在于通过控制面通道传输时没有SMF的参与。该实施例中间件无需支持CTF,同时也减少了对核心网网元的改动。
图14所示本申请的一种实施例流程示意图。该示意图将结合图10至图13进行描述。图14涉及终端、第一网元和接入网设备之间的交互。例如,终端为图10至图13中的标签,第一网元可以为图10至图13中的中间件,接入网设备可以为图10至图13中的RAN。例如,该方法包括如下步骤:
步骤S1401、第一网元获取计费信息,所述计费信息包括类型信息和第一数量信息。
此步骤可参考图10中的步骤S1006,图11中的步骤S1113,图12中的步骤S1207,图13中的步骤S1307中的描述。例如,该步骤包括以下几种情况:
一种可选的情况,第一网元从接入网设备接收所述类型信息和第二数量信息,所述第二数量信息指示被执行所述第一操作的第一集合的终端的第二数量。所述第一数量等于所述第二数量。此情况可参考图10中的步骤S1006的第一种可选的实现方式。
一种可选的情况,第一网元从接入网设备接收所述类型信息和第一标识信息。所述第一网元根据所述第一标识信息确定所述第一数量信息。此情况可参考图10中的步骤S1006的第二种和第三种可选的实现方式。
一种可选的情况,第一网元从接入网设备接收第一信息和第二信息(例如第一信息包括类型信息和第一标识信息、第二信息包括类型信息和第二标识信息)。所述第一网元根据所述第一信息和所述第二信息确定所述第一数量信息。此情况可参考图10中的步骤S1006的第三种可选的实现方式。
一种可选的情况,第一网元从至少两个接入网设备接收第一信息和第二信息,所述第一信息中的第一标识信息用于指示第一接入网设备服务的终端中被执行所述第一操作的第一集合的终端的标识,所述第二信息中的第二标识信息用于指示第二接入网设备服务的终端中被执行所述第一操作的第二集合的终端的标识。第一网元根据所述 第一标识信息、第二标识信息确定所述第一数量信息。此情况可参考图10中的步骤S1006的实现方式中多个接入网设备的实现方式。
步骤S1402、第一网元发送所述计费信息。该步骤可以包括以下几种情况:
一种可选的情况,支持CTF的第一网元向CHF发送所述获取计费信息,此步骤可参考图10中的步骤S1007中的描述。
一种可选的情况,第一网元向支持CTF的网元或装置发送所述获取计费信息,由支持CTF的网元或装置向CHF发送所述计费信息完成交互。该情况又包含以下几种情况:
其中一种可选的情况,第一网元向支持CTF的SMF发送所述获取计费信息,此步骤可参考图11中的步骤S1114,图12中的步骤S1208的描述。
其中又一种可选的情况,第一网元向支持CTF的AMF发送所述获取计费信息,此步骤可参考图13中的步骤S1308的描述。
图15所示本申请的一种实施例流程示意图。该示意图将结合图10至图13进行描述。
图15涉及终端、第一网元和接入网设备之间的交互。例如,终端为图10至图13中的标签,第一网元可以为图10至图13中的中间件,接入网设备可以为图10至图13中的RAN。例如,该方法包括如下步骤:
步骤S1501、接入网设备获取类型信息和标识信息。
该步骤可参考图10中的步骤S1004,图11中的步骤S1111,图12中的步骤S1205,以及图13中的步骤S1305的描述。
步骤S1502、接入网设备根据步骤S1501中的类型信息和所述标识信息,向第一网元发送第一消息。
此步骤可参考图10中的步骤S1005,图11中的步骤S1112,图12中的步骤S1206,以及图13中的步骤S1306的描述。
上述步骤S1501和步骤S1502可以包含以下几种情况:
在一种可选的情况中,接入网设备对从标签中收到的标签消息不进行去重,获取类型信息和标识信息,此时接入网设备向第一网元发送第一消息,所述第一消息包括所述类型信息和标识信息,可选的,接入网设备向第一网元发送还包括第二消息,此情况可参考图10中的步骤S1006的第三种可选的实现方式。
在一种可选的情况中,接入网设备对从标签中收到的标签消息进行去重,得到无重复计算的标签的标识信息,获取类型信息和标识信息,此时接入网设备向第一网元发送第一消息,所述第一消息包括所述类型信息和标识信息,此情况可参考图10中的步骤S1006的第二种可选的实现方式。
在一种可选的情况中,接入网设备对从标签中收到的标签消息去重并整合,得到无重复计算的标签的标识信息,获取类型信息和标识信息,接入网设备根据所述标识信息确定所述数量信息,此时接入网设备向第一网元发送第一消息,所述第一消息包括所述类型信息和数量信息,此情况可参考图10中的步骤S1006的第一种可选的实现方式。上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的中 间件,或者包含上述中间件功能的装置,或者为可用于中间件的部件;或者,该通信装置可以为上述方法实施例中的RAN,或者包含上述RAN功能的装置,或者为可用于RAN的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图16为根据本申请实施例提供的一种通信装置的示意图。
