WO2022141482A1 - 质谱仪数据采集装置及质谱仪设备 - Google Patents

质谱仪数据采集装置及质谱仪设备 Download PDF

Info

Publication number
WO2022141482A1
WO2022141482A1 PCT/CN2020/142340 CN2020142340W WO2022141482A1 WO 2022141482 A1 WO2022141482 A1 WO 2022141482A1 CN 2020142340 W CN2020142340 W CN 2020142340W WO 2022141482 A1 WO2022141482 A1 WO 2022141482A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
mass spectrometer
collector
module
signal
Prior art date
Application number
PCT/CN2020/142340
Other languages
English (en)
French (fr)
Inventor
葛卫敏
林利泉
刘伟
许春华
彭真
乔佳
Original Assignee
广州禾信仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州禾信仪器股份有限公司 filed Critical 广州禾信仪器股份有限公司
Publication of WO2022141482A1 publication Critical patent/WO2022141482A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • G01N27/66Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber and measuring current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present application relates to the technical field of mass spectrometers, and in particular, to a mass spectrometer data acquisition device and mass spectrometer equipment.
  • Mass spectrometer also known as mass spectrometer, is an instrument that separates and detects the composition of matter according to the mass difference of atoms, molecules or molecular fragments according to the principle that charged particles can be deflected in the electromagnetic field.
  • the detection of the mass spectrometer mainly uses an electron multiplier.
  • the ions from the quadrupole are hit to the high-energy dynode to generate electrons.
  • the electrons generate electrical signals through the electron multiplier.
  • the electrical signals from the multiplier are sent to the computer for storage.
  • the traditional method of collecting ion signals adopts the analog collector, which can restore the ion signal by recording the information such as the energy, pulse width and waveform shape of the signal. Weak, resulting in an inaccurate and comprehensive signal acquisition, and the traditional signal acquisition method has low reliability.
  • a mass spectrometer data acquisition device including an analog collector, a digital collector and a data analysis device, one end of the analog collector is connected to an electron multiplier of a mass spectrometer, receives electrical signals from the electron multiplier, and the other end is connected to the data
  • An analysis device one end of the digital collector is connected to the electron multiplier of the mass spectrometer, and receives electrical signals from the electron multiplier, and the other end is connected to the data analysis device.
  • a mass spectrometer apparatus includes an electron multiplier and a mass spectrometer data acquisition device as described above.
  • the above-mentioned mass spectrometer data acquisition device and mass spectrometer equipment including an analog collector, a digital collector and a data analysis device, one end of the analog collector is connected to the electron multiplier of the mass spectrometer, receives electrical signals from the electron multiplier, and the other end is connected to the data analysis device
  • one end of the digital collector is connected to the electron multiplier of the mass spectrometer, receives the electrical signal from the electron multiplier, and the other end is connected to the data analysis device.
  • the electrical signal from the electron multiplier is collected by the analog collector and the digital collector, and then sent to the signal analysis device for analysis to obtain a mass spectrum.
  • the analog collector has strong pressure resistance and can detect high-concentration signals.
  • the digital collector has high sensitivity and can detect For low-concentration signals, the simultaneous use of the two can expand the range and sensitivity of the acquired signal, enhance the resolution, improve the accuracy and comprehensiveness of signal acquisition, reduce costs, and improve the reliability of data acquisition.
  • the mass spectrometer data acquisition device further includes a protection device connected to the electron multiplier.
  • the protection device includes a detector, a protection switch and an electronic adsorption part, the detector is connected to the electron multiplier, and the detector is connected to the electronic adsorption part through the protection switch, so The distance between the electronic adsorption part and the digital collector is smaller than the distance between the electronic adsorption part and the analog collector.
  • the electron adsorption member includes two metal sheets disposed oppositely and spaced apart.
  • the data analysis device is an FPGA chip.
  • the data analysis device includes a dual-channel acquisition and transmission interface, a data processing module and a data storage module, the analog collector and the digital collector are both connected to the dual-channel acquisition and transmission interface, and the The dual-channel acquisition and transmission interface is connected to the data processing module, and the data processing module is connected to the data storage module.
  • the data analysis device further includes a data uploading module, the data uploading module is connected to the data storage module.
  • the data processing module includes an analog data processing module, a digital data processing module, a signal fitting module and a signal superposition module, and both the analog data processing module and the digital data processing module are connected to the dual
  • the channel acquisition and transmission interfaces are all connected to the signal fitting module, the signal fitting module is connected to the signal superposition module, and the signal superposition module is connected to the data storage module.
  • the mass spectrometer data acquisition device further includes a host computer, and the host computer is connected to the data analysis device.
  • FIG. 1 is a structural block diagram of a mass spectrometer data acquisition device in one embodiment
  • FIG. 2 is a structural block diagram of a mass spectrometer data acquisition device in another embodiment
  • FIG. 3 is a schematic structural diagram of a mass spectrometer data acquisition device in one embodiment
  • FIG. 4 is a flow chart of the operation of the mass spectrometer data acquisition device in one embodiment.
  • a mass spectrometer data acquisition device including an analog collector 112, a digital collector 114 and a data analysis device 120.
  • One end of the analog collector 112 is connected to the electron multiplier 210 of the mass spectrometer,
  • One end of the digital collector 114 is connected to the electron multiplier 210 of the mass spectrometer, receives the electrical signal from the electron multiplier 210, and the other end is connected to the data analysis device 120.
  • the electrical signal from the electron multiplier 210 is collected by the analog collector 112 and the digital collector 114, and then sent to the signal analysis device for analysis to obtain a mass spectrum.
  • the analog collector 112 has strong pressure resistance and can detect high-concentration signals.
  • the digital collector 114 It has high sensitivity and can detect low-concentration signals. The simultaneous use of the two can expand the range and sensitivity of the acquired signal, enhance the resolution, improve the accuracy and comprehensiveness of signal acquisition, and also reduce costs and improve the reliability of data acquisition.
  • a mass spectrometer includes an ion source 230 , a dynode 220 and an electron multiplier 210 .
  • the ion source 230 hits a high-energy dynode to generate electrons, and the electrons pass through the electron multiplier 210 to generate an electrical signal.
  • the ion source 230 is the mixed gas of ions to be tested after being screened by the quadrupole rod, and the dynode 220 is a device for ion collision to generate electrons, which is a specific metal collision object.
  • the electron multiplier 210 amplifies the electrons generated by the collision of the plasma in multiple stages to form an electron beam, which is outputted by current at the output end of the multiplier.
  • the electron multiplier 210 increases the electron signal into an electron beam to form a current signal or a voltage signal, which is collectively referred to as an electrical signal.
  • the strength of the electrical signal can be directly mapped to the number of ions, that is, the concentration of ions.
  • the electron multiplier 210 includes multi-stage electron amplifiers. The specific number of electron amplifiers is determined according to the magnification required. The higher the magnification, the greater the current intensity formed, but generally no more than 20 stages of amplification to avoid damage. receiving device.
  • the mass spectrometer data acquisition device When the mass spectrometer data acquisition device proposed in the present application is applied to a mass spectrometer, the mass spectrometer data acquisition device is connected to the electron multiplier 210 of the mass spectrometer. Specifically, the analog collector 112 and the digital collector 114 in the mass spectrometer data acquisition device are connected to The electron multiplier 210 is connected, and the analog collector 112 is also called an ADC (Analog-to-digital converter, analog-to-digital converter), which is a type of equipment used to convert a continuous signal in an analog form into a discrete signal in a digital form.
  • ADC Analog-to-digital converter, analog-to-digital converter
  • the digital collector 114 also known as a TDC (time-to-digital converter, time-to-digital converter), is a commonly used time interval measurement circuit, which generates a pulse signal after an electron strikes.
  • the analog collector 112 has strong anti-strike ability and mainly collects high-concentration ion electrical signals.
  • the digital collector 114 generates pulse signals after electron impact, which has high sensitivity and is easy to be saturated, and mainly collects low-concentration ion electrical signals.
  • the concentrations of the ion electrical signals collected by the analog collector 112 and the digital collector 114 are not unique.
