WO2022138862A1 - センシング繊維部材 - Google Patents

センシング繊維部材 Download PDF

Info

Publication number
WO2022138862A1
WO2022138862A1 PCT/JP2021/048008 JP2021048008W WO2022138862A1 WO 2022138862 A1 WO2022138862 A1 WO 2022138862A1 JP 2021048008 W JP2021048008 W JP 2021048008W WO 2022138862 A1 WO2022138862 A1 WO 2022138862A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber member
covering
sensing fiber
sensing
yarn
Prior art date
Application number
PCT/JP2021/048008
Other languages
English (en)
French (fr)
Inventor
真由美 宇野
真梨子 小森
茂 森田
貫生 吉村
Original Assignee
旭化成アドバンス株式会社
地方独立行政法人大阪産業技術研究所
カジナイロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成アドバンス株式会社, 地方独立行政法人大阪産業技術研究所, カジナイロン株式会社 filed Critical 旭化成アドバンス株式会社
Priority to JP2022571646A priority Critical patent/JPWO2022138862A1/ja
Priority to US18/268,341 priority patent/US20240035209A1/en
Priority to EP21911001.2A priority patent/EP4269673A1/en
Priority to CN202180094254.2A priority patent/CN116981921A/zh
Publication of WO2022138862A1 publication Critical patent/WO2022138862A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0088Fabrics having an electronic function
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/37Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments with specific cross-section or surface shape
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/533Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • H01G5/18Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes due to change in inclination, e.g. by flexing, by spiral wrapping
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Definitions

  • the present invention relates to a sensing fiber member having a covering yarn in which an insulating fiber as a covering material is wound in one direction around a linear conductor as a core material to cover it.
  • a piezoelectric type processed yarn or a piezoelectric sensor as shown in FIG. 1 has been conventionally proposed as a fiber member having a contact sensing function.
  • a piezoelectric type processed yarn also referred to as a piezoelectric yarn or a piezoelectric fiber
  • a piezoelectric type processed yarn is made of a piezoelectric material such as polylactic acid or polyfluorinated vinylidene around the conductive fiber. It has a structure in which it is covered and the circumference is covered with a conductor such as metal plating.
  • Polylactic acid is a crystalline helical chiral polymer, and its uniaxially stretched film has piezoelectricity.
  • Piezoelectricity is the property that electric charge is generated when stress is applied.
  • the (1) side is [-] and the (3) side is "+". Charge is generated.
  • the reverse is also true.
  • it is necessary to orient the piezoelectric material, and there is a problem that it is difficult to increase productivity in the plating process. Therefore, at present, it is very expensive at about 1000 yen to 5000 yen per 1 m of processed yarn. It has become. Further, with the structure shown in FIG.
  • contact or load is sensed by detecting a change in capacitance between two adjacent electrodes when contact or load is applied.
  • Contact sensing fiber members are known, and other techniques for detecting changes in capacitance when a conductor (such as a human body) is close to one electrode are known.
  • an insulator such as urethane or silicone is mainly used as an insulator between two electrodes, and it is difficult to greatly change the distance between the electrodes, so that the output (sensitivity) is small. Also, the cost was high and the texture was not good.
  • Patent Documents 9 and 10 techniques for covering yarns having excellent bulkiness and covering yarns having high productivity and high quality are known, but these covering yarns are known. There is no description or suggestion that the technique related to the above is used as a sensing fiber member.
  • the problem to be solved by the present invention is that it can be processed in a long length, has excellent mass productivity, can be used as a warp of a woven fabric or a warp, and has excellent suppleness and texture. Moreover, it is to provide a sensing fiber member which is remarkably low cost as compared with the contact sensing fiber member (piezoyl thread) for contact using the conventional piezoelectric material.
  • the present invention is as follows. [1] It has at least two covering yarns in which insulating fibers as a covering material are wound in one direction around a linear conductor as a core material to cover them, and two of them are close to each other. It is an arranged sensing fiber member, and is characterized by reading a change in resistance and / or a change in capacitance between the linear conductors of two covering yarns arranged close to each other. The sensing fiber member. [2] The sensing fiber member according to the above [1], wherein the insulating fiber contains either a multifilament insulating fiber or an insulating spun yarn.
  • sensing fiber member [3] The sensing fiber member according to the above [1] or [2], wherein the sensing fiber member senses contact or a load of an object with the sensing fiber member. [4] The sensing fiber member according to the above [1] or [2], wherein the sensing fiber member senses expansion / contraction or bending deformation of the sensing fiber member. [5] The sensing fiber member according to the above [1] or [2], wherein the sensing fiber member senses contact with a liquid or a change in humidity with the sensing fiber member.
  • Twist coefficient K (SS + SC) 1/2 x R ⁇
  • SS is the fineness (dtex) of the linear conductor as the core material
  • SC is the total fineness (dtex) of the covering material
  • R is the number of windings (twisting number) of the covering material. (Times / m).
  • the covering yarn is a double covering yarn in which the circumference of a linear conductor as a core material is covered with two covering materials, and the winding directions of the two covering materials are in the same direction.
  • the sensing fiber member according to any one of the above [1] to [6].
  • the sensing fiber member according to any one of [1] to [8] above, wherein the linear conductor as the core material is a multifilament conductive fiber.
  • the sensing fiber member according to any one of [1] to [9] above which is a woven fabric in which at least two or more covering yarns are arranged.
  • the sensing fiber member according to any one of [1] to [9] above which is a knitted fabric in which at least two or more covering yarns are arranged.
  • the winding direction of the insulating fibers in the two covering yarns arranged close to each other is the same, and the two covering yarns are in the direction opposite to the winding direction of the insulating fibers.
  • the sensing fiber member according to any one of [1] to [9] above which is a twisted yarn twisted in the above.
  • sensing fiber member [13] A woven fabric in which the sensing fiber member according to the above [12], which is a multi-twisted yarn, is woven. [14] A knit in which the sensing fiber member according to the above [12], which is a multi-twisted yarn, is woven. [15] Sensing for detecting the proximity or contact of an object having at least one covering yarn covered by wrapping an insulating fiber as a covering material in one direction around a linear conductor as a core material. The proximity or contact of an object to the sensing fiber member due to a change in capacitance due to the proximity or contact of the object between the linear conductor of the at least one covering yarn and the ground of the fiber member. Is sensed, the sensing fiber member.
  • the contact sensing fiber member according to the present invention can be processed in a long length, has excellent mass productivity, can be used as a warp of a woven fabric or a warp, has excellent suppleness and texture, and uses a conventional piezoelectric material.
  • Contact sensing for contact The cost is significantly lower than that of fiber members (piezoelectric threads). That is, since the contact sensing fiber member according to the present invention can sense the load using general fiber materials such as polyester and nylon, it is possible to realize the contact sensing fiber at a very low cost, and know-how.
  • the covering technology which is a fiber processing technology that has been established in Japan, it is possible to process long lengths, it is excellent in mass productivity, and it is possible to realize processed yarns with a very good texture compared to piezoelectric yarns. Therefore, it becomes easy to process into a fiber member such as a woven fabric or a knitted fabric. Since the contact sensing fiber member according to the present invention changes not only the capacitance but also the resistance value, it is possible to detect a state in which a load is continuously applied.
  • the contact sensing fiber member according to the present invention is used for smart textiles in which an electrical functional element is provided on a flexible or stretchable fiber base material, for example, a lug that can be detected when stepped on, or a person's entry / exit detection.
  • a flexible or stretchable fiber base material for example, a lug that can be detected when stepped on, or a person's entry / exit detection.
  • mats for counting the number of people, contact sensing woven and knitted fabrics for example, monitoring sensors at sites such as nursing and nursing care, sensors that digitize and transmit tactile sensations at production sites such as factories, vehicle seat belts, etc.
  • sensor embedding members such as embedding contact sensors (biological sensors) in vehicle seat belts, handles, dashboards, etc., detection sensors for the presence / absence of people, prevention of leaving children in the back seats, watching sensors, etc. It can be widely used for applications.
  • FIG. 1 It is a schematic diagram of the conventional piezoelectric type processed yarn. It is a schematic diagram of the sensing fiber member of this embodiment. It is an appearance and an enlarged photograph of the sensing fiber member of this embodiment which is a twisted yarn. It is a photograph of a narrow woven fabric in which the sensing fiber member of the present embodiment, which is a twisted yarn, is woven.
  • the sensing member of the present embodiment in the form of a plain weave woven fabric in which a covering yarn covered by winding an insulating fiber as a covering material in one direction around a linear conductor as a core material is used as a warp and a weft. It is a photograph.