通信装置包括处理模块1601、接收模块1602和发送模块1603。处理模块1601用于实现通信装置对数据的处理。接收模块1602用于接收通信装置与其他单元或者网元的内容,发送模块1603用于接收通信装置与其他单元或者网元的内容。应理解,本申请实施例中的处理模块1601可以由处理器或处理器相关电路组件(或者,称为处理电路)实现,接收模块1602可以由接收器或接收器相关电路组件实现。发送模块1603可以由发送器或发送器相关电路组件实现。
示例性地,通信装置可以是通信装置设备,也可以是应用于通信装置设备中的芯片或者其他具有上述通信装置设备功能的组合器件、部件等。
示例性的,通信装置可以为图10至图15中任一的中间件或第一网元,也可以是图10至图15中任一的RAN或接入网设备,也可以是图11或图12中的SMF,也可以是图11或图13中的PCF。
当该通信装置为中间件或第一网元时,处理模块1601用于通过接收模块1602接收的类型信息和标识信息获取计费信息(例如图10中的步骤S1006,图11中的步骤S1113,图12中的步骤S1207,图13中的步骤S1307以及图14中的步骤S1401),所述计费信息包括类型信息和第一数量信息,所述类型信息指示第一操作的类型,所述第一数量信息指示被执行所述第一操作的终端的第一数量。发送模块1603用于发送所述计费信息(例如图10中的步骤S1007,图11中的步骤S1114,图12中的步骤S1208,图13中的步骤S1308以及图14中的步骤S1402)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为RAN或接入网设备时,处理模块1601用于通过接收模块1602接收的类型信息和标识信息获取类型信息和标识信息(例如图10中的步骤S1004,图11中的步骤S1111,图12中的步骤S1205,图13中的步骤S1305以及图15中的步骤S1501),所述类型信息指示第一操作的类型,所述标识信息标识被执行所述第一操作的终端的标识。发送模块1603用于根据所述类型信息和所述标识信息,向第一网元发送第一消息(例如图10中的步骤S1005,图11中的步骤S1112,图12中的步骤S1206,图13中的步骤S1306以及图15中的步骤S1502)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为PCF时,接收模块1602用于从SMF接收PCC规则请求消息(例 如图11中的步骤S1104);发送模块1603用于向SMF下发与第一操作相关的PCC规则(例如图图11中的步骤S1105)。此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为SMF时,接收模块1602用于从PCF接收PCC规则(例如图11中的步骤S1105);发送模块1603用于根据PCC规则向UPF发送URR(例如图11中的步骤S1106)。此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
图17为根据本申请实施例提供的另一种通信装置的示意图,该通信装置包括:处理器1701、通信接口1702、存储器1703。其中,处理器1701、通信接口1702以及存储器1703可以通过总线1704相互连接;总线1704可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线1704可以分为地址总线、数据总线和控制总线等。为便于表示,图17中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。处理器1701可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。存储器1703可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
示例性的,通信装置可以为图10至图15中任一的中间件或第一网元,也可以是图10至图15中任一的RAN或接入网设备,也可以是图11或图12中的SMF,也可以是图11或图13中的PCF。
其中,处理器1701用于实现通信装置的数据处理操作,通信接口1702用于实现通信装置的接收操作和发送操作。
