WO2022139236A1 - 광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈 - Google Patents

광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈 Download PDF

Info

Publication number
WO2022139236A1
WO2022139236A1 PCT/KR2021/018107 KR2021018107W WO2022139236A1 WO 2022139236 A1 WO2022139236 A1 WO 2022139236A1 KR 2021018107 W KR2021018107 W KR 2021018107W WO 2022139236 A1 WO2022139236 A1 WO 2022139236A1
Authority
WO
WIPO (PCT)
Prior art keywords
color film
layer
color
solar cell
transparent ink
Prior art date
Application number
PCT/KR2021/018107
Other languages
English (en)
French (fr)
Inventor
탁성주
김아롱
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Publication of WO2022139236A1 publication Critical patent/WO2022139236A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method of manufacturing a color film including an optical pattern and a photovoltaic module including the color film.
  • BIPV Building Integrated Photovoltaic
  • FIG. 1 is a photograph of a conventional color photovoltaic module.
  • the color photovoltaic module is problematic in terms of color deviation and deterioration of power generation performance depending on the viewing angle.
  • FIG. 2 shows a conventional multi-layered color solar module, (a) is a basic type, (b) is a multi-layered color solar module to which an asymmetric prism is applied.
  • a color solar module having a multi-layer structure it has a color layer having a color and an air layer that makes a difference in refractive index by reflecting the color layer and makes it possible to hide the inside so that the inside is not visible.
  • an air layer which is a low refractive layer, is placed in the middle to bend the light path so that the inside is not visible.
  • a single-layer structure module to which an inverse prism reflection pattern is applied to improve the problems of the multi-layer structure module.
  • a prism pattern with a specific angle is produced using a material with a reflection characteristic to the surface of the prism. It is the principle of self-reflection. It is possible to implement a single layer module in which the windshield and PV cells are directly laminated without the need to apply an air layer with a large difference in refractive index inside.
  • the opaque prism patterns are arranged at regular intervals and have a shape that covers a portion of the windshield. That is, not only the shape of the pattern, but also the aperture ratio affects color development and power generation performance, which has a mutual trade-off relationship as shown in FIG. , the efficiency improvement limit was confirmed at the level of about 5% based on power generation.
  • the color panel for BIPV that has been developed or commercialized, such as Patent Publication No. 10-2175422
  • Patent Publication No. 10-2175422 since the color panel for BIPV that has been developed or commercialized, such as Patent Publication No. 10-2175422, is manufactured with the front protective tempered glass as the base, there is a limit to responding to the BIPV module that is manufactured to order in a non-standard size. It exists, and it has the disadvantage that it is impossible to sell it after storing it through pre-production. Therefore, if the color layer, which is essential for producing color BIPV, can be produced in the form of a film, it can be stored in a roll form after pre-production regardless of the size or thickness of the glass, and can be cut and used as needed something to do.
  • Patent Document 1 Patent Publication No. 10-1940921
  • Patent Document 2 Patent Publication No. 10-1917533
  • Patent Document 3 Patent Publication No. 10-2175422
  • An object of the present invention is to provide a building-integrated photovoltaic power module in which a color film including a method and the optical pattern is inserted between the encapsulant of the photovoltaic module.
  • the method comprising: forming a transparent ink layer on a base substrate; forming one or more patterns having a triangular cross-section including a base horizontal to the surface of the transparent ink layer, a first side, and a second side on the transparent ink layer; printing a color pattern on the first side; And there is provided a method of manufacturing a color film comprising the step of peeling the base substrate.
  • the forming of the transparent ink layer may be formed by curing and laminating ink discharged from the printer.
  • the ink droplets may have a height of 10 ⁇ m or less and a diameter of 70 ⁇ m or less.
  • the thickness of the transparent ink layer may be 20 to 100 ⁇ m.
  • the first side on which the color pattern is printed may reflect light or develop color by light, and the second side on which the color pattern is not formed may transmit light.
  • the first side on which the color pattern is printed may form a light blocking film structure.
  • the base substrate may be selected from the group consisting of tempered glass and a polymer film.
  • a photovoltaic module including a color film manufactured according to the above method.
  • the solar power module may be a building-integrated type.
  • the solar power module includes a front protective layer; a color film layer formed on the front protective layer; a solar cell layer formed on the color film layer; and a back protection layer formed on the solar cell layer.
  • a filler layer or an encapsulant layer may be further included between the front protective layer and the color film layer, between the color film layer and the solar cell layer, and between the solar cell layer and the back protective layer.
  • a color film including an optical pattern can be used as a single material, and it is easy to store by keeping it in a roll form, and it can be cut and used when necessary, so handling is easy.
  • the color film including the optical pattern according to the present invention shows low reflectance and high transmittance characteristics for securing power generation efficiency at a positive incident angle (a single piece of upper sunlight), and secures a color effect at a negative incident angle (lower pedestrian viewing angle) It can exhibit high reflectance and low transmittance characteristics for
  • 1 is a photograph of a conventional color solar module.
  • FIG. 2 shows a conventional multi-layered color solar module, (a) is a basic type, (b) is a multi-layered color solar module to which an asymmetric prism is applied.
  • FIG. 3 schematically shows a multi-layered color photovoltaic module to which an asymmetric prism pattern is applied.
  • FIG 5 shows a single-layer structure module (a) to which an inverse prism reflection pattern is applied and its reflection characteristics (b).
  • FIG. 6 is a graph showing the trade-off characteristics between light-receiving efficiency and reflectance of a single-layer structure module to which an inverse prism reflection pattern is applied.
  • Figure 7 (a) schematically shows a method for manufacturing a color film, according to an embodiment of the present invention
  • Figure 7 (b) is a schematic view of a method for manufacturing a solar power module including the color film it has been shown
  • FIG. 8 schematically shows a solar power module manufactured according to an embodiment of the present invention.
  • FIG. 10 schematically shows a color film including an optical pattern, manufactured according to an embodiment of the present invention.
  • FIG. 11 schematically shows an optical path according to a type of incident light and a viewing angle for a color film forming a light blocking film structure, according to an embodiment of the present invention.
  • FIG. 12 is a graph of measuring reflectance and transmittance at a wavelength of 400 to 1200 nm of a color film manufactured according to an embodiment of the present invention.
