WO2022140885A1 - 供电方法和供电设备 - Google Patents

供电方法和供电设备 Download PDF

Info

Publication number
WO2022140885A1
WO2022140885A1 PCT/CN2020/139865 CN2020139865W WO2022140885A1 WO 2022140885 A1 WO2022140885 A1 WO 2022140885A1 CN 2020139865 W CN2020139865 W CN 2020139865W WO 2022140885 A1 WO2022140885 A1 WO 2022140885A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
power
electrical signal
link
Prior art date
Application number
PCT/CN2020/139865
Other languages
English (en)
French (fr)
Inventor
王海飞
庄艳
付世勇
周万
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/139865 priority Critical patent/WO2022140885A1/zh
Publication of WO2022140885A1 publication Critical patent/WO2022140885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the present application relates to the field of power supply, and in particular, to a power supply method and a power supply device.
  • the power sourcing equipment In a power supply system, such as a power over ethernet (POE) system, the power sourcing equipment (PSE) generally detects whether the PD exists before supplying power to the (power device, PD) powered device, such as The PSE outputs a test voltage ranging from 2.8V to 10V, and judges whether the PD exists by detecting the resistance-capacitance value between the power output line pairs.
  • PSE power sourcing equipment
  • the present application provides a power supply method and a power supply device.
  • the technical solution can reduce or eliminate noise of a specific frequency in the power supply link by filtering the sensed electrical signal on the power supply link obtained by the power supply device PSE.
  • the technical solution can effectively reduce the influence of power frequency noise on the PD detection by the PSE, thereby increasing the detection accuracy of the PD and avoiding the situation that the PSE cannot supply power to the PD normally.
  • a first aspect provides a power supply method, the method is applied to a power over Ethernet system, the power supply system includes a power supply device and a power receiving device, and is characterized in that: the power supply device outputs a detection power supply to a power supply link. signal; the power supply device obtains the sensing electrical signal of the power supply link, and the sensing electrical signal is an electrical signal after filtering out a signal of a specific frequency, the specific frequency including 50 Hz and its multiplier or 60 Hz and its frequency multiplication; the power supply device determines whether the powered device is connected to the power supply link according to the sensed electrical signal; if the power supply device determines that the powered device is connected to the power supply link, Then, power is supplied to the powered device through the power supply link.
  • the technical solution can effectively reduce the influence of power frequency noise on the PD detection by the PSE, thereby increasing the detection accuracy of the PD and avoiding the situation that the PSE cannot supply power to the PD normally.
  • the power supply device determining whether the powered device is connected to the power supply link according to the sensed electrical signal includes: the power supply device according to the The sensing electrical signal determines resistance-capacitance information; the power supply device determines that the power receiving device is connected to the power supply link according to the resistance-capacitance information.
  • the power supply device determines capacitive reactance information or inductive reactance information according to the sensed electrical signal, and determines that the powered device is connected to the power supply link according to the capacitive reactance information or the inductive reactance information.
  • acquiring, by the power supply device, a sensed electrical signal of the power supply link includes: acquiring, by the power supply device, a sensed electrical signal of the power supply link through a first element. The electrical signal is measured, and the first element is used to filter out the signal of a specific frequency.
  • the first element is external to the power supply device.
  • the first element may be a hardware device, such as a filter, such as a digital notch filter, a low-pass filter, a band-stop filter, or the like.
  • the first element can be installed in any power supply equipment or at the port that needs to filter the power frequency noise, and has the characteristics of convenience, speed, portability and installation.
  • the first element is built into a chip of the power supply device.
  • the first element is disposed in the chip of the power supply device as a component, and is integrated with the chip, so that the power frequency noise can be effectively filtered, and the timeliness is high.
  • the filtering processing may be digital filtering processing, analog filtering processing, hybrid filtering processing, etc., which is not specifically limited in this embodiment of the present application.
  • the first element is a digital notch filter.
  • the first element includes a plurality of digital wave traps, and the plurality of digital wave traps are connected in series.
  • the plurality of digital notch filters can also be connected in parallel, and which one to use can be selected through a switch during use.
  • acquiring, by the power supply device, a sensed electrical signal of the power supply link includes: the power supply device acquiring the sensed electrical signal of the power supply link through a software filter The electrical signal is measured, and the software filter is used to filter out the signal of a specific frequency.
  • the software filter may be software, a program, code, etc.
  • the software filter may be in a chip of a power supply device, such as MCU, DSP, and the software filter may also be set in a third-party device or the like.
  • the software filter is provided in a chip of the power supply device.
  • a power supply device comprising: a memory for storing instructions; a processor for executing the instructions to perform the following steps: outputting a detected electrical signal to a power supply link;
  • the sensing electrical signal of the power supply link is an electrical signal after filtering a signal of a specific frequency, and the specific frequency includes 50 Hz and its multiplier or 60 Hz and its multiplier; according to the The sensed electrical signal determines whether the powered device is connected to the power supply link; if it is determined that the powered device is connected to the power supply link, power is supplied to the powered device through the power supply link.
  • the processor is specifically configured to: determine resistance-capacitance information according to the sensed electrical signal;
  • the power supply link is connected.
  • the processor is specifically configured to: acquire the sensed electrical signal of the power supply link through a first element, and the first element is configured to filter out certain frequency signal.
  • the first element is external to the power supply device.
  • the first element is built into a chip of the power supply device.
  • the first element is a digital notch filter.
  • the first element includes a plurality of digital wave traps, and the plurality of digital wave traps are connected in series.
  • the processor is specifically configured to: acquire the sensed electrical signal of the power supply link through a software filter, where the software filter is configured to filter out a specific frequency signal of.
  • the software filter is provided in a chip of the power supply device.
  • a power supply device comprising a processor and an interface circuit, the interface circuit is configured to receive computer codes or instructions and transmit them to the processor, and the processor executes the computer codes or instructions, such as The power supply method described in the above-mentioned first aspect and any possible implementation manner thereof is performed.
  • a computer-readable storage medium comprising computer instructions, which, when the computer instructions are executed on a power supply device, cause the power supply device to execute the first aspect and any of the possible implementations thereof. the power supply method.
  • a fifth aspect provides a computer program product that, when the computer program product runs on a computer, causes the computer to execute the power supply method described in the first aspect and any possible implementations thereof.
  • FIG. 1 is a schematic diagram of a scenario to which an embodiment of the present application may be applied.
  • FIG. 2 is a schematic diagram of a POE system provided by an embodiment of the present application.
  • FIG. 3 is a schematic interaction diagram of a power supply method provided by an embodiment of the present application.
  • FIG. 4 is a schematic system block diagram of a power supply system provided by an embodiment of the present application.
  • FIG. 5 is a schematic system block diagram of another power supply system provided by an embodiment of the present application.
  • FIG. 6 is a schematic system block diagram of another power supply system provided by an embodiment of the present application.
  • FIG. 7 is a schematic system block diagram of another power supply system provided by an embodiment of the present application.
  • FIG. 8 is a schematic system block diagram of another power supply system provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an amplitude-frequency characteristic of a digital notch filter provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an amplitude-frequency characteristic of another digital notch filter provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an amplitude-frequency characteristic of a band-stop filter provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the amplitude-frequency characteristic of another band-stop filter provided by an embodiment of the present application.
  • FIG. 13 is a schematic circuit diagram of a CLC filter provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • FIG. 1 is a schematic diagram of a scenario to which an embodiment of the present application may be applied.
  • the POE system 100 may include a power supply device PSE110 , a power receiving device PD121 , and PD122 .
  • the power supply device PSE110 may be a POE switch
  • the powered device PD121 may be a network camera connected to the POE switch
  • the powered device PD122 may be a wireless network access point connected to the POE switch.
  • the powered device PD may also be a Bluetooth access point, a VoIP phone, a data acquisition terminal, a convenient device charger, and a credit card machine. , a magnetic card reader, etc.
  • the power supply equipment PSE may also be a base station, a hub, a remote hub, a network router, etc., which are not limited in the embodiments of the present application.
  • the POE switch 110 is connected to the wireless network access point 122 through a cable 123, and is connected to the network camera 121 through a cable 124.
  • the cables 123 and 124 can transmit both data and power, that is, the network camera and Wi-Fi access points without the need to plug in additional power.
  • FIG. 2 is a schematic process of a PSE supplying power to a PD according to an embodiment of the present application. As shown in FIG. 2 , the power supply process may include steps 210 to 250 .
  • the PSE Before the PSE supplies power to the PD, it will first detect whether the PD exists.
  • the PSE can determine whether the PD exists by detecting the resistance-capacitance value between the power output line pairs.
  • the PSE determines whether the PD exists by outputting a detection voltage of 2.8V to 10V, and by detecting the appropriate impedance characteristic from the PD, for example, the impedance is between 19kohm and 26.5kohm.
  • the PSE can also output a current, such as a current of 200 microamps, and it can also be determined whether the PD exists by detecting the voltage value.
  • a current such as a current of 200 microamps
  • the PSE determines the power level of the PD by detecting the output current of the power supply.
  • the PSE After the PSE detects the PD, the PSE will apply a voltage value of 15.5V to 20.5V to the PD, and determine the level of the PD by measuring the current.
  • this step is an optional step, and the PSE may also not grade the PD.
  • the PSE supplies power to the PD.
  • the PSE when the PSE detects that the PD is a legitimate device, within a start-up period of a configurable time, the PSE starts to supply power to the PD from a low voltage until the power supply is stable.
  • the PSE monitors the power supply of the PD in real time. For example, real-time detection of PD current input.
  • the PSE will quickly (usually within 300-400ms) stop supplying power to the PD. , and repeat the detection process to detect whether the terminal of the cable is connected to the PD.
  • PSE will first detect the existence of PD, and will supply power to PD only when the existence of PD is detected, that is, when PD is connected to the power supply link; when no PD is detected is present, the PSE will not supply power to the PD.
  • a PSE device Due to the leakage of AC power supply, it is difficult to effectively avoid it.
  • a PSE device generally has multiple ports.
  • the power of the power supply is relatively large, resulting in serious leakage, which will cause the PD to be unable to be used.
  • the PSE detection passes, therefore, the PSE cannot supply power to the PD normally.
  • the present application provides a power supply method and power supply equipment, and the technical solution can effectively reduce the influence of power frequency noise on PSE detection of PD, thereby increasing the accuracy of PD detection, and avoiding the situation that the PSE cannot supply power to the PD normally.
  • FIG. 3 is a schematic interaction diagram of a power supply method provided by an embodiment of the present application.
  • the power supply method can be applied to a power over Ethernet system
  • the power supply system includes a power supply device PSE and a powered device PD
  • the power supply method can include steps 310 to 340.
  • the power supply equipment PSE outputs a detection electrical signal to the power supply link.
  • the detection electrical signal may be an electrical signal such as voltage and current.
  • the power supply link may be a cable, twisted pair, or the like.