当该通信装置为中间件或第一网元时,处理器1701用于获取计费信息(例如图10中的步骤S1006,图11中的步骤S1113,图12中的步骤S1207,图13中的步骤S1307以及图14中的步骤S1401),所述计费信息包括类型信息和第一数量信息,所述类型信息指示第一操作的类型,所述第一数量信息指示被执行所述第一操作的终端的第一数量。通信接口1702用于发送所述计费信息(例如图10中的步骤S1007,图11中的步骤S1114,图12中的步骤S1208,图13中的步骤S1308以及图14中的步骤S1402)。此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为RAN或接入网设备时,处理器1701用于获取类型信息和标识信 息(例如图10中的步骤S1004,图11中的步骤S1111,图12中的步骤S1205,以及图13中的步骤S1305以及图15中的步骤S1501),所述类型信息指示第一操作的类型,所述标识信息标识被执行所述第一操作的终端的标识。通信接口1702用于根据所述类型信息和所述标识信息,向第一网元发送第一消息(例如图10中的步骤S1005,图11中的步骤S1112,图12中的步骤S1206,以及图13中的步骤S1306以及图15中的步骤S1502)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为PCF时,通信接口1702用于从SMF接收PCC规则请求消息(例如图11中的步骤S1104);通信接口1702用于向SMF下发与第一操作相关的PCC规则(例如图图11中的步骤S1105)。此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为SMF时,通信接口1702用于从PCF接收PCC规则(例如图11中的步骤S1105);通信接口1702用于根据PCC规则向UPF发送URR(例如图11中的步骤S1106)。此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
本申请实施例提供一种通信系统,其包括前述的第一网元(例如中间件)以及接入网设备(例如RAN),其中,第一网元执行图10、图12至图15中任一所示实施例中中间件执行的方法,接入网设备执行图10、图12至图15中任一所示实施例中RAN执行的方法。
本申请实施例还提供一种通信系统,其包括前述的PCF以及SMF,其中,PCF执行图11所示实施例中PCF执行的方法,SMF执行图11所示实施例中SMF执行的方法。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图10至图15中任一所示的实施例中与中间件或第一网元相关的流程,或者,所述计算机可以实现上述方法实施例提供的图10至图15中任一所示的实施例中与RAN或接入网设备相关的流程,或者,所述计算机可以实现上述方法实施例提供的图11或图12所示的实施例中与SMF相关的流程,或者,所述计算机可以实现上述方法实施例提供的图11或图13所示的实施例中与PCF相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图10至图15中任一所示的实施例中与中间件或第一网元相关的流程,或者,所述计算机可以实现上述方法实施例提供的图10至图15中任一所示的实施例中与RAN或接入网设备相关的流程,或者,所述计算机可以实现上述方法实施例提供的图11或图12所示的实施例中与SMF相关的流程,或者,所述计算机可以实现上述方法实施例提供的图11或图13所示的实施例中与PCF相关的流程。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的计费的方法中由中间件、RAN、SMF或PCF中的相 应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,这里不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请的说明书和权利要求书及所述附图中的术语“第一”和“第二”等 是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种计费方法,其特征在于,所述方法包括:
    第一网元获取计费信息,所述计费信息包括类型信息和第一数量信息,所述类型信息指示第一操作的类型,所述第一数量信息指示被执行所述第一操作的终端的第一数量;
    所述第一网元发送所述计费信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网元支持计费触发功能,所述第一网元发送所述计费信息,包括:
    所述第一网元向计费功能网元发送所述计费信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一网元发送所述计费信息,包括:
    所述第一网元向支持计费触发功能的网元发送所述计费信息。
