WO2022138913A1 - 感圧接着層形成性オルガノポリシロキサン組成物、その使用およびその組成設計方法 - Google Patents

感圧接着層形成性オルガノポリシロキサン組成物、その使用およびその組成設計方法 Download PDF

Info

Publication number
WO2022138913A1
WO2022138913A1 PCT/JP2021/048182 JP2021048182W WO2022138913A1 WO 2022138913 A1 WO2022138913 A1 WO 2022138913A1 JP 2021048182 W JP2021048182 W JP 2021048182W WO 2022138913 A1 WO2022138913 A1 WO 2022138913A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
adhesive layer
sensitive adhesive
pressure
organopolysiloxane
Prior art date
Application number
PCT/JP2021/048182
Other languages
English (en)
French (fr)
Inventor
真樹 伊藤
昭宏 中村
通孝 須藤
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Priority to JP2022571679A priority Critical patent/JPWO2022138913A1/ja
Priority to US18/268,979 priority patent/US20240117231A1/en
Publication of WO2022138913A1 publication Critical patent/WO2022138913A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • C09J7/403Adhesives in the form of films or foils characterised by release liners characterised by the structure of the release feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane

Definitions

  • the present invention relates to a cure-reactive organopolysiloxane composition that forms a pressure-sensitive adhesive layer. Specifically, the present invention has sufficient curability for practical use, and the glass transition point (Tg) of the pressure-sensitive adhesive layer is significantly reduced when the same resin component / polymer component ratio is adopted.
  • the present invention relates to a curing-reactive organopolysiloxane composition that realizes a stronger adhesive force and a method for designing the composition thereof.
  • the present invention also relates to applications such as pressure-sensitive adhesive compositions using the composition, laminates using the composition, electronic components, display devices (including flexible displays, touch panels, etc.) and the like.
  • the silicone-based pressure-sensitive adhesive composition has electrical insulation, heat resistance, cold resistance, adhesiveness to various adherends, and is transparent as necessary, as compared with acrylic and rubber-based pressure-sensitive adhesive compositions.
  • an addition reaction curing type pressure-sensitive adhesive composition is widely used because of its excellent properties.
  • silicone-based optical transparent adhesives Optically Clear Adhesive, hereinafter sometimes referred to as “OCA”
  • Silicone-based OCA has sufficient adhesive strength for practical use, is flexible and highly deformable, has excellent heat resistance, cold resistance, and light resistance, and is less likely to cause problems of coloring or discoloration of the OCA layer.
  • Patent Documents 1 and 2 Since changes in physical properties such as force, storage elastic modulus (for example, shear storage elastic modulus G'), and hardness are small, curved displays and flexible displays used in a wide temperature range including low temperatures such as -20 ° C. It is expected to be used for laminating or sealing display devices on the premise of folding and constant deformation (for example, Patent Documents 1 and 2). Further, the applicants have prepared silicone-based pressure-sensitive adhesive compositions having different adhesive strengths of a flexible structure and an adhesive layer obtained by curing and storage elastic moduli at low temperature to room temperature according to applications such as display devices. A plurality of proposals have been made (Patent Documents 3 to 9).
  • the present invention has been made to solve the above problems, and when used as a pressure-sensitive adhesive layer, it feels when a specific resin component / polymer component ratio for achieving a desired adhesive force is selected.
  • a pressure-sensitive adhesive layer-forming organopolysiloxane composition capable of further lowering the glass transition temperature (Tg) of the pressure-bonded layer and, as a result, simultaneously achieving a strong adhesive force and a low glass transition temperature (Tg). It is an object of the present invention to provide an object, its use, and a method for designing its composition.
  • one of the objects of the present invention is (A) a chain organopolysiloxane having an average number of alkenyl groups exceeding 1 in the molecule. (B) Organopolysiloxane resin or a mixture thereof containing the following components (b1) and (b2) in a mass ratio of 99: 1 to 0: 100: (B1) The sum of the contents of hydroxyl groups and hydrolyzable groups with respect to all silicon atoms in the molecule is 9 mol% or less, and the weight is measured by gel permeation chromatography (GPC) using toluene in terms of standard polystyrene.
  • GPC gel permeation chromatography
  • Organopolysiloxane resin with an average molecular weight (Mw) of 5500 or more (B2) The sum of the contents of the hydroxyl group and the hydrolyzable group with respect to the total silicon atom in the molecule is 9 mol% or less, and the weight measured by gel permeation chromatography (GPC) using toluene in terms of standard polystyrene.
  • GPC gel permeation chromatography
  • Organohydrogenpolysiloxane which has at least two Si—H bonds in the organopolysiloxane resin (C) molecule, which has an average molecular weight (Mw) of less than 4000.
  • (D) Containing an effective amount of hydrosilylation reaction catalyst Glass transition temperature of the pressure-sensitive adhesive layer obtained by curing the composition: Tg (° C.), It is obtained when the component (b2) is replaced with an organopolysiloxane resin having a weight average molecular weight (Mw) of 4000 or more, which is measured by the same method as that of the component (b2). Glass transition temperature of the pressure-sensitive adhesive layer obtained by curing the compositions having the same mass ratio: Tg'(° C.) When It is achieved by a pressure-sensitive adhesive layer-forming organopolysiloxane composition characterized in that the value of [Tg + 120] / [Tg'+120] is less than 1.0.
  • the above-mentioned problems are the use of the pressure-sensitive adhesive layer-forming organopolysiloxane composition or a cured product thereof as a pressure-sensitive adhesive layer, use as an electronic material or a member for a display device, and electronic components or electronic components provided with them. It can be achieved by the display device.
  • the above task is to use the above-mentioned component (b2) in the range of 1 to 100% by mass of the organopolysiloxane resin or a mixture thereof when the mass ratio of a specific resin component / polymer component is selected. It can be achieved by the characteristic composition design method of the pressure-sensitive adhesive layer-forming organopolysiloxane composition.
  • the pressure-sensitive adhesive layer-forming organopolysiloxane composition of the present invention has excellent curability by hydrosilylation reaction, and is a specific resin component for achieving a desired adhesive force when used as a pressure-sensitive adhesive layer by curing.
  • Tg glass transition temperature
  • Tg glass transition temperature
  • the organopolysiloxane composition of the present invention or a cured product thereof can be suitably used as a pressure-sensitive adhesive layer, an electronic material or a member for a display device having both strong adhesive force and low Tg, and is provided with them.
  • the method for designing the composition of the pressure-sensitive adhesive layer-forming organopolysiloxane composition according to the present invention is extremely simple, and for a composition having a specific resin component / polymer component ratio, the above-mentioned component (b2) is used.
  • the adhesive strength can be easily increased and the glass transition point (Tg) can be lowered.
  • the low temperature characteristic that the pressure sensitive adhesive layer has a low glass transition point (Tg) when a specific resin / polymer component ratio is selected When another organopolysiloxane resin is used in the same composition and compared with a pressure-sensitive adhesive layer having the same glass transition point (Tg), it also has an adhesive property of having a strong adhesive force, and as a result, it has a conventional adhesive property. Compared to the silicone-based pressure-sensitive adhesive layer, it has a low Tg and it is easy to realize a strong adhesive force, and it is not possible to realize it with a conventional composition in a specific resin component / polymer component ratio. It is possible to provide a pressure-sensitive adhesive layer having both low Tg and strong adhesive strength.
  • the upper line in FIG. 1, which will be described later, corresponds to a conventional product or a comparative experiment
  • the lower line is an example of the product of the present invention (however, excluding Example 10 and Comparative Example 9).
  • Tg is significantly reduced as compared with the case of using the component (b2) (Example: lower line) and comparative example (upper line).
  • Weight average molecular weight (Mw) of organopolysiloxane resin is measured by gel permeation chromatography (GPC) using toluene in terms of standard polystyrene. It means the weight average molecular weight (Mw).
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the glass transition temperature (Tg) and (Tg ′) of the pressure-sensitive adhesive layer according to the present invention are values derived from the peak value of the loss coefficient (tan ⁇ ) by the dynamic viscoelasticity measurement test.
  • Tg and Tg' can take a zero (0) or a negative value (-25 ° C., etc.)
  • Tg and Tg' can take a zero (0) or a negative value (-25 ° C., etc.)
  • “Lower value” cannot be expressed by a simple Tg'/ Tg ratio.
  • the glass transition point of the cured silicone product that can be a pressure-sensitive adhesive layer is ⁇ 120 ° C. or lower, even if it has a very low Tg or Tg ′, the denominator and the molecule are zero or negative.
  • the definition that the value of [Tg + 120] / [Tg'+120] is less than 1.0 is adopted by adding 120 to these numerical values so as not to be a value.
  • the Tg of the pressure-sensitive adhesive layer obtained by curing the pressure-sensitive adhesive layer-forming organopolysiloxane composition according to the present invention is not particularly limited, but is in the range of ⁇ 70 ° C. to + 45 ° C. It may be designed in the range of ⁇ 35 ° C. to + 45 ° C.
  • Tg' in the pressure-sensitive adhesive layer-forming organopolysiloxane composition according to the present invention, tentatively, in a specific composition, the weight average molecular weight of the component (b2) is measured by the same method as that of the component (b2).
  • Mw is a virtual numerical value representing the glass transition temperature (° C.) of the pressure-sensitive adhesive layer obtained by curing the composition obtained when replaced with 4000 or more organopolysiloxane resin.
  • replace the component (b2) means to use an organopolysiloxane resin having the same mass of Mw4000 or more in place of the component (b2), and in both compositions, the chain organodole which is the component (A).
  • the mass ratio (B) / (A) of the organopolysiloxane resin, which is the component (B), to the polysiloxane is the same.
  • the present invention relates to a composition using an organopolysiloxane resin having the same other compositional / curing conditions and using an organopolysiloxane resin having a large weight average molecular weight (4000 or more) instead of using the component (b2).
  • the Tg value of the composition according to the above is relatively low. Therefore, the value of [Tg + 120] / [Tg'+120] is less than 1.0, which is one of the characteristics of the pressure-sensitive adhesive layer using the composition according to the present invention.
  • Tg' is a virtual value when a resin component having Mw of 4000 or more is used, and when a resin component having Mw of 4000 or more (for example, Mw4070 or the like) is actually used (corresponding to a comparative experiment). )
  • Tg of the pressure-sensitive adhesive layer is calculated as Tg', more specific values such as less than 0.99 and less than 0.98 can be obtained as the value of [Tg + 120] / [Tg'+120]. It will be.
  • the pressure-sensitive adhesive layer-forming organopolysiloxane composition suitable for the present invention is (A) A chain organopolysiloxane having an average number of alkenyl groups in the molecule of more than 1.
  • (B) Organopolysiloxane resin or a mixture thereof containing the following components (b1) and (b2) in a mass ratio of 99: 1 to 0: 100: (B1)
  • the sum of the contents of hydroxyl groups and hydrolyzable groups with respect to all silicon atoms in the molecule is 9 mol% or less, and the weight is measured by gel permeation chromatography (GPC) using toluene in terms of standard polystyrene.
  • Organopolysiloxane resin with an average molecular weight (Mw) of 5500 or more (B2) The sum of the contents of the hydroxyl group and the hydrolyzable group with respect to the total silicon atom in the molecule is 9 mol% or less, and the weight measured by gel permeation chromatography (GPC) using toluene in terms of standard polystyrene.
  • GPC gel permeation chromatography
  • Organohydrogenpolysiloxane which has at least two Si—H bonds in the organopolysiloxane resin (C) molecule, which has an average molecular weight (Mw) of less than 4000.
  • composition Containing an effective amount of hydrosilylation reaction catalyst, optionally (A') A chain organopolysiloxane having no alkenyl group and a silicon atom-bonded hydrogen atom may be contained in the molecule. Further, since the composition contains a hydrosilylation reaction catalyst, from the viewpoint of handling workability, (E) a curing retarder may be further contained, and other additions are made to the extent not contrary to the object of the present invention. It may contain an agent. Hereinafter, each component will be described.
  • the alkenyl group-containing organopolysiloxane of the component (A) is a chain polysiloxane molecule, which is the main agent (base polymer) of this composition, and is bonded to an average of more than 1 silicon atom in one molecule.
  • the number of suitable alkenyl groups is 1.5 or more in one molecule.
  • Examples of the alkenyl group of the organopolysiloxane of the component (A) include an alkenyl group having 2 to 10 carbon atoms, and a vinyl group or a hexenyl group is particularly preferable.
  • Examples of the bonding position of the alkenyl group of the component (A) include the terminal of the molecular chain and / or the side chain of the molecular chain.
  • the component (A) may contain only a single component, or may be a mixture of two or more different components.
  • examples of the organic group bonded to a silicon atom other than the alkenyl group include an alkyl group such as a methyl group; an aryl group such as a phenyl group; an aralkyl group; an alkyl halide group and the like. In particular, it is preferably a methyl group or a phenyl group.
  • the component (A) has a chain-like polysiloxane molecular structure.
  • the component (A) is preferably linear or linear (branched chain) having a partial branch, and may partially contain a cyclic or three-dimensional network.
  • it is a linear or branched diorganopolysiloxane in which the main chain consists of repeating diorganosiloxane units and both ends of the molecular chain are closed with a triorganosyloxy group.
  • the siloxane unit that gives the branched-chain organopolysiloxane is a T unit or a Q unit, which will be described later.
  • the properties of the component (A) at room temperature may be oily or raw rubber, and the viscosity of the component (A) is preferably 50 mPa ⁇ s or more, particularly preferably 100 mPa ⁇ s or more at 25 ° C.
  • the organopolysiloxane composition according to the present invention is a solvent type, at least a part of the component (A) has a viscosity of 100,000 mPa ⁇ s or more at (A1) 25 ° C., or JIS K6249.
  • the viscosity measured according to the method specified in (25 ° C., 4.2 g of spherical sample when a load of 1 kgf is applied for 3 minutes is read up to 1/100 mm, and this value is multiplied by 100.
  • these alkenyl group-containing organopolysiloxanes reduce or remove volatile or low molecular weight siloxane oligomers (octamethyltetrasiloxane (D4), decamethylpentasiloxane (D5), etc.). It is preferable that it is.
  • the degree may be designed as desired, but may be less than 1% by mass of the entire component (A) and less than 0.1% by mass for each siloxane oligomer, and may be reduced to near the detection limit if necessary.
  • the content of (hereinafter referred to as “vinyl content”) is preferably in the range of 0.005 to 0.40% by mass, and particularly preferably in the range of 0.005 to 0.300% by mass.
  • the mass ratio of the chain organopolysiloxane and the organopolysiloxane resin according to the present invention is in a predetermined range, and by using a predetermined organopolysiloxane resin or a mixture thereof, a low storage elastic modulus can be obtained. In addition, it is possible to achieve strong adhesive strength at the same time.
  • the component (A) of the present invention even a component (A) having a viscosity lower than that of the component (A1) can be used.
  • the viscosity at 25 ° C. of (A2) is 100,000 mPa.
  • Organopolysiloxanes containing less than alkenyl groups are available.
  • examples other than the viscosity of the component (A2) are the same as those of the component (A1).
  • cyclic siloxanes with alkenyl groups and organosilicon compounds In the present invention, by arbitrary option, a small amount of cyclic siloxane having an alkenyl group such as 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane is used together with the component (A). You may. These cyclic siloxanes may function as a reactive diluent or a curing reactivity control agent, and can be used as needed.
  • the above-mentioned (A) component, (B) component and alkenyl group which are organosilicon compounds having an average number of alkenyl groups exceeding 1 in the molecule together with the component (A), may be optionally selected.
  • a component that does not correspond to the cyclic siloxanes having may be used.
  • These organosilicon compounds are usually reaction mixtures of alkenyl group-containing silanes and alkenyl group-containing silane-siloxanes used as independent adhesion-imparting agents in curable siloxane compositions, and are polyorganosiloxanes such as polydialkylsiloxanes. It is a component different from the component and the organopolysiloxane resin component.
  • organosilicon compounds having an alkenyl group and further having an epoxy group in the molecule are excellent in handling workability and hydrosilyl without impairing the viscous properties such as the shear storage elasticity G'at room temperature.
  • a pressure-sensitive adhesive layer having excellent tensile adhesive strength can be formed. be.
  • Organopolysiloxane resin or a mixture thereof is one of the characteristic constituents of the present invention, and is a tackifier component that imparts adhesive force to a substrate, and at the same time, has a constant ratio with the component (A). It is a component that realizes the storage elastic modulus, stress, and practical adhesive strength range of the silicone-based pressure-sensitive adhesive layer obtained by curing. More specifically, the component (B) is an organopolysiloxane resin (B2) having a weight average molecular weight (Mw) of less than 4000 according to the above definition, in which the content of a hydroxyl group or a hydrolyzable group is suppressed.
  • Mw weight average molecular weight
  • the technical effect of using the component (B) is as described above, and it is possible to achieve both lower Tg of the pressure-sensitive adhesive layer and adhesive strength as compared with the conventionally known composition. Further, since the hydrolysis / polymerization reaction between the components (B) is unlikely to occur, in the present invention, it is easy to design a pressure-sensitive adhesive layer having physical properties such as appropriate adhesive strength, and it is easy to design a pressure-sensitive adhesive layer alone or with an average molecular weight. By using different resins in combination, a predetermined storage elasticity, stress and practical adhesive force range in the cured pressure-sensitive adhesive layer are realized.
  • the component (B) is an organopolysiloxane resin or a mixture thereof containing the following components (b1) and (b2) in a mass ratio of 99: 1 to 0: 100.
  • the component (B) may be a component consisting of only the component (b2), or may be a mixture of the components (b1) and (b2).
  • the mass ratio of the component (b1) to the component (b2) is preferably 60:40 to 0: 100, 50:50 to 0: 100, 30:70 to 0:100, 25:85 to 0 :. It is more preferably 100.
  • the organopolysiloxane resin other than the components (b1) and (b2) is substantially not contained, and more specifically, the content of the other organopolysiloxane resin is 1 with respect to the entire composition. It is particularly preferable that the amount is less than% by mass and the amount of intentional addition thereof is zero.
  • (B1) The sum of the contents of hydroxyl groups and hydrolyzable groups with respect to all silicon atoms in the molecule is 9 mol% or less, and the weight is measured by gel permeation chromatography (GPC) using toluene in terms of standard polystyrene.