  • the analog collector 112 is used to collect signals with an ion concentration in the range of 106-109cps, and output them directly as intensity values
  • the digital collector 114 is used to collect the signal whose ion concentration is in the range of 0-10 7 cps, and output it in the form of square wave pulse. It can be understood that, in other embodiments, the analog collector 112 and the digital collector 114 can also collect ion electrical signals of other concentrations, which can be selected according to actual needs.
  • the data analysis device 120 is mainly used to synchronously collect the signals transmitted by the analog collector 112 and the digital collector 114, analyze the collected signals, and record the signals of different ions to obtain a mass spectrum.
  • the mass spectrometer data acquisition device further includes a protection device 130 , and the protection device 130 is connected to the electron multiplier 210 .
  • the protection device 130 is connected to the electron multiplier 210 , and can monitor the electrical signal output by the electron multiplier 210 , and implement corresponding functions according to the condition of the electrical signal, thus playing the role of a protection device.
  • the specific function of the protection device 130 varies according to the structure of the protection device 130 , as long as those skilled in the art think it can play a protective role.
  • the protection device 130 includes a detector, a protection switch 132 and an electronic adsorption part, the detector is connected to the electron multiplier 210 , the detector is connected to the electronic adsorption part through the protection switch 132 , and the distance between the electronic adsorption part and the digital collector 114 It is smaller than the distance between the electronic adsorption part and the analog collector 112 .
  • the detector is connected to the electron multiplier 210, and can detect the ion electrical signal concentration output by the electron multiplier 210, and compare the detected ion concentration with the set threshold value. When the detected ion concentration is greater than the set threshold value, a closing command is sent to the protection switch 132, and the protection switch 132 closes after receiving the closing command, so that the voltage is attached to the electronic adsorption part, and a magnetic field is generated on the electronic adsorption part, which changes the running trajectory of the electron beam and finally attracts the electrons. on the adsorber.
  • the electronic suction part Since the distance between the electronic suction part and the digital collector 114 is smaller than the distance between the electronic suction part and the analog collector 112 , the electronic suction part is close to the digital collector 114 , so that the electron beam cannot reach the digital collector 114 , thereby protecting the digital collector 114 effect. Further, after the protection switch 132 is closed, a higher voltage, such as a voltage of 230V, can be connected, and the high voltage is loaded on the electronic adsorption part, so that a strong magnetic field is formed on the electronic adsorption part, and the adsorption capacity of the ion electric signal is stronger. The protection effect on the digital collector 114 is better.
  • a higher voltage such as a voltage of 230V
  • the value of the set threshold value is not unique, and can be determined according to the ion concentration that the digital collector 114 can withstand.
  • the set threshold value is 10 7 cps (counts per second, counts per second, counts per second). ), cps is the signal value corresponding to the concentration in the mass spectrometer, and the digital collector 114 can normally collect ion electrical signals with a concentration below 10 7 cps.
  • the set threshold value may also be other values, and the protection device 130 may also be of other structures, as long as those skilled in the art consider it achievable.
  • the electron adsorption member includes two metal sheets disposed oppositely and spaced apart.
  • the structure of the electronic adsorption member is not unique.
  • the electronic adsorption member includes two metal sheets arranged at opposite intervals, and there is a distance between the two metal sheets.
  • the electrical conductivity of the metal sheet is good. When a voltage is loaded on the metal sheet, a magnetic field will be formed, which plays the role of adsorbing electrons.
  • the two metal sheets can be arranged in parallel, and the size and spacing of the metal sheets can be adjusted according to actual needs, as long as those skilled in the art think that it can be achieved.
  • the data analysis device 120 is an FPGA chip.
  • the data analysis device 120 is mainly used to synchronously collect the signals transmitted by the analog collector 112 and the digital collector 114, analyze the collected signals, and record the signals of different ions to obtain a mass spectrum.
  • the type of the data analysis device 120 is not unique.
  • the data analysis device 120 is an FPGA (Field Programmable Gate Array, Field Programmable Gate Array) chip, which can implement multiple functions on one chip, so that subsequent design is more flexible. It can be understood that, in other embodiments, the data analysis device 120 may also be other types of devices, as long as those skilled in the art think that they can be implemented.
  • the data analysis device 120 includes a dual-channel acquisition and transmission interface 122 , a data processing module 124 and a data storage module 126 , and both the analog collector 112 and the digital collector 114 are connected to the dual-channel acquisition and transmission interface 122 , the dual-channel acquisition and transmission interface 122 is connected to the data processing module 124 , and the data processing module 124 is connected to the data storage module 126 .
  • both the analog collector 112 and the digital collector 114 are connected to the dual-channel acquisition and transmission interface 122, and the dual-channel acquisition and transmission interface 122 can simultaneously acquire the signals sent by the analog collector 112 and the data collector, so as to facilitate subsequent devices to process the signals .
  • the type of the dual-channel acquisition and transmission interface 122 is not unique.
  • the dual-channel acquisition and transmission interface 122 is a differential spi interface (Serial Peripheral Interface, serial peripheral interface), and the differential spi interface supports full-duplex communication.
  • the communication is simple and the data transmission rate is fast. It can be understood that, in other embodiments, the dual-channel acquisition and transmission interface 122 may also be of other types, as long as those skilled in the art can implement it.
  • the dual-channel acquisition and transmission interface 122 collects the signals transmitted by the analog collector 112 and the digital collector 114, it sends the collected signals to the data processing module 124 for processing, and the data processing module 124 sends the processed signals to the data storage
  • the module 126 performs storage, and the stored data can be directly called when needed, which is convenient to use.
  • the specific process of data processing by the data processing module 124 is not unique, and can be adjusted according to the conditions of the collected signals and the processing purpose, as long as those skilled in the art can realize it.
  • the data analysis apparatus 120 further includes a data uploading module 128 , and the data uploading module 128 is connected to the data storage module 126 .
  • the data uploading module 128 is connected to the data storage module 126, the data storage module 126 can send the data stored by itself to the data uploading module 128, and the data uploading module 128 can be connected to the host computer 300 or other devices, and transmit the data to the host computer 300 or other devices.
  • the device such as the host computer 300 can perform further processing on the device.
  • the data storage module 126 can actively send the stored data to the data uploading module 128 in real time or at preset time intervals, and the data uploading module 128 can also actively upload the received data to the upper level in real time or at preset time intervals In devices such as the machine 300, automatic data processing and automatic uploading are realized.
  • the data storage module 126 and/or the data uploading module 128 can also send the received data to the next device connected to it in sequence after receiving the uploading instruction, and the uploading instruction received by the data uploading module 128 can be controlled by the upper
  • the uploading instruction received by the data storage module 126 can be sent by the data uploading module 128.
  • the data uploading module 128 can also upload the data to a device such as the host computer 300 according to a preset data transmission protocol, so as to improve the quality of data transmission.
  • the preset data transmission protocol may be provided by the host computer 300 for the data uploading module 128 to transmit data.
  • the data processing module 124 includes an analog data processing module 1242 , a digital data processing module 1244 , a signal fitting module 1246 and a signal superposition module 1248 , an analog data processing module 1242 and a digital data processing module 1244 Both are connected to the dual-channel acquisition and transmission interface 122 , and are both connected to the signal fitting module 1246 , the signal fitting module 1246 is connected to the signal superposition module 1248 , and the signal superposition module 1248 is connected to the data storage module 126 .
  • the functions of the analog data processing module 1242 and the digital data processing module 1244 are not unique.
  • the analog data processing module 1242 performs bit-width matching and synchronization matching on the data transmitted from the analog collector 112.
  • the digital data processing module 1244 counts the pulses sent by the data collector, and performs bit-width matching and synchronization matching at the same time.
  • the signal fitting module 1246 When the signal fitting module 1246 is working, there are three situations of the signal to be fitted: only the ADC signal, only the TDC count, and both the ADC signal and the TDC count.
  • the signal fitting module 1246 fits the signals of the three situations into frame signal data .
