WO2022139291A1 - 공기조화기 및 그 동작방법 - Google Patents

공기조화기 및 그 동작방법 Download PDF

Info

Publication number
WO2022139291A1
WO2022139291A1 PCT/KR2021/018867 KR2021018867W WO2022139291A1 WO 2022139291 A1 WO2022139291 A1 WO 2022139291A1 KR 2021018867 W KR2021018867 W KR 2021018867W WO 2022139291 A1 WO2022139291 A1 WO 2022139291A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compressor
heat exchanger
indoor
air conditioner
Prior art date
Application number
PCT/KR2021/018867
Other languages
English (en)
French (fr)
Inventor
곽민석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202180087302.5A priority Critical patent/CN116685813A/zh
Priority to US18/268,674 priority patent/US20230366601A1/en
Priority to EP21911358.6A priority patent/EP4269911A1/en
Publication of WO2022139291A1 publication Critical patent/WO2022139291A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • F24F2221/225Cleaning ducts or apparatus using a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner and an operating method thereof, and more particularly, to an air conditioner capable of removing foreign substances adsorbed to an indoor heat exchanger and an operating method thereof.
  • an air conditioner is installed to provide a more comfortable indoor environment to humans by discharging cold and hot air into the room to adjust the indoor temperature and purify the indoor air in order to create a comfortable indoor environment.
  • an air conditioner includes an indoor unit configured as a heat exchanger and installed indoors, and an outdoor unit configured as a compressor and a heat exchanger and supplying refrigerant to the indoor unit.
  • the air conditioner is operated for cooling or heating according to the flow of refrigerant.
  • high-temperature, high-pressure liquid refrigerant is supplied to the indoor unit from the outdoor unit's compressor through the outdoor unit's heat exchanger. Accordingly, the cold air is discharged into the room.
  • high-temperature and high-pressure gaseous refrigerant is supplied to the indoor unit from the compressor of the outdoor unit, and the air heated by the energy released as the high-temperature and high-pressure gaseous refrigerant is liquefied in the heat exchanger of the indoor unit is released into the indoor unit according to the operation of the indoor unit fan. is discharged with
  • the heat exchanger of the indoor unit may generate condensed water by heat exchange between the refrigerant and the indoor air.
  • the heat exchanger of the indoor unit may generate condensed water by heat exchange between the refrigerant and the indoor air.
  • foreign substances and the like may be adsorbed to the condensed water.
  • frost is formed on the surface of the heat exchanger of the indoor unit by using a refrigerant cycle as in Prior Art 1 (Japanese Patent Application Laid-Open No. 2010-014288) in order to remove foreign substances adsorbed to the heat exchanger of the indoor unit.
  • a defrosting operation is performed to remove the frost formed on the surface of the heat exchanger.
  • foreign substances adsorbed to the heat exchanger of the indoor unit may be removed together with the water.
  • the conventional air conditioner operates so that water droplets first condense on the surface of the heat exchanger before frost is formed on the surface of the heat exchanger of the indoor unit, as in Prior Art 2 (Japanese Patent Application Laid-Open No. 2018-200128). It can also operate to drain a larger amount of water when removing foreign substances.
  • the present disclosure aims to solve the above and other problems.
  • Another object of the present invention is to provide an air conditioner capable of increasing the amount of moisture condensed in an indoor heat exchanger for removing foreign substances adsorbed to the indoor heat exchanger, and an operating method thereof.
  • Another object of the present invention is to provide an air conditioner capable of preventing damage to a compressor that may occur while removing foreign substances adsorbed to an indoor heat exchanger, and an operating method thereof.
  • Another object of the present invention is to provide an air conditioner capable of uniformly removing foreign substances from the entire area of an indoor heat exchanger and an operating method thereof.
  • Another object of the present invention is to provide an air conditioner capable of determining whether to repeat an operation of removing foreign substances adsorbed to an indoor heat exchanger in consideration of the state of indoor air, and an operating method thereof.
  • an air conditioner removes foreign substances adsorbed to an indoor heat exchanger by adjusting an operating frequency of a compressor based on at least one of a dew point temperature of indoor air and a compression ratio of the compressor. can do.
  • an air conditioner includes: a compressor for compressing and discharging a refrigerant; an indoor heat exchanger for exchanging the refrigerant with the indoor air; a sensor unit including at least one sensor; and a controller, wherein the controller performs primary control on the compressor based on a first target temperature corresponding to the dew point temperature of the indoor air and a current temperature of the indoor heat exchanger, and performs the first Based on a second target temperature lower than the target temperature below zero and a current temperature of the indoor heat exchanger, secondary control is performed on the compressor, and based on the amount of moisture contained in the indoor air, the first It may be determined whether to repeatedly perform at least one of control and the secondary control.
  • an operating method of an air conditioner provides a first target temperature corresponding to a dew point temperature of indoor air and a current temperature of an indoor heat exchanger included in the air conditioner. based on the operation of performing primary control of the compressor included in the air conditioner; performing secondary control on the compressor based on a second target temperature lower than the first target temperature and a current temperature of the indoor heat exchanger; and determining whether to repeatedly perform at least one of the primary control and the secondary control based on the amount of moisture contained in the indoor air.
  • the amount of moisture condensed in the indoor heat exchanger may be increased by adjusting the operating frequency of the compressor to correspond to the dew point temperature of the indoor air.
  • moisture may be uniformly frozen in the entire area of the indoor heat exchanger, and foreign substances may be uniformly removed from the entire area of the indoor heat exchanger.
  • FIG. 1 is a diagram illustrating an example of the configuration of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an outdoor unit and an indoor unit according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of operating an air conditioner according to an embodiment of the present invention.
  • 5 to 13 are diagrams referenced in the description of the operation of the air conditioner of FIG. 4 .
  • FIGS. 14 and 15 are diagrams illustrating examples of the configuration of an air conditioner including a plurality of indoor units according to an embodiment of the present invention.
  • module and “part” for the components used in the following description are given simply in consideration of the ease of writing the present specification, and do not impart a particularly important meaning or role by themselves. Accordingly, the terms “module” and “unit” may be used interchangeably.
  • FIG. 1 is a diagram illustrating an example of the configuration of an air conditioner according to an embodiment of the present invention.
  • the air conditioner 100 may include an outdoor unit 21 and an indoor unit 31 connected to the outdoor unit 21 .
  • the indoor unit 31 is, for example, any of a stand-type air conditioner, a wall-mounted air conditioner, and a ceiling-type air conditioner may be applied, but in the drawings, the stand-type indoor unit 31 is exemplified.
  • the air conditioner 100 may further include at least one of a ventilation device, an air purifier, a humidifier, and a heater, and may operate in conjunction with the operation of the indoor unit 31 and the outdoor unit 21 .
  • the outdoor unit 21 includes a compressor (not shown) that receives and compresses a refrigerant, an outdoor heat exchanger (not shown) that exchanges heat between the refrigerant and outdoor air, and an accumulator (not shown) that extracts a gaseous refrigerant from the supplied refrigerant and supplies it to the compressor ( (not shown) and a four-way valve (not shown) for selecting a refrigerant flow path according to a heating operation.
  • the outdoor unit 21 may further include a plurality of sensors, valves, and an oil recovery unit.
  • the outdoor unit 21 may supply the refrigerant to the indoor unit 31 by operating a provided compressor and an outdoor heat exchanger to compress or heat exchange the refrigerant according to a setting.
  • the outdoor unit 21 may be driven by a remote controller (not shown) or a demand of the indoor unit 31 . In this case, as the cooling/heating capacity is changed corresponding to the driven indoor unit 31 , the number of outdoor units and the number of compressors installed in the outdoor unit may vary.
  • the outdoor unit 21 may supply the compressed refrigerant to the connected indoor unit 31 .
  • the indoor unit 31 may receive refrigerant from the outdoor unit 21 and discharge cold and hot air into the room.
  • the indoor unit 31 may include an indoor heat exchanger (not shown), an indoor unit fan (not shown), an expansion valve (not shown) through which the supplied refrigerant is expanded, and a plurality of sensors (not shown).
  • the indoor unit 31 is disposed adjacent to the indoor heat exchanger and includes a drain pan (not shown) for collecting water generated by heat exchange of the indoor heat exchanger, and a drain pipe (not shown) for discharging the water collected in the drain pan to the outside. city) may be included.
  • the outdoor unit 21 and the indoor unit 31 may be connected to each other by a communication line, for example, to transmit and receive data, and the outdoor unit 21 and the indoor unit 31 may be connected to a remote controller (not shown) by wire or wirelessly. It may be connected and operated under the control of a remote controller (not shown).
  • a remote controller (not shown) may be connected to, for example, the indoor unit 31 , transmit a user's control command to the indoor unit 31 , and receive and display status information of the indoor unit 31 .
  • the remote control may communicate with the indoor unit 31 by wire or wirelessly depending on the connection type.
  • FIG. 2 is a schematic diagram of an outdoor unit and an indoor unit according to an embodiment of the present invention. A detailed description of the content overlapping with the content described in FIG. 1 will be omitted.
  • the outdoor unit 21 includes a compressor 102 that compresses a refrigerant, a compressor motor 102b that drives the compressor 102, and an outdoor unit that radiates heat from the compressed refrigerant.
  • An outdoor blower 105 comprising a heat exchanger 104, an outdoor fan 105a disposed on one side of the outdoor heat exchanger 104 to promote heat dissipation of the refrigerant, and a motor 105b rotating the outdoor fan 105a; , an expansion valve 106 for expanding the condensed refrigerant, a cooling/heating switching valve 110 for changing the flow path of the compressed refrigerant, and temporarily storing the vaporized refrigerant to remove moisture and foreign substances and then supplying the refrigerant at a constant pressure. It may include an accumulator 103 that supplies the compressor.
  • the expansion valve 106 may be, for example, an electronic expansion valve (EEV).
  • EEV electronic expansion valve
  • the indoor unit 31 includes an indoor heat exchanger 108 disposed indoors to perform a cooling/heating function, an indoor fan 109a disposed at one side of the indoor heat exchanger 108 to promote heat dissipation of the refrigerant, and an indoor fan. It may include an indoor blower 109 including a motor 109b that rotates the 109a.
  • At least one indoor heat exchanger 108 may be installed.
  • the compressor 102 may be, for example, at least one of an inverter compressor and a constant speed compressor.
  • the air conditioner 100 may be configured as an air conditioner for cooling the room, or may be configured as a heat pump for cooling or heating the room.
  • FIG. 3 is a block diagram of an air conditioner according to an embodiment of the present invention.
  • the air conditioner 100 includes a communication unit 310 , a sensor unit 320 , a memory 330 , a fan driving unit 340 driving a fan 341 , and a compressor 102 driving the compressor 102 . It may include a compressor driving unit 350 and/or a control unit 360 .
  • the communication unit 310 may include at least one communication module.
  • the communication unit 310 may be provided in each of the outdoor unit 21 and the indoor unit 31 , and the outdoor unit 21 and the indoor unit 31 may transmit/receive data to and from each other.
  • the communication method between the outdoor unit 21 and the indoor unit 31 is, for example, a communication method using a power line, a serial communication method (eg, RS-485 communication), a wired communication method through a refrigerant pipe, as well as a Wi-Fi (Wi- fi), Bluetooth (Bluetooth), beacon (Beacon), may be a wireless communication method such as Zigbee (zigbee).
  • a serial communication method eg., RS-485 communication
  • Wi-Fi Wi- fi
  • Bluetooth Bluetooth
  • Beacon may be a wireless communication method such as Zigbee (zigbee).
  • the communication unit 310 may transmit/receive data to and from an external device.
  • the communication unit 310 may connect to a server connected to an external network to transmit and receive data.
  • the sensor unit 320 may include at least one sensor, and may transmit data on a detection value detected through the sensor to the control unit 360 .
  • the sensor unit 320 may include a heat exchanger temperature sensor (not shown).
  • the heat exchanger temperature sensor may be disposed inside the indoor heat exchanger 108 to detect the temperature of the indoor heat exchanger 108 .
  • the sensor unit 320 may include a pipe temperature sensor (not shown).
  • the pipe temperature sensor may detect the temperature of the refrigerant flowing through each pipe of the air conditioner 100 .
  • the pipe temperature sensor may be disposed on an inlet pipe of the indoor unit 31 and/or an outlet pipe of the indoor unit 31 to detect the temperature of a refrigerant flowing through the pipe.
  • the pipe temperature sensor is disposed on a pipe connected to the compressor 102 , and the temperature of the refrigerant flowing into the compressor 102 (hereinafter referred to as the suction temperature) and/or the temperature of the refrigerant discharged from the compressor 102 ( Hereinafter, the discharge temperature) can be detected.
  • the sensor unit 310 may include a pressure sensor (not shown).
  • a pressure sensor (not shown) may detect the pressure of the gas refrigerant flowing through each pipe of the air conditioner 100 .
  • the pressure sensor is disposed in a pipe connected to the compressor 102 , the pressure of the refrigerant flowing into the compressor 102 (hereinafter referred to as suction pressure) and/or the pressure of the refrigerant discharged from the compressor 102 (hereinafter referred to as the pressure of the refrigerant). , discharge pressure) can be detected.
  • the sensor unit 320 may include an indoor temperature sensor (not shown) that detects an indoor temperature and/or an outdoor temperature sensor (not shown) that detects an outdoor temperature.
  • the sensor unit 320 may include an indoor humidity sensor (not shown) for detecting indoor humidity and/or an outdoor humidity sensor (not shown) for detecting outdoor humidity.
  • the memory 330 may store data on a reference value related to the operation of each component provided in the air conditioner 100 .
  • the memory 330 may store a program for processing and controlling each signal in the controller 360 , and may store processed data and data to be processed.
  • the memory 330 stores application programs designed for the purpose of performing various tasks that can be processed by the control unit 360 , and upon request of the control unit 360 , selectively selects some of the stored application programs can provide
  • the memory 330 is, for example, a volatile memory (eg, DRAM, SRAM, SDRAM, etc.), a non-volatile memory (eg, a flash memory), a hard disk drive (HDD), a solid state and at least one of a solid-state drive (SSD).
  • a volatile memory eg, DRAM, SRAM, SDRAM, etc.
  • a non-volatile memory eg, a flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the fan driving unit 340 may drive the fan 341 provided in the air conditioner 100 .
  • the fan 341 may include an outdoor fan 105a and/or an indoor fan 109a.
  • the fan driving unit 340 includes a rectifier (not shown) that rectifies and outputs AC power into DC power, a dc stage capacitor (not shown) that stores the pulsating voltage from the rectifier, and a plurality of switching elements, and includes a smoothed DC It may include an inverter (not shown) for converting and outputting power to three-phase AC power of a predetermined frequency and/or at least one motor for driving the fan 341 according to the three-phase AC power output from the inverter.
  • the fan driving unit 340 may have a configuration for driving the outdoor fan 105a and the indoor fan 109a separately.
  • the air conditioner 100 may include a first fan driving unit for driving the outdoor fan 105a and a second fan driving unit for driving the indoor fan 109a.
  • the compressor driving unit 350 may drive the compressor 102 .
  • the compressor driving unit 350 includes a rectifying unit (not shown) for rectifying AC power into DC power and outputting it, a dc stage capacitor (not shown) for storing the pulsating voltage from the rectifying unit, and a plurality of switching elements, the smoothed DC It may include an inverter (not shown) that converts power to three-phase AC power of a predetermined frequency and outputs, and/or a compressor motor 102b that drives the compressor 102 according to the three-phase AC power output from the inverter have.
  • the controller 360 may control the overall operation of the air conditioner 100 .
  • the controller 360 may be connected to each component provided in the air conditioner 100 , and transmit and/or receive a signal to each component and to each other, thereby controlling the overall operation of each component.
  • the controller 360 may control the operation of the fan driving unit 340 to change the rotation speed of the fan 341 .
  • the fan driving unit 340 may change the frequency of the three-phase AC power output to the outdoor fan motor 105b under the control of the controller 360 to change the rotation speed of the outdoor fan 105a.
  • the fan driving unit 340 may change the frequency of the three-phase AC power output to the indoor fan motor 109b to change the rotation speed of the indoor fan 109a under the control of the controller 360 . have.
  • the controller 360 may control the operation of the compressor driving unit 350 to change the operating frequency of the compressor 102 .
  • the compressor driving unit 350 may change the operating frequency of the compressor 102 by changing the frequency of the three-phase AC power output to the compressor motor 102b under the control of the control unit 360 . .
  • the controller 360 may be provided in not only the outdoor unit 21 , but also a central controller (not shown) that controls the operation of the indoor unit 31 , the outdoor unit 21 , and/or the indoor unit 31 .
  • the controller 360 may include at least one processor, and may control the overall operation of the air conditioner 100 by using the processor included therein.
  • the processor may be a general processor such as a central processing unit (CPU).
  • the processor may be a dedicated device such as an ASIC or other hardware-based processor.
  • the controller 360 may acquire data related to each configuration provided in the air conditioner 100 .
  • the controller 360 may acquire data related to each configuration provided in the air conditioner 100 at a predetermined time interval according to a predetermined period in consideration of the computational load.
  • the controller 360 may perform various calculations based on the acquired data, and may control the overall operation of each component included in the air conditioner 100 according to the calculation result.
  • Data related to each configuration provided in the air conditioner 100 are, for example, the operating frequency of the compressor 102 , the suction temperature of the compressor 102 , the discharge temperature, the suction pressure, the discharge pressure, and the temperature of the indoor unit 31 . It may include the inlet side pipe temperature, the outlet side pipe temperature of the indoor unit 31, the indoor temperature, the outdoor temperature, the opening degree of the electronic expansion valve (EEV), and the like.
  • EEV electronic expansion valve
  • the air conditioner 100 may further include an input device (not shown) capable of receiving a user input.
  • an input device eg, a touch panel, a key, etc.
  • the air conditioner 100 may perform an operation corresponding to the received user input.
  • the air conditioner 100 may further include an output device (not shown) for outputting a message about the operating state of the air conditioner 100 .
  • the output device may include a display device such as a display, a light emitting diode (LED), and/or an audio device such as a speaker and a buzzer.
  • FIG. 4 is a flowchart illustrating an operation method of the air conditioner according to an embodiment of the present invention
  • FIGS. 5 to 12 are diagrams referenced in the description of the operation of the air conditioner of FIG. 4 .
  • the air conditioner 100 may check whether the compressor 102 is driven in operations S410 and S420 , and when the compressor 102 is not driven, control the compressor driving unit 350 to Compressor 102 can be started.
  • the air conditioner 100 may determine that the refrigerant cycle is stabilized by driving the compressor 102 when the compressor 102 can sufficiently compress the refrigerant introduced into the high-temperature and high-pressure gas refrigerant according to the purpose. have. For example, the air conditioner 100 may determine whether the compressor 102 is driven based on the operating frequency, suction temperature, discharge temperature, suction pressure, discharge pressure, etc. of the compressor 102 .
  • the air conditioner 100 may control the operation of each component according to a preset condition so that the operating frequency of the compressor 102 reaches a predetermined frequency. For example, when the compressor 102 is started, the air conditioner 100 may open the electronic expansion valve EEV according to a preset opening amount.
  • the air conditioner 100 may control the operation of each component according to the cooling mode for cooling the room.
  • the air conditioner 100 may determine whether to perform an operation related to condensation of moisture contained in indoor air (hereinafter, a condensation operation).
  • the condensation operation may refer to an operation of the air conditioner 100 so that moisture contained in the indoor air is condensed into water droplets on the surface of the indoor heat exchanger 108 .
  • the air conditioner 100 may be preset to perform a condensation operation when performing an operation for removing foreign substances.
  • the air conditioner 100 may output a message regarding the performance of the condensation operation through the output device, and may determine whether to perform the condensation operation in response to a user input received through the input device. .
  • the air conditioner 100 does not output a message related to performing the condensation operation through the output device, but does not output a previously received user input. may determine whether to perform the condensation operation according to can do.
  • the freezing operation may refer to an operation of the air conditioner 100 so that ice is formed on the surface of the indoor heat exchanger 108 .
  • the air conditioner 100 may perform a condensation operation in operation S440 .
  • the condensation operation will be described in detail with reference to FIG. 5 .
  • the air conditioner 100 may calculate a dewpoint temperature of indoor air through at least one sensor included in the sensor unit 320 .
  • the air conditioner 100 may receive data on the dry-bulb temperature and relative humidity of the indoor air from the indoor temperature sensor and the indoor humidity sensor, and use a calculation formula based on the humidity air diagram, The dew point temperature can be calculated.
  • the air conditioner 100 may determine a target temperature for the temperature of the indoor heat exchanger 108 based on the calculated dew point temperature in operation S502 .
  • the target temperature in the condensation operation may be referred to as the condensation target temperature.
  • the air conditioner 100 may determine a predetermined temperature lower than the dew point temperature of the indoor air as the condensation target temperature.
  • the predetermined temperature may be a temperature difference (eg, 2° C.) at a level at which moisture contained in the indoor air is condensed into water droplets on the surface of the indoor heat exchanger 108 and the water droplets do not freeze.
  • the air conditioner 100 may determine the limited temperature (eg, 5°C) as the condensation target temperature when a predetermined temperature lower than the dew point temperature is less than or equal to a preset limit temperature (eg, 5°C).
  • a preset limit temperature eg, 5°C
  • the air conditioner 100 may check the current temperature of the indoor heat exchanger 108 based on the data received from the sensor unit 320 , and the current temperature of the indoor heat exchanger 108 is condensed. You can check whether the temperature is below the target temperature. For example, the air conditioner 100, based on the lower one of the inlet pipe temperature of the indoor unit 31 and the outlet pipe temperature of the indoor unit 31 detected through at least one pipe temperature sensor, The current temperature of the heat exchanger 108 may be calculated. For example, the air conditioner 100 may check the current temperature of the indoor heat exchanger 108 based on the temperature detected through the heat exchanger temperature sensor.
  • the air conditioner 100 may control the compressor driving unit 350 to lower the operating frequency of the compressor 102 .
  • the air conditioner 100 determines whether the current temperature of the indoor heat exchanger 108 exceeds the condensation target temperature when the current temperature of the indoor heat exchanger 108 is not less than the condensation target temperature. can be checked
