WO2022141033A1 - 摆位方法、装置、放疗设备以及存储介质 - Google Patents

摆位方法、装置、放疗设备以及存储介质 Download PDF

Info

Publication number
WO2022141033A1
WO2022141033A1 PCT/CN2020/140699 CN2020140699W WO2022141033A1 WO 2022141033 A1 WO2022141033 A1 WO 2022141033A1 CN 2020140699 W CN2020140699 W CN 2020140699W WO 2022141033 A1 WO2022141033 A1 WO 2022141033A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
image
positioning
offset
target object
Prior art date
Application number
PCT/CN2020/140699
Other languages
English (en)
French (fr)
Inventor
闫浩
王中亚
李金升
Original Assignee
西安大医集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团股份有限公司 filed Critical 西安大医集团股份有限公司
Priority to PCT/CN2020/140699 priority Critical patent/WO2022141033A1/zh
Priority to CN202080108420.5A priority patent/CN116897069A/zh
Publication of WO2022141033A1 publication Critical patent/WO2022141033A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present application mainly relates to the field of radiotherapy, and specifically relates to a positioning method, a device, a radiotherapy device and a storage medium.
  • Radiation therapy is a treatment method that uses radiation to treat tumors.
  • the tumor is irradiated with radiation.
  • the radiation includes alpha, beta, and gamma rays produced by radioisotopes and X-rays, electron rays, and proton beams produced by various X-ray therapy machines or accelerators. And other particle beams, etc., radiation irradiation makes tumor cells necrosis or apoptosis, in order to achieve the purpose of tumor treatment.
  • Positioning is an important link in the implementation of radiotherapy.
  • positioning laser lights are commonly used to help positioning through in vitro marking.
  • the tumor treatment center of the patient and the center of the radiotherapy equipment are roughly coincident.
  • Preliminary manual placement is achieved.
  • the laser light usually needs to be set outside the gantry, and the intersection of the laser beam and the isocenter is at a predetermined distance.
  • the treatment couch is advanced a predetermined distance to coincide with the isocenter.
  • the virtual isocenter formed by the laser light and the isocenter of the drum cannot be perfectly coincident.
  • laser lights require periodic calibration to ensure millimeter-level accuracy.
  • the present application provides a positioning method, device, radiotherapy equipment and storage medium, which can effectively reduce the image of the positioning caused by the system error and improve the positioning accuracy without using a laser lamp for positioning.
  • the present application provides a method for positioning, the method comprising:
  • the pre-positioning position is the non-laser lamp position
  • a target image of the target object at the pre-positioned position is acquired, and the target object is positioned according to the target image and a preset reference image.
  • the acquiring the pre-positioned position of the target object includes:
  • the pre-positioning position of the target object is determined according to the target part parameters and the corresponding relationship between the preset part parameters and the pre-positioning positions.
  • the method before acquiring the target part parameters of the target part of the target object, the method further includes:
  • establishing the corresponding relationship between the preset part parameters and the pre-positioned position includes:
  • the historical placement data includes position parameters of multiple objects and actual placement data of the multiple objects;
  • the corresponding relationship between the part parameters and the pre-positioned positions is established.
  • the corresponding relationship between the part parameter and the pre-positioned position is the corresponding relationship between the parameter level and the pre-positioned position
  • the establishing the corresponding relationship between the part parameters and the pre-positioned positions according to the part parameters of the multiple objects and the actual placement data of the multiple objects including:
  • determining the pre-positioned position of the target object according to the target part parameters and the corresponding relationship between the preset part parameters and the pre-positioned position including:
  • the target part parameter determine the target parameter level
  • the pre-positioning position corresponding to the target parameter level is determined.
  • the acquiring target part parameters of the target part of the target object includes:
  • the target site parameters of the target site are obtained from the treatment plan of the target subject.
  • the obtaining target site parameters of the target site from the treatment plan of the target object includes:
  • a data tag is obtained from the treatment plan of the target subject, and the data tag includes target site parameters of the target site.
  • the acquiring the pre-positioned position of the target object includes:
  • the pre-positioned position of the target object is determined.
  • the determining of the offset required to move when the pre-positioned image is registered with the reference image includes:
  • the second offset is greater than a preset threshold, use the second offset to compensate the first compensation reference image to obtain a second compensation reference image, and update the offset to the first offset the accumulation of the amount and the second offset;
  • the acquiring the pre-positioned position of the target object includes:
  • the target area image simulate the simulated target area image after moving the preset offset
  • the offset required to complete the registration between the target area image and the preset reference image is determined.
  • determining the offset required to complete the registration between the target image and the preset reference image based on the simulated target image includes:
  • the accumulated offset is taken as the offset required to complete the registration between the target area image and the preset reference image.
  • determining the offset required to complete the registration between the target image and the preset reference image based on the simulated target image includes:
  • the current offset is used as the offset required to complete the registration of the target area image and the preset reference image.
  • the moving the target object to the pre-positioning position includes:
  • the target object is moved to the pre-positioned position by moving a patient support of the radiotherapy apparatus.
  • the acquiring the target image of the target object at the pre-positioned position includes:
  • a target image of the target object located at the pre-positioned position is acquired by an imaging device.
  • the present application provides a positioning device, the device comprising:
  • an acquisition unit configured to acquire a pre-positioning position of the target object, where the pre-positioning position is a non-laser lamp position;
  • a moving unit configured to move the target object to the pre-positioned position, where the target part of the target object is located within a preset range of the isocenter of the radiotherapy equipment;
  • the positioning unit is configured to acquire a target image of the target object at the pre-positioning position, and position the target object according to the target image and a preset reference image.
  • the obtaining unit is specifically used for:
  • the pre-positioning position of the target object is determined according to the target part parameters and the corresponding relationship between the preset part parameters and the pre-positioning positions.
  • the obtaining unit is further used for:
  • the acquiring unit in establishing the corresponding relationship between the preset part parameters and the pre-positioned position, is specifically used for:
  • the historical placement data includes position parameters of multiple objects and actual placement data of the multiple objects;
  • the corresponding relationship between the part parameters and the pre-positioned positions is established.
  • the obtaining unit is further used for:
  • the corresponding relationship between the part parameters and the pre-positioning position is the corresponding relationship between the parameter level and the pre-positioning position
  • the establishing the corresponding relationship between the part parameters and the pre-positioned positions according to the part parameters of the multiple objects and the actual placement data of the multiple objects including:
  • determining the pre-positioned position of the target object according to the target part parameters and the corresponding relationship between the preset part parameters and the pre-positioned position including:
  • the target part parameter determine the target parameter level
  • the pre-positioning position corresponding to the target parameter level is determined.
  • the acquisition of the target part parameters of the target part of the target object is specifically used for:
  • the target site parameters of the target site are obtained from the treatment plan of the target subject.
  • the acquisition unit in the acquisition of the target site parameters of the target site from the treatment plan of the target object, is specifically configured to:
  • a data tag is obtained from the treatment plan of the target subject, and the data tag includes target site parameters of the target site.
  • the obtaining unit is specifically used for:
  • the pre-positioned position of the target object is determined.
  • the determining of the offset required to move when the pre-positioned image and the reference image are registered is specifically configured to:
  • the second offset is greater than a preset threshold, use the second offset to compensate the first compensation reference image to obtain a second compensation reference image, and update the offset to the first offset the accumulation of the amount and the second offset;
  • the obtaining unit is specifically used for:
  • the target area image simulate the simulated target area image after moving the preset offset
  • the offset required to complete the registration between the target area image and the preset reference image is determined.
  • the acquisition unit is specifically configured to:
  • the accumulated offset is taken as the offset required to complete the registration between the target area image and the preset reference image.
  • the acquisition unit is specifically configured to:
  • the current offset is used as the offset required to complete the registration of the target area image and the preset reference image.
  • the mobile unit is specifically used for:
  • the target object is moved to the pre-positioned position by moving a patient support of the radiotherapy apparatus.
  • the positioning unit is specifically configured to:
  • a target image of the target object located at the pre-positioned position is acquired by an imaging device.
  • the present application provides a radiotherapy device, the radiotherapy device comprising:
  • processors one or more processors
  • One or more application programs wherein the one or more application programs are stored in the memory and configured to be executed by the processor to implement the placement method of any one of the first aspects.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a plurality of instructions, and the instructions are adapted to be loaded by a processor to execute any one of the first aspects. Steps in the setup method.
  • the positioning method, device, radiotherapy equipment and storage medium provided by the present application can realize the precise positioning of the target object by setting the pre-positioning position and image guidance without using the laser light for positioning, which not only effectively reduces the The influence of the system error on the placement is reduced, and the placement accuracy is further improved.
  • Fig. 1 is a scene schematic diagram of a positioning system provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an embodiment of the positioning method provided in the embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an embodiment of acquiring the pre-positioned position of the target object in the embodiment of the present application
  • FIG. 4 is a schematic flowchart of another embodiment of acquiring the pre-positioned position of the target object in the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another embodiment of acquiring the pre-positioned position of the target object in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of the positioning device provided in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of the radiotherapy apparatus provided in the embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • Image-guided radiation therapy is a four-dimensional radiation therapy technology that uses various advanced imaging equipment to perform real-time imaging on tumors and normal organs before and during treatment. monitor. It adds the concept of time factor on the basis of three-dimensional radiotherapy technology, and fully considers the movement of anatomical tissues during the treatment process and the displacement error between fractional treatments, such as breathing and peristalsis movements, daily positioning errors, target contraction, etc. It can cause changes in the radiation dose distribution and influence on the treatment plan, etc., and can adjust the treatment conditions according to the changes in the position of the organs, so that the irradiation field closely "follows" the target area.
  • IGRT Image-guided Radiation Therapy
  • Image registration is to match and superimpose two or more images acquired at different times, different sensors (imaging devices) or under different conditions (weather, illumination, camera position and angle, etc.). It is widely used in remote sensing data analysis, computer vision and image processing and other fields.
  • Medical image registration refers to seeking a (or a series) of spatial transformations for a medical image to make it spatially consistent with the corresponding points on another medical image. This agreement means that the same anatomical point on the human body has the same spatial location on the two matched images. The result of the registration should match all anatomical points on the two images, or at least all points of diagnostic significance and points of surgical interest.
  • Embodiments of the present application provide a positioning method, device, radiotherapy equipment, and storage medium, which will be described in detail below.
  • FIG. 1 is a schematic diagram of a setting system provided by an embodiment of the present application.
  • the setting system may include a radiotherapy apparatus 100 and a terminal 200, and the radiotherapy apparatus 100 and the terminal 200 are communicatively connected, and the radiotherapy apparatus 100 can communicate with the terminal 200 transmits data.