  • the signal superposition module 1248 superimposes multiple frame signals according to time sequence to improve the resolution and avoid an error in a certain acquisition signal.
  • bit widths of data collected by different analog data processing modules 1242 and digital data processing modules 1244 are different.
  • a bit width of 16 bits is used, that is, 2 bytes.
  • This bit width can also be notified to the host computer 300 to avoid the occurrence of data. Confused. Due to superposition, the bit width is expanded from 2 bytes to 4 bytes, and the upper computer 300 takes every 4 bytes as a collection data in sequence.
  • Synchronous matching means that each acquisition must start and end at the same time, and the ADC and TDC signals of each acquisition can be matched without confusion. Fitting into a frame signal is to judge whether the number of points collected is consistent with the number of points required for a frame of data by using the start and end indications of each group of collected signals.
  • the data processing module 124 when the data processing module 124 includes an analog data processing module 1242, a digital data processing module 1244, a signal fitting module 1246 and a signal superimposing module 1248, the data storage module 126 stores the completed frame signal, waits for uploading, and uploads the data.
  • the module 128 After the module 128 receives the upload instruction, it reads the frame data from the data storage module 126 in sequence, combines it according to the format of the transmission protocol, and sends it out.
  • the host computer 300 obtains the frame data, can send valid upload instructions, and provides corresponding The transmission protocol is given to the FPGA for the FPGA to transmit data.
  • the mass spectrometer data acquisition device further includes a host computer 300 , and the host computer 300 is connected to the data analysis device 120 .
  • the host computer 300 obtains data from the data uploading module 128, and can further process the data, and can also set a transmission protocol to the data analysis device 120 for the data analysis device 120 to transmit the data.
  • the data processing module 124 includes an analog data processing module 1242 , a digital data processing module 1244 , a signal fitting module 1246 and a signal superposition module 1248 , the data acquired by the host computer 300 is frame data.
  • the host computer 300 may also have other functions, such as displaying the obtained mass spectrum, or sending the obtained mass spectrum to a remote terminal for display, etc., so that the operator can obtain the mass spectrometry results in time and improve the data of the mass spectrometer. The reliability of the collection device.
  • the above-mentioned mass spectrometer data acquisition device includes an analog collector 112, a digital collector 114 and a data analysis device 120.
  • One end of the analog collector 112 is connected to the electron multiplier 210 of the mass spectrometer, receives the electrical signal from the electron multiplier 210, and the other end is connected to the electron multiplier 210 of the mass spectrometer.
  • the data analysis device 120 one end of the digital collector 114 is connected to the electron multiplier 210 of the mass spectrometer to receive electrical signals from the electron multiplier 210 , and the other end is connected to the data analysis device 120 .
  • the electrical signal from the electron multiplier 210 is collected by the analog collector 112 and the digital collector 114, and then sent to the signal analysis device for analysis to obtain a mass spectrum.
  • the analog collector 112 has strong pressure resistance and can detect high-concentration signals.
  • the digital collector 114 It has high sensitivity and can detect low-concentration signals. The simultaneous use of the two can expand the range and sensitivity of the acquired signal, enhance the resolution, improve the accuracy and comprehensiveness of signal acquisition, and also reduce costs and improve the reliability of data acquisition.
  • a mass spectrometer apparatus including an electron multiplier 210 and a mass spectrometer data acquisition device as described above.
  • the mass spectrometer data acquisition device is connected to the electron multiplier 210 of the mass spectrometer, specifically, the analog collector 112 and the digital collector 114 in the mass spectrometer data acquisition device are connected to the electron multiplier 210, and the analog collector 112 is used for analog form.
  • the continuous signal is converted into a discrete signal in digital form, and the digital collector 114 is a commonly used time interval measurement circuit, which generates a pulse signal after the electron strikes.
  • the analog collector 112 has strong anti-strike ability and mainly collects high-concentration ion electrical signals.
  • the digital collector 114 generates pulse signals after electron impact, which has high sensitivity and is easy to be saturated, and mainly collects low-concentration ion electrical signals.
  • the concentrations of the ion electrical signals collected by the analog collector 112 and the digital collector 114 are not unique.
  • the analog collector 112 is used to collect signals with an ion concentration in the range of 106-109cps, and output them directly as intensity values
  • the digital collector 114 is used to collect the signal whose ion concentration is in the range of 0-10 7 cps, and output it in the form of square wave pulse. It can be understood that in other embodiments, the analog collector 112 and the digital collector 114 can also collect ion electrical signals of other concentrations, which can be selected according to actual needs.
  • the data analysis device 120 is mainly used to synchronously collect the signals transmitted by the analog collector 112 and the digital collector 114, analyze the collected signals, and record the signals of different ions to obtain a mass spectrum.
  • the mass spectrometer further includes an ion source 230 and a dynode 220 .
  • the ion source 230 hits the high-energy dynode to generate electrons, and the electrons pass through the electron multiplier 210 to generate electrical signals.
  • the ion source 230 is the mixed gas of ions to be tested after being screened by the quadrupole rod, and the dynode 220 is a device for ion collision to generate electrons, which is a specific metal collision object.
  • the electron multiplier 210 amplifies the electrons generated by the collision of the plasma in multiple stages to form an electron beam, which is outputted by current at the output end of the multiplier.
  • the electron multiplier 210 increases the electron signal into an electron beam to form a current signal or a voltage signal, which is collectively referred to as an electrical signal.
  • the strength of the electrical signal can be directly mapped to the number of ions, that is, the concentration of ions.
  • the electron multiplier 210 includes multi-stage electron amplifiers. The specific number of electron amplifiers is determined according to the magnification required. The higher the magnification, the greater the current intensity formed, but generally no more than 20 stages of amplification to avoid damage. receiving device.
  • the mass spectrometer apparatus includes an ion source 230 , a dynode 220 , an electron multiplier 210 and a mass spectrometer data acquisition device
  • the mass spectrometer data acquisition device includes an analog collector 112 , a digital collector 114 , and a data analysis device 120
  • the dual-mode receiver includes an analog collector 112 , a digital collector 114 and a protection device 130 .
  • the protection device 130 includes a detector, a protection switch 132 and an electronic adsorption part, and the electronic adsorption part is two metal sheets arranged at opposite intervals.
  • the ion source 230 hits the high-energy dynode to generate electrons, and the electrons generate electrical signals through the electron multiplier 210.
  • the electrical signals are received by the dual-mode receiver and converted into digital signals, which are collected by the FPGA, and the signals of different ions are recorded to obtain a mass spectrum.
  • the ADC and TDC in the analog receiver can complement each other to detect proton signals of different concentrations.
  • the ADC has low sensitivity and strong pressure resistance, which is suitable for detecting high concentration signals.
  • TDC has high sensitivity and weak pressure resistance, and is suitable for detecting low concentration signals.
  • the voltage switch is used to protect the TDC when the signal concentration is high and its service life is extended, and the high-speed acquisition and transmission of the FPGA is used to realize the synchronous acquisition of the ADC and the TDC.
  • the ion source 230 is the mixed gas of ions to be tested after being screened by the quadrupole rod, and the dynode 220 is the equipment for electrons generated by the collision of ions.
  • the 210 is composed of a multi-stage electron amplifier, which increases the electronic signal into an electron beam to form a current signal or a voltage signal, which is collectively referred to as an electrical signal.
  • the strength of the electrical signal can be directly mapped to the number of ions, which is the number of ions. concentration.
  • the specific number of electronic amplifiers is determined according to the required magnification. The higher the magnification, the greater the current intensity formed. Generally, no more than 20 levels of amplification are used to avoid damage to the receiving device.
  • the dual-mode receiver includes an analog receiving mode, a digital receiving mode, and a protection device 130.
  • the analog receiving mode uses ADC as the main acquisition channel, with strong anti-strike ability, and mainly collects high-concentration ion electrical signals, hereinafter referred to as the analog collector 112, the digital
  • the receiving mode uses TDC as the main acquisition channel, which is characterized by high sensitivity and easy saturation. It mainly collects low-concentration ion electrical signals, hereinafter referred to as the digital collector 114.