  • (B2) The sum of the contents of hydroxyl groups and hydrolyzable groups with respect to all silicon atoms in the molecule is 9 mol% or less, and the weight is measured by gel permeation chromatography (GPC) using toluene in terms of standard polystyrene.
  • the component (B) that is, the component (b1) and the component (b2) have a common property that the sum of the contents of the hydroxyl group and the hydrolyzable group in the molecule is the total silicon in the organopolysiloxane resin molecule. It is preferably in the range of 9 mol% or less with respect to the atom, and preferably 7 mol% or less with respect to the total silicon atom in the molecule.
  • the content of the hydroxyl group and the hydrolyzable group in the component (B) can also be expressed by converting all of these functional groups into hydroxyl groups.
  • the hydroxyl group or hydrolyzable group is directly bonded to silicon such as T unit or Q unit among the siloxane units in the resin structure described later, and is derived from silane as a raw material or a group generated as a result of hydrolysis of silane. Therefore, the content of the hydroxyl group or the hydrolyzable group can be reduced by hydrolyzing the synthesized organopolysiloxane resin with a silylating agent such as trimethylsilane.
  • the condensation reaction between the organopolysiloxane resin molecules proceeds, and the organogen having a large molecular weight in the cured product is present.
  • the polysiloxane resin structure is easily formed.
  • Such an organopolysiloxane resin having a large molecular weight tends to impair the curability of the entire composition, the curability of the composition at a low temperature is insufficient, and the obtained pressure-sensitive adhesive layer is practically sufficient. It may not have a storage modulus.
  • the component (b1) and the component (b2) are both organopolysiloxane resin, which is an organopolysiloxane having a three-dimensional structure.
  • organopolysiloxane resin which is an organopolysiloxane having a three-dimensional structure.
  • it consists of R 2 SiO 2/2 unit (D unit) and RSiO 3/2 unit (T unit) (in the formula, R represents a monovalent organic group independent of each other) and contains a hydroxyl group or a hydrolyzable group.
  • Resins whose amounts are in the above range consisting of T units alone, and resins whose hydroxyl or hydrolyzable group content is in the above range, as well as R3 SiO 1/2 units (M units) and SiO 4/2 units (Q).
  • ⁇ Unit examples thereof include resins having a hydroxyl group or a hydrolyzable group in the above range.
  • resin consists of R 3 SiO 1/2 unit (M unit) and SiO 4/2 unit (Q unit), and the sum of the content of hydroxyl groups and hydrolyzable groups with respect to all silicon atoms in the molecule is 0 to 7 mol%.
  • a resin also referred to as MQ resin
  • MQ resin in the range of (preferably 0.0 to 1.6% by mass when all these functional groups are converted into hydroxyl groups).
  • the monovalent organic group of R is preferably a monovalent hydrocarbon group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • a cycloalkyl group having 6 to 10 carbon atoms, a benzyl group, a phenylethyl group, and a phenylpropyl group are exemplified.
  • R does not contain an alkenyl group
  • 90 mol% or more of R is preferably an alkyl group or a phenyl group having 1 to 6 carbon atoms, and 95 to 100 mol% of R is a methyl group or. It is particularly preferably a phenyl group.
  • the molar ratio of M unit to Q unit (hereinafter, The M / Q ratio) is preferably 0.5 to 2.0. This is because if the molar ratio is less than 0.5, the adhesive force to the substrate may decrease, and if it is larger than 2.0, the cohesive force of the substances constituting the adhesive layer decreases. Further, it is also possible to contain D unit and T unit in the component (B) as long as the characteristics of the present invention are not impaired. Further, these organopolysiloxane resins may have low molecular weight siloxane oligomers reduced or removed from the viewpoint of preventing contact failure.
  • the (b1) component and the (b2) component organopolysiloxane resin differ from each other in their weight average molecular weight (Mw).
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is dominated by individual molecules in each organopolysiloxane resin measured in terms of standard polystyrene by gel permeation chromatography (GPC) using toluene as a mobile phase solvent. It is an average molecular weight considering the ratio. Since the technical effect of the present invention is derived from the resin structure, the average molecular weight means the average molecular weight of the resin structure.
  • the GPC of the organopolysiloxane resin when the GPC of the organopolysiloxane resin is measured, it is derived from the main peak derived from the main organopolysiloxane resin component and also from the inevitably mixed low molecular weight component such as a siloxane oligomer, and can be distinguished from the main peak.
  • the weight average molecular weight (Mw) calculated based only on the main peak excluding the low molecular weight component is the weight average molecular weight of the component (b1) or (b2).
  • the component (b1) is an organopolysiloxane resin having a large molecular weight, and its weight average molecular weight (Mw) is 5500 or more.
  • the component (b1) is a resin consisting of the above-mentioned R3 SiO 1/2 unit (M unit) and SiO 4/2 unit (Q unit) having a weight average molecular weight (Mw) in the range of 5500 to 10000. Is particularly suitable.
  • the component (b2) is an organopolysiloxane resin having a small molecular weight, which is a characteristic constitution of the present invention, and its weight average molecular weight (Mw) is less than 4000, preferably in the range of 1000 to 3900, and from 2000 to 2000. The range of 3850 is particularly preferred.
  • the component (b2) is a resin consisting of the above-mentioned R3 SiO 1/2 unit (M unit) and SiO 4/2 unit (Q unit) having a weight average molecular weight (Mw) in the range of 2000 to 3800. Is particularly suitable.
  • the average molecular weight is the molecular weight of the resin structure, it is the weight average molecular weight based on the main peak of the organopolysiloxane resin in GPC, which does not include the inevitably mixed low molecular weight components such as siloxane oligomers, and has a molecular weight. It is preferably a resin structure excluding low molecular weight components of less than 1000.
  • the pressure-sensitive adhesive layer-forming organopolysiloxane composition according to the present invention is an organopolysiloxane resin with respect to the sum of the component (A) which is a chain-like reactive siloxane component and the component (A') described later (B). )
  • the mass ratio of the components is preferably in the range of 0.9 to 4.0.
  • the mass ratio of the component (B) to the component (A): [(B) / (A)] may be in the range of 1.0 to 2.5, and may be in the range of 1.3 to 2.3. There may be.
  • the above-mentioned characteristic organopolysiloxane resin or a mixture thereof is selected as the component (B), and the above-mentioned resin component is blended in the above range with respect to the chain-shaped siloxane polymer component.
  • the mass ratio of the component (B) to the sum of the component (A) and the component (A') described later is in the range of 1.5 to 4.0 from the viewpoint of enhancing the adhesive strength of the obtained pressure-sensitive adhesive layer.
  • the range of 1.5 to 3.5 is particularly preferred in order to achieve the desired adhesive strength and storage modulus.
  • the component (C) is an organohydrogenpolysiloxane having two or more Si—H bonds in the molecule, and is a cross-linking agent for the organopolysiloxane composition according to the present invention.
  • the molecular structure of the component (C) is not limited, and examples thereof include linear, partially branched linear, branched chain, cyclic, or organopolysiloxane resin, and preferably linear. , A linear or organopolysiloxane resin with some branches.
  • Silicon atom bond The bond position of the hydrogen atom is not particularly limited, and both the terminal chain and the side chain are exemplified.
  • the content of the silicon atom-bonded hydrogen atom is preferably 0.1 to 2.0% by mass, and more preferably 0.5 to 1.7% by mass.
  • Examples of the organic group bonded to the silicon atom include an alkyl group having 1 to 8 carbon atoms such as a methyl group; an aryl group such as a phenyl group; an aralkyl group; an alkyl halide group, and the total number thereof is 50 mol. % Or more is preferably an alkyl group or a phenyl group having 1 to 8 carbon atoms.
  • the other organic group is preferably a methyl group or a phenyl group in terms of ease of production and compatibility with the above-mentioned preferred components (A) and (B).
  • component (C) examples include tris (dimethylhydrogensiloxy) methylsilane, tetra (dimethylhydrogensiloxy) silane, both-terminal trimethylsiloxy group-blocked methylhydrogenpolysiloxane, and both-terminal trimethylsiloxy group-blocked dimethylsiloxane.
  • Methylhydrogensiloxane copolymer both-ended dimethylhydrogensiloxy group-sealed dimethylsiloxane / methylhydrogensiloxane copolymer, cyclic methylhydrogenoligosiloxane, cyclic methylhydrogensiloxane / dimethylsiloxane copolymer, both ends of molecular chain Trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane copolymer, molecular chain double-ended trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer, hydrolysis condensate of trimethoxysilane, (CH 3 ) A copolymer consisting of 2 HSiO 1/2 unit and SiO 4/2 unit, (CH 3 ) 2 HSiO 1/2 unit, SiO 4/2 unit, and (C 6 H 5
  • the composition that provides the suitable pressure-sensitive adhesive layer according to the present invention is hydrosilylation reaction curable, and the amount of the component (C) used is particularly limited as long as the composition can be sufficiently cured by the hydrosilylation reaction.
  • silicon in the component (C) with respect to the sum of the amount of alkenyl groups (amount of substance) in the component (A) and the amount of alkenyl groups (amount of substance) in the component (B) in the composition.
  • the amount of substance of the atomically bonded hydrogen atom (SiH) group is preferably in the range of 0.1 to 100, in the range of 0.5 to 60, in the range of 1.0 to 50, or in the range of 1.0 to 1.0. It may be in the range of 40.
  • the molar ratio may be hereinafter referred to as "SiH / Vi ratio".
  • the SiH / Vi ratio can be designed to be 10 or more, or 20 or more, preferably 11 or more, and more preferably 22 or more. preferable.
  • the amount of substance of the SiH) group can be designed in the range of 11 to 60, the range of 21 to 60, and the range of 22 to 50.
  • the amount of SiH groups is less than the lower limit, the technical effect of improving the adhesion to the substrate may not be realized.
  • the amount of SiH groups exceeds the upper limit, the amount of the curing agent remaining without reaction increases, which causes problems such as adverse effects on the cured physical properties such as brittleness of the cured product and generation of gas. There is.
  • the SiH / Vi ratio of the composition is out of the above range, it may be possible to form a practically sufficient pressure-sensitive adhesive layer.
  • the amount of the silicon atom-bonded hydrogen atom (SiH) group in the component (C) is 1.0 or more with respect to the total amount (material amount) of the alkenyl group contained in the composition.
  • the amount of the silicon atom-bonded hydrogen atom (SiH) group in the component (C) with respect to the total amount (material amount) of the alkenyl group may be in the range of 1.5 to 60, and may be in the range of 21 to 60. You may.
  • the organopolysiloxane composition according to the present invention contains a hydrosilylation reaction catalyst.
  • the hydrosilylation reaction catalyst include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferable because they can significantly accelerate the curing of the present composition.
  • platinum-based catalyst a platinum-alkenylsiloxane complex is preferable, and since the platinum-alkenylsiloxane complex has good stability, 1,3-divinyl-1,1,3,3-tetramethyldi It is preferably siloxane.
  • a non-platinum metal catalyst such as iron, ruthenium, or iron / cobalt may be used.
  • a photoactive hydrosilylation reaction catalyst typified by (methylcyclopentadienyl) trimethyl platinum (IV) and bis (2,4-pentanedionato) platinum (II) may be used.
  • the content of the hydrosilylation reaction catalyst is not particularly limited, but the amount of the platinum-based metal is in the range of 0.1 to 200 pm with respect to the total amount of solids in the composition. , 0.1 to 150 ppm, 0.1 to 100 ppm, and 0.1 to 50 ppm.
  • the platinum-based metal is a group VIII metal element composed of platinum, rhodium, palladium, ruthenium, and iridium, but practically, the content of the platinum metal excluding the ligand of the hydrosilylation reaction catalyst is in the above range. Is preferable.
  • the solid content is a component (mainly a main agent, an adhesion-imparting component, a cross-linking agent, a catalyst, and other non-volatile components) that forms a cured layer when the organopolysiloxane composition according to the present invention is subjected to a curing reaction. Yes, it does not contain volatile components such as solvents that volatilize during heat curing.
  • the content of the platinum-based metal in the organopolysiloxane composition according to the present invention is 50 ppm or less (45 ppm or less, 35 ppm or less, 30 ppm or less, 25 ppm or less or 20 ppm or less), it is high after curing or by heating or ultraviolet rays. When exposed to energy rays, it may be possible to suppress discoloration and coloring of the transparent pressure-sensitive adhesive layer.
  • the content of the platinum-based metal is 0.1 ppm or more, and if it is less than the lower limit, it may cause curing failure.
  • the component (E) is a curing retarder, which suppresses the cross-linking reaction between the alkenyl group in the composition and the SiH group in the component (C), prolongs the pot life at room temperature, and improves storage stability. It is compounded for the purpose. Therefore, in practical use, it is a component close to essential for the pressure-sensitive adhesive layer-forming organopolysiloxane composition of the present invention.
  • the component (E) is exemplified by an acetylene compound, an enyne compound, an organic nitrogen compound, an organic phosphorus compound, and an oxime compound.
  • the suitable pressure-sensitive adhesive layer-forming organopolysiloxane composition according to the present invention has a viscosity increase of 1.5 times or less after 8 hours at room temperature after preparation of the composition. It is preferable that it can be cured at 80 to 200 ° C.
  • the suppression of thickening is important from the viewpoint of handling workability, pot life, and characteristics after curing, and even if it contains a large excess of component (C) and optionally has a low platinum-based metal content. This is because the curability can be ensured by curing at a high temperature (80 to 200 ° C.) above a certain level. It should be noted that such a composition can be realized by selecting a suitable combination and blending amount of each of the above components, the hydrosilylation catalyst and the component (E).
  • the suitable organopolysiloxane composition according to the present invention may contain an organic solvent as a solvent in addition to the above-mentioned suitable components (A) and (B).
  • the type and blending amount of the organic solvent are adjusted in consideration of coating workability and the like.
  • the organic solvent include aromatic hydrocarbon solvents such as toluene, xylene and benzene, aliphatic hydrocarbon solvents such as heptane, hexane, octane and isoparaffin, ester solvents such as ethyl acetate and isobutyl acetate, and diisopropl.
  • Examples include ether solvents such as ether and 1,4-dioxane, chlorinated aliphatic hydrocarbon solvents such as trichloroethylene, perchloroethylene and methylene chloride, solvent volatile oils, etc., for wettability to sheet-like substrates. Two or more types may be combined depending on the situation.
  • the amount of the organic solvent blended may be such that a mixture of the components (A) to (C) can be uniformly applied to the surface of the sheet-like substrate.
  • the components (A), (B) and (C) The total amount of the components is 5 to 3000 parts by mass per 100 parts by mass.
  • the suitable organopolysiloxane composition according to the present invention may optionally contain components other than the above components as long as the technical effects of the present invention are not impaired.
  • it may contain an adhesion promoter; a non-reactive organopolysiloxane such as polydimethylsiloxane or polydimethyldiphenylsiloxane; an antioxidant; a photostabilizer; a flame retardant; one or more antistatic agents and the like.
  • pigments, dyes, inorganic fine particles can be optionally blended.
  • a suitable organopolysiloxane composition according to the present invention may contain a non-reactive organopolysiloxane such as polydimethylsiloxane or polydimethyldiphenylsiloxane which does not have an alkenyl group and a silicon atom-bonded hydrogen atom.
  • a non-reactive organopolysiloxane such as polydimethylsiloxane or polydimethyldiphenylsiloxane which does not have an alkenyl group and a silicon atom-bonded hydrogen atom.
  • the loss coefficient of the pressure-sensitive adhesive layer can be increased, and such a composition is the present invention. Is included in the range of.
  • the component (A') is a chain organopolysiloxane that does not participate in the curing reaction due to hydrosilylation
  • the mass ratio with the component (B) in the composition is the adhesive strength, storage elastic modulus, etc. of the composition. Can affect the characteristics of.
  • the mass ratio of the component (B) to the component (A) and the component (A') may be in the range of 0.9 to 4.0 in order to achieve the desired adhesive force and storage elastic modulus. In addition, the range of 1.5 to 3.5 is particularly preferable.
  • the mass ratio of the component (A) to the component (A') is not particularly limited, but is in the range of 100: 0 to 60:40, 100, depending on the desired storage elastic modulus and the mass ratio of the component (B). It may be designed in the range of 0 to 65:35, the range of 90:10 to 65:35, the range of 85:15 to 70:30, and the like.
  • the method for preparing the organopolysiloxane composition according to the present invention is not particularly limited, and it is carried out by uniformly mixing each component. If necessary, a solvent may be added, or the mixture may be prepared by mixing at a temperature of 0 to 200 ° C. using a known stirrer or kneader.
  • the organopolysiloxane composition of the present invention is coated on a substrate to form a coating film, and is heated under a temperature condition of 80 to 200 ° C., preferably 90 to 190 ° C.
  • a pressure-sensitive adhesive layer that is a cured product.
  • a pressure-sensitive adhesive layer which is a cured product, is formed by irradiating the coating film with high-energy rays and then heating the coating film at room temperature or optionally.
  • the integrated irradiation amount at a wavelength of 365 nm is preferably in the range of 100 mJ / cm 2 to 100 J / cm 2 .
  • the coating method examples include gravure coat, offset coat, offset gravure, roll coat, reverse roll coat, air knife coat, curtain coat, and comma coat.
  • the coating amount can be designed to a desired thickness according to the application such as a display device.
  • the thickness of the pressure-sensitive adhesive layer after curing is 1 to 1,000 ⁇ m and 5 to 900 ⁇ m. It may be 10 to 800 ⁇ m, but is not limited thereto.
  • the pressure-sensitive adhesive layer according to the present invention preferably has a storage elastic modulus G'at 25 ° C. in the range of 0.01 MPa or more, and more preferably in the range of 0.01 to 2.0 MPa. , 0.01 to 1.5 MPa is particularly preferable.
  • the pressure-sensitive adhesive layer used in the display device according to the present invention preferably has a storage elastic modulus G'at ⁇ 20 ° C. in the range of 0.02 to 25 MPa, preferably 0.03. It is particularly preferable that it is in the range of about 20 MPa.
  • the adhesion to the member is in the temperature range using the display device from low temperature to high temperature.
  • the followability and flexibility are not impaired, and a high degree of flexibility and adhesion can be maintained even when the display is deformed, particularly at high and low temperatures, so that the reliability and durability are particularly excellent.
  • a pressure-sensitive adhesive layer having a thickness of 50 ⁇ m obtained by curing the organopolysiloxane composition has a tensile speed of 300 mm / using a 180 ° peeling test method according to JIS Z0237 for a polymethylmethacrylate sheet having a thickness of 2 mm.
  • the adhesive strength measured by min is in the range of 360 gf / inch or more, preferably 400 gf / inch or more, and in particular, a pressure-sensitive adhesive layer in the range of 500 to 3500 gf / inch can be designed, and 800 to 3500 gf can be designed.
  • a pressure-sensitive adhesive layer in the range of / inch is suitable.