  • FIG. 1 It is a schematic diagram of a device system for measuring the resistance change between two covering yarns covered by winding an insulating fiber as a covering material in one direction around a linear conductor as a core material. .. It is a graph which shows an example of the relationship between the load application time and the current value (sensor output) in the sensing fiber member of this embodiment which is the twisted yarn of Example 1.
  • FIG. 1 the applied load conditions are different from the conditions in Table 1.
  • the applied load conditions are different from the conditions in Table 1.
  • One embodiment of the present invention has at least two covering yarns in which an insulating fiber as a covering material is wound around a linear conductor as a core material in one direction to cover the linear conductor, and two of them are provided.
  • the sensing fiber member is characterized by reading (that is, a change in impedance).
  • the linear conductor (core thread) as the core material is not particularly limited as long as it is conductive, but is a conductive fiber, for example, a linear conductor whose material itself is conductive, such as carbon fiber and metal fiber. It may be present, or it may be a linear conductor obtained by imparting conductivity to non-conductive fibers. As the former, carbon fiber obtained by fiberizing carbon is preferable because of its high durability in moisture sensing described later. Further, if the SUS material is made into a fiber, it is preferable in that rust prevention can be ensured and the termination process for connecting to a circuit or the like can be simplified.
  • the latter includes fibers such as nylon with metal plating such as silver and copper, metal foil processed into tape and wound around the fibers, and fibers sprayed with an aerosol-like conductor. It is preferable to use the one adhered to the fiber surface from the viewpoint of enhancing the texture and flexibility. In this case, it is preferable that the conductive fiber is made of multifilament from the viewpoint of obtaining good conductivity and increasing the strength. If high-strength fibers such as polyarylate and aramid are used instead of nylon, the tensile strength can be further increased. Alternatively, a linear conductor in which conductivity is imparted by using a stretchable metal ink around an elastic body such as urethane or silicone may be used.
  • a stretchable fiber member can be obtained.
  • a linear conductor a linear mixture of a conductive material and an insulating material may be used.
  • a material obtained by linearly processing a carbon-based conductive material or a material obtained by mixing a metal with a resin such as nylon or polyester is used, it is possible to obtain a linear conductor at a significantly lower cost although the conductivity is inferior. ..
  • the linear conductor may be one or a plurality of metal wires from the viewpoint of cost reduction, although the texture is deteriorated. For example, if a metal wire having a diameter of about 30 ⁇ m to 1 mm is used, the strength can be significantly increased.
  • the fineness of the linear conductor is preferably 10 dtex to 15000 dtex, more preferably 20 dtex to 5000 dtex, from the viewpoint of easily obtaining a good texture.
  • the single yarn fineness is preferably 1 dtex to 30 dtex, more preferably 2 dtex to 10 dtex, from the viewpoint that a good texture can be easily obtained and high conductivity can be easily obtained.
  • the number of filaments is more preferably 10 to 200. It is preferable that the number of filaments is 10 or more because it is easy to obtain a good texture and it is easy to secure good conductivity. However, if the number of filaments is too large, the cost will be high and the rigidity will be high, so that the texture may be lowered. It is preferable to put these together in the above range of the number of filaments.
  • the same material may be used between the two pairing covering yarns, different materials may be used, or any combination of materials may be used. ..
  • the so-called galvanic action occurs when the liquid adheres by bridging the different materials. Since voltage and current are generated by the electrochemical action that is exposed, liquid sensing becomes possible without a power source.
  • the combination of different materials for example, iron and copper, iron and silver, aluminum and copper, silver and copper, and the like can be used.
  • the term "insulating fiber" as a covering material is used to electrically insulate two pairs of linear conductors as the core material described above.
  • the present invention is not particularly limited as long as possible, and includes a piezoelectric material such as polylactic acid (PLA) and a strong dielectric material such as polyvinylidene fluoride (PVDF).
  • PVA polylactic acid
  • PVDF polyvinylidene fluoride
  • the cover yarn can cover the above-mentioned linear conductor as the core material without a gap in a stationary state and is less likely to cause an electrical short circuit, it is possible to prevent electrical short circuit from the viewpoint of covering property, sensing performance, and texture.
  • a multifilament insulating fiber or an insulating spun yarn capable of making the coating thickness uniform without unevenness, and most preferably it is made of a multifilament insulating fiber or an insulating spun yarn.
  • the material of the insulating fiber is not particularly limited as long as the insulating property can be ensured in a state where there is no sensing action such as contact, tension, or liquid contact (idling state), but from the viewpoint of cost and availability. Therefore, synthetic fibers such as polyester (PE), nylon (Ny, polyamide), epoxy-based and acrylic-based fibers are preferable, and natural fibers such as cellulose fibers, semi-synthetic fibers and regenerated fibers may be used.
  • a piezoelectric material such as polylactic acid (PLA) or polyvinylidene fluoride (PVDF), a ferroelectric substance, or a biodegradable resin can be used. If it is a piezoelectric material, the insulating property can be maintained in an idling state, and when stress is applied, an output signal corresponding to the piezoelectric characteristics can also be obtained, so that the sensor sensitivity is high.
  • fibers used for clothing such as polyester, nylon and acrylic.
  • the cover thread when sensing is performed by changing the resistance value, a material having a slightly conductive property added to the insulating fiber may be used as the cover thread (sheath thread).
  • the range of conductivity of the sheath yarn at this time may be a range in which the change in resistance between the linear conductors of the two covering yarns arranged close to each other can be read.
  • the value of the resistance (sensor resistance) between the linear conductors of the covering yarns arranged close to each other is in the range of 0.5 k ⁇ to 5 G ⁇ , and the sensor resistance value is linear. It is preferably 20 times to 1 ⁇ 10 9 times the value of the resistance (wiring resistance) of the conductor alone.
  • the sensor resistance value is set with respect to the wiring resistance value. Since it is sufficiently large, it can correctly detect loads and tensile forces without being affected by wiring resistance. It is more preferable that the sensor resistance value is in the range of 0.5 k ⁇ to 100 M ⁇ from the viewpoint of simplifying the readout circuit.
  • the range of electrical resistivity of the sheath yarn material is preferably 104 ⁇ ⁇ m to 5 ⁇ 10 9 ⁇ ⁇ m because the above range of sensor resistance values can be easily satisfied.
  • an insulating material such as polyester, nylon, acrylic, etc.
  • a conductivity-imparting material for example, a carbon-based conductive material, metal particles, a metal sulfide such as copper sulfide, etc.
  • a material containing a metal oxide such as tin oxide or zinc oxide can be used.
  • both insulating fibers and conductive fibers may be appropriately mixed and used as the sheath yarn.
  • Cracabo manufactured by Kuraray Co., Ltd., registered trademark
  • Bertron manufactured by KB Seiren, registered trademark
  • Thunderlon manufactured by Nihon Sanmo Dyeing Co., Ltd., registered trademark
  • the sensing fiber member of the present embodiment is preferably a combination of fibers that dries more quickly as the material of the covering material (cover yarn) used.
  • the quick-drying fiber a synthetic fiber having a low water content can be used, but in order to achieve both water absorption and quick-drying performance, it is particularly preferable to combine the synthetic fiber and the cellulose fiber.
  • the synthetic fibers include polyester, nylon, acrylic and the like
  • the cellulose fibers include natural cellulose fibers such as cotton and linen, regenerated cellulose fibers such as rayon, polynosic, lyocell, cupra and modal, and semi-synthetic fibers such as acetate. Etc. are preferable, and multifilament rayon is particularly preferable.
  • both fibers can be mixed in the cover yarn, or can be covered with synthetic fibers and cellulose fibers in the double covering described later.
  • the fineness of the insulating fiber is preferably 15 dtex to 25000 dtex, more preferably 30 dtex to 8000 dtex, from the viewpoint of easily ensuring the insulating property. Further, in the case of a multifilament, the single yarn fineness is preferably 1 dtex to 10 dtex, more preferably 2 dtex to 8 dtex, from the viewpoint that a good texture can be more easily obtained.
  • FIG. 10 is a schematic view of a case where a bobbin on which a cover thread (14) is wound is set on a covering device equipped with a two-legged flyer (12) and operated.
  • FIG. 11 shows an enlarged view of the portion B of FIG.
  • the core yarn 9 passes through the hollow portion of the hollow spindle 10, passes through the upper snail guide (not shown), and is taken up by a take-up roll (not shown).
  • the cover thread 14 is passed through one of the leg guides 15 and 16 of the two-legged flyer 12, is unwound from the bobbin by the rotation of the hollow spindle (synchronization of the bobbin), and the cover thread 14 is snailed while being wound around the core thread 9. Take up through the guide.
  • the reason why the number of legs of the flyer 12 is two is to balance the flyer 12 when the flyer rotates.