  • the TDC acquisition channel generates pulse signals after being hit by electrons, and the protection switch 132 is in When the ion concentration reaches the set threshold, the switch is turned on, and high voltage is used to absorb electrons, so that the electron beam cannot reach the digital acquisition channel, thereby protecting the TDC collector.
  • the protection switch 132 needs to set a threshold value. When the ion concentration exceeds the threshold, the detector sends a protection instruction to turn on the switch and set the concentration to 10 7 , which is set according to the TDC tolerance range. There are two protection metal sheets near the TDC receiver. During normal collection, the protection switch 132 is closed.
  • the detector When the electron beam formed by high-concentration ions comes over, the detector will detect that its value exceeds the threshold value, and open the protection switch 132 to protect the After the fast switch is turned on, there will be a high voltage attached to the metal sheet, forming a strong magnetic field, changing the trajectory of the electron beam, and finally adsorbing it to the metal sheet.
  • the high voltage here is 230V.
  • the data analysis device 120 is an FPGA chip, and the FPGA chip includes a dual-channel acquisition and transmission interface 122, a data processing module 124, a data storage module 126, a data upload module 128, and a dual-channel acquisition and transmission interface 122, which are respectively connected to the analog collector 112 and the digital acquisition.
  • the device 114 synchronously collects the signals transmitted by the analog collector 112 and the digital collector 114.
  • the analog collector 112 directly transmits digital signals, the digital collector 114 transmits pulses, and a counter is built in the FPGA to count the number of ion collisions.
  • the data processing module 124 fits the analog acquisition signal and the digital acquisition signal into the same set of signals, and the fitted signal is superimposed on a frame-by-frame basis to enhance the resolution.
  • the data storage module 126 stores the processed frame signal, and the data After receiving the uploading instruction, the uploading module 128 uploads the stored frame signal to the required device, and the required device may be the upper computer 300 or other devices.
  • the ion source 230 is the ion body to be tested after being screened.
  • the dynode 220 is a specific metal collider. Different ions collide on the metal surface and generate electrons of different magnitudes.
  • the electron multiplier 210 amplifies the electrons generated by the collision of the ions in multiple stages to form an electron beam, which is output as a current at the output end of the multiplier.
  • the analog collector 112 is used to collect signals with an ion concentration in the range of 106-109 cps, and directly output the intensity values.
  • the digital collector 114 is used to collect signals with ion concentrations in the range of 0-10 7 cps, and output them in the form of square wave pulses.
  • the protection switch 132 When the concentration reaches 10 7 cps, the protection switch 132 generates a high-voltage signal to adsorb the high-concentration electrons to protect the TDC collector.
  • the dual-channel acquisition and transmission interface 122 uses the differential spi interface for transmission, and performs synchronous acquisition on the FPGA side.
  • the ADC data module performs bit-width matching and synchronization matching on the data transmitted from the ADC channel within the FPGA.
  • the TDC pulse counting module counts the TDC pulses, and performs bit width matching and synchronization matching at the same time.
  • the signal fitting module 1246 has three cases: ADC signal only, TDC count only, ADC signal and TDC count at the same time, and the module fits the signals of the three cases into frame signal data.
  • the signal superposition module 1248 superimposes multiple frame signals according to time sequence to improve the resolution and avoid an error in a certain acquisition signal.
  • the data storage module 126 stores the completed frame signal and waits for uploading.
  • the data uploading module 128 receives the uploading instruction, it sequentially reads the frame data from the storage module, combines them according to the format of the transmission protocol, and sends them out.
  • the host computer 300/other devices need a device that obtains frame data, can send a valid upload command, and provide a corresponding transmission protocol to the FPGA for the FPGA to transmit data.
  • Different analog data processing modules 1242 and digital data processing modules 1244 have different bit widths of data collected.
  • a 16-bit bit width ie, 2 bytes
  • This bit width can also be notified to the host computer 300 to avoid data confusion. Due to superposition, the bit width is expanded from 2 bytes to 4 bytes, and the upper computer 300 takes every 4 bytes as a collection data in sequence.
  • Synchronous matching means that each acquisition must start and end at the same time, and the ADC and TDC signals of each acquisition can be matched without confusion. Fitting into a frame signal is to judge whether the number of points collected is consistent with the number of points required for a frame of data by using the start and end indications of each group of collected signals.
  • Step 201 the ion source 230 starts to enter the system
  • Step 202 generating electrons on the dynode 220 through collision
  • Step 203 the electrons are input to the electron multiplier 210, and the current signal is output;
  • Step 204 the dual-mode receivers respectively receive ion signals of different concentrations
  • Step 205 the FPGA receives the dual-mode signal synchronously
  • Step 206 the FPGA fits the signal
  • Step 207 the FPGA buffers the fitted signal and waits for the next signal to be superimposed
  • Step 208 the FPGA stores the superimposed signal and waits for the upload instruction
  • step 209 after receiving the upload instruction, the FPGA goes to step 210 to upload the data.
  • the FPGA goes to step 208, and continues to wait for the upload instruction.
  • the above-mentioned mass spectrometer equipment includes an analog collector 112, a digital collector 114 and a data analysis device 120.
  • One end of the analog collector 112 is connected to the electron multiplier 210 of the mass spectrometer, receives electrical signals from the electron multiplier 210, and the other end is connected to the data analysis device
  • one end of the digital collector 114 is connected to the electron multiplier 210 of the mass spectrometer to receive electrical signals from the electron multiplier 210 , and the other end is connected to the data analysis device 120 .
  • the electrical signal from the electron multiplier 210 is collected by the analog collector 112 and the digital collector 114, and then sent to the signal analysis device for analysis to obtain a mass spectrum.
  • the analog collector 112 has strong pressure resistance and can detect high-concentration signals.