  • the power supply equipment PSE acquires a sensed electrical signal of the power supply link, where the sensed electrical signal is an electrical signal after filtering out a signal of a specific frequency, where the specific frequency includes 50 Hz and its multiples or 60 Hz and its multiples frequency.
  • the power supply device may obtain the sensing power of the power supply link through hardware devices, such as circuits and filters, such as digital notch filters, low-pass filters, band-stop filters, and high-pass filters.
  • signal, and the sensed electrical signal of the power supply link may also be obtained by means of program code, software, or the like with a filtering function, which is not limited in this embodiment of the present application.
  • the sensed electrical signal may be a feedback electrical signal after the power supply link reaches the powered device, for example, may be current, voltage, or the like.
  • the specific frequency may be 50 Hz and its multiplier, or 60 Hz and its multiplier, and may also be 50 Hz and its multiplier, and 60 Hz and its multiplier.
  • the specific frequency can also be (50 ⁇ X)HZ and its multiplier, (60 ⁇ X)HZ and its multiplier, and X can be a preset value, such as 0.1 ⁇ 1, 0.1 ⁇ 5, etc., which are not limited in the embodiments of the present application.
  • the power supply device determines whether the powered device is connected to the power supply link according to the sensed electrical signal.
  • the power supply device determines, according to the sensed electrical signal, that the impedance value, capacitive reactance value, or inductance value of the powered device is within a preset range, and then the power supply device can be determined to be related to the power supply. link connection.
  • the power supply equipment PSE can also determine that the PD is connected to the power supply link by detecting a voltage value by outputting a current, such as a current of 200 microamps.
  • the power supply device determines that the powered device is connected to the power supply link, supply power to the powered device through the power supply link.
  • the power supply device when the power supply device determines that the power receiving device is connected to the power supply link according to the sensed electrical signal, the power supply device supplies power to the power receiving device through the power supply link.
  • obtaining, by the power supply device, the sensed electrical signal of the power supply link includes: the power supply device obtains the sensed electrical signal of the power supply link through a first element, where the first element is configured to filter out signals of a specific frequency.
  • the first element may be external to the power supply device.
  • the first element is an external digital filter.
  • the first element When the first element is externally placed in the power supply equipment PSE, the first element can be inserted in any equipment that needs to filter power frequency noise, and has the characteristics of convenience, speed, portability and installation.
  • the first element may be built into the chip of the power supply device.
  • the first element is disposed in the chip of the power supply device as a component, and is integrated with the chip, so that the power frequency noise can be effectively digitally filtered, and the timeliness is high.
  • the first element is a digital notch filter.
  • the first element may comprise a plurality of digital wave traps, the plurality of digital wave traps being connected in series.
  • the plurality of digital traps may be partially disposed in the chip of the power supply device, and partially used as separate devices, which are not limited in this embodiment of the present application.
  • the first element can also be a low-pass filter, a band-stop filter, etc.
  • the first element can also include a plurality of low-pass filters and band-stop filters, and the plurality of low-pass filters and band-stop filters can be Series Parallel.
  • obtaining, by the power supply device, the sensed electrical signal of the power supply link includes: the power supply device obtains the sensed electrical signal of the power supply link through a software filter, where the software filter is used to filter out a signal of a specific frequency.
  • FIG. 4 is a schematic system block diagram of a power supply system provided by an embodiment of the present application. As shown in FIG. 4, the system may include a power supply device 400a and a powered device 400b.
  • the power supply device 400a may include a voltage sensing module 410, an analog-to-digital converter (ADC) 420, a processing unit 430, an output or switch module 440, and the like.
  • ADC analog-to-digital converter
  • the power supply device PSE400a may output a piece of detection electrical signal to the power supply link, and determine whether the powered device is connected to the power supply link according to the feedback electrical signal in the power supply link.
  • the voltage sensing module 410 in the power supply device 400a senses the feedback voltage in the power supply chain, and inputs the voltage into the ADC 420, and the ADC 420 digitally samples the voltage, thereby converting the voltage signal into a digital signal, and input the digital signal into the processing unit 430
  • the processing unit 430 may include a first element with a filtering function, the digital signal is filtered by the first element to filter out the noise signal of a specific frequency, the The processing unit 430 sends the filtered electrical signal to the control unit, and the control unit 450 determines whether the power receiving device is connected to the power supply link, so that the power supply device controls the output or the switch module 440 to the power supply link (such as a cable) to the power supply link.
  • the power receiving apparatus 400b continues to supply power or stops supplying power to the power receiving apparatus 400b.
  • the processing unit 430 can determine whether the powered device 400b is connected to the power supply link, and the processing unit 430 can control the output or switch module 440 to continue to supply the power supply link to the powered device through the power supply link.
  • 400b supplies power or stops supplying power to the powered device 400b.
  • a signal indicating whether the powered device 400b is connected to the power supply link is sent to the control unit 450, so that the control unit 450 can control the output or the switch module 440 to pass the power supply
  • the link continues to supply power to the powered device 400b or stops supplying power to the powered device 400b.
  • processing unit 430 may be a microcontroller unit (microcontroller unit, MCU) or a digital signal processing (digital signal process, DSP) unit or the like.
  • MCU microcontroller unit
  • DSP digital signal processing
  • the first element may be a filter circuit or a hardware filter element, the filter may be one, or multiple ones in series or parallel with each other, and the first element may also be a piece of program code, etc., which is implemented in this application.
  • the example is not limited to this.
  • the voltage sensing module 410 may be a voltage sensor.
  • ADC 420 and the output or switch module 440 may also be integrated in the processing unit 430, which is not limited in this embodiment of the present application.
  • the specific frequency can be 50HZ and its multiplier, 60HZ and its multiplier, it should be understood that in practical applications, due to certain errors, the specific frequency can also be (50 ⁇ X)HZ and its multiplier, (60 ⁇ X) HZ and its frequency multiplication, X may be a preset value, such as 0.1-1, 0.1-5, etc., which is not limited in the embodiment of the present application.
  • the voltage sensing module may also be replaced with a current sensing module or the like, which is not limited in this embodiment of the present application.
  • the detection electrical signal output by the power supply device reaches the power receiving device through the power supply link, and the power supply device removes the noise signal of a specific frequency by filtering the feedback electrical signal in the power supply link. Effectively reduce the influence of power frequency noise on the power supply equipment to detect the power receiving equipment, thereby increasing the accuracy of detecting the power receiving equipment, and avoiding the situation that the power supply equipment cannot supply power to the power receiving equipment normally.
  • FIG. 5 is a schematic system block diagram of another power supply system provided by an embodiment of the present application. As shown in FIG. 5, the system may include a power supply device 500a and a powered device 500b.
  • the power supply device 500a may include a voltage sensing module 510 , an ADC 520 , a first element 530 , a processing unit 540 , and an output or switch module 560 .
  • the power supply device 500a may further include a control unit 550 .
  • the power supply device PSE500a may output a piece of detection electrical signal to the power supply link, and determine whether the powered device is connected to the power supply link according to the feedback electrical signal in the power supply link.
  • the voltage sensing module 510 in the power supply device 500a senses the feedback voltage in the power supply chain, and inputs the voltage into the ADC 520, and the ADC 520 digitally samples the voltage, thereby converting the voltage signal into a digital signal, and The digital signal is input into the first element 530 for filtering to filter out the noise signal of a specific frequency, the first element sends the filtered signal to the processing unit 540, the processing unit 540, the processing unit 540 According to the received signal to determine whether the powered device 500b is connected to the power supply link, the processing unit 540 can control the output or switch module 560 to continue supplying power to the powered device 500b or stop supplying power to the powered device 500b through the power supply link (eg, a cable). Device 500b is powered.
  • the power supply link eg, a cable
  • the processing unit 540 sends the signal to the control unit 550, and the control unit 550 controls the output or switch module 560 to continue supplying power to the powered device 500b or stop supplying power to the powered device 500b through the power supply link.
  • the first element may be a filter, such as a digital notch filter, a band-stop filter, a low-pass filter, etc.
  • the first element may be provided in the chip of the power supply device, the filter may be one, or Can be multiple in series.
  • the specific frequency can be 50HZ and its multiplier, 60HZ and its multiplier, it should be understood that in practical applications, due to certain errors, the specific frequency can also be (50 ⁇ X)HZ and its multiplier, (60 ⁇ X) HZ and its frequency multiplication, X may be a preset value, such as 0.1-1, 0.1-5, etc., which is not limited in the embodiment of the present application.
  • output or switch module 550 may also be integrated in the processing unit 540, which is not limited in this embodiment of the present application.
  • the processing unit 540 may be an MCU, a DSP, or the like.
  • the voltage sensing module may also be replaced with a current sensing module or the like, which is not limited in this embodiment of the present application.
  • the detection electrical signal output by the power supply device reaches the power receiving device through the power supply link, and the power supply device removes the noise signal of a specific frequency by filtering the feedback electrical signal in the power supply link. Effectively reduce the influence of power frequency noise on the power supply equipment to detect the power receiving equipment, thereby increasing the accuracy of detecting the power receiving equipment, and avoiding the situation that the power supply equipment cannot supply power to the power receiving equipment normally.
  • FIG. 6 is a schematic system block diagram of another power supply system provided by an embodiment of the present application. As shown in FIG. 6 , the system may include a power supply device 600a, a power receiving device 600b and an external first element 600c.
  • the power supply 600a may include a voltage sensing 610 , an ADC 620 , a processing unit 630 and an output or switching module 640 .
  • the power supply device 600a may output a piece of detection electrical signal to the power supply link, and determine whether the powered device is connected to the power supply link according to the feedback electrical signal in the power supply link.
  • the voltage sensing module 610 detects the sensed feedback voltage in the power supply chain, and inputs the voltage into the ADC 620, which digitally samples the voltage to convert the voltage signal into a digital signal, and the ADC 620 converts the voltage into a digital signal.
  • the digital signal is input to the first element installed on the interface of the power supply device, the first element performs filtering processing on the digital signal, and the first element inputs the filtered signal into the processing unit 630, the processing unit 630 determines whether the powered device 600b is connected to the power supply link according to the received signal, and the processing unit 630 can control the output or switch module 640 to continue supplying power to the powered device 600b or stop supplying power to the powered device 600b through the power supply link (eg, cable).
  • the electrical device 600b supplies power.
  • the first element is externally placed in the power supply equipment PSE600a.
  • the first element is a filter device.
  • the filter is directly installed in the port of the power supply equipment PSE600a.
  • the first element may include a filter , can also include multiple filters, the technical solution is convenient, fast, easy to carry and install.
  • the filter may be a digital notch filter, a low-pass filter, a band-stop filter, a high-pass filter, etc., which is not limited in this embodiment of the present application.
  • the filter is used to filter out signals of a specific frequency. For the value of the specific frequency in this embodiment of the present application, reference may be made to the relevant descriptions in FIG. 4 and FIG. 5 , which are not repeated for brevity.
  • the power supply device 600a may further include a control unit 650, the processing unit 630 sends the signal to the control unit 650, and the control unit 650 controls the output or the switch module 640 to continue to supply power to the powered device 600b through the power supply link Or stop the power supply to the powered device 600b.