  • 13 is a graph of measuring reflectance and transmittance at a wavelength of 400 to 800 nm of a color film manufactured according to an embodiment of the present invention.
  • FIG. 14 is a graph of measuring reflectance and transmittance at a wavelength of 800 to 1200 nm of a color film manufactured according to an embodiment of the present invention.
  • the present invention relates to a method of manufacturing a color film including an optical pattern and a photovoltaic module including the color film.
  • Figure 7 (a) schematically shows a method for manufacturing a color film, according to an embodiment of the present invention
  • Figure 7 (b) is a schematic view of a method for manufacturing a solar power module including the color film shown
  • FIG. 8 schematically shows the solar power module manufactured accordingly.
  • the present invention will be described in more detail with reference to FIGS. 7 and 8 .
  • the method comprising: forming a transparent ink layer on a base substrate; forming one or more patterns having a triangular cross-section including a base horizontal to the surface of the transparent ink layer, a first side, and a second side on the transparent ink layer; printing a color pattern on the first side; And there is provided a method of manufacturing a color film comprising the step of peeling the base substrate.
  • the step of forming a transparent ink layer on the base substrate may be performed.
  • the base substrate is not particularly limited, but is preferably selected from the group consisting of tempered glass and a polymer film.
  • the method of forming the transparent ink layer is not particularly limited, but is preferably performed using a laminated printing method.
  • a laminated printing method For example, inkjet printing, 3D printing, etc. may be used, and the transparent ink layer may be formed by repeatedly performing the steps of discharging and laminating ink from a printer and curing the ink. At this time, it is preferable to prevent the transparent ink layer from collapsing by performing curing by a method such as UV curing after discharging the ink.
  • the height of the ink droplet used to form the transparent ink layer is 10 ⁇ m or less and the diameter is 70 ⁇ m or less.
  • the thickness of the transparent ink layer formed by the ink ejection, lamination and curing is 20 to 100 ⁇ m.
  • the thickness of the transparent ink layer formed by the ink ejection, lamination and curing is 20 to 100 ⁇ m.
  • it exceeds 100 ⁇ m there is a problem that the light transmission effect may be inhibited as will be described later.
  • the step of forming one or more patterns having a triangular cross-section composed of a horizontal base, a first side, and a second side on the transparent ink layer surface may be performed on the transparent ink layer using transparent ink again.
  • the color pattern may be formed by printing a color having a predetermined color only on the first side of the pattern having a triangular cross-section.
  • the color can be selected in various ways as needed, and as shown in FIG. 9 , various patterns of colors can be used so that colors can be developed as desired using colors with various output ratios and the remaining wavelengths can be transmitted.
  • the first side on which the color pattern is printed reflects light or develops color by light
  • the second side on which the color pattern is not formed is a color film that transmits light. It may also serve to support the first side.
  • FIG. 10 schematically shows a color film including an optical pattern, manufactured according to an embodiment of the present invention.
  • the thickness (d) of the transparent ink layer of the color film according to an embodiment of the present invention is preferably 20 to 100 ⁇ m.
  • the width (a) of the optical pattern having a triangular cross-section is preferably 200 to 1000 ⁇ m, in consideration of securing a space in which a color pattern can be printed and a function as a support.
  • the height (b) is preferably 50 to 250 ⁇ m.
  • the thickness (c) of the color pattern layer may be 20 to 50 ⁇ m.
  • a color layer (film) including an optical pattern can be produced on a base substrate by a lamination printing method, and the conventional optical pattern is printed on the windshield and applied itself to the production of a solar module. Since it is not used, the color film including the optical pattern can be used as a single material, and it is not only easy to store by storing it in a roll form, but also has the advantage of being easy to handle because it can be cut and used when necessary. have.
  • a photovoltaic module including a color film manufactured according to the above method. More specifically, disposing the color film prepared by the above method on the front protective layer; disposing a solar cell on the color film; disposing a back protection layer on the solar cell; And between the front protective layer and the color film, between the color film and the solar cell, and between the solar cell and the back protective layer is provided a method of manufacturing a solar power module comprising the step of inputting a filler or encapsulant.
  • a color film including an optical pattern is provided, and the photovoltaic module is manufactured more easily than in the prior art, which is applied to the photovoltaic module manufacturing itself by printing the optical pattern on the windshield. can do. That is, according to the present invention, since the pre-prepared color film layer can be manufactured by laminating a front protective layer, a solar cell, and an encapsulant, it is easy to manufacture.
  • the solar power module has a front protective layer; a color film layer formed on the front protective layer; a solar cell layer formed on the color film layer; and a back protection layer formed on the solar cell layer.
  • the front protective layer may be made of tempered glass or a polymer sheet, and the rear protective sheet is preferably made of glass or a backsheet.
  • a filler layer or an encapsulant layer may be further included between the front protective layer and the color film layer, between the color film layer and the solar cell layer, and between the solar cell layer and the back protective layer.
  • the filler layer or the encapsulant layer may be specially made of EVA and PVB, and various materials used in the art may be used.
  • the color pattern according to the present invention is not particularly limited, but the first side on which the color pattern is printed may form a louver-shaped light blocking film structure.
  • 11 shows the optical path according to the type of incident light and the viewing angle.
  • the light-shielding film structure formed by the first side is a structure in which the light-shielding film is open to incident light in the sunlight region as in the optical paths 1 and 2, as will be described later. It is possible to receive as much light as possible to the battery, and as shown in the optical paths 3 and 4, the incident light in the reflective area has a closed structure, so color can be developed through reflection basically.
  • FIGS. 12 to 14 are simulation results showing reflection and transmission performance of a solar module to which a color film manufactured according to an embodiment of the present invention is applied.
  • a positive angle of incidence the upper part of the sunlight
  • a negative angle of incidence lower pedestrian viewing angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 베이스 기재 상에 투명잉크층을 형성하는 단계; 상기 투명잉크층 상에 투명잉크층면에 수평한 밑변, 제1 변 및 제2 변으로 구성되는 삼각형상의 단면을 갖는 패턴을 하나 이상 형성하는 단계; 상기 제1 변에 컬러패턴을 인쇄하는 단계; 및 상기 베이스 기재를 박리하는 단계를 포함하는 컬러 필름의 제조방법에 관한 것이다. 본 발명에 따르면, 광학 패턴을 포함하는 컬러필름을 단일 소재로 활용할수 있으며, 롤(Roll) 형태로 보관하여 보관이 용이할 뿐만 아니라, 필요시 제단하여 사용할 수 있어, 취급이 용이하다. 또한, 본 발명에 따른 광학패턴을 포함하는 컬러필름은 양의 입사각 상부 태양광 일조각도)에서는 발전효율 확보 위한 저 반사율 및 고 투과율 특성을 보여주며 음의 입사각 (하부 보행자 시야각도)에서는 발색효과 확보 위한 고 반사율 및 저 투과율 특성을 나타낼 수 있다.