  • the above thickness (50 ⁇ m) is the thickness of the cured layer itself as a reference for objectively defining the adhesive force of the cured layer according to the present invention, and the organopolysiloxane composition of the present invention has a thickness of 50 ⁇ m. Needless to say, it can be used as a cured layer or a pressure-sensitive adhesive layer having any thickness.
  • the pressure-sensitive adhesive layer according to the present invention preferably has a storage elastic modulus G'at a low temperature (-20 ° C.) and a room temperature (25 ° C.) described in paragraph 0021 above. Further, in the silicone-based pressure-sensitive adhesive layer according to the present invention, the storage elastic modulus G'at 1.0 Hz at ⁇ 20 ° C. is preferably three times the storage elastic modulus G'at 1.0 Hz at 25 ° C. There may be more than that.
  • the pressure-sensitive adhesive layer according to the present invention may be substantially transparent, translucent or opaque, and its transparency can be designed according to the use of the pressure-sensitive adhesive layer.
  • the transmittance of light at a wavelength of 450 nm of a pressure-sensitive adhesive layer for a display device composed of a cured layer having a thickness of 100 ⁇ m is 80% or more when the value of air is 100%. It is preferably 90% or more, and may be designed to be 95% or more.
  • a translucent to opaque pressure-sensitive adhesive layer may be used, and depending on the required characteristics other than light transmission, coloring or visible light may be used.
  • a filler component or additive that impairs the transparency such as ultraviolet light may be used.
  • the pressure-sensitive adhesive layer according to the present invention has the above-mentioned transparency and the cured product is not colored by optionally reducing the content of the platinum-based metal in the cured layer. It is possible to design. Further, the cured layer of the present invention can be designed so that the color tone does not change significantly even when exposed to high energy rays such as high temperature and ultraviolet rays for a long time, and in particular, the problem of yellowing does not occur. be.
  • the pressure-sensitive adhesive layer according to the present invention is subjected to primer treatment, corona treatment, etching treatment, etc. on the surface of the pressure-sensitive adhesive layer or the base material in order to improve the adhesion to the adherend.
  • primer treatment corona treatment, etching treatment, etc.
  • Surface treatment such as plasma treatment may be performed.
  • the curable organopolysiloxane composition according to the present invention is coated on a release liner and then cured by heating under the above temperature conditions, and the release liner is peeled off to form a film-like substrate, a tape-like substrate, or a tape-like substrate.
  • a release liner After being bonded to a sheet-like substrate (hereinafter referred to as "film-like substrate") or coated on the film-like substrate, it is cured by heating under the above temperature conditions, and the surface of the substrate is felt.
  • a pressure adhesive layer can be formed.
  • the cured layer obtained by curing the above organopolysiloxane composition is a pressure-sensitive adhesive layer, particularly a pressure-sensitive adhesive film
  • the cured layer is a film group provided with a release layer having a release coating ability. It is preferable to handle it as a laminated film that adheres to the material in a peelable state.
  • the release layer is preferably a release layer having a release coating ability such as a silicone-based release agent, a fluorine-based release agent, an alkyd-based release agent, or a fluorosilicone-based release agent, and physically fine irregularities on the surface of the base material.
  • the base material itself which is difficult to form or adhere to the pressure-sensitive adhesive layer of the present invention, may be used, and it is preferable to use a release layer obtained by curing a fluorosilicone-based release agent.
  • the release layer may be a different release layer which is a first release layer and a second release layer having different types of release agents constituting the release layer and different release forces, and is a fluorosilicone-based release agent.
  • the cured product obtained by curing the organopolysiloxane composition of the present invention has the above-mentioned viscoelastic properties and adhesive strength, and is therefore useful as an elastic adhesive member and as a member of various electronic devices or electrical devices. .. In particular, it is useful as an electronic material, display device member or transducer member (including for sensors, speakers, actuators, and generators), and a suitable use for the cured product is an electronic component or display device member. ..
  • the cured product according to the present invention may be transparent or opaque, but a film-shaped cured product, particularly a substantially transparent pressure-sensitive adhesive film, is suitable as a member for a display panel or a display, and is particularly suitable.
  • the opaque elastic adhesive layer is particularly useful for applications of film-like or sheet-like members used in sensors, speakers, actuators, etc., where transparency is not required and the adhesive layer itself is required to have a certain degree of elasticity or flexibility. Is.
  • the pressure-sensitive adhesive layer obtained by curing the organopolysiloxane composition of the present invention can realize the same pressure-sensitive adhesive characteristics as the conventional silicone pressure-sensitive adhesive layer, and has poor curing and reduced curability. It is possible to improve the adhesion to a base material such as a display device without causing the problem of.
  • the cured product obtained by curing the organopolysiloxane composition of the present invention can be used for the construction and utilization of a laminated touch screen or a flat panel display, and a specific usage thereof is a pressure-sensitive adhesive layer (particularly).
  • Silicone PSA can be used without particular limitation.
  • the pressure-sensitive adhesive layer obtained or designed by using the present invention has both low Tg and strong adhesive force as described above, a display device having the pressure-sensitive adhesive layer between members is concrete. Specifically, it is a curved display used for in-vehicle or aircraft seats, a foldable display used by folding a digital display in the form of folding or tri-folding, etc., and the entire display surface is wound or bent in any direction. It can be widely applied to flexible displays such as retractable deformable displays and deformable displays that can expand and contract (especially stretch) the entire display surface in any direction, and its durability and reliability can be improved. It is a thing.
  • the cured product obtained by curing the organopolysiloxane composition of the present invention is an optically transparent silicone-based pressure-sensitive adhesive film disclosed in the above-mentioned Special Table 2014-522436 or Special Table 2013-512326 and the like. Alternatively, it can be used as an adhesive layer in the manufacture of display devices such as touch panels. Specifically, the cured product obtained by curing the organopolysiloxane composition of the present invention can be used without particular limitation as the pressure-sensitive adhesive layer or pressure-sensitive adhesive film shown in Special Table 2013-512326.
  • the touch panel according to the present invention is the present invention attached to a base material such as a conductive plastic film having a conductive layer formed on one surface thereof, and a surface on the side where the conductive layer is formed or the opposite side thereof.
  • the touch panel may include a cured layer obtained by curing the curable organopolysiloxane composition of the above.
  • the base material is preferably a sheet-like or film-like base material, and a resin film or a glass plate is exemplified.
  • the conductive plastic film may be a resin film or a glass plate having an ITO layer formed on one surface thereof, particularly a polyethylene terephthalate film.
  • the cured product obtained by curing the organopolysiloxane composition of the present invention may be used as an adhesive film for a polarizing plate used in the manufacture of a display device such as a touch panel, and the touch panel described in JP2013-065009A. It may be used as a pressure-sensitive adhesive layer used for bonding between the display module and the display module.
  • the test piece using the PMMA plate has an adhesive force (with a width of 20 mm) at a tensile speed of 300 mm / min using a 180 ° peeling test method according to JIS Z0237 using an RTC-1210 tensile tester manufactured by Orientec. The measurement was converted into the display unit gf / inch). The results are shown in Table 2.
  • each composition was applied to a release liner coated with a fluorosilicone release coating so that the thickness after curing was about 100 ⁇ m, and cured at 150 ° C. for 3 minutes.
  • each composition was applied to a release liner coated with a fluorosilicone release coating so that the thickness after curing was about 280 ⁇ m, and cured at 150 ° C. for 15 minutes.
  • Five or more of these pressure-sensitive adhesive films were laminated in the case of 100 ⁇ m and two in the case of 280 ⁇ m to obtain a film sample having a thickness of 500 ⁇ m or more and sandwiched between release liners on both sides.
  • the film was hollowed out to a diameter of 8 mm and attached to a parallel plate probe of a dynamic viscoelastic device (DMA; manufactured by Antonio Par, MCR301) for measurement.
  • the measurement conditions are in the range of -70 ° C to + 250 ° C, and the measurement is performed at a frequency of 1 Hz and a heating rate of 3 ° C / min, and the loss coefficient (tan ⁇ ), storage elastic modulus G', and loss elastic modulus G'are measured. (Unit: MPa).
  • Table 2 shows the storage modulus G'at 25 ° C and -20 ° C.
  • the glass transition points (Tg) (° C.) of each pressure-sensitive adhesive film are obtained from the peak value of the loss coefficient (tan ⁇ ), and are also shown in Table 2.
  • Table 1 shows the materials of the curing reactive organopolysiloxane composition. The viscosity or plasticity of each component was measured at room temperature by the following method.
  • Viscosity Viscosity (mPa ⁇ s) is a value measured using a rotational viscometer compliant with JIS K7117-1, and kinematic viscosity (mm 2 / s) is measured using a Ubbelohde viscometer compliant with JIS Z8803. The value.
  • the degree of plasticity is a value measured according to the method specified in JIS K 6249 (25 ° C., a thickness of 4.2 g of a spherical sample when a load of 1 kgf is applied for 3 minutes is read up to 1/100 mm, and this is read. The value is multiplied by 100).
  • Examples 1 to 10, Comparative Examples 1 to 9 the compositions according to Examples 1 to 10 and Comparative Examples 1 to 9 are prepared and cured according to the above items (dynamic viscoelasticity) and (adhesive strength measurement), and the adhesive strength and the glass transition point (Tg) are cured. ),
  • the storage elastic modulus G'at 25 ° C / -20 ° C is shown in Table 2.
  • the value R divided by the value was obtained when the value of (B) / (A) was 1.5, 1.7, 1.9, and 2.1, and is shown in Table 3.
  • the component (b1) in the component (B) is large in Example 10 and Comparative Example 9, they are not shown in the plot of FIG. 1, and (Tg + 120) / (Tg'in the same (B) / (A) ratio. +120) is described separately.
  • Example 1 33.3 parts by weight of component a, 8.33 parts by weight of component a', 80.5 parts by weight of component b2, 44.5 parts by weight of toluene, 0.692 parts by weight of component c, 0.409 parts by weight of component e at room temperature. And 0.484 parts by weight of the component d1 was added to the mixture to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 31.5, and the content of the platinum metal with respect to the solid content was 30 ppm.
  • Example 2 31.0 parts by weight of component a, 7.75 parts by weight of component a', 84.5 parts by weight of component b2, 43.4 parts by weight of toluene, 0.658 parts by weight of component c, 0.409 parts by weight of component e at room temperature. And 0.484 parts by weight of the component d1 was added to the mixture to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 32.3, and the content of the platinum metal with respect to the solid content was 30 ppm.
  • Example 3 28.6 parts by weight of component a, 7.14 parts by weight of component a', 88.7 parts by weight of component b2, 42.3 parts by weight of toluene, 0.623 parts by weight of component c, 0.409 parts by weight of component e at room temperature. And 0.484 parts by weight of the component d1 was added to the mixture to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 33.1, and the content of the platinum metal with respect to the solid content was 30 ppm.
  • Example 4 34.6 parts by weight of component a, 90.2 parts by weight of component b2, 41.9 parts by weight of toluene, 0.655 parts by weight of component c, 0.577 parts by weight of component e were mixed well at room temperature, and component d1 was added to the mixture. 0.355 parts by weight was added to obtain a curing reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 28.7, and the content of the platinum metal with respect to the solid content was 22 ppm.
  • Example 5 27.5 parts by weight of component a, 6.87 parts by weight of component a', 90.5 parts by weight of component b2, 41.8 parts by weight of toluene, 0.552 parts by weight of component c, 0.409 parts by weight of component e at room temperature.
  • 0.355 parts by weight of the component d1 was added to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 30.5, and the content of the platinum metal with respect to the solid content was 22 ppm.
  • Example 6 31.6 parts by weight of component a, 10.7 parts by weight of component b1, 85.0 parts by weight of component b2, 39.5 parts by weight of toluene, 0.610 parts by weight of component c, 0.577 parts by weight of component e at room temperature.
  • the mixture was well mixed, and 0.355 parts by weight of the component d1 was added to the mixture to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 29.4, and the content of the platinum metal with respect to the solid content was 22 ppm.
  • Example 7 30.7 parts by weight of component a, 15.1 parts by weight of component b1, 82.2 parts by weight of component b2, 38.7 parts by weight of toluene, 0.598 parts by weight of component c, 0.577 parts by weight of component e at room temperature.
  • the mixture was well mixed, and 0.355 parts by weight of the component d1 was added to the mixture to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 29.6, and the content of the platinum metal with respect to the solid content was 22 ppm.
  • Example 8 38.5 parts by weight of component a, 84.9 parts by weight of component b2, 43.3 parts by weight of toluene, 0.762 parts by weight of component c, 0.577 parts by weight of component e were mixed well at room temperature, and component d2 was added to the mixture. 0.423 parts by weight was added to obtain a curing reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 30.1, and the content of the platinum metal with respect to the solid content was 22 ppm.
  • Example 9 24.5 parts by weight of component a, 10.5 parts by weight of component a', 89.7 parts by weight of component b2, 42.0 parts by weight of toluene, 0.508 parts by weight of component c, 0.409 parts by weight of component e at room temperature.
  • 0.355 parts by weight of the component d1 was added to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 31.5, and the content of the platinum metal with respect to the solid content was 22 ppm.
  • Example 10 32.2 parts by weight of component a, 41.3 parts by weight of component b1, 57.0 parts by weight of component b2, 36.2 parts by weight of toluene, 0.618 parts by weight of component c, 0.577 parts by weight of component e at room temperature.
  • the mixture was well mixed, and 0.355 parts by weight of the component d1 was added to the mixture to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 29.3, and the content of the platinum metal with respect to the solid content was 22 ppm.
  • the mixture was well mixed at room temperature, and 0.484 parts by weight of the component d1 was added to the mixture to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 31.5, and the content of the platinum metal with respect to the solid content was 30 ppm.
  • Comparative Example 2 31.0 parts by weight of component a, 7.75 parts by weight of component a', 87.6 parts by weight of component b2', 40.3 parts by weight of toluene, 0.658 parts by weight of component c, 0.409 parts by weight of component e.
  • the mixture was well mixed at room temperature, and 0.484 parts by weight of the component d1 was added to the mixture to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 32.3, and the content of the platinum metal with respect to the solid content was 30 ppm.
  • Comparative Example 4 36.4 parts by weight of component a, 91.0 parts by weight of component b2', 39.3 parts by weight of toluene, 0.807 parts by weight of component c, 0.577 parts by weight of component e were mixed well at room temperature, and the components were added to the mixture. d1 0.484 parts by weight was added to obtain a curing reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 33.7, and the content of the platinum metal with respect to the solid content was 30 ppm.
  • Comparative Example 7 39.7 parts by weight of component a, 86.3 parts by weight of component b2', 96.2 parts by weight of toluene, 0.855 parts by weight of component c, 0.577 parts by weight of component e were mixed well at room temperature, and the components were added to the mixture. 0.577 parts by weight of d2 was added to obtain a curing-reactive organopolysiloxane composition.
  • the molar ratio (SiH / Vi ratio) of the SiH group in the component c to the amount of the alkenyl group in the component a was 32.7, and the content of the platinum metal with respect to the solid content was 30 ppm.
  • the value of R was 0.982, which was also less than 1.0.
  • Example 4 for Comparative Example 4, Example 5 for Comparative Example 5, Example 7 for Comparative Example 6, Example 8 for Comparative Example 7, and Comparative Example 8 9 of the above corresponds to this. Further, in Example 10, the adhesive strength was higher in Example 10 than in Comparative Example 9, although the Tg was slightly lower in Example 10.
  • the Tg of the pressure-sensitive adhesive layer can be designed to be lower at the same (B) / (A) ratio, and the pressure-sensitive having the same or similar Tg can be designed. In comparison with the adhesive layer, higher adhesive strength could be realized.
  • the composition obtained by the present invention or whose composition is designed, and the cured product obtained by curing the composition are not limited to those disclosed above, and the cured product obtained by curing the composition is used.
  • the pressure-sensitive adhesive film provided includes TV receivers, computer monitors, mobile information terminal monitors, surveillance monitors, video cameras, digital cameras, mobile phones, mobile information terminals, displays for instrument panels such as automobiles, and various equipment. -Can be used for various display devices for displaying characters, symbols, images, such as instrument panel displays, automatic ticket vending machines, automatic cash deposit machines, in-vehicle display devices, and in-vehicle transmissive screens. be.
  • the surface shape of such a display device may be a curved shape or a curved shape instead of a flat surface, and is used for various flat panel displays (FPDs), automobiles (including electric vehicles), aircraft, and the like.
  • FPDs flat panel displays
  • a curved transparent screen is exemplified.
  • these display devices have icons for executing functions or programs on the screen or display, notification displays such as e-mail programs, and operation buttons for various devices such as car navigation devices, audio devices, and air conditioners.
  • a touch panel function that can be displayed and allows input operations by touching these icons, notification displays, and operation buttons may be added.
  • Display devices include display devices such as CRT displays, liquid crystal displays, plasma displays, organic EL displays, inorganic EL displays, LED displays, surface electrolytic displays (SED), field emission displays (FED), and touch panels using these. It can be applied. Further, since the cured product obtained by curing the composition is excellent in adhesiveness and viscous elasticity, a film which is a transducer member (including a sensor, a speaker, an actuator, and a generator) such as a membrane for a speaker. Alternatively, it can be used as a sheet-like member, and can also be used as a sealing layer or an adhesive layer used for a secondary battery, a fuel cell, or a solar cell module.
  • a transducer member including a sensor, a speaker, an actuator, and a generator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本発明の感圧接着層形成性オルガノポリシロキサン組成物は、ヒドロシリル化反応硬化性であり、レジン成分の1質量%以上が、(b2)トルエンを用いたGPCにより標準ポリスチレン換算で測定される重量平均分子量(Mw)が4000未満であるオルガノポリシロキサンレジンであり、硬化により得られる感圧接着層のTg+120(℃)を(b2)成分をMw4000以上のレジンで置き換えた組成(感圧接着層)のTg´+120(℃)により除した値が1.0未満であることを特徴とする。感圧接着層として用いた場合に、所望の粘着力を実現するための特定のレジン成分/ポリマー成分の比を選択した場合に、感圧接着層のガラス転移温度(Tg)をさらに低下させることが可能であり、結果的に、強い粘着力と低いガラス転移温度(Tg)を同時に実現可能である。