  • the power supply device sends information on whether the powered device 600b is connected to the power supply link to the control unit 650, and the control unit 650 controls the output or switch module 640 to continue supplying power to the powered device 600b through the power supply link or stop supplying power to the receiving device 600b.
  • the electrical device 600b supplies power.
  • ADC 620 and the output or switch module 640 may be integrated in the processing unit 630, which is not limited in this embodiment of the present application.
  • the processing unit 630 may be an MCU, a DSP, or the like.
  • the voltage sensing module may also be replaced with a current sensing module or the like, which is not limited in this embodiment of the present application.
  • the first element can be installed on the port of the power supply device as a separate device. After the electrical signal sensed by the power supply device is digitally filtered by the first element, the noise signal of a specific frequency is removed. Effectively reduce the influence of power frequency noise on the power supply equipment to detect the power receiving equipment, thereby increasing the accuracy of detecting the power receiving equipment, and avoiding the situation that the power supply equipment cannot supply power to the power receiving equipment normally.
  • the first element is externally placed in the power supply equipment, and has the characteristics of convenience, speed, and easy portability and installation.
  • FIG. 7 is a schematic system block diagram of another power supply system provided by an embodiment of the present application. As shown in FIG. 7 , the system may include a power supply device 700a, a powered device 700b, and an external third device 700c.
  • the power supply device 700a may include a voltage sensing module 710 , an ADC 720 , a processing unit 730 and an output or switch module 740 .
  • the external third device 700c may include a data cache module 750 , a noise identification module 760 , and a filter module 770 .
  • the power supply device PSE700a may output a piece of detection electrical signal to the power supply link, and determine whether the powered device is connected to the power supply link according to the feedback electrical signal in the power supply link.
  • the voltage sensing module 710 in the power supply device 700a senses the feedback voltage in the power supply chain, and inputs the voltage into the ADC 720.
  • the ADC 720 digitally samples the voltage to convert the voltage signal into a digital signal, and the ADC 720 converts the voltage into a digital signal.
  • the digital signal is input into the third device, the data buffering module 750 in the third device buffers the digital signal, the noise identification module 760 performs noise identification on the digital information in real time, and inputs the data part containing the noise signal into the filtering module 770 for processing.
  • the processing unit 730 may control the output or switch module 740 to continue supplying power to the powered device 700b or stop supplying power to the powered device 700b through a power supply link (eg, a cable).
  • a power supply link eg, a cable
  • the power supply device 700a may further include a control unit 780, the processing unit 730 sends the signal to the control unit 780, and the control unit 780 controls the output or the switch module 740 to continue to supply power to the powered device 700b through the power supply link Or stop power supply to the powered device 700b.
  • the power supply device sends information about whether the powered device 700b is connected to the power supply link to the control unit 780, and the control unit 780 controls the output or switch module 740 to continue supplying power to the powered device 700b through the power supply link or stop supplying power to the receiving device 700b.
  • the electrical device 700b supplies power.
  • the external device may be a computer, a notebook computer, a tablet computer, etc.
  • the filtering module may be filtering software installed in the computer, a stored program, code, etc.
  • the filtering module may be one, or multiple.
  • the filtering module may be a digital notch filter, a low-pass filter, a band-stop filter, a high-pass filter, etc., which is not limited in this embodiment of the present application.
  • the filtering module may be used to filter out signals of a specific frequency.
  • the specific frequency in this embodiment of the present application, reference may be made to the relevant descriptions in FIG. 4 and FIG. 5 , which are not repeated for brevity.
  • ADC 720 and the output or switch module 740 may be integrated in the processing unit 730, which is not limited in this embodiment of the present application.
  • the processing unit 730 may be an MCU, a DSP, or the like.
  • the voltage sensing module may also be replaced with a current sensing module or the like, which is not limited in this embodiment of the present application.
  • the noise signal of a specific frequency in the detected electrical signal is removed.
  • This technical solution can effectively reduce the detection of power supply device by power frequency noise.
  • the influence of the power receiving equipment can increase the accuracy of detecting the power receiving equipment, and avoid the situation that the power supply equipment cannot supply power to the power receiving equipment normally.
  • FIG. 8 is another schematic system block diagram provided by an embodiment of the present application. As shown in FIG. 8 , the system may include a power supply device 800a and a powered device 800b.
  • the power supply device 800a may include a voltage sensing module 810 , an ADC 820 , a processing unit 830 and an output or switch module 840 .
  • the processing unit 830 may include a data buffering module 831 , a noise identifying module 832 , and a filtering module 833 .
  • the power supply device 800a may output a piece of detection electrical signal to the power supply link, and determine whether the powered device is connected to the power supply link according to the feedback electrical signal in the power supply link.
  • the voltage sensing module 810 in the power supply device 800a senses the feedback voltage in the power supply chain, and inputs the voltage into the ADC 820, and the ADC 820 digitally samples the voltage to convert the voltage signal into a digital signal, and the ADC 820 converts the voltage into a digital signal.
  • the digital signal is sent to the data buffering module 831 in the processing unit 830, the data buffering module 831 buffers the digital signal, the noise identification module 832 performs noise identification on the digital information in real time, and inputs the data part containing the noise signal into the filtering module Perform filtering or smoothing processing in 833 to remove power frequency noise, the processing unit 830 can determine whether the powered device 800b is connected to the power supply chain according to the processed signal, and the processing unit 830 can control the output or switch module 840 to pass the power supply chain
  • the circuit eg, the cable
  • the power supply device 800a may further include a control unit 850, the processing unit 830 sends the digital filtering completed signal to the control unit 850, and the control unit 850 controls the output or the switch module 840 to continue to the receiver through the power supply link.
  • the electrical equipment 800b supplies power or stops supplying power to the power receiving apparatus 800b.
  • the power supply device 800a sends information about whether the powered device 800b is connected to the power supply link to the control unit 850, and the control unit 850 controls the output or switch module 840 to continue supplying power to the powered device 800b through the power supply link or stop supplying power to the power supply link 800b.
  • the powered device 800b supplies power.
  • the filtering module may be a digital notch filter, a low-pass filter, a band-stop filter, a high-pass filter, etc., which is not limited in this embodiment of the present application.
  • the filtering module may be used to filter out signals of a specific frequency.
  • the specific frequency in this embodiment of the present application, reference may be made to the relevant descriptions in FIG. 4 and FIG. 5 , which are not repeated for brevity.
  • ADC 820 and the output or switch module 840 may be integrated in the processing unit 830, which is not limited in this embodiment of the present application.
  • the processing unit 830 may be an MCU, a DSP, or the like.
  • the voltage sensing module may also be replaced with a current sensing module or the like, which is not limited in this embodiment of the present application.
  • FIG. 9 is a schematic diagram of an amplitude-frequency characteristic of a digital notch filter provided by an embodiment of the present application.
  • the notch frequency of the digital notch filter is 50Hz and its multiplier.
  • the actual notch frequency of the digital notch filter may be (50 ⁇ X)HZ, and the value of X can be 0-0.5, 0 ⁇ 1 and so on.
  • FIG. 10 is a schematic diagram of an amplitude-frequency characteristic of another digital notch filter provided by an embodiment of the present application.
  • the notch frequency of the digital notch filter is 60Hz and its multiplier.
  • the actual notch frequency of the digital notch filter may be (60 ⁇ X)HZ, and the value of X can be 0-0.5, 0 ⁇ 1 and so on.
  • FIG. 11 is a schematic diagram of an amplitude-frequency characteristic of a band-stop filter provided by an embodiment of the present application.
  • the stop band of the band-stop filter is narrow and the transition band is relatively steep, which can effectively filter out signals with a frequency of 50 Hz.
  • the band-stop filter can also filter out the frequency-multiplied signal of 50 Hz and the frequency-multiplied signal, which is not limited in this embodiment of the present application.
  • the actual stop-band center frequency of the band-stop filter may be (50 ⁇ X) Hz, and the value of X may be 0-0.5 , 0 to 1, etc.
  • FIG. 12 is a schematic diagram of the amplitude-frequency characteristic of another band-stop filter provided by an embodiment of the present application.
  • the stop band of the band-stop filter is narrow and the transition band is relatively steep, which can effectively filter out signals with a frequency of 60 Hz.
  • the band-stop filter can also filter out the frequency multiplied signal of 60 Hz and the frequency multiplied signal, which is not limited in the embodiments of the present application.
  • the actual stopband center frequency of the bandstop filter may be (60 ⁇ X)HZ, and the value of X may be 0-0.5 , 0 to 1, etc.
  • the filters in the embodiments of the present application may also be low-pass filters, high-pass filters, band-pass filters, etc., which are not limited in the embodiments of the present application.
  • FIG. 13 is a schematic circuit diagram of a CLC filter provided by an embodiment of the present application.
  • the capacitor C and the inductance L may be multiple, which is not limited in the embodiment of the present application.
  • the filter may also be an LCL filter, or may be any combination of multiple Cs and Ls, which is not limited in this embodiment of the present application.
  • An embodiment of the present application further provides a power supply device, the power supply device includes: a memory for storing instructions; a processor for executing the instructions, so as to perform the following steps: outputting a detection electrical signal to a power supply link;
  • the sensing electrical signal of the power supply link is an electrical signal after filtering a signal of a specific frequency, the specific frequency includes 50 Hz and its multiplier or 60 Hz and its multiplier;
  • the power measurement signal determines whether the powered device is connected to the power supply link; if it is determined that the powered device is connected to the power supply link, power is supplied to the powered device through the power supply link.
  • the processor is specifically configured to: determine resistance-capacitance information according to the sensed electrical signal; and determine, according to the resistance-capacitance information, that the powered device is connected to the power supply link.
  • the processor is specifically configured to: acquire the sensed electrical signal of the power supply link through a first element, where the first element is configured to filter out a signal of a specific frequency.
  • the first element is external to the power supply device.
  • the first element is built into a chip of the power supply device.
  • the first element is a digital notch filter.
  • the first element includes a plurality of digital wave traps, and the plurality of digital wave traps are connected in series.
  • the first element can also be a low-pass filter, a band-stop filter, etc.
  • the first element can also include a plurality of low-pass filters and band-stop filters, and the plurality of low-pass filters and band-stop filters can be concatenate.
  • the processor is specifically configured to: acquire the sensed electrical signal of the power supply link through a software filter, where the software filter is configured to filter out a signal of a specific frequency.
  • the software filter is provided in a chip of the power supply device.
  • Embodiments of the present application further provide a power supply device, including a processor and an interface circuit, where the interface circuit is configured to receive computer codes or instructions and transmit them to the processor, where the processor runs the computer codes or instructions, The power supply method as described in any of the foregoing is performed.
  • Embodiments of the present application further provide a computer-readable storage medium, including computer instructions, which, when the computer instructions are executed on a power supply device, cause the power supply device to execute the power supply method described in any one of the foregoing.
  • Embodiments of the present application further provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the power supply method described in any one of the foregoing.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Sources (AREA)