  4. 根据权利要求3所述的方法,其特征在于,所述支持计费触发功能的网元包括会话管理功能网元或接入与移动性管理功能网元。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一网元获取计费信息,包括:
    所述第一网元从第一接入网设备接收所述类型信息和第二数量信息,所述第二数量信息指示被执行所述第一操作的第一集合的终端的第二数量。
  6. 根据权利要求5所述的方法,其特征在于,所述第二数量等于所述第一数量。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一网元获取计费信息,包括:
    所述第一网元从所述第一接入网设备接收所述类型信息和第一标识信息,所述第一标识信息用于标识被执行所述第一操作的第一集合的终端;
    所述第一网元根据所述第一标识信息确定所述第一数量信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一网元获取计费信息,还包括:
    所述第一网元从第二接入网设备接收所述类型信息和第二标识信息,所述第二标识信息用于标识被执行所述第一操作的第二集合的终端;
    其中,所述第一网元根据所述第一标识信息确定所述第一数量信息,包括:
    所述第一网元根据所述第一标识信息和所述第二标识信息,确定所述第一数量信息。
  9. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一网元获取计费信息,包括:
    所述第一网元接收第一信息和第二信息,所述第一信息指示所述第一操作的操作类型,以及被执行所述第一操作的终端的标识;所述第二信息指示所述第一操作的操作类型,以及被执行所述第一操作的终端的标识;
    所述第一网元根据所述第一信息和所述第二信息,确定所述计费信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第一网元接收第一信息和第二信息,包括:
    所述第一网元从第一接入网设备接收所述第一信息和所述第二信息;或者,
    所述第一网元从第一接入网设备接收所述第一信息;所述第一网元从第二接入网设备接收所述第二信息。
  11. 一种计费方法,其特征在于,所述方法包括:
    接入网设备获取类型信息和标识信息,所述类型信息指示第一操作的类型,所述标识信息标识被执行所述第一操作的终端的标识;
    所述接入网设备根据所述类型信息和所述标识信息,向第一网元发送第一消息;
    其中,所述第一消息包括所述类型信息和所述标识信息,所述标识信息用于确定被执行所述第一操作的终端的数量;或者,所述第一消息包括所述类型信息和根据所述标识信息确定的数量信息,所述数量信息指示被执行所述第一操作的终端的数量。
  12. 根据权利要求11所述的方法,其特征在于,所述接入网设备获取类型信息和标识信息,包括:
    所述接入网设备获取第一标识信息和第二标识信息,所述第一标识信息标识被执行所述第一操作的第一集合的终端,所述第二标识信息标识被执行所述第一操作的第二集合的终端;
    所述接入网设备根据所述第一标识信息和所述第二标识信息,确定所述标识信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据所述类型信息和所述标识信息,确定所述数量信息,所述第一消息包括所述类型信息和所述数量信息。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第一网元为中间件装置。
  15. 根据权利要求1至13中任一项所述的方法,其特征在于,所述终端为无线射频识别RFID标签。
  16. 一种通信装置,其特征在于,所述通信装置包括:
    处理模块,用于获取计费信息,所述计费信息包括类型信息和第一数量信息,所述类型信息指示第一操作的类型,所述第一数量信息指示被执行所述第一操作的终端的第一数量;
    发送模块,用于发送所述计费信息。
  17. 根据权利要求16所述的通信装置,其特征在于,所述通信装置支持计费触发功能,所述发送模块用于向计费功能网元发送所述计费信息。
  18. 根据权利要求17所述的通信装置,其特征在于,所述发送模块用于向支持计费触发功能的网元发送所述计费信息。
  19. 根据权利要求16至18中任一项所述的通信装置,其特征在于,还包括:
    接收模块;
    所述处理模块用于通过所述接收模块从第一接入网设备接收所述类型信息和第二数量信息,所述第二数量信息指示被执行所述第一操作的第一集合的终端的第二数量。
  20. 根据权利要求16至18中任一项所述的通信装置,其特征在于,还包括:
    接收模块;
    所述处理模块用于通过所述接收模块从所述第一接入网设备接收所述类型信息和 第一标识信息,所述第一标识信息用于标识被执行所述第一操作的第一集合的终端;
