WO2022139010A1 - 항균력이 개선된 대마 입자 및 그 제조방법 - Google Patents

항균력이 개선된 대마 입자 및 그 제조방법 Download PDF

Info

Publication number
WO2022139010A1
WO2022139010A1 PCT/KR2020/018887 KR2020018887W WO2022139010A1 WO 2022139010 A1 WO2022139010 A1 WO 2022139010A1 KR 2020018887 W KR2020018887 W KR 2020018887W WO 2022139010 A1 WO2022139010 A1 WO 2022139010A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemp
particles
antibacterial activity
hemp particles
improved antibacterial
Prior art date
Application number
PCT/KR2020/018887
Other languages
English (en)
French (fr)
Inventor
김용섭
Original Assignee
농업회사법인 (주)헴프앤알바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 농업회사법인 (주)헴프앤알바이오 filed Critical 농업회사법인 (주)헴프앤알바이오
Priority to PCT/KR2020/018887 priority Critical patent/WO2022139010A1/ko
Publication of WO2022139010A1 publication Critical patent/WO2022139010A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/28Cannabaceae, e.g. cannabis

Definitions

  • the present invention relates to hemp particles with improved antibacterial activity and a method for manufacturing the same.
  • Hemp ( Cannabis sativa L.) is an annual plant of the genus Cannabis, also called hemp or hemp. Each part of hemp has been used for various purposes since ancient times. Typically, the fibers of hemp stems have been used as raw materials for weaving hemp or nets. It has been used for harvesting.
  • Patent Document 1 KR 10-2011-0024627 A
  • an object of the present invention is to provide hemp particles in which antibacterial activity is maximized while maintaining the original properties of hemp.
  • an object of the present invention is to provide a method for producing hemp particles with maximized antibacterial activity from hemp.
  • an object of the present invention is to provide hemp particles with minimal variation in inter-particle morphology.
  • the present invention provides hemp particles with improved antimicrobial activity, wherein the average particle diameter of the hemp particles is 150 to 700 nm, hemp particles with improved antibacterial activity.
  • the present invention a drying step of drying the hemp; Freezing step of freezing the dried hemp; And it provides a method for producing hemp particles with improved antibacterial activity, comprising a crushing step of crushing the frozen hemp.
  • Hemp particles which are one aspect of the present invention, exhibit the maximized antibacterial effect while maintaining the original properties of hemp, such as anti-toxicity, quick-drying, and deodorizing properties.
  • the hemp particles of the present invention the variation in shape between particles is minimized. Therefore, the hemp particles of the present invention have high utility as antibacterial agents, functional fibers, functional plastics, and the like.
  • the manufacturing method of the hemp particles it is possible to minimize the deterioration and denaturation of the hemp particles due to heat, and it is possible to manufacture particles capable of maximizing the antibacterial activity.
  • the present invention is, in one aspect, hemp particles with improved antibacterial activity, wherein the hemp particles have an average particle diameter of 150 to 700 nm, hemp particles with improved antibacterial activity.
  • the average particle diameter may mean an average of diameters measured at two arbitrary points except for the longest axis and the shortest axis of the particles.
  • the hemp particles may have significantly improved antibacterial activity compared to hemp before processing.
  • the minimum inhibitory concentration (Minimal Inhibitory Concentration, MIC) for microorganisms may be less than 10 ⁇ g / ml.
  • the MIC of the hemp particles may be 10 ⁇ g/ml or less, and when the average particle diameter of the hemp particles is 200-300 nm or less, it may be about 2-5 ⁇ g/ml.
  • the antibacterial activity is weakened by about 150 times or more, and when it is about 150 nm or less, it is also about 500 ⁇ g / ml or more Thus, compared to the particles of the present invention, the antibacterial activity is weakened by about 150 times or more.
  • the average particle diameter of the hemp particles may be 180 ⁇ 250nm. Specifically, when the average particle diameter of the hemp particles of the present invention is 190 to 250 nm, or 190 to 240 nm, or 190 to 230 nm, or 190 to 220 nm, or when it is about 200 nm, the antibacterial activity exhibited by the hemp particles is the best.
  • the hemp particles of the present invention may have antibacterial activity against pathogens.
  • the pathogen may include, but is not limited to, the following microorganisms:
  • Staphylococcus aureus Escherichia coli , Malassezia furfur , Propionibacterium acnes , Pseudonomas aeruginosa , and Candida albicans .
  • the hemp particles may include crushed after immersing the hemp powder in a dispersion medium.
  • the hemp particles used for the immersion may mean hemp particles that are preliminarily powdered before obtaining the final hemp particles.
  • the average particle diameter of the hemp particles used for the immersion may be about 1 to 20 micrometers, or 5 to 15 micrometers.
  • the dispersion medium may include water, an organic acid, or an organic solvent, and the organic solvent may include alcohols, alkanes, and the like.
  • the dispersion medium used for the immersion may be used in an amount of about 0.1 to 50 parts by weight, or 1 to 30 parts by weight, when the total weight of the hemp particles is 100.
  • the dispersion medium may have a concentration of 0.1 to 99% (v/v) when used as an aqueous solution.
  • the hemp particles may include what is crushed after freezing the surface of the hemp by moisture coating.
  • the moisture coating may be performed by spraying on the hemp surface, for example, the spraying may be an ultra-fine spray.
  • the moisture coating amount may be 1 to 5 parts by weight, specifically, 1 to 5 parts by weight, when the total weight of hemp or hemp crushed hemp particles (or hemp particles) is 100 parts by weight.
  • the amount may be at least 5 parts by weight, at least 3 parts by weight, at least 4 parts by weight, and at most 5 parts by weight, at most 4 parts by weight, at most 3 parts by weight, and at most 2 parts by weight.
  • the hemp particles include: After drying 95% or more of moisture based on the moisture content, it may be crushed by coating the hemp surface with moisture.