  • the so-called double covering may be performed by arranging the covering devices in two stages in the vertical direction and covering two types of cover threads (same type or different types) in order from the two bobbins.
  • each cover yarn is covered in the same direction (both of the two types of cover yarn are S-twisted or both are Z-twisted), the thickness is uniform and the gaps between the insulating fibers are surely filled. It is possible to improve the sensing performance, which is particularly preferable.
  • the cover yarn may be a false twisted yarn (woolly yarn) from the viewpoint of easily improving the texture and the covering property.
  • the two covering yarns (7) are twisted yarns as the sensing fiber member of the present embodiment.
  • the covering material (cover yarn) (6) arranged around the linear conductor (5) as the core material is wound.
  • the two covering yarns have the same direction and are twisted yarns (8) twisted in a direction opposite to the winding direction of the multifilament insulating fiber.
  • twisting tilting in the direction opposite to the winding direction of the covering
  • the torque of the finished yarn is weakened and it becomes easy to handle in the manufacturing process.
  • the two covering yarns are naturally arranged close to each other, and the two covering yarns have contact points where they intersect with each other.
  • Twist coefficient K (SS + SC) 1/2 x R ⁇
  • SS is the fineness (dtex) of the linear conductor as the core material
  • SC is the total fineness (dtex) of the covering material
  • R is the number of windings (twisting number) of the covering material. (Times / m).
  • the twist coefficient K is preferably 7,000 or more and 30,000 or less. When the twisted yarn coefficient K is 7,000 or more, an electrical short circuit between the two linear conductors is unlikely to occur, while when it is 30,000 or less, it becomes easier to obtain a large sensor output. In the case of double covering, the twisting coefficients at the time of covering each of the first layer and the second layer are calculated and used as the average value.
  • the sensing fiber member of the present embodiment can have a narrow woven fabric shape in which the above-mentioned twisted yarns are continuously present in one direction of the woven fabric.
  • the twisted yarn is woven as the warp in the central portion in the width direction of the narrow woven fabric. Any number may be arranged according to the number. From the viewpoint of continuous production, it is preferable to arrange the twisted yarns as a part of the warp yarns. Thereby, it is possible to detect the contact of an object or a load with the portion in which the twisted yarn is woven, and / or the contact of a liquid, or a change in humidity.
  • the shape of the fiber member becomes a tape shape, so that there is an advantage that it is easier to attach to textile products such as clothing and bags as compared with the case where only the twisted yarn is used.
  • the width of the woven fabric on which the twisted yarns are arranged is preferably 1 to 200 mm, more preferably 5 to 30 mm.
  • the yarn usage other than the various twisted yarns is not particularly limited, and the weaving structure is not particularly limited.
  • an antistatic yarn kneaded with a conductive material may be wound around the above-mentioned various twisted yarns and the yarn may be embedded in the woven fabric.
  • a yarn having an electric resistance value of about 10 6 to 10 10 ⁇ / cm per unit length is used as the antistatic yarn.
  • "Bertlon (registered trademark)” carbon beltlon type manufactured by KB Seiren Co., Ltd., white. Beltron type, "Kura-Carbo (registered trademark)” manufactured by Kuraray, etc. can be mentioned.
  • the same effect can be obtained by arranging the antistatic yarn in the vicinity of the member or between the members arranged in plurality.
  • a woven fabric in which a plurality of the above-mentioned twisted yarns are arranged according to the warp and weft.
  • FIG. 5 five warps are arranged in parallel, and wefts are woven left and right to be arranged, but the braid-like woven fabric shape is not limited to such a structure.
  • a sensing fiber member in which the above-mentioned various twisted yarns are woven at a pitch of 5 to 10 cm for both warp and weft in a woven fabric having a width of about 150 cm to 200 cm and a length of about 50 m.
  • the load at the position of each twisted yarn can be measured at the same time, so that the position of the given load can be mapped and measured. It is also possible to use such a sensing fiber member for, for example, a bed pad, a sheet, a pillow cover, or the like to measure the presence or absence and movement of a human body. Alternatively, the above-mentioned covering yarn may be used as a woven fabric in which the warp and weft are arranged.
  • the above-mentioned sensing function is exhibited in this portion, and it can be applied as a sensing fiber member.
  • Any shape of the woven fabric such as that shown in FIG. 5 can be used.
  • the above-mentioned twisted yarns can be arranged on the knitted fabric.
  • two or more of the above-mentioned covering yarns may be arranged so as to be partially close to each other or intersect with each other to express the sensing function.
  • the above-mentioned covering yarn is used for the needle thread and the bobbin thread of the sewing machine at the time of sewing a fabric or embroidering.
  • one covering yarn is arranged on the upper and lower sides of the fabric, and the above-mentioned sensing function is exhibited at a close point of the covering yarn, and the covering fiber member can be applied.
  • one of the linear conductors of the two covering yarns to be paired is the front side of the fabric and the other at the electrode extraction portion (mounting portion to the circuit). Is more preferably taken out on the back side of the fabric.
  • FIG. 6 is a device for measuring a resistance change between two covering yarns covered by unidirectionally winding a multifilament insulating fiber as a coating material around a linear conductor as a core material. It is a schematic diagram of a system.
  • a source meter (SMU, source measure unit) that can open a conductive fiber at the end of two paired covering yarns, supply voltage and current to it, and at the same time measure voltage, current, and resistance. Units) can be connected to measure resistance between paired covering yarns.
  • a readout circuit including an analog / digital conversion circuit, a current-voltage conversion circuit, an amplifier circuit, or the like may be manufactured without using such a measuring device, and the resistance may be measured using the readout circuit.
  • the insulating fibers that intervene between the paired covering yarns are highly insulating materials in the idling state, so the distance between the two linear conductors.
  • Matter-Gurney equation I is the current
  • is the permittivity of the insulator
  • is the carrier mobility
  • V is the voltage
  • L is the distance between the linear conductors.
  • the insulating fiber as a covering material is deformed by contact or load, such deformation can be detected with high sensitivity as a change in current I, in other words, a change in resistance.
  • a load of about 3 N corresponding to a pressure of 3.43 ⁇ 105 Pa
  • R is 3. It changes from 5 G ⁇ to 1.5 G ⁇ , and ⁇ R / R has a very large change amount of ⁇ 57%.
  • the theory that follows the space charge limiting current can also be mentioned as one of the sensing principles, but as the sensing principle, the sheath threads come into closer contact with each other due to the application of load or tension, and the number of contacts. It is also conceivable that the minute current flowing through the sheath thread increases as the amount of electric charge increases. This principle will be described below.
  • the electrical resistivity Is very slightly conductive as is known as 10 6 to 10 9 ⁇ ⁇ m.
  • the electrical conduction mechanism within an insulating polymer is known as hopping conduction in which electrons and ions move back and forth between local states.
  • the insulating polymer does not have charged particles, but the actual polymer material contains impurities such as catalysts and water introduced in the manufacturing process, and dissociated ions caused by these impurities. Moves in response to the applied electric field, and a weak current is generated.
  • a load or a tensile force is applied to a structure in which the sheath yarn having such a very slight conductivity is arranged between two adjacent linear conductors, a plurality of sheath yarns constituting the sheath yarn are formed. The closer the fibers are in contact with each other, the more electrical contact points they have with each other, and the higher the value of the weak current. As a result, the sensor resistance value becomes low, and the principle is that load and tension can be detected.
  • the principle of measuring the electrical characteristics between the paired covering yarns can be considered by the equivalent circuit composed of the resistance (R) and the capacitor (C) shown in FIGS. 2 and 12.
  • a DC power supply can be used as the power supply shown in FIG.
  • an AC power source may be used as a power source
  • an AC frequency f may be applied between the linear conductors in the paired covering yarn, and the impedance change during this period may be detected.
  • a very general measuring instrument or circuit may be used, and for example, a measuring instrument such as an LCR meter or an impedance analyzer can be used.
  • an AC signal to be a reference signal may be prepared, and a lock-in amplifier circuit that performs frequency analysis by multiplying the output signal and the reference signal may be used in combination.
  • a minute change in capacitance can be measured more accurately.
  • a DC power supply is used as a power source, a voltage is applied between the two linear conductors, and the time change of impedance during this period is read (the change in current value is monitored). You can also take the method.
  • a DC power supply there is an advantage that measurement can be performed with a very inexpensive circuit.
  • the capacitance C is inversely proportional to the distance L between the conductors and proportional to the electrode area.
  • the distance between the paired linear conductors becomes small and the electrode area hardly changes, so the capacitance of the object increases due to the increase in capacitance.
  • Contact can be detected. Further, when the object in contact is conductive, the parasitic capacitance due to the contact of the object is further added, so that the capacitance changes.