Description

광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈
본 발명은 광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈에 관한 것이다.
건물일체형 태양광 발전(BIPV, Building Integrated Photovoltaic)은, 건축물 외벽, 지붕 등에 설치되어, 태양광 발전과 함께 건축물의 외장기능까지 수행하는 시스템으로 도심 내 태양광 발전을 활용할 수 있는 방법 중 하나이다.
다만, 건축 디자인 측면에서 건물 외벽에 일반적인 태양광 모듈을 그대로 설치하기에는 모듈 내부의 태양전지 형상이 드러나 보이거나 어두운 계열의 색상 등의 한계로 인해 일반 외장재 수준의 심미성 확보가 어려운 상황이다. 도 1은 종래의 컬러 태양광 모듈의 사진으로 컬러 태양광 모듈은 시야각에 따른 색상편차 및 발전성능의 저하가 문제되고 있다.
이에 대한 종래의 기술로서 전면 보호유리에 컬러층을 부여하거나, 마이크로 패턴 또는 복층구조 등을 이용해 반사율을 제어하는 기술 등이 있다. 다만 현재까지의 기술들은 발전성능과 심미성을 동시에 모두 확보하기 어려운 상황으로 발전성능이 비교적 우수한 박막 증착방식의 경우, 시야각 별 색상편차 등 심미성이 떨어지는 문제가 있으며 심미성이 우수한 마이크로 패턴, 복층화 기술 또한 발전성능 측면에서 일반모듈 대비 60~70% 수준으로 한계를 보이는 상황이다.
이러한 문제를 해결하기 위해 다양한 연구가 행해져 왔다. 도 2는 종래의 복층구조 컬러 태양광모듈을 나타낸 것으로, (a)는 기본형, (b)는 비대칭 프리즘이 적용된 복층구조 컬러 태양광모듈이다. 도 2를 참조하면 복층구조의 컬러 태양광 모듈로서 색상을 가지는 컬러층과 이를 반사시킴으로써 굴절률 차이를 만들어 내부가 보이지 않도록 은폐 가능하게 해주는 공기층을 가지고 있다. 굴절률이 1.56인 컬러층과 굴절률이 1.56인 봉지재가 직접 접착되면, 굴절률 차이가 없어, 광의 산란 효과 및 굴절효과가 모두 상쇄되고, 외부에서 볼 때 내부에 있는 태양전지가 보이게 된다. 따라서 중간에 저 굴절층인 공기층(굴절률 1)을 두어 광 경로를 꺾이도록 하여 내부가 보이지 않게 하고 있다.
한편, 도 3은, 비대칭 프리즘 패턴을 적용하여 상부각도의 입사각은 투과시켜 발전에 활용하는 동시에 하부각도의 입사각은 반사시켜 내부은폐 및 발색을 이루어낼 수 있도록 설계되었으며, 이를 통해 발색기능은 유지한 채로 발전성능 향상을 달성하였다. 다만 복층구조의 원천적인 문제로서 도 4과 같이 좌우 각도에서 입사되는 태양광 또한 반사특성이 커지게 되며 결과적으로 발전효율 개선에 한계가 있음을 확인하였다.
도 5는 상기 복층구조 모듈의 문제점을 개선하기 위해 역프리즘 반사패턴을 적용한 단층구조 모듈이다. 굴절율 차이와 패턴형상을 이용한 전반사 특성으로 발색(반사)기능을 구현한 복층구조와 달리, 역프리즘 반사패턴 단층모듈의 경우, 반사특성을 가진 소재를 이용해 특정한 각도를 가진 프리즘 패턴을 제작함으로써 프리즘 표면 자체에서 반사가 일어나는 원리이다. 내부에 굴절율 차이가 큰 공기층을 적용할 필요 없이 전면유리와 PV 셀이 직접 적층(Lamination)되는 단층화 모듈을 구현할 수 있게 된다.
다만, 도 5에서 확인할 수 있는 것과 같이, 불투명한 프리즘 패턴이 일정한 간격으로 배치되는 구조로 전면유리 일부분을 가리고 있는 형태를 가지게 된다. 즉, 패턴의 형상뿐만이 아니라 개구율 (Aperture Ratio) 또한 발색과 발전성능에 영향을 미치게 되며 이는 도 6에서와 같이 상호 Trade-off 관계를 가지게 되는데, 시뮬레이션 상으로 기존 복층구조와 유사한 발색(반사) 특성을 가질 경우, 발전량 기준 약 5% 수준에서 효율 개선 한계가 확인되었다.
한편, 특허공보 제 10-2175422 등, 기존에 개발 또는 상용화된 BIPV용 컬러패널은 전면보호 강화유리를 베이스(Base)로 하여 제작되기 때문에, 비규격 크기로 주문 생산되는 BIPV 모듈을 대응하는데 한계가 존재하며, 사전 생산을 통해 보관 후 판매하는 방식이 불가능하다는 단점을 가진다. 따라서 컬러 BIPV를 제작하는데 필수적인 컬러층(layer)을 필름 형태로 제작 할 수 있다면, 유리의 크기나 두께에 상관없이 사전 생산 후 롤(roll) 형태로 보관이 가능해지며, 필요에 따라 재단하여 사용 가능 할 것이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 특허공보 제10-1940921호