  • the hemp particles are dried after washing the hemp outposts (stems, leaves, roots, etc.) with water, and then drying the moisture to 95% or more, preferably to about 97%, based on the total amount of moisture in the hemp before drying. it may have been done If the moisture in the hemp is about 3% or more, it may be difficult to micronize the hemp.
  • the drying of the hemp may be carried out under about 1.5 to 3 atmospheres at about 100 to 300 °C, preferably, it may be carried out under about 180 to 220 °C and 1.8 to 2.3 atmospheres. Under the above drying conditions, the moisture drying efficiency in hemp may be the best.
  • the drying may include steam drying.
  • the hemp particles of the present invention may include an anti-carbonizing agent.
  • the surface of the carbonization inhibitor is coated with an anti-carbonization agent to prevent and improve deterioration due to carbonization of hemp in a high temperature environment.
  • the carbonization inhibitor is not limited, and may include an organotin compound, a metal hydroxide, a bromine or chlorine-containing halogen-based compound, a phosphorus-based compound, and a nitrogen-based compound.
  • the present invention in one aspect, a drying step of drying the hemp; Freezing step of freezing the dried hemp; And it is a method for producing hemp particles with improved antibacterial activity, comprising a crushing step of crushing the frozen hemp.
  • the freezing may include freezing after spraying the hemp, the freezing temperature may be about -10 ⁇ -160 °C.
  • the crushing step crushing the hemp, a first crushing step of crushing so that the average particle diameter of the crushed hemp particles is 5 ⁇ 15mm; a second crushing step of crushing the crushed hemp particles so that the average particle diameter of the crushed hemp particles is 1 to 5 mm; a third crushing step of crushing the hemp particles subjected to the third crushing step, and crushing the crushed hemp particles so that the average particle diameter of the crushed hemp particles is 0.1 to 1 mm; And by crushing the hemp particles that have been subjected to the third crushing step, it may include a third crushing step of crushing so that the average particle diameter of the crushed hemp particles is 150 ⁇ 700nm.
  • the method in order, a drying step of drying the hemp; A first crushing step of crushing the dried hemp; A first freezing step of spraying the hemp particles resulting from the first crushing step and then freezing at -10 to -30°C; a second crushing step of crushing the frozen hemp particles; A second freezing step of spraying the crushed hemp particles and freezing at -30 to -50 °C; a third crushing step of crushing the frozen hemp particles; A third freezing step of freezing the crushed hemp particles at -130 ⁇ -160 °C; and a fourth crushing step of crushing the frozen hemp particles.
  • the dried hemp may be dried by at least about 95% of the total amount of moisture containing hemp.
  • Hemp particles prepared by being crushed to have an average particle diameter of 5 to 10 mm after drying as described above may be water-coated on the surface of the particles through ultra-fine spraying.
  • the moisture coating may be 1 to 5 parts by weight, preferably 2.5 to 3.5 parts by weight, when the total weight of hemp is 100 parts by weight.
  • the average particle diameter of the primary crushed hemp particles may be 5 to 10 mm, preferably 6 to 9 mm.
  • the hemp particles coated with moisture as described above may be secondarily crushed after freezing (primary freezing).
  • the average particle diameter of the secondary crushed hemp particles may be 5 mm or less, specifically 1 to 5 mm, and more specifically 2 to 4 mm.
  • the freezing temperature may be about -10 ⁇ -30 °C, preferably -15 ⁇ -25 °C.
  • the secondary crushed hemp particles may be frozen (secondary freezing) after moisture coating on the particle surface through spraying again.
  • the amount of moisture coated on the secondary crushed hemp particles may be 5 to 10 parts by weight, preferably 6 to 8 parts by weight, when the total weight of hemp is 100 parts by weight.
  • the hemp particles may be second frozen at about -30 to -50 °C.
  • the secondary freezing temperature may be preferably -35 ⁇ -45 °C.
  • the secondary frozen hemp particles may be crushed again (tertiary crushing).
  • the average particle diameter of the tertiary crushed hemp particles may be 0.1 to 1 mm, preferably about 0.3 to 0.7 mm.
  • hemp particles of an intermediate level hemp particles having an average particle diameter of 1 to 5 mm
  • hemp particles having an average particle diameter of 150 to 700 nm can be obtained.
  • the tertiary crushed hemp particles may be frozen (tertiary freezing) after water coating on the particle surface through spraying again.
  • the amount of moisture coated on the tertiarily crushed hemp particles may be 1 to 5 parts by weight, preferably 2.5 to 3.5 parts by weight, when the total weight of hemp is 100 parts by weight.
  • the hemp particles may be third frozen at about -130 ⁇ -160 °C.
  • the third freezing temperature may be preferably -145 ⁇ -155 °C.
  • the frozen hemp particles may be finally crushed so that the average particle diameter of the hemp particles is 150 ⁇ 700nm.
  • the temperature of the first to third freezing and the amount of water to be coated at the time of water coating are optimized to efficiently obtain the target hemp particles, hemp particles having an average particle diameter of 150 to 700 nm, so the temperature at each order
  • the moisture content is different, the yield of the desired hemp particles may be significantly reduced.
  • hemp 50 kg was washed with water and immediately crushed using a cutting mill. As a result, hemp is not crushed uniformly, and there is a problem in that hemp sticks to the blade of the machine, greatly reducing work efficiency. Accordingly, by controlling the moisture content contained in hemp, conditions suitable for primary crushing were derived.
  • the moisture content in the dried hemp was adjusted to 1%, 3%, 5%, 10%, 25%, 50%, 75% of the total moisture content, and the same experiment was performed.
  • hemp having 3% moisture compared to about the initial moisture content was uniformly crushed when crushed, and the unshredded portion was minimized, confirming that it was most appropriate.
  • Hemp particles having an average particle diameter of about 7 mm were obtained by primary crushing (primary crushing) of the hemp dried by about 97% of moisture in Example 1 in a cutting mill.
  • the particles were coated with about 3 parts by weight of moisture based on the total weight of the hemp particles by using a fine atomizer (primary moisture coating), and then frozen (primarily frozen) at about -20°C using a refrigerator.