  • C changes from 3.31 pF to 3.53 pF when a load of about 3 N is applied using an insulator.
  • ⁇ C / C was 6.7%.
  • C changed from 3.31 pF to 3.01 pF, and ⁇ C / C became ⁇ 8.9%.
  • the change in resistance value is larger than the change in capacitance in FIG. 12, which is because the change in capacitance is inversely proportional to L as shown in the above equation. This is because the change in the current value flowing between the electrodes is inversely proportional to L 3 , for example, and the change in the current value becomes larger as the distance L between the electrodes becomes smaller.
  • the cover thread and the outside air (outside air: the atmosphere in the case of the atmosphere, the vacuum in the case of a vacuum, the replacement gas in the case of a replacement gas, etc.)
  • outside air the atmosphere in the case of the atmosphere, the vacuum in the case of a vacuum, the replacement gas in the case of a replacement gas, etc.
  • various principles such as leakage current and ionic conduction can be adopted, and either or both of the change in resistance value and the change in capacitance can be used as the output signal. It may be read out.
  • the impedance between the two linear conductors changes due to the action from the outside, and the action from the outside can be detected.
  • the resistance value and / or capacitance (that is, impedance) between the two linear conductors changes, so that contact or load changes.
  • the action from the outside is a tensile force or a bending stress
  • the distance between the linear conductors changes and the impedance changes, so that this external action can be detected.
  • the presence or absence of this substance can be detected.
  • the contact of an object to the sensing fiber member or the sensing of a load and / or the liquid to the sensing fiber member (tap water, a mixed solution of ethanol and water). The detection of contact is described.
  • the resistance value between two linear conductors of two adjacent covering yarns is such that the two linear conductors are electrically connected to one end of the covering yarn.
  • a source meter SMU: Source Measure Unit, Keithley
  • SMU Source Measure Unit
  • a constant voltage was applied between the two linear conductors, and the current value before and after the load was applied was measured using a self-made program that constantly monitors the current value output by the source meter.
  • a sample was prepared in which the length of the paired linear conductor portions (the length for which sensing was effective) was 10 cm, and the sensing characteristics were measured.
  • the change in current with respect to the applied load is measured.
  • the load is applied as follows.
  • a sensing fiber member is placed on a flat stage, a load is applied from above using a force gauge (full-range 20N manufactured by IMADA), and the load value at that time is monitored.
  • the indenter used was circular and had a diameter of 12.5 mm.
  • the standard load is as follows: 0.5N or less: Very slightly touched. 2-5N: Lightly pressed with a finger. ⁇ 10N: When pressing with a finger, it is in a state of being pressed fairly strongly.
  • Moisture sensing characteristics were measured by the following procedure. Using the same method as the measurement of the resistance value in (1) above, 10 mV is applied between the conductive fibers paired with the twisted yarns, and the current value is monitored. Tap water is sprayed on the sample using a mist, and the change in the current value at this time is monitored. After that, wipe it off with kitchen paper, dry it with a dryer, and check if the current value returns to the original value. Moisture sensing characteristics were determined according to the following evaluation criteria: (Evaluation criteria) ⁇ : ⁇ I / I is 100% or more, and the current value returns to within ⁇ 20% of the original value. ⁇ : ⁇ I / I is 1% or more and less than 100%. Alternatively, the current value does not return to the value within ⁇ 20% of the original value. ⁇ : Cannot be detected.
  • Example 1 As the linear conductor, a conductive fiber made of a multifilament obtained by plating nylon 66 fiber with silver was used. A nylon fiber having a fineness of 220 dtex, a fineness of 300 dtex after silver plating, and 68 filaments was used as the linear conductor. A double covering yarn was produced by using the above linear conductor as a core yarn and using a fiber made of polyester as a sheath yarn. As the covering conditions, woolly yarns of polyester 252dtex / 108 filaments were Z-twisted using 2 bobbins as sheath yarns, and the number of twists was Z732T / m.
  • FIGS. 7 and 8 show the change state of the current value (sensor output) when a load is applied to the twisted yarns obtained above, and the relationship between the applied load and the current value change rate, respectively. From the results shown in these figures, it was judged that this twisted yarn is useful as a contact sensing fiber member, and the sensing characteristics and the like when a load was applied were evaluated using the twisted yarn obtained above. The results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Example 2 Various twisted yarns were produced in the same manner as in Example 1 except that a multifilament made of 280 dtex / 48f polylactic acid was used as the covering yarn.
  • the results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Example 3 Various twisted yarns were produced in the same manner as in Example 1 except that a multifilament made of 276dtex / 96f nylon was used as the covering yarn. The results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Example 4 As the linear conductor, a metal wire having a diameter of 260 ⁇ m (the diameter of the metal part is 76 ⁇ m), in which the surface of the annealed copper wire is coated with tin plating and the periphery thereof is further coated with PTFE (polytetrafluoroethylene) resin, is used. Made various twisted yarns in the same manner as in Example 1. The results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Example 1 In Example 1, instead of the covering yarn, two electric wires surface-coated with an insulating vinyl resin having a thickness of 2 mm were used to prepare a twisted sample. The results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Comparative Example 2 A sample was prepared in the same manner as in Comparative Example 1 except that the same metal wire as in Example 4 was used as the linear conductor and two electric wires coated with Teflon (registered trademark) resin having a thickness of 100 ⁇ m were used for various twists. The results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Example 5 One twisted yarn obtained in Example 1 was arranged in the warp, Woolly polyester 334 dtex / 96f was used as the other warp, Woolly polyester 167 dtex / 48f was used as the weft, and Woolly polyester 84 dtex / 36f was used as the entangled yarn.
  • a narrow woven fabric having a width of 10 mm, a thickness of 450 ⁇ m, and a grain of 2.14 g / m 2 was produced in which various twisted yarns were arranged substantially in the center in the width direction.
  • Table 1 The results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Example 6 A narrow woven fabric was produced in the same manner as in Example 5 except that the twisted yarns obtained in Example 2 were used.
  • the results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Example 7 Using the covering yarn obtained in Example 1 as five warps and one weft, a narrow woven fabric having a woven structure shown in FIG. 5 having a size of 1 cm ⁇ 10 cm and a thickness of 850 ⁇ m was obtained.
  • FIG. 9 shows the change over time of the current value (sensor output) when a load is applied with a finger to the vicinity of the covering yarn intersection of the woven fabric and then a tensile force is applied. From this, it was judged that this woven fabric was useful as a contact sensing fiber member, and the sensing characteristics and the like when a load was applied were evaluated using the woven fabric obtained above. The results of contact / load sensing characteristics, texture, and moisture sensing characteristics are shown in Table 1 below.
  • Nylon 66 fibers constituting the linear conductor have a fineness of 66 dtex and 14 filaments are used as the linear conductor, and Kuraray (KC-782R B20T4, manufactured by Kuraray Co., Ltd.) having a fineness of 100 dtex is used as the covering yarn.
  • Various twisted yarns were produced in the same manner as in Example 1 except that they were used. The number of twists at the time of covering the sheath yarn was 1570 T / m, the number of twists at the time of producing the twisted yarns was 280 T / m, and the fineness of the completed twisted yarns was 1270 dtex.
  • the sensor resistance value of the twisted yarn cut out with a length of 10 cm was 2.1 k ⁇ , and the resistance value of the linear conductor with a length of 10 cm was 20.0 ⁇ . That is, the ratio of the resistance value of the various twisted yarn sensor to the wiring resistance is about 105 times.
  • Table 2 The results of contact / load sensing characteristics and texture are shown in Table 2 below.
  • Example 9 Same as Example 8 except that the covering yarn is 240 dtex carbon belt Ron B31 (manufactured by KB Seiren Co., Ltd.), the number of covering twists of the sheath yarn is 653 T / m, and the number of twists at the time of various twists is 250 T / m.
  • the fineness of the finished plyed yarn was 1260 dtex.
  • the sensor resistance value of the 10 cm long twisted yarn is 10.0 M ⁇
  • the resistance value of the 10 cm long linear conductor is 20.0 ⁇
  • the ratio of the resistance value of the twisted yarn sensor to the wiring resistance is about 5 ⁇ 10. It was five times.
  • Table 2 The results of contact / load sensing characteristics and texture are shown in Table 2 below.
  • the contact sensing fiber member according to the present invention can be processed in a long length, has excellent mass productivity, can be used as a warp of a woven fabric or a warp, has excellent suppleness and texture, and uses a conventional piezoelectric material.
  • Contact sensing for contact The cost is significantly lower than that of fiber members (piezoelectric threads). That is, the contact sensing fiber member according to the present invention does not require a special piezoelectric material and can sense the load using general fiber materials such as polyester and nylon, so that the contact can be made at a very low cost.