  • An imaging device and a patient support device are integrated in the radiotherapy apparatus 100 .
  • the radiotherapy apparatus 100 in FIG. 1 can collect medical images of the human body and output them to the terminal 200 .
  • the radiotherapy apparatus 100 may include a patient support device, an imaging device, a ring gantry, a gamma knife, a linear accelerator, a neutron knife, etc., which are not specifically limited herein.
  • the imaging device may be cone beam CT (Cone Beam Computed Tomography, CBCT), or include a single flat panel and a detector, or include a flat panel and a detector that are arranged orthogonally, which is not specifically limited here.
  • cone beam CT Cone Beam Computed Tomography, CBCT
  • the above-mentioned terminal 200 may be a general treatment device or a dedicated treatment device.
  • the terminal 200 may be a desktop computer, a portable computer, a network server, a PDA (Personal Digital Assistant, PDA), a mobile phone, a tablet computer, a wireless terminal device, a communication device, an embedded device, etc., which is not limited in this embodiment.
  • PDA Personal Digital Assistant
  • FIG. 1 is only one application scenario of the solution of the present application, and does not constitute a limitation to the application scenario of the solution of the present application.
  • Other application environments may also include more than those shown in FIG. More or less terminals are shown, or the network connection relationship of the treatment equipment. For example, only one terminal is shown in FIG. 1.
  • the positioning system may also include one or more other terminals, which are not specifically limited here. .
  • the positioning system may further include a memory 300 for storing data, such as medical image data, for example, medical image data collected by the treatment device 100 .
  • FIG. 1 the schematic diagram of the scene of the positioning system shown in FIG. 1 is only an example, and the positioning system and the scene described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a
  • the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • an embodiment of the present application provides a positioning method.
  • the method includes: acquiring a pre-positioning position of a target object, where the pre-positioning position is a non-laser light positioning position; moving the target object to the desired position the pre-positioning position, the target part of the target object is located within the preset range of the isocenter of the radiotherapy equipment; acquire the target image of the target object located at the pre-positioning position, and according to the target image and the pre-positioning position
  • the set reference image is used to position the target object.
  • FIG. 2 it is a schematic flowchart of an embodiment of the positioning method in the embodiment of the present application, and the positioning method includes the following steps 201-203:
  • the target object may be a patient's target, target area, or other reference markers.
  • the pre-positioning position is a non-laser lamp position, and the pre-positioning position may be a preset fixed position, a position obtained according to prior knowledge, or a position obtained through image guidance.
  • the pre-positioned position may be a preset fixed position, and the preset fixed position may be a position set relative to an isocenter of the treatment device, or a position set according to different radiotherapy parts of the target object, etc. etc.; the pre-positioning position can also be a position obtained according to a priori knowledge, wherein the prior knowledge can be the corresponding relationship between the preset specific value and the position or the corresponding relationship between the preset measurement value and the position; the pre-positioning position The position may also be a position obtained through image guidance, and images of different treatment periods are acquired by an imaging device to monitor and guide the placement of the target object.
  • a target image of the target object is acquired by the imaging device.
  • the imaging device may be a CBCT, or include a single flat panel and a detector, or include a flat panel and a detector that are arranged orthogonally
  • the acquired target image may be a two-dimensional image or a three-dimensional image, and may specifically be the treatment target of the target object Or a two-dimensional image or a three-dimensional image of a certain part area, for example, a three-dimensional image of the treatment target of the target object at the pre-positioned position can be obtained by CBCT.
  • the positioning method provided by the embodiment of the present application realizes the precise positioning of the target object by setting the pre-positioning position and the image guidance method without using the laser light for positioning, which not only effectively reduces the system error on the pendulum
  • the influence of the position is reduced, the complexity of the placement is reduced, and the accuracy of the placement is further improved.
  • the acquiring the pre-positioned position of the target object includes the following steps 301 to 302 :
  • the target part may be the head, waist, wrist or other body parts, etc.
  • the target part parameter may be head circumference, waist circumference, wrist circumference or other size information.
  • the part parameters are graded, and the grade can be graded according to a numerical range or a specific value, such as grades A, B and C; different grades correspond to different pre-positioned positions , for example, A-level corresponds to position 1, B-level corresponds to position 2, and C-level corresponds to position 3.
  • the corresponding relationship between the head and the pre-positioned position may be as shown in Table 1 below:
  • Table 1 is only an example. In other embodiments of the present application, there may be more target parts and more target part parameters, which can also be set based on the above corresponding relationship, which is not limited here. .
  • the target object can reduce the number of received additional doses to facilitate subsequent radiation therapy.
  • the method before acquiring the target part parameters of the target part of the target object in the step 301, the method further includes the following steps: establishing a corresponding relationship between preset part parameters and pre-positioned positions .
  • establishing the corresponding relationship between the preset part parameters and the pre-positioning positions includes the following steps: acquiring historical positioning data, where the historical positioning data includes the part parameters and all the positions of multiple objects.
  • the actual placement data of the multiple objects is established; according to the position parameters of the multiple objects and the actual placement data of the multiple objects, the corresponding relationship between the position parameters and the pre-positioned positions is established.
  • the corresponding relationship between the part parameters and the pre-positioned position is the corresponding relationship between the parameter level and the pre-positioned position; the part parameters according to the plurality of objects and the
  • the actual placement data, establishing the corresponding relationship between the part parameters and the pre-placement positions includes: grading the part parameters of the multiple objects to obtain different parameter levels; according to the actual placement data of the multiple objects, determining a plurality of pre-positioning positions; establishing a corresponding relationship between the parameter levels and the pre-positioning positions according to the different parameter levels and the plurality of pre-positioning positions;
  • determining the pre-positioned position of the target object according to the target part parameters and the corresponding relationship between the preset part parameters and the pre-positioned position includes the following steps: The target parameter level is determined according to the target part parameter; the pre-positioning position corresponding to the target parameter level is determined according to the corresponding relationship between the parameter level and the pre-positioning position.
  • the acquiring the target part parameters of the target part of the target object includes the following step: acquiring the target part parameters of the target part from the treatment plan of the target object.
  • the treatment plan may include medical image files, treatment information files and other related files for radiotherapy; the medical image files in the treatment plan may be obtained from Computed Tomography (CT), Magnetic Resonance , MR), B-scan ultrasonography (B-scan ultrasonography) or other imaging equipment to collect medical images; the format of medical images can be digital imaging and communications in medicine (Digital Imaging and Communications in Medicine, DICOM), neuroimaging informatics technology Protocol format (Neuroimaging Informatics Technology Initiative, NIFTI), Nearly Raw Raster Data (NRRD) or other medical image formats.
  • CT Computed Tomography
  • MR Magnetic Resonance
  • B-scan ultrasonography B-scan ultrasonography
  • the format of medical images can be digital imaging and communications in medicine (Digital Imaging and Communications in Medicine, DICOM), neuroimaging informatics technology Protocol format (Neuroimaging Informatics Technology Initiative, NIFTI), Nearly Raw Raster Data (NRRD) or other medical image formats.
  • the medical image files used in some embodiments of the present application may be in the DIOCM format
  • DICOM is an international standard for medical images and related information (ISO 12052), which defines the quality of medical images that can meet clinical needs and can be used for data exchange.
  • image format. DICOM is widely used in radiology, cardiovascular imaging and radiology diagnostic equipment (X-ray, CT, magnetic resonance and ultrasound, etc.). With tens of thousands of medical imaging devices in use, DICOM is one of the most widely deployed medical information standards.
  • a CT or MRI image of the target object is taken first, and the image is in DICOM format, and the part parameters of the target part of the target object are measured at the same time, such as measuring the target object , get the head circumference of the target object.
  • the acquiring the target site parameters of the target site from the treatment plan of the target object includes the following steps: acquiring a data tag from the treatment plan of the target object, the data tag includes The target part parameters of the target part.
  • the medical image of the treatment plan adopts the DICOM format, wherein the DICOM format file contains labels of patient information, date, examination number, window level and other contents, and the head circumference data is added in the DICOM format file of the target object Label.
  • the label list of the DICOM format file in the target object treatment plan can be as shown in Table 2 below:
  • the treatment plan including the data tag of the target object is transmitted to the radiotherapy equipment, the radiotherapy equipment receives and parses the treatment plan, obtains the parameters of the target site, and determines the corresponding pre-positioning according to the level corresponding to the parameters of the target site Location.
  • the radiotherapy equipment can read the treatment plan and use the target site parameters to determine the pre-positioned position, ensuring that the treatment process is carried out in an orderly manner.
  • the obtaining of the pre-positioned position of the target object includes the following steps 401 to 403 :
  • the determining of the offset required to move when the pre-positioned image and the reference image are registered includes the following steps: acquiring a first offset between the pre-positioned image and the reference image offset; when the first offset is greater than a preset threshold, use the first offset to compensate the reference image to obtain a first compensated reference image; acquire the pre-positioned image and the first compensation The second offset of the reference image; when the second offset is greater than a preset threshold, use the second offset to compensate the first compensation reference image to obtain a second compensation reference image, and offset the offset The amount is updated as the accumulation of the first offset and the second offset; the above process is repeated until the second offset is less than or equal to a preset threshold, and the offset is output.
  • the obtaining of the pre-positioned position of the target object includes the following steps 501 to 503 :
  • the target area image of the target object can be obtained by CBCT, and CBCT can be clinically divided into Mega-volt CBCT (Mega-volt CBCT, MV-CBCT) and Kilo-volt CBCT (Kilo-volt CBCT) CBCT, KV-CBCT).
  • Mega-volt CBCT Mega-volt CBCT, MV-CBCT
  • Kilo-volt CBCT Kilo-volt CBCT
  • the target area image of the target object is obtained by KV-CBCT.
  • KV-CBCT is an imaging system composed of a KV X-ray source and a KV-level large-area amorphous silicon flat panel detector, wherein the X-ray tube and the The detectors are located on both sides of the gantry, in an orthogonal orientation to the handpiece, and in front of the X-ray tube are collimator inserts and filters of various specifications to meet the needs of different clinical scanning sites.
  • the image of the target area obtained by KV-CBCT can be a three-dimensional image, or a two-dimensional image, that is, an orthogonal KV image.
  • the target area image simulate a simulated target area image after moving a preset offset
  • the preset reference image may be a three-dimensional image or a two-dimensional image.
  • the preset reference image is a three-dimensional medical image in the treatment plan of the target object
  • the image of the target area captured by KV-CBCT is a three-dimensional image
  • the corresponding preset reference image It is the 3D CT image in the treatment plan of the target object
  • the target image is a 2D image
  • the preset reference image is the 2D medical image in the treatment plan of the target object.
  • the target image captured by KV-CBCT is a 2D image.
  • the image is an orthogonal KV image
  • the corresponding preset reference image is the two-dimensional image corresponding to the CT image in the treatment plan of the target object.
  • the two-dimensional image corresponding to the CT image in the treatment plan of the target object may be a Digitally Reconstructed Radiograph (DRR).
  • DRR Digitally Reconstructed Radiograph
  • a 2D image is generated from the 3D CT volume data through a mathematical simulation algorithm.