Abstract

本申请提供了一种供电方法和供电设备,该方法应用于以太网供电系统中,该供电系统包括供电设备和受电设备,其特征在于,包括:该供电设备向供电链路输出检测电信号;该供电设备获取供电链路的感测电信号,该感测电信号为滤除特定频率的信号后的电信号,该特定频率包括50赫兹及其倍频或60赫兹及其倍频;该供电设备根据感测电信号确定受电设备是否与供电链路连接;若该供电设备确定受电设备与供电链路连接,则通过供电链路向受电设备供电。该技术方案可以增加供电设备检测受电设备的准确性,避免出现供电设备无法向受电设备正常供电的情况。

Description

供电方法和供电设备 技术领域
本申请涉及供电领域,尤其涉及一种供电方法和供电设备。
背景技术
在供电系统,如以太网供电(power over ethernet,POE)系统中,供电设备(power sourcing equipment,PSE)在向(power device,PD)受电设备供电之前,一般会先检测PD是否存在,如PSE输出一段2.8V~10V的测试电压,通过检测电源输出线对之间的阻容值来判断PD是否存在。
由于110/220V的交流(alternating current,AC)电源存在漏电现象,在PSE具有多个端口的情况下,其电源功率较大,导致漏电现象严重,致使PD无法被PSE检测通过,因此,PSE无法正常向PD供电。
发明内容
本申请提供一种供电方法和供电设备,该技术方案可以通过对供电设备PSE获取的供电链路上的感测电信号进行滤波处理,可以减少或消除供电链路中特定频率的噪声。该技术方案能够有效减少工频噪声对PSE检测PD的影响,从而可以增加检测PD的准确性,避免出现PSE无法向PD正常供电的情况。
第一方面,提供了一种供电方法,该方法应用于以太网供电系统中,所述供电系统包括供电设备和受电设备,其特征在于,包括:所述供电设备向供电链路输出检测电信号;所述供电设备获取所述供电链路的感测电信号,所述感测电信号为滤除特定频率的信号后的电信号,所述特定频率包括50赫兹及其倍频或60赫兹及其倍频;所述供电设备根据所述感测电信号确定所述受电设备是否与所述供电链路连接;若所述供电设备确定所述受电设备与所述供电链路连接,则通过所述供电链路向所述受电设备供电。
基于本申请实施例,通过对供电设备PSE获取的供电链路上的感测电信号进行滤波处理,可以减少或消除供电链路中特定频率的噪声。该技术方案能够有效减少工频噪声对PSE检测PD的影响,从而可以增加检测PD的准确性,避免出现PSE无法向PD正常供电的情况。
结合第一方面,在第一方面的某些实现方式中,所述供电设备根据所述感测电信号确定所述受电设备是否与所述供电链路连接,包括:所述供电设备根据所述感测电信号确定阻容信息;所述供电设备根据所述阻容信息,确定所述受电设备与所述供电链路连接。
可选地,该供电设备根据感测电信号确定容抗信息或感抗信息等,并根据该容抗信息或感抗信息确定该受电设备与供电链路连接。
结合第一方面,在第一方面的某些实现方式中,所述供电设备获取所述供电链路的感测电信号,包括:所述供电设备通过第一元件获取所述供电链路的感测电信号,所述第一元件用于滤除特定频率的信号。
结合第一方面,在第一方面的某些实现方式中,所述第一元件外置于所述供电设备。
该第一元件可以是硬件器件,如滤波器,如数字陷波器、低通滤波器、带阻滤波器等。该第一元件可以安插在任何需要过滤工频噪声的供电设备中或端口处,具有方便、快捷、便于携带安装的特点。
结合第一方面,在第一方面的某些实现方式中,所述第一元件内置于所述供电设备的芯片中。
例如,该第一元件作为元器件设置于供电设备的芯片中,与芯片形成一体,从而可以有效的对工频噪声进行滤波处理,且时效性较高。该滤波处理可以是数字滤波处理、模拟滤波处理或混合滤波处理等,本申请实施例对此不做具体限定。
结合第一方面,在第一方面的某些实现方式中,所述第一元件为数字陷波器。
结合第一方面,在第一方面的某些实现方式中,所述第一元件包括多个数字陷波器,所述多个数字陷波器串联。
可选地,该多个数字陷波器也可以是并联的,在使用时可以通过开关选择具体使用哪一个。
结合第一方面,在第一方面的某些实现方式中,所述供电设备获取所述供电链路的感测电信号,包括:所述供电设备通过软件滤波器获取所述供电链路的感测电信号,所述软件滤波器用于滤除特定频率的信号。
本申请实施例中,该软件滤波器可以为软件、一段程序、代码等,该软件滤波器可以供电设备的芯片中,如MCU、DSP中,该软件滤波器还可以设置在第三方设备中等。
结合第一方面,在第一方面的某些实现方式中,所述软件滤波器设置于所述供电设备的芯片中。
第二方面,提供了一种供电设备,所述供电设备包括:存储器,用于存储指令;处理器,用于执行所述指令,以执行如下步骤:向供电链路输出检测电信号;获取所述供电链路的感测电信号,所述感测电信号为滤除特定频率的信号后的电信号,所述特定频率包括50赫兹及其倍频或60赫兹及其倍频;根据所述感测电信号确定所述受电设备是否与所述供电链路连接;若确定所述受电设备与所述供电链路连接,则通过所述供电链路向所述受电设备供电。
结合第二方面,在第二方面的某些实现方式中,所述处理器具体用于:根据所述感测电信号确定阻容信息;根据所述阻容信息,确定所述受电设备与所述供电链路连接。
结合第二方面,在第二方面的某些实现方式中,所述处理器具体用于:通过第一元件获取所述供电链路的感测电信号,所述第一元件用于滤除特定频率的信号。
结合第二方面,在第二方面的某些实现方式中,所述第一元件外置于所述供电设备。
结合第二方面,在第二方面的某些实现方式中,所述第一元件内置于所述供电设备的芯片中。
结合第二方面,在第二方面的某些实现方式中,所述第一元件为数字陷波器。
结合第二方面,在第二方面的某些实现方式中,所述第一元件包括多个数字陷波器,所述多个数字陷波器串联。
结合第二方面,在第二方面的某些实现方式中,所述处理器具体用于:通过软件滤波器获取所述供电链路的感测电信号,所述软件滤波器用于滤除特定频率的信号。
结合第二方面,在第二方面的某些实现方式中,所述软件滤波器设置于所述供电设备 的芯片中。
第三方面,提供一种供电设备,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,如上述第一方面及其任一项可能的实现方式中所述的供电方法被执行。
第四方面,提供一种计算机可读存储介质,包括计算机指令,当所述计算机指令在供电设备上运行时,使得所述供电设备执行如上述第一方面及其任一项可能的实现方式中所述的供电方法。
第五方面,提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如上述第一方面及其任一项可能的实现方式中所述的供电方法。
附图说明
图1是本申请实施例可以应用的场景的示意图。
图2是本申请实施例提供的一种POE系统中的示意图。
图3是本申请实施例提供的一种供电方法的示意性交互图。
图4是本申请实施例提供的一种供电系统的示意性系统框图。
图5是本申请实施例提供的又一种供电系统的示意性系统框图。
图6是本申请实施例提供的又一种供电系统的示意性系统框图。
图7是本申请实施例提供的又一种供电系统的示意性系统框图。
图8是本申请实施例提供的又一种供电系统的示意性系统框图。
图9是本申请实施例提供的一种数字陷波器的幅频特性示意图。
图10是本申请实施例提供的另一种数字陷波器的幅频特性示意图。
图11是本申请实施例提供的一种带阻滤波器的幅频特性示意图。
图12是本申请实施例提供的另一种带阻滤波器的幅频特性示意图。
图13是本申请实施例提供的一种CLC滤波器的示意性电路图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
图1是本申请实施例可以应用的场景的示意图。如图1所示,该POE系统100中,可以包括供电设备PSE110、受电设备PD121、PD122。
示例性地,该供电设备PSE110可以为POE交换机,该受电设备PD121可以为与该POE交换机相连的网络摄像头,该受电设备PD122可以与该POE交换机相连的无线网络接入点。
应理解,该网络摄像头可以是多个,该无线网络接入点也可以是多个,该受电设备 PD还可以是蓝牙接入点、网络电话、数据采集终端、便捷设备充电器、刷卡机、磁卡读卡器等等,该供电设备PSE还可以是基站、集线器、远端集线器、网络路由器等,本申请实施例对此不予限定。
如图1所示,该POE交换机110通过电缆123与无线网络接入点122相连,通过电缆124与网络摄像头121相连,该电缆123、124既可以传输数据,又可以传输电力,即该网络摄像头和无线网络接入点无需接入额外的电源。
应理解,上述场景仅仅是示意性地,不应对本申请造成限定,例如,本申请实施例还可以应用于其他供电设备向受电设备供电的场景中,本申请实施例对此不予限定。
下面将结合图2介绍该PSE为PD供电的过程。
图2是本申请实施例提供的一种PSE为PD供电的示意性过程。如图2所示,该供电过程可以包括步骤210至步骤250。
210,该PSE为PD供电之前,会首先检测PD是否存在。
示例性地,PSE可以通过检测电源输出线对之间的阻容值来判断PD是否存在。