  • sensing fibers and uses covering technology which is a fiber processing technology with established know-how, it is possible to process long lengths, it is excellent in mass productivity, and it is compared with piezoelectric yarn. Since a processed yarn having a very good texture can be realized, it becomes easy to process a fiber member such as a woven fabric or a knitted fabric. Since the contact sensing fiber member according to the present invention changes not only the capacitance but also the resistance value, it is possible to detect a state in which a load is continuously applied.
  • the contact sensing fiber member according to the present invention is used for smart textiles in which an electrical functional element is provided on a flexible or stretchable fiber base material, for example, a lug that can be detected when stepped on, or a person's entry / exit detection.
  • a flexible or stretchable fiber base material for example, a lug that can be detected when stepped on, or a person's entry / exit detection.
  • mats for counting the number of people, contact sensing woven and knitted fabrics for example, monitoring sensors at sites such as nursing and nursing care, sensors that digitize and transmit tactile sensations at production sites such as factories, vehicle seat belts, etc.
  • sensor embedding members such as embedding contact sensors (biological sensors) in vehicle seat belts, handles, dashboards, etc., detection sensors for the presence / absence of people, prevention of leaving children in the back seats, watching sensors, etc. It can be widely used for applications.
  • Conductive fiber 1 Conductive fiber 2 Conductive material 3 Conductor 4 Conventionally-technology piezoelectric thread 5 Linear conductor as core material 6 Insulatory fiber as covering material (cover thread) 7 Covering yarn 8 Twisted yarn made by twisting covering yarn 9 Core thread (core material) 10 Spindle 11 Bobbin 12 Flyer 13 Flyer cap 14 Cover thread 15 Flyer foot guide 16 Flyer foot guide 17 Flyer foot guide 18 Flyer foot guide

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Abstract

長尺での加工が可能であり、量産性に優れ、しなやかで風合いに優れ、かつ、従来の圧電材料を用いた接触センシング繊維部材(圧電糸)に比較して格段に低コストである、センシング繊維部材を提供する。本発明のセンシング繊維部材は、芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを少なくとも2本有し、その内の2本が互いに近接して配置されているセンシング繊維部材であって、該互いに近接して配置されている2本のカバーリングヤーンの線状導電体間の抵抗の変化及び/又は静電容量の変化を読み取ることを特徴とする。

Description

センシング繊維部材
 本発明は、芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを有するセンシング繊維部材に関する。
 従来、柔軟性や伸縮性のある繊維基材の上に電気的な機能素子を設けたスマートテキスタイル技術が提案されている。これらは、柔軟な繊維基材上に、センサ、バッテリー、ヒーター、ペルチェ素子等の機能素子を設けるものであり、非常に薄型で可撓性のある製品が実現できるため、これからのIoT(Internet of Things)社会において非常に重要である。
 上記センサの1つとして、従来、接触に対するセンシング機能をもつ繊維部材として、図1に示すような、圧電型の加工糸や圧電センサが提案されている。以下の特許文献1~5に記載されるように、一般に、圧電型の加工糸(圧電糸、圧電繊維ともいう。)は、導電性繊維の周りをポリ乳酸やポリフッ化ビニリデン等の圧電材料で被覆し、さらにその周りを金属メッキなどの導体で被覆した構造をもっている。ポリ乳酸は、結晶性のヘリカルキラル高分子であり、その一軸延伸フィルムは圧電性を有している。圧電性とは応力を印加すると電荷が発生する性質である。これにより内層側の導電性繊維(1)と外側の導電性繊維(3)との間に、例えば、図1に示すように、(1)側が[-]、(3)側が「+」の荷電が発生する。また、この逆の場合もある。この場合、圧電材料を配向させることが必要であり、メッキ工程において生産性を高めることが困難であるという問題があるため、現状、加工糸1m当たり約1000円~5000円と非常に高価なものとなっている。また、図1に示すような構造では、1万m以上といった長尺の加工糸を製造することは、現状、困難であるため、圧電糸を織物や経編の経糸として使用することが非常に困難である。さらに、圧電材料であるポリ乳酸の剛性によって、圧電糸の風合いが悪くなり、繊維としてしなやかさに欠けるものとなるという問題もある。
 また、以下の特許文献6、7に記載されるように、2つの近接した電極間の、接触や荷重が加えられた際の静電容量の変化を検知することにより、接触又は荷重を感知する接触センシング繊維部材が知られており、それ以外にも、1つの電極に対して導体(人体など)が近接する際の静電容量の変化を検知する技術は知られている。しかしながら、従来技術では、2つの電極間の絶縁体として、主にウレタンやシリコーンなどの絶縁体が使われており、電極間の距離を大きく変化させることが困難なため、出力(感度)が小さく、また、高コストであり風合いが良好ではなかった。また、特許文献8に記載されるように、1つの電極を利用する場合、静電容量変化が非常に微小であるため、この微小信号を検知するための高度な信号処理回路を用いる必要があるが、現状、接触の感度は低く、また、近接センサとしての感度が低いものしか得られていない。
 他方、以下の特許文献9、10に記載されるように、バルキー性に優れたカバーリングヤーンや高生産性で且つ高品質なカバーリングヤーンに関する技術は知られているが、これらのカバーリングヤーンに関する技術をセンシング繊維部材として用いることは記載されておらず示唆もない。
特許第6025854号公報 特許第6689943号公報 特開2020-090768号公報 特開2020-036027号公報 特許第6107069号公報 特許第5754946号公報 特開2006-234716号公報 特開2016-173685号公報 特開平10-25635号公報 特開2013-231246号公報
 前記した技術水準に鑑み、本発明が解決しようとする課題は、長尺での加工が可能であり、量産性に優れ、織物や経編の経糸として使用も可能であり、しなやかで風合いに優れ、かつ、従来の圧電材料を用いた接触に対する接触センシング繊維部材(圧電糸)に比較して格段に低コストである、センシング繊維部材を提供することである。
 前記課題を解決すべく、本発明者らは鋭利検討し実験を重ねた結果、以下の構造とすることで、前記課題を解決しうることを予想外に見出し、本発明を完成するに至ったものである。