(특허문헌 2) 특허공보 제10-1917533호
(특허문헌 3) 특허공보 제10-2175422호
본 발명은 상기와 같은 실정을 감안하여 안출된 것으로, 유리 상에 증착 또는 도포 방식으로 제작하던 컬러층(layer)을, 프린트 방식으로 컬러 필름 형태로 제작할 수 있는 광학패턴이 포함된 컬러필름의 제조방법 및 상기 광학패턴이 포함된 컬러필름이 태양광 모듈의 봉지재 사이에 삽입된 건물일체형 태양광 발전 모듈을 제공하고자 한다.
본 발명의 일 측면에 따르면, 베이스 기재 상에 투명잉크층을 형성하는 단계; 상기 투명잉크층 상에 투명잉크층면에 수평한 밑변, 제1 변 및 제2 변으로 구성되는 삼각형상의 단면을 갖는 패턴을 하나 이상 형성하는 단계; 상기 제1 변에 컬러패턴을 인쇄하는 단계; 및 상기 베이스 기재를 박리하는 단계를 포함하는 컬러 필름의 제조방법이 제공된다.
상기 투명잉크층을 형성하는 단계는 프린터에서 토출되는 잉크를 경화 및 적층시켜 형성될 수 있다.
상기 잉크의 액적은 높이가 10μm이하이고, 직경이 70μm이하일 수 있다.
상기 투명잉크층의 두께는 20 내지 100μm일 수 있다.
상기 컬러패턴이 인쇄된 제1 변은 빛을 반사 또는 빛에 의해 발색하고, 컬러패턴이 형성되지 않은 제2 변은 빛을 투과하는 것일 수 있다.
상기 컬러패턴이 인쇄된 제1 변은 차광막 구조를 형성할 수 있다.
상기 베이스 기재는 강화유리 및 폴리머 필름으로 이루어지는 그룹으로부터 선택될 수 있다.
본 발명의 다른 측면에 따르면, 상기 방법 따라 제조된 컬러 필름을 포함하는 태양광 발전 모듈이 제공된다.
상기 태양광 발전 모듈은 건물일체형일 수 있다.
상기 태양광 발전 모듈은 전면보호층; 상기 전면보호층 상에 형성되는 컬러필름층; 상기 컬러필름층 상에 형성되는 태양전지층; 및 상기 태양전지층 상에 형성되는 후면보호층을 포함할 수 있다.
상기 전면보호층과 컬러필름층 사이, 컬러필름층과 태양전지층 사이 및 태양전지층과 후면보호층 사이에 충진재층 또는 봉지재층을 추가로 포함할 수 있다.
본 발명의 다른 또 하나의 측면에 따르면, 전면보호층 상에 상기 방법으로 제조된 컬러 필름을 배치하는 단계; 상기 컬러 필름 상에 태양전지를 배치하는 단계; 상기 태양전지 상에 후면보호층을 배치하는 단계; 및 상기 전면보호층과 컬러필름 사이, 컬러필름과 태양전지 사이 및 태양전지와 후면보호층 사이에 충진재 또는 봉지재를 투입하는 단계를 포함하는 태양광 발전 모듈의 제조방법이 제공된다.
본 발명에 따르면, 광학 패턴을 포함하는 컬러필름을 단일 소재로 활용할수 있으며, 롤(Roll) 형태로 보관하여 보관이 용이할 뿐만 아니라, 필요시 제단하여 사용할 수 있어, 취급이 용이하다. 또한, 본 발명에 따른 광학패턴을 포함하는 컬러필름은 양의 입사각 상부 태양광 일조각도)에서는 발전효율 확보 위한 저 반사율 및 고 투과율 특성을 보여주며 음의 입사각 (하부 보행자 시야각도)에서는 발색효과 확보 위한 고 반사율 및 저 투과율 특성을 나타낼 수 있다.
도 1은 종래의 컬러 태양광 모듈의 사진이다.
도 2는 종래의 복층구조 컬러 태양광모듈을 나타낸 것으로, (a)는 기본형, (b)는 비대칭 프리즘이 적용된 복층구조 컬러 태양광모듈이다.
도 3은 비대칭 프리즘 패턴이 적용된 복층구조 컬러 태양광 모듈을 개략적으로 나타낸 것이다.
도 4는 비대칭 프리즘 패턴이 적용 복층구조 컬러 태양광 모듈의 입사각에 따른 반사율 및 투과율 실험 결과이다.
도 5는 역프리즘 반사패턴을 적용한 단층구조 모듈 (a) 및 이의 반사특성(b)을 나타낸 것이다.
도 6은 역프리즘 반사패턴을 적용한 단층구조 모듈의 수광효율 및 반사율간 Trade-off 특성을 나타낸 그래프이다.
도 7(a)는 본 발명의 일 실시예에 따라, 컬러필름을 제조하는 방법을 개략적으로 나타낸 것이고, 도 7(b)는 상기 컬러필름을 포함하는 태양광 발전모듈을 제조하는 방법을 개략적으로 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따라, 제조된 태양광 발전모듈을 개략적으로 나타낸 것이다.