  • the target area image is a three-dimensional image and the corresponding preset reference image is a three-dimensional image
  • the three-dimensional offset required for the registration of the target area image and the preset reference image to complete the registration is determined, and according to the three-dimensional offset
  • the target area image is a two-dimensional image
  • the corresponding preset reference image is a two-dimensional image
  • determine the two-dimensional offset required to complete the registration between the target area image and the preset reference image, according to The 2D offset determines the pre-positioning position.
  • the image of the target area obtained by the imaging device is registered with the preset reference image, and the positioning of the patient is accurately guided while monitoring the patient's state, which is conducive to the development of subsequent radiation therapy.
  • the offset required to complete the registration between the target area image and the preset reference image is determined, and further includes the following steps: according to the simulated target area image The target area image is registered with the preset reference image to obtain the registration result of the simulated target area image and the preset reference image; if the registration result is unsuccessful, continue to simulate the simulated target area image , until the simulated target image and the preset reference image are successfully registered, determine the accumulated offset of the simulated movement; use the accumulated offset as the target image and the preset reference image to complete the matching the required offset.
  • the required amount of registration between the target area image and the preset reference image is determined. offset.
  • the simulated target area image after the treatment couch is moved by a preset offset is simulated, and the simulated target area image is registered with the preset reference image, so that the simulated target area image is registered.
  • the target area image and the corresponding point on the preset reference image are spatially consistent, specifically, the same anatomical point of the target object or the target point has the same spatial position on the two images.
  • the registration result of the two images is obtained.
  • the registration result is unsuccessful, the registration of the two images cannot be achieved.
  • the movement of the simulated treatment couch is stopped, and the offset of each simulated treatment couch movement is accumulated to obtain
  • the cumulative offset is the offset that can be successfully registered between the target image and the preset reference image.
  • the offset required to complete the registration of the target area image and the preset reference image may be the cumulative offset accumulated by multiple movements, or the current offset, some implementations in this application.
  • the registration result is unsuccessful, continue to simulate the simulated target area image of the treatment couch moving until the simulated target area image and the preset reference image are successfully registered, and it is determined to simulate the simulated target area image.
  • the current offset of the movement of the treatment couch, and the current offset is taken as the offset required to complete the registration between the target area image and the preset reference image.
  • the simulated target area image and the preset reference image are registered by simulating the movement of the treatment couch by a preset offset, which reduces the influence of system errors on the positioning, and simulates the treatment couch.
  • the movement can reduce the discomfort caused by multiple movements to the patient, and the precise offset obtained by the simulation can quickly complete the pre-positioning.
  • the simulated movement may be one or more times, even multiple times, due to the increasing computing power of the current electronic equipment, the actual time consuming of the simulation process is very short, and it is extremely short for the patient. Therefore, the positioning efficiency can still be effectively improved compared with the existing methods such as the current laser light positioning.
  • the moving the target object to the pre-positioning position includes: moving the target object to the pre-positioning position by moving a patient support device of the radiotherapy apparatus.
  • the patient support device may be a three-dimensional bed, a six-dimensional bed, a chair, etc., which is not specifically limited here.
  • the acquiring the target image of the target object located at the pre-positioning position includes: acquiring the target image of the target object positioned at the pre-positioning position by using an imaging device.
  • the embodiment of the present application further provides a positioning device.
  • the positioning device 600 includes:
  • an acquisition unit 601 configured to acquire a pre-positioning position of the target object, where the pre-positioning position is a non-laser lamp position;
  • a moving unit 602 configured to move the target object to the pre-positioned position, where the target part of the target object is located within a preset range of the isocenter of the radiotherapy equipment;
  • the positioning unit 603 is configured to acquire a target image of the target object at the pre-positioned position, and position the target object according to the target image and a preset reference image.
  • the precise positioning of the target object is realized, which not only effectively reduces the influence of system errors on the positioning, but also further Improve the accuracy of placement.
  • the obtaining unit 601 is specifically configured to:
  • the pre-positioning position of the target object is determined according to the target part parameters and the corresponding relationship between the preset part parameters and the pre-positioning positions.
  • the obtaining unit 601 is further configured to:
  • the acquiring unit 601 in establishing the corresponding relationship between the preset part parameters and the pre-positioned position, is specifically used for:
  • the historical placement data includes position parameters of multiple objects and actual placement data of the multiple objects;
  • the corresponding relationship between the part parameters and the pre-positioned positions is established.
  • the obtaining unit 601 is further configured to:
  • the corresponding relationship between the part parameters and the pre-positioning position is the corresponding relationship between the parameter level and the pre-positioning position
  • the establishing the corresponding relationship between the part parameters and the pre-positioned positions according to the part parameters of the multiple objects and the actual placement data of the multiple objects including:
  • determining the pre-positioned position of the target object according to the target part parameters and the corresponding relationship between the preset part parameters and the pre-positioned position including:
  • the target part parameter determine the target parameter level
  • the pre-positioning position corresponding to the target parameter level is determined.
  • the acquiring unit 601 is specifically configured to:
  • the target site parameters of the target site are obtained from the treatment plan of the target subject.
  • the acquiring unit 601 is specifically configured to:
  • a data tag is obtained from the treatment plan of the target subject, and the data tag includes target site parameters of the target site.
  • the obtaining unit 601 is specifically configured to:
  • the pre-positioned position of the target object is determined.
  • the acquiring unit 601 in determining the offset required to move when the pre-positioned image is registered with the reference image, is specifically configured to:
  • the second offset is greater than a preset threshold, use the second offset to compensate the first compensation reference image to obtain a second compensation reference image, and update the offset to the first offset the accumulation of the amount and the second offset;
  • the obtaining unit 601 is specifically configured to:
  • the target area image simulate the simulated target area image after moving the preset offset
  • the offset required to complete the registration between the target area image and the preset reference image is determined.
  • the acquiring unit 601 is specifically configured to:
  • the accumulated offset is taken as the offset required to complete the registration between the target area image and the preset reference image.
  • the acquisition unit 601 is specifically used for:
  • the current offset is used as the offset required to complete the registration of the target area image and the preset reference image.
  • the mobile unit 602 is specifically configured to:
  • the target object is moved to the pre-positioned position by moving a patient support of the radiotherapy apparatus.
  • the positioning unit 603 in the acquisition of the target image of the target object at the pre-positioning position, is specifically configured to:
  • a target image of the target object at the pre-positioned position is acquired by an imaging device
  • the embodiment of the present application further provides a radiotherapy device, which integrates any of the positioning devices provided in the embodiment of the present application, and the radiotherapy device includes:
  • processors one or more processors
  • One or more application programs wherein the one or more application programs are stored in the memory and configured to be executed by the processor as described in any of the above-described placement method embodiments steps in the method.
  • FIG. 7 shows a schematic structural diagram of the radiotherapy equipment involved in the embodiment of the present application, specifically:
  • the radiotherapy apparatus may include a processor 801 of one or more processing cores, a memory 702 of one or more computer-readable storage media, a power supply 703 and an input unit 704 and other components.
  • a processor 801 of one or more processing cores may include a processor 801 of one or more processing cores, a memory 702 of one or more computer-readable storage media, a power supply 703 and an input unit 704 and other components.
  • FIG. 7 does not constitute a limitation to the radiotherapy equipment, and may include more or less components than the one shown, or combine some components, or arrange different components. in:
  • the processor 701 is the control center of the radiotherapy equipment, and uses various interfaces and lines to connect various parts of the entire therapeutic equipment, by running or executing the software programs and/or modules stored in the memory 702, and calling the software programs stored in the memory 702. Data, perform various functions of radiotherapy equipment and process data, so as to conduct overall monitoring of radiotherapy equipment.
  • the processor 701 may include one or more processing cores; the processor 701 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP) ), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor 701 can integrate an application processor and a modulation and demodulation processor, wherein the application processor mainly processes the operating system, User interface and applications, etc., the modem processor mainly handles wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may also not be integrated into the processor 701 .
  • the memory 702 can be used to store software programs and modules, and the processor 701 executes various functional applications and data processing by running the software programs and modules stored in the memory 702 .
  • the memory 702 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required for at least one function, and the like; Data created by the use of therapeutic equipment, etc.
  • memory 702 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Accordingly, memory 702 may also include a memory controller to provide processor 701 access to memory 702 .
  • the treatment device further includes a power supply 703 for supplying power to various components.
  • the power supply 703 can be logically connected to the processor 701 through a power management system, so that functions such as charging, discharging, and power consumption management are implemented through the power management system.
  • the power source 703 may also include one or more DC or AC power sources, recharging systems, power failure detection circuits, power converters or inverters, power status indicators, and any other components.
  • the radiotherapy apparatus may also include an input unit 704, which may be used to receive input numerical or character information and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • an input unit 704 which may be used to receive input numerical or character information and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • the radiotherapy apparatus may also include a display unit, etc., which will not be described here.
  • the processor 701 in the treatment device will load the executable files corresponding to the processes of one or more application programs into the memory 702 according to the following instructions, and the processor 701 will run the executable files stored in the memory 702 .
  • the pre-positioning position is the non-laser lamp position
  • a target image of the target object at the pre-positioned position is acquired, and the target object is positioned according to the target image and a preset reference image.
  • an embodiment of the present application provides a computer-readable storage medium, and the storage medium may include: a read-only memory (ROM, Read Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc. .
  • a computer program is stored thereon, and the computer program is loaded by the processor to execute the steps in any of the positioning methods provided by the embodiments of the present application.
  • the computer program being loaded by the processor may perform the following steps:
  • the pre-positioning position is the non-laser lamp position
  • a target image of the target object at the pre-positioned position is acquired, and the target object is positioned according to the target image and a preset reference image.
  • the above units or structures can be implemented as independent entities, or can be arbitrarily combined to be implemented as the same or several entities.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本申请提出了一种摆位方法、装置、治疗设备以及存储介质,应用于治疗设备,所述治疗设备包括治疗床和成像装置,所述方法包括:获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;将承载所述目标对象的所述治疗床移动到所述预摆位位置;在所述治疗床移动到所述预摆位位置之后,通过所述成像装置获取所述目标对象的目标图像;根据所述目标图像,确定所述目标对象的目标摆位位置;根据所述目标摆位位置,调整所述目标对象的摆位。本申请在不使用激光灯摆位的情况下,通过设置预摆位位置和图像引导的方式,实现目标对象的精准摆位,不仅有效减小了系统误差对摆位的影响,还进一步提高了摆位的精度。