 すなわち、本発明は以下の通りのものである。
 [1]芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを少なくとも2本有し、その内の2本が互いに近接して配置されているセンシング繊維部材であって、該互いに近接して配置されている2本のカバーリングヤーンの線状導電体間の抵抗の変化及び/又は静電容量の変化を読み取ることを特徴とする前記センシング繊維部材。
 [2]前記絶縁性繊維が、マルチフィラメント絶縁性繊維又は絶縁性紡績糸のいずれかを含む、前記[1]に記載のセンシング繊維部材。
 [3]前記センシング繊維部材が、該センシング繊維部材への物体の接触又は荷重を感知する、前記[1]又は[2]に記載のセンシング繊維部材。
 [4]前記センシング繊維部材が、該センシング繊維部材の伸縮又は曲げ変形を感知する、前記[1]又は[2]に記載のセンシング繊維部材。
 [5]前記センシング繊維部材が、該センシング繊維部材への液体の接触又は湿度の変化を感知する、前記[1]又は[2]に記載のセンシング繊維部材。
 [6]前記カバーリングヤーンの以下の式:
   撚り係数K=(SS+SC)1/2×R
{式中、SSは、芯材としての線状導電体の繊度(dtex)であり、SCは、被覆材の総繊度(dtex)であり、そしてRは、被覆材の巻き付け数(撚り数)(回/m)である。}で表される撚り係数Kが、7000以上30,000以下である、前記[1]~[5]のいずれかに記載のセンシング繊維部材。
 [7]前記カバーリングヤーンが、芯材としての線状導電体の周囲を2本の被覆材でカバーリングした、ダブルカバーリングヤーンであり、該2本の被覆材の巻き付け方向が、同一方向である、前記[1]~[6]のいずれかに記載のセンシング繊維部材。
 [8]前記互いに近接して配置されている2本のカバーリングヤーン同士が、交差する接点を有する、前記[1]~[7]のいずれかに記載のセンシング繊維部材。
 [9]前記芯材としての線状導電体は、マルチフィラメント導電性繊維である、前記[1]~[8]のいずれかに記載のセンシング繊維部材。
 [10]前記カバーリングヤーンが少なくとも2本以上配された織物である、前記[1]~[9]のいずれかに記載のセンシング繊維部材。
 [11]前記カバーリングヤーンが少なくとも2本以上配された編物である、前記[1]~[9]のいずれかに記載のセンシング繊維部材。
 [12]前記互いに近接して配置される2本のカバーリングヤーンにおける絶縁性繊維の巻き付け方向が同じであり、該2本のカバーリングヤーン同士が、該絶縁性繊維の巻き付け方向と反対の方向に諸撚された諸撚糸である、前記[1]~[9]のいずれかに記載のセンシング繊維部材。
 [13]諸撚糸である前記[12]に記載のセンシング繊維部材が、織り込まれている織物。
 [14]諸撚糸である前記[12]に記載のセンシング繊維部材が、編み込まれている編物。
 [15]芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを少なくとも1本有する、物体の近接又は接触を感知するためのセンシング繊維部材であって、該少なくとも1本のカバーリングヤーンの線状導電体とグラウンドとの間の該物体の近接又は接触による静電容量の変化により、該センシング繊維部材への物体の近接又は接触が感知される、前記センシング繊維部材。
 本発明に係る接触センシング繊維部材は、長尺での加工が可能であり、量産性に優れ、織物や経編の経糸として使用可能であり、しなやかで風合いに優れ、従来の圧電材料を用いた接触に対する接触センシング繊維部材(圧電糸)に比較して格段に低コストである。すなわち、本発明に係る接触センシング繊維部材は、一般的な繊維材料であるポリエステル、ナイロン等を用いて荷重のセンシングが可能であるため、非常に低コストで接触センシング繊維を実現でき、また、ノウハウが確立している繊維加工技術であるカバーリング技術を用いるため、長尺での加工が可能であり、量産性に優れ、さらに、圧電糸に比較して、非常に風合い良い加工糸が実現できるため、織物や編物等の繊維部材への加工が容易となる。
 本発明に係る接触センシング繊維部材は、静電容量だけでなく、抵抗値が変化するため、荷重を連続的に印加している状態を検知することができる。
 したがって、本発明に係る接触センシング繊維部材は、柔軟性や伸縮性のある繊維基材の上に電気的な機能素子を設けたスマートテキスタイル用途、例えば、踏んだら検知可能なラグ、人の出入り検知用防犯マット、人数カウント用マット等、接触センシング織編物、例えば、看護や介護等の現場での見守りセンサ、工場等の生産現場での触覚をデジタル化して伝達するセンサ、車両シートベルト等へのセンサ埋め込み用部材、例えば、車両用シートベルト、ハンドル、ダッシュボード等への接触センサ(生体センサ)の埋め込み、人の在・不在の検知センサ、後部座席の子供の放置防止、見守りセンサ等の各種用途に広く利用可能である。
従来の圧電型の加工糸の模式図である。 本実施形態のセンシング繊維部材の模式図である。 諸撚糸である本実施形態のセンシング繊維部材の外観、及び拡大写真である。 諸撚糸である本実施形態のセンシング繊維部材を織り込んだ細幅織物の写真である。 芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを経糸と緯糸に用いた平織の織物形態にある本実施形態のセンシング部材の写真である。 芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングした2本のカバーリングヤーンの間の抵抗変化を測定するための装置系の概略図である。 実施例1の諸撚糸である本実施形態のセンシング繊維部材における荷重印加時間と電流値(センサ出力)の関係の一例を示すグラフである。但し、印加荷重条件は、表1の条件と異なる。 諸撚糸である本実施形態のセンシング繊維部材における印加荷重と電流値(センサ出力)変化率の関係を示すグラフである。 実施例7の芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを経糸と緯糸に用いた平織の織物(細幅織物)形態にある本実施形態のセンシング部材における荷重印加時間と電流値(センサ出力)の関係の一例を示すグラフである。但し、印加荷重条件は、表1の条件と異なる。 カバーリングヤーンの製造装置の概略図である。 上記製造装置で得られるカバーリングヤーンの模式図である。 対になるカバーリングヤーンの間の電気特性の測定原理の説明図である。
 以下、本発明の実施形態について詳細に説明する。
 本発明の1の実施形態は、芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを少なくとも2本有し、その内の2本が互いに近接して配置されているセンシング繊維部材であって、該互いに近接して配置されている2本のカバーリングヤーンの線状導電体間の抵抗の変化及び/又は静電容量の変化(すなわち、インピーダンスの変化)を読み取ることを特徴とする前記センシング繊維部材である。
 芯材としての線状導電体(芯糸)は、導電性である限り特に制限はないが、導電性繊維、例えば、炭素繊維、金属繊維等、材質自体が導電性を有する線状導電体であってもよく、導電性のない繊維に導電性を付与した線状導電体でもよい。前者としては、炭素を繊維化したカーボン繊維が、後述する水分センシングにおいて耐久性が高く好ましい。また、SUS素材を繊維化したものであれば、防錆性を確保でき、回路等と接続する終端処理を簡便にできるという点で好ましい。後者としては、ナイロン等の繊維の周りに銀、銅などの金属めっきを施したものや、金属箔をテープ状に加工して繊維に巻回したもの、繊維にエアロゾル状の導電体をスプレーにより繊維表面に付着させたものを用いることが、風合いや柔軟性を高められる観点から、好ましい。この場合、導電性繊維がマルチフィラメントからなることが、良好な導電性を得られる点、また、強度を高められる点から好ましい。ナイロンに代えて、ポリアリレート、アラミド等の高強度繊維等を用いれば引張強度をさらに高めることができる。あるいは、ウレタンやシリコーン等の弾性体の周りにストレッチャブルな金属インクを用いて導電性を付与した線状導電体を用いてもよい。この場合、ストレッチャブルな繊維部材を得ることができる。また、線状導電体として、導電性材料と絶縁性材料の混合物を線状にしたものを用いてもよい。例えば、ナイロンやポリエステル等の樹脂にカーボン系導電性材料や金属を混合した材料を線状に加工した材料を用いれば、導電性は劣るものの格段に低コストの線状導電体を得ることができる。また、線状導電体は、風合いは悪化するものの低コスト化の観点から、1本又は複数本の金属ワイヤーであってもよい。例えば、直径30μm~1mm程度といった金属ワイヤーを用いれば、格段に強度を高めることができる。
 線状導電体、例えば、導電性繊維の繊度は、良好な風合いが得やすくなる観点から、10dtex~15000dtexであることが好ましく、より好ましくは20dtex~5000dtexである。また、マルチフィラメントである場合、単糸繊度は、良好な風合いを得やすいことと、高い導電性が得やすくなる観点から、1dtex~30dtexであることが好ましく、より好ましくは2dtex~10dtexである。フィラメント数については、10~200とすることがより好ましい。フィラメント数を10以上とすることは、良好な風合いが得られやすく、また、良好な導電性を確保しやすくなる点で好ましい。但し、フィラメント数が多すぎるとコストが高くなってしまい、剛性も、より高くなるため逆に風合いが低下する場合がある。これらを総合して、上記のフィラメント数の範囲とすることが好ましい。