도 9는 광학패턴이 포함된 컬러필름의 출력 비율을 예시적으로 나타낸 것이다.
도 10은 본 발명의 일 실시예에 따라 제조된, 광학패턴이 포함된 컬러필름을 개략적으로 나타낸 것이다.
도 11은 본 발명의 일 실시예에 따라, 차광막 구조를 형성하는 컬러필름에 대한 입사광 종류 및 시야각에 따른 광경로를 개략적으로 나타낸 것이다.
도 12는 본 발명의 일 실시예에 따라 제조된 컬러필름의 400 내지 1200nm 파장에서 반사율 및 투과율을 측정한 그래프이다.
도 13은 본 발명의 일 실시예에 따라 제조된 컬러필름의 400 내지 800nm 파장에서 반사율 및 투과율을 측정한 그래프이다.
도 14는 본 발명의 일 실시예에 따라 제조된 컬러필름의 800 내지 1200nm 파장에서 반사율 및 투과율을 측정한 그래프이다.
이하, 다양한 실시예를 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
본 발명은 광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈에 관한 것이다. 도 7(a)는 본 발명의 일 실시예에 따라, 컬러필름을 제조하는 방법을 개략적으로 나타낸 것이고, 도 7(b)는 상기 컬러필름을 포함하는 태양광 발전모듈을 제조하는 방법을 개략적으로 나타낸 것이며, 도 8은 이에 따라 제조된 태양광 발전모듈을 개략적으로 나타낸 것이다. 이하, 도 7 및 도 8을 참조하여 본 발명을 보다 상세하게 설명한다.
본 발명의 일 측면에 따르면, 베이스 기재 상에 투명잉크층을 형성하는 단계; 상기 투명잉크층 상에 투명잉크층면에 수평한 밑변, 제1 변 및 제2 변으로 구성되는 삼각형상의 단면을 갖는 패턴을 하나 이상 형성하는 단계; 상기 제1 변에 컬러패턴을 인쇄하는 단계; 및 상기 베이스 기재를 박리하는 단계를 포함하는 컬러 필름의 제조방법이 제공된다.
먼저, 베이스 기재 상에 투명잉크층을 형성하는 단계가 수행될 수 있다. 상기 베이스 기재는 특별하게 한정하는 것은 아니나, 강화유리 및 폴리머 필름으로 이루어지는 그룹으로부터 선택되는 것이 바람직하다.
상기 투명잉크층을 형성하는 방법은 특별하게 한정하는 것은 아니나 적층프린트 방식으로 이용하여 수행되는 것이 바람직하다. 예를 들어, 잉크젯 프린트, 3D 프린트 등을 이용하여 수행될 수 있으며, 프린터에서 잉크를 토출하여 적층하고, 이를 경화하는 단계를 반복하여 수행함으로써, 투명잉크층을 형성할 수 있다. 이 때, 잉크를 토출한 후 UV 경화 등의 방법으로, 경화를 수행함으로써, 투명잉크층이 무너지지 않도록 하는 것이 바람직하다.
이 때, 패턴의 원안에 가까운 구조를 구현하기 위해서는, 투명잉크층의 형성에 사용되는 잉크 액적의 높이가 10μm이하이고, 직경이 70μm이하인 것이 바람직하다.
한편, 상기 잉크 토출, 적층 및 경화에 의해 형성되는 투명잉크층의 두께는 20 내지 100μm인 것이 바람직하다. 100μm를 초과하면, 후술하는 것과 같이 빛의 투과 효과를 저해할 수 있는 문제가 있다. 다만, 지나치게 얇게 형성되는 경우, 패턴을 지지하지 못하고 붕괴될 우려가 있으므로, 20 내지 100μm의 두께를 갖는 것이 바람직하다.
상기 투명잉크층 상에 다시 투명잉크를 이용하여, 투명잉크층면에 수평한 밑변, 제1 변 및 제2 변으로 구성되는 삼각형상의 단면을 갖는 패턴을 하나 이상 형성하는 단계를 수행할 수 있다.
이후, 삼각형상의 단면을 갖는 패턴의 제1 변에만 소정의 컬러를 갖는 컬러를 인쇄하여 컬러패턴을 형성할 수 있다. 상기 컬러는 필요에 따라, 다양하게 선정할 수 있으며, 도 9에 나타낸 것과 같이 출력비율이 다양한 색상을 이용하여 원하는 바에 따라 발색이 되면서도 나머지 파장은 투과할 수 있도록 다양한 패턴을 색상이 사용될 수 있다.
이와 같이, 컬러패턴이 인쇄된 제1 변은 빛을 반사 또는 빛에 의해 발색하고, 컬러패턴이 형성되지 않은 제2 변은 빛을 투과하는 역할을 수행하는 컬러필름으로 기능 및 컬러패턴이 인쇄되는 제1 변을 지지하는 역할 또한 수행할 수 있다.