  • the air conditioner 100 may control the compressor driving unit 350 to increase the operating frequency of the compressor 102 when the current temperature of the indoor heat exchanger 108 exceeds the condensation target temperature in operation S506. have.
  • the air conditioner 100 controls the compressor driving unit 350 to maintain the operating frequency of the compressor 102 when the current temperature of the indoor heat exchanger 108 corresponds to the condensation target temperature. can do.
  • the air conditioner 100 may determine whether a preset first time (hereinafter, referred to as a condensation time) has elapsed from the time when the condensation operation is started. At this time, when the preset condensation time has not elapsed, the air conditioner 100 may branch to operation S501 to adjust the operating frequency of the compressor 102 according to the dew point temperature of the indoor air.
  • a condensation time a preset first time (hereinafter, referred to as a condensation time) has elapsed from the time when the condensation operation is started. At this time, when the preset condensation time has not elapsed, the air conditioner 100 may branch to operation S501 to adjust the operating frequency of the compressor 102 according to the dew point temperature of the indoor air.
  • FIG. 7 is a diagram of a graph 710 of the operating frequency of the compressor 102 and a graph 720 of the inlet pipe temperature of the indoor unit 31 .
  • the air conditioner 100 may perform a freezing operation.
  • the freezing operation will be described in detail with reference to FIGS. 8A to 8C .
  • the air conditioner 100 may determine whether the opening amount of the expansion valve 106 is less than a preset reference opening amount.
  • the reference opening degree may correspond to the opening degree of the expansion valve 106 when the start of the compressor 102 is completed.
  • FIG. 9 is a diagram illustrating a graph of a change in the discharge temperature of the compressor 102 when the freezing operation is performed.
  • a graph 910 of a change in the discharge temperature when the opening amount of the expansion valve 106 is less than the reference opening amount, and the discharge temperature when the opening amount of the expansion valve 106 is greater than or equal to the reference opening amount A graph 920 for the change of .
  • the compressor 102 When the air conditioner 100 performs the freezing operation in a state in which the opening amount of the expansion valve 106 is less than the reference opening amount, compared to the case where the expansion valve 106 is sufficiently open, the compressor 102 The discharge temperature of can be increased by the temperature difference T1.
  • the compression ratio of the compressor 102 may also increase, so that the air conditioner 100 stops the operation of the compressor 102 in order to prevent damage to the compressor 102, etc. control can be performed. For this reason, it is difficult for the refrigerant to be sufficiently compressed in the compressor 102 , and it may be difficult for moisture condensed in the indoor heat exchanger 108 to freeze.
  • the air conditioner 100 increases the opening amount of the expansion valve 106 according to the reference opening amount.
  • the air conditioner 100 may open the expansion valve 106 so that the opening amount of the expansion valve 106 reaches the reference opening amount.
  • the air conditioner 100 may control the operation of the compressor 102 in response to a compression ratio according to the discharge pressure and the suction pressure of the compressor 102 . In this regard, it will be described in detail with reference to FIG. 8B.
  • the air conditioner 100 may calculate the compression ratio of the compressor 102 in operation S831 .
  • the compression ratio may mean a ratio of the discharge pressure to the suction pressure.
  • the air conditioner 100 may calculate the compression ratio of the compressor 102 based on the temperature of the outdoor heat exchanger 104 and the temperature of the indoor heat exchanger 108 .
  • the air conditioner 100 converts the high temperature of the temperature of the outdoor heat exchanger 104 and the temperature of the indoor heat exchanger 108 into a discharge pressure and a low temperature into a suction pressure, Compression ratio can be calculated.
  • the air conditioner 100 may check whether the compression ratio of the compressor 102 exceeds a preset reference compression ratio in operation S832.
  • the reference compression ratio may mean a maximum value of a reliable compression ratio that does not cause damage to the compressor 102 .
  • the air conditioner 100 determines the current temperature of the indoor heat exchanger 108 based on the data received from the sensor unit 320 to a predetermined first temperature in operation S833 . You can check whether the temperature is below the limit.
  • the first limit temperature may mean a preset temperature (eg, -17°C) at which the freezing of moisture condensed in the indoor heat exchanger 108 sufficiently occurs over a certain level.
  • the first limit temperature may be a temperature lower than the target temperature for the temperature of the indoor heat exchanger 108 in the freezing operation.
  • the target temperature in the freezing operation may be referred to as the freezing target temperature.
  • the air conditioner 100 may determine the freezing target temperature in a temperature range of a predetermined temperature (eg -15°C) higher than the first limit temperature (eg -17°C) and 0°C or less. .
  • the air conditioner 100 may maintain the freezing target temperature when the current temperature of the indoor heat exchanger 108 is equal to or greater than the first limit temperature.
  • the air conditioner 100 may control the operating frequency of the compressor 102 based on the difference between the current temperature of the indoor heat exchanger 108 and the freezing target temperature. For example, when the current temperature of the indoor heat exchanger 108 is higher than the freezing target temperature, the air conditioner 100 may control the compressor driving unit 350 to increase the operating frequency of the compressor 102 . .
  • the air conditioner 100 when the compression ratio of the compressor 102 exceeds the reference compression ratio, or when the current temperature of the indoor heat exchanger 108 is less than the first limit temperature, the currently set freezing The target temperature can be increased. In this case, the air conditioner 100 may increase the currently set freezing target temperature by the preset temperature.
  • the air conditioner 100 may determine whether the operating frequency of the compressor 102, which is determined in response to the increased freezing target temperature, is less than or equal to a preset minimum frequency.
  • the minimum frequency may correspond to a minimum value (eg, 65 Hz) of the operating frequency of the compressor 102 at which the moisture condensed in the indoor heat exchanger 108 may freeze.
  • the air conditioner 100 in operation S837, when the operating frequency of the compressor 102 determined in response to the increased freezing target temperature is less than or equal to the minimum frequency, the minimum frequency is set as the operating frequency of the compressor 102, It is possible to control the operation of the compressor (102).
  • the air conditioner 100 controls the operating frequency of the compressor 102 according to the increased freezing target temperature when the operating frequency of the compressor 102 determined in response to the increased freezing target temperature is higher than the minimum frequency. can do.
  • 10 is a graph 1010 for the operating frequency and a graph 1020 for the compression ratio when the compression ratio is not considered, and a graph 1030 for the operating frequency and a graph for the compression ratio when the compression ratio is considered ( 1030 ) 1040) is shown.
  • the operating frequency of the compressor 102 may be maintained at a high value according to the freezing target temperature while the freezing operation is performed, and moisture condensed in the indoor heat exchanger 108 . may continue to freeze. At this time, as the moisture freezes, the suction pressure of the compressor 102 may be gradually lowered. As a result, the compression ratio of the compressor 102 may exceed the reference compression ratio (eg, 8.3).
  • the reference compression ratio eg, 8.3
  • the air conditioner 100 may stop the operation of the compressor 102 to prevent damage to the compressor 102 .
  • the operating frequency of the compressor 102 may be adjusted according to the freezing target temperature while the freezing operation is performed.
  • the compression ratio of the compressor 102 reaches the reference compression ratio (eg, 8.3)
  • the air conditioner 100 may increase the freezing target temperature, and in response to the increased freezing target temperature, the compressor 102 ) operating frequency can be adjusted.
  • the control of the air conditioner 100 in consideration of the compression ratio while the compression ratio of the compressor 102 is lower than the reference compression ratio (eg, 8.3), freezing of moisture may proceed.
  • the reference compression ratio eg, 8.3
  • the air conditioner 100 controls the expansion valve 106 in response to the inlet/outlet superheat according to the inlet side pipe temperature and the outlet side pipe temperature of the indoor unit 31 .
  • the air conditioner 100 controls the expansion valve 106 in response to the inlet/outlet superheat according to the inlet side pipe temperature and the outlet side pipe temperature of the indoor unit 31 .
  • the air conditioner 100 may calculate the inlet/outlet superheat degree through at least one pipe temperature sensor.
  • the inlet/outlet superheat degree may correspond to a value obtained by subtracting the inlet pipe temperature from the outlet pipe temperature of the indoor unit 31 .
  • the air conditioner 100 in operation S842, may determine whether the inlet/outlet superheat is less than a preset maximum level.
  • the inlet/outlet superheating degree is at least the maximum level, that is, when the outlet pipe temperature of the indoor unit 31 is higher than the inlet pipe temperature by a certain level or more, the outlet side of the indoor unit 31 among the entire area of the indoor heat exchanger 108 Freezing of moisture may occur more easily in the area adjacent to the inlet side of the indoor unit 31 than in the area adjacent to the . In this case, since moisture is not uniformly frozen in the entire area of the indoor heat exchanger 108 , foreign substances may not be properly removed from some areas of the indoor heat exchanger 108 .
  • the air conditioner 100 may control the opening amount of the expansion valve 106 to increase when the inlet/outlet superheat is equal to or greater than the maximum level. At this time, as the opening amount of the expansion valve 106 increases, the inlet/outlet superheating degree may be lowered.
  • the air conditioner 100 may determine whether the inlet/outlet superheat is less than a preset minimum level.
  • the air conditioner 100 in operation S845, when the inlet/outlet superheat is less than the maximum level or greater than the minimum level, that is, when the difference between the outlet pipe temperature of the indoor unit 31 and the inlet pipe temperature is within a certain level, The opening degree of the expansion valve 106 can be maintained.
  • the outlet pipe temperature of the indoor unit 31 and the suction pressure of the compressor 102 may gradually decrease, and in response, the compression ratio of the compressor 102 may gradually increase. have.
  • the air conditioner 100 controls the opening degree of the expansion valve 106 to decrease in order to uniformly freeze moisture in the entire area of the indoor heat exchanger 108 and to prevent damage to the compressor 102 .
  • the inlet pipe temperature of the indoor unit 31 may increase.
  • FIG. 11 is a diagram illustrating a graph of a change in the inlet/outlet superheating degree according to the opening degree of the expansion valve 106 .
  • a graph 1110 when the opening degree of the expansion valve 106 is adjusted in response to a change in the inlet/outlet superheat and a graph 1120 when the opening degree of the expansion valve 106 is fixed. can be compared
  • the air conditioner 100 may determine whether a preset second time (hereinafter, 'freezing time') has elapsed from the time when the freezing operation is started.
  • 'freezing time' a preset second time
  • the air conditioner 100 may determine whether the current temperature of the indoor heat exchanger 108 is less than or equal to a predetermined second limit temperature.
  • the second limit temperature is a lower temperature (eg -20 °C) than the first limit temperature (eg -17 °C) at which the temperature of the indoor heat exchanger 108 is excessively lowered due to an excessively high discharge temperature, etc. ) can mean
  • the air conditioner 100 may branch to operation S830 and continue to perform the freezing operation.
  • the air conditioner 100 may control the fan driving unit 340 to adjust the rotation speed of the outdoor fan 105a and/or the indoor fan 109a while performing the condensation operation and/or the freezing operation. have.
  • the air conditioner 100 may control the fan driving unit 340 so that the rotation speed of the indoor fan 109a is constantly maintained during the condensation operation and/or the freezing operation.
  • the rotation speed of the indoor fan 109a in the condensation operation and/or the freezing operation may be less than or equal to the minimum rotation speed of the indoor fan 109a in the cooling mode in which the air conditioner 100 cools the room.
  • the air conditioner 100 may control the fan driving unit 340 to change the rotation speed of the indoor fan 109a according to a predetermined condition during the freezing operation.
  • the air conditioner 100 operates the indoor fan when the inlet pipe temperature of the indoor unit 31 is equal to or higher than a preset upper limit temperature.
  • the fan driving unit 340 may be controlled so that the rotation speed of the 109a is lower than the current rotation speed.
  • the preset upper limit temperature may be a temperature (eg, -5°C) corresponding to the highest temperature in a temperature range in which freezing of moisture condensed in the indoor heat exchanger 108 may occur.
  • the air conditioner 100 may monitor the inlet pipe temperature of the indoor unit 31 according to a predetermined period (eg, 100 seconds) while performing the freezing operation. At this time, when the difference between the inlet pipe temperatures of the indoor unit 31 detected according to a predetermined cycle is less than a preset difference (eg, 0.2° C.), the fan driving unit ( 340) can be controlled.
  • a predetermined period eg, 100 seconds
  • a preset difference eg, 0.2° C.
  • the air conditioner 100 controls the rotation speed of the outdoor fan 105a in the cooling mode for cooling the room, in the same/similar manner, in the condensation operation and/or the freezing operation, the operating frequency of the compressor 102, the outdoor
  • the rotation speed of the outdoor fan 105a may be controlled according to temperature or the like.
  • the air conditioner 100 may control the fan driving unit 340 so that the rotation speed of the outdoor fan 105a maintains a preset maximum speed during the freezing operation.
  • the total time elapsed from the initial start of the condensation operation is a preset third time (hereinafter, operation limit time) of the air conditioner 100. It can be judged whether it is abnormal or not.
  • the air conditioner 100 may determine whether the amount of moisture included in the indoor air is equal to or greater than a preset standard.
  • the air conditioner 100 may receive data on the dry bulb temperature and relative humidity of the indoor air from the indoor temperature sensor and the indoor humidity sensor. In this case, the air conditioner 100 may calculate at least one of the wet-bulb temperature and absolute humidity of the indoor air using a calculation formula based on the wet-air diagram, and based on the calculation result, the amount of moisture contained in the indoor air It can be determined whether or not it is equal to or greater than a preset standard.
  • the indoor air Even if the relative humidity of the indoor air is high, when the indoor temperature is low, the indoor air may not contain a sufficient level of moisture. In this case, when the condensation operation and the freezing operation are simply terminated due to the high relative humidity of the indoor air, the amount of moisture condensed in the indoor heat exchanger 108 may not be sufficient depending on the amount of moisture contained in the indoor air.
  • the indoor air may contain a sufficient level of moisture. At this time, even though a sufficient amount of moisture for removing foreign substances is condensed and frozen in the indoor heat exchanger 108, if the condensing operation and the freezing operation are repeated due to the low relative humidity of the indoor air, unnecessary power consumption may occur. .
  • the air conditioner 100 when the total time is equal to or longer than the operation limit time, or when the amount of moisture contained in the indoor air is equal to or greater than a preset standard, moisture condensed and frozen in the indoor heat exchanger 108 An operation (hereinafter, complete drying operation) of removing all of the ions from the indoor heat exchanger 108 may be performed.
  • the air conditioner 100 may terminate the operation of the compressor 102 and control the indoor fan 109a to rotate at the first speed during the first drying time. At this time, after the moisture condensed and frozen in the indoor heat exchanger 108 is thawed, all of it may be removed.
  • the air conditioner 100 may terminate the operation of the compressor 102 and control the indoor fan 109a to rotate at the second speed during the second drying time. At this time, after the moisture condensed and frozen in the indoor heat exchanger 108 is thawed, only a portion may be removed.
  • the second drying time may be shorter than the first drying time.
  • the second speed in the partial drying operation may be slower than the first speed in the complete drying operation.
  • the second speed in the partial drying operation may be higher than the rotation speed of the indoor fan 108a in the freezing operation and/or the condensation operation.
  • FIG. 12 is a diagram of a graph 1210 of the operating frequency of the compressor 102 and a graph 1220 of the inlet pipe temperature of the indoor unit 31 .
  • the air conditioner 100 performs a first condensation operation from time t1, a first freezing operation from time t1 to time t2, a partial drying operation from time t2 to t3, and a second operation from time t3 to t4. It can be seen that the condensation operation, the second freezing operation from the time t4 to the time t5, and the complete drying operation from the time t5 are performed, respectively.
  • the inlet pipe temperature of the indoor unit 31 may be lower than the dew point temperature during the condensing time.
  • the temperature of the inlet pipe of the indoor unit 31 may gradually decrease.
  • the second limiting temperature eg, -20°C
  • the second drying time during which the moisture condensed and frozen in the indoor heat exchanger 108 is dried in the partial drying operation is shorter than the first drying time in which the moisture condensed and frozen in the indoor heat exchanger 108 is dried in the complete drying operation can check that
  • FIG. 13 is a graph 1310 of the operating frequency of the compressor 102, a graph 1320 of the opening degree of the expansion valve 106, a graph 1330 of the rotation speed of the outdoor fan 105a, and an indoor It is a diagram of a graph 1340 for the rotation speed of the fan 109a.
  • the air conditioner 100 performs a first condensation operation from time t1, a first freezing operation from time t1 to time t2, a partial drying operation from time t2 to t3, and a second operation from time t3 to time t4. It can be seen that the second freezing operation, the second freezing operation from time t4 to time t5, and complete drying operation from time t5 to time t6 are performed, respectively.
  • the air conditioner 100 may start the compressor 102 so that the operating frequency of the compressor 102 reaches a predetermined frequency at a time when the condensation operation is started (eg, time t3).
  • the expansion valve 106 may be opened according to a preset reference opening degree in response to the starting of the compressor 102 .
  • the operating frequency of the compressor 102 may be adjusted according to the dew point temperature of the indoor air.
  • the opening degree of the expansion valve 106 and/or the outdoor fan 105a corresponds to the operating frequency of the compressor 102 and/or similarly to the control in the cooling mode for cooling the room. ) can be adjusted.
  • the rotation speed of the indoor fan 109a may be constantly maintained.
  • the rotational speed of the indoor fan 109a maintained constant may be less than or equal to the minimum rotational speed of the indoor fan 109a in the cooling mode.
  • the opening amount of the expansion valve 106 is less than the reference opening amount at the time when the freezing operation is started (eg, the time t1 ), it can be confirmed that the expansion valve 106 is opened corresponding to the reference opening amount.
  • the air conditioner 100 may increase the operating frequency of the compressor 102 while performing the freezing operation so that the temperature of the indoor heat exchanger 108 is lowered according to the freezing target temperature.
  • the air conditioner 100 may control the operating frequency of the compressor 102 to be lowered by a predetermined level when the compression ratio of the compressor 102 exceeds the reference compression ratio while performing the freezing operation.
  • the operating frequency of the compressor 102 may be greater than or equal to a preset minimum frequency.
  • the opening amount of the expansion valve 106 may be adjusted in response to the inlet/outlet superheating degree.
  • the rotation speed of the outdoor fan 105a may maintain a preset maximum speed.
  • the rotational speed of the indoor fan 109a may be kept constant as the rotational speed in the freezing operation.
  • a predetermined condition for example, after a predetermined time (eg, 12 minutes) has elapsed from the time when the freezing operation is started, when the current temperature of the indoor heat exchanger 108 is equal to or higher than the preset upper limit temperature, the indoor The rotation speed (eg, 200 rpm) of the fan 109a may be lowered to a preset rotation speed (eg, 150 rpm) ( 1341 and 1342 ).
  • the air conditioner 100 may stop the operation of the compressor 102 and the outdoor fan 105a when a partial drying operation and a complete drying operation are performed.
  • the operation of the outdoor fan 105a may be stopped after a predetermined time has elapsed from the time when the freezing operation is terminated.
  • the air conditioner 100 may close the opening degree of the expansion valve 106 when the freezing operation is finished. In addition, the air conditioner 100 may partially open the opening degree of the expansion valve 106 after a predetermined time has elapsed from the time when the freezing operation is terminated, and then the expansion valve 106 until the compressor 102 is started. can be fully opened.
  • the indoor fan 109a may rotate at a higher rotation speed than the rotation speed in the condensation operation and the freezing operation while the partial drying operation is performed. In addition, the indoor fan 109a may rotate at a faster rotation speed than the rotation speed in a partial drying operation while the complete drying operation is performed.
  • FIGS. 14 and 15 are diagrams illustrating examples of the configuration of an air conditioner including a plurality of indoor units according to an embodiment of the present invention.
  • the air conditioner 100 may include a plurality of indoor units 31 connected to the outdoor unit 21 .
  • the air conditioner 100 may include a stand-type indoor unit 31a, a wall-mounted indoor unit 31b, and/or a ceiling-type indoor unit 31c.
  • the plurality of remote controllers 41 may be respectively connected to the plurality of indoor units 31 , transmit a user's control command to the indoor unit 31 , and receive and display status information of the indoor unit 31 .
  • each of the plurality of remote controllers 41 may communicate by wire or wirelessly according to a connection type with the corresponding indoor unit 31 .
  • the air conditioner 100 may perform an operation for removing foreign substances (eg, a condensation operation and an icing operation) on at least one of the plurality of indoor units 31 . At this time, among the plurality of indoor units 31 , powers of the remaining indoor units except for the indoor unit on which an operation for removing foreign substances is performed may be turned off.
  • an operation for removing foreign substances eg, a condensation operation and an icing operation
  • the air conditioner 100 performs an operation for removing foreign substances from the stand-type indoor unit 31a
  • the power of the wall-mounted indoor unit 31b and the ceiling-type indoor unit 31c is turned off.
  • the refrigerant supplied from the outdoor unit 21 may be transmitted only to the stand-type indoor unit 31a and not to the wall-mounted indoor unit 31b and the ceiling type indoor unit 31c.
  • the air conditioner 100 may perform an operation for removing foreign substances from all of the plurality of indoor units 31 .
  • the refrigerant supplied from the outdoor unit 21 may be delivered to all of the plurality of indoor units 31 , and an operation for removing foreign substances (eg, a condensation operation and a freezing operation) may be simultaneously performed in the plurality of indoor units 31 . have.
  • the moisture contained in the indoor air is allowed to condense, freeze, and dry step by step on the surface of the indoor heat exchanger 108 , thereby adsorbed by the indoor heat exchanger 108 . Foreign substances can be effectively removed.
  • the compressor 102 by adjusting the operating frequency of the compressor 102 based on the compression ratio of the compressor 102 , the compressor that can be generated while the moisture condensed in the indoor heat exchanger 108 freezes. (102) damage can be prevented.
  • moisture is uniformly frozen in the entire area of the indoor heat exchanger 108 , and foreign substances can be uniformly removed from the entire area of the indoor heat exchanger 108 .
  • the adsorption to the indoor heat exchanger 108 is performed. Foreign substances can be removed more effectively.