  • the digital collector 114 It has high sensitivity and can detect low-concentration signals. The simultaneous use of the two can expand the range and sensitivity of the acquired signal, enhance the resolution, improve the accuracy and comprehensiveness of signal acquisition, and also reduce costs and improve the reliability of data acquisition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种质谱仪数据采集装置及质谱仪设备,数据采集装置包括模拟采集器(112)、数字采集器(114)和数据分析装置(120),模拟采集器(112)一端连接质谱仪的电子倍增器(210),接收来自电子倍增器(210)的电信号,另一端连接数据分析装置(120),数字采集器(114)一端连接质谱仪的电子倍增器(210),接收来自电子倍增器(210)的电信号,另一端连接数据分析装置(120)。来自电子倍增器(210)的电信号由模拟采集器(112)和数字采集器(114)采集,再发送至信号分析装置(120)进行分析得到质谱,模拟采集器(112)抗压性强,可以检测高浓度信号,数字采集器(114)灵敏度高,可以检测低浓度信号,两者同时使用可以扩大采集信号范围及灵敏度,增强分辨率,提高信号采集的准确度和全面性,还能降低成本,提高了数据采集的可靠性。

Description

质谱仪数据采集装置及质谱仪设备 技术领域
本申请涉及质谱仪技术领域,特别是涉及一种质谱仪数据采集装置及质谱仪设备。
背景技术
质谱仪又称质谱计,是根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的仪器。质谱仪的检测主要使用电子倍增器,由四极杆出来的离子打到高能打拿极产生电子,电子经电子倍增器产生电信号,由倍增器出来的电信号被送入计算机储存,这些信号经计算机处理后可以得到色谱图,质谱图及其它各种信息。
传统的采集离子信号的方法采用模拟采集器采集,模拟采集器可通过记录信号的能量、脉冲宽度和波形形状等信息来实现对离子信号的还原,然而,这种方法采集宽度窄,且灵敏度较弱,导致对信号的采集不够准确全面,传统的信号采集方法使用可靠性低。
发明内容
基于此,有必要针对传统的信号采集方法使用可靠性低的问题,提供一种质谱仪数据采集装置及质谱仪设备。
一种质谱仪数据采集装置,包括模拟采集器、数字采集器和数据分析装置,所述模拟采集器一端连接质谱仪的电子倍增器,接收来自电子倍增器的电信号,另一端连接所述数据分析装置,所述数字采集器一端连接质谱仪的电子倍增器, 接收来自电子倍增器的电信号,另一端连接所述数据分析装置。
一种质谱仪设备,包括电子倍增器和如上述的质谱仪数据采集装置。
上述质谱仪数据采集装置及质谱仪设备,包括模拟采集器、数字采集器和数据分析装置,模拟采集器一端连接质谱仪的电子倍增器,接收来自电子倍增器的电信号,另一端连接数据分析装置,数字采集器一端连接质谱仪的电子倍增器,接收来自电子倍增器的电信号,另一端连接数据分析装置。来自电子倍增器的电信号由模拟采集器和数字采集器采集,再发送至信号分析装置进行分析得到质谱,模拟采集器抗压性强,可以检测高浓度信号,数字采集器灵敏度高,可以检测低浓度信号,两者同时使用可以扩大采集信号范围及灵敏度,增强分辨率,提高信号采集的准确度和全面性,还能降低成本,提高了数据采集的可靠性。
在其中一个实施例中,质谱仪数据采集装置还包括保护装置,所述保护装置连接所述电子倍增器。
在其中一个实施例中,所述保护装置包括检测器、保护开关和电子吸附件,所述检测器连接所述电子倍增器,所述检测器通过所述保护开关连接所述电子吸附件,所述电子吸附件与所述数字采集器的距离小于所述电子吸附件与所述模拟采集器的距离。
在其中一个实施例中,所述电子吸附件包括两个相对间隔设置的金属片。
在其中一个实施例中,所述数据分析装置为FPGA芯片。
在其中一个实施例中,所述数据分析装置包括双通道采集传输接口、数据处理模块和数据存储模块,所述模拟采集器和所述数字采集器均连接所述双通道采集传输接口,所述双通道采集传输接口连接所述数据处理模块,所述数据处理模块连接所述数据存储模块。
在其中一个实施例中,所述数据分析装置还包括数据上传模块,所述数据上传模块连接所述数据存储模块。
在其中一个实施例中,所述数据处理模块包括模拟数据处理模块、数字数据处理模块、信号拟合模块和信号叠加模块,所述模拟数据处理模块和所述数字数据处理模块均连接所述双通道采集传输接口,且均连接所述信号拟合模块,所述信号拟合模块连接所述信号叠加模块,所述信号叠加模块连接所述数据存储模块。
在其中一个实施例中,质谱仪数据采集装置还包括上位机,所述上位机连接所述数据分析装置。
附图说明
图1为一个实施例中质谱仪数据采集装置的结构框图;
图2为另一个实施例中质谱仪数据采集装置的结构框图;
图3为一个实施例中质谱仪数据采集装置的结构示意图;
图4为一个实施例中质谱仪数据采集装置的工作流程图。
具体实施方式
为了使本发明目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明进行更加全面的描述。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在一个实施例中,请参见图1,提供一种质谱仪数据采集装置,包括模拟采集器112、数字采集器114和数据分析装置120,模拟采集器112一端连接质谱仪的电子倍增器210,接收来自电子倍增器210的电信号,另一端连接数据分析 装置120,数字采集器114一端连接质谱仪的电子倍增器210,接收来自电子倍增器210的电信号,另一端连接数据分析装置120。来自电子倍增器210的电信号由模拟采集器112和数字采集器114采集,再发送至信号分析装置进行分析得到质谱,模拟采集器112抗压性强,可以检测高浓度信号,数字采集器114灵敏度高,可以检测低浓度信号,两者同时使用可以扩大采集信号范围及灵敏度,增强分辨率,提高信号采集的准确度和全面性,还能降低成本,提高了数据采集的可靠性。
具体地,一般来说,质谱仪包括离子源230、打拿极220和电子倍增器210,离子源230打到高能打拿极产生电子,电子经电子倍增器210产生电信号。离子源230为经过了四级杆筛选后的待测试离子混合气体,打拿极220是离子碰撞产生电子的装备,是一种特定金属碰撞物,不同质量的离子碰撞打拿极220所产生的电子量不同,电子倍增器210对离子体经过碰撞产生的电子进行多级放大,形成电子束,在倍增器输出端以电流输出。电子倍增器210将电子信号增大成为电子束,形成电流信号或者电压信号,统称为电信号,电信号的强弱可直接映射为离子的个数,即为离子的浓度。电子倍增器210包括多级电子增大器,电子增大器的具体数量根据需要放大的倍数来决定,放大的倍数越高,形成的电流强度越大,但一般不超过20级放大,避免损坏接收器件。
本申请提出的质谱仪数据采集装置应用到质谱仪中时,质谱仪数据采集装置与质谱仪的电子倍增器210连接,具体是质谱仪数据采集装置中的模拟采集器112和数字采集器114与电子倍增器210连接,模拟采集器112又称ADC(Analog-to-digital converter,模拟数字转换器),用于将模拟形式的连续信号转换为数字形式的离散信号的一类设备。数字采集器114又称TDC(time-to-digital converter,时间数字转换器),是常用的时间间隔测量电 路,在电子撞击后产生脉冲信号。模拟采集器112抗打击能力强,主要采集高浓度的离子电信号,数字采集器114电子撞击后产生脉冲信号,灵敏度高,容易饱和,主要采集低浓度的离子电信号。模拟采集器112和数字采集器114采集的离子电信号的浓度并不是唯一的,在本实施例中,模拟采集器112用于采集离子浓度在106-109cps范围内的信号,以强度数值直接输出,数字采集器114用于采集离子浓度在0-10 7cps范围内的信号,以方波脉冲形式输出。可以理解,在其他实施例中,模拟采集器112和数字采集器114也可以采集其他浓度的离子电信号,具体可根据实际需求选择。数据分析装置120主要用于同步采集模拟采集器112和数字采集器114传输的信号,并对采集到的信号进行分析,记录不同离子的信号即得质谱。
在一个实施例中,请参见图2,质谱仪数据采集装置还包括保护装置130,保护装置130连接电子倍增器210。保护装置130与电子倍增器210连接,可对电子倍增器210输出的电信号进行监测,并根据电信号的情况实现相应功能,起到保护器件的作用。保护装置130的具体功能根据保护装置130结构的不同而不同,只要本领域技术人员认为能起到保护作用的均可。
在一个实施例中,保护装置130包括检测器、保护开关132和电子吸附件,检测器连接电子倍增器210,检测器通过保护开关132连接电子吸附件,电子吸附件与数字采集器114的距离小于电子吸附件与模拟采集器112的距离。