具体地,PSE通过输出一段检测电压2.8V~10V,通过检测来自PD的适当阻抗特性来判断PD是否存在,如该阻抗在19kohm~26.5kohm之间。
示例性地,PSE也可以输出一段电流,如200微安的电流,通过检测电压值也可以确定PD是否存在。
220,PSE通过检测电源输出电流来确定PD的功率等级。
当PSE检测到PD之后,PSE将向PD施加15.5V~20.5V的电压值,并通过测量电流大小来确定PD的级别。
应理解,该步骤为可选步骤,PSE也可以不对PD进行分级。
230,PSE对PD供电。
示例性地,PSE检测到PD为合法的设备时,在一个可配置时间的启动期间内,PSE开始从低电压向PD供电,直至稳定供电。
240,实时监控。
PSE对PD的供电情况实时监控。如,实时检测PD的电流输入情况。
250,断电。
示例性地,若PD设备的电流消耗下降到预设值以下,如拔下PD设备、PD设备功率消耗过载、断路等,PSE就会快速地(一般在300~400ms之内)停止为PD供电,并重复检测过程以检测线缆的终端是否连接PD。
从上述PSE为PD供电的过程可知,PSE会首先检测PD是否存在,只有在检测到PD的存在时,即PD与供电链路相连接的情况下,才会为PD供电;当未检测到PD的存在时,PSE不会向PD供电。
由于AC交流电源存在漏电现象,且很难有效避免,而如PSE设备一般具有多个端口,在PSE具有多个端口的情况下,其电源功率较大,导致漏电现象严重,会导致PD无法被PSE检测通过,因此,PSE无法正常向PD供电。
本申请提供一种供电方法和供电设备,该技术方案能够有效减少工频噪声对PSE检测PD的影响,从而可以增加检测PD的准确性,避免出现PSE无法向PD正常供电的情况。
图3是本申请实施例提供的一种供电方法的示意性交互图。如图3所示,该供电方法可以应用于以太网供电系统中,该供电系统包括供电设备PSE和受电设备PD,该供电方 法可以包括步骤310至步骤340。
310,供电设备PSE向供电链路输出检测电信号。
应理解,该检测电信号可以是电压、电流等电信号。
该供电链路可以是电缆、双绞线等。
320,该供电设备PSE获取该供电链路的感测电信号,该感测电信号为滤除特定频率的信号后的电信号,该特定频率包括50赫兹及其倍频或60赫兹及其倍频。
本申请实施例中,该供电设备可以通过硬件器件,如电路、滤波器,如数字陷波器、低通滤波器、带阻滤波器、高通滤波器等方式获取该供电链路的感测电信号,还可以通过具有滤波功能的程序代码、软件等方式获取该供电链路的感测电信号,本申请实施例对此不予限定。
该感测电信号可以是供电链路到达受电设备之后的反馈电信号,例如,可以是电流、电压等。
本申请实施例中,该特定频率可以是50赫兹及其倍频,也可以是60赫兹及其倍频,还可以是50赫兹及其倍频和60赫兹及其倍频,应理解,在实际应用中,由于存在一定的误差,该特定频率也可以是(50±X)HZ及其倍频、(60±X)HZ及其倍频,X可以是预设值,如0.1~1、0.1~5等,本申请实施例对此不予限定。
330,该供电设备根据该感测电信号确定受电设备是否与该供电链路连接。
在一种可能的实现方式中,供电设备根据感测电信号确定该受电设备中的阻抗值或容抗值或感抗值等在预设范围内,即可确定该受电设备与该供电链路连接。
在另一种可能的实现方式中,供电设备PSE还可以通过输出一段电流,如200微安的电流,通过检测电压值也可以确定PD与供电链路相连。
340,若该供电设备确定该受电设备与所述供电链路连接,则通过所述供电链路向该受电设备供电。
本申请实施例中,当供电设备根据感测电信号确定该受电设备与供电链路相连接时,通过供电链路相受电设备供电。
可选地,该供电设备获取该供电链路的感测电信号,包括:该供电设备通过第一元件获取供电链路的感测电信号,该第一元件用于滤除特定频率的信号。
可选地,该第一元件可以外置于该供电设备。如该第一元件为外置数字滤波器。
当该第一元件外置于供电设备PSE时,该第一元件可以安插在任何需要过滤工频噪声的设备中,具有方便、快捷、便于携带安装的特点。
可选地,该第一元件可以内置于供电设备的芯片中。如,该第一元件作为元器件设置于供电设备的芯片中,与芯片形成一体,从而可以有效的对工频噪声进行数字滤波,且时效性较高。
可选地,该第一元件为数字陷波器。
可选地,该第一元件可以包括多个数字陷波器,该多个数字陷波器串联。
该多个数字陷波器可以部分设置于供电设备的芯片中,部分作为单独的器件,本申请实施例对此不予限定。
该第一元件还可以是低通滤波器、带阻滤波器等,该第一元件还可以包括多个低通滤波器、带阻滤波器,该多个低通滤波器、带阻滤波器可以串联、并联。
可选地,该供电设备获取该供电链路的感测电信号,包括:该供电设备通过软件滤波 器获取该供电链路的感测电信号,该软件滤波器用于滤除特定频率的信号。
下文将结合具体实施例对该软件滤波器做具体介绍,此处暂不详述。
基于本申请实施例,通过对供电设备PSE获取的供电链路上的感测电信号进行滤波处理,可以减少或消除供电链路中由于漏电现象导致的特定频率的噪声,由于目前PSE的端口一般较多,因此,PSE的输出功率较大,导致漏电现象严重,因此,在供电链路中可能会存在50HZ、60HZ或者其倍频的工频噪声,该噪声干扰了PSE对于PD的检测。本申请实施例中的技术方案能够有效减少工频噪声对PSE检测PD的影响,从而可以增加检测PD的准确性,避免出现PSE无法向PD正常供电的情况。
图4是本申请实施例提供的一种供电系统的示意性系统框图。如图4所示,该系统可以包括供电设备400a和受电设备400b。
该供电设备400a可以包括电压感应模块410、模拟数字转换器(analog-to-digital converter,ADC)420、处理单元430、输出或开关模块440等。
本申请实施例中,供电设备PSE400a可以向供电链路输出一段探测电信号,并根据该供电链路中的反馈电信号确定该受电设备是否与供电链路连接。
示例性地,供电设备中400a的电压感应模块410感测该供电链路中的反馈电压,并将该电压输入至ADC420中,ADC420对该电压进行数字采样,从而将电压信号转换为数字信号,并将该数字信号输入至处理单元430中,该处理单元430中可以包括具有滤波功能的第一元件,由该第一元件对该数字信号进行滤波处理,以滤除特定频率的噪声信号,该处理单元430将滤波处理之后的电信号发送至控制单元中,该控制单元450确定该受电设备是否与供电链路连接,从而供电设备控制输出或开关模块440通过供电链路(如电缆)向受电设备400b继续供电或停止向受电设备400b供电。
可选地,该处理单元430对数字信号进行滤波处理之后,可以确定该受电设备400b是否与供电链路连接,该处理单元430可以控制输出或开关模块440通过供电链路继续向受电设备400b供电或停止向受电设备400b供电。
可选地,该处理单元430对数字信号进行滤波处理之后,将该受电设备400b是否与供电链路连接的信号发送至控制单元450中,从而控制单元450可以控制输出或开关模块440通过供电链路继续向受电设备400b供电或停止向受电设备400b供电。
应理解,该处理单元430可以是微控制单元(microcontroller unit,MCU)或数字信号处理(digital signal process,DSP)单元等。
应理解,该第一元件可以是滤波电路、硬件滤波器元件,该滤波器可以是一个,也可以是相互串联、并联的多个,该第一元件还可以是一段程序代码等,本申请实施例对此不予限定。
例如,该电压感应模块410可以是电压传感器。
应理解,该ADC420、输出或开关模块440也可以集成在处理单元430中,本申请实施例对此不予限定。
该特定频率可以是50HZ及其倍频、60HZ及其倍频,应理解,在实际应用中,由于存在一定的误差,该特定频率也可以是(50±X)HZ及其倍频、(60±X)HZ及其倍频,X可以是预设值,如0.1~1、0.1~5等,本申请实施例对此不予限定。
可选地,该电压感应模块也可以替换为电流感应模块等,本申请实施例对此不予限定。
该技术方案中,供电设备输出的探测电信号通过供电链路到达受电设备,供电设备通 过对供电链路中的反馈电信号进行滤波处理,从而去除了特定频率的噪声信号,该技术方案可以有效减少工频噪声对供电设备检测受电设备的影响,从而可以增加检测受电设备的准确性,避免出现供电设备无法向受电设备正常供电的情况。
图5是本申请实施例提供的又一种供电系统的示意性系统框图。如图5所示,该系统可以包括供电设备500a和受电设备500b。
该供电设备500a可以包括电压感应模块510、ADC520、第一元件530、处理单元540、输出或开关模块560。
可选地,该供电设备500a还可以包括控制单元550。
本申请实施例中,供电设备PSE500a可以向供电链路输出一段探测电信号,并根据该供电链路中的反馈电信号确定该受电设备是否与供电链路连接。
示例性地,供电设备500a中电压感应模块510感测该供电链路中的反馈电压,并将该电压输入至ADC520中,ADC520对该电压进行数字采样,从而将电压信号转换为数字信号,并将该数字信号输入至第一元件530中进行滤波处理,以滤除特定频率的噪声信号,该第一元件将滤波处理之后的信号发送至处理单元540中,该处理单元540,该处理单元540根据接收到的信号确定该受电设备500b是否与供电链路连接,该处理单元540可以控制输出或开关模块560通过供电链路(如,电缆)继续向受电设备500b供电或停止向受电设备500b供电。