Description

摆位方法、装置、放疗设备以及存储介质 技术领域
本申请主要涉及放射治疗领域,具体涉及一种摆位方法、装置、放疗设备以及存储介质。
背景技术
放射治疗是一种采用放射线治疗肿瘤的治疗方法,一般通过放射线照射肿瘤,放射线包括放射性同位素产生的α、β、γ射线和各类X射线治疗机或加速器产生的X射线、电子线、质子束及其他粒子束等,放射线照射使得肿瘤细胞坏死或凋亡,以达到治疗肿瘤的目的。
摆位是放射治疗执行过程中一个重要环节,目前常用定位激光灯通过体外标记来帮助摆位,利用三维激光束交点与等中心重合的原理,使患者肿瘤治疗中心与放疗设备等中心大致重合,实现手工初步摆位。对于等中心点位于机架内部的放疗设备例如环形机架、伽玛刀,激光灯通常需要设置在机架外部,激光束的光束交点与等中心点成预定距离,摆位时,先移动治疗床将患者体表的十字线与激光束重合后,再将治疗床推进预定距离,以与等中心重合。
然而,激光灯形成的虚拟等中心和滚筒等中心并不能完美重合,加上床板下沉的因素,仅靠激光灯摆位的精度很难达到毫米级。而且,激光灯需要定期校准才能保证毫米级精度。
发明内容
本申请提供一种摆位方法、装置、放疗设备以及存储介质,在不使用激光灯摆位的情况下,有效减小系统误差对摆位的影像,提高摆位精度。
第一方面,本申请提供一种摆位方法,所述方法包括:
获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;
将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内;
获取位于所述预摆位位置的所述目标对象的目标图像,并根据所述目标图 像与预设的参考图像,对所述目标对象进行摆位。
在本申请一些实施例中,所述获取目标对象的预摆位位置,包括:
获取所述目标对象的目标部位的目标部位参数;
根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的预摆位位置。
在本申请一些实施例中,在获取所述目标对象的目标部位的目标部位参数之前,所述方法还包括:
建立预设的部位参数和预摆位位置的对应关系。
在本申请一些实施例中,所述建立预设的部位参数和预摆位位置的对应关系,包括:
获取历史摆位数据,所述历史摆位数据包括多个对象的部位参数和所述多个对象的实际摆位数据;
根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系。
在本申请一些实施例中,所述部位参数和预摆位位置的对应关系为参数等级和预摆位位置的对应关系;
所述根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系,包括:
对所述多个对象的部位参数进行分级,得到不同参数等级;
根据所述多个对象的实际摆位数据,确定多个预摆位位置;
根据所述不同参数等级和所述多个预摆位位置,建立参数等级和预摆位位置的对应关系;
相应的,根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的所述预摆位位置,包括:
根据所述目标部位参数,确定目标参数等级;
根据所述参数等级和预摆位位置的对应关系,确定所述目标参数等级对应的预摆位位置。
在本申请一些实施例中,所述获取所述目标对象的目标部位的目标部位参 数,包括:
从所述目标对象的治疗计划中获取目标部位的目标部位参数。
在本申请一些实施例中,所述从所述目标对象的治疗计划中获取目标部位的目标部位参数,包括:
从所述目标对象的治疗计划中获取数据标签,所述数据标签中包括目标部位的目标部位参数。
在本申请一些实施例中,所述获取目标对象的预摆位位置,包括:
获取所述目标对象的预摆位图像;
确定所述预摆位图像和参考图像配准时所需移动的偏移量;
根据所述偏移量,确定所述目标对象的预摆位位置。
在本申请一些实施例中,所述确定所述预摆位图像和参考图像配准时所需移动的偏移量,包括:
获取所述预摆位图像和所述参考图像的第一偏移量;
所述第一偏移量大于预设阈值时,利用所述第一偏移量补偿所述参考图像,得到第一补偿参考图像;
获取所述预摆位图像和所述第一补偿参考图像的第二偏移量;
所述第二偏移量大于预设阈值时,利用所述第二偏移量补偿所述第一补偿参考图像,得到第二补偿参考图像,并将偏移量更新为所述第一偏移量和所述第二偏移量的累加;
重复上述过程,直到所述第二偏移量小于等于预设阈值时,输出所述偏移量。
在本申请一些实施例中,所述获取目标对象的预摆位位置,包括:
获取所述目标对象的靶区图像;
根据所述靶区图像,模拟移动预设偏移量后的模拟靶区图像;
基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量。
在本申请一些实施例中,所述基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量,包括:
根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;
若所述配准结果为不成功,继续模拟所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的累积偏移量;
将所述累积偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
在本申请一些实施例中,所述基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量,包括:
根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;
若所述配准结果为不成功,继续模拟所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的当前偏移量;
将所述当前偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
在本申请一些实施例中,所述将所述目标对象移动到所述预摆位位置,包括:
通过移动所述放疗设备的患者支撑装置将所述目标对象移动到所述预摆位位置。
在本申请一些实施例中,所述获取位于所述预摆位位置的所述目标对象的目标图像,包括:
通过成像装置获取位于所述预摆位位置的所述目标对象的目标图像。
第二方面,本申请提供一种摆位装置,所述装置包括:
获取单元,用于获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;
移动单元,用于将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内;
摆位单元,用于获取位于所述预摆位位置的所述目标对象的目标图像,并 根据所述目标图像与预设的参考图像,对所述目标对象进行摆位。
在本申请一些实施例中,所述获取单元具体用于:
获取所述目标对象的目标部位的目标部位参数;
根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的所述预摆位位置。
在本申请一些实施例中,所述获取单元具体还用于:
建立预设的部位参数和预摆位位置的对应关系。
在本申请一些实施例中,所述建立预设的部位参数和预摆位位置的对应关系,所述获取单元具体用于:
获取历史摆位数据,所述历史摆位数据包括多个对象的部位参数和所述多个对象的实际摆位数据;
根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系。
在本申请一些实施例中,所述获取单元具体还用于:
所述部位参数和预摆位位置的对应关系为参数等级和预摆位位置的对应关系;
所述根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系,包括:
对所述多个对象的部位参数进行分级,得到不同参数等级;
根据所述多个对象的实际摆位数据,确定多个预摆位位置;
根据所述不同参数等级和所述多个预摆位位置,建立参数等级和预摆位位置的对应关系;
相应的,根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的所述预摆位位置,包括:
根据所述目标部位参数,确定目标参数等级;
根据所述参数等级和预摆位位置的对应关系,确定所述目标参数等级对应的预摆位位置。
在本申请一些实施例中,所述获取所述目标对象的目标部位的目标部位参 数,所述获取单元具体用于:
从所述目标对象的治疗计划中获取目标部位的目标部位参数。
在本申请一些实施例中,所述从所述目标对象的治疗计划中获取目标部位的目标部位参数,所述获取单元具体用于:
从所述目标对象的治疗计划中获取数据标签,所述数据标签中包括目标部位的目标部位参数。
在本申请另一些实施例中,所述获取单元具体用于:
获取所述目标对象的预摆位图像;
确定所述预摆位图像和参考图像配准时所需移动的偏移量;
根据所述偏移量,确定所述目标对象的预摆位位置。
在本申请另一些实施例中,所述确定所述预摆位图像和参考图像配准时所需移动的偏移量,所述获取单元具体用于:
获取所述预摆位图像和所述参考图像的第一偏移量;
所述第一偏移量大于预设阈值时,利用所述第一偏移量补偿所述参考图像,得到第一补偿参考图像;
获取所述预摆位图像和所述第一补偿参考图像的第二偏移量;
所述第二偏移量大于预设阈值时,利用所述第二偏移量补偿所述第一补偿参考图像,得到第二补偿参考图像,并将偏移量更新为所述第一偏移量和所述第二偏移量的累加;
重复上述过程,直到所述第二偏移量小于等于预设阈值时,输出所述偏移量。
在本申请另一些实施例中,所述获取单元具体用于:
获取所述目标对象的靶区图像;
根据所述靶区图像,模拟移动预设偏移量后的模拟靶区图像;
基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量。
在本申请另一些实施例中,所述基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量,所述获取单元具体用于:
根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;
若所述配准结果为不成功,继续模拟所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的累积偏移量;
将所述累积偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
在本申请另一些实施例中,所述基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量,所述获取单元具体用于:
根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;
若所述配准结果为不成功,继续模拟所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的当前偏移量;
将所述当前偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
在本申请一些实施例中,所述移动单元具体用于:
通过移动所述放疗设备的患者支撑装置将所述目标对象移动到所述预摆位位置。
在本申请一些实施例中,所述获取位于所述预摆位位置的所述目标对象的目标图像,所述摆位单元具体用于:
通过成像装置获取位于所述预摆位位置的所述目标对象的目标图像。
第三方面,本申请提供一种放疗设备,所述放疗设备包括:
一个或多个处理器;
存储器;以及
一个或多个应用程序,其中所述一个或多个应用程序被存储于所述存储器中,并配置为由所述处理器执行以实现第一方面中任一项所述的摆位方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有多条指令,所述指令适于处理器进行加载,以执行第一方面中任一项 所述的摆位方法中的步骤。
本申请提供的摆位方法、装置、放疗设备以及存储介质,在不使用激光灯摆位的情况下,通过设置预摆位位置和图像引导的方式,实现目标对象的精准摆位,不仅有效减小了系统误差对摆位的影响,还进一步提高了摆位的精度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的摆位系统的场景示意图;
图2是本申请实施例中提供的摆位方法的一个实施例流程示意图;
图3是本申请实施例中获取目标对象的预摆位位置的一个实施例流程示意图;
图4是本申请实施例中获取目标对象的预摆位位置的另一个实施例流程示意图;
图5是本申请实施例中获取目标对象的预摆位位置的另一个实施例流程示意图;
图6是本申请实施例中提供的摆位装置的一个实施例结构示意图;
图7是本申请实施例中提供的放疗设备的一个实施例结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、 “底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
下面首先对本申请实施例中涉及到的一些基本概念进行介绍:
图像引导放射治疗:图像引导放射治疗(Image-guided Radiation Therapy,IGRT)是一种四维的放射治疗技术,在患者进行治疗前、治疗中利用各种先进的影像设备对肿瘤及正常器官进行实时的监控。它在三维放疗技术的基础上加入了时间因数的概念,充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差,如呼吸和蠕动运动、日常摆位误差、靶区收缩等引起放疗剂量分布的变化和对治疗计划的影响等方面的情况,并能根据器官位置的变化调整治疗条件使照射野紧紧“追随”靶区。