Description

感圧接着層形成性オルガノポリシロキサン組成物、その使用およびその組成設計方法
 本発明は、感圧接着層を形成する硬化反応性のオルガノポリシロキサン組成物に関する。詳細には、本発明は、実用上十分な硬化性を有し、かつ、同一のレジン成分/ポリマー成分の比を採用した場合にその感圧接着層のガラス転移点(Tg)が有意に低下しており、かつ、より強い粘着力を実現する硬化反応性のオルガノポリシロキサン組成物およびその組成設計方法に関するものである。また、本発明は、当該組成物を用いる感圧接着剤組成物、当該組成物を用いた積層体、電子部品または表示装置(フレキシブルディスプレイやタッチパネル等含む)等の用途に関する。
 シリコーン系感圧接着剤組成物は、アクリル系やゴム系の感圧接着剤組成物と比較して、電気絶縁性、耐熱性、耐寒性、各種被着体に対する粘着性、必要に応じて透明性に優れるため、特に付加反応硬化型の感圧接着剤組成物が汎用されている。特に近年の材料開発においては、シリコーン系光学透明粘着剤(Optically Clear Adhesive, 以下、「OCA」ということがある)の要求が拡大している。シリコーン系OCAは実用上十分な粘着力を有し、柔軟で変形性に富み、かつ、耐熱性、耐寒性および耐光性に優れ、OCA層の着色や変色の問題を生じ難く、OCA層の粘着力、貯蔵弾性率(たとえばせん断貯蔵弾性率G’)、硬さ等の物理的性質の変化が小さいため、-20℃等の低温を含む幅広い温度領域において使用される曲面ディスプレイ、フレキシブルディスプレイのように折り畳みや一定の変形を前提とした表示装置の貼り合わせあるいは封止に使用される用途展開が期待されている(例えば、特許文献1、2)。さらに、本件出願人らは、表示装置等の用途に合わせて、フレキシブル構造体、硬化により得られる粘着層の粘着力や、低温~室温における貯蔵弾性率の異なるシリコーン系感圧接着剤組成物を複数提案している(特許文献3~9)。
 一方、繰り返し屈曲乃至折り畳みを行うフレキシブルディスプレイの分野では、層間剥離等による故障乃至信頼性低下を抑制するため、硬化により得られる粘着層について強い粘着力が求められる一方、低温下であっても貯蔵弾性率(たとえばせん断貯蔵弾性率G’)、硬さ等の物理的性質が変化しにくい、より低いガラス転移温度(Tg)を有するOCA層が求められるようになってきている。しかしながら、シリコーン系感圧接着剤組成物を硬化させてなる感圧接着層の粘着力とTgは、そのレジン成分/ポリマー成分の比によりほぼ決まってしまい、より強い粘着力とより低いTgを両立させることが難しいという課題を抱えていた。
特表2019-528330号公報 特表2019-527745号公報 国際公開第WO2017/188308号パンフレット 国際公開第WO2020/032285号パンフレット 国際公開第WO2020/032286号パンフレット 国際公開第WO2020/032287号パンフレット 国際出願第PCT/JP2020/30623号 国際出願第PCT/JP2020/30624号 国際出願第PCT/JP2020/30625号
 本発明は上記課題を解決すべくなされたものであり、感圧接着層として用いた場合に、所望の粘着力を実現するための特定のレジン成分/ポリマー成分の比を選択した場合に、感圧接着層のガラス転移温度(Tg)をさらに低下させることが可能であり、結果的に、強い粘着力と低いガラス転移温度(Tg)を同時に実現可能な感圧接着層形成性オルガノポリシロキサン組成物、その使用およびその組成設計方法を提供することを目的とする。
 本発明者らは上記課題について鋭意検討した結果、本発明に到達した。すなわち、本発明の目的の一つは、(A)分子内に平均して1を超える数のアルケニル基を有する鎖状オルガノポリシロキサン、
(B)以下の(b1)成分および(b2)成分を99:1~0:100の質量比で含む、オルガノポリシロキサンレジンまたはその混合物:
(b1)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が5500以上であるオルガノポリシロキサンレジン、
(b2)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が4000未満であるオルガノポリシロキサンレジン
(C)分子内に少なくとも2個のSi-H結合を有するオルガノハイドロジェンポリシロキサン、
(D)有効量のヒドロシリル化反応触媒
を含有してなり、
当該組成物の硬化により得られる感圧接着剤層のガラス転移点温度:Tg(℃)、
(b2)成分を、(b2)成分と同様の方法で測定される重量平均分子量(Mw)が4000以上のオルガノポリシロキサンレジンで置き換えた場合に得られ、(A)成分に対する(B)成分の質量比が同一となる組成物の硬化により得られる感圧接着剤層のガラス転移点温度:Tg´(℃)
としたとき、
[Tg+120]/[Tg´+120]の値が1.0未満となることを特徴とする、感圧接着層形成性オルガノポリシロキサン組成物により達成される。また、上記課題は、当該感圧接着層形成性オルガノポリシロキサン組成物またはその硬化物の、感圧接着層としての使用、電子材料または表示装置用部材としての使用およびそれらを備えた電子部品または表示装置により達成されうる。
 さらに、上記課題は、特定のレジン成分/ポリマー成分の質量比を選択した場合に、オルガノポリシロキサンレジンまたはその混合物の1~100質量%の範囲で、前記の(b2)成分を使用することを特徴とする、感圧接着層形成性オルガノポリシロキサン組成物の組成設計方法により達成されうる。
 本発明の感圧接着層形成性オルガノポリシロキサン組成物は、ヒドロシリル化反応による硬化性に優れ、硬化により感圧接着層として用いた場合に、所望の粘着力を実現するための特定のレジン成分/ポリマー成分の比を選択した場合に、感圧接着層のガラス転移温度(Tg)をさらに低下させることが可能であり、結果的に、強い粘着力と低いガラス転移温度(Tg)を同時に実現することができる。さらに、本発明のオルガノポリシロキサン組成物またはその硬化物は、強い粘着力と低いTgを兼ね備えた感圧接着層、電子材料または表示装置用部材として好適に使用することができ、それらを備えた電気・電子部品または表示装置は、低温を含めた幅広い温度領域における接着層の粘着力および粘弾性特性が十分と成るので、低温から室温を含む温度領域において、電子部品等の基材に対する密着不良の問題を生じにくい感圧接着層を形成することができるため、工業化が容易であり、かつ、得られる表示デバイス等の積層体の性能改善が期待されるという利点を有する。
 また、本発明に係る感圧接着層形成性オルガノポリシロキサン組成物の組成設計方法は極めてシンプルであり、ある特定のレジン成分/ポリマー成分の比を有する組成物について、前記の(b2)成分でオルガノポリシロキサンレジンを1~100質量%の範囲で置き換えるだけで、容易にその粘着力を高め、ガラス転移点(Tg)を下げることができる。
(A)成分に対する(B)成分の質量比(B/A)に対し、実施例と比較例にかかる感圧接着層形成性オルガノポリシロキサン組成物を硬化させてなる感圧接着層のガラス転移点(Tg)をプロットした図である。ただし、実施例10と比較例9を除く。*実施例においては、同一の(B)/(A)の値で対比すると、感圧接着層がより低いTgを有することがわかる。
[感圧接着層形成性オルガノポリシロキサン組成物の特徴]
 まず、本発明にかかる感圧接着層形成性オルガノポリシロキサン組成物の特徴について説明する。当該組成物は、ヒドロシリル化反応を含む硬化反応により速やかに硬化し、実用上十分な粘着力を有する感圧接着層を形成するものであるが、後述する(b2)成分として、縮合反応可能な官能基をほとんど含まず、トルエンを用いたGPCにより標準ポリスチレン換算で測定される重量平均分子量(Mw)が4000未満であるオルガノポリシロキサンレジンを、主要なオルガノポリシロキサンレジン分として用いることで、
特定のレジン成分/ポリマー成分の比を選択した場合、感圧接着層が低いガラス転移点(Tg)を有するという低温特性、
同様な組成において、他のオルガノポリシロキサンレジンを使用し、同一のガラス転移点(Tg)を有する感圧接着層と比較した場合、強い粘着力を有するという粘着特性
を併せ持ち、結果的に、従来のシリコーン系感圧接着層に比べて、低いTgを有し、かつ強い粘着力を実現することが容易となり、特定のレジン成分/ポリマー成分の比において、従来の組成物では実現不可能であった低いTgおよび強い粘着力を併せ持つ感圧接着層を提供できる。
 一例として、後述する図1における上の線が従来品や比較実験に相当し、下の線が本発明品の実施例である(ただし、実施例10および比較例9を除く)。ここで、レジン/ポリマー成分比に対応する(B)/(A)の質量比が高いほど、感圧接着層の粘着力は強くなる傾向があるが、同一の(B)/(A)で対比すると、(b2)成分を使用した場合(実施例:下のライン)比較例(上のライン)に対し、Tgが大きく低下していることがわかる。
[オルガノポリシロキサンレジンの重量平均分子量(Mw)]
 本発明において(B)成分であるオルガノポリシロキサンレジンまたはその混合物の説明において、「重量平均分子量(Mw)」とは、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)を意味するものである。なお、移動相としてトルエン以外のもの(クロロホルムやテトラヒドロフラン(THF)等)を使用した場合、数字上は同じ重量平均分子量を有していても本発明の技術的効果を奏さない場合がある。
[感圧接着剤層のガラス転移点(Tg,Tg´)および「Tg+120」の意義]
 本発明にかかる感圧接着層のガラス転移温度(Tg)および後述する(Tg´)は、動的粘弾性測定試験により、損失係数(tanδ)のピーク値から導出される値である。ここで、TgおよびTg´はゼロ(0)または負の値(-25℃等)を取りうるため、本発明の特徴を正確に表現する場合に(b2)成分不使用の場合に「Tgがより低い値」であることを単純なTg´/Tgの比で表現することができない。ここで、感圧接着層となりうるシリコーン硬化物のガラス転移点は-120℃以下となることは考えにくいため、非常に低いTgやTg´を仮に有しても分母および分子がゼロや負の値とならないように、これらの数値に120を加算した値により、[Tg+120]/[Tg´+120]の値が1.0未満という定義を採用している。なお、本発明に係る感圧接着層形成性オルガノポリシロキサン組成物を硬化させてなる感圧接着層のTgは、特に制限されるものではないが、-70℃~+45℃の範囲であってよく、-35℃~+45℃の範囲に設計してもよい
 Tg´は、本発明に係る感圧接着層形成性オルガノポリシロキサン組成物において、仮に、ある特定の組成において、(b2)成分を、(b2)成分と同様の方法で測定される重量平均分子量(Mw)が4000以上のオルガノポリシロキサンレジンで置き換えた場合に得られる組成物の硬化により得られる感圧接着剤層のガラス転移点温度(℃)を表す、仮想的な数値である。ここで、(b2)成分を置き換えるとは、同質量のMw4000以上のオルガノポリシロキサンレジンを(b2)成分に代わって使用することであり、両組成物において、(A)成分である鎖状オルガノポリシロキサンに対する(B)成分であるオルガノポリシロキサンレジンの質量比である(B)/(A)は、同一となる。前記の通り、他の組成上/硬化に関する条件が同一であり、(b2)成分を使用せず、代わりに重量平均分子量が大きい(4000以上)オルガノポリシロキサンレジンを使用した組成に対し、本発明に係る組成物は、Tgの値が相対的に低下する。このため、[Tg+120]/[Tg´+120]の値は、1.0未満となることが、本発明に係る組成物を用いた感圧接着層の特徴の一つとなる。なお、前記の通りTg´はMwが4000以上のレジン成分を使用した場合の仮想的な値であり、実際にMwが4000以上のレジン成分(例えば、Mw4070等)を使用した場合(比較実験に当たる)の感圧接着層のTgをTg´として計算した場合には、[Tg+120]/[Tg´+120]の値として、0.99未満、0.98未満等、より具体的な数値が得られることになる。
[感圧接着層形成性オルガノポリシロキサン組成物の各成分]
 本発明において好適な感圧接着剤層形成性オルガノポリシロキサン組成物は、
(A)分子内に平均して1を超える数のアルケニル基を有する鎖状オルガノポリシロキサン、
(B)以下の(b1)成分および(b2)成分を99:1~0:100の質量比で含む、オルガノポリシロキサンレジンまたはその混合物:
(b1)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が5500以上であるオルガノポリシロキサンレジン、
(b2)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が4000未満であるオルガノポリシロキサンレジン
(C)分子内に少なくとも2個のSi-H結合を有するオルガノハイドロジェンポリシロキサン、
(D)有効量のヒドロシリル化反応触媒
を含有してなり、任意で、
(A´)分子内にアルケニル基およびケイ素原子結合水素原子を有さない鎖状オルガノポリシロキサン
を含んでもよい。さらに、当該組成物は、ヒドロシリル化反応触媒を含むので、取扱作業性の見地から、さらに、(E)硬化遅延剤を含有してもよく、本発明の目的に反しない範囲で、その他の添加剤を含むものであってよい。以下、各成分について説明する。
 (A)成分のアルケニル基含有オルガノポリシロキサンは、鎖状のポリシロキサン分子であり、この組成物の主剤(ベースポリマー)であり、1分子中に平均して1を超える数のケイ素原子に結合したアルケニル基を含有し、好適なアルケニル基の個数は、1分子中に1.5個以上である。(A)成分のオルガノポリシロキサンのアルケニル基としては、炭素数2~10のアルケニル基が挙げられ、特にビニル基またはヘキセニル基であることが好ましい。(A)成分のアルケニル基の結合位置としては、例えば、分子鎖末端及び/又は分子鎖側鎖が挙げられる。なお、(A)成分は、単一の成分のみを含んでいてもよく、2種以上の異なった成分の混合物であってもよい。
 (A)成分のオルガノポリシロキサンにおいて、アルケニル基以外のケイ素原子に結合した有機基としては、例えば、メチル基等のアルキル基;フェニル基等のアリール基;アラルキル基;ハロゲン化アルキル基などが挙げられ、特に、メチル基、フェニル基であることが好ましい。
 (A)成分は(B)成分と異なり、鎖状のポリシロキサン分子構造を有する。例えば、(A)成分は、直鎖状、一部分岐を有する直鎖状(分岐鎖状)であることが好ましく、一部に環状、三次元網状を含んでいても良い。好適には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、直鎖状または分岐鎖状のジオルガノポリシロキサンであることが好ましい。なお、分岐鎖状のオルガノポリシロキサンを与えるシロキサン単位は後述するT単位またはQ単位である。
 (A)成分の室温における性状はオイル状または生ゴム状であってもよく、(A)成分の粘度は25℃において50mPa・s以上、特に100mPa・s以上であることが好ましい。特に、本発明にかかるオルガノポリシロキサン組成物が溶剤型である場合には、(A)成分の少なくとも一部は、(A1)25℃において100,000mPa・s以上の粘度を有するか、JIS K6249に規定される方法に準じて測定された可塑度(25℃、4.2gの球状試料に1kgfの荷重を3分間かけたときの厚さを1/100mmまで読み、この数値を100倍したもの)が50~200の範囲にある、さらに好ましくは80~180の範囲にある生ゴム状のアルケニル基含有オルガノポリシロキサンであることが好ましい。
 なお、これらのアルケニル基含有オルガノポリシロキサンは、接点障害防止等の見地から、揮発性または低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5)等)が低減ないし除去されていることが好ましい。その程度は所望により設計可能であるが、成分(A)全体の1質量%未満、各シロキサンオリゴマーについて0.1質量%未満としてもよく、必要に応じ、検出限界付近まで低減してもよい。
 前記の(A1)成分中のアルケニル基の含有量は特に限定されるものではないが、本発明の技術的効果の見地から、(A1)成分中のアルケニル基のビニル(CH=CH)換算の含有量(以下、「ビニル含有量」という)が、0.005~0.400質量%の範囲が好ましく、0.005~0.300質量%の範囲が特に好ましい。
 好適には、本発明に係る鎖状オルガノポリシロキサンとオルガノポリシロキサンレジンの質量比は所定の範囲にあり、かつ、所定のオルガノポリシロキサンレジンまたはその混合物を使用することにより、低い貯蔵弾性率に加えて、強い粘着力を同時に達成することが可能である。