Abstract

본 발명은, 공기조화기에 관한 것이다. 본 발명의 실시예에 따른 공기조화기는, 냉매를 압축하여 토출하는 압축기; 상기 냉매와 실내공기를 열교환하는 실내 열교환기; 적어도 하나의 센서를 포함하는 센서부; 및 제어부를 포함하고, 상기 제어부는, 상기 실내공기의 이슬점온도에 대응하는 제1 목표온도와, 상기 실내 열교환기의 현재 온도에 기초하여, 상기 압축기에 대한 1차 제어를 수행하고, 상기 제1 목표온도보다 낮은 영하의 제2 목표온도와, 상기 실내 열교환기의 현재 온도에 기초하여, 상기 압축기에 대한 2차 제어를 수행하고, 상기 실내공기에 포함된 수분의 양에 기초하여, 상기 1차 제어 및 상기 2차 제어 중 적어도 하나를 반복하여 수행할지 여부를 결정할 수 있다. 그 외에 다양한 실시예들이 가능하다.

Description

공기조화기 및 그 동작방법
본 발명은, 공기조화기 및 그 동작방법에 관한 것으로, 특히, 실내 열교환기에 흡착된 이물질을 제거할 수 있는 공기조화기 및 그 동작방법에 관한 것이다.
공기조화기는 쾌적한 실내 환경을 조성하기 위해, 실내로 냉온의 공기를 토출하여 실내 온도를 조절하고, 실내공기를 정화하도록 함으로써, 인간에게 보다 쾌적한 실내 환경을 제공하기 위해 설치된다. 일반적으로 공기조화기는 열교환기로 구성되어 실내에 설치되는 실내기와, 압축기 및 열교환기 등으로 구성되어 실내기로 냉매를 공급하는 실외기를 포함한다.
공기조화기는 냉매의 흐름에 따라 냉방운전되거나 난방운전된다. 냉방운전 시, 실외기의 압축기로부터 실외기의 열교환기를 거쳐 고온, 고압의 액체 냉매가 실내기로 공급되고, 실내기의 열교환기에서 냉매가 팽창 및 기화되면서 주변 공기의 온도가 내려가고, 실내기 팬이 회전 동작함에 따라 냉기가 실내로 토출된다. 난방운전 시, 실외기의 압축기로부터 고온, 고압의 기체 냉매가 실내기로 공급되고, 실내기의 열교환기에서 고온, 고압의 기체 냉매가 액화되면서 방출된 에너지에 의해 따뜻해진 공기가 실내기 팬의 동작에 따라 실내로 토출된다.
한편, 공기조화기가 운전을 수행하는 동안, 실내기의 열교환기 등에 먼지와 같은 이물질이 흡착될 수 있다. 예를 들면, 공기조화기가 냉방운전을 수행하는 동안, 실내기의 열교환기에서는 냉매와 실내공기 간의 열교환에 의해 응축수가 생성될 수 있다. 이때, 응축수 중 일부가 열교환기의 표면에 맺히거나, 응축수가 배출되는 드레인관에 잔존하는 경우, 응축수에 이물질 등이 흡착될 수 있다.
이와 같이, 실내기의 열교환기 등에 이물질이 흡착되는 경우, 이물질에 의해 세균, 곰팡이 등과 같은 미생물이 번식할 수 있어, 사용자에게 불쾌감을 줄 수 있을 뿐만 아니라, 사용자의 건강에 해로운 영향을 미칠 수도 있어, 이물질 제거를 위한 다양한 연구가 이루어지고 있다.
종래의 공기조화기는, 실내기의 열교환기 등에 흡착된 이물질을 제거하기 위해, 선행기술 1(일본공개특허 제2010-014288호)와 같이, 냉매사이클을 이용하여 실내기의 열교환기의 표면에 서리를 형성시킨 후, 열교환기의 표면에 형성된 서리를 제거하는 제상운전을 수행한다. 이때, 제상운전에 의해 열교환기의 표면에 형성된 물이 흘러 배수됨에 따라, 실내기의 열교환기 등에 흡착된 이물질이 물과 함께 제거될 수 있다.
또한, 종래의 공기조화기는, 선행기술 2(일본공개특허 제2018-200128호)와 같이, 실내기의 열교환기의 표면에 서리를 형성하기 전에, 열교환기의 표면에 물방울이 먼저 응결되도록 동작함으로써, 이물질 제거 시 더 많은 양의 물이 배수되도록 동작할 수도 있다.
본 개시는 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.
또 다른 목적은, 실내 열교환기에 흡착된 이물질의 제거를 위한, 실내 열교환기에 응결되는 수분의 양을 증가시킬 수 있는 공기조화기 및 그 동작방법을 제공함에 있다.
또 다른 목적은, 실내 열교환기에 흡착된 이물질을 제거하는 동안에 발생 가능한 압축기의 손상을 방지할 수 있는 공기조화기 및 그 동작방법을 제공함에 있다.
또 다른 목적은, 실내 열교환기의 전체 영역에 대하여, 이물질 제거를 균일하게 수행할 수 있는 공기조화기 및 그 동작방법을 제공함에 있다.
또 다른 목적은, 실내공기의 상태를 고려하여, 실내 열교환기에 흡착된 이물질을 제거하는 동작의 반복 여부를 결정할 수 있는 공기조화기 및 그 동작방법을 제공함에 있다.
상기 목적을 달성하기 위한, 본 발명의 다양한 실시예에 따른 공기 조화기는, 실내공기의 이슬점온도 및 압축기의 압축비 중 적어도 하나에 기초하여 압축기의 운전주파수를 조절함으로써, 실내 열교환기에 흡착된 이물질을 제거할 수 있다.
상기 목적을 달성하기 위한, 본 발명의 다양한 실시예에 따른 공기 조화기는, 냉매를 압축하여 토출하는 압축기; 상기 냉매와 실내공기를 열교환하는 실내 열교환기; 적어도 하나의 센서를 포함하는 센서부; 및 제어부를 포함하고, 상기 제어부는, 상기 실내공기의 이슬점온도에 대응하는 제1 목표온도와, 상기 실내 열교환기의 현재 온도에 기초하여, 상기 압축기에 대한 1차 제어를 수행하고, 상기 제1 목표온도보다 낮은 영하의 제2 목표온도와, 상기 실내 열교환기의 현재 온도에 기초하여, 상기 압축기에 대한 2차 제어를 수행하고, 상기 실내공기에 포함된 수분의 양에 기초하여, 상기 1차 제어 및 상기 2차 제어 중 적어도 하나를 반복하여 수행할지 여부를 결정할 수 있다.
상기 목적을 달성하기 위한, 본 발명의 다양한 실시예에 따른 공기 조화기의 동작방법은, 실내공기의 이슬점온도에 대응하는 제1 목표온도와, 상기 공기조화기에 포함된 실내 열교환기의 현재 온도에 기초하여, 공기조화기에 포함된 압축기에 대한 1차 제어를 수행하는 동작; 상기 제1 목표온도보다 낮은 영하의 제2 목표온도와, 상기 실내 열교환기의 현재 온도에 기초하여, 상기 압축기에 대한 2차 제어를 수행하는 동작; 및 상기 실내공기에 포함된 수분의 양에 기초하여, 상기 1차 제어 및 상기 2차 제어 중 적어도 하나를 반복하여 수행할지 여부를 결정하는 동작을 포함할 수 있다.
본 발명의 실시예 중 적어도 하나에 따르면, 실내공기의 이슬점온도에 대응하도록 압축기의 운전주파수를 조절함으로써, 실내 열교환기에 응결되는 수분의 양을 증가시킬 수 있다.
또한, 본 발명의 실시예 중 적어도 하나에 따르면, 압축기의 압축비에 기초하여 압축기의 운전주파수를 조절함으로써, 실내 열교환기에 응결된 수분이 결빙되는 동안에 발생 가능한 압축기의 손상을 방지할 수 있다.
또한, 본 발명의 실시예 중 적어도 하나에 따르면, 실내 열교환기의 전체 영역에 수분이 균일하게 결빙되고, 실내 열교환기의 전체 영역에 대하여 이물질이 균일하게 제거될 수 있다.
또한, 본 발명의 실시예 중 적어도 하나에 따르면, 실내공기에 포함된 수분의 양에 따라, 실내 열교환기에 흡착된 이물질을 제거하는 동작을 반복함으로써, 실내 열교환기에 흡착된 이물질을 보다 효과적으로 제거할 수 있다.
본 개시의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 개시의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 개시의 바람직한 실시예와 같은 특정 실시예는 단지 예시로 주어진 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른, 공기조화기의 구성의 예시를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른, 실외기와 실내기의 개략도이다.
도 3은 본 발명의 일 실시예에 따른, 공기조화기의 블록도이다.
도 4는, 본 발명의 일 실시예에 따른, 공기조화기의 동작방법을 도시한 순서도이다.
도 5 내지 13은, 도 4의 공기조화기의 동작에 대한 설명에 참조되는 도면들이다.
도 14 및 15는, 본 발명의 일 실시예에 따른, 복수의 실내기를 포함하는 공기조화기의 구성의 예시를 도시한 도면이다.
이하에서는 도면을 참조하여 본 발명을 상세하게 설명한다. 도면에서는 본 발명을 명확하고 간략하게 설명하기 위하여 설명과 관계없는 부분의 도시를 생략하였으며, 명세서 전체를 통하여 동일 또는 극히 유사한 부분에 대해서는 동일한 도면 참조부호를 사용한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것들의 존재, 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 명세서에서, 다양한 요소들을 설명하기 위해 제1, 제2 등의 용어가 이용될 수 있으나, 이러한 요소들은 이러한 용어들에 의해 제한되지 아니한다. 이러한 용어들은 한 요소를 다른 요소로부터 구별하기 위해서만 이용된다.
도 1은 본 발명의 일 실시예에 따른, 공기조화기의 구성의 예시를 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 공기조화기(100)는, 실외기(21)와, 실외기(21)에 연결되는 실내기(31)를 포함할 수 있다. 실내기(31)는, 예를 들면, 스탠드형 공기조화기, 벽걸이형 공기조화기 및 천장형 공기조화기 중 어느 것이라도 적용 가능하나, 도면에서는, 스탠드형 실내기(31)를 예시한다.
한편, 공기조화기(100)는, 환기장치, 공기청정장치, 가습장치 및 히터 중 적어도 하나를 더 포함할 수 있으며, 실내기(31) 및 실외기(21)의 동작에 연동하여 동작할 수 있다.
실외기(21)는, 냉매를 공급받아 압축하는 압축기(미도시)와, 냉매와 실외공기를 열교환하는 실외 열교환기(미도시)와, 공급되는 냉매로부터 기체 냉매를 추출하여 압축기로 공급하는 어큐뮬레이터(미도시)와, 난방운전에 따른 냉매의 유로를 선택하는 사방밸브(미도시)를 포함할 수 있다. 또한, 실외기(21)는, 다수의 센서, 밸브 및 오일회수기 등을 더 포함할 수 있다.
실외기(21)는, 구비되는 압축기 및 실외 열교환기를 동작시켜 설정에 따라 냉매를 압축하거나 열교환하여 실내기(31)로 냉매를 공급할 수 있다. 실외기(21)는, 원격제어기(미도시) 또는 실내기(31)의 요구(demand)에 의해 구동될 수 있다. 이때, 구동되는 실내기(31)에 대응하여 냉/난방 용량이 가변됨에 따라 실외기의 작동 개수 및 실외기에 설치된 압축기의 작동 개수가 가변되는 것도 가능하다.
이때, 실외기(21)는, 연결된 실내기(31)로 압축된 냉매를 공급할 수 있다.
실내기(31)는, 실외기(21)로부터 냉매를 공급받아 실내로 냉온의 공기를 토출할 수 있다.
실내기(31)는, 실내 열교환기(미도시)와, 실내기팬(미도시), 공급되는 냉매가 팽창되는 팽창밸브(미도시), 다수의 센서(미도시)를 포함할 수 있다.
실내기(31)는, 실내 열교환기에 인접하여 배치되어, 실내 열교환기의 열교환에 의해 발생하는 물이 수집되는 드레인팬(미도시)와, 드레인팬에 집수된 물을 외부로 토출하는 드레인관(미도시)를 포함할 수 있다.
이때, 실외기(21) 및 실내기(31)는, 예를 들면, 통신선으로 연결되어 상호 데이터를 송수신할 수 있고, 실외기(21) 및 실내기(31)는 원격제어기(미도시)와 유선 또는 무선으로 연결되어 원격제어기(미도시)의 제어에 따라 동작할 수도 있다.
리모컨(미도시)는, 예를 들면, 실내기(31)에 연결되어, 실내기(31)로 사용자의 제어명령을 전달하고, 실내기(31)의 상태정보를 수신하여 표시할 수 있다. 이때 리모컨은 실내기(31)와의 연결 형태에 따라 유선 또는 무선으로 통신할 수 있다.
도 2는 본 발명의 일 실시예에 따른, 실외기와 실내기의 개략도이다. 도 1에서 설명한 내용과 중복되는 내용에 대해서는 상세한 설명을 생략하도록 한다.
도 2를 참조하면, 실외기(21)는, 냉매를 압축시키는 역할을 하는 압축기(102)와, 압축기(102)를 구동하는 압축기용 모터(102b)와, 압축된 냉매를 방열시키는 역할을 하는 실외 열교환기(104)와, 실외 열교환기(104)의 일측에 배치되어 냉매의 방열을 촉진시키는 실외팬(105a)과 실외팬(105a)을 회전시키는 모터(105b)로 이루어진 실외 송풍기(105)와, 응축된 냉매를 팽창하는 팽창밸브(106)와, 압축된 냉매의 유로를 바꾸는 냉/난방 절환밸브(110)와, 기체화된 냉매를 잠시 저장하여 수분과 이물질을 제거한 뒤 일정한 압력의 냉매를 압축기로 공급하는 어큐뮬레이터(103) 등을 포함할 수 있다.
팽창밸브(106)는, 예를 들면, 전자식 팽창밸브(electronic expansion valve; EEV)일 수 있다.
실내기(31)는, 실내에 배치되어 냉/난방 기능을 수행하는 실내 열교환기(108)와, 실내 열교환기(108)의 일측에 배치되어 냉매의 방열을 촉진시키는 실내팬(109a)과 실내팬(109a)을 회전시키는 모터(109b)로 이루어진 실내 송풍기(109) 등을 포함할 수 있다.
실내 열교환기(108)는, 적어도 하나가 설치될 수 있다. 압축기(102)는, 예를 들면, 인버터 압축기, 정속 압축기 중 적어도 하나가 사용될 수 있다.
또한, 공기조화기(100)는, 실내를 냉방시키는 냉방기로 구성되는 것도 가능하고, 실내를 냉방시키거나 난방시키는 히트 펌프로 구성되는 것도 가능하다.
도 3은 본 발명의 일 실시예에 따른, 공기조화기의 블록도이다.
도 3을 참조하면, 공기조화기(100)는, 통신부(310), 센서부(320), 메모리(330), 팬(341)을 구동하는 팬 구동부(340), 압축기(102)를 구동하는 압축기 구동부(350) 및/또는 제어부(360)를 포함할 수 있다.
통신부(310)는, 적어도 하나의 통신 모듈을 포함할 수 있다. 예를 들면, 통신부(310)는, 실외기(21)와 실내기(31)에 각각 구비될 수 있고, 실외기(21)와 실내기(31)는 상호 간에 데이터를 송수신할 수 있다.