    所述处理模块根据所述第一标识信息确定所述第一数量信息。
  21. 根据权利要求20所述的通信装置,其特征在于,所述处理模块用于通过所述接收模块从第二接入网设备接收所述类型信息和第二标识信息,所述第二标识信息用于标识被执行所述第一操作的第二集合的终端;
    其中,所述处理模块用于根据所述第一标识信息和所述第二标识信息,确定所述第一数量信息。
  22. 根据权利要求16至18中任一项所述的通信装置,其特征在于,还包括:
    接收模块;
    所述处理模块用于通过所述接收模块接收第一信息和第二信息,所述第一信息指示所述第一操作的操作类型,以及被执行所述第一操作的终端的标识;所述第二信息指示所述第一操作的操作类型,以及被执行所述第一操作的终端的标识;
    所述处理模块根据所述第一信息和所述第二信息,确定所述计费信息。
  23. 根据权利要求22所述的通信装置,其特征在于,所述接收模块用于从第一接入网设备接收所述第一信息和所述第二信息;或者,
    所述接收模块用于从第一接入网设备接收所述第一信息;所述接收模块用于从第二接入网设备接收所述第二信息。
  24. 一种通信装置,其特征在于,所述通信装置包括:
    处理模块,用于获取类型信息和标识信息,所述类型信息指示第一操作的类型,所述标识信息标识被执行所述第一操作的终端的标识;
    发送模块,用于根据所述类型信息和所述标识信息,向第一网元发送第一消息;
    其中,所述第一消息包括所述类型信息和所述标识信息,所述标识信息用于确定被执行所述第一操作的终端的数量;或者,所述第一消息包括所述类型信息和根据所述标识信息确定的数量信息,所述数量信息指示被执行所述第一操作的终端的数量。
  25. 根据权利要求24所述的通信装置,其特征在于,还包括:
    接收模块;
    所述处理模块用于通过所述接收模块获取第一标识信息和第二标识信息,所述第一标识信息标识被执行所述第一操作的第一集合的终端,所述第二标识信息标识被执行所述第一操作的第二集合的终端;所述处理模块用于根据所述第一标识信息和所述第二标识信息,确定所述标识信息。
  26. 根据权利要求25所述的通信装置,其特征在于,所述处理模块用于根据所述类型信息和所述标识信息,确定所述数量信息,所述第一消息包括所述类型信息和所述数量信息。
  27. 一种通信装置,其特征在于,包括处理器;
    所述处理器用于从存储器中读取并运行程序,以实现如权利要求1至10中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括处理器;
    所述处理器用于从存储器中读取并运行程序,以实现如权利要求11至13中任一项所述的方法。
  29. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至15中任一项所述的方法。
  30. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行如权利要求1至15中任一项所述的方法。
PCT/CN2020/142373 2020-12-31 2020-12-31 一种计费方法、装置和系统 WO2022141498A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/142373 WO2022141498A1 (zh) 2020-12-31 2020-12-31 一种计费方法、装置和系统
PCT/CN2021/117836 WO2022142465A1 (zh) 2020-12-31 2021-09-10 一种计费方法、装置和系统
CN202180087053.XA CN116648883A (zh) 2020-12-31 2021-09-10 一种计费方法、装置和系统
EP21913212.3A EP4258604A4 (en) 2020-12-31 2021-09-10 CHARGING METHOD, APPARATUS AND SYSTEM
KR1020237025837A KR20230122158A (ko) 2020-12-31 2021-09-10 과금 방법, 장치 및 시스템
US18/344,051 US20230345212A1 (en) 2020-12-31 2023-06-29 Charging method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142373 WO2022141498A1 (zh) 2020-12-31 2020-12-31 一种计费方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2022141498A1 true WO2022141498A1 (zh) 2022-07-07