 本発明の(A)成分として、前記の(A1)成分より低粘度の(A)成分であっても、利用可能であり、具体的には、(A2)25℃における粘度が100,000mPa・s未満のアルケニル基含有オルガノポリシロキサンが利用可能である。ここで、(A2)成分の粘度以外の例示は、(A1)成分と同様である。
 本発明の技術的効果の見地から、(A)成分の50質量%以上が、(A1)成分である高重合度のアルケニル基含有オルガノポリシロキサンであることが好ましく、75~100質量%が(A1)成分であることが特に好ましい。すなわち、本発明の(A)成分として前記の(A1)成分(=高重合度のアルケニル基含有オルガノポリシロキサン)と(A2)成分(=より低重合度のアルケニル基含有オルガノポリシロキサン)を併用する場合には、両者の質量比が50:50~100:0、より好適には75:25~100:0または75:25~90:10の範囲である。
[その他のアルケニル基を有する環状シロキサン類および有機ケイ素化合物]
 本発明において、任意選択により、(A)成分と共に、1,3,5,7-テトラメチル―1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニル基を有する環状シロキサン類を少量使用してもよい。これらの環状シロキサン類は、反応性希釈剤または硬化反応性の制御剤としての機能を果たす場合があり、必要に応じて使用することができる。
 同様に、任意選択により、(A)成分と共に、分子内に平均して1を超える数のアルケニル基を有する有機ケイ素化合物であって、上記の(A)成分、(B)成分およびアルケニル基を有する環状シロキサン類に該当しない成分を使用してもよい。これらの有機ケイ素化合物は、通常、硬化性シロキサン組成物における、独立した接着付与剤として使用されるアルケニル基含有シラン、アルケニル基含有シラン-シロキサンの反応混合物であり、ポリジアルキルシロキサン等のポリオルガノシロキサン成分やオルガノポリシロキサンレジン成分と異なる成分である。これらのアルケニル基を有する有機ケイ素化合物であって、さらに、分子内にエポキシ基を有するものは、取り扱い作業性に優れ、室温におけるせん断貯蔵弾性率G’等の粘弾特性を損なうことなく、ヒドロシリル化硬化反応により迅速に硬化することに加えて、各種の基材に対しても良好な接着性を付与することができ、特に、引張接着強さに優れた感圧接着層を形成できる場合がある。
 (B)オルガノポリシロキサンレジンまたはその混合物は、本発明の特徴的な構成の一つであり、基材への粘着力を付与する粘着付与成分であると同時に、(A)成分と一定の比率で使用することにより、硬化により得られるシリコーン系の感圧接着剤層の貯蔵弾性率、応力および実用的な粘着力範囲を実現する成分である。より具体的には、(B)成分は、水酸基または加水分解性基の含有量が抑制された、前記の定義に従う(b2)重量平均分子量(Mw)が4000未満のオルガノポリシロキサンレジンを(B)成分全体の1~100質量%の範囲で含む、オルガノポリシロキサンレジンまたは(b1)成分とのオルガノポリシロキサンレジンの混合物である。このような(B)成分を使用した技術的効果は前記の通りであり、従来公知の組成に比して、感圧接着層のより低いTgと粘着力を両立することができる。さらに、(B)成分間での加水分解/重合反応が起こりにくいため、本発明において、適度な粘着力等の物理的性質を備える感圧接着剤層を設計しやすく、単独、または平均分子量の異なるレジンを組み合わせて使用することで、その硬化物である感圧接着層における所定の貯蔵弾性率、応力および実用的な粘着力範囲を実現する。
 詳細には、(B)成分は、以下の(b1)成分および(b2)成分を99:1~0:100の質量比で含む、オルガノポリシロキサンレジンまたはその混合物である。ここで、(B)成分は、(b2)成分のみからなる成分であってよく、これらの(b1)成分および(b2)成分の混合物であってもよい。(b1)成分と(b2)成分の質量比は、好適には、60:40~0:100であり、50:50~0:100、30:70~0:100、25:85~0:100であることがより好ましい。また、(b1),(b2)成分以外の他のオルガノポリシロキサンレジンを実質的に含まないことが好ましく、より具体的には他のオルガノポリシロキサンレジンの含有量が組成物全体に対して1質量%未満であり、その意図的な添加量がゼロであることが特に好ましい。
 (b1)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が5500以上であるオルガノポリシロキサンレジン、
(b2)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が4000未満であるオルガノポリシロキサンレジン
 (B)成分、すなわち、(b1)成分および(b2)成分は、共通する性質として、その分子内における水酸基および加水分解性基の含有量の和が、当該オルガノポリシロキサンレジン分子中の全ケイ素原子に対して9モル%以下の範囲であり、分子中の全ケイ素原子に対して7モル%以下であることが好ましい。なお、(B)成分において、かかる水酸基および加水分解性基の含有量は、これらの官能基を全て水酸基に換算して表現することもできる。この場合、当該オルガノポリシロキサンレジン分子中の水酸基以外の加水分解性基を全て水酸基(OH)であると仮定してその質量%を計算すると、上記の水酸基および加水分解性基の含有量の和は、当該オルガノポリシロキサンレジン分子中における水酸基および水酸基に換算したこれらの加水分解性基の含有量の和が2.0質量%以下であり、1.6質量%以下が好ましいと表現することもできる。水酸基または加水分解性基は、後述するレジン構造中のシロキサン単位のうち、T単位またはQ単位などのケイ素に直接結合しており、原料となるシラン由来またはシランが加水分解した結果、生じた基であるので、合成したオルガノポリシロキサンレジンをトリメチルシラン等のシリル化剤で加水分解処理することで水酸基または加水分解性基の含有量を低減することができる。
 (b1)成分および(b2)成分において、当該水酸基または加水分解性基の量が前記の上限を超えると、オルガノポリシロキサンレジン分子間の縮合反応が進行して、硬化物中において分子量の大きいオルガノポリシロキサンレジン構造が形成されやすくなる。このような分子量の大きいオルガノポリシロキサンレジンは、組成物全体の硬化性を損なう傾向があり、当該組成物の低温における硬化性が不十分となったり、得られる感圧接着層が実用上十分な貯蔵弾性率を有しなくなる場合がある。
 (b1)成分および(b2)成分は、共にオルガノポリシロキサンレジンであり、三次元構造を有するオルガノポリシロキサンである。例えば、RSiO2/2単位(D単位)及びRSiO3/2単位(T単位)(式中、Rは互いに独立した一価有機基を表す)からなり、水酸基または加水分解性基の含有量が上記範囲にあるレジン、T単位単独からなり、水酸基または加水分解性基の含有量が上記範囲にあるレジン、並びにRSiO1/2単位(M単位)及びSiO4/2単位(Q単位)からなり、水酸基または加水分解性基の含有量が上記範囲にあるレジンなどを挙げることができる。特に、RSiO1/2単位(M単位)及びSiO4/2単位(Q単位)からなり、分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が0~7モル%(これらの官能基を全て水酸基に換算した場合、0.0~1.6質量%であることが好ましい)の範囲であるレジン(MQレジンとも呼ばれる)を使用することが好ましい。
 Rの一価有機基は、好ましくは炭素数1~10の一価炭化水素基であり、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~10のアリール基、炭素数6~10のシクロアルキル基、ベンジル基、フェニルエチル基、及びフェニルプロピル基が例示される。特に、Rにはアルケニル基が含まれないことが好ましく、Rの90モル%以上が炭素数1~6のアルキル基またはフェニル基であることが好ましく、Rの95~100モル%がメチル基またはフェニル基であることが特に好ましい。
 (b1)成分および(b2)成分が、RSiO1/2単位(M単位)及びSiO4/2単位(Q単位)からなるレジンである場合、M単位対Q単位のモル比(以下、M/Q比)は、0.5~2.0であることが好ましい。このモル比が0.5未満である場合には基材への粘着力が低下することがあり、2.0より大きい場合には粘着層を構成する物質の凝集力が低下するからである。また、本発明の特性を損なわない範囲で、D単位及びT単位を(B)成分中に含有させることも可能である。さらに、これらのオルガノポリシロキサンレジンは、接点障害防止等の見地から、低分子量のシロキサンオリゴマーが低減ないし除去されていても良い。
 (b1)成分および(b2)成分であるオルガノポリシロキサンレジンは、その重量平均分子量(Mw)において互いに異なる。ここで、重量平均分子量(Mw)は、トルエンを移動相溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される各々のオルガノポリシロキサンレジンにおいて、個々の分子が全体に占める割合を考慮した平均分子量である。なお、本発明の技術的効果はレジン構造体に由来するため、平均分子量はレジン構造体の平均分子量を意味する。このため、オルガノポリシロキサンレジンのGPCを測定した場合、主たるオルガノポリシロキサンレジン成分に由来する主たるピークの他に、シロキサンオリゴマー等の不可避的に混入する低分子量成分に由来し、主たるピークから区別可能なピークが存在する場合、当該低分子量成分を除いた主たるピークのみに基づいて算出される重量平均分子量(Mw)が、(b1)または(b2)成分の重量平均分子量である。
 (b1)成分は、分子量の大きいオルガノポリシロキサンレジンであり、その重量平均分子量(Mw)は、5500以上である。実用上、(b1)成分は、重量平均分子量(Mw)が5500~10000の範囲にある、上述のRSiO1/2単位(M単位)及びSiO4/2単位(Q単位)からなるレジンが特に好適である。
 (b2)成分は、本発明の特徴的な構成である、分子量の小さいオルガノポリシロキサンレジンであり、その重量平均分子量(Mw)は、4000未満であり、1000~3900の範囲が好ましく、2000~3850の範囲が特に好ましい。実用上、(b2)成分は、重量平均分子量(Mw)が2000~3800の範囲にある、上述のRSiO1/2単位(M単位)及びSiO4/2単位(Q単位)からなるレジンが特に好適である。なお、前記の通り、平均分子量はレジン構造体の分子量なので、シロキサンオリゴマー等の不可避的に混入する低分子量成分を含めない、GPCにおけるオルガノポリシロキサンレジンの主たるピークに基づく重量平均分子量であり、分子量1000未満の低分子量成分を除いたレジン構造体であることが好ましい。
[(A)成分および(A´)成分に対する(B)成分の質量比]
 本発明に係る感圧接着層形成性オルガノポリシロキサン組成物は、鎖状の反応性シロキサン成分である(A)成分および後述する(A´)成分の和に対する、オルガノポリシロキサンレジンである(B)成分の質量比が0.9~4.0の範囲にあることが好ましい。また、(A)成分に対する(B)成分の質量比:[(B)/(A)]が、1.0~2.5の範囲であってよく、1.3~2.3の範囲であってもよい。
 (B)成分として、上記の特徴的なオルガノポリシロキサンレジンまたはその混合物を選択し、かつ、鎖状のシロキサンポリマー成分に対して上記のレジン成分が前記範囲となるように配合されていると、本発明の目的とする高い貯蔵弾性率および応力等の粘弾特性が好適に実現されるためである。特に、得られる感圧接着層の粘着力を高める見地から(A)成分および後述する(A´)成分との和に対する、(B)成分の質量比は1.5~4.0の範囲であってよく、所望の粘着力および貯蔵弾性率を実現するために、1.5~3.5の範囲が特に好ましい。一方、(A)成分および後述する(A´)成分に対する、(B)成分の質量比が前記範囲外であると、他の構成を調整しても本発明の目的とする硬化性、粘着力および貯蔵弾性率等の特性が実現できない場合がある。
 (C)成分は、Si-H結合を分子中に2個以上有するオルガノハイドロジェンポリシロキサンであり、本発明にかかるオルガノポリシロキサン組成物の架橋剤である。成分(C)の分子構造は限定されず、例えば、直鎖状、一部分岐を有する直鎖状、分岐鎖状、環状、あるいはオルガノポリシロキサンレジンであることが挙げられ、好ましくは、直鎖状、一部分岐を有する直鎖状、あるいはオルガノポリシロキサンレジンである。ケイ素原子結合水素原子の結合位置は特に限定されず、分子鎖末端,側鎖,これら両方が例示される。
ケイ素原子結合水素原子の含有量は0.1~2.0質量%であることが好ましく、0.5~1.7質量%であることがより好ましい。
 ケイ素原子に結合する有機基として、メチル基等の炭素原子数1~8のアルキル基;フェニル基等のアリール基;アラルキル基;ハロゲン化アルキル基が例示されるが、それらの合計数の50モル%以上が炭素原子数1~8のアルキル基またはフェニル基であることが好ましい。製造容易性および前記した好ましい(A)成分、(B)成分との相溶性の点で他の有機基はメチル基またはフェニル基が好ましい。
 (C)成分として、具体的には、トリス(ジメチルハイドロジェンシロキシ)メチルシラン,テトラ(ジメチルハイドロジェンシロキシ)シラン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン,両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体,両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体,環状メチルハイドロジェンオリゴシロキサン,環状メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体,分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシランの加水分解縮合物、(CH)HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH)HSiO1/2単位とSiO4/2単位と(C)SiO3/2単位とからなる共重合体、(CH)HSiO1/2単位とCHSiO3/2単位とからなる共重合体、およびこれらの2種以上の混合物が例示される。
[SiH/Vi比]
 本発明にかかる好適な感圧接着剤層を与える組成物は、ヒドロシリル化反応硬化性であり、(C)成分の使用量は、組成物がヒドロシリル化反応により十分に硬化することができれば特に制限されるものではないが、組成物中の(A)成分中のアルケニル基の量(物質量)および(B)成分中のアルケニル基の量(物質量)の和に対する(C)成分中のケイ素原子結合水素原子(SiH)基の物質量、すなわちモル比が0.1~100の範囲であることが好ましく、0.5~60の範囲、1.0~50の範囲、または1.0~40の範囲であっても良い。なお、当該モル比を以下、「SiH/Vi比」と呼ぶことがある。
 一方、ガラス等の基材に対する密着性を改善する目的で、SiH/Vi比を10以上、または20以上に設計することができ、かつ、11を超えることが好ましく、22以上であることがより好ましい。例えば、組成物中の(A)成分中のアルケニル基の量(物質量)および(B)成分中のアルケニル基の量(物質量)の和に対する(C)成分中のケイ素原子結合水素原子(SiH)基の物質量は、11~60の範囲、21~60の範囲、22~50の範囲に設計することができる。SiH基の量が前記下限を下回ると、基材への密着性の改善という技術的効果が実現できない場合がある。一方、SiH基の量が前記上限を超えると、反応せずに残存する硬化剤の量が多くなってしまい、硬化物が脆くなる等の硬化物性における悪影響やガスの発生等の問題が生じる場合がある。ただし、組成物のSiH/Vi比が上記範囲外でも実用上十分な感圧接着層を形成することができる場合がある。
 なお、任意選択により、(A)成分および(B)成分以外のアルケニル基を有する環状シロキサン類および有機ケイ素化合物を使用する場合、本発明に係る組成物の硬化性の見地から、これらの成分を含む、組成物中のアルケニル基の総量(物質量)に対して(C)成分中のケイ素原子結合水素原子(SiH)基の物質量が、1.0以上となることが好ましく、組成物中のアルケニル基の総量(物質量)に対する(C)成分中のケイ素原子結合水素原子(SiH)基の物質量が、1.5~60の範囲であってもよく、21~60の範囲であってもよい。