图像配准:图像配准(Image Registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,被广泛地应用于遥感数据分析、计算机视觉和图像处理等领域。医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人 体上的同一解剖点在两张匹配图像上有相同的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。
本申请实施例提供一种摆位方法、装置、放疗设备以及存储介质,以下分别进行详细说明。
请参阅图1,图1为本申请实施例所提供的摆位系统的场景示意图,该摆位系统可以包括放疗设备100和终端200,放疗设备100和终端200通信连接,放疗设备100可以向终端200传输数据,放疗设备100中集成有成像装置和患者支撑装置,如图1中的放疗设备100可以采集人体的医学图像并输出到终端200。
本申请实施例中,放疗设备100可以包括患者支撑装置,成像装置,以及环形机架、伽玛刀、直线加速器和中子刀等,具体此处不作限定。
本申请实施例中,成像装置可以是锥形束CT(Cone Beam Computed Tomography,CBCT),或者包括单个平板和探测器,又或者包括正交设置的平板和探测器,具体此处不作限定。
本申请实施例中,上述的终端200可以是一个通用治疗设备或者是一个专用治疗设备。在具体实现中终端200可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备等,本实施例不限定终端200的类型。
本领域技术人员可以理解,图1中示出的应用环境,仅仅是与本申请方案一种应用场景,并不构成对本申请方案应用场景的限定,其他的应用环境还可以包括比图1中所示更多或更少的终端,或者治疗设备网络连接关系,例如图1中仅示出1个终端,可以理解的,该摆位系统还可以包括一个或多个其他终端,具体此处不作限定。
另外,如图1所示,该摆位系统还可以包括存储器300,用于存储数据,如存储医学图像数据,例如治疗设备100采集的医学图像数据。
需要说明的是,图1所示的摆位系统的场景示意图仅仅是一个示例,本申请实施例描述的摆位系统以及场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术 人员可知,随着摆位系统的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
首先,本申请实施例中提供一种摆位方法,所述方法包括:获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内;获取位于所述预摆位位置的所述目标对象的目标图像,并根据所述目标图像与预设的参考图像,对所述目标对象进行摆位。
如图2所示,为本申请实施例中摆位方法的一个实施例流程示意图,该摆位方法包括如下步骤201~203:
201、获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置
具体的,在本申请一些实施例中,目标对象可以是患者的靶点,靶区,或者而其他参考标记。
其中,预摆位位置为非激光灯摆位位置,预摆位位置可以是预设的固定位置、或者根据先验知识得到的位置或者通过图像引导得到的位置。
在本申请一些实施例中,预摆位位置可以是预设的固定位置,预设的固定位置可以是相对于治疗设备等中心点设置的位置,或依据目标对象的不同放疗部位设置的位置等等;预摆位位置也可以是根据先验知识得到的位置,其中先验知识可以是预设特定值与位置之间对应的关系或者预设测量值与位置之间对应的关系;预摆位位置还可以是通过图像引导得到的位置,通过成像装置获取不同治疗时段的图像对目标对象进行监控和引导摆位。
202、将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内。
203、获取位于所述预摆位位置的所述目标对象的目标图像,并根据所述目标图像与预设的参考图像,对所述目标对象进行摆位。。
在步骤202中将所述目标对象移动到所述预摆位位置之后,通过所述成像装置获取所述目标对象的目标图像。
其中,成像装置可以是CBCT,或者包括单个平板和探测器,又或者包括正交设置的平板和探测器,获取的目标图像可以是二维图像或者三维图像,具 体可以是目标对象的治疗靶点或者某个部位区域的二维图像或者三维图像,例如可以通过CBCT获取目标对象在预摆位位置上的治疗靶点三维图像。
本申请实施例提供的摆位方法,在不使用激光灯摆位的情况下,通过设置预摆位位置和图像引导的方式,实现目标对象的精准摆位,不仅有效减小了系统误差对摆位的影响,降低了摆位复杂度,还进一步提高了摆位的精度。
如图3所示,在本申请一些实施例中,所述获取目标对象的预摆位位置,包括如下步骤301~302:
301、获取所述目标对象的目标部位的目标部位参数。
其中,目标部位可以是头部、腰部、腕部或者其它人体部位等,目标部位参数可以是头围、腰围、腕围或者其它尺寸大小信息。
302、根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的所述预摆位位置。
在一个具体实施例中,将部位参数进行分级,分级可以是按照数值范围分级,也可以是按照特定值进行分级,例如分为A、B和C级;不同的等级对应不同的预摆位位置,例如A级对应位置一,B级对应位置二,C级对应位置三。
具体的,以目标部位为头部和目标部位参数为头围为例,头部和预摆位位置的对应关系可以是如下表1所示:
表1
头围(cm) 等级 预摆位位置
54以下 位置1
54~58 位置2
58以上 位置3
可以理解的是,上述表1仅为举例,在本申请其他实施例中,可以有更多的目标部位,以及更多的目标部位参数,同样可以基于上述对应关系进行设置,具体此处不作限定。
在不使用激光灯进行摆位的情况下,通过获取目标对象的目标部位的目标部位参数,结合部位参数和预摆位位置的对应关系确定目标对象的预摆位位置,可以减少目标对象接收到的额外剂量,从而有利于后续的放射治疗。
在本申请一些实施例中,所述步骤301中在获取所述目标对象的目标部位的目标部位参数之前,所述方法还包括如下步骤:建立预设的部位参数和预摆位位置的对应关系。
在本申请一些实施例中,所述建立预设的部位参数和预摆位位置的对应关系,包括如下步骤:获取历史摆位数据,所述历史摆位数据包括多个对象的部位参数和所述多个对象的实际摆位数据;根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系。
在本申请一些实施例中,所述部位参数和预摆位位置的对应关系为参数等级和预摆位位置的对应关系;所述根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系,包括:对所述多个对象的部位参数进行分级,得到不同参数等级;根据所述多个对象的实际摆位数据,确定多个预摆位位置;根据所述不同参数等级和所述多个预摆位位置,建立参数等级和预摆位位置的对应关系;
相应的,在本申请一些实施例中,根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的所述预摆位位置,包括如下步骤:根据所述目标部位参数,确定目标参数等级;根据所述参数等级和预摆位位置的对应关系,确定所述目标参数等级对应的预摆位位置。
在本申请一些实施例中,所述获取所述目标对象的目标部位的目标部位参数,包括如下步骤:从所述目标对象的治疗计划中获取目标部位的目标部位参数。
其中,治疗计划可以是包括医学图像文件、治疗信息文件和其他用于放射治疗的相关文件;治疗计划中的医学图像文件可以是由电子计算机断层扫描(Computed Tomography,CT)、磁共振(Magnetic Resonance,MR)、B型超声(B-scan ultrasonography)或其他成像设备采集的医学图像;医学图像的格式可以是医学数字成像和通信格式(Digital Imaging and Communications in Medicine,DICOM)、神经影像信息学技术协议格式(Neuroimaging Informatics Technology Initiative,NIFTI)、近原始光栅数据格式(Nearly Raw Raster Data,NRRD)或者其他医学图像格式。
优选的,在本申请一些实施例中采用的医学图像文件可以是DIOCM格式,DICOM是医学图像和相关信息的国际标准(ISO 12052),它定义了质量能满足临床需要的可用于数据交换的医学图像格式。DICOM被广泛应用于放射医疗,心血管成像以及放射诊疗诊断设备(X射线,CT,磁共振和超声等)。在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一。
在一个具体实施例中,在制定所述目标对象的治疗计划之前,先拍摄目标对象的CT或者核磁图像,图像采用DICOM格式,同时测量所述目标对象的目标部位的部位参数,例如测量目标对象的头部,得到目标对象的头围。
在本申请一些实施例中,所述从所述目标对象的治疗计划中获取目标部位的目标部位参数,包括如下步骤:从所述目标对象的治疗计划中获取数据标签,所述数据标签中包括目标部位的目标部位参数。
在一个具体实施例中,治疗计划的医学图像采用DICOM格式,其中DICOM格式文件包含病人信息、日期、检查号、窗位和其他内容的标签,在目标对象的DICOM格式文件中添加头围的数据标签。
具体的,以目标部位为头部和目标部位参数为头围为例,所述目标对象治疗计划中DICOM格式文件的标签列表可以是如下表2所示:
表2
姓名 甲某 检查号 123456
性别 检查日期 0000-00-00
体重 65 检查部位 肺部
年龄 30 窗位 0
头围 58 窗宽 100
可以理解的是,上述表2仅为举例,在本申请其他实施例中,可以有更多的目标部位,以及更多的目标部位参数,DICOM格式文件也可以有更多的标签,具体此处不作限定。
在一个具体实施例中,将目标对象的包括了数据标签的治疗计划传输至放疗设备,放疗设备接收并解析治疗计划,得到目标部位参数,并根据目标部位 参数对应的等级确定对应的预摆位位置。
通过将目标对象的目标部位的目标部位参数写入治疗计划中的方式,使放疗设备读取治疗计划的同时,利用目标部位参数确定预摆位位置的,保证治疗过程有序不紊地进行。
在本申请一些实施例中,如图4所示,所述获取目标对象的预摆位位置,包括如下步骤401~403:
401、获取所述目标对象的预摆位图像。
402、确定所述预摆位图像和参考图像配准时所需移动的偏移量。
403、根据所述偏移量,确定所述目标对象的预摆位位置。
在本申请一些实施例中,所述确定所述预摆位图像和参考图像配准时所需移动的偏移量,包括如下步骤:获取所述预摆位图像和所述参考图像的第一偏移量;所述第一偏移量大于预设阈值时,利用所述第一偏移量补偿所述参考图像,得到第一补偿参考图像;获取所述预摆位图像和所述第一补偿参考图像的第二偏移量;所述第二偏移量大于预设阈值时,利用所述第二偏移量补偿所述第一补偿参考图像,得到第二补偿参考图像,并将偏移量更新为所述第一偏移量和所述第二偏移量的累加;重复上述过程,直到所述第二偏移量小于等于预设阈值时,输出所述偏移量。
如图5所示,在本申请一些实施例中,所述获取目标对象的预摆位位置,包括如下步骤501~503:
501、获取所述目标对象的靶区图像;
在一个具体实施例中,可以通过CBCT获取所述目标对象的靶区图像,CBCT在临床上可以分为兆伏级CBCT(Mega-volt CBCT,MV-CBCT)和千伏级CBCT(Kilo-volt CBCT,KV-CBCT)。
优选的,通过KV-CBCT获取所述目标对象的靶区图像,KV-CBCT是由一个KV X射线源和一个KV级大面积非晶硅平板探测器组成的成像系统,其中X射线球管与探测器分别在机架的两侧,处于与机头的正交方位上,在X射线球管前方为各种规格的准直器插块及过滤器,来满足临床上不同扫描部位的需求。
可以理解的是,KV-CBCT获取的靶区图像可以是三维图像,也可是二维图像即正交的KV图像。
502、根据所述靶区图像,模拟移动预设偏移量后的模拟靶区图像;
503、基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量。
其中,预设参考图像可以是三维图像,也可以是二维图像。
在一个具体实施例中,若靶区图像是三维图像,预设参考图像为目标对象的治疗计划中的三维医学图像,例如KV-CBCT拍摄的靶区图像是三维图像,对应的预设参考图像为目标对象的治疗计划中的三维CT图像;若靶区图像是二维图像,预设参考图像为目标对象的治疗计划中的二维医学图像,例如KV-CBCT拍摄的靶区图像是二维图像即正交的KV图像,对应的预设参考图像为目标对象的治疗计划中CT图像对应的二维图像。
可以理解的是,目标对象的治疗计划中CT图像对应的二维图像可以是数字重建放射影像(Digitally Reconstructured Radiograph,DRR),DRR是指射野方向或从类似模拟定位机的X射线靶方向观视3D重建图像的结果,将3D的CT体数据通过数学模拟的算法,生成的一张2D图像。
在一个具体实施例中,若靶区图像是三维图像,对应的预设参考图像为三维图像,确定所述靶区图像和预设参考图像完成配准需要的三维偏移量,根据三维偏移量确定预摆位位置;若靶区图像是二维图像,对应的预设参考图像为二维图像,确定所述靶区图像和预设参考图像完成配准需要的二维偏移量,根据二维偏移量确定预摆位位置。