  • Frozen hemp particles were put into a grinder and pulverized (secondary crushing) so that the average particle diameter was about 3 mm.
  • the pulverized hemp particles were coated with about 7 parts by weight of moisture based on the total weight of the hemp particles (secondary moisture coating), and then frozen (secondary frozen) at -40°C.
  • the frozen hemp particles were again pulverized (tertiary crushing) in a pulverizer to have an average particle diameter of about 0.5 mm.
  • Staphylococcus aureus Escherichia coli , Malassezia furfur , Propionibacterium acnes , Pseudonomas aeruginosa , and Candida albicans were used in this experiment after being sold from the Korea Research Institute of Bioscience and Biotechnology, respectively.
  • the hemp particles were treated in amounts of 1000, 500, 100, 50, 20, 10, 5, 2.5, 1.25, 0.625 ⁇ g.
  • the minimum growth inhibitory concentration (MIC) was measured by measuring the absorbance under a wavelength of 620 nm using an ELISA reader while culturing with shaking for 6 hours in an incubator at 37°C.
  • YPD complete medium glucose 2%, peptone 1%, yeast extract 0.5%, pH 5,5
  • the cannabis particles were added to 1000, 500, 100, 50, 20, 10, 5, 2.5, 1.25, treated in an amount of 0.625 ⁇ g.
  • MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-dip-henyl-2H-tetrazolium bromide] solution [ 5 mg of MTT/mL of PBS (pH 7.4)] was added to each well, and incubated at 37° C. in an incubator for 4 hours.
  • 20 ⁇ l of 20% SDS containing 0.02 N HCl was added, followed by reaction at 37° C. for 16 hours.
  • the minimum growth inhibition concentration (MIC) was determined by measuring the absorbance of each well under a wavelength of 570 nm with an ELISA reader.
  • Microorganism type MIC Staphylococcus aureus (A) 5 E. coli (B) 2.5 Malassezia Puffer (C) 2.5 Propionibacterium Acne (D) 2.5 Pseudomonas aeruginosa (E) 5 Candida albicans (F) 5
  • Antibacterial activity was measured in the same manner as in Experimental Example 1 by varying the average particle diameter of the hemp particles.
  • the antibacterial activity exhibited the same effect as above if it had the same particle size as described above.
  • the production yield of the target hemp particles (average particle diameter of 200 nm) was obtained by varying the amount of water coating and the freezing temperature when manufacturing the hemp particles.
  • the yield was calculated as a relative value of the total weight of the hemp particles prepared according to each condition compared to the total weight of the hemp particles of Example 2.
  • Moisture coating amount (top) and yield (bottom) Primary One 3 5 7 10 70% 100% 80% 60% 55% Secondary One 3 5 7 10 50% 50% 75% 100% 80% tertiary One 3 5 7 10 75% 100% 80% 65% 50%
  • Freezing temperature (top) and yield (bottom) Primary -150°C -30°C -20°C -10°C -5°C 80% 83% 100% 70% 60% Secondary -150°C -50°C -40°C -30°C -5°C 60% 73% 100% 80% 77% tertiary -200°C -160°C -150°C -100°C -30°C 65% 70% 100% 87% 70%

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 항균력이 향상된 대마 입자와 그 제조방법에 관한 것이다. 본 발명의 일 측면인 대마 입자는, 항독성, 속건성, 소취성 등 대마 본연이 갖는 특성은 그대로 유지하면서, 극대화된 항균 효과를 나타낸다. 또한, 본 발명의 대마 입자는 입자간 형태의 편차가 최소화된 것이다. 따라서, 본 발명의 대마 입자는 항균제, 기능성 섬유, 기능성 플라스틱 등으로 활용성이 높다. 또한, 상기 대마 입자의 제조방법에 의하면, 열로 인한 대마 입자의 변질과 변성을 최소화할 수 있고, 항균력을 극대화할 수 있는 입자를 제조할 수 있다.

Description

항균력이 개선된 대마 입자 및 그 제조방법
본 발명은 항균력이 향상된 대마 입자와 그 제조방법에 관한 것이다.
대마(Cannabis sativa L.)는 칸나비스속 일년생 식물로서, 삼 또는 마라고도 불린다. 대마는 예로부터 각 부위가 다양한 용도로 사용되어 왔는데, 대표적으로, 대마 줄기의 섬유는 삼베나 그물을 짜는 원료로 사용되어 왔으며, 이 밖에 열매는 향신료의 원료나 한방 약재로, 종자는 조미료용이나 채유용으로 사용되어 왔다.
한편, 최근 의류, 건축, 식품, 의약품 등 산업 전반에서 친환경 소재에 대한 소비자들의 관심이 높아지면서, 자연 유래 소재들에 대한 연구가 심화되고 있다. 대마는 역시 그 연구결과가 축적되면서, 최근에는 대마에 약 460여종의 유용 성분이 포함되어 있고, 항균, 항염증, 항진균성 효능이 있다는 사실이 규명되고 있다. 이를 이용하여, 기능성 섬유 또는 의류, 기능성 건축 자재 등 대마의 효능을 이용한 다양한 제품들의 개발이 연구성과와 맞물려 수행(KR 10-2011-0024627 A)되고 있다. 그러나, 아직까지는 대마의 효능을 극대화시킬 수 있는, 대마 활용에 최적화된 기술에 대한 연구는 미흡한 실정이다.
(선행기술문헌)
(특허문헌 1) KR 10-2011-0024627 A
일 측면에서, 본 발명의 목적은 대마가 갖는 본연의 성질은 유지하면서, 그 중 항균력은 극대화된 대마 입자를 제공하는 것이다.
일 측면에서, 본 발명의 목적은 대마로부터 항균력이 극대화된 대마 입자를 제조하는 방법을 제공하는 것이다.
일 측면에서, 본 발명의 목적은 입자간 형태의 편차를 최소화한 대마 입자를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 일 측면에서, 항균력이 개선된 대마 입자로서, 상기 대마 입자의 평균 입경은 150~700nm인, 항균력이 개선된 대마 입자를 제공한다.