[ヒドロシリル化反応触媒]
 本発明にかかるオルガノポリシロキサン組成物は、ヒドロシリル化反応触媒を含む。ヒドロシリル化反応触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金-アルケニルシロキサン錯体が好ましく、特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。また、任意で(メチルシクロペンタジエニル)トリメチル白金(IV)とビス(2,4-ペンタンジオナト)白金(II)に代表される光活性型のヒドロシリル化反応触媒を使用してもよい。
 本発明において、ヒドロシリル化反応触媒の含有量は特に制限されるものではないが、組成物中の固形分の合計量に対し、白金系金属量が0.1~200pmの範囲となる範囲であり、0.1~150ppm、0.1~100ppmの範囲であってよく、0.1~50ppmの範囲であってもよい。ここで、白金系金属は、白金、ロジウム、パラジウム、ルテニウム、イリジウムからなるVIII族の金属元素であるが、実用上、ヒドロシリル化反応触媒の配位子を除いた白金金属の含有量が上記範囲であることが好ましい。なお、固形分とは、本発明にかかるオルガノポリシロキサン組成物を硬化反応させた場合に、硬化層を形成する成分(主として主剤、接着付与成分、架橋剤、触媒およびその他の不揮発性成分)であり、加熱硬化時に揮発する溶媒等の揮発性成分を含まない。
 本発明にかかるオルガノポリシロキサン組成物中の白金系金属の含有量が50ppm以下(45ppm以下,35ppm以下,30ppm以下,25ppm以下または20ppm以下)である場合、硬化後、あるいは加熱や紫外線等の高エネルギー線に暴露した場合、特に、透明な感圧接着層の変色や着色を抑制できる場合がある。一方、オルガノポリシロキサン組成物の硬化性の見地から、白金系金属の含有量は、0.1ppm以上であり、当該下限を下回ると硬化不良の原因となる場合がある。
 (E)成分は硬化遅延剤であり、組成物中のアルケニル基と(C)成分中のSiH基の架橋反応を抑制して、常温での可使時間を延長し、保存安定性を向上するために配合するものである。したがって、実用上は、本発明の感圧接着層形成性オルガノポリシロキサン組成物にとって、必須に近い成分である。
 具体的には、(E)成分はアセチレン系化合物、エンイン化合物、有機窒素化合物、有機燐化合物、オキシム化合物が例示される。具体的には、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ペンチン-3-オール、1-エチニル-1-シクロヘキサノール、フェニルブチノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-1-ヘキセン-3-イン等のエンイン化合物;2-エチニル-4-メチル-2-ペンテン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のメチルアルケニルシクロシロキサン;ベンゾトリアゾールが例示される。
 組成物の硬化挙動の見地から、本発明にかかる好適な感圧接着層形成性オルガノポリシロキサン組成物は、組成物の調製後室温で8時間後に粘度の増大が1.5倍以内であり、80~200℃で硬化可能であることが好ましい。増粘が抑制されていることは、取扱作業性、ポットライフ、硬化後の特性の見地から重要であり、大過剰の(C)成分を含み、任意で白金系金属量の含有量が低くとも、一定以上の高温(80~200℃)で硬化させることで硬化性を確保することができるためである。なお、このような組成物は上記の各成分およびヒドロシリル化触媒と(E)成分の好適な組み合わせおよび配合量を選択することで、実現可能である。
 本発明にかかる好適なオルガノポリシロキサン組成物は、上記の好適な(A)成分および(B)成分に加えて、溶媒として有機溶剤を含んでもよい。有機溶剤は、塗工作業性などを考慮してその種類及び配合量を調整する。有機溶剤としては、例えばトルエン、キシレン、ベンゼンなどの芳香族炭化水素系溶剤、ヘプタン、ヘキサン、オクタン、イソパラフィンなどの脂肪族炭化水素系溶剤、酢酸エチル、酢酸イソブチルなどのエステル系溶剤、ジイソプロプルエーテル、1,4-ジオキサンなどのエーテル系溶剤、トリクロロエチレン、パークロロエチレン、塩化メチレンなどの塩素化脂肪族炭化水素系溶剤、溶剤揮発油などが挙げられ、シート状基材への濡れ性などに応じて2種以上を組み合わせても良い。有機溶剤配合量は、(A)成分~(C)成分の混合物をシート状基材表面に均一に塗工できるような量がよく、例えば、(A)成分と(B)成分と(C)成分の合計100質量部当たり、5~3000質量部である。
 本発明にかかる好適なオルガノポリシロキサン組成物は、本発明の技術的効果を損なわない範囲で、任意で、上記成分以外の成分を含むことができる。例えば、接着促進剤;ポリジメチルシロキサンまたはポリジメチルジフェニルシロキサンなどの非反応性のオルガノポリシロキサン;酸化防止剤;光安定剤;難燃剤;1種類以上の帯電防止剤などを含むことができる。なお、これらの成分のほか、顔料、染料、無機微粒子(補強性フィラー、誘電性フィラー、導電性フィラー、熱伝導性フィラー)などを任意で配合することもできる。
[(A´)分子内にアルケニル基およびケイ素原子結合水素原子を有さない鎖状オルガノポリシロキサン]
 本発明にかかる好適なオルガノポリシロキサン組成物には、アルケニル基およびケイ素原子結合水素原子を有さないポリジメチルシロキサンまたはポリジメチルジフェニルシロキサンなどの非反応性のオルガノポリシロキサンを配合することができ、これにより、後述する感圧接着層の損失係数(tanδ)、貯蔵弾性率(G’)損失弾性率(G’’)を改善することができる場合がある。例えば、水酸基末端を有するポリジメチルシロキサン、トリメチルシロキシ末端を有するポリジメチルシロキサンまたはポリジメチルジフェニルシロキサンの使用により、感圧接着層の損失係数を増加させることができ、そのような組成物は、本発明の範囲に包含される。
 ここで、(A´)成分は、ヒドロシリル化による硬化反応に関与しない鎖状オルガノポリシロキサンであり、組成物中における(B)成分との質量比が、組成物の粘着力および貯蔵弾性率等の特性に影響しうる。前記の通り、(A)成分および(A´)成分に対する、(B)成分の質量比は0.9~4.0の範囲であってよく、所望の粘着力および貯蔵弾性率を実現するために、1.5~3.5の範囲が特に好ましい。なお、(A)成分と(A´)成分の質量比は特に制限されないが、所望の貯蔵弾性率および(B)成分との質量比に応じて、100:0~60:40の範囲、100:0~65:35の範囲、90:10~65:35の範囲、85:15~70:30の範囲等に設計してもよい。
 本発明にかかるオルガノポリシロキサン組成物の調製方法は特に限定されず、それぞれの成分を均質に混合することによって行われる。必要に応じて溶剤を加えてもよく、公知の攪拌機または混練機を用いて、0~200℃の温度で混合して調製してもよい。
 本発明のオルガノポリシロキサン組成物は、基材上に塗工することによって塗膜を形成し、80~200℃の温度条件下、好適には、90~190℃の温度条件下で加熱することによって硬化物である感圧接着層を形成する。なお、光活性型のヒドロシリル化反応触媒を使用する場合、塗膜に対して高エネルギー線を照射後、室温又は任意で加熱することで、硬化物である感圧接着層を形成する。例えば、紫外線照射の場合は、波長365nmでの積算照射量が100mJ/cm~100J/cmの範囲内であることが好ましい。
 塗工方法としては、グラビアコート、オフセットコート、オフセットグラビア、ロールコート、リバースロールコート、エアナイフコート、カーテンコート、及びコンマコートが例示される。塗工量は表示装置等の用途に応じて所望の厚さで設計することができ、一例として、硬化したあとの感圧接着層の厚みとして1~1,000μmであり、5~900μmであってよく、10~800μmであってよいが、これらに限定されるものではない。
[感圧接着剤層の低温(-20℃)および室温(25℃)における貯蔵弾性率G’]
 本発明にかかる感圧接着剤層は、さらに、その25℃における貯蔵弾性率G’が0.01MPa以上の範囲にあることが好ましく、0.01~2.0MPaの範囲にあることがより好ましく、0.01~1.5MPaの範囲内にあることが特に好ましい。同様に、本発明にかかる表示装置に使用される前記の感圧接着剤層は、その-20℃における貯蔵弾性率G’が0.02~25MPaの範囲内にあることが好ましく、0.03~20MPaの範囲内にあることが特に好ましい。感圧接着剤層が低温(-20℃)および室温(25℃)における貯蔵弾性率G’について上記範囲にある場合、低温から高温に至る表示装置を利用する温度範囲で、部材への密着性、追従性および柔軟性が損なわれず、特に高温下及び低温下において、ディスプレイの変形時であっても高度な柔軟性および密着性を維持できるため、信頼性および耐久性に特に優れるものである。
[感圧接着性および粘着力の範囲]
 本発明にかかる感圧接着剤層形成性オルガノポリシロキサン組成物をヒドロシリル化反応により硬化させてなるシリコーン系の感圧接着剤層をその部材間に有することを特徴とする。
 好適には、当該オルガノポリシロキサン組成物を硬化させてなる厚み50μmの感圧接着層の、厚み2mmのポリメチルメタクリレートシートに対する、JIS Z 0237に従う180°引き剥がし試験方法を用いて引張速度300mm/minにより測定された粘着力が360gf/inch以上、好適には、400gf/inch以上の範囲であり、特に、500~3500gf/inchの範囲にある感圧接着層を設計可能であり、800~3500gf/inchの範囲にある感圧接着層が好適である。なお、上記の厚み(50μm)は、本発明にかかる硬化層の粘着力を客観的に定義するための基準となる硬化層自体の厚みであり、本発明のオルガノポリシロキサン組成物は厚み50μmに限らず、任意の厚みの硬化層または感圧接着層として利用することができることは言うまでもない。
[貯蔵弾性率およびその他の機械的物性]
 本発明にかかる感圧接着剤層は、上記の段落0021に記載の低温(-20℃)および室温(25℃)における貯蔵弾性率G’を有することが好ましい。また、本発明に係るシリコーン系の感圧接着層は、好適には、-20℃での1.0Hzにおける貯蔵弾性率G’が25℃での1.0Hzにおける貯蔵弾性率G’の3倍以上あってもよい。
[感圧接着剤層の透明性、色調または着色・変色に関する特性]
 本発明に係る感圧接着剤層は、実質的に透明、半透明または不透明のいずれであってもよく、当該感圧接着剤層の用途に応じてその透明性を設計することができる。目視で透明である場合、より客観的には、厚み100μmの硬化層からなる表示装置用の感圧接着層の波長450nmの光の透過率が空気の値を100%とした場合に80%以上であり、好適には90%以上であり、95%以上に設計してもよい。一方、光透過性が求められない電気・電子部品の接着等においては、半透明~不透明な感圧接着層であってもよく、光透過性以外の要求特性に応じて、着色性あるいは可視光または紫外光などの透過性を損なうようなフィラー成分または添加剤を利用しても良い。
 好適には、本発明に係る感圧接着層は、任意で硬化層中の白金系金属の含有量を低減等することにより、上記の透明性に加えて、硬化物が着色していないように設計することが可能である。また、本発明の硬化層は、高温や紫外線等の高エネルギー線に長時間暴露した場合であっても、その色調が大きく変化せず、特に、黄変の問題を生じないように設計可能である。
[感圧接着剤層としての使用方法]
 好適には、本発明に係る感圧接着剤層は、被着体との密着性を向上させるために、感圧接着剤層または基材の表面に対してプライマー処理、コロナ処理、エッチング処理、プラズマ処理等の表面処理を行ってもよい。
 本発明に係る硬化性オルガノポリシロキサン組成物は、剥離ライナーに塗工した後、上記の温度条件下で加熱することにより硬化させ、剥離ライナーを剥がしてフィルム状基材、テープ状基材、またはシート状基材(以下、「フィルム状基材」という)と貼り合せたり、フィルム状基材に塗工した後、上記の温度条件下で加熱することにより硬化させ、前記基材の表面に感圧接着剤層を形成することができる。特に、上記のオルガノポリシロキサン組成物を硬化してなる硬化層が感圧接着層、特に、感圧接着剤フィルムである場合、当該硬化層は、剥離コーティング能を有する剥離層を備えたフィルム基材上に、剥離可能な状態で粘着した積層体フィルムとして取り扱うことが好ましい。剥離層は、好適には、シリコーン系剥離剤、フッ素系剥離剤、アルキド系剥離剤、またはフルオロシリコーン系剥離剤等の剥離コーティング能を有する剥離層、基材表面に物理的に微細な凹凸を形成させたり、本発明の感圧接着層と付着しにくい基材それ自体であってもよく、フルオロシリコーン系剥離剤を硬化させてなる剥離層の使用が好ましい。なお、前記積層体において剥離層は、剥離層を構成する剥離剤の種類及び剥離力の異なる第一剥離層と第二剥離層である異差剥離層であってもよく、フルオロシリコーン系剥離剤は、フルオロアルキル基およびパーフルオロポリエーテル基から選ばれる1種類以上のフッ素含有基を含む、硬化反応性のシリコーン組成物であってよい。
 本発明のオルガノポリシロキサン組成物を硬化してなる硬化物は、上記のような粘弾性特性と接着力を併せ持つため、弾性粘着部材として、各種の電子機器または電気的装置の部材として有用である。特に、電子材料、表示装置用部材またはトランスデューサー用部材(センサ、スピーカー、アクチュエーター、およびジェネレーター用を含む)として有用であり、当該硬化物の好適な用途は、電子部品または表示装置の部材である。本発明にかかる硬化物は透明でも不透明であってもよいが、フィルム形状の硬化物、特に実質的に透明な感圧接着剤フィルムは、表示パネルまたはディスプレイ用の部材として好適であり、特に、画面を指先等で接触することにより機器、特に電子機器を操作可能な所謂タッチパネル用途に特に有用である。また、不透明な弾性粘着層は、透明性が要求されず、粘着層自体に一定の伸縮性または柔軟性が求められるセンサ、スピーカー、アクチュエーター等に用いられるフィルム状またはシート状部材の用途に特に有用である。
 特に、本発明のオルガノポリシロキサン組成物を硬化してなる感圧接着層は、従来のシリコーン感圧接着層と同等の感圧接着特性を実現可能であり、かつ、硬化不良や硬化性の低下の問題を生じることなく、表示デバイス等の基材への密着性を改善できる。
[表示パネルまたはディスプレイ用の部材]
 本発明のオルガノポリシロキサン組成物を硬化してなる硬化物は、積層タッチスクリーン又はフラットパネルディスプレイの構築及び利用に使用することができ、その具体的な使用方法は、感圧接着剤層(特に、シリコーンPSA)の公知の使用方法を特に制限なく用いることができる。特に、本発明を用いて得られまたは設計される感圧接着剤層は、上記のように低いTgと強い粘着力を併せ持つため、当該感圧接着剤層を部材間に有する表示装置は、具体的には、車載または航空機の座席等に使用される曲面ディスプレイ、二つ折りまたは三つ折り等の形でデジタルディスプレイを折り畳んで使用するフォールダブルディスプレイ、表示面全体を任意の方向に巻取り乃至折り曲げて収納可能な変形ディスプレイ、表示面全体を任意の方向に伸縮(特に引き伸ばし)が可能な変形ディスプレイなどのフレキシブルディスプレイに広く適用することが可能であり、その耐久性および信頼性を改善することができるものである。
 その他、本発明のオルガノポリシロキサン組成物を硬化してなる硬化物は、前記の特表2014-522436号または特表2013-512326等で開示された光学的に透明なシリコーン系感圧接着剤フィルムあるいは粘着剤層として、タッチパネル等の表示デバイスの製造に用いることができる。具体的には、本発明のオルガノポリシロキサン組成物を硬化してなる硬化物は、特表2013-512326に記載の粘着層または粘着フィルムとして、特に制限なく用いることができる。
 一例として、本発明にかかるタッチパネルは、一面に導電層が形成されている伝導性プラスチックフィルム等の基材、及び当該導電層が形成された側またはその反対側の面に付着されている本発明の硬化性オルガノポリシロキサン組成物を硬化してなる硬化層を含むタッチパネルであってよい。当該基材は、シート状またはフィルム状基材であることが好ましく樹脂フィルムまたはガラス板が例示される。また、前記伝導性プラスチックフィルムは、一面にITO層が形成されている樹脂フィルムまたはガラス板、特に、ポリエチレンテレフタレートフィルムであってよい。これらは、前記の特表2013-512326等に開示されている。