在不使用激光灯进行摆位的情况下,通过成像装置获取靶区图像与预设参考图像进行配准,精确引导摆位的同时,实现对患者状态的监控,进而有利于后续放射治疗的开展。
在本申请一些实施例中,所述步骤503中基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量,还包括如下步骤:根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;若所述配准结果为不成功,继续模拟所述模拟靶区图 像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的累积偏移量;将所述累积偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
在一个具体实施例中,通过模拟靶区图像与预设参考图像的配准结果,以及模拟靶区图像与靶区图像的位置关系,确定靶区图像与预设参考图像完成配准所需要的的偏移量。
在一个具体实施例中,根据所述靶区图像,模拟所述治疗床移动预设偏移量后的模拟靶区图像,将所述模拟靶区图像与预设参考图像进行配准,使模拟靶区图像与预设参考图像上的对应点达到空间上的一致,具体可以是使目标对象的同一解剖点或者靶点在两张图像上有相同的空间位置。
模拟靶区图像和预设参考图像进行配准之后,得到两幅图像的配准结果,在本申请一些实施例中,如果得到的配准结果为不成功即未能实现两幅图像的配准,继续模拟治疗床移动的模拟靶区图像,直到模拟靶区图像与预设参考图像的配准结果为成功,计算模拟治疗床移动的累积偏移量。
在一个具体实施例中,直到模拟治疗床移动到的位置所得到的模拟靶区图像与预设参考图像配准成功,停止模拟治疗床移动,累加每次模拟治疗床移动的偏移量,得到累积偏移量即靶区图像和预设参考图像能够配准成功的偏移量。
需要说明的是,由于所述靶区图像和预设参考图像完成配准需要的偏移量可以是多次移动累加的累积偏移量,也可以是当前偏移量,所以在本申请一些实施例中,若所述配准结果为不成功,继续模拟所述治疗床移动的所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟所述治疗床移动的当前偏移量,将所述当前偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
在不使用激光灯进行摆位的情况下,通过模拟治疗床移动预设偏移量后的模拟靶区图像与预设参考图像进行配准,减少了系统误差对摆位的影响,模拟治疗床移动可以减轻多次移动对患者造成的不适,并且模拟得到的精准偏移量可以快速完成预摆位。
可以理解的是,模拟移动,可能是一次或多次,即使是多次,由于目前电子设备的计算能力越来越强,该模拟过程实际耗时很短,对于患者来说也是极其短暂的,因此相对目前的激光灯摆位等现有方式仍可以有效提高摆位效率。
在本申请一些实施例中,所述将所述目标对象移动到所述预摆位位置,包括:通过移动所述放疗设备的患者支撑装置将所述目标对象移动到所述预摆位位置。
其中,患者支撑装置可以是三维床,六维床、座椅等,具体此处不作限定。
在本申请一些实施例中,所述获取位于所述预摆位位置的所述目标对象的目标图像,包括:通过成像装置获取位于所述预摆位位置的所述目标对象的目标图像。
为了更好实施本申请实施例中摆位方法,在摆位方法基础之上,本申请实施例中还提供一种摆位装置,如图6所示,所述摆位装置600包括:
获取单元601,用于获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;
移动单元602,用于将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内;
摆位单元603,用于获取位于所述预摆位位置的所述目标对象的目标图像,并根据所述目标图像与预设的参考图像,对所述目标对象进行摆位。
本申请实施例在不使用激光灯摆位的情况下,通过设置预摆位位置和图像引导的方式,实现目标对象的精准摆位,不仅有效减小了系统误差对摆位的影响,还进一步提高了摆位的精度。
在本申请一些实施例中,所述获取单元601具体用于:
获取所述目标对象的目标部位的目标部位参数;
根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的所述预摆位位置。
在本申请一些实施例中,所述获取单元601具体还用于:
建立预设的部位参数和预摆位位置的对应关系。
在本申请一些实施例中,所述建立预设的部位参数和预摆位位置的对应关系,所述获取单元601具体用于:
获取历史摆位数据,所述历史摆位数据包括多个对象的部位参数和所述多个对象的实际摆位数据;
根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系。
在本申请一些实施例中,所述获取单元具体601还用于:
所述部位参数和预摆位位置的对应关系为参数等级和预摆位位置的对应关系;
所述根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系,包括:
对所述多个对象的部位参数进行分级,得到不同参数等级;
根据所述多个对象的实际摆位数据,确定多个预摆位位置;
根据所述不同参数等级和所述多个预摆位位置,建立参数等级和预摆位位置的对应关系;
相应的,根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的所述预摆位位置,包括:
根据所述目标部位参数,确定目标参数等级;
根据所述参数等级和预摆位位置的对应关系,确定所述目标参数等级对应的预摆位位置。
在本申请一些实施例中,所述获取所述目标对象的目标部位的目标部位参数,所述获取单元601具体用于:
从所述目标对象的治疗计划中获取目标部位的目标部位参数。
在本申请一些实施例中,所述从所述目标对象的治疗计划中获取目标部位的目标部位参数,所述获取单元601具体用于:
从所述目标对象的治疗计划中获取数据标签,所述数据标签中包括目标部位的目标部位参数。
在本申请另一些实施例中,所述获取单元601具体用于:
获取所述目标对象的预摆位图像;
确定所述预摆位图像和参考图像配准时所需移动的偏移量;
根据所述偏移量,确定所述目标对象的预摆位位置。
在本申请另一些实施例中,所述确定所述预摆位图像和参考图像配准时所需移动的偏移量,所述获取单元601具体用于:
获取所述预摆位图像和所述参考图像的第一偏移量;
所述第一偏移量大于预设阈值时,利用所述第一偏移量补偿所述参考图像,得到第一补偿参考图像;
获取所述预摆位图像和所述第一补偿参考图像的第二偏移量;
所述第二偏移量大于预设阈值时,利用所述第二偏移量补偿所述第一补偿参考图像,得到第二补偿参考图像,并将偏移量更新为所述第一偏移量和所述第二偏移量的累加;
重复上述过程,直到所述第二偏移量小于等于预设阈值时,输出所述偏移量。
在本申请另一些实施例中,所述获取单元601具体用于:
获取所述目标对象的靶区图像;
根据所述靶区图像,模拟移动预设偏移量后的模拟靶区图像;
基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量。
在本申请另一些实施例中,所述基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量,所述获取单元601具体用于:
根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;
若所述配准结果为不成功,继续模拟所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的累积偏移量;
将所述累积偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
在本申请另一些实施例中,所述基于所述模拟靶区图像,确定所述靶区图 像和预设参考图像完成配准需要的偏移量,所述获取单元具体601用于:
根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;
若所述配准结果为不成功,继续模拟所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的当前偏移量;
将所述当前偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
在本申请一些实施例中,所述移动单元具体602用于:
通过移动所述放疗设备的患者支撑装置将所述目标对象移动到所述预摆位位置。
在本申请一些实施例中,所述获取位于所述预摆位位置的所述目标对象的目标图像,所述摆位单元603具体用于:
通过成像装置获取位于所述预摆位位置的所述目标对象的目标图像
本申请实施例还提供一种放疗设备,其集成了本申请实施例所提供的任一种摆位装置,所述放疗设备包括:
一个或多个处理器;
存储器;以及
一个或多个应用程序,其中所述一个或多个应用程序被存储于所述存储器中,并配置为由所述处理器执行上述摆位方法实施例中任一实施例中所述的摆位方法中的步骤。
如图7所示,其示出了本申请实施例所涉及的放疗设备的结构示意图,具体来讲:
该放疗设备可以包括一个或者一个以上处理核心的处理器801、一个或一个以上计算机可读存储介质的存储器702、电源703和输入单元704等部件。本领域技术人员可以理解,图7中示出的放疗设备结构并不构成对放疗设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件 布置。其中:
处理器701是该放疗设备的控制中心,利用各种接口和线路连接整个治疗设备的各个部分,通过运行或执行存储在存储器702内的软件程序和/或模块,以及调用存储在存储器702内的数据,执行放疗设备的各种功能和处理数据,从而对放疗设备进行整体监控。可选的,处理器701可包括一个或多个处理核心;处理器701可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,优选的,处理器701可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器701中。
存储器702可用于存储软件程序以及模块,处理器701通过运行存储在存储器702的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器702可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据治疗设备的使用所创建的数据等。此外,存储器702可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器702还可以包括存储器控制器,以提供处理器701对存储器702的访问。
治疗设备还包括给各个部件供电的电源703,优选的,电源703可以通过电源管理系统与处理器701逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源703还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
该放疗设备还可包括输入单元704,该输入单元704可用于接收输入的数字 或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。
尽管未示出,放疗设备还可以包括显示单元等,在此不再赘述。具体在本实施例中,治疗设备中的处理器701会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行文件加载到存储器702中,并由处理器701来运行存储在存储器702中的应用程序,从而实现各种功能,如下:
获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;
将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内;
获取位于所述预摆位位置的所述目标对象的目标图像,并根据所述目标图像与预设的参考图像,对所述目标对象进行摆位。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
为此,本申请实施例提供一种计算机可读存储介质,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。其上存储有计算机程序,所述计算机程序被处理器进行加载,以执行本申请实施例所提供的任一种摆位方法中的步骤。例如,所述计算机程序被处理器进行加载可以执行如下步骤:
获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;
将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内;
获取位于所述预摆位位置的所述目标对象的目标图像,并根据所述目标图像与预设的参考图像,对所述目标对象进行摆位。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对其他实施例的详细描述,此处不再赘述。
具体实施时,以上各个单元或结构可以作为独立的实体来实现,也可以进 行任意组合,作为同一或若干个实体来实现,以上各个单元或结构的具体实施可参见前面的方法实施例,在此不再赘述。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
以上对本申请实施例所提供的一种摆位方法、装置、放疗设备以及存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (17)