 線状導電体を成す導電性材料は、対をなす2本のカバーリングヤーン間で同一の材料を用いてもよいし、異種材料を用いてもよく、任意の材料の組み合わせを用いることができる。接触や荷重、引張のセンシング用途の場合、同一の導電性材料を用いることが、生産が効率的に可能である点で好ましい。水分などの液体のセンシングを行う場合、対を成す2本のカバーリングヤーンの線状導電体として異種材料を用いると、この異種材料間を橋渡しして液体が付着した際にいわゆるガルバニック作用とよばれる電気化学的作用によって電圧や電流が発生するため、電源無しでも液体のセンシングが可能となる。異種材料の組み合わせとしては、例えば、鉄と銅、鉄と銀、アルミニウムと銅、銀と銅など、任意のものを用いることができる。
 本明細書中、被覆材(カバー糸ともいう。)としての用語「絶縁性繊維」は、前記した芯材としての線状導電体のうちの対になる2本同士を電気的に絶縁することができる限り、特に制限はなく、ポリ乳酸(PLA)等の圧電体、ポリフッ化ビニリデン(PVDF)等の強誘電体を包含する。但し、カバー糸は、静置状態で前記した芯材としての線状導電体を隙間なくカバーリングできて、電気的なショートを起こし難いものとするため、被覆性、センシング性能、及び風合いの観点から、斑なく、被覆厚みを均一化できるマルチフィラメント絶縁性繊維又は絶縁性紡績糸のいずれかを含むことが好ましく、マルチフィラメント絶縁性繊維又は絶縁性紡績糸からなることが最も好ましい。絶縁性繊維の材料は、接触や引張、液体の接触等のセンシングの作用がない状態(アイドリング状態)で絶縁性が確保できるものであれば特に制限はないが、コスト、入手の容易性の観点から、ポリエステル(PE)、ナイロン(Ny、ポリアミド)、エポキシ系、アクリル系等の合成繊維が好ましく、セルロース繊維等の天然繊維、半合成繊維、再生繊維であっても構わない。また、絶縁性繊維の材料として、ポリ乳酸(PLA)、ポリフッ化ビニリデン(PVDF)等の圧電体、強誘電体や、生分解性樹脂を用いることができる。圧電体であれば、アイドリング状態で絶縁性を保持でき、かつ、応力印加時にはその圧電特性に応じた出力信号も合わせて得られるため、センサ感度が高くなる。但し、コスト面や織編物にした時の風合い等の面からは、ポリエステル、ナイロン、アクリル系等の衣料用に用いられる繊維を使用することが好ましい。
 また、抵抗値の変化によりセンシングを行う場合、カバー糸(鞘糸)として、絶縁性繊維に導電性をわずかに付与した材料を用いてもよい。このときの鞘糸の導電性の範囲は、互いに近接して配置される2本のカバーリングヤーンの線状導電体間の抵抗の変化を読み取ることができる範囲であればよい。具体的には、互いに近接して配置されるカバーリングヤーンの線状導電体間の抵抗(センサ抵抗)の値が、0.5kΩ~5GΩの範囲内にあり、かつセンサ抵抗値が、線状導電体のみの抵抗(配線抵抗)の値に対して、20倍~1×109倍であることが好ましい。これにより、互いに近接する2本のカバーリングヤーンを構成する2本の線状導電体間に電圧を印加した際、電気的なショートを起こすことがなく、配線抵抗値に対してセンサ抵抗値が十分に大きいため、配線抵抗の影響を受けず、荷重や引張力などの検知を正しく行うことができる。センサ抵抗値は、0.5kΩ~100MΩの範囲内であることが、読み出し回路が簡便になる点でさらに好ましい。鞘糸材料の電気抵抗率の範囲としては、104Ω・m~5×109Ω・mであることが、上記のセンサ抵抗値の範囲を容易に満たすことができる点で好ましい。
 導電性をわずかに付与した鞘糸の材料としては、ポリエステル、ナイロン、アクリル等の絶縁性材料に、導電性付与材料、例えば、カーボン系導電性材料、金属粒子、銅硫化物などの金属硫化物、酸化スズ系や酸化亜鉛などの金属酸化物等、を含有させた材料を用いることができる。あるいは、鞘糸として、絶縁性繊維と導電性繊維の両方を適宜混合させて用いてもよい。例えば、帯電防止繊維として販売されているクラカーボ(株式会社クラレ製、登録商標)、ベルトロン(KBセーレン社製、登録商標)、サンダーロン(日本蚕毛染色社製、登録商標)等を、所望のセンサ抵抗値になるように選択して用いることができる。
 本実施形態のセンシング繊維部材は、用いられる被覆材(カバー糸)の材質として、より速乾性となる繊維の組み合わせであることが好ましい。特に水分やエタノールなどのセンシングを行う場合は、カバー糸に速乾性の繊維を用いることによって、一旦、水分等に接触した後に短時間で乾燥することが可能となるため、より速く元の状態に戻ることができる。速乾性の繊維としては、水分率の低い合成繊維を使うこともできるが、吸水性及び速乾性能を両立させるためには、合成繊維とセルロース繊維を組み合わせることが、特に好ましい。このとき、合成繊維としては、ポリエステル、ナイロン、アクリル等、セルロース繊維としては、綿、麻等の天然セルロース繊維、レーヨン、ポリノジック、リヨセル、キュプラ、モダール等の再生セルロース繊維、アセテート等の半合成繊維などが好ましく、マルチフィラメント長繊維であることが特に好ましい。両繊維の組み合わせは、カバー糸において両繊維を混用することもでき、後述するダブルカバーリングにおいて、合成繊維とセルロース繊維でそれぞれカバーリングすることもできる。
 絶縁性繊維の繊度は、絶縁性を確保しやすい観点から、15dtex~25000dtexであることが好ましく、より好ましくは30dtex~8000dtexである。また、マルチフィラメントである場合、単糸繊度は、良好な風合いがより得られやすい観点から、1dtex~10dtexであることが好ましく、より好ましくは2dtex~8dtexである。
 カバーリングヤーンの製造方法も特に制限はないが、例えば、特許文献9に記載される以下の方法が挙げられる。
 図10は、カバー糸(14)が巻かれたボビンを、2本足フライヤ(12)を装着したカバーリング装置に仕掛けて稼働させた場合の模式図である。図11は図10のB部の拡大図を示している。芯糸9は中空スピンドル10の中空部を通って、上方のスネールガイド(図示せず)を通り、テイクアップロール(図示せず)でテイクアップされる。カバー糸14は2本足フライヤ12の一方の足ガイド15と16へ通され、中空スピンドルの回転(ボビンの同調)によりボビンから解舒され、カバー糸14は芯糸9に捲回されながらスネールガイドを通り、テイクアップされる。フライヤ12の足数を2本にする理由は、フライヤが回転した時にフライヤ12のバランスをとるためである。
 上記カバーリング装置を縦方向に2段並べ、2つのボビンから2種のカバー糸(同種でも異種でもよい)を順にカバーリングする、いわゆるダブルカバーリングを行ってもよい。このとき、各々のカバー糸を同方向にカバーリング(2種のカバー糸がいずれもS撚、又はいずれもZ撚)すれば、厚みを均一に、かつ、絶縁性繊維の隙間を確実に埋めることができ、センシング性能を向上させることができ、特に好ましい。
 カバー糸は、風合い及び被覆性を向上させやすい観点から、仮撚り加工糸(ウーリー糸)であることもできる。
 図2、図3に、本実施形態のセンシング繊維部材として、2本のカバーリングヤーン(7)を撚り糸とする一例を示す。このとき、前記互いに近接して配置される2本のカバーリングヤーン(7)における、芯材としての線状導電体(5)の周囲に配置される被覆材(カバー糸)(6)の巻き付け方向が同じであり、該2本のカバーリングヤーン同士が、該マルチフィラメント絶縁性繊維の巻き付け方向と反対の方向に諸撚された諸撚糸(8)であることが好ましい。諸撚り(カバーリングの巻き付け方向と反対方向に撚りをかけること)により、できあがった糸のトルクは弱くなり、製造工程での取り扱いが容易になる。また、諸撚糸であれば、当然に、前記2本のカバーリングヤーンが互いに近接して配置され、また、該2本のカバーリングヤーン同士が、交差する接点を有することになる。
 前記カバーリングヤーンの以下の式:
   撚り係数K=(SS+SC)1/2×R
{式中、SSは、芯材としての線状導電体の繊度(dtex)であり、SCは、被覆材の総繊度(dtex)であり、そしてRは、被覆材の巻き付け数(撚り数)(回/m)である。}で表される撚り係数Kは、7000以上30,000以下であることが好ましい。撚り糸係数Kが、7000以上であれば、2本の線状導電体同士の電気的短絡が生じにくくなり、他方、30,000以下であれば、センサ出力を大きく得ることがより容易になる。尚、ダブルカバーリングの場合は、一層目と二層目それぞれのカバーリング時の撚り係数を算出して、平均した値とする。