可选地,该处理单元540将该信号发送至控制单元550,由该控制单元550控制输出或开关模块560通过供电链路继续向受电设备500b供电或停止向受电设备500b供电。
应理解,该第一元件可以是滤波器,如数字陷波器、带阻滤波器、低通滤波器等,该第一元件可以设置在供电设备的芯片中,该滤波器可以是一个,也可以是串联的多个。
该特定频率可以是50HZ及其倍频、60HZ及其倍频,应理解,在实际应用中,由于存在一定的误差,该特定频率也可以是(50±X)HZ及其倍频、(60±X)HZ及其倍频,X可以是预设值,如0.1~1、0.1~5等,本申请实施例对此不予限定。
应理解,该输出或开关模块550也可以集成在处理单元540中,本申请实施例对此不予限定。
该处理单元540可以是MCU、DSP等。
可选地,该电压感应模块也可以替换为电流感应模块等,本申请实施例对此不予限定。
该技术方案中,供电设备输出的探测电信号通过供电链路到达受电设备,供电设备通过对供电链路中的反馈电信号进行滤波处理,从而去除了特定频率的噪声信号,该技术方案可以有效减少工频噪声对供电设备检测受电设备的影响,从而可以增加检测受电设备的准确性,避免出现供电设备无法向受电设备正常供电的情况。
图6是本申请实施例提供的又一种供电系统的示意性系统框图。如图6所示,该系统可以包括供电设备600a、受电设备600b和外置第一元件600c。
该供电设备600a可以包括电压感应610、ADC620、处理单元630和输出或开关模块640。
本申请实施例中,供电设备600a可以向供电链路输出一段探测电信号,并根据该供电链路中的反馈电信号确定该受电设备是否与供电链路连接。
示例性地,电压感应模块610检测该感测该供电链路中的反馈电压,并将该电压输入至ADC620中,ADC620对该电压进行数字采样,从而将电压信号转换为数字信号,该 ADC620将该数字信号输入至安装在供电设备接口上的第一元件中,由该第一元件对该数字信号进行滤波处理,该第一元件将滤波处理之后的信号输入至处理单元630中,该处理单元630根据接收到的信号确定该受电设备600b是否与供电链路连接,该处理单元630可以控制输出或开关模块640通过供电链路(如,电缆)继续向受电设备600b供电或停止向受电设备600b供电。
该第一元件外置于该供电设备PSE600a,例如,该第一元件为滤波器器件,在使用时,将该滤波器直接安装于供电设备PSE600a的端口中,该第一元件可以包括一个滤波器,也可以包括多个滤波器,该技术方案具有方便、快捷、便于携带安装的特点。
该滤波器可以是数字陷波器、低通滤波器、带阻滤波器、高通滤波器等,本申请实施例对此不予限定。该滤波器用于滤除特定频率的信号,本申请实施例中对于特定频率的取值可以参考图4、图5中的相关描述,为了简洁,不再赘述。
可选地,该供电设备600a还可以包括控制单元650,该处理单元630将该信号发送至控制单元650,由该控制单元650控制输出或开关模块640通过供电链路继续向受电设备600b供电或停止向受电设备600b供电。或者,该供电设备将该受电设备600b是否与供电链路连接的信息发送至控制单元650,该控制单元650控制输出或开关模块640通过供电链路继续向受电设备600b供电或停止向受电设备600b供电。
应理解,该ADC620、输出或开关模块640可以集成在处理单元630中,本申请实施例对此不予限定。
该处理单元630可以是MCU、DSP等。
可选地,该电压感应模块也可以替换为电流感应模块等,本申请实施例对此不予限定。
该技术方案中,该第一元件可以作为单独的器件安装于供电设备的端口上,供电设备感测的电信号经过第一元件数字滤波处理之后,去除了特定频率的噪声信号,该技术方案可以有效减少工频噪声对供电设备检测受电设备的影响,从而可以增加检测受电设备的准确性,避免出现供电设备无法向受电设备正常供电的情况。且该第一元件外置于供电设备,具有方便、快捷、便于携带安装的特点。
图7是本申请实施例提供的又一种供电系统的示意性系统框图。如图7所示,该系统可以包括供电设备700a、受电设备700b、和外置第三设备700c。
该供电设备700a可以包括电压感应模块710、ADC720、处理单元730和输出或开关模块740。
该外置第三设备700c可以包括数据缓存模块750、噪声识别模块760、滤波模块770。
本申请实施例中,供电设备PSE700a可以向供电链路输出一段探测电信号,并根据该供电链路中的反馈电信号确定该受电设备是否与该供电链路相连接。
供电设备700a中的电压感应模块710感测该供电链路中的反馈电压,并将该电压输入至ADC720中,ADC720对该电压进行数字采样,从而将电压信号转换为数字信号,该ADC720将该数字信号输入第三设备中,第三设备中的数据缓存模块750将该数字信号进行缓存,噪声识别模块760实时对该数字信息进行噪声识别,将含有噪声信号的数据部分输入滤波模块770中进行滤波或平滑处理,以去除工频噪声,并实时将滤波后的数字信号发送至供电设备的处理单元730中,该处理单元730根据接收到的信号确定该受电设备700b是否与供电链路连接,该处理单元730可以控制输出或开关模块740通过供电链路(如,电缆)继续向受电设备700b供电或停止向受电设备700b供电。
可选地,该供电设备700a还可以包括控制单元780,该处理单元730将该信号发送至控制单元780,由该控制单元780控制输出或开关模块740通过供电链路继续向受电设备700b供电或停止向受电设备700b供电。或者,该供电设备将该受电设备700b是否与供电链路连接的信息发送至控制单元780,该控制单元780控制输出或开关模块740通过供电链路继续向受电设备700b供电或停止向受电设备700b供电。
本申请实施例中,该外置设备可以是计算机、笔记本电脑、平板电脑等,该滤波模块可以是计算机中安装的滤波软件、存储的程序、代码等,该滤波模块可以是一个,也可以是多个。
该滤波模块可以是数字陷波器、低通滤波器、带阻滤波器、高通滤波器等,本申请实施例对此不予限定。
该滤波模块可以用于滤除特定频率的信号,本申请实施例中对于特定频率的取值可以参考图4、图5中的相关描述,为了简洁,不再赘述。
应理解,该ADC720、输出或开关模块740可以集成在处理单元730中,本申请实施例对此不予限定。
该处理单元730可以是MCU、DSP等。
可选地,该电压感应模块也可以替换为电流感应模块等,本申请实施例对此不予限定。
该技术方案中,供电设备感测的电信号通过第三方设备中的滤波模块进行滤波处理之后,去除了探测电信号中特定频率的噪声信号,该技术方案可以有效减少工频噪声对供电设备检测受电设备的影响,从而可以增加检测受电设备的准确性,避免出现供电设备无法向受电设备正常供电的情况。
图8是本申请实施例提供的又一种的示意性系统框图。如图8所示,该系统可以包括供电设备800a、受电设备800b。
该供电设备800a可以包括电压感应模块810、ADC820、处理单元830和输出或开关模块840。
该处理单元830可以包括数据缓存模块831、噪声识别模块832、滤波模块833。
本申请实施例中,供电设备800a可以向供电链路输出一段探测电信号,并根据该供电链路中的反馈电信号确定该受电设备是否与该供电链路相连接。
供电设备800a中的电压感应模块810感测该供电链路中的反馈电压,并将该电压输入至ADC820中,ADC820对该电压进行数字采样,从而将电压信号转换为数字信号,该ADC820将该数字信号发送至处理单元830中的数据缓存模块831中,该数据缓存模块831将该数字信号进行缓存,噪声识别模块832实时对该数字信息进行噪声识别,将含有噪声信号的数据部分输入滤波模块833中进行滤波或平滑处理,以去除工频噪声,该处理单元830可以根据处理之后信号确定该受电设备800b是否与供电链路连接,该处理单元830可以控制输出或开关模块840通过供电链路(如,电缆)继续向受电设备800b供电或停止向受电设备800b供电。
可选地,该供电设备800a还可以包括控制单元850,该处理单元830将该数字滤波完成的信号发送至控制单元850,由该控制单元850控制输出或开关模块840通过供电链路继续向受电设备800b供电或停止向受电设备800b供电。或者,该供电设备800a将该受电设备800b是否与供电链路连接的信息发送至控制单元850,该控制单元850控制输出或开关模块840通过供电链路继续向受电设备800b供电或停止向受电设备800b供电。
该滤波模块可以是数字陷波器、低通滤波器、带阻滤波器、高通滤波器等,本申请实施例对此不予限定。
该滤波模块可以用于滤除特定频率的信号,本申请实施例中对于特定频率的取值可以参考图4、图5中的相关描述,为了简洁,不再赘述。
应理解,该ADC820、输出或开关模块840可以集成在处理单元830中,本申请实施例对此不予限定。
该处理单元830可以是MCU、DSP等。
可选地,该电压感应模块也可以替换为电流感应模块等,本申请实施例对此不予限定。