다음으로, 상기 베이스 기재를 박리하는 단계를 수행하여, 컬러 필름을 제조할 수 있다. 도 10은 본 발명의 일 실시예에 따라 제조된, 광학패턴이 포함된 컬러필름을 개략적으로 나타낸 것이다.
상술한 것과 같이, 본 발명의 일 실시예에 따른 컬러필름의 투명잉크층의 두께(d)는 20 내지 100μm인 것이 바람직하다. 또한, 특별하게 한정하는 것은 아니나, 컬러패턴이 인쇄될 수 있는 공간의 확보 및 지지체로서의 기능을 고려하여, 삼각형상의 단면을 갖는 광학패턴의 너비(a)는 200 내지 1000μm인 것이 바람직하고, 광학패턴의 높이(b)는 50 내지 250μm인 것이 바람직하다. 또한, 컬러패턴층의 두께(c)는 20 내지 50μm일 수 있다.
이와 같이, 본 발명에 따르면, 적층프린팅 방식으로 베이스 기재상에 광학패턴이 포함된 컬러층(필름)을 제작할 수 있고, 종래 광학패턴을 전면유리상에 인쇄하여 그 자체를 태양광 모듈제작에 적용하여 사용하는 것이 아니므로, 광학 패턴을 포함하는 컬러필름을 단일 소재로 활용할 수 있으며, 롤(Roll) 형태로 보관하여 보관이 용이할 뿐만 아니라, 필요시 제단하여 사용할 수 있어, 취급이 용이한 장점이 있다.
본 발명의 다른 또 하나의 측면에 따르면, 상기 방법에 따라 제조된 컬러 필름을 포함하는 태양광 발전 모듈이 제공된다. 보다 상세하게, 전면보호층 상에 상기 방법으로 제조된 컬러 필름을 배치하는 단계; 상기 컬러 필름 상에 태양전지를 배치하는 단계; 상기 태양전지 상에 후면보호층을 배치하는 단계; 및 상기 전면보호층과 컬러필름 사이, 컬러필름과 태양전지 사이 및 태양전지와 후면보호층 사이에 충진재 또는 봉지재를 투입하는 단계를 포함하는 태양광 발전 모듈의 제조방법이 제공된다.
상술한 것과 같이, 본 발명에 따르면, 광학 패턴을 포함하는 컬러필름이 제공되며, 광학패턴을 전면유리상에 인쇄하여 그 자체를 태양광 모듈제작에 적용하던 종래 기술보다 용이하게 태양광 발전 모듈을 제조할 수 있다. 즉, 본 발명에 따르면, 미리 제조된 컬러필름층을 전면보호층, 태양전지 및 봉지재 등과 적층하는 방식으로 제조할 수 있으므로, 제조가 용이하다.
한편, 상기 태양광 발전 모듈은 전면보호층; 상기 전면보호층 상에 형성되는 컬러필름층; 상기 컬러필름층 상에 형성되는 태양전지층; 및 상기 태양전지층 상에 형성되는 후면보호층을 포함할 수 있다.
상기 전면 보호층은 강화유리 또는 폴리머 시트로 이루어질 수 있으며, 후면 보호시트는 유리 또는 backsheet로 이루어지는 것이 바람직하다.
또한, 상기 전면보호층과 컬러필름층 사이, 컬러필름층과 태양전지층 사이 및 태양전지층과 후면보호층 사이에 충진재층 또는 봉지재층을 추가로 포함할 수 있다. 상기 충진재층 또는 봉지재층은 특별하게 EVA 및 PVB 등을 사용할 수 있으며, 본 기술분야에서 사용되는 다양한 소재가 사용될 수 있다.
한편, 본 발명에 따른 컬러패턴은 특별하게 한정하는 것은 아니나, 상기 컬러패턴이 인쇄된 제1 변은 louver 형상의 차광막 구조를 형성할 수 있다. 도 11은 입사광 종류 및 시야각에 따른 광경로를 나타낸 것으로, 제1 변에 의해 형성되는 상기 차광막 구조는 광경로 ①과 ②와 같이 일조영역의 입사광에 대해서는 차광막이 열려있는 구조로 후술하는 바와 같이 태양전지에 최대한 수광이 가능하도록 하며 광경로 ③과 ④와 같이 반사영역의 입사광은 차광막이 닫혀있는 구조로 기본적으로는 반사를 통해 발색이 가능하게 할 수 있다.
도 12 내지 14는 본 발명의 일 실시예에 따라 제조된 컬러필름을 적용한 태양광모듈의 반사, 투과 성능을 보여주는 시뮬레이션 결과물이다. 양의 입사각 (상부 태양광 일조각도)에서는 발전효율 확보 위한 저 반사율, 고 투과율 특성을 보여주며 음의 입사각 (하부 보행자 시야각도)에서는 발색효과 확보 위한 고 반사율, 저 투과율 특성을 보여준다. 시뮬레이션 결과, 컬러를 적용하지 않은 일반 태양광 모듈 대비 약 93% 수준의 효율을 보인다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
[부호의 설명]
10: 후면보호층
30: 태양전지
110: 베이스 기재
120: 투명필름층
130: 제1 변
140: 제2 변
150: 충진재 또는 봉지재
160: 컬러필름층
170: 전면보호층