 その他、本発明のオルガノポリシロキサン組成物を硬化してなる硬化物は、タッチパネル等の表示デバイスの製造に用いる偏光板用接着フィルムとして用いてもよく、特開2013-065009号公報に記載のタッチパネルとディスプレイモジュール間の貼合に用いる感圧接着層として用いてもよい。
 以下に、本発明の実施例及び比較例を記す。なお、各実施例・比較例・参考例において「硬化させた」とは、各々の硬化条件により、各組成物が完全に硬化したことを意味するものである。
(硬化反応性のオルガノポリシロキサン組成物の調製)
 表1に示す各成分を用いて、各実施例・比較例・参考例に示す硬化反応性のオルガノポリシロキサン組成物を調製した。なお、表1における%は全て質量%である。
(オルガノポリシロキサン成分の分子量の測定)
 Waters社製Allianceゲルパーミエーションクロマトグラフィー(GPC)を用い、トルエンを溶媒として、標準ポリスチレン換算で、オルガノポリシロキサンレジン等のオルガノポリシロキサン成分の重量平均分子量(Mw)、数平均分子量(Mn)を求めた。
(オルガノポリシロキサンレジン中の水酸基(OH)含有量の測定)
 ガラスフリープローブを備えたブルカー製ACP-30029Si NMRスペクトロメーターを用い、テトラメチルシランの化学シフトを0ppmとしたときに、-93から-103.5ppmに現れるSi(OH)O2/3単位の全シリコンに対する存在比率からモル含量を得、さらに、オルガノポリシロキサンレジン中の水酸基(OH)の質量%にも換算した。なお、以下の実施例におけるオルガノポリシロキサンレジン中に水酸基以外の加水分解性官能基は含まれていなかった。
(粘着力測定)
 各組成物を、PETフィルム(株式会社東レ製、製品名ルミラー(登録商標)S10、厚さ50μm)に硬化後の厚みが50μmとなるように塗工し、150℃で3分間硬化させた。1日放置後、同試料を幅20mmに切断し、粘着層面をPMMA板(パルテック製、アクリライトL001,50×120×2mm)にローラーを用いて貼り合せて試験片とした。PMMA板を用いた試験片は、オリエンテック社製RTC-1210引っ張り試験機を用いてJIS Z0237に準じて180°引き剥がし試験方法を用いて引張速度300mm/minにて粘着力(20mm幅での測定を表示単位gf/インチに換算)を測定した。結果を表2に示す。
(動的粘弾性)
 各組成物を硬化後の厚みが約100μmになるようにフロロシリコーン剥離コーティングを塗工した剥離ライナーに塗工し、150℃で3分間硬化させた。あるいは各組成物を硬化後の厚みが約280μmになるようにフロロシリコーン剥離コーティングを塗工した剥離ライナーに塗工し、150℃で15分間硬化させた。この感圧接着剤フィルムを、100μmの場合は5枚以上、280μmの場合は2枚重ね合わせ、厚さ500μm以上である、両面を剥離ライナーに挟まれたフィルムサンプルを得た。当該フィルムを直径8mmにくりぬき、動的粘弾性装置(DMA; Anoton Paar社製、MCR301)のパラレルプレートプローブに貼り付けて測定した。測定条件は、-70℃~+250℃の範囲であり、周波数1Hz、昇温速度3℃/分にて測定し、損失係数(tanδ)、貯蔵弾性率G’、損失弾性率G’’を測定した(単位:MPa)。25℃および―20℃における貯蔵弾性率G’を表2に示す。また、損失係数(tanδ)のピーク値より各感圧接着剤フィルムのガラス転移点(Tg)(℃)を求め、同じく表2に示す。
 表1に硬化反応性のオルガノポリシロキサン組成物の材料を示す。なお、各成分の粘度または可塑度は以下の方法により、室温において測定した。
[粘度]
 粘度(mPa・s)は、JIS K7117-1に準拠した回転粘度計を使用して測定した値であり、動粘度(mm/s)は、JIS Z8803に準拠したウベローデ型粘度計によって測定した値である。
[可塑度]
 可塑度は、JIS K 6249に規定される方法に準じて測定された値(25℃、4.2gの球状試料に1kgfの荷重を3分間かけたときの厚さを1/100mmまで読み、この数値を100倍したもの)で示した。
表1 硬化反応性のオルガノポリシロキサン組成物の成分
Figure JPOXMLDOC01-appb-T000001
[実施例1~10、比較例1~9]
 以下、実施例1~10、比較例1~9にかかる組成物を準備し、上記の(動的粘弾性)および(粘着力測定)の項目に従って硬化させ、その粘着力,ガラス転移点(Tg),25℃/-20℃における貯蔵弾性率G’を表2に示した。
 また、図1には実施例1~9、比較例1~8それぞれについてTgに対する(B)/(A)をプロットした。それぞれのデータ点は図1中に示す直線近似に従った。図1中に示すこれらの直線の式より、(B)成分中の(b2)成分として重量平均分子量(Mw)が4000未満のものを用いたときの[Tg+120]/[(B)/(A)]の値を、(b2)成分に代えて重量平均分子量(Mw)が4000以上のもの(成分b2´)を用いたときの[Tg′+120]/[(B)/(A)]の値で割った値Rを、(B)/(A)の値が1.5、1.7、1.9、2.1のときについて求め、表3に示した。なお、実施例10、比較例9については(B)成分中の(b1)成分が多いため図1のプロットには載せず、同じ(B)/(A)比における(Tg+120)/(Tg’+120)を別途記した。
(実施例1)
 成分a 33.3重量部、成分a‘ 8.33重量部、成分b2 80.5重量部、トルエン 44.5重量部、成分c 0.692重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は31.5、白金金属の固形分に対する含量は30ppmであった。
(実施例2)
 成分a 31.0重量部、成分a‘ 7.75重量部、成分b2 84.5重量部、トルエン 43.4重量部、成分c 0.658重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は32.3、白金金属の固形分に対する含量は30ppmであった。
(実施例3)
 成分a 28.6重量部、成分a‘ 7.14重量部、成分b2 88.7重量部、トルエン 42.3重量部、成分c 0.623重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は33.1、白金金属の固形分に対する含量は30ppmであった。
(実施例4)
 成分a 34.6重量部、成分b2 90.2重量部、トルエン 41.9重量部、成分c 0.655重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d1 0.355重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は28.7、白金金属の固形分に対する含量は22ppmであった。
(実施例5)
 成分a 27.5重量部、成分a‘ 6.87重量部、成分b2 90.5重量部、トルエン 41.8重量部、成分c 0.552重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.355重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は30.5、白金金属の固形分に対する含量は22ppmであった。
(実施例6)
 成分a 31.6重量部、成分b1 10.7重量部、成分b2 85.0重量部、トルエン 39.5重量部、成分c 0.610重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d1 0.355重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は29.4、白金金属の固形分に対する含量は22ppmであった。
(実施例7)
 成分a 30.7重量部、成分b1 15.1重量部、成分b2 82.2重量部、トルエン 38.7重量部、成分c 0.598重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d1 0.355重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は29.6、白金金属の固形分に対する含量は22ppmであった。
(実施例8)
 成分a 38.5重量部、成分b2 84.9重量部、トルエン 43.3重量部、成分c 0.762重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d2 0.423重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は30.1、白金金属の固形分に対する含量は22ppmであった。
(実施例9)
 成分a 24.5重量部、成分a‘ 10.5重量部、成分b2 89.7重量部、トルエン 42.0重量部、成分c 0.508重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.355重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は31.5、白金金属の固形分に対する含量は22ppmであった。
(実施例10)
 成分a 32.2重量部、成分b1 41.3重量部、成分b2 57.0重量部、トルエン 36.2重量部、成分c 0.618重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d1 0.355重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は29.3、白金金属の固形分に対する含量は22ppmであった。
(比較例1)
 成分a 33.3重量部、成分a‘ 8.33重量部、成分b2´ 83.5重量部、トルエン 41.6重量部、成分c 0.692重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は31.5、白金金属の固形分に対する含量は30ppmであった。
(比較例2)
 成分a 31.0重量部、成分a‘ 7.75重量部、成分b2´ 87.6重量部、トルエン 40.3重量部、成分c 0.658重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は32.3、白金金属の固形分に対する含量は30ppmであった。
(比較例3)
 成分a 28.6重量部、成分a‘ 7.14重量部、成分b2´ 92.0重量部、トルエン 39.0重量部、成分c 0.623重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は33.1、白金金属の固形分に対する含量は30ppmであった。
(比較例4)
 成分a 36.4重量部、成分b2´ 91.0重量部、トルエン 39.3重量部、成分c 0.807重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は33.7、白金金属の固形分に対する含量は30ppmであった。
(比較例5)
 成分a 28.6重量部、成分a‘ 7.14重量部、成分b2´ 92.0重量部、トルエン 39.0重量部、成分c 0.623重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は33.1、白金金属の固形分に対する含量は30ppmであった。
(比較例6)
 成分a 31.6重量部、成分b1 10.8重量部、成分b2´ 88.1重量部、トルエン 36.2重量部、成分c 0.610重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d1 0.355重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は29.4、白金金属の固形分に対する含量は22ppmであった。
(比較例7)
 成分a 39.7重量部、成分b2´ 86.3重量部、トルエン 96.2重量部、成分c 0.855重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d2 0.577重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は32.7、白金金属の固形分に対する含量は30ppmであった。
(比較例8)
 成分a 25.5重量部、成分a‘ 10.9重量部、成分b2´ 91.0重量部、トルエン 39.3重量部、成分c 0.578重量部、成分e 0.409重量部、を室温でよく混合し、混合物に成分d1 0.484重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は34.5、白金金属の固形分に対する含量は30ppmであった。
(比較例9)
 成分a 32.2重量部、成分b1 41.3重量部、成分b2´ 59.1重量部、トルエン 34.1重量部、成分c 0.618重量部、成分e 0.577重量部、を室温でよく混合し、混合物に成分d1 0.355重量部を加えて硬化反応性のオルガノポリシロキサン組成物とした。成分a中のアルケニル基の量に対する成分c中のSiH基のモル比(SiH/Vi比)は29.3、白金金属の固形分に対する含量は22ppmであった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例に係るTg+120と比較例に係るTg´+120を割った値であるRの値は、上記の(B)/(A)=1.5~2.1の範囲で全て1.0未満となった。なお、実施例10と比較例9については、(B)/(A)比が同じ2.11であるため、Rの値を求めると0.982であり、同じく、1.0未満であった
 また、表2に示すように、成分b2であるMQレジン(Mwが4000未満)を用いたときに、成分b2´であるレジン(Mwが4070)を用いたときと同じTgを与えることができるように(B)/(A)比を調整した場合((B)/(A)比は図1より求めることができる)、成分b2であるMQレジンを用いたときの方が粘着力が高くなった。比較例4に対しての実施例4、比較例5に対しての実施例5、比較例6に対しての実施例7、比較例7に対しての実施例8、比較例8に対しての実施例9がこれに該当する。また、比較例9に対して実施例10では、実施例10の方がTgが少し低いにもかかわらず粘着力は実施例10の方が高かった。
 以上より、本発明の(b2)成分を用いることで、同一の(B)/(A)比では感圧接着剤層のTgをより低く設計可能であり、同一または類似のTgを有する感圧接着剤層との比較においては、より高い粘着力を実現可能であった。
 本発明により得られ、または組成を設計される組成物、それを硬化してなる硬化物の用途としては、上記に開示した他に何ら制約はなく、当該組成物を硬化してなる硬化物を備えてなる感圧接着フィルムはテレビ受像機、コンピューター用モニター、携帯情報端末用モニター、監視用モニター、ビデオカメラ、デジタルカメラ、携帯電話、携帯情報端末、自動車などの計器盤用ディスプレイ、種々の設備・装置・機器の計器盤用ディスプレイ、自動券売機、現金自動預け払い機、車載用表示装置、車載用透過型スクリーンなど、文字や記号、画像を表示するための種々の表示装置に利用可能である。このような表示装置の表面形状は、平面ではなく曲面状ないし湾曲した形状であってもよく、各種フラットパネルディスプレイ(FPD)のほか、自動車(電気自動車含む)や航空機等に利用される曲面ディスプレイまたは曲面透過型スクリーンが例示される。さらに、これらの表示装置は、スクリーンやディスプレイ上に機能またはプログラムを実行するためのアイコンや、電子メール・プログラム等の通知表示、カーナビゲーション装置、オーディオ装置、空調装置などの各種装置の操作ボタンを表示することができ、これらのアイコンや通知表示、操作ボタンに指を触れることで、入力操作が可能となるタッチパネル機能が付加されていてもよい。装置としては、CRTディスプレイ、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイ、LEDディスプレイ、表面電解ディスプレイ(SED)、電界放出型ディスプレイ(FED)などの表示装置や、これらを利用したタッチパネルに応用が可能である。また、当該組成物を硬化してなる硬化物は、接着性と粘弾特性に優れるため、スピーカー用のメンブレン等のトランスデューサー用部材(センサ、スピーカー、アクチュエーター、およびジェネレーター用を含む)であるフィルム又はシート状部材として利用できるほか、さらに、二次電池、燃料電池または太陽電池モジュールに用いる封止層または接着剤層として利用することができる。