具体地,检测器连接电子倍增器210,可以检测电子倍增器210输出的离子电信号浓度,并将检测到的离子浓度与设定门限值进行比较,当检测到的离子浓度大于设定门限值时,发出闭合指令至保护开关132,保护开关132接收到闭合指令后闭合,使电压附在电子吸附件上,电子吸附件上产生磁场,将电子束的运行轨迹改变,最终吸附到电子吸附件上。由于电子吸附件与数字采集器114 的距离小于电子吸附件与模拟采集器112的距离,电子吸附件靠近数字采集器114,使电子束无法到达数字采集器114,从而起到保护数字采集器114的作用。进一步地,保护开关132闭合后,可接入较高的电压,例如230V的电压,高压加载在电子吸附件上,从而在电子吸附件上形成强大磁场,对离子电信号的吸附能力更强,对数字采集器114的保护作用更好。设定门限值的取值并不是唯一的,可根据数字采集器114能够承受的离子浓度确定,在本实施例中,设定门限值为10 7cps(counts per second,每秒的计数),cps是质谱中浓度对应信号值,数字采集器114可以正常采集浓度在10 7cps以下的离子电信号。可以理解,在其他实施例中,设定门限值也可以为其他取值,保护装置130也可以为其他结构,只要本领域技术人员认为可以实现即可。
在一个实施例中,电子吸附件包括两个相对间隔设置的金属片。电子吸附件的结构并不是唯一的,在本实施例中,电子吸附件包括两个相对间隔设置的金属片,两个金属片之间有距离。金属片的导电性良好,当金属片上加载有电压时,会形成磁场,起到吸附电子的作用。进一步地,两个金属片可平行设置,金属片的尺寸和间隔距离可根据实际需求调整,只要本领域技术人员认为可以实现即可。
在一个实施例中,数据分析装置120为FPGA芯片。数据分析装置120主要用于同步采集模拟采集器112和数字采集器114传输的信号,并对采集到的信号进行分析,记录不同离子的信号即得质谱。数据分析装置120的类型并不是唯一的,在本实施例中,数据分析装置120为FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)芯片,可以在一个芯片上实现多个功能,使得后续的设计更加灵活。可以理解,在其他实施例中,数据分析装置120也可以为其他类型的器件,只要本领域技术人员认为可以实现即可。
在一个实施例中,请参见图2,数据分析装置120包括双通道采集传输接口122、数据处理模块124和数据存储模块126,模拟采集器112和数字采集器114均连接双通道采集传输接口122,双通道采集传输接口122连接数据处理模块124,数据处理模块124连接数据存储模块126。
具体地,模拟采集器112和数字采集器114均连接双通道采集传输接口122,双通道采集传输接口122可以同步采集模拟采集器112和数据采集器发送过来的信号,便于后续器件对信号进行处理。双通道采集传输接口122的类型并不是唯一的,在本实施例中,双通道采集传输接口122为差分spi接口(Serial Peripheral Interface,串行外设接口),差分spi接口支持全双工通信,作为双通道采集传输接口122通信简单,数据传输速率快。可以理解,在其他实施例中,双通道采集传输接口122也可以为其他类型,只要本领域技术人员可以实现即可。
双通道采集传输接口122采集到模拟采集器112和数字采集器114传输过来的信号后,将采集到的信号发送至数据处理模块124进行处理,数据处理模块124将处理后的信号发送至数据存储模块126进行存储,需要时可直接调用存储的数据,使用便捷。数据处理模块124对数据进行处理的具体过程并不是唯一的,可根据采集到的信号的情况和处理目的进行调整,只要本领域技术人员可以实现即可。
在一个实施例中,请参见图2,数据分析装置120还包括数据上传模块128,数据上传模块128连接数据存储模块126。数据上传模块128连接数据存储模块126,数据存储模块126可以将自身存储的数据发送至数据上传模块128,数据上传模块128可连接上位机300或其他设备,将数据传输到上位机300或其他设备中,上位机300等设备可以对设备进行进一步的处理。具体地,数据存储 模块126可以主动将存储的数据主动实时或按照预设时间间隔发送至数据上传模块128,数据上传模块128也可以主动将接收到的数据实时或按照预设时间间隔上传到上位机300等设备中,实现数据的自动处理自动上传。或者,数据存储模块126和/或数据上传模块128也可以在接收到上传指令后,按照顺序将接收到的数据发送至与之相连的下一个器件,数据上传模块128接收到的上传指令可由上位机300等设备发送,数据存储模块126接收到的上传指令可由数据上传模块128发送。进一步地,数据上传模块128还可以按照预设的数据传输协议将数据上传到上位机300等设备中,以提高数据传输的质量。其中,预设的数据传输协议可由上位机300提供,供数据上传模块128传输数据。
在一个实施例中,请参见图3,数据处理模块124包括模拟数据处理模块1242、数字数据处理模块1244、信号拟合模块1246和信号叠加模块1248,模拟数据处理模块1242和数字数据处理模块1244均连接双通道采集传输接口122,且均连接信号拟合模块1246,信号拟合模块1246连接信号叠加模块1248,信号叠加模块1248连接数据存储模块126。
模拟数据处理模块1242和数字数据处理模块1244的功能并不是唯一的,在本实施例中,模拟数据处理模块1242将模拟采集器112传来的数据作位宽匹配和同步匹配,数字数据处理模块1244对数据采集器传来的脉冲进行计数,同时做位宽匹配和同步匹配。信号拟合模块1246工作时,待拟合的信号有三种情况:只有ADC信号、只有TDC计数、同时有ADC信号和TDC计数,信号拟合模块1246将三种情况的信号拟合成帧信号数据。信号叠加模块1248将多次帧信号按时序进行叠加,提升分辨率,避免某一次采集信号错误。
具体地,不同的模拟数据处理模块1242和数字数据处理模块1244采集数据的位宽不同,本实施例中使用的是16bit位宽,即2byte,这个位宽也可以告 知上位机300,避免出现数据错乱。由于要叠加,将位宽由2byte,扩充为4byte,上位机300按顺序将每4byte作为一个采集数据。同步匹配是将每次采集都要同时开始同时结束,可以将每次采集的ADC和TDC信号都对应上,不会出现错乱。拟合成帧信号是将每组采集的信号由开始和结束指示来判断采集的点数和一帧数据需要的点数是否一致,一致后则认为本次的采集正确,存为帧信号,否则认为错误丢弃及上报。每采集完一次所得数据进行存储,下次采集到的数据,安装帧格式进行累加,累加后覆盖之前的存储。多次累加可以避免某一次采集错误导致的谱图错误,可以将有用信号与干扰或者噪声信号区分更明显,因为有用信号强,数值大,无用信号弱,数值小,累加后,可以让有用信号和无用信号的差值更明显。
对应地,当数据处理模块124包括模拟数据处理模块1242、数字数据处理模块1244、信号拟合模块1246和信号叠加模块1248时,数据存储模块126将完成的帧信号存储起来,等待上传,数据上传模块128待接收到上传指令后,按照顺序依次将帧数据从数据存储模块126读取,按照传输协议的格式组合,发送出去,上位机300获取帧数据,能够发送有效的上传指令,并且提供相应的传输协议给到FPGA,供FPGA传输数据。
在一个实施例中,请参见图2,质谱仪数据采集装置还包括上位机300,上位机300连接数据分析装置120。
具体地,上位机300从数据上传模块128中获取数据,可以对数据进行进一步处理,也可以设置传输协议给数据分析装置120,以供数据分析装置120传输数据。当数据处理模块124包括模拟数据处理模块1242、数字数据处理模块1244、信号拟合模块1246和信号叠加模块1248时,上位机300获取到的数据为帧数据。可以理解,在其他实施例中,上位机300也可以具备其他功能,例 如显示得到的质谱,或将得到的质谱发送至远程终端进行显示等,以使操作人员及时获取质谱结果,提高质谱仪数据采集装置的使用可靠性。
上述质谱仪数据采集装置,包括模拟采集器112、数字采集器114和数据分析装置120,模拟采集器112一端连接质谱仪的电子倍增器210,接收来自电子倍增器210的电信号,另一端连接数据分析装置120,数字采集器114一端连接质谱仪的电子倍增器210,接收来自电子倍增器210的电信号,另一端连接数据分析装置120。来自电子倍增器210的电信号由模拟采集器112和数字采集器114采集,再发送至信号分析装置进行分析得到质谱,模拟采集器112抗压性强,可以检测高浓度信号,数字采集器114灵敏度高,可以检测低浓度信号,两者同时使用可以扩大采集信号范围及灵敏度,增强分辨率,提高信号采集的准确度和全面性,还能降低成本,提高了数据采集的可靠性。
在一个实施例中,请参见图3,提供一种质谱仪设备,包括电子倍增器210和如上述的质谱仪数据采集装置。
质谱仪数据采集装置与质谱仪的电子倍增器210连接,具体是质谱仪数据采集装置中的模拟采集器112和数字采集器114与电子倍增器210连接,模拟采集器112用于将模拟形式的连续信号转换为数字形式的离散信号,数字采集器114是常用的时间间隔测量电路,在电子撞击后产生脉冲信号。模拟采集器112抗打击能力强,主要采集高浓度的离子电信号,数字采集器114电子撞击后产生脉冲信号,灵敏度高,容易饱和,主要采集低浓度的离子电信号。模拟采集器112和数字采集器114采集的离子电信号的浓度并不是唯一的,在本实施例中,模拟采集器112用于采集离子浓度在106-109cps范围内的信号,以强度数值直接输出,数字采集器114用于采集离子浓度在0-10 7cps范围内的信号,以方波脉冲形式输出。可以理解,在其他实施例中,模拟采集器112和数字采 集器114也可以采集其他浓度的离子电信号,具体可根据实际需求选择。数据分析装置120主要用于同步采集模拟采集器112和数字采集器114传输的信号,并对采集到的信号进行分析,记录不同离子的信号即得质谱。