일 측면에서, 본 발명은, 대마를 건조하는 건조 단계; 건조된 대마를 냉동시키는 냉동 단계; 및 상기 냉동된 대마를 파쇄하는 파쇄 단계를 포함하는, 항균력이 개선된 대마 입자의 제조방법을 제공한다.
본 발명의 일 측면인 대마 입자는, 항독성, 속건성, 소취성 등 대마 본연이 갖는 특성은 그대로 유지하면서, 극대화된 항균 효과를 나타낸다. 또한, 본 발명의 대마 입자는 입자간 형태의 편차가 최소화된 것이다. 따라서, 본 발명의 대마 입자는 항균제, 기능성 섬유, 기능성 플라스틱 등으로 활용성이 높다. 또한, 상기 대마 입자의 제조방법에 의하면, 열로 인한 대마 입자의 변질과 변성을 최소화할 수 있고, 항균력을 극대화할 수 있는 입자를 제조할 수 있다.
이하에서, 각 구성을 보다 상세히 설명하나, 이는 하나의 예시에 불과할 뿐, 본 발명의 권리범위가 다음 내용에 의해 제한되는 것은 아니다.
본 발명은 일 측면에서, 항균력이 개선된 대마 입자로서, 상기 대마 입자는 입자의 평균 입경이 150~700nm인, 항균력이 개선된 대마 입자이다.
본 명세서에서 평균 입경이란, 입자의 최장축과 최단축을 제외하고 임의의 두 지점에서 측정한 직경의 평균을 의미할 수 있다.
일 측면에서, 상기 대마 입자는 가공 전의 대마에 비하여 항균력이 현저히 향상된 것일 수 있다.
구체적으로, 본 발명에 의한 대마 입자는, 미생물에 대한 최소 억제 농도(Minimal Inhibitory Concentration, MIC)는 10μg/ml 이하일 수 있다. 구체적으로, 상기 대마 입자의 MIC는 10μg/ml이하 일 수 있으며, 대마 입자의 평균 입경이 200~300nm 이하인 경우에는 약 2~5 μg/ml일 수 있다. 또한, 상기 대마 입자의 평균 입경이 700nm 이상인 경우에는, MIC가 약 500μg/ml 이상이 되어, 본원 발명의 입자에 비하여, 항균력이 약 150배 이상 약화되며, 약 150nm 이하인 경우 역시 약 500μg/ml 이상이 되어, 본원 발명의 입자에 비하여, 항균력이 약 150배 이상 약화된다.
일 측면에서, 상기 대마 입자의 평균 입경은 180~250nm 일 수 있다. 구체적으로는, 본 발명의 대마 입자의 평균입경이 190~250nm, 또는 190~240nm, 또는 190~230nm, 또는 190~220 nm 일 때, 또는 약 200nm 일 때 대마 입자가 나타내는 항균력이 가장 우수하다.
또한, 상기와 같은 측면에서, 본원발명의 대마 입자는, 병원균에 대하여 항균력이있는 것일 수 있다. 상기 병원균은 아래 미생물을 포함할 수 있으나, 이에 제한되는 것은 아니다:
스태필로코쿠스 아우레우스(Staphylococcus aureus), 대장균(Escherichia coli), 말라세지아 퍼퍼(Malassezia furfur), 프로피오니박테리움 아크네(Propionibacterium acnes), 슈도모나스 아에루지노사(Pseudonomas aeruginosa), 및 칸디다 알비칸스(Candida albicans).
일 측면에서, 상기 대마 입자는 분산매에 대마 분말을 침지한 후, 파쇄한 것을 포함할 수 있다. 상기 침지에 사용되는 대마 입자는, 최종적인 대마 입자를 얻기 전에 예비적으로 분말화된 대마 입자를 의미할 수 있다.
상기 침지에 사용되는 대마 입자의 평균 입경은 약 1~20 마이크로미터, 또는 5~15 마이크로 미터일 수 있다.
상기 분산매는, 물, 유기산, 또는 유기용매를 포함할 수 있고, 상기 유기용매는, 알코올류, 알케인류 등을 포함할 수 있다.
상기 침지에 사용되는 분산매는, 대마 입자 총 중량을 100이라고 했을 때, 약 0.1~50 중량부, 또는 1~30 중량부로 사용될 수 있다.
또한 상기 분산매는 수용액으로 사용될 때, 0.1~99%(v/v)의 농도일 수 있다.
일 측면에서, 상기 대마 입자는 대마 표면을 수분 코팅하여 냉동한 후 파쇄한 것을 포함할 수 있다.
상기와 같은 측면에서, 상기 수분 코팅은, 대마 표면에의 분무에 의하여 수행될 수 있고, 예컨대, 상기 분무는 초미세 분무일 수 있다.
일 측면에서, 상기 수분 코팅량은, 대마 또는 대마가 파쇄된 대마 파쇄물(또는 대마 입자)의 총 중량을 100중량부로 할 때, 1~5 중량부일 수 있고, 구체적으로, 1 중량부 이상, 2 중량부 이상, 3 중량부 이상, 4 중량부 이상일 수 있으며, 5 중량부 이하, 4 중량부 이하, 3 중량부 이하, 2 중량부 이하일 수 있다.일 측면에서, 상기 대마 입자는, 대마 내 총 수분량을 기준으로 95% 이상의 수분을 건조시킨 후, 대마 표면을 수분 코팅하여 냉동한 것을 파쇄한 것일 수 있다.
구체적으로, 상기 대마 입자는, 대마의 전초(줄기, 잎, 뿌리 등)를 수세한 후, 건조하여, 건조 전 대마 내 수분 총량을 기준으로 95% 이상, 바람직하게는 약 97%까지 수분을 건조시킨 것일 수 있다. 대마 내 수분이 약 3% 이상인 경우에는, 대마를 미분화하기 어려울 수 있다.