  1. 一种摆位方法,其特征在于,所述方法包括:
    获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;
    将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内;
    获取位于所述预摆位位置的所述目标对象的目标图像,并根据所述目标图像与预设的参考图像,对所述目标对象进行摆位。
  2. 根据权利要求1所述的摆位方法,其特征在于,所述获取目标对象的预摆位位置,包括:
    获取所述目标对象的目标部位的目标部位参数;
    根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的预摆位位置。
  3. 根据权利要求2所述的摆位方法,其特征在于,在获取所述目标对象的目标部位的目标部位参数之前,所述方法还包括:
    建立预设的部位参数和预摆位位置的对应关系。
  4. 根据权利要求3所述的摆位方法,其特征在于,所述建立预设的部位参数和预摆位位置的对应关系,包括:
    获取历史摆位数据,所述历史摆位数据包括多个对象的部位参数和所述多个对象的实际摆位数据;
    根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系。
  5. 根据权利要求4所述的摆位方法,其特征在于,所述部位参数和预摆位位置的对应关系为参数等级和预摆位位置的对应关系;
    所述根据所述多个对象的部位参数和所述多个对象的实际摆位数据,建立所述部位参数和预摆位位置的对应关系,包括:
    对所述多个对象的部位参数进行分级,得到不同参数等级;
    根据所述多个对象的实际摆位数据,确定多个预摆位位置;
    根据所述不同参数等级和所述多个预摆位位置,建立参数等级和预摆位位置的对应关系;
    相应的,根据所述目标部位参数,以及预设的部位参数和预摆位位置的对应关系,确定所述目标对象的所述预摆位位置,包括:
    根据所述目标部位参数,确定目标参数等级;
    根据所述参数等级和预摆位位置的对应关系,确定所述目标参数等级对应的预摆位位置。
  6. 根据权利要求2所述的摆位方法,其特征在于,所述获取所述目标对象的目标部位的目标部位参数,包括:
    从所述目标对象的治疗计划中获取目标部位的目标部位参数。
  7. 根据权利要求6所述的摆位方法,其特征在于,所述从所述目标对象的治疗计划中获取目标部位的目标部位参数,包括:
    从所述目标对象的治疗计划中获取数据标签,所述数据标签中包括目标部位的目标部位参数。
  8. 根据权利要求1所述的摆位方法,其特征在于,所述获取目标对象的预摆位位置,包括:
    获取所述目标对象的预摆位图像;
    确定所述预摆位图像和参考图像配准时所需移动的偏移量;
    根据所述偏移量,确定所述目标对象的预摆位位置。
  9. 根据权利要求8所述的摆位方法,其特征在于,所述确定所述预摆位图像和参考图像配准时所需移动的偏移量,包括:
    获取所述预摆位图像和所述参考图像的第一偏移量;
    所述第一偏移量大于预设阈值时,利用所述第一偏移量补偿所述参考图像,得到第一补偿参考图像;
    获取所述预摆位图像和所述第一补偿参考图像的第二偏移量;
    所述第二偏移量大于预设阈值时,利用所述第二偏移量补偿所述第一补偿参考图像,得到第二补偿参考图像,并将偏移量更新为所述第一偏移量和所述第二偏移量的累加;
    重复上述过程,直到所述第二偏移量小于等于预设阈值时,输出 所述偏移量。
  10. 根据权利要求1所述的摆位方法,其特征在于,所述获取目标对象的预摆位位置,包括:
    获取所述目标对象的靶区图像;
    根据所述靶区图像,模拟移动预设偏移量后的模拟靶区图像;
    基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量。
  11. 根据权利要求10所述的摆位方法,其特征在于,所述基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量,包括:
    根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;
    若所述配准结果为不成功,继续模拟所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的累积偏移量;
    将所述累积偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
  12. 根据权利要求10所述的摆位方法,其特征在于,所述基于所述模拟靶区图像,确定所述靶区图像和预设参考图像完成配准需要的偏移量,包括:
    根据所述模拟靶区图像,与预设参考图像进行配准,得到所述模拟靶区图像和所述预设参考图像的配准结果;
    若所述配准结果为不成功,继续模拟所述模拟靶区图像,直至所述模拟靶区图像和所述预设参考图像配准成功,确定模拟移动的当前偏移量;
    将所述当前偏移量作为所述靶区图像和所述预设参考图像完成配准需要的偏移量。
  13. 根据权利要求1所述的摆位方法,其特征在于,所述将所述目标对象移动到所述预摆位位置,包括:
    通过移动所述放疗设备的患者支撑装置将所述目标对象移动到所述预摆位位置。
  14. 根据权利要求1所述的摆位方法,其特征在于,所述获取位于所述预摆位位置的所述目标对象的目标图像,包括:
    通过成像装置获取位于所述预摆位位置的所述目标对象的目标图像。
  15. 一种摆位装置,其特征在于,所述装置包括:
    获取单元,用于获取目标对象的预摆位位置,所述预摆位位置为非激光灯摆位位置;
    移动单元,用于将所述目标对象移动到所述预摆位位置,所述目标对象的目标部位位于放疗设备的等中心的预设范围内;
    摆位单元,用于获取位于所述预摆位位置的所述目标对象的目标图像,并根据所述目标图像与预设的参考图像,对所述目标对象进行摆位。
  16. 一种放疗设备,其特征在于,所述放疗设备包括:
    一个或多个处理器;
    存储器;以及
    一个或多个应用程序,其中所述一个或多个应用程序被存储于所述存储器中,并配置为由所述处理器执行以实现权利要求1至14中任一项所述的摆位方法。
  17. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器进行加载,以执行权利要求1至14中任一项所述的摆位方法中的步骤。
PCT/CN2020/140699 2020-12-29 2020-12-29 摆位方法、装置、放疗设备以及存储介质 WO2022141033A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/140699 WO2022141033A1 (zh) 2020-12-29 2020-12-29 摆位方法、装置、放疗设备以及存储介质
CN202080108420.5A CN116897069A (zh) 2020-12-29 2020-12-29 摆位方法、装置、放疗设备以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140699 WO2022141033A1 (zh) 2020-12-29 2020-12-29 摆位方法、装置、放疗设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2022141033A1 true WO2022141033A1 (zh) 2022-07-07