실외기(21)와 실내기(31)의 통신 방식은, 예를 들면, 전력선을 이용한 통신 방식, 시리얼 통신 방식(예: RS-485 통신), 냉매 배관을 통한 유선 통신 방식뿐만 아니라, 와이파이(Wi-fi), 블루투스(Bluetooth), 비콘(Beacon), 지그비(zigbee)등의 무선 통신 방식일 수도 있다.
통신부(310)는, 외부 장치와 상호 간에 데이터를 송수신할 수 있다. 예를 들면, 통신부(310)는, 외부 네트워크에 연결된 서버에 접속하여 데이터를 송수신할 수도 있다.
센서부(320)는, 적어도 하나의 센서를 구비할 수 있고, 센서를 통해 검출된 검출 값에 대한 데이터를 제어부(360)로 전송할 수 있다.
센서부(320)는, 열교환기 온도센서(미도시)를 구비할 수 있다. 예를 들면, 열교환기 온도센서는, 실내 열교환기(108)의 내부에 배치되어, 실내 열교환기(108)의 온도를 검출할 수 있다.
센서부(320)는, 배관 온도센서(미도시)를 구비할 수 있다. 배관 온도센서는, 공기조화기(100)의 각 배관을 통해 유동하는 냉매의 온도를 검출할 수 있다. 예를 들면, 배관 온도센서는, 실내기(31)의 입구측 배관 및/또는 실내기(31)의 출구측 배관에 배치되어, 배관을 통해 유동하는 냉매의 온도를 검출할 수 있다. 예를 들면, 배관 온도센서는, 압축기(102)에 연결된 배관에 배치되어, 압축기(102)로 유입되는 냉매의 온도(이하, 흡입온도) 및/또는 압축기(102)에서 토출되는 냉매의 온도(이하, 토출온도)를 검출할 수 있다.
센서부(310)는, 압력센서(미도시)를 구비할 수 있다. 압력센서(미도시)는, 공기조화기(100)의 각 배관을 통해 유동하는 기체 냉매의 압력을 검출할 수 있다. 예를 들면, 압력센서는, 압축기(102)에 연결된 배관에 배치되어, 압축기(102)로 유입되는 냉매의 압력(이하, 흡입압력) 및/또는 압축기(102)에서 토출되는 냉매의 압력(이하, 토출압력)을 검출할 수 있다.
센서부(320)는, 실내의 온도를 검출하는 실내 온도센서(미도시) 및/또는 실외의 온도를 검출하는 실외 온도센서(미도시)를 구비할 수 있다.
센서부(320)는, 실내의 습도를 검출하는 실내 습도센서(미도시) 및/또는 실외의 습도를 검출하는 실외 습도센서(미도시)를 구비할 수 있다.
메모리(330)는, 공기조화기(100)에 구비된 각 구성의 동작과 관련된 기준 값에 대한 데이터를 저장할 수 있다.
메모리(330)는, 제어부(360) 내의 각 신호 처리 및 제어를 위한 프로그램을 저장할 수 있고, 처리된 데이터 및 처리 대상인 데이터를 저장할 수 있다. 예를 들면, 메모리(330)는, 제어부(360)에 의해 처리 가능한 다양한 작업들을 수행하기 위한 목적으로 설계된 응용 프로그램들을 저장하고, 제어부(360)의 요청 시, 저장된 응용 프로그램들 중 일부를 선택적으로 제공할 수 있다.
메모리(330)는, 예를 들면, 휘발성 메모리(예: DRAM, SRAM, SDRAM 등)나, 비휘발성 메모리(예: 플래시 메모리(Flash memory), 하드 디스크 드라이브(Hard disk drive; HDD), 솔리드 스테이트 드라이브(Solid-state drive; SSD) 등) 중 적어도 하나를 포함할 수 있다.
팬 구동부(340)는, 공기조화기(100)에 구비된 팬(341)을 구동할 수 있다. 예를 들면, 팬(341)은, 실외팬(105a) 및/또는 실내팬(109a)를 포함할 수 있다.
팬 구동부(340)는, 교류 전원을 직류 전원으로 정류하여 출력하는 정류부(미도시), 정류부로부터의 맥동 전압을 저장하는 dc 단 커패시터(미도시), 복수의 스위칭 소자를 구비하여, 평활된 직류 전원을 소정 주파수의 3상 교류 전원으로 변환 및 출력하는 인버터(미도시) 및/또는 인버터로부터 출력되는 3상 교류 전원에 따라 팬(341)을 구동하는 적어도 하나의 모터를 포함할 수 있다.
한편, 팬 구동부(340)는, 실외팬(105a) 및 실내팬(109a)를 구동하기 위한 구성을 각각 구분하여 구비할 수 있다. 예를 들면, 공기조화기(100)는, 실외팬(105a)를 구동하기 위한 제1 팬 구동부와, 실내팬(109a)를 구동하기 위한 제2 팬 구동부를 포함할 수 있다.
압축기 구동부(350)는, 압축기(102)를 구동할 수 있다. 압축기 구동부(350)는, 교류 전원을 직류 전원으로 정류하여 출력하는 정류부(미도시), 정류부로부터의 맥동 전압을 저장하는 dc 단 커패시터(미도시), 복수의 스위칭 소자를 구비하여, 평활된 직류 전원을 소정 주파수의 3상 교류 전원으로 변환 및 출력하는 인버터(미도시) 및/또는 인버터로부터 출력되는 3상 교류 전원에 따라, 압축기(102)를 구동하는 압축기용 모터(102b)를 포함할 수 있다.
제어부(360)는, 공기조화기(100)의 전반적인 동작을 제어할 수 있다. 제어부(360)는, 공기조화기(100)에 구비된 각 구성과 연결될 수 있고, 각 구성과 상호 간에 신호를 송신 및/또는 수신하여, 각 구성의 전반적인 동작을 제어할 수 있다.
제어부(360)는, 팬 구동부(340)의 동작을 제어하여, 팬(341)의 회전수를 변경할 수 있다. 예를 들면, 팬 구동부(340)는, 제어부(360)의 제어에 따라, 실외팬용 모터(105b)로 출력되는 3상 교류 전원의 주파수를 변경하여, 실외팬(105a)의 회전수를 변경할 수 있다. 예를 들면, 팬 구동부(340)는, 제어부(360)의 제어에 따라, 실내팬용 모터(109b)로 출력되는 3상 교류 전원의 주파수를 변경하여, 실내팬(109a)의 회전수를 변경할 수 있다.
제어부(360)는, 압축기 구동부(350)의 동작을 제어하여, 압축기(102)의 운전주파수를 변경할 수 있다. 예를 들면, 압축기 구동부(350)는, 제어부(360)의 제어에 따라, 압축기용 모터(102b)로 출력되는 3상 교류 전원의 주파수를 변경하여, 압축기(102)의 운전주파수를 변경할 수 있다.
제어부(360)는, 실외기(21) 뿐만 아니라, 실내기(31), 실외기(21) 및/또는 실내기(31)의 동작을 제어하는 중앙제어기(미도시) 등에 구비될 수도 있다.
제어부(360)는, 적어도 하나의 프로세서를 포함할 수 있고, 이에 포함된 프로세서를 이용하여, 공기조화기(100)의 동작 전반을 제어할 수 있다. 여기서, 프로세서는 CPU(central processing unit)과 같은 일반적인 프로세서일 수 있다. 물론, 프로세서는 ASIC과 같은 전용 장치(dedicated device)이거나 다른 하드웨어 기반의 프로세서일 수 있다.
제어부(360)는, 공기조화기(100)에 구비된 각 구성과 관련된 데이터를 획득할 수 있다. 이때, 제어부(360)는, 연산 부하를 고려하여, 소정 주기에 따라, 일정 시간 간격을 두고 공기조화기(100)에 구비된 각 구성과 관련된 데이터를 획득할 수도 있다.
제어부(360)는, 획득한 데이터에 기초하여 다양한 연산을 수행할 수 있고, 연산 결과에 따라 공기조화기(100)에 구비된 각 구성의 전반적인 동작을 제어할 수 있다.
공기조화기(100)에 구비된 각 구성과 관련된 데이터는, 예를 들면, 압축기(102)의 운전주파수, 압축기(102)의 흡입온도, 토출온도, 흡입 압력, 토출압력, 실내기(31)의 입구측 배관온도, 실내기(31)의 출구측 배관온도, 실내 온도, 실외 온도, 전자식 팽창팰브(EEV)의 개도량 등을 포함할 수 있다.
한편, 공기조화기(100)는, 사용자 입력을 수신할 수 있는 입력 장치(미도시)를 더 포함할 수 있다. 예를 들면, 공기조화기(100)는, 입력 장치(예: 터치 패널, 키 등)을 통해 사용자 입력을 수신하는 경우, 수신되니 사용자 입력에 대응하는 동작을 수행할 수 있다.
공기조화기(100)는, 공기조화기(100)의 동작 상태에 대한 메시지를 출력하는 출력 장치(미도시)를 더 포함할 수 있다. 예를 들면, 출력 장치는, 디스플레이, 발광 다이오드(Light Emitting Diode: LED) 등의 표시 장치 및/또는 스피커, 버저 등의 오디오 장치를 포함할 수 있다.
도 4는, 본 발명의 일 실시예에 따른, 공기조화기의 동작방법을 도시한 순서도이고, 도 5 내지 12는, 도 4의 공기조화기의 동작에 대한 설명에 참조되는 도면들이다.
도 4를 참조하면, 공기조화기(100)는, S410 및 S420 동작에서, 압축기(102)의 구동 여부를 확인할 수 있고, 압축기(102)가 구동되지 않은 경우, 압축기 구동부(350)를 제어하여 압축기(102)를 시동할 수 있다.
공기조화기(100)는, 압축기(102)가 유입된 냉매를 고온, 고압의 기체 냉매로 목적에 따라 충분히 압축할 수 있는 경우, 압축기(102)가 구동되어 냉매사이클이 안정화된 것으로 판단할 수 있다. 예를 들면, 공기조화기(100)는, 압축기(102)의 운전주파수, 흡입온도, 토출온도, 흡입압력, 토출압력 등에 기초하여, 압축기(102)의 구동 여부를 확인할 수 있다.
한편, 공기조화기(100)는, 압축기(102)를 시동하는 경우, 압축기(102)의 운전주파수가 소정 주파수에 도달하도록, 기 설정된 조건에 따라 각 구성의 동작을 제어할 수 있다. 예를 들면, 공기조화기(100)는, 압축기(102)를 시동하는 경우, 전자식 팽창밸브(EEV)를 기 설정된 개도량에 따라 개방할 수 있다.
이때, 공기조화기(100)는, 실내를 냉방시키는 냉방모드에 따라, 각 구성의 동작을 제어할 수 있다.
공기조화기(100)는, S430 동작에서, 압축기(102)가 구동된 경우, 실내공기에 포함된 수분의 응결에 관한 동작(이하, 응결 동작)을 수행할지 여부를 결정할 수 있다. 여기서, 응결 동작은, 실내공기에 포함된 수분이 실내 열교환기(108)의 표면에 물방울로 맺히도록 하는 공기조화기(100)의 동작을 의미할 수 있다.
예를 들면, 공기조화기(100)는, 이물질 제거를 위한 동작을 수행함에 있어서, 응결 동작을 수행하는 것으로 기 설정될 수 있다.
예를 들면, 공기조화기(100)는, 출력 장치를 통해 응결 동작의 수행에 관한 메시지를 출력할 수 있고, 입력 장치를 통해 수신되는 사용자 입력에 대응하여, 응결 동작의 수행 여부를 결정할 수 있다. 이때, 공기조화기(100)는, 이전에 응결 동작의 수행에 관한 사용자 입력이 수신된 이력이 있는 경우, 출력 장치를 통해 응결 동작의 수행에 관한 메시지를 출력하지 않고, 이전에 수신된 사용자 입력에 따라 응결 동작의 수행 여부를 결정할 수도 있다.한편, 공기조화기(100)는, 응결 동작을 수행하지 않는 경우, S450 동작으로 분기하여, 수분의 결빙에 관한 동작(이하, 결빙 동작)을 수행할 수 있다. 여기서, 결빙 동작은, 실내 열교환기(108)의 표면에 얼음이 형성되도록 하는 공기조화기(100)의 동작을 의미할 수 있다.
공기조화기(100)는, S440 동작에서, 응결 동작을 수행할 수 있다. 이하에서는, 도 5를 참조하여, 응결 동작에 대해서 구체적으로 설명하도록 한다.
도 5를 참조하면, 공기조화기(100)는, S501 동작에서, 센서부(320)에 포함된 적어도 하나의 센서를 통해, 실내공기의 이슬점온도(dewpoint temperature)를 산출할 수 있다.
도 6을 참조하면, 습공기선도(psychrometric chart) 상에서 실내공기의 건구온도(dry-bulb temperature) 및 상대습도에 대응하는 상태점(state point)이 결정되는 경우, 해당 상태점에 대응하는 이슬점온도, 습구온도(wet-bulb temperature), 엔탈피(enthalpy), 비체적(specific volume) 등이 결정될 수 있다.
예를 들면, 공기조화기(100)는, 실내 온도센서 및 실내 습도센서로부터 실내공기의 건구온도 및 상대습도에 대한 데이터를 수신할 수 있고, 습공기선도에 기초한 산출식을 이용하여, 실내공기의 이슬점온도를 산출할 수 있다.
공기조화기(100)는, S502 동작에서, 산출된 이슬점온도에 기초하여, 실내 열교환기(108)의 온도에 대한 목표온도를 결정할 수 있다. 이때, 응결 동작에서의 목표온도는, 응결 목표온도로 명명될 수 있다.
예를 들면, 공기조화기(100)는, 실내공기의 이슬점온도보다 소정 온도 낮은 온도를, 응결 목표온도로 결정할 수 있다. 이때, 소정 온도는, 실내공기에 포함된 수분이 실내 열교환기(108)의 표면에 물방울로 맺히면서, 물방울의 결빙은 일어나지 않는 수준의 온도 차이(예: 2℃)일 수 있다.
한편, 공기조화기(100)는, 이슬점온도보다 소정 온도 낮은 온도가 기 설정된 제한 온도(예: 5℃) 이하인 경우, 제한 온도(예: 5℃)를 응결 목표온도로 결정할 수 있다.
공기조화기(100)는, S503 동작에서, 센서부(320)로부터 수신되는 데이터에 기초하여, 실내 열교환기(108)의 현재 온도를 확인할 수 있고, 실내 열교환기(108)의 현재 온도가 응결 목표온도 미만인지 여부를 확인할 수 있다. 예를 들면, 공기조화기(100)는, 적어도 하나의 배관 온도센서를 통해 검출되는 실내기(31)의 입구측 배관온도 및 실내기(31)의 출구측 배관온도 중 낮은 온도 값에 기초하여, 실내 열교환기(108)의 현재 온도를 산출할 수 있다. 예를 들면, 공기조화기(100)는, 열교환기 온도센서를 통해 검출되는 온도에 기초하여, 실내 열교환기(108)의 현재 온도를 확인할 수 있다.
공기조화기(100)는, S504 동작에서, 실내 열교환기(108)의 현재 온도가 응결 목표온도 미만인 경우, 압축기(102)의 운전주파수가 낮아지도록, 압축기 구동부(350)를 제어할 수 있다.
한편, 공기조화기(100)는, S505 동작에서, 실내 열교환기(108)의 현재 온도가 응결 목표온도 미만이 아닌 경우, 실내 열교환기(108)의 현재 온도가 응결 목표온도를 초과하는 여부를 확인할 수 있다.