Family

ID=82258991

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/142373 WO2022141498A1 (zh) 2020-12-31 2020-12-31 一种计费方法、装置和系统
PCT/CN2021/117836 WO2022142465A1 (zh) 2020-12-31 2021-09-10 一种计费方法、装置和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117836 WO2022142465A1 (zh) 2020-12-31 2021-09-10 一种计费方法、装置和系统

Country Status (5)

Country Link
US (1) US20230345212A1 (zh)
EP (1) EP4258604A4 (zh)
KR (1) KR20230122158A (zh)
CN (1) CN116648883A (zh)
WO (2) WO2022141498A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023173937A1 (zh) * 2022-03-17 2023-09-21 华为技术有限公司 一种计费的方法和通信装置
WO2024027339A1 (zh) * 2022-08-04 2024-02-08 华为技术有限公司 一种盘点方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110084839A1 (en) * 2009-10-14 2011-04-14 Noah Groth Data center equipment location and monitoring system
CN102521768A (zh) * 2011-12-14 2012-06-27 岳洋有限公司 自动侦测商品数量和计算费用的系统
CN107170060A (zh) * 2017-04-07 2017-09-15 北京易华录信息技术股份有限公司 一种基于汽车电子标识的拥堵费支付系统、方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188082B (zh) * 2011-12-30 2016-12-07 中国移动通信集团公司 一种物联网终端计费管理方法及系统
WO2015013485A2 (en) * 2013-07-24 2015-01-29 Convida Wireless, Llc Service domain charging systems and methods
US20170156049A1 (en) * 2015-07-17 2017-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Management of a set of identifiers
CN111641944A (zh) * 2019-03-01 2020-09-08 华为技术有限公司 一种通信方法及设备
CN109919676B (zh) * 2019-03-05 2023-04-18 苏州卡海尔思信息技术有限公司 一种智能环保袋计费管理的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110084839A1 (en) * 2009-10-14 2011-04-14 Noah Groth Data center equipment location and monitoring system
CN102521768A (zh) * 2011-12-14 2012-06-27 岳洋有限公司 自动侦测商品数量和计算费用的系统
CN107170060A (zh) * 2017-04-07 2017-09-15 北京易华录信息技术股份有限公司 一种基于汽车电子标识的拥堵费支付系统、方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI HAIJIN;CHEN FUBING;HUA CHENJIANG: "The Accounting System Design based on RFID", INTELLIGENT COMPUTER AND APPLICATIONS, vol. 1, no. 4, 1 December 2011 (2011-12-01), pages 68 - 69, XP055947000, ISSN: 2095-2163 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023173937A1 (zh) * 2022-03-17 2023-09-21 华为技术有限公司 一种计费的方法和通信装置
WO2024027339A1 (zh) * 2022-08-04 2024-02-08 华为技术有限公司 一种盘点方法及装置

Also Published As

Publication number Publication date
KR20230122158A (ko) 2023-08-22
EP4258604A4 (en) 2024-03-27
EP4258604A1 (en) 2023-10-11
US20230345212A1 (en) 2023-10-26
CN116648883A (zh) 2023-08-25
WO2022142465A1 (zh) 2022-07-07

Similar Documents

Publication Publication Date Title
US10542459B2 (en) Systems and methods for accessing multiple application servers via a service capability exposure function
WO2022141498A1 (zh) 一种计费方法、装置和系统
US8850463B2 (en) System and method for capturing parameters and recording events in portable devices with digital television receiver
CN109118360B (zh) 区块链对账方法、装置、设备及存储介质
US10645565B2 (en) Systems and methods for external group identification in wireless networks
US10805812B2 (en) Mobile communication system, detection server, control apparatus, mobile communication apparatus, network optimizing method, and non-transitory computer readable medium having program stored thereon
CN103997724A (zh) 一种用于聚合计费信息的方法、装置和系统
CN102201930B (zh) 对mtc设备进行分组管理的方法及系统
EP3101926A1 (en) Charging processing method, centralized network control node, function node and system
CN108076471B (zh) 一种管理ran切片的方法和装置
WO2009129699A1 (zh) 广告投放方法、系统和设备
KR102026215B1 (ko) 위치기반 서비스 제공 방법 및 이를 위한 시스템
CN109196903A (zh) 用于将区域代码自动指配给无线电接入网络(ran)节点的系统和方法
CN107148005B (zh) 一种基于动态分组的对讲方法
US11202177B2 (en) Systems and methods for caching and managing multicast content
WO2023142821A1 (zh) 一种通信方法及装置
US11736623B2 (en) Systems and methods for granular charging in mobile wireless networks
KR100666708B1 (ko) 개방형 모바일 비즈니스 지원 시스템에서 사용자종단(mt) 메시지 전송 장치 및 방법
US20240147199A1 (en) Systems and methods for network usage monitoring
CN102316436B (zh) Mtc特性的激活方法、移动性管理网元及mtc设备
WO2024125383A1 (zh) 计费方法、装置和系统
KR100650701B1 (ko) 개방형 모바일 비즈니스 지원을 위한 레거시 연동 처리장치 및 방법
CN116321083A (zh) 一种终端管理方法及装置
CN118215014A (zh) 计费方法和装置
CN104349296A (zh) Epc话单生成方法、系统与接入网关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967837

Country of ref document: EP

Kind code of ref document: A1