Family

ID=82259931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140699 WO2022141033A1 (zh) 2020-12-29 2020-12-29 摆位方法、装置、放疗设备以及存储介质

Country Status (2)

Country Link
CN (1) CN116897069A (zh)
WO (1) WO2022141033A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955120A (zh) * 2017-03-31 2017-07-18 北京东软医疗设备有限公司 成像方法及成像系统
JP2018114201A (ja) * 2017-01-20 2018-07-26 キヤノンメディカルシステムズ株式会社 放射線治療システム及び患者位置確認システム
CN110227214A (zh) * 2019-07-12 2019-09-13 江苏瑞尔医疗科技有限公司 一种基于定位标的放射治疗定位方法
CN110292723A (zh) * 2019-06-25 2019-10-01 上海联影医疗科技有限公司 剂量引导摆位装置、剂量监控装置、放疗系统及介质
CN111528879A (zh) * 2020-05-06 2020-08-14 上海联影医疗科技有限公司 一种医学图像采集的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018114201A (ja) * 2017-01-20 2018-07-26 キヤノンメディカルシステムズ株式会社 放射線治療システム及び患者位置確認システム
CN106955120A (zh) * 2017-03-31 2017-07-18 北京东软医疗设备有限公司 成像方法及成像系统
CN110292723A (zh) * 2019-06-25 2019-10-01 上海联影医疗科技有限公司 剂量引导摆位装置、剂量监控装置、放疗系统及介质
CN110227214A (zh) * 2019-07-12 2019-09-13 江苏瑞尔医疗科技有限公司 一种基于定位标的放射治疗定位方法
CN111528879A (zh) * 2020-05-06 2020-08-14 上海联影医疗科技有限公司 一种医学图像采集的方法和系统

Also Published As

Publication number Publication date
CN116897069A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
CN109464757B (zh) 一种确定目标对象位置的方法、系统、装置及存储介质
US10791958B2 (en) Magnetic resonance projection imaging
Korreman et al. The European Society of Therapeutic Radiology and Oncology–European Institute of Radiotherapy (ESTRO–EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide
JP6886565B2 (ja) 表面の動きを追跡する方法及び装置
US8803910B2 (en) System and method of contouring a target area
US8232535B2 (en) System and method of treating a patient with radiation therapy
Verellen et al. An overview of volumetric imaging technologies and their quality assurance for IGRT
CN108883294A (zh) 用于在整个放射治疗中监视结构运动的系统和方法
Schmid et al. A phantom study to assess accuracy of needle identification in real-time planning of ultrasound-guided high-dose-rate prostate implants
CN105832356A (zh) 基于现存患者信息的放射线照相成像参数选择
CN114796891A (zh) 放疗系统
EP3634577B1 (en) Systems and methods of accounting for shape change during radiotherapy
Panta et al. Establishing a framework to implement 4D XCAT phantom for 4D radiotherapy research
WO2020087257A1 (zh) 图像引导方法及装置、医疗设备、计算机可读存储介质
Mori et al. Development of fast patient position verification software using 2D-3D image registration and its clinical experience
CN108852400B (zh) 一种实现治疗中心位置验证的方法及装置
US20220218298A1 (en) Method for image guidance, medical device and computer-readable storage medium
Kamomae et al. Accuracy of image guidance using free-breathing cone-beam computed tomography for stereotactic lung radiotherapy
US20210121715A1 (en) Cardiac ablation using an mr linac
Jenkins et al. Using a handheld stereo depth camera to overcome limited field‐of‐view in simulation imaging for radiation therapy treatment planning
WO2022141033A1 (zh) 摆位方法、装置、放疗设备以及存储介质
Holm et al. Density calibrated cone beam CT as a tool for adaptive radiotherapy
WO2022140997A1 (zh) 射野监视方法、放疗设备、显示装置及系统
Suzuki et al. Uncertainty in patient set-up margin analysis in radiation therapy
Giraud et al. Conformal radiotherapy planning for lung cancer: analysis of set-up uncertainties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202080108420.5

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 20967383

Country of ref document: EP

Kind code of ref document: A1