Claims (12)

  1. 베이스 기재 상에 투명잉크층을 형성하는 단계;
    상기 투명잉크층 상에 투명잉크층면에 수평한 밑변, 제1 변 및 제2 변으로 구성되는 삼각형상의 단면을 갖는 패턴을 하나 이상 형성하는 단계;
    상기 제1 변에 컬러패턴을 인쇄하는 단계; 및
    상기 베이스 기재를 박리하는 단계를 포함하는 컬러 필름의 제조방법.
  2. 제1항에 있어서,
    상기 투명잉크층을 형성하는 단계는 프린터에서 토출되는 잉크를 경화 및 적층시켜 형성되는 컬러 필름의 제조방법.
  3. 제2항에 있어서,
    상기 잉크의 액적은 높이가 10μm이하이고, 직경이 70μm이하인 컬러 필름의 제조방법.
  4. 제1항에 있어서,
    상기 투명잉크층의 두께는 20 내지 100μm인 컬러 필름의 제조방법.
  5. 제1항에 있어서,
    상기 컬러패턴이 인쇄된 제1 변은 빛을 반사 또는 빛에 의해 발색하고, 컬러패턴이 형성되지 않은 제2 변은 빛을 투과하는 컬러 필름의 제조방법.
  6. 제1항에 있어서,
    상기 컬러패턴이 인쇄된 제1 변은 차광막 구조를 형성하는 컬러 필름의 제조방법.
  7. 제1항에 있어서,
    상기 베이스 기재는 강화유리 및 폴리머 필름으로 이루어지는 그룹으로부터 선택되는 컬러 필름의 제조방법.
  8. 제1항 내지 제7항 중 어느 한 항에 따라 제조된 컬러 필름을 포함하는 태양광 발전 모듈.
  9. 제8항에 있어서,
    상기 태양광 발전 모듈은 건물일체형인 태양광 발전 모듈.
  10. 제8항에 있어서,
    상기 태양광 발전 모듈은 전면보호층; 상기 전면보호층 상에 형성되는 컬러필름층; 상기 컬러필름층 상에 형성되는 태양전지층; 및 상기 태양전지층 상에 형성되는 후면보호층을 포함하는 태양광 발전 모듈.
  11. 제10항에 있어서,
    상기 전면보호층과 컬러필름층 사이, 컬러필름층과 태양전지층 사이 및 태양전지층과 후면보호층 사이에 충진재층 또는 봉지재층을 추가로 포함하는 태양광 발전 모듈.
  12. 전면보호층 상에 제1항 내지 제7항 중 어느 한 항에 따른 방법으로 제조된 컬러 필름을 배치하는 단계;
    상기 컬러 필름 상에 태양전지를 배치하는 단계;
    상기 태양전지 상에 후면보호층을 배치하는 단계; 및
    상기 전면보호층과 컬러필름 사이, 컬러필름과 태양전지 사이 및 태양전지와 후면보호층 사이에 충진재 또는 봉지재를 투입하는 단계를 포함하는 태양광 발전 모듈의 제조방법.
PCT/KR2021/018107 2020-12-21 2021-12-02 광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈 WO2022139236A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0179303 2020-12-21
KR1020200179303A KR102501442B1 (ko) 2020-12-21 2020-12-21 광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈

Publications (1)

Publication Number Publication Date
WO2022139236A1 true WO2022139236A1 (ko) 2022-06-30

Family

ID=82159461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018107 WO2022139236A1 (ko) 2020-12-21 2021-12-02 광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈

Country Status (2)