请参见图3,质谱仪还包括离子源230和打拿极220,离子源230打到高能打拿极产生电子,电子经电子倍增器210产生电信号。离子源230为经过了四级杆筛选后的待测试离子混合气体,打拿极220是离子碰撞产生电子的装备,是一种特定金属碰撞物,不同质量的离子碰撞打拿极220所产生的电子量不同,电子倍增器210对离子体经过碰撞产生的电子进行多级放大,形成电子束,在倍增器输出端以电流输出。电子倍增器210将电子信号增大成为电子束,形成电流信号或者电压信号,统称为电信号,电信号的强弱可直接映射为离子的个数,即为离子的浓度。电子倍增器210包括多级电子增大器,电子增大器的具体数量根据需要放大的倍数来决定,放大的倍数越高,形成的电流强度越大,但一般不超过20级放大,避免损坏接收器件。
为了更好地理解上述实施例,以下结合一个具体的实施例进行详细的解释说明。在一个实施例中,质谱仪设备包括离子源230、打拿极220、电子倍增器210和质谱仪数据采集装置,质谱仪数据采集装置包括模拟采集器112、数字采集器114、数据分析装置120、保护装置130和上位机300,双模接收器包括模拟采集器112、数字采集器114和保护装置130。其中,保护装置130包括检测器、保护开关132和电子吸附件,电子吸附件为两个相对间隔设置的金属片。离子源230打到高能打拿极产生电子,电子经电子倍增器210产生电信号,电信号由双模接收器来接收转为数字信号,由FPGA采集,记录不同离子的信号即得质谱,双模接收器中的ADC和TDC可以互补来检测不同浓度的质子信号,ADC灵敏度低,抗压性强,适合检测高浓度信号,TDC灵敏度高,抗压性弱,适合检 测低浓度信号。使用电压开关在高浓度信号时保护TDC,延长其使用寿命,使用FPGA高速采集和传输来实现ADC和TDC的同步采集。
离子源230是经过了四级杆筛选后的待测试离子混合气体,打拿极220是离子碰撞所产生电子的装备,不同质量的离子碰撞打拿极220所产生的电子量不同,电子倍增器210由多级电子增大器组成功能,将电子信号增大成为电子束,形成电流信号或者电压信号,统称为电信号,电信号的强弱可直接映射为离子的个数,即为离子的浓度。电子增大器具体数量是根据需要放大的倍数来决定,放大的倍数越高,形成的电流强度越大,采用的一般不超过20级放大,避免损坏接收器件。
双模接收器包括模拟接收模式、数字接收模式和保护装置130,模拟接收模式由ADC为主要采集通道,抗打击能力强,主要采集高浓度的离子电信号,后文称模拟采集器112,数字接收模式由TDC为主要采集通道,其特征是灵敏度高,容易饱和,主要采集低浓度的离子电信号,后文称数字采集器114,TDC采集通道经电子撞击后产生脉冲信号,保护开关132在离子浓度到达设定门限值时,开关开启,使用高压来吸附电子,使电子束无法到达数字采集通道,从而保护TDC采集器。保护开关132需要设置门限值,当离子浓度超过门限时,由检测器发出保护指令,将开关开启,浓度设为10 7,是根据TDC能够承受范围来设定的。在TDC接收器附近有两块保护金属片,正常采集时,保护开关132是关闭状态,当高浓度离子形成的电子束过来后,检测器会检测到其值超过阈值,开启保护开关132,保护快关接通后,会有高压附在金属片上,形成强大磁场,将电子束的运行轨迹改变,最终吸附到金属片上,此处的高压为230V。
数据分析装置120为FPGA芯片,FPGA芯片包括了双通道采集传输接口122、数据处理模块124、数据存储模块126、数据上传模块128,双通道采集传输接 口122,分别连接模拟采集器112和数字采集器114,同步采集模拟采集器112和数字采集器114传输的信号,模拟采集器112直接传输数字信号,数字采集器114传输脉冲,在FPGA内部做计数器来统计离子碰撞个数。数据处理模块124将模拟采集信号和数字采集信号拟合为同一组信号,拟合后的信号根据需求按帧做叠加处理来增强分辨率,数据存储模块126将处理后的帧信号进行存储,数据上传模块128接收到上传指令后,将存储的帧信号上传给所需设备,所需设备可以是上位机300,也可以为其他设备。
进一步地,离子源230是经过筛选后的待测试离子体。打拿极220是一种特定金属碰撞物,不同的离子体在金属表面碰撞,会产生不同量级的电子。电子倍增器210对离子体经过碰撞产生的电子进行多级放大,形成电子束,在倍增器输出端以电流输出。模拟采集器112用于采集离子浓度在106-109cps范围内的信号,以强度数值直接输出。数字采集器114用于采集离子浓度在0-10 7cps范围内的信号,以方波脉冲形式输出。保护开关132在浓度到达10 7cps时,产生高压信号将高浓度的电子吸附,对TDC采集器做保护。双通道采集传输接口122使用了差分spi接口来做传输,在FPGA端做同步采集。ADC数据模块在FPGA内部将ADC通道传来的数据做位宽匹配和同步匹配。TDC脉冲计数模块,将TDC脉冲进行计数,同时做位宽匹配和同步匹配。信号拟合模块1246,有三种情况,只有ADC信号、只有TDC计数、同时有ADC信号和TDC计数,模块将三种情况的信号拟合成帧信号数据。信号叠加模块1248将多次帧信号按时序进行叠加,提升分辨率,避免某一次采集信号错误。数据存储模块126,将完成的帧信号存储起来,等待上传。数据上传模块128待接收到上传指令,按照顺序依次将帧数据从存储模块读取,按照传输协议的格式组合,发送出去。上位机300/其他设备需要获取帧数据的设备,能够发送有效的上传指令,并且提供相应的传输 协议给到FPGA,供FPGA传输数据。
不同的模拟数据处理模块1242和数字数据处理模块1244采集数据的位宽不同,本实施例中使用的是16bit位宽,即2byte,这个位宽也可以告知上位机300,避免出现数据错乱。由于要叠加,将位宽由2byte,扩充为4byte,上位机300按顺序将每4byte作为一个采集数据。同步匹配是将每次采集都要同时开始同时结束,可以将每次采集的ADC和TDC信号都对应上,不会出现错乱。拟合成帧信号是将每组采集的信号由开始和结束指示来判断采集的点数和一帧数据需要的点数是否一致,一致后则认为本次的采集正确,存为帧信号,否则认为错误丢弃及上报。每采集完一次所得数据进行存储,下次采集到的数据,安装帧格式进行累加,累加后覆盖之前的存储。多次累加可以避免某一次采集错误导致的谱图错误,可以将有用信号与干扰或者噪声信号区分更明显,因为有用信号强,数值大,无用信号弱,数值小,累加后,可以让有用信号和无用信号的差值更明显。
如图4所示,是质谱仪数据采集装置的工作流程图,该过程包括以下步骤:
步骤201,离子源230开始进入系统;
步骤202,通过碰撞,在打拿极220上产生电子;
步骤203,电子输入电子倍增器210,输出电流信号;
步骤204,双模接收器分别接收不同浓度的离子信号;
步骤205,FPGA同步接收双模信号;
步骤206,FPGA将信号做拟合;
步骤207,FPGA将拟合信号缓存,等待下次来的信号做叠加;
步骤208,FPGA将叠加后的信号做存储,等待上传指令;
步骤209,FPGA收到上传指令后到步骤210将数据上传,未收到上传指令 时处于步骤208,继续等待上传指令。
上述质谱仪设备,包括模拟采集器112、数字采集器114和数据分析装置120,模拟采集器112一端连接质谱仪的电子倍增器210,接收来自电子倍增器210的电信号,另一端连接数据分析装置120,数字采集器114一端连接质谱仪的电子倍增器210,接收来自电子倍增器210的电信号,另一端连接数据分析装置120。来自电子倍增器210的电信号由模拟采集器112和数字采集器114采集,再发送至信号分析装置进行分析得到质谱,模拟采集器112抗压性强,可以检测高浓度信号,数字采集器114灵敏度高,可以检测低浓度信号,两者同时使用可以扩大采集信号范围及灵敏度,增强分辨率,提高信号采集的准确度和全面性,还能降低成本,提高了数据采集的可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种质谱仪数据采集装置,其特征在于,包括模拟采集器、数字采集器和数据分析装置,所述模拟采集器一端连接质谱仪的电子倍增器,接收来自电子倍增器的电信号,另一端连接所述数据分析装置,所述数字采集器一端连接质谱仪的电子倍增器,接收来自电子倍增器的电信号,另一端连接所述数据分析装置。
  2. 根据权利要求1所述的质谱仪数据采集装置,其特征在于,还包括保护装置,所述保护装置连接所述电子倍增器。
  3. 根据权利要求1所述的质谱仪数据采集装置,其特征在于,所述保护装置包括检测器、保护开关和电子吸附件,所述检测器连接所述电子倍增器,所述检测器通过所述保护开关连接所述电子吸附件,所述电子吸附件与所述数字采集器的距离小于所述电子吸附件与所述模拟采集器的距离。
  4. 根据权利要求3所述的质谱仪数据采集装置,其特征在于,所述电子吸附件包括两个相对间隔设置的金属片。
  5. 根据权利要求1所述的质谱仪数据采集装置,其特征在于,所述数据分析装置为FPGA芯片。