공기조화기(100)는, S506 동작에서, 실내 열교환기(108)의 현재 온도가 응결 목표온도를 초과하는 경우, 압축기(102)의 운전주파수가 높아지도록, 압축기 구동부(350)를 제어할 수 있다.
한편, 공기조화기(100)는, S507 동작에서, 실내 열교환기(108)의 현재 온도가 응결 목표온도에 대응하는 경우, 압축기(102)의 운전주파수가 유지되도록, 압축기 구동부(350)를 제어할 수 있다.
공기조화기(100)는, S508 동작에서, 응결 동작을 개시한 시점으로부터 기 설정된 제1 시간(이하, 응결 시간)이 경과되었는지 여부를 확인할 수 있다. 이때, 공기조화기(100)는, 기 설정된 응결 시간이 경과되지 않은 경우, S501 동작으로 분기하여, 실내공기의 이슬점온도에 따라 압축기(102)의 운전주파수를 조절할 수 있다.
도 7은, 압축기(102)의 운전주파수에 대한 그래프(710)와, 실내기(31)의 입구측 배관온도에 대한 그래프(720)에 대한 도면이다.
도 7을 참조하면, 공기조화기(100)가 압축기(102)의 운전주파수를 상승시키는 경우, 실내기(31)의 입구측 배관온도가 하강하며, 결과적으로 실내 열교환기(108)의 온도가 낮아질 수 있다.
또한, 실내 열교환기(108)의 온도가 응결 목표온도(T0)에 근접하는 경우, 압축기(102)의 운전주파수가 일정하게 유지되는 것을 확인할 수 있다.
다시 도 4를 참조하면, 공기조화기(100)는, S450 동작에서, 응결 동작이 완료된 경우, 결빙 동작을 수행할 수 있다. 이하에서는, 도 8a 내지 8c를 참조하여, 결빙 동작에 대해서 구체적으로 설명하도록 한다.
도 8a를 참조하면, 공기조화기(100)는, S810 동작에서, 팽창밸브(106)의 개도량이 기 설정된 기준 개도량 미만인지 여부를 확인할 수 있다. 여기서, 기준 개도량은, 압축기(102)의 시동이 완료된 시점에서의 팽창밸브(106)의 개도량에 대응할 수 있다.
도 9는, 결빙 동작 수행 시, 압축기(102)의 토출온도의 변화에 대한 그래프를 도시한 도면이다.
도 9를 참조하면, 팽창밸브(106)의 개도량이 기준 개도량 미만인 경우에 있어서 토출온도의 변화에 대한 그래프(910)와, 팽창밸브(106)의 개도량이 기준 개도량 이상인 경우에 있어서 토출온도의 변화에 대한 그래프(920)를 확인할 수 있다.
이때, 공기조화기(100)가 팽창밸브(106)의 개도량이 기준 개도량 미만인 상태에서 결빙 동작을 수행하는 경우, 팽창밸브(106)가 충분히 오픈(open)된 경우에 비해, 압축기(102)의 토출온도가 T1 온도 차이만큼 높아질 수 있다.
압축기(102)의 토출온도가 과도하게 높아지게 되면 압축기(102)의 압축비도 높아질 수 있어, 공기조화기(100)는 압축기(102)의 손상 등을 방지하기 위해 압축기(102)의 동작을 정지하는 등의 제어를 수행할 수 있다. 이로 인해, 압축기(102)에서 냉매가 충분히 압축되기 어려워, 실내 열교환기(108)에 응결된 수분의 결빙이 일어나기 어려워질 수 있다.
다시 도 8a를 참조하면, 공기조화기(100)는, S820 동작에서, 팽창밸브(106)의 개도량이 기 설정된 기준 개도량 미만인 경우, 기준 개도량에 따라 팽창밸브(106)의 개도량이 증가하도록 제어할 수 있다. 예를 들면, 공기조화기(100)는, 팽창밸브(106)의 개도량이 기준 개도량에 도달하도록, 팽창밸브(106)를 오픈(open)시킬 수 있다.
공기조화기(100)는, S830 동작에서, 압축기(102)의 토출압력 및 흡입압력에 따른 압축비에 대응하여, 압축기(102)의 동작을 제어할 수 있다. 이와 관련하여, 도 8b를 참조하여 구체적으로 설명하도록 한다.
도 8b를 참조하면, 공기조화기(100)는 S831 동작에서, 압축기(102)의 압축비를 산출할 수 있다. 여기서, 압축비는, 흡입압력에 대한 토출압력의 비를 의미할 수 있다.
한편, 공기조화기(100)는, 실외 열교환기(104)의 온도와 실내 열교환기(108)의 온도에 기초하여, 압축기(102)의 압축비를 산출할 수도 있다. 예를 들면, 공기조화기(100)는, 실외 열교환기(104)의 온도 및 실내 열교환기(108)의 온도 중 높은 온도를 토출압력, 낮은 온도를 흡입압력으로 환산하여, 압축기(102)의 압축비를 산출할 수 있다.
공기조화기(100)는, S832 동작에서, 압축기(102)의 압축비가 기 설정된 기준 압축비를 초과하는지 여부를 확인할 수 있다. 여기서, 기준 압축비는, 압축기(102)의 손상이 발생하지 않는 것으로 신뢰할 수 있는 압축비의 최대값을 의미할 수 있다.
공기조화기(100)는, S833 동작에서, 압축기(102)의 압축비가 기준 압축비 이하인 경우, 센서부(320)로부터 수신되는 데이터에 기초하여, 실내 열교환기(108)의 현재 온도가 소정 제1 제한온도 미만인지 여부를 확인할 수 있다. 여기서, 제1 제한온도는, 실내 열교환기(108)에 응결된 수분의 결빙이 일정 수준 이상 충분히 일어나는 기 설정된 온도(예: -17℃)를 의미할 수 있다.
한편, 제1 제한온도는, 결빙 동작에서의 실내 열교환기(108)의 온도에 대한 목표온도보다 낮은 온도일 수 있다. 이때, 결빙 동작에서의 목표온도는, 결빙 목표온도로 명명될 수 있다. 예를 들면, 공기조화기(100)는, 제1 제한온도(예: -17℃)보다 높은 소정 온도(예: -15℃) 이상, 0℃ 이하의 온도 범위에서 결빙 목표온도를 결정할 수 있다.
공기조화기(100)는, S834 동작에서, 실내 열교환기(108)의 현재 온도가 제1 제한온도 이상인 경우, 결빙 목표온도를 유지할 수 있다.
이때, 공기조화기(100)는, 실내 열교환기(108)의 현재 온도와 결빙 목표온도 간의 차이에 기초하여, 압축기(102)의 운전주파수를 제어할 수 있다. 예를 들면, 공기조화기(100)는, 실내 열교환기(108)의 현재 온도가 결빙 목표온도보다 높은 경우, 압축기(102)의 운전주파수가 높아지도록, 압축기 구동부(350)를 제어할 수 있다.
한편, 공기조화기(100)는, S835 동작에서, 압축기(102)의 압축비가 기준 압축비를 초과하는 경우, 또는, 실내 열교환기(108)의 현재 온도가 제1 제한온도 미만인 경우, 현재 설정된 결빙 목표온도를 높일 수 있다. 이때, 공기조화기(100)는, 현재 설정된 결빙 목표온도를 기 설정된 온도만큼 높일 수 있다.
공기조화기(100)는, S836 동작에서, 상승된 결빙 목표온도에 대응하여 결정되는 압축기(102)의 운전주파수가 기 설정된 최소 주파수 이하인지 여부를 확인할 수 있다. 여기서, 최소 주파수는, 실내 열교환기(108)에 응결된 수분의 결빙이 일어날 수 있는 압축기(102)의 운전주파수의 최소값(예: 65Hz)에 대응할 수 있다.
공기조화기(100)는, S837 동작에서, 상승된 결빙 목표온도에 대응하여 결정되는 압축기(102)의 운전주파수가 최소 주파수 이하인 경우, 최소 주파수를 압축기(102)의 운전주파주로 설정하여, 압축기(102)의 동작을 제어할 수 있다.
한편, 공기조화기(100)는, 상승된 결빙 목표온도에 대응하여 결정되는 압축기(102)의 운전주파수가 최소 주파수보다 높은 경우, 상승된 결빙 목표온도에 따라 압축기(102)의 운전주파수를 제어할 수 있다.
도 10은, 압축비를 고려하지 않는 경우에 있어서 운전주파수에 대한 그래프(1010) 및 압축비에 대한 그래프(1020)와, 압축비를 고려한 경우에 있어서 운전주파수에 대한 그래프(1030) 및 압축비에 대한 그래프(1040)를 도시한 도면이다.
도 10을 참조하면, 압축비를 고려하지 않는 경우, 결빙 동작을 수행하는 동안 압축기(102)의 운전주파수는 결빙 목표온도에 따라 높은 값에서 유지될 수 있고, 실내 열교환기(108)에 응결된 수분의 결빙이 계속 이루어질 수 있다. 이때, 수분의 결빙이 진행됨에 따라 압축기(102)의 흡입압력이 점차 낮아질 수 있고, 이로 인해, 압축기(102)의 압축비는 기준 압축비(예: 8.3)를 초과할 수 있다.
공기조화기(100)는, 압축기(102)의 압축비가 기준 압축비(예: 8.3)를 초과함에 따라, 압축기(102)의 손상을 방지하기 위해 압축기(102)의 동작을 정지할 수 있다.
한편, 압축비를 고려하는 경우에도, 결빙 동작을 수행하는 동안 압축기(102)의 운전주파수는 결빙 목표온도에 따라 조절될 수 있다. 이때, 압축기(102)의 압축비가 기준 압축비(예: 8.3)에 도달하는 경우, 공기조화기(100)는, 결빙 목표온도를 상승시킬 수 있고, 상승된 결빙 목표온도에 대응하여, 압축기(102)의 운전주파수를 조절할 수 있다.
결과적으로, 압축비를 고려한 공기조화기(100)의 제어에 의해, 압축기(102)의 압축비가 기준 압축비(예: 8.3)를 하회하면서, 수분의 결빙이 진행될 수 있다.
다시 도 8a를 참조하면, 공기조화기(100)는, S840 동작에서, 실내기(31)의 입구측 배관온도 및 출구측 배관온도에 따른 입출구 과열도에 대응하여, 팽창밸브(106)를 제어할 수 있다. 이와 관련하여, 도 8c를 참조하여 구체적으로 설명하도록 한다.
도 8c를 참조하면, 공기조화기(100)는, S841 동작에서, 적어도 하나의 배관 온도센서를 통해, 입출구 과열도를 산출할 수 있다. 여기서, 입출구 과열도는, 실내기(31)의 출구측 배관온도에서 입구측 배관온도를 뺀 값에 해당할 수 있다.
공기조화기(100)는, S842 동작에서, 입출구 과열도가 기 설정된 최대 레벨 미만인지 여부를 판단할 수 있다.
입출구 과열도가 최대 레벨 이상인 경우, 즉, 실내기(31)의 출구측 배관온도가 입구측 배관온도보다 일정 수준 이상 높은 경우, 실내 열교환기(108)의 전체 영역 중, 실내기(31)의 출구측에 인접한 영역보다 실내기(31)의 입구측에 인접한 영역에서 수분의 결빙이 더 쉽게 일어날 수 있다. 이 경우, 실내 열교환기(108)의 전체 영역에서 수분이 균일하게 결빙되지 않아, 이후 실내 열교환기(108)의 일부 영역에서 이물질이 제대로 제거되지 않을 수 있다.
공기조화기(100)는, S843 동작에서, 입출구 과열도가 최대 레벨 이상인 경우, 팽창밸브(106)의 개도량이 상승하도록 제어할 수 있다. 이때, 팽창밸브(106)의 개도량 상승에 따라, 입출구 과열도가 낮아질 수 있다.
한편, 공기조화기(100)는, S844 동작에서, 입출구 과열도가 기 설정된 최소 레벨 미만인지 여부를 판단할 수 있다.
공기조화기(100)는, S845 동작에서, 입출구 과열도가 최대 레벨 미만, 최소 레벨 이상인 경우, 즉, 실내기(31)의 출구측 배관온도와 입구측 배관온도 간의 차이가 일정 수준 이내인 경우, 팽창밸브(106)의 개도량을 유지할 수 있다.
공기조화기(100)는, S846 동작에서, 입출구 과열도가 최소 레벨 미만인 경우, 즉, 실내기(31)의 출구측 배관온도가 입구측 배관온도보다 일정 수준 이상 낮은 경우, 팽창밸브(106)의 개도량이 하강하도록 제어할 수 있다.
예를 들면, 수분의 결빙이 진행됨에 따라, 실내기(31)의 출구측 배관온도와 압축기(102)의 흡입압력이 점차 낮아질 수 있고, 이에 대응하여, 압축기(102)의 압축비는 점차 증가할 수 있다. 이때, 공기조화기(100)는, 실내 열교환기(108)의 전체 영역에서 수분이 균일하게 결빙되고, 압축기(102)의 손상을 방지하기 위해, 팽창밸브(106)의 개도량이 하강하도록 제어할 수 있고, 이에 대응하여, 실내기(31)의 입구측 배관온도는 증가할 수 있다.
도 11은, 팽창밸브(106)의 개도에 따른, 입출구 과열도의 변화에 대한 그래프를 도시한 도면이다.
도 11을 참조하면, 입출구 과열도의 변화에 대응하여 팽창밸브(106)의 개도량을 조절한 경우의 그래프(1110)와, 팽창밸브(106)의 개도량이 고정된 경우의 그래프(1120)를 비교할 수 있다.
두 그래프(1110, 1120)에 기초하면, 입출구 과열도의 변화에 대응하여 팽창밸브(106)의 개도량을 조절하는 경우, 팽창밸브(106)의 개도량이 고정된 경우에 비해, 입출구 과열도의 변화가 적은 것을 확인할 수 있고, 이는 냉매사이클의 안정성이 더 높은 것으로 이해될 수 있다.
다시 도 8a를 참조하면, 공기조화기(100)는, S850 동작에서, 결빙 동작을 개시한 시점으로부터 기 설정된 제2 시간(이하, 결빙 시간)이 경과되었는지 여부를 확인할 수 있다.
공기조화기(100)는, S860 동작에서, 결빙 시간이 경과되지 않은 경우, 실내 열교환기(108)의 현재 온도가 소정 제2 제한온도 이하인지 여부를 확인할 수 있다. 여기서, 제2 제한온도는, 과도하게 높은 토출온도 등으로 인해 실내 열교환기(108)의 온도가 과도하게 낮아지는, 제1 제한온도(예: -17℃)보다 낮은 온도(예: -20℃)를 의미할 수 있다.
공기조화기(100)는, 결빙 시간이 경과되지 않고, 실내 열교환기(108)의 현재 온도가 소정 제2 제한온도를 상회하는 경우, S830 동작으로 분기하여, 결빙 동작을 계속 수행할 수 있다.
한편, 공기조화기(100)는, 응결 동작 및/또는 결빙 동작을 수행하는 동안, 팬 구동부(340)를 제어하여, 실외팬(105a) 및/또는 실내팬(109a)의 회전 속도를 조절할 수 있다.
공기조화기(100)는, 응결 동작 및/또는 결빙 동작에서, 실내팬(109a)의 회전 속도가 일정하게 유지되도록 팬 구동부(340)를 제어할 수 있다. 이때, 응결 동작 및/또는 결빙 동작에서의 실내팬(109a)의 회전 속도는, 공기조화기(100)가 실내를 냉방시키는 냉방모드에서의 실내팬(109a)의 최저 회전 속도 이하일 수 있다.
공기조화기(100)는, 결빙 동작에서, 소정 조건에 따라 실내팬(109a)의 회전 속도가 변경되도록, 팬 구동부(340)를 제어할 수 있다.