한편, 대마 내 수분량은, 대마 총 중량을 기준으로 약 12 중량%를 차지하는 것으로 알려져 있다(KOTITI 시험 연구원 시험 결과, www.kotiti-global.com > newninfo > fe.do 등 참조 참조).
상기 대마의 건조는, 약 100~300℃에서 약 1.5~3 기압 하에서 수행될 수 있고, 바람직하게는, 약 180~220℃ 및 1.8~2.3 기압 하에서 수행될 수 있다. 상기 건조 조건하에서, 대마 내 수분 건조 효율이 가장 우수할 수 있다.
또한, 바람직하게 상기 건조는 스팀 건조를 포함할 수 있다.
일 측면에서, 본 발명의 대마 입자는, 탄화방지제를 포함할 수 있다. 구체적으로, 상기 탄화방지제는 대마 입자를 활용시, 예컨대, 대마 입자를 활용한 섬유를 제조할 경우, 고온 환경에서의 대마의 탄화로 인한 변질을 방지·개선하기 위하여 표면이 탄화방지제로 코팅된 것을 포함할 수 있다. 상기 탄화방지제는, 제한되지 않고, 오가노틴 화합물(Organotin compound), 금속 수산화물, 브롬 또는 염소 함유 할로겐계 화합물, 인계화합물, 질소계 화합물 등을 포함할 수 있다.
또한, 본 발명은 일 측면에서, 상기 대마를 건조하는 건조 단계; 건조된 대마를 냉동시키는 냉동 단계; 및 상기 냉동된 대마를 파쇄하는 파쇄 단계를 포함하는, 항균력이 개선된 대마 입자의 제조방법이다.
상기 냉동은 대마에 분무한 후 냉동시키는 것을 포함할 수 있으며, 상기 냉동 온도는 약 -10~-160℃일 수 있다.
상기 파쇄 단계는, 대마를 파쇄하여, 파쇄된 대마 입자의 평균 입경이 5~15mm가 되도록 파쇄하는 제1파쇄 단계; 상기 파쇄된 대마 입자를 파쇄하여, 파쇄된 대마 입자의 평균 입경이 1~5mm가 되도록 파쇄하는 제2 파쇄 단계; 상기 제3 파쇄 단계를 수행한 대마 입자를 파쇄하여, 파쇄된 대마 입자의 평균 입경이 0.1~1mm가 되도록 파쇄하는 제3파쇄 단계; 및 상기 제3 파쇄 단계를 수행한 대마 입자를 파쇄하여, 파쇄된 대마 입자의 평균 입경이 150~700nm가 되도록 파쇄하는 제3 파쇄 단계를 포함할 수 있다.
구체적으로, 상기 방법은, 순서대로, 대마를 건조하는 건조 단계; 건조된 대마를 파쇄하는 제1 파쇄 단계; 제1 파쇄 단계의 결과물인 대마 입자에 분무한 후 -10~-30℃에서 냉동시키는 제1 냉동 단계; 상기 냉동된 대마 입자를 파쇄하는 제2파쇄 단계; 상기 파쇄된 대마 입자에 분무하고 -30~-50℃에서 냉동시키는 제2 냉동 단계; 상기 냉동된 대마 입자를 파쇄하는 제3 파쇄 단계; 상기 파쇄된 대마입자를 -130~-160℃에서 냉동시키는 제3 냉동 단계; 및 상기 냉동된 대마 입자를 파쇄하는 제4파쇄 단계를 포함할 수 있다.
상기 대마 입자의 제조방법을 보다 자세히 설명하면 아래와 같다.
대마를 수세 및 건조하여, 대마 입자의 평균 입경이 약 5~10mm가 되도록 파쇄(1차 파쇄)할 수 있다. 상기 건조된 대마는 대마 함유 수분 총량중 약 95% 이상이 건조된 것일 수 있다.
상기와 같이 건조 후 5~10mm의 평균 입경을 갖도록 파쇄되어 제조된 대마 입자는, 초미세 분무를 통하여 입자의 표면상에 수분 코팅될 수 있다. 상기 수분 코팅은, 대마의 총 중량을 100 중량부로 할 때, 1~5 중량부로 될 수 있고, 바람직하게, 2.5~3.5 중량부로 될 수 있다.
상기 1차 파쇄된 대마 입자의 평균입경은 5~10mm 일 수 있고, 바람직하게는 6~9mm 일 수 있다.
상기 대마 입자에 코팅된 수분의 양이 상기와 같을 경우에, 냉동 후 패쇄시 형태적, 기능적으로 균질한 파쇄된 대마 입자를 얻을 수 있다.
상기와 같이 수분 코팅된 대마 입자는 냉동(1차 냉동) 후 2차 파쇄될 수 있다. 2차 파쇄된 대마 입자의 평균 입경은 5mm 이하일 수 있고, 구체적으로는 1~5mm일 수 있으며, 더욱 구체적으로는 2~4mm 일 수 있다.
상기 냉동시, 냉동 온도는 약 -10~-30℃일 수 있으며, 바람직하게는 -15~-25℃일 수 있다.
상기 2차 파쇄된 대마 입자는, 다시 분무를 통해 입자 표면에 수분 코팅을 한 후, 냉동(2차 냉동)될 수 있다.
상기 2차 파쇄된 대마 입자에 코팅된 수분의 양은, 대마의 총 중량을 100 중량부로 할 때, 5~10 중량부로 될 수 있고, 바람직하게, 6~8 중량부로 될 수 있다.
상기 수분 코팅 후 대마 입자는 약 -30~-50℃에서 2차 냉동될 수 있다. 상기 2차 냉동 온도는 바람직하게, -35~-45℃일 수 있다.
또한, 상기 2차 냉동된 대마 입자는 다시 파쇄(3차 파쇄)될 수 있다. 상기 3차 파쇄된 대마 입자의 평균 입경은 0.1~1mm일 수 있고, 바람직하게는 약 0.3~0.7mm일 수 있다.