  6. 根据权利要求1所述的质谱仪数据采集装置,其特征在于,所述数据分析装置包括双通道采集传输接口、数据处理模块和数据存储模块,所述模拟采集器和所述数字采集器均连接所述双通道采集传输接口,所述双通道采集传输接口连接所述数据处理模块,所述数据处理模块连接所述数据存储模块。
  7. 根据权利要求6所述的质谱仪数据采集装置,其特征在于,所述数据分析装置还包括数据上传模块,所述数据上传模块连接所述数据存储模块。
  8. 根据权利要求6所述的质谱仪数据采集装置,其特征在于,所述数据处 理模块包括模拟数据处理模块、数字数据处理模块、信号拟合模块和信号叠加模块,所述模拟数据处理模块和所述数字数据处理模块均连接所述双通道采集传输接口,且均连接所述信号拟合模块,所述信号拟合模块连接所述信号叠加模块,所述信号叠加模块连接所述数据存储模块。
  9. 根据权利要求1所述的质谱仪数据采集装置,其特征在于,还包括上位机,所述上位机连接所述数据分析装置。
  10. 一种质谱仪设备,其特征在于,包括电子倍增器和如权利要求1-8任意一项所述的质谱仪数据采集装置。
PCT/CN2020/142340 2020-12-28 2020-12-31 质谱仪数据采集装置及质谱仪设备 WO2022141482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011583328.2A CN114689680A (zh) 2020-12-28 2020-12-28 质谱仪数据采集装置及质谱仪设备
CN202011583328.2 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022141482A1 true WO2022141482A1 (zh) 2022-07-07

Family

ID=82129962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142340 WO2022141482A1 (zh) 2020-12-28 2020-12-31 质谱仪数据采集装置及质谱仪设备

Country Status (2)

Country Link
CN (1) CN114689680A (zh)
WO (1) WO2022141482A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060016977A1 (en) * 2004-07-20 2006-01-26 Shimadzu Corporation Time-of-flight analyzer
JP2008059774A (ja) * 2006-08-29 2008-03-13 Hitachi High-Technologies Corp 飛行時間型質量分析装置
CN101789355A (zh) * 2010-03-18 2010-07-28 广州禾信分析仪器有限公司 一种宽动态范围的飞行时间质谱仪器及其实现方法与应用
CN102460636A (zh) * 2009-06-22 2012-05-16 株式会社岛津制作所 质量分析装置
CN102543647A (zh) * 2011-12-29 2012-07-04 上海大学 气溶胶飞行时间质谱仪信号采集装置及方法
CN104485959A (zh) * 2014-12-10 2015-04-01 孟凡军 高速可采集宽电压范围的数字采集器
CN108664425A (zh) * 2018-05-14 2018-10-16 吉林大学 一种基于高速模数转换和时间数字转换技术的数据采集系统
WO2020113360A1 (zh) * 2018-12-03 2020-06-11 深圳市大疆创新科技有限公司 一种采样电路、采用方法及测距装置、移动平台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060016977A1 (en) * 2004-07-20 2006-01-26 Shimadzu Corporation Time-of-flight analyzer
JP2008059774A (ja) * 2006-08-29 2008-03-13 Hitachi High-Technologies Corp 飛行時間型質量分析装置
CN102460636A (zh) * 2009-06-22 2012-05-16 株式会社岛津制作所 质量分析装置
CN101789355A (zh) * 2010-03-18 2010-07-28 广州禾信分析仪器有限公司 一种宽动态范围的飞行时间质谱仪器及其实现方法与应用
CN102543647A (zh) * 2011-12-29 2012-07-04 上海大学 气溶胶飞行时间质谱仪信号采集装置及方法
CN104485959A (zh) * 2014-12-10 2015-04-01 孟凡军 高速可采集宽电压范围的数字采集器
CN108664425A (zh) * 2018-05-14 2018-10-16 吉林大学 一种基于高速模数转换和时间数字转换技术的数据采集系统
WO2020113360A1 (zh) * 2018-12-03 2020-06-11 深圳市大疆创新科技有限公司 一种采样电路、采用方法及测距装置、移动平台

Also Published As

Publication number Publication date
CN114689680A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
JP5890921B2 (ja) イオン又は後にイオン化される中性粒子を試料から検出する方法、質量分析計、及びその使用
JP5632568B1 (ja) 飛行時間型質量分析計用多重チャネル検出
CA2507491C (en) A time-of-flight mass spectrometer with improved data acquisition system
JP5528331B2 (ja) イオン検出方法およびイオン検出器システム
CN105092690B (zh) 基于多通道电子倍增器件的电离吸收谱探测装置
US7109475B1 (en) Leading edge/trailing edge TOF detection
Berkout et al. Miniaturized EI/Q/oa TOF mass spectrometer
CN109712864B (zh) 简化质谱仪
US6091068A (en) Ion collector assembly
WO2022141482A1 (zh) 质谱仪数据采集装置及质谱仪设备
Tang et al. A normal-pressure MWPC for beam diagnostics at RIBLL2
JP2006032207A (ja) 飛行時間分析装置
CN216208779U (zh) 质谱仪数据采集装置及质谱仪设备
US2769911A (en) Mass spectrometer for analysing substances or indicating a small amount of a determined substance
CN203325835U (zh) 一种用于正、负离子检测的飞行时间质谱仪检测器
CN104599931A (zh) 一种紧凑型带电粒子探测器
CN205680655U (zh) 适于激光解析电离飞行时间质谱仪的离子检测系统
CN210863874U (zh) 一种接触隔离式离子发生装置采样电路
EP0932184B1 (en) Ion collector assembly
AU2021105744A4 (en) INSTRUMENT AND METHOD FOR MEASURING H AND He ISOTOPES OF IONOSPHERE
Guo-Bin et al. Development of orthogonal acceleration time-of-flight mass spectrometer for detection of ions with wide energies distribution
US20240128070A1 (en) Multimode ion detector with wide dynamic range and automatic mode switching
US4151414A (en) Method and apparatus for detection of extremely small particulate matter and vapors
US11127580B2 (en) Detector system for targeted analysis by distance-of-flight mass spectrometry
Yang et al. Constant-fraction discrimination/boxcar integrator for plasma source time-of-flight mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20967821

Country of ref document: EP

Kind code of ref document: A1