예를 들면, 공기조화기(100)는, 결빙 동작이 개시된 시점으로부터 소정 시간(예: 12분)이 경과된 후, 실내기(31)의 입구측 배관온도가 기 설정된 상한 온도 이상인 경우, 실내팬(109a)의 회전 속도가 현재 회전 속도보다 낮아지도록 팬 구동부(340)를 제어할 수 있다. 여기서, 기 설정된 상한 온도는, 실내 열교환기(108)에 응결된 수분의 결빙이 일어날 수 있는 온도 범위에서 가장 높은 온도에 해당하는 온도(예: -5℃)일 수 있다.
예를 들면, 공기조화기(100)는, 결빙 동작을 수행하는 동안, 소정 주기(예: 100초)에 따라 실내기(31)의 입구측 배관온도를 모니터링할 수 있다. 이때, 소정 주기에 따라 검출된 실내기(31)의 입구측 배관온도 간의 차이가 기 설정된 차이(예: 0.2℃) 미만인 경우, 실내팬(109a)의 회전 속도가 현재 회전 속도보다 낮아지도록 팬 구동부(340)를 제어할 수 있다.
공기조화기(100)는, 실내를 냉방시키는 냉방모드에서 실외팬(105a)의 회전 속도를 제어하는 것과 동일/유사하게, 응결 동작 및/또는 결빙 동작에서, 압축기(102)의 운전주파수, 실외온도 등에 따라 실외팬(105a)의 회전 속도를 제어할 수 있다.
이때, 공기조화기(100)는, 결빙 동작에서, 실외팬(105a)의 회전 속도가 기 설정된 최고 속도를 유지하도록, 팬 구동부(340)를 제어할 수도 있다.
다시 도 4를 참조하면, 공기조화기(100)는, S460 동작에서, 결빙 동작이 완료된 경우, 응결 동작을 최초 개시한 시점으로부터 경과된 총 시간이 기 설정된 제3 시간(이하, 동작제한 시간) 이상인지 여부를 판단할 수 있다.
공기조화기(100)는, S470 동작에서, 총 시간이 동작제한 시간 미만인 경우, 실내공기에 포함된 수분의 양이 기 설정된 기준 이상인지 여부를 판단할 수 있다.
예를 들면, 공기조화기(100)는, 실내 온도센서 및 실내 습도센서로부터 실내공기의 건구온도 및 상대습도에 대한 데이터를 수신할 수 있다. 이때, 공기조화기(100)는, 습공기선도에 기초한 산출식을 이용하여, 실내공기의 습구온도 및 절대습도 중 적어도 하나를 산출할 수 있고, 산출 결과에 기초하여 실내공기에 포함된 수분의 양이 기 설정된 기준 이상인지 여부를 판단할 수 있다.
실내공기의 상대습도가 높더라도, 실내온도가 낮은 등의 경우에는 실내공기에 충분한 수준의 수분이 포함되지 않을 수 있다. 이때, 실내공기의 상대습도가 높은 이유로 응결 동작 및 결빙 동작을 단순 종료하는 경우, 실내공기에 포함된 수분의 양에 따라 실내 열교환기(108)에 응결되는 수분의 양이 충분하지 않을 수 있다.
또한, 실내공기의 상대습도가 낮더라도, 실내온도가 높은 등의 경우에는 실내공기에 충분한 수준의 수분이 포함될 수 있다. 이때, 이물질 제거를 위한 충분한 양의 수분이 실내 열교환기(108)에 응결 및 결빙됨에도 불구하고, 실내공기의 상대습도가 낮은 이유로 응결 동작 및 결빙 동작을 반복하는 경우, 불필요한 전력 소모가 발생할 수 있다.
따라서, 이물질 제거를 위한 수분이 실내 열교환기(108)에 충분히 응결 및 결빙되면서도, 불필요한 전력 소모를 줄일 수 있도록, 공기조화기(100)는 상대습도가 아닌, 실내공기에 포함된 수분의 양의 절대치에 기초하여 응결 동작 및 결빙 동작의 반복 여부를 결정할 수 있다.
공기조화기(100)는, S480 동작에서, 총 시간이 동작제한 시간 이상인 경우, 또는, 실내공기에 포함된 수분의 양이 기 설정된 기준 이상인 경우, 실내 열교환기(108)에 응결 및 결빙된 수분을 실내 열교환기(108)에서 모두 제거하는 동작(이하, 완전건조 동작)을 수행할 수 있다.
예를 들면, 공기조화기(100)는, 완전건조 동작 수행 시, 압축기(102)의 구동을 종료하고, 실내팬(109a)이 제1 건조시간 동안 제1 속도로 회전하도록 제어할 수 있다. 이때, 실내 열교환기(108)에 응결 및 결빙된 수분이 해빙된 후, 모두 제거될 수 있다.
한편, 공기조화기(100)는, S490 동작에서, 총 시간이 동작제한 시간 미만이고, 실내공기에 포함된 수분의 양이 기 설정된 기준 미만인 경우, 실내 열교환기(108)에 응결 및 결빙된 수분을 실내 열교환기(108)에서 일부 제거하는 동작(이하, 일부건조 동작)을 수행할 수 있다.
예를 들면, 공기조화기(100)는, 일부건조 동작 수행 시, 압축기(102)의 구동을 종료하고, 실내팬(109a)이 제2 건조시간 동안 제2 속도로 회전하도록 제어할 수 있다. 이때, 실내 열교환기(108)에 응결 및 결빙된 수분이 해빙된 후, 일부만 제거될 수 있다.
한편, 제2 건조시간은 제1 건조시간보다 짧을 수 있다.
일부건조 동작에서의 제2 속도는, 완전건조 동작에서의 제1 속도보다 느릴 수 있다. 일부건조 동작에서의 제2 속도는, 결빙 동작 및/또는 응결 동작에서의 실내팬(108a)의 회전 속도보다 빠를 수 있다.
도 12는, 압축기(102)의 운전주파수에 대한 그래프(1210)와, 실내기(31)의 입구측 배관온도에 대한 그래프(1220)에 대한 도면이다.
도 12를 참조하면, 공기조화기(100)가 t1 시점까지 제1 응결 동작, t1 시점부터 t2 시점까지 제1 결빙 동작, t2 시점부터 t3 시점까지 일부건조 동작, t3 시점부터 t4 시점까지 제2 응결 동작, t4 시점부터 t5 시점까지 제2 결빙동작, t5 시점부터 완전건조 동작을 각각 수행하는 것을 확인할 수 있다.
제1 및 제2 응결 동작에서, 실내기(31)의 입구측 배관온도는, 응결 시간 동안 이슬점온도를 하회할 수 있다.
제1 및 제2 결빙 동작에서, 압축기(102)의 운전주파수가 상승함에 따라, 실내기(31)의 입구측 배관온도는 점차 하강할 수 있다. 이때, 실내기(31)의 입구측 배관온도가 제2 제한온도(예: -20℃)에 도달함에 따라, 결빙 동작이 종료되는 것을 확인할 수 있다.
일부건조 동작에서 실내 열교환기(108)에 응결 및 결빙된 수분이 건조되는 제2 건조시간이, 완전건조 동작에서 실내 열교환기(108)에 응결 및 결빙된 수분이 건조되는 제1 건조시간보다 짧은 것을 확인할 수 있다.
도 13은, 압축기(102)의 운전주파수에 대한 그래프(1310), 팽창밸브(106)의 개도량에 대한 그래프(1320), 실외팬(105a)의 회전 속도에 대한 그래프(1330), 및 실내팬(109a)의 회전 속도에 대한 그래프(1340)에 대한 도면이다.
도 13을 참조하면, 공기조화기(100)가, t1 시점까지 제1 응결 동작, t1 시점부터 t2 시점까지 제1 결빙 동작, t2 시점부터 t3 시점까지 일부건조 동작, t3 시점부터 t4 시점까지 제2 응결 동작, t4 시점부터 t5 시점까지 제2 결빙동작, t5 시점부터 t6 시점까지 완전건조 동작을 각각 수행하는 것을 확인할 수 있다.
공기조화기(100)는, 응결 동작이 개시되는 시점(예: t3 시점)에, 압축기(102)의 운전주파수가 소정 주파수에 도달하도록 압축기(102)를 시동할 수 있다. 이때, 팽창밸브(106)는, 압축기(102)의 시동에 대응하여, 기 설정된 기준 개도량에 따라 개방될 수 있다.
또한, 응결 동작이 수행되는 동안, 압축기(102)의 운전주파수는, 실내공기의 이슬점온도에 따라 조절될 수 있다.
또한, 응결 동작이 수행되는 동안, 실내를 냉방시키는 냉방모드에서의 제어와 동일/유사하게, 압축기(102)의 운전주파수 등에 대응하여, 팽창밸브(106)의 개도량 및/또는 실외팬(105a)의 회전 속도가 조절될 수 있다.
또한, 응결 동작이 수행되는 동안, 실내팬(109a)의 회전 속도는 일정하게 유지될 수 있다. 이때, 일정하게 유지되는 실내팬(109a)의 회전 속도는, 냉방모드에서의 실내팬(109a)의 최저 회전 속도 이하일 수 있다.
한편, 결빙 동작이 개시되는 시점(예: t1 시점)에, 팽창밸브(106)의 개도량이 기준 개도량 미만인 경우, 팽창밸브(106)가 기준 개도량에 대응하여 개방되는 것을 확인할 수 있다.
공기조화기(100)는, 결빙 동작을 수행하는 동안, 실내 열교환기(108)의 온도가 결빙 목표온도에 따라 낮아지도록, 압축기(102)의 운전주파수를 상승시킬 수 있다.
공기조화기(100)는, 결빙 동작을 수행하는 동안, 압축기(102)의 압축비가 기준 압축비를 초과하는 경우 등에 있어서, 압축기(102)의 운전주파수가 소정 수준 낮아지도록 제어할 수 있다. 이때, 결빙 동작이 수행되는 동안, 압축기(102)의 운전주파수는 기 설정된 최소 주파수 이상일 수 있다.
또한, 결빙 동작이 수행되는 동안, 팽창밸브(106)의 개도량은, 입출구 과열도에 대응하여 조절될 수 있다.
또한, 결빙 동작이 수행되는 동안, 실외팬(105a)의 회전 속도는, 기 설정된 최고 속도를 유지할 수 있다.
또한, 결빙 동작이 수행되는 동안, 실내팬(109a)의 회전 속도는, 응결 동작에서의 회전 속도로 일정하게 유지될 수 있다. 이때, 소정 조건에 따라, 예컨대, 결빙 동작이 개시된 시점으로부터 소정 시간(예: 12분)이 경과된 후, 실내 열교환기(108)의 현재 온도가 기 설정된 상한 온도 이상인 경우, 일정하게 유지되던 실내팬(109a)의 회전 속도(예: 200rpm)가 기 설정된 회전 속도(예: 150rpm)로 낮아질 수 있다(1341, 1342).
한편, 공기조화기(100)는, 일부건조 동작 및 완전건조 동작을 수행하는 경우, 압축기(102) 및 실외팬(105a)의 동작을 정지할 수 있다. 이때, 실외팬(105a)의 동작은, 결빙 동작이 종료되는 시점으로부터 소정 시간 경과된 후 정지될 수 있다.
또한, 공기조화기(100)는, 결빙 동작이 종료되는 시점에 팽창밸브(106)의 개도를 폐쇄할 수 있다. 또한, 공기조화기(100)는, 결빙 동작이 종료되는 시점으로부터 소정 시간 경과된 후 팽창밸브(106)의 개도를 일부 개방할 수 있고, 이후 압축기(102)가 시동되기 전까지 팽창밸브(106)의 개도를 완전 개방할 수 있다.
실내팬(109a)은, 일부건조 동작이 수행되는 동안, 응결 동작 및 결빙 동작에서의 회전 속도보다 빠른 회전 속도로 회전할 수 있다. 또한, 실내팬(109a)은, 완전건조 동작이 수행되는 동안, 일부건조 동작에서의 회전 속도보다 빠른 회전 속도로 회전할 수 있다.
도 14 및 15는, 본 발명의 일 실시예에 따른, 복수의 실내기를 포함하는 공기조화기의 구성의 예시를 도시한 도면이다.
도 14를 참조하면, 공기조화기(100)는, 실외기(21)에 연결되는 복수의 실내기(31)를 포함할 수 있다. 예를 들면, 공기조화기(100)는, 스탠드형 실내기(31a), 벽걸이형 실내기(31b) 및/또는 천장형 실내기(31c)를 포함할 수 있다.
복수의 리모컨(41)은, 복수의 실내기(31)에 각각 연결되어, 실내기(31)로 사용자의 제어명령을 전달하고, 실내기(31)의 상태정보를 수신하여 표시할 수 있다. 이때, 복수의 리모컨(41) 각각은, 대응하는 실내기(31)와의 연결 형태에 따라 유선 또는 무선으로 통신할 수 있다.
공기조화기(100)는, 복수의 실내기(31) 중 적어도 하나에 대하여, 이물질 제거를 위한 동작(예: 응결 동작, 결빙 동작)을 수행할 수 있다. 이때, 복수의 실내기(31) 중, 이물질 제거를 위한 동작이 수행되는 실내기를 제외한 나머지 실내기의 전원은 오프(off)될 수 있다.
예를 들면, 공기조화기(100)가 스탠드형 실내기(31a)에 대하여 이물질 제거를 위한 동작을 수행하는 경우, 벽걸이형 실내기(31b) 및 천장형 실내기(31c)의 전원은 오프(off)될 수 있다. 이때, 실외기(21)에서 공급되는 냉매는, 스탠드형 실내기(31a)에만 전달되고, 벽걸이형 실내기(31b) 및 천장형 실내기(31c)에는 전달되지 않을 수 있다.
한편, 도 15를 참조하면, 공기조화기(100)는, 복수의 실내기(31) 모두에 대하여 이물질 제거를 위한 동작을 수행할 수도 있다. 이때, 실외기(21)에서 공급되는 냉매는 복수의 실내기(31) 모두에게 전달될 수 있고, 복수의 실내기(31)에서 이물질 제거를 위한 동작(예: 응결 동작, 결빙 동작)이 동시에 수행될 수 있다.
상기와 같이, 본 발명의 실시예 중 적어도 하나에 따르면, 실내공기에 포함된 수분이 실내 열교환기(108)의 표면에서 단계적으로 응결, 결빙 및 건조되도록 함으로써, 실내 열교환기(108)에 흡착된 이물질을 효과적으로 제거할 수 있다.
또한, 본 발명의 실시예 중 적어도 하나에 따르면, 실내공기의 이슬점온도에 대응하도록 압축기(102)의 운전주파수를 조절함으로써, 실내 열교환기(108)에 응결되는 수분의 양을 증가시킬 수 있다.
또한, 본 발명의 실시예 중 적어도 하나에 따르면, 압축기(102)의 압축비에 기초하여 압축기(102)의 운전주파수를 조절함으로써, 실내 열교환기(108)에 응결된 수분이 결빙되는 동안에 발생 가능한 압축기(102)의 손상을 방지할 수 있다.
또한, 본 발명의 실시예 중 적어도 하나에 따르면, 실내 열교환기(108)의 전체 영역에 수분이 균일하게 결빙되고, 실내 열교환기(108)의 전체 영역에 대하여 이물질이 균일하게 제거될 수 있다.
또한, 본 발명의 실시예 중 적어도 하나에 따르면, 실내공기에 포함된 수분의 양에 따라, 실내 열교환기(108)에 흡착된 이물질을 제거하는 동작을 반복함으로써, 실내 열교환기(108)에 흡착된 이물질을 보다 효과적으로 제거할 수 있다.
첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
마찬가지로, 특정한 순서로 도면에서 동작들을 묘사하고 있지만, 이는 바람직한 결과를 얻기 위하여 도시된 그 특정한 순서나 순차적인 순서대로 그러한 동작들을 수행하여야 한다거나, 모든 도시된 동작들이 수행되어야 하는 것으로 이해되어서는 안 된다. 특정한 경우, 멀티태스킹과 병렬 프로세싱이 유리할 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.