상기 냉동 온도와, 코팅 수분량을 만족할 때, 최종적으로 목적하는 대마 입자를 제조하기 위하여 필수적으로 제조해야하는 대마입자인, 중간 수준의 대마 입자(평균 입경 1~5mm인 대마 입자)를 제조할 수 있다. 즉, 냉동과 수분 코팅을 상기 조건을 만족하도록 수행할 경우에만, 평균 입경이 150~700nm인 대마 입자를 얻을 수 있다.
상기 3차 파쇄된 대마 입자는, 다시 분무를 통해 입자 표면에 수분 코팅을 한 후 냉동(3차 냉동)될 수 있다.
상기 3차 파쇄된 대마 입자에 코팅된 수분의 양은, 대마의 총 중량을 100 중량부로 할 때, 1~5 중량부로 될 수 있고, 바람직하게, 2.5~3.5 중량부로 될 수 있다.
상기 수분 코팅 후 대마 입자는 약 -130~-160℃에서 3차 냉동될 수 있다. 상기 3차 냉동 온도는 바람직하게, -145~-155℃일 수 있다.
코팅된 수분 량이 5 중량부를 초과할 경우와, 1 중량부 미만일 경우에는 대마 입자를 균질하게 미립화할 수 없는 문제점이 있다.
상기 냉동된 대마 입자는 최종적으로 대마 입자의 평균 입경이 150~700nm가 되도록 파쇄될 수 있다.
한편, 상기 1차 내지 3차 냉동의 온도와, 수분 코팅시 코팅되는 수분량은, 목적하는 대마 입자인, 평균 입경이 150~700nm인 대마 입자를 효율적으로 얻기 위하여 최적화된 것이므로, 각 차수에서의 온도나 수분량이 상이할 경우, 목적하는 대마입자의 수율이 현저히 저하될 수 있다.
이하, 실시예 및 시험예를 들어 본 발명의 구성 및 효과를 보다 구체적으로 설명한다. 그러나 이들 실시예 및 시험예는 본 발명에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 발명의 범주 및 범위가 하기 예에 의해 제한되는 것은 아니다.
[실시예 1] 1차 파쇄를 위한 적정 조건 도출
대마 50kg을 수세하여, 즉시 커팅 밀을 이용하여 파쇄하였다. 그 결과, 대마가 균일하게 파쇄되지 않을 뿐 아니라, 기계 칼날에 대마가 엉겨 붙는 문제가 있어, 작업 효율이 크게 떨어졌다. 이에, 대마에 함유된 수분 함량을 조절하여, 1차 파쇄에 적정한 조건을 도출하였다.
우선, 대마 50kg을 산업용 건조기에서 약 200℃, 2기압 조건하에서 충분히 건조하였다. 그 결과, 약 44kg이 되었다. 수분이 모두 건조된 대마를 동일한 커팅 밀을 이용하여 파쇄한 결과, 대부분의 대마가 불규칙하게 파쇄되고, 날림 현상이 많아, 적합하지 않다고 결론 내렸다.
이후, 건조된 대마 내 수분 함량을 총 수분량 대비 1%, 3%, 5%, 10%, 25%, 50%, 75%로 조절하여, 동일한 실험을 진행하였다.
그 결과, 약 최초 수분량 대비 3%의 수분을 보유한 대마가, 파쇄시 균일하게 파쇄되고, 파쇄되지 않은 부분이 최소화되어, 가장 적정함을 확인하였다.
[실시예 2] 대마 입자의 제조
상기 실시예 1에서 수분이 약 97% 건조된 대마를 커팅밀에서 1차 파쇄(1차 파쇄)하여, 평균입경이 약 7mm인 대마 입자를 얻었다. 상기 입자는, 미세 분무기를 이용하여, 대마 입자 총 중량 대비 약 3 중량부의 수분을 코팅(1차 수분 코팅)한 후, 냉동기를 이용하여 약 -20℃에서 냉동(1차 냉동)하였다. 냉동된 대마 입자는 분쇄기에 투입하여 평균 입경이 약 3mm가 되도록 분쇄(2차 파쇄)하였다.
그 후 분쇄된 대마 입자에 대마 입자 총 중량 대비 약 7 중량부의 수분으로 코팅(2차 수분 코팅)한 후, -40℃에서 동결(2차 냉동)시켰다. 동결된 대마 입자는 다시 분쇄기에서 평균입경이 약 0.5mm가 되도록 분쇄(3차 파쇄)하였다.
마지막으로 분쇄된 대마 입자에 다시 대마 입자 총 중량 대비 약 3 중량부의 수분을 분사(3차 코팅)한 후, 약 -150℃에서 동결(3차 냉동)한 후 분쇄(4차 파쇄)하여, 약 200nm의 평균입경을 갖는 대마 입자를 제조하였다.
[실험예 1] 대마 입자의 항균력 측정
스태필로코쿠스 아우레우스(Staphylococcus aureus), 대장균(Escherichia coli), 말라세지아 퍼퍼(Malassezia furfur), 프로피오니박테리움 아크네(Propionibacterium acnes), 슈도모나스 아에루지노사(Pseudonomas aeruginosa), 및 칸디다 알비칸스(Candida albicans)를 각각 한국생명공학연구원에서 분양받아 본 실험에 이용하였다.
스태필로코쿠스 아우레우스와 대장균을 LB 완전 배지(트립톤(Tryptone) 1 %, NaCl 1 %, 효모 추출액 0.5 %)로 1Х106 세포/1 mL의 균수가 되도록 희석하여, 96-웰 플레이트에 100 ㎕씩 분주한 후, 대마 입자를 1000, 500, 100, 50, 20, 10, 5, 2.5, 1.25, 0.625 ㎍의 양으로 처리했다. 대마 입자를 처리한 후, 37℃ 배양기에서 6시간 동안 진탕배양을 하면서ELISA 판독기(reader)를 이용하여 620 nm의 파장 하에서 흡광도를 측정하여 최소 생육 저지농도 (MIC)를 측정하였다.