该技术方案中,供电设备感测的电信号通过滤波模块进行数字滤波处理之后,去除了探测电信号中特定频率的噪声信号,该技术方案可以有效减少工频噪声对供电设备检测受电设备的影响,从而可以增加检测受电设备的准确性,避免出现供电设备无法向受电设备正常供电的情况。
图9是本申请实施例提供的一种数字陷波器的幅频特性示意图。
如图9所示,该数字陷波器的陷波频率为50HZ及其倍频。
在一些实施例中,尽管该陷波频率为50HZ,但是由于存在一定误差,该数字陷波器实际的陷波频率可能为(50±X)HZ,X的取值可以为0~0.5、0~1等。
应理解,对于50HZ的倍频,也是类似的。
图10是本申请实施例提供的另一种数字陷波器的幅频特性示意图。
如图10所示,该数字陷波器的陷波频率为60HZ及其倍频。
在一些实施例中,尽管该陷波频率为60HZ,但是由于存在一定误差,该数字陷波器实际的陷波频率可能为(60±X)HZ,X的取值可以为0~0.5、0~1等。
应理解,对于60HZ的倍频,也是类似的。
图11是本申请实施例提供的一种带阻滤波器的幅频特性示意图。
如图11所示,该带阻滤波器的阻带较窄,过渡带较为陡峭,能够有效滤除频率为50HZ的信号。在一些实施例中,该带阻滤波器还可以滤除50HZ的倍频及其倍频的信号,本申请实施例对此不予限定。
在一些实施例中,尽管该阻带中心频率为50HZ,但是由于存在一定误差,该带阻滤波器实际的阻带中心频率可能为(50±X)HZ,X的取值可以为0~0.5、0~1等。
应理解,对于50HZ的倍频,也是类似的。
图12是本申请实施例提供的另一种带阻滤波器的幅频特性示意图。
如图12所示,该带阻滤波器的阻带较窄,过渡带较为陡峭,能够有效滤除频率为60HZ的信号。在一些实施例中,该带阻滤波器还可以滤除60HZ的倍频及其倍频的信号,本申请实施例对此不予限定。
在一些实施例中,尽管该阻带中心频率为60HZ,但是由于存在一定误差,该带阻滤波器实际的阻带中心频率可能为(60±X)HZ,X的取值可以为0~0.5、0~1等。
应理解,对于60HZ的倍频,也是类似的。
本申请实施例中的滤波器还可以是低通滤波器、高通滤波器、带通滤波器等,本申请实施例对此不予限定。
图13本申请实施例提供的一种CLC滤波器的示意性电路图。
应理解,本申请实施例中,该电容C、电感L可以是多个,本申请实施例对此不予限 定。
该滤波器还可以LCL滤波器,还可以是多个C、L的任意组合,本申请实施例对此不予限定。
本申请实施例还提供一种供电设备,该供电设备包括:存储器,用于存储指令;处理器,用于执行所述指令,以执行如下步骤:向供电链路输出检测电信号;获取所述供电链路的感测电信号,所述感测电信号为滤除特定频率的信号后的电信号,所述特定频率包括50赫兹及其倍频或60赫兹及其倍频;根据所述感测电信号确定所述受电设备是否与所述供电链路连接;若确定所述受电设备与所述供电链路连接,则通过所述供电链路向所述受电设备供电。
可选地,所述处理器具体用于:根据所述感测电信号确定阻容信息;根据所述阻容信息,确定所述受电设备与所述供电链路连接。
可选地,所述处理器具体用于:通过第一元件获取所述供电链路的感测电信号,所述第一元件用于滤除特定频率的信号。
可选地,所述第一元件外置于所述供电设备。
可选地,所述第一元件内置于所述供电设备的芯片中。
可选地,所述第一元件为数字陷波器。
可选地,所述第一元件包括多个数字陷波器,所述多个数字陷波器串联。
该第一元件还可以是低通滤波器、带阻滤波器等,该第一元件还可以包括多个低通滤波器、带阻滤波器,该多个低通滤波器、带阻滤波器可以串联。
可选地,所述处理器具体用于:通过软件滤波器获取所述供电链路的感测电信号,所述软件滤波器用于滤除特定频率的信号。
可选地,所述软件滤波器设置于所述供电设备的芯片中。
本申请实施例还提供一种供电设备,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,如前文中任一项所述的供电方法被执行。
本申请实施例还提供一种计算机可读存储介质,包括计算机指令,当所述计算机指令在供电设备上运行时,使得所述供电设备执行如前文中任一项所述的供电方法。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如前文中任一项所述的供电方法。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种供电方法,所述方法应用于以太网供电系统中,所述供电系统包括供电设备和受电设备,其特征在于,包括:
    所述供电设备向供电链路输出检测电信号;
    所述供电设备获取所述供电链路的感测电信号,所述感测电信号为滤除特定频率的信号后的电信号,所述特定频率包括50赫兹及其倍频或60赫兹及其倍频;
    所述供电设备根据所述感测电信号确定所述受电设备是否与所述供电链路连接;
    若所述供电设备确定所述受电设备与所述供电链路连接,则通过所述供电链路向所述受电设备供电。
  2. 根据权利要求1所述的方法,其特征在于,所述供电设备根据所述感测电信号确定所述受电设备是否与所述供电链路连接,包括:
    所述供电设备根据所述感测电信号确定阻容信息;
    所述供电设备根据所述阻容信息,确定所述受电设备与所述供电链路连接。
  3. 根据权利要求1或2所述的方法,其特征在于,所述供电设备获取所述供电链路的感测电信号,包括:
    所述供电设备通过第一元件获取所述供电链路的感测电信号,所述第一元件用于滤除特定频率的信号。
  4. 根据权利要求3所述的方法,其特征在于,所述第一元件外置于所述供电设备。
  5. 根据权利要求3所述的方法,其特征在于,所述第一元件内置于所述供电设备的芯片中。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一元件为数字陷波器。
  7. 根据权利要求6所述的方法,其特征在于,所述第一元件包括多个数字陷波器,所述多个数字陷波器串联。
  8. 根据权利要求1或2所述的方法,所述供电设备获取所述供电链路的感测电信号,包括:
    所述供电设备通过软件滤波器获取所述供电链路的感测电信号,所述软件滤波器用于滤除特定频率的信号。
  9. 根据权利要求8所述的方法,其特征在于,所述软件滤波器设置于所述供电设备的芯片中。
  10. 一种供电设备,其特征在于,所述供电设备包括:
    存储器,用于存储指令;
    处理器,用于执行所述指令,以执行如下步骤:
    向供电链路输出检测电信号;
    获取所述供电链路的感测电信号,所述感测电信号为滤除特定频率的信号后的电信号,所述特定频率包括50赫兹及其倍频或60赫兹及其倍频;
    根据所述感测电信号确定所述受电设备是否与所述供电链路连接;
    若确定所述受电设备与所述供电链路连接,则通过所述供电链路向所述受电设备供电。
  11. 根据权利要求10所述的供电设备,其特征在于,所述处理器具体用于:
    根据所述感测电信号确定阻容信息;
    根据所述阻容信息,确定所述受电设备与所述供电链路连接。
  12. 根据权利要求10或11所述的供电设备,其特征在于,所述处理器具体用于:
    通过第一元件获取所述供电链路的感测电信号,所述第一元件用于滤除特定频率的信号。
  13. 根据权利要求12所述的供电设备,其特征在于,所述第一元件外置于所述供电设备。
  14. 根据权利要求12所述的供电设备,其特征在于,所述第一元件内置于所述供电设备的芯片中。
  15. 根据权利要求13或14所述的供电设备,其特征在于,所述第一元件为数字陷波器。
  16. 根据权利要求15所述的供电设备,其特征在于,所述第一元件包括多个数字陷波器,所述多个数字陷波器串联。
  17. 根据权利要求10或11所述的供电设备,其特征在于,所述处理器具体用于:
    通过软件滤波器获取所述供电链路的感测电信号,所述软件滤波器用于滤除特定频率的信号。
  18. 根据权利要求17所述的供电设备,其特征在于,所述软件滤波器设置于所述供电设备的芯片中。
  19. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在供电设备上运行时,使得所述供电设备执行如权利要求1-9中任一项所述的供电方法。
  20. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-9中任一项所述的供电方法。
PCT/CN2020/139865 2020-12-28 2020-12-28 供电方法和供电设备 WO2022140885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139865 WO2022140885A1 (zh) 2020-12-28 2020-12-28 供电方法和供电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139865 WO2022140885A1 (zh) 2020-12-28 2020-12-28 供电方法和供电设备