Claims (20)

  1. 냉매를 압축하여 토출하는 압축기;
    상기 냉매와 실내공기를 열교환하는 실내 열교환기;
    적어도 하나의 센서를 포함하는 센서부; 및
    제어부를 포함하고,
    상기 제어부는,
    상기 실내공기의 이슬점온도에 대응하는 제1 목표온도와, 상기 실내 열교환기의 현재 온도에 기초하여, 상기 압축기에 대한 1차 제어를 수행하고,
    상기 제1 목표온도보다 낮은 영하의 제2 목표온도와, 상기 실내 열교환기의 현재 온도에 기초하여, 상기 압축기에 대한 2차 제어를 수행하고,
    상기 실내공기에 포함된 수분의 양에 기초하여, 상기 1차 제어 및 상기 2차 제어 중 적어도 하나를 반복하여 수행할지 여부를 결정하는 것을 특징으로 하는 공기조화기.
  2. 제1항에 있어서,
    상기 센서부는, 상기 실내공기의 상태를 감지하는 제1 센서를 포함하고,
    상기 제어부는,
    상기 제1 센서를 통해 감지되는 상기 실내공기의 상태에 기초하여, 상기 이슬점온도를 산출하고,
    상기 이슬점온도보다 소정 온도 낮은 온도를, 상기 제1 목표온도로 결정하는 것을 특징으로 하는 공기조화기.
  3. 제1항에 있어서,
    상기 제어부는,
    상기 압축기의 흡입압력에 대한 토출압력의 비(ratio)를, 압축비로 산출하고,
    상기 산출된 압축비가 기 설정된 기준 압축비 이하인 경우, 상기 제2 목표온도를 유지하고,
    상기 산출된 압축비가 상기 기준 압축비를 초과하는 경우, 상기 제2 목표온도를 상승시키는 것을 특징으로 하는 공기조화기.
  4. 제3항에 있어서,
    상기 제어부는,
    상기 산출된 압축비가 상기 기준 압축비 이하인 경우, 상기 열교환기의 현재 온도가 기 설정된 제1 제한온도 미만인지 여부를 판단하고,
    상기 열교환기의 현재 온도가 상기 제1 제한온도 미만인 경우, 상기 제2 목표온도를 상승시키고,
    상기 열교환기의 현재 온도가 상기 제1 제한온도 이상인 경우, 상기 제2 목표온도를 유지하는 것을 특징으로 하는 공기조화기.
  5. 제3항에 있어서,
    상기 제어부는,
    상기 상승된 제2 목표온도에 대응하는 상기 압축기의 운전주파수가, 기 설정된 최소 주파수 이하인 경우, 상기 최소 주파수를 상기 압축기의 운전주파수로 설정하고,
    상기 상승된 제2 목표온도에 대응하는 상기 압축기의 운전주파수가, 상기 최소 주파수를 초과하는 경우, 상기 상승된 제2 목표온도에 대응하는 상기 압축기의 운전주파수를 상기 압축기의 운전주파수로 설정하는 것을 특징으로 하는 공기조화기.
  6. 제1항에 있어서,
    상기 실내 열교환기로 유동하는 냉매를 팽창하는 팽창밸브를 더 포함하고,
    상기 제어부는,
    상기 2차 제어의 수행을 개시하는 경우, 상기 팽창밸브의 개도량이 기 설정된 기준 개도량 미만인지 여부를 확인하고,
    상기 팽창밸브의 개도량이 상기 기준 개도량 미만인 경우, 상기 기준 개도량에 따라 상기 팽창밸브가 오픈(open)되도록 제어하는 것을 특징으로 하는 공기조화기.
  7. 제6항에 있어서,
    상기 기준 개도량은, 상기 압축기의 시동이 종료된 시점의 상기 팽창밸브의 개도량에 대응하는 것을 특징으로 하는 공기조화기.
  8. 제1항에 있어서,
    상기 실내 열교환기로 유동하는 냉매를 팽창하는 팽창밸브;
    상기 실내 열교환기의 입구측 배관의 온도를 검출하는 제1 온도센서; 및
    상기 실내 열교환기의 출구측 배관의 온도를 검출하는 제2 온도센서를 더 포함하고,
    상기 제어부는,
    상기 출구측 배관의 온도에서 상기 입구측 배관의 온도를 뺀 결과값에 기초하여, 상기 팽창밸브의 개도량을 결정하는 것을 특징으로 하는 공기조화기.
  9. 제8항에 있어서,
    상기 제어부는,
    상기 결과값이 기 설정된 제1 레벨 이상인 경우, 상기 팽창밸브의 개도량이 증가하도록 제어하고,
    상기 결과값이, 상기 제1 레벨보다 낮은 제2 레벨 미만인 경우, 상기 팽창밸브의 개도량을 하강하도록 제어하고,
    상기 결과값이, 상기 제1 레벨 미만, 상기 제2 레벨 이상인 경우, 상기 팽창밸브의 개도량이 유지되도록 제어하는 것을 특징으로 하는 공기조화기.
  10. 제1항에 있어서,
    상기 센서부는, 상기 실내공기의 상태를 감지하는 제1 센서를 포함하고,
    상기 제어부는,
    상기 제1 센서를 통해 감지되는 상기 실내공기의 상태에 기초하여, 상기 실내공기에 포함된 수분의 양에 대응하는 습구온도를 산출하고,
    상기 습구온도가 기 설정된 온도 값 미만인 경우, 상기 1차 제어 및 상기 2차 제어를 반복하여 수행하는 것으로 결정하는 것을 특징으로 하는 공기조화기.
  11. 공기조화기의 동작방법에 있어서,
    실내공기의 이슬점온도에 대응하는 제1 목표온도와, 상기 공기조화기에 포함된 실내 열교환기의 현재 온도에 기초하여, 공기조화기에 포함된 압축기에 대한 1차 제어를 수행하는 동작;
    상기 제1 목표온도보다 낮은 영하의 제2 목표온도와, 상기 실내 열교환기의 현재 온도에 기초하여, 상기 압축기에 대한 2차 제어를 수행하는 동작; 및
    상기 실내공기에 포함된 수분의 양에 기초하여, 상기 1차 제어 및 상기 2차 제어 중 적어도 하나를 반복하여 수행할지 여부를 결정하는 동작을 포함하는 공기조화기의 동작방법.
  12. 제11항에 있어서,
    상기 1차 제어를 수행하는 동작은,
    적어도 하나의 센서를 통해 감지되는 상기 실내공기의 상태에 기초하여, 상기 이슬점온도를 산출하는 동작; 및
    상기 이슬점온도보다 소정 온도 낮은 온도를, 상기 제1 목표온도로 결정하는 동작을 포함하는 것을 특징으로 하는 공기조화기의 동작방법.
  13. 제11항에 있어서,
    상기 2차 제어를 수행하는 동작은,
    상기 압축기의 흡입압력에 대한 토출압력의 비(ratio)를, 압축비로 산출하는 동작;
    상기 산출된 압축비가 기 설정된 기준 압축비 이하인 경우, 상기 제2 목표온도를 유지하는 동작; 및
    상기 산출된 압축비가 상기 기준 압축비를 초과하는 경우, 상기 제2 목표온도를 상승시키는 동작을 포함하는 것을 특징으로 하는 공기조화기의 동작방법.
  14. 제13항에 있어서,
    상기 2차 제어를 수행하는 동작은,
    상기 산출된 압축비가 상기 기준 압축비 이하인 경우, 상기 열교환기의 현재 온도가 기 설정된 제1 제한온도 미만인지 여부를 판단하는 동작;
    상기 열교환기의 현재 온도가 상기 제1 제한온도 미만인 경우, 상기 제2 목표온도를 상승시키는 동작; 및
    상기 열교환기의 현재 온도가 상기 제1 제한온도 이상인 경우, 상기 제2 목표온도를 유지하는 동작을 더 포함하는 것을 특징으로 하는 공기조화기의 동작방법.
  15. 제13항에 있어서,
    상기 2차 제어를 수행하는 동작은,
    상기 상승된 제2 목표온도에 대응하는 상기 압축기의 운전주파수가, 기 설정된 최소 주파수 이하인 경우, 상기 최소 주파수를 상기 압축기의 운전주파수로 설정하는 동작; 및
    상기 상승된 제2 목표온도에 대응하는 상기 압축기의 운전주파수가, 상기 최소 주파수를 초과하는 경우, 상기 상승된 제2 목표온도에 대응하는 상기 압축기의 운전주파수를 상기 압축기의 운전주파수로 설정하는 동작을 더 포함하는 것을 특징으로 하는 공기조화기의 동작방법.
  16. 제11항에 있어서,
    상기 2차 제어의 수행을 개시하는 경우, 상기 공기조화기에 포함된 팽창밸브의 개도량이 기 설정된 기준 개도량 미만인지 여부를 확인하는 동작; 및
    상기 팽창밸브의 개도량이 상기 기준 개도량 미만인 경우, 상기 기준 개도량에 따라 상기 팽창밸브를 오픈(open)하는 동작을 더 포함하는 것을 특징으로 하는 공기조화기의 동작방법.
  17. 제16항에 있어서,
    상기 기준 개도량은, 상기 압축기의 시동이 종료된 시점의 상기 팽창밸브의 개도량에 대응하는 것을 특징으로 하는 공기조화기의 동작방법.
  18. 제11항에 있어서,
    상기 2차 제어를 수행하는 동작은,
    상기 실내 열교환기의 출구측 배관의 온도에서 입구측 배관의 온도를 뺀 결과값에 기초하여, 상기 팽창밸브의 개도량을 결정하는 동작을 포함하는 것을 특징으로 하는 공기조화기의 동작방법.
  19. 제18항에 있어서,
    상기 팽창밸브의 개도량을 결정하는 동작은,
    상기 결과값이 기 설정된 제1 레벨 이상인 경우, 상기 팽창밸브의 개도량을 증가시키는 동작;
    상기 결과값이, 상기 제1 레벨보다 낮은 제2 레벨 미만인 경우, 상기 팽창밸브의 개도량을 하강시키는 동작; 및
    상기 결과값이, 상기 제1 레벨 미만, 상기 제2 레벨 이상인 경우, 상기 팽창밸브의 개도량을 유지하는 동작을 포함하는 것을 특징으로 하는 공기조화기의 동작방법.
  20. 제11항에 있어서,
    상기 결정하는 동작은,
    적어도 하나의 센서를 통해 감지되는 상기 실내공기의 상태에 기초하여, 상기 실내공기에 포함된 수분의 양에 대응하는 습구온도를 산출하는 동작; 및
    상기 습구온도가 기 설정된 온도 값 미만인 경우, 상기 1차 제어 및 상기 2차 제어를 반복하여 수행하는 것으로 결정하는 동작을 포함하는 것을 특징으로 하는 공기조화기의 동작방법.
PCT/KR2021/018867 2020-12-23 2021-12-13 공기조화기 및 그 동작방법 WO2022139291A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180087302.5A CN116685813A (zh) 2020-12-23 2021-12-13 空调机及其动作方法
US18/268,674 US20230366601A1 (en) 2020-12-23 2021-12-13 Air conditioner and operation method thereof
EP21911358.6A EP4269911A1 (en) 2020-12-23 2021-12-13 Air conditioner and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0181649 2020-12-23
KR1020200181649A KR102480009B1 (ko) 2020-12-23 2020-12-23 공기조화기 및 그 동작방법