Claims (15)

  1. (A)分子内に平均して1を超える数のアルケニル基を有する鎖状オルガノポリシロキサン、
    (B)以下の(b1)成分および(b2)成分を99:1~0:100の質量比で含む、オルガノポリシロキサンレジンまたはその混合物:
    (b1)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が5500以上であるオルガノポリシロキサンレジン、
    (b2)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が4000未満であるオルガノポリシロキサンレジン
    (C)分子内に少なくとも2個のSi-H結合を有するオルガノハイドロジェンポリシロキサン、
    (D)ヒドロシリル化反応触媒
    を含有してなり、
    当該組成物の硬化により得られる感圧接着剤層のガラス転移点温度:Tg(℃)、
    (b2)成分を、(b2)成分と同様の方法で測定される重量平均分子量(Mw)が4000以上のオルガノポリシロキサンレジンで置き換えた場合に得られ、(A)成分に対する(B)成分の質量比が同一となる組成物の硬化により得られる感圧接着剤層のガラス転移点温度:Tg´(℃)
    としたとき、
    [Tg+120]/[Tg´+120]の値が1.0未満となることを特徴とする、感圧接着層形成性オルガノポリシロキサン組成物。
  2. (B)成分が、(b1)成分および(b2)成分を60:40~0:100の質量比で含む、オルガノポリシロキサンレジンまたはその混合物であり、かつ、(b2)成分の重量平均分子量(Mw)が1000~3900の範囲である、請求項1に記載の感圧接着層形成性オルガノポリシロキサン組成物。
  3. (A)成分に対する(B)成分の質量比:[(B)/(A)]が、1.0~2.5の範囲であり、Tgが-70℃~+45℃の範囲にある、請求項1または請求項2に記載の感圧接着層形成性オルガノポリシロキサン組成物。
  4. (A)成分の少なくとも一部が、25℃において100,000mPa・s以上の粘度を有するか、JIS K6249に規定される方法に準じて測定された可塑度が50~200の範囲にある生ゴム状のアルケニル基含有オルガノポリシロキサンであり、そのアルケニル基のビニル(CH=CH)換算の含有量が0.005~0.400質量%の範囲にある鎖状オルガノポリシロキサンであり、
    (B)成分が、RSiO1/2単位(式中、Rは一価有機基であり、Rの90モル%以上が炭素数1~6のアルキル基またはフェニル基である;M単位)及びSiO4/2単位(Q単位)から実質的になるオルガノポリシロキサンレジンまたはその混合物であり
    (C)成分の量が、上記の(A)成分中および(B)成分中のアルケニル基の物質量の和に対する(C)成分中のSiH基の物質量の比(モル比)が0.1~100となる量であり、
    (D)成分の量が、組成物中の固形分中の白金系金属の含有量が0.1~200ppmの範囲であり、かつ、
    (B)成分以外のオルガノポリシロキサンレジンを実質的に含まないことを特徴とする、請求項1~請求項3のいずれか1項に記載の感圧接着層形成性オルガノポリシロキサン組成物。
  5. (C)成分の量が、上記の(A)成分中および(B)成分中のアルケニル基の物質量の和に対する(C)成分中のSiH基の物質量の比(モル比)が11~60となる量である、請求項1~請求項4のいずれか1項に記載の感圧接着層形成性オルガノポリシロキサン組成物。
  6. さらに、(A´)分子内にアルケニル基およびケイ素原子結合水素原子を有さない鎖状オルガノポリシロキサンを含む、請求項1~請求項5のいずれか1項に記載の感圧接着層形成性オルガノポリシロキサン組成物。
  7. 当該組成物の硬化により得られる厚み50μmの感圧接着層の、厚み2mmのポリメチルメタクリレートシートに対する、JIS Z 0237に従う180°引き剥がし試験方法を用いて引張速度300mm/minにより測定された粘着力が360~4000gf/inchの範囲である、請求項1~請求項6のいずれか1項に記載の感圧接着層形成性オルガノポリシロキサン組成物。
  8. 上記の(b2)成分を使用せず、(b2)成分と同様の方法で測定される重量平均分子量(Mw)が4000以上のオルガノポリシロキサンレジンを使用して当該組成物の硬化により得られる感圧接着層と一致するガラス転移点温度(Tg´)を有するように設計された感圧接着層形成性オルガノポリシロキサン組成物の硬化により得られる感圧接着層の粘着力と対比した場合、より強い粘着力を有することを特徴とする、請求項1~請求項7のいずれか1項に記載の感圧接着層形成性オルガノポリシロキサン組成物。
  9. 請求項1~請求項8のいずれか1項に記載の感圧接着層形成性オルガノポリシロキサン組成物を硬化してなる感圧接着剤層。
  10. フィルム状基材上に、請求項1~請求項8のいずれか1項に記載の感圧接着層形成性オルガノポリシロキサン組成物を硬化してなる感圧接着剤層を備えた積層体。
  11. 1または2以上のフィルム状基材に当該感圧接着剤層に対する剥離層が設けられている、請求項10に記載の積層体。
  12. フィルム状基材、
    該フィルム状基材上に形成された第1剥離層、
    該剥離層上に請求項1~請求項8のいずれか1項に記載の感圧接着層形成性オルガノポリシロキサン組成物を塗工し硬化させて形成された感圧接着層、及び
    該感圧接着層上に積層された第2剥離層
    を含む、請求項10または請求項11の積層体。
  13. 請求項1~請求項8のいずれか1項記載の感圧接着層形成性オルガノポリシロキサン組成物を硬化してなる、弾性粘着部材。
  14. 請求項13に記載の弾性粘着部材を含む電子機器または電気的装置。
  15. (A)分子内に平均して1を超える数のアルケニル基を有する鎖状オルガノポリシロキサン、
    (B)オルガノポリシロキサンレジンまたはその混合物、
    (C)分子内に少なくとも2個のSi-H結合を有するオルガノハイドロジェンポリシロキサン、
    (D)有効量のヒドロシリル化反応触媒
    を含有する感圧接着層形成性オルガノポリシロキサン組成物を硬化してなる感圧接着剤層について、(B)成分の1~100質量%の範囲で、
    (b2)分子内の全ケイ素原子に対する水酸基および加水分解性基の含有量の和が9モル%以下であり、トルエンを用いたゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算で測定される重量平均分子量(Mw)が4000未満であるオルガノポリシロキサンレジン
    を使用することにより、(A)成分に対する(B)成分の質量比:[(B)/(A)]を変えることなく、感圧接着剤層のガラス転移点温度:Tg(℃)を低下させることを特徴とする、感圧接着層形成性オルガノポリシロキサン組成物の組成設計方法。
PCT/JP2021/048182 2020-12-25 2021-12-24 感圧接着層形成性オルガノポリシロキサン組成物、その使用およびその組成設計方法 WO2022138913A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022571679A JPWO2022138913A1 (ja) 2020-12-25 2021-12-24
US18/268,979 US20240117231A1 (en) 2020-12-25 2021-12-24 Pressure sensitive adhesive layer-forming organopolysiloxane composition, use of same, and composition design method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216895 2020-12-25
JP2020-216895 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138913A1 true WO2022138913A1 (ja) 2022-06-30

Family

ID=82158036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048182 WO2022138913A1 (ja) 2020-12-25 2021-12-24 感圧接着層形成性オルガノポリシロキサン組成物、その使用およびその組成設計方法

Country Status (3)

Country Link
US (1) US20240117231A1 (ja)
JP (1) JPWO2022138913A1 (ja)
WO (1) WO2022138913A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188308A1 (ja) * 2016-04-26 2017-11-02 東レ・ダウコーニング株式会社 フレキシブル積層体及びそれを備えたフレキシブルディスプレイ
WO2020032285A1 (ja) * 2018-08-10 2020-02-13 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2020032286A1 (ja) * 2018-08-10 2020-02-13 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2020032287A1 (ja) * 2018-08-10 2020-02-13 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2021029413A1 (ja) * 2019-08-13 2021-02-18 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2021029414A1 (ja) * 2019-08-13 2021-02-18 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188308A1 (ja) * 2016-04-26 2017-11-02 東レ・ダウコーニング株式会社 フレキシブル積層体及びそれを備えたフレキシブルディスプレイ
WO2020032285A1 (ja) * 2018-08-10 2020-02-13 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2020032286A1 (ja) * 2018-08-10 2020-02-13 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2020032287A1 (ja) * 2018-08-10 2020-02-13 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2021029413A1 (ja) * 2019-08-13 2021-02-18 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
WO2021029414A1 (ja) * 2019-08-13 2021-02-18 ダウ・東レ株式会社 感圧接着層形成性オルガノポリシロキサン組成物およびその使用

Also Published As

Publication number Publication date
US20240117231A1 (en) 2024-04-11
JPWO2022138913A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
JP7046196B2 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
JP7046198B2 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
JPWO2019009175A1 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
JP7046197B2 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
JP7469232B2 (ja) シリコーン粘着剤組成物およびその用途
JP7491655B2 (ja) シリコーン感圧接着剤組成物およびその用途
CN114269876B (zh) 压敏粘接层形成性聚有机硅氧烷组合物及其使用
JPWO2018186161A1 (ja) 硬化反応性のオルガノポリシロキサン組成物、それを用いた感圧接着剤組成物、およびその使用
WO2021029413A1 (ja) 感圧接着層形成性オルガノポリシロキサン組成物およびその使用
CN114269875B (zh) 压敏粘接层形成性聚有机硅氧烷组合物及其使用
WO2022138913A1 (ja) 感圧接着層形成性オルガノポリシロキサン組成物、その使用およびその組成設計方法
JP2022070841A (ja) 特定のクリープコンプライアンス値を有する感圧接着剤層を有する表示装置およびその設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18268979

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21911050

Country of ref document: EP

Kind code of ref document: A1