또한, 말라세지아 퍼퍼, 프로피오니박테리움 아크네, 슈도모나스 아에루지노사, 및 칸디다 알비칸스를 YPD 완전 배지(포도당 2%, 펩톤 1%, 효모 추출액 0.5%, pH 5,5)에 배양하여, YPD 액체 배지로 2Х103 세포/1 mL의 균수가 되도록 희석하여, 96-웰 플레이트에 100 ㎕씩 분주한 후, 대마입자를 1000, 500, 100, 50, 20, 10, 5, 2.5, 1.25, 0.625 ㎍의 양으로 처리했다. 상기 라이코펜을 처리한 후, 28℃배양기에서 24시간 동안 진탕 배양한 후, MTT[3-(4,5-dimethyl-2-thiazolyl)-2,5-dip- henyl-2H-tetrazolium bromide] 용액[5 mg of MTT/mL of PBS (pH 7.4)]을 각각의 웰에 넣고, 37℃배양기에서 4시간 동안 배양하였다. MTT에 의하여 생성된 포르마잔(Formazan)들을 용해하기 위해 0.02 N HCl이 포함된 20 % SDS를 20 ㎕를 넣은 후, 37℃에서 16시간 반응시켰다. ELISA 판독기(reader)로 570nm의 파장 하에서의 각 웰의 흡광도를 측정하여 최소 생육 저지농도 (MIC)를 측정하였다.
그 결과는 아래와 같다.
미생물 종류 MIC
스태필로코쿠스 아우레우스(A) 5
대장균(B) 2.5
말라세지아 퍼퍼(C) 2.5
프로피오니박테리움 아크네(D) 2.5
슈도모나스 아에루지노사 (E) 5
칸디다 알비칸스(F) 5
[실험예 2] 입자 크기와 항균력의 상관관계 확인
대마 입자의 평균 입경을 달리하여 상기 실험예 1과 동일한 방법으로 항균력을 측정하였다.
입자 크기(nm 및 MIC)
10 50 90 100 150 200 300 400 500 600 700 800 1000
A - - 1000 1000 10 5 5 10 10 10 100 500 1000
B - - - 500 5 2.5 5 5 5 5 50 500 1000
C - - - 1000 5 2.5 5 5 5 5 100 100 1000
D - - 1000 500 5 2.5 5 5 5 5 100 500 1000
E - - - 500 5 5 5 10 10 10 100 500 1000
F - - - 1000 10 5 5 10 10 10 100 500 1000
- 표시는, 항균력이 측정되지 않았음을 의미함
그 결과, 상기 표 2에서 볼 수 있듯이, 입자 평균입경이 약 150~700nm 범위를 벗어날 경우에는 항균력이 크게 약화되는 것을 확인할 수 있었다.
한편, 항균력은 분산매를 이용하여 제조한 입자의 경우에도 상기와 같은 입자 크기를 갖는다면, 상기와 같은 효과를 나타내었다.
[실험예 3] 제조방법에 따른 대마 입자 수율 측정
실시예 2에서 제조된 본원발명의 대마입자 제조시 제조 조건은 아래 표 3에 기재된 바와 같다.
1차 2차 3차
수분코팅 3 중량부 7중량부 3 중량부
냉동 -20℃ -40℃ -150℃
아래 실험예들에서는 대마입자 제조시 수분 코팅량과 냉동 온도를 달리하여, 목표하는 대마입자(평균입경 200nm)의 제조 수율을 구하였다.
수율은, 실시예 2의 대마 입자 총 중량 대비 각 조건에 따라 제조된 대마입자의 총 중량의 상대값으로 구하였다.
[실험예 3-1] 수분 코팅량에 따른 대마 입자 수율 측정
수분 코팅량 및(위) 수율(아래)
1차 1 3 5 7 10
70% 100% 80% 60% 55%
2차 1 3 5 7 10
50% 50% 75% 100% 80%
3차 1 3 5 7 10
75% 100% 80% 65% 50%
[실험예 3-2] 수분 코팅량에 따른 대마 입자 수율 측정
냉동 온도 및(위) 수율(아래)
1차 -150℃ -30℃ -20℃ -10℃ -5℃
80% 83% 100% 70% 60%
2차 -150℃ -50℃ -40℃ -30℃ -5℃
60% 73% 100% 80% 77%
3차 -200℃ -160℃ -150℃ -100℃ -30℃
65% 70% 100% 87% 70%
그 결과, 상기 표 4 및 5에서 볼 수 있듯이, 수분 코팅량 및 냉동 온도 각각 차수에서 어느 한 차수라도 본 발명과 다른 냉각온도 또는 수분 코팅량을 이용하여 제조할 경우, 목적하는 대마 입자 제조 수율이 크게 떨어짐을 확인할 수 있었다.

Claims (7)

  1. 항균력이 개선된 대마 입자로서,
    상기 대마 입자의 평균 입경은 150~700nm인, 항균력이 개선된 대마 입자.
  2. 제1항에 있어서,
    상기 대마 입자의 미생물에 대한 최소 억제 농도(Minimal Inhibitory Concentration, MIC)는 10μg/ml 이하인, 항균력이 개선된 대마 입자.
  3. 제1항에 있어서,
    상기 대마 입자의 평균 입경은 180~250nm인, 항균력이 개선된 대마 입자.
  4. 제2항에 있어서,
    상기 미생물은,
    스태필로코쿠스 아우레우스(Staphylococcus aureus), 대장균(Escherichia coli), 말라세지아 퍼퍼(Malassezia furfur), 프로피오니박테리움 아크네(Propionibacterium acnes), 슈도모나스 아에루지노사(Pseudonomas aeruginosa), 및 칸디다 알비칸스(Candida albicans)로 구성된 군으로부터 선택된 하나 이상을 포함하는, 항균력이 개선된 대마 입자.
  5. 제1항에 있어서,
    상기 대마 입자는, 대마 표면을 수분 코팅하여 냉동한 후 파쇄한 것을 포함하는, 항균력이 개선된 대마 입자.