Publications (1)

Publication Number Publication Date
WO2022139291A1 true WO2022139291A1 (ko) 2022-06-30

Family

ID=82159619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018867 WO2022139291A1 (ko) 2020-12-23 2021-12-13 공기조화기 및 그 동작방법

Country Status (5)

Country Link
US (1) US20230366601A1 (ko)
EP (1) EP4269911A1 (ko)
KR (2) KR102480009B1 (ko)
CN (1) CN116685813A (ko)
WO (1) WO2022139291A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014288A (ja) 2008-07-01 2010-01-21 Toshiba Carrier Corp 空気調和機
JP5040981B2 (ja) * 2009-10-07 2012-10-03 三菱電機株式会社 空気調和装置
KR101282038B1 (ko) * 2008-03-19 2013-07-04 삼성전자주식회사 멀티 공기조화기 및 그 제어 방법
KR101689724B1 (ko) * 2010-06-21 2017-01-02 엘지전자 주식회사 공기조화기 및 그 제어방법
WO2018198390A1 (ja) * 2017-04-28 2018-11-01 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2018200128A (ja) 2017-05-26 2018-12-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2020060362A (ja) * 2019-03-08 2020-04-16 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282038B1 (ko) * 2008-03-19 2013-07-04 삼성전자주식회사 멀티 공기조화기 및 그 제어 방법
JP2010014288A (ja) 2008-07-01 2010-01-21 Toshiba Carrier Corp 空気調和機
JP5040981B2 (ja) * 2009-10-07 2012-10-03 三菱電機株式会社 空気調和装置
KR101689724B1 (ko) * 2010-06-21 2017-01-02 엘지전자 주식회사 공기조화기 및 그 제어방법
WO2018198390A1 (ja) * 2017-04-28 2018-11-01 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2018200128A (ja) 2017-05-26 2018-12-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2020060362A (ja) * 2019-03-08 2020-04-16 日立ジョンソンコントロールズ空調株式会社 空気調和機

Also Published As

Publication number Publication date
US20230366601A1 (en) 2023-11-16
KR20220090782A (ko) 2022-06-30
EP4269911A1 (en) 2023-11-01
CN116685813A (zh) 2023-09-01
KR20230002199A (ko) 2023-01-05
KR102480009B1 (ko) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2018117352A1 (en) Air conditioner and control method thereof
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2017023127A1 (ko) 공기조화기의 제어방법
WO2019147085A1 (ko) 공기 조화기 및 그 제어 방법
WO2017069472A1 (ko) 공기조화기 및 그 제어방법
WO2018221875A1 (en) Air conditioner and method for controlling the same
WO2021137428A1 (ko) 공기 조화기 및 이의 제어 방법
WO2022055202A1 (ko) 에어컨 실외기 보조냉각장치용 전기 어댑터 방식의 제어기
WO2019031778A1 (en) AIR CONDITIONER AND ITS CONTROL METHOD
WO2010098607A2 (ko) 케스케이드 열교환기를 이용한 냉난방 시스템
WO2022139291A1 (ko) 공기조화기 및 그 동작방법
CA3166228A1 (en) Quick heat algorithm for modulating heating equipment
WO2011062349A4 (ko) 히트 펌프
WO2020027596A1 (ko) 냉장고의 제어방법
WO2022103193A1 (ko) 공기조화기
WO2016129880A1 (en) Air conditioner
US20200200418A1 (en) Systems and methods for dynamic coil calibration
WO2021040427A1 (en) Air conditioner and control method thereof
WO2015190891A1 (ko) 공기조화기 및 그 제어방법
WO2017057818A1 (en) Air conditioner and method of controlling the same
WO2021046983A1 (zh) 空调蓄冷控制方法、装置及计算机可读存储介质
WO2020111479A1 (ko) 공기조화기
WO2019147086A1 (ko) 공기 조화기 및 공기 조화기의 제어 방법
WO2022124668A1 (ko) 환기 시스템, 통합 공조 시스템 및 그 제어 방법
WO2017179949A1 (ko) 이원 히트펌프 냉난방 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087302.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911358

Country of ref document: EP

Effective date: 20230724