Publications (1)

Publication Number Publication Date
WO2022140885A1 true WO2022140885A1 (zh) 2022-07-07

Family

ID=82258634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139865 WO2022140885A1 (zh) 2020-12-28 2020-12-28 供电方法和供电设备

Country Status (1)

Country Link
WO (1) WO2022140885A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164039A (zh) * 2010-02-15 2011-08-24 佳能株式会社 供电系统、受电设备及电力接收方法
US20170237575A1 (en) * 2013-11-26 2017-08-17 Linear Technology Corporation Power over data lines system using voltage clamp in pd for detection or classification
CN107147503A (zh) * 2017-04-28 2017-09-08 华为技术有限公司 受电设备和poe系统
CN107846286A (zh) * 2017-10-19 2018-03-27 浙江大华技术股份有限公司 一种用于网络级联的供电装置、供电方法及网络级联供电系统
CN109150551A (zh) * 2018-08-29 2019-01-04 普联技术有限公司 用于网口的非标准poe供电电路、供电设备及供电方法
CN109921912A (zh) * 2017-12-12 2019-06-21 德克萨斯仪器股份有限公司 信号供电的能量检测和唤醒系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164039A (zh) * 2010-02-15 2011-08-24 佳能株式会社 供电系统、受电设备及电力接收方法
US20170237575A1 (en) * 2013-11-26 2017-08-17 Linear Technology Corporation Power over data lines system using voltage clamp in pd for detection or classification
CN107147503A (zh) * 2017-04-28 2017-09-08 华为技术有限公司 受电设备和poe系统
CN107846286A (zh) * 2017-10-19 2018-03-27 浙江大华技术股份有限公司 一种用于网络级联的供电装置、供电方法及网络级联供电系统
CN109921912A (zh) * 2017-12-12 2019-06-21 德克萨斯仪器股份有限公司 信号供电的能量检测和唤醒系统
CN109150551A (zh) * 2018-08-29 2019-01-04 普联技术有限公司 用于网口的非标准poe供电电路、供电设备及供电方法

Similar Documents

Publication Publication Date Title
US20120290761A1 (en) USB Converter and Related Method
CA2797704A1 (en) Electrical event detection device and method of detecting and classifying electrical power usage
WO2014130322A2 (en) System and method of detecting a plug-in type based on impedance comparison
US10983633B2 (en) Key detecting method and apparatus
US10691271B2 (en) Method for determining touch position and touch control chip
JP2008546116A (ja) 自動的なバス検出を備えるマルチプロトコルフィールド装置インターフェイス
TWI535138B (zh) 電子裝置及其偵測方法
TW201931697A (zh) 用於偵測連接器接觸件上的水分之方法與系統
WO2017202315A1 (zh) 一种电源适配器的控制方法及控制装置
CN104237748A (zh) 电弧检测方法和装置
CN109085811B (zh) 设备点检方法及装置
CN110138870A (zh) 一种泛在电力物联网电力设备的感知层检测系统及其检测方法
CN110680297A (zh) 一种血压监护仪的故障检测方法、装置及设备
WO2022140885A1 (zh) 供电方法和供电设备
CN116742432B (zh) 基于负反馈实现电缆组件的接口通用性适配方法及系统
CN205749824U (zh) 一种三相电机电路的检测及保护系统
US10725585B2 (en) Method for determining touch position and touch control chip
CN104280189A (zh) 一种压力传感器故障硬件检测方法与装置
US20230072541A1 (en) Harmonic Current Monitoring in a Wireless Power System
JP5096871B2 (ja) ケーブル断線検出装置およびケーブル断線検出方法
CN110702969A (zh) 识别电压模式的方法及装置、电源
CN110618359A (zh) 动力驱动系统的交流绝缘检测装置、方法及动力驱动系统
CN211086428U (zh) 一种网线检测电路
CN105184198A (zh) 检测保护方法及移动终端
US9395808B2 (en) Identification system, physical apparatus, identification apparatus, and identification method of physical apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967237

Country of ref document: EP

Kind code of ref document: A1