  6. 제1항에 있어서,
    상기 대마 입자는,
    대마 내 총 수분량을 기준으로 95% 이상의 수분을 건조시킨 후, 대마 표면을 수분 코팅하여 냉동한 것을 파쇄한 것인, 항균력이 개선된 대마 입자.
  7. 제1항 내지 제6항 중 어느 한 항의 대마 입자의 제조방법으로서,
    상기 방법은,
    상기 대마를 건조하는 건조 단계;
    건조된 대마를 냉동시키는 냉동 단계; 및
    상기 냉동된 대마를 파쇄하는 파쇄 단계를 포함하는, 항균력이 개선된 대마 입자의 제조방법.
PCT/KR2020/018887 2020-12-22 2020-12-22 항균력이 개선된 대마 입자 및 그 제조방법 WO2022139010A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/018887 WO2022139010A1 (ko) 2020-12-22 2020-12-22 항균력이 개선된 대마 입자 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/018887 WO2022139010A1 (ko) 2020-12-22 2020-12-22 항균력이 개선된 대마 입자 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2022139010A1 true WO2022139010A1 (ko) 2022-06-30

Family

ID=82159917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018887 WO2022139010A1 (ko) 2020-12-22 2020-12-22 항균력이 개선된 대마 입자 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2022139010A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695131B1 (ko) * 2016-05-31 2017-01-23 김춘묵 신선초를 포함한 기능성 대마 원사 및 그 제조방법
KR101840130B1 (ko) * 2016-10-12 2018-03-19 장원호 대마 분체의 제조방법
WO2018208875A1 (en) * 2017-05-09 2018-11-15 Vitality Biopharma, Inc. Antimicrobial compositions comprising cannabinoids and methods of using the same
KR20200091825A (ko) * 2019-01-23 2020-07-31 주식회사 그린러쉬 농업회사법인 Em 발효 대사산물 및 대마추출물을 함유하는 항균 탈취제 조성물 및 그 조성방법
KR102196651B1 (ko) * 2019-10-14 2020-12-31 농업회사법인 (주)헴프앤알바이오 항균력이 개선된 대마 입자 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695131B1 (ko) * 2016-05-31 2017-01-23 김춘묵 신선초를 포함한 기능성 대마 원사 및 그 제조방법
KR101840130B1 (ko) * 2016-10-12 2018-03-19 장원호 대마 분체의 제조방법
WO2018208875A1 (en) * 2017-05-09 2018-11-15 Vitality Biopharma, Inc. Antimicrobial compositions comprising cannabinoids and methods of using the same
KR20200091825A (ko) * 2019-01-23 2020-07-31 주식회사 그린러쉬 농업회사법인 Em 발효 대사산물 및 대마추출물을 함유하는 항균 탈취제 조성물 및 그 조성방법
KR102196651B1 (ko) * 2019-10-14 2020-12-31 농업회사법인 (주)헴프앤알바이오 항균력이 개선된 대마 입자 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KHAN BELAS A.; CHEVALI VENKATA S.; NA HAINING; ZHU JIN; WARNER PHILIP; WANG HAO: "Processing and properties of antibacterial silver nanoparticle-loaded hemp hurd/poly(lactic acid) biocomposites", COMPOSITES PART B, vol. 100, 5 June 2016 (2016-06-05), AMSTERDAM, NL, pages 10 - 18, XP029652842, ISSN: 1359-8368, DOI: 10.1016/j.compositesb.2016.06.022 *

Similar Documents

Publication Publication Date Title
Khatune et al. Antibacterial compounds from the seeds of Psoralea corylifolia
Kumar et al. Phytochemical composition and in vitro antimicrobial activity of Bauhinia racemosa Lamk (Caesalpiniaceae)
Leela et al. Studies on the antibacterial activity of Quercus infectoria galls
KR102196651B1 (ko) 항균력이 개선된 대마 입자 및 그 제조방법
Abakar et al. Antimicrobial activity and minimum inhibitory concentration of Aloe vera sap and leaves using different extracts
Kim et al. Aromatic hydroxyl group plays a critical role in antibacterial activity of the curcumin analogues
CN103422351A (zh) 一种含有松香酸聚氧乙烯酯的羊毛衫处理液
Mohamed et al. Antibiofilm activity of papain enzyme against pathogenic Klebsiella pneumoniae
Marzouk et al. Comparative evaluation of the antimicrobial activity of Citrullus colocynthis immature fruit and seed organic extracts
Ma et al. Effects of addition of condensed tannin on the structure and properties of silk fibroin film
WO2022139010A1 (ko) 항균력이 개선된 대마 입자 및 그 제조방법
KR20180013245A (ko) 침향 추출물의 제조방법
Abd El Aty et al. Experimental study on antimicrobial activity of silk fabric treated with natural dye extract from neem (Azadirachta indica) leaves
Naikwade et al. Evaluation of antibacterial properties of Musa paradisiaca L. Leaves
KR102196652B1 (ko) 대마 입자를 포함하는 섬유 그 제조방법
Abd-Alrahman et al. Phytochemical screening and antimicrobial activity of EthOH/water Ziziphus jujuba seeds extracts
Kan et al. In vitro antimicrobial activities of Cicer arietinum L (Chickpea)
WO2022139011A1 (ko) 대마 입자를 포함하는 섬유 그 제조방법
Dhondiyal et al. Antibiotic potential of Lunularia cruciata (L.) Dum ex. Lindb (bryophyta) of Kumaon Himalaya
EP4088730A1 (en) Antimicrobial composititon for the treatment of the upper respiratory tract infections
CN112400901B (zh) 一种杀菌组合物及应用
Hamrita et al. Phytochemical composition and antimicrobial, and anti-quorum sensing activities of Punica granatum L. methanolic extract
Rizvi et al. Antibacterial activity of Ficus lyrata-An in vitro study
Kawamata et al. Trigonelline, an antifouling substance isolated from an octocoral Dendronephthya sp.
KR20210044150A (ko) 항균력이 개선된 대마 입자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/10/2023)