Country Link
KR (1) KR102501442B1 (ko)
WO (1) WO2022139236A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939228A (zh) * 2022-12-29 2023-04-07 新源劲吾(北京)科技有限公司 一种具有立体反射层的彩色光伏组件及其制备方法
CN117059683A (zh) * 2023-08-22 2023-11-14 新源劲吾(北京)科技有限公司 一种减少贴膜气泡的彩色光伏薄膜封装制作方法
CN117352593A (zh) * 2023-11-01 2024-01-05 新源劲吾(北京)科技有限公司 一种彩色光伏灌注封装方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863451B (zh) * 2022-12-29 2024-02-02 新源劲吾(北京)科技有限公司 一种蚀刻彩色前板、彩色光伏组件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987519A (zh) * 2017-06-05 2018-12-11 上海海优威新材料股份有限公司 光伏组件用可定向反射光线的胶膜
KR101982588B1 (ko) * 2017-12-26 2019-05-27 주식회사 포스코 태양광 발전모듈
KR20200064842A (ko) * 2018-11-29 2020-06-08 주식회사 포스코 필터링패널 및 이를 포함하는 태양광 발전모듈
US20200343397A1 (en) * 2017-10-30 2020-10-29 Balder Energy S.L.U Solar Module
CN111863976A (zh) * 2019-04-24 2020-10-30 上海海优威新材料股份有限公司 光伏组件用胶膜、制备方法及相应的光伏组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713947B1 (ko) * 2010-12-29 2017-03-08 엘지디스플레이 주식회사 평판표시장치용 차광테이프 및 그의 부착방법
KR101940921B1 (ko) 2017-08-18 2019-01-22 주식회사 포스코 패턴글라스 및 이를 포함하는 태양광 발전모듈
KR101917533B1 (ko) 2017-08-31 2018-11-09 주식회사 포스코 컬러 태양광 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987519A (zh) * 2017-06-05 2018-12-11 上海海优威新材料股份有限公司 光伏组件用可定向反射光线的胶膜
US20200343397A1 (en) * 2017-10-30 2020-10-29 Balder Energy S.L.U Solar Module
KR101982588B1 (ko) * 2017-12-26 2019-05-27 주식회사 포스코 태양광 발전모듈
KR20200064842A (ko) * 2018-11-29 2020-06-08 주식회사 포스코 필터링패널 및 이를 포함하는 태양광 발전모듈
CN111863976A (zh) * 2019-04-24 2020-10-30 上海海优威新材料股份有限公司 光伏组件用胶膜、制备方法及相应的光伏组件

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939228A (zh) * 2022-12-29 2023-04-07 新源劲吾(北京)科技有限公司 一种具有立体反射层的彩色光伏组件及其制备方法
CN115939228B (zh) * 2022-12-29 2023-08-11 新源劲吾(北京)科技有限公司 一种具有立体反射层的彩色光伏组件及其制备方法
CN117059683A (zh) * 2023-08-22 2023-11-14 新源劲吾(北京)科技有限公司 一种减少贴膜气泡的彩色光伏薄膜封装制作方法
CN117059683B (zh) * 2023-08-22 2024-01-23 新源劲吾(北京)科技有限公司 一种减少贴膜气泡的彩色光伏薄膜封装制作方法
CN117352593A (zh) * 2023-11-01 2024-01-05 新源劲吾(北京)科技有限公司 一种彩色光伏灌注封装方法
CN117352593B (zh) * 2023-11-01 2024-02-20 新源劲吾(北京)科技有限公司 一种彩色光伏灌注封装方法

Also Published As

Publication number Publication date
KR20220089039A (ko) 2022-06-28
KR102501442B1 (ko) 2023-02-20

Similar Documents

Publication Publication Date Title
WO2022139236A1 (ko) 광학패턴이 포함된 컬러필름의 제조방법 및 상기 컬러필름을 포함하는 태양광 발전 모듈
JP6407971B2 (ja) 多層太陽電池デバイス
WO2010053301A2 (ko) 기능성 시트 및 이를 포함하는 태양전지 모듈
CN215578586U (zh) 一种具有高透光彩色布纹涂层的光伏组件
WO2020111769A1 (ko) 필터링패널 및 이를 포함하는 태양광 발전모듈
JPH11307795A (ja) 太陽電池モジュール
JP2019197880A (ja) ソーラーモジュール
CN219419051U (zh) 一种彩色光伏组件
CN115602747B (zh) 部分覆盖图案的光伏组件及其应用
CN115579414A (zh) 增加入射光的彩色光伏组件及其应用
TW201444105A (zh) 太陽能模組
CN115642185B (zh) 提高光穿透率的彩色光伏组件及其制备方法和应用
KR102444138B1 (ko) 모아레 현상을 이용한 심미적 태양광 모듈
EP3567635A1 (en) Solar module
KR20210092034A (ko) 태양 전지 패널
CN204289486U (zh) 光伏组件
KR102378282B1 (ko) 투광 패널, 투광 패널의 제조방법 및 태양광 발전모듈
KR102386568B1 (ko) 컬러유리가 결합된 태양광 패널 및 이를 제조하는 방법
CN104600142A (zh) 光伏组件
JPH10270730A (ja) 太陽電池モジュール
US11858845B2 (en) Method for processing a transparent cover plate and cover plate
CN218602455U (zh) 一种高透光彩色bipv太阳能双玻组件
KR20220020136A (ko) 태양 전지 모듈 및 그 제조 방법
KR20210092626A (ko) 태양 전지 패널
JP6661664B2 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911303

Country of ref document: EP

Kind code of ref document: A1