 本実施形態のセンシング繊維部材は、図4に一例を示すように、上述の諸撚糸を織物の一方方向に連続して存在させた、細幅織物形状とすることができる。図4の例では、細幅織物の幅方向の中央部に経糸として諸撚糸を織り込んでいるが、諸撚糸を経糸、緯糸のいずれか、あるいは両方に用いてもよく、センシングしたい箇所の数に応じて任意の本数で配置すればよい。連続生産の点からは、経糸の一部に該諸撚糸を配置することが好ましい。これにより、該諸撚糸が織り込まれた部分への物体の接触又は荷重の感知、及び/又は液体の接触、または湿度の変化を感知することができる。細幅織物の一部に諸撚糸を織り込んだ場合、繊維部材の形状がテープ状となるため、諸撚糸のみの場合と比較して、衣類や鞄等の繊維製品に取り付けやすいという利点がある。諸撚糸を配置した織物の幅は1~200mmが好ましく、5~30mmがより好ましい。該諸撚糸以外の糸使いは特に限定されず、織組織についても特に限定されない。また、本実施形態の繊維センシング部材を配した布帛等の静電気対策の目的で、上述の諸撚糸の周囲に導電性材料を練りこんだ制電糸を巻き付け、この糸を織物に埋め込んでもよい。制電糸としては、単位長さあたりの電気抵抗値が106~1010Ω/cm程度のものが用いられ、例えば、KBセーレン社製の「ベルトロン(登録商標)」カーボンベルトロンタイプ、ホワイトベルトロンタイプ、クラレ社製の「クラカーボ(登録商標)」などが挙げられる。または、本実施形態の繊維センシング部材を配した布帛において、該部材の近傍や、複数配した該部材の間に、上記制電糸を配することで、同様の効果を得ることができる。
 また、上述の諸撚糸を経緯に合わせて複数本配置した織物形状(図5参照)とすることもできる。図5では、経糸を5本並行に配置し、緯糸を左右に織り込んで配置させているが、前記組紐様の織物形状は、かかる構造に限定されない。例えば、幅150cm~200cm程度、長さ50m程度の織物中に、経糸、緯糸ともに5~10cmピッチで上述の諸撚糸を織り込んだセンシング繊維部材を構成することができる。このような複数本の諸撚糸を織り込んだセンシング繊維部材を用いれば、各諸撚糸の位置での荷重を同時計測することができるため、与えられた荷重の位置をマッピング計測することができる。かかるセンシング繊維部材を、例えば、ベッドパッドやシーツ、枕カバー、等に用いて、人体の有無や動きを計測することも可能になる。
 あるいは、上述のカバーリングヤーンを経糸と緯糸に配した織物とすることもできる。この場合、当該経緯糸の交差部分で二本のカバーリングヤーンが近接して配置されるため、この部分で既述のセンシング機能が発現し、センシング繊維部材として適用できる。かかる織物の形状も図5に示すものなど、任意のものを用いることができる。
 また、上述の諸撚糸を編物に配することができる。あるいは、上述のカバーリングヤーンを二本以上配置して、部分的に近接または交差させ、センシング機能を発現させることもできる。
 さらに、上述のカバーリングヤーンを布帛縫製時や刺繍時のミシン上糸と下糸に使う態様もある。これにより、布帛の上下にカバーリングヤーンが1本ずつ配され、当該カバーリングヤーンの近接点で上述のセンシング機能が発現し、センシング繊維部材として適用できる。
 上述の織物や編物等の布帛を構成する場合、対となる2本のカバーリングヤーンの線状導電体は、その電極取り出し部(回路への実装部分)において、一方が布帛の表側、もう一方が布帛の裏側に取り出すことがより好ましい。特に、電圧印加用の線状導電体を全て布帛の同じ側に取り出し、信号出力用の線状導電体をこの反対側へ取り出すことが好ましい。この好ましい例においては、複数本のカバーリングヤーンの線状導電体を電気的に接続して電圧を印加し、また、各々の信号を独立させて読み出す場合において、これらの電気的短絡や短絡防止をより省スペースで可能にできるという利点や、実装が簡単になるため生産性が向上するという利点がある。
 また、
 図6は、芯材としての線状導電体の周りに被覆材としてのマルチフィラメント絶縁性繊維を一方向に巻き付けてカバーリングした2本のカバーリングヤーンの間の抵抗変化を測定するための装置系の概略図である。対になる2本のカバーリングヤーンの末端で導電性繊維を開放し、これに、電圧、電流を供給すると同時に、電圧、電流、抵抗を測定することができるソースメーター(SMU、ソース・メジャー・ユニット)を接続して、対になるカバーリングヤーンの間の抵抗を測定することができる。あるいは、かかる測定機器を用いずに、アナログ/デジタル変換回路、電流電圧変換回路、増幅回路等からなる読み出し回路を作製し、これを用いて抵抗を測定してもよい。特定の理論に拘束されることは望まないが、対になるカバーリングヤーンの間に介在する絶縁性繊維は、アイドリング状態では絶縁性の高い物質であるため、2つの線状導電体同士の距離が非常に短くなったときのこれへのキャリア注入を考えた場合、例えば、以下のMott-Gurneyの式:
Figure JPOXMLDOC01-appb-M000001
{式中、Iは、電流であり、εは、絶縁体の誘電率であり、μは、キャリア移動度であり、Vは、電圧であり、そしてLは、線状導電体間の距離である。}で表される空間電荷制限電流(Space Charge Limited Current)に従うと考えることができる。この場合、電流Iは、距離Lの3乗に逆比例して増大することになる。したがって、被覆材としての絶縁性繊維が接触又は荷重により変形すれば、かかる変形を電流Iの変化として、換言すれば、抵抗の変化として感度よく検出することができる。例えば、本実施態様の一例では、センシング部分の面積8.75mm2に対して絶縁体を用いて約3Nの荷重(圧力3.43×105Paに相当)をかけた場合、Rが3.5GΩから1.5GΩに変化し、ΔR/Rは-57%と非常に大きい変化量が得られている。
 上述のように、空間電荷制限電流に従う理論も、センシング原理の一つとして挙げることができるが、センシング原理としては、荷重や引張の印加により、鞘糸同士がより密に接触し、コンタクトの数が増えることで鞘糸を流れる微電流が増加するという原理も考えられる。以下にこの原理について述べる。本発明の鞘糸を構成する絶縁性繊維は、理想的な絶縁体であれば2本の線状導電体間には電流が全く流れないのに対し、現実の絶縁体は、その電気抵抗率が106~109Ω・mとして知られるように、ごくわずかに導電性を有している。絶縁性ポリマー内の電気伝導メカニズムは、電子やイオンが局所的な状態を行き来するホッピング伝導として知られている。絶縁性ポリマーには、理想的には荷電粒子が存在しないが、実際のポリマー材料には、製造工程で導入される触媒や水分などの不純物が含まれており、これらの不純物に起因する解離イオンが印加された電界に反応して移動し、微弱な電流が発生する。このようにごくわずかに導電性を有する鞘糸が、近接する2本の線状導電体の間に配置された構造体に対して、荷重や引張力を印加した場合、鞘糸を構成する複数の繊維同士がより密接に接触することによって、互いの電気的接触点が増加し、微弱電流の値が大きくなる。これにより、センサ抵抗値が低くなり、荷重や引張の検知ができるという原理である。
 対になるカバーリングヤーンの間の電気特性の測定原理は、図2、図12に示す抵抗(R)とコンデンサー(C)で構成される等価回路で考えることができる。
 抵抗値の変化でセンシング信号を読み取る場合、図12に示す電源として直流電源を用いることができる。
 静電容量の変化を読みとる場合は、電源として交流電源を用い、対になるカバーリングヤーンの中の線状導電体間に周波数fの交流を与え、この間のインピーダンス変化を検出すればよい。静電容量を計測するためには、ごく一般的な計測器や回路を用いればよく、例えば、LCRメータやインピーダンスアナライザ等の計測器を用いることができる。あるいは、参照信号となる交流信号を用意し、出力信号と参照信号とを乗算することによって周波数解析を行うロックインアンプ回路を組み合わせて用いてもよい。この場合、静電容量の微小な変化をより精度良く計測できるという利点がある。あるいは、静電容量の変化を読み出すために、電源として直流電源を用いて、2本の線状導電体間に電圧を印加し、この間のインピーダンスの時間変化を読み取る(電流値変化をモニターする)方法を採ることもできる。直流電源を用いる場合は、非常に安価な回路で計測できるという利点がある。ここで、2つの電極間の静電容量は、下記式:
   C=ε(S/L)
{式中、εは2つの電極間の誘電率、Sは電極面積、そしてLは、電極間の距離である。}で記述できる。
 上記式C=ε(S/L)から、静電容量Cは、導体間の距離Lに逆比例し、電極面積に比例する。接触等の検知対象となる物体が荷電していない絶縁体の場合、対をなす線状導電体間の距離が小さくなり、電極面積はほとんど変化しないため、静電容量が増大することで物体の接触を検知できる。また、接触する物体が導電性である場合には、物体の接触による寄生容量がさらに加わるため、静電容量の変化が生じる。例えば、先に述べた本実施態様の一例(ΔR/Rが-57%である例)では、絶縁体を用いて約3Nの荷重を印加したとき、Cは3.31pFから3.53pFに変化し、ΔC/Cは6.7%となった。また、接地した導電性材料を用いて約3Nの荷重を印加したときは、Cは3.31pFから3.01pFへと変化し、ΔC/Cは-8.9%となった。
 接触する物体が導電性を有する場合、寄生容量が加わることと、電荷のグラウンドへのリークが増大することにより、見かけ上の静電容量が小さくなっている。このように、接触又は荷重による静電容量の変化を読み取ることによっても、接触又は荷重の検知が可能である。この例では、図12における静電容量の変化よりも抵抗値の変化が大きくなっているが、これは、静電容量の変化が、上記式で示すようにLに逆比例するのに対し、電極間に流れる電流値の変化が、例えば、L3に逆比例するなど、電極間距離Lが小さくなるほど電流値の変化がさらに大きくなっているためである。尚、本実施形態での2つの線状導電体間には、カバー糸と外気(外気:大気中の場合は大気、真空中の場合は真空、置換ガス中の場合は当該置換ガス、等)が絶縁体として存在しており、この間を流れる電流の原理は、電極間の距離や印加電圧、外気の湿度等の条件によって異なってくる。例えば、既述の空間電荷制限電流の他に、漏れ電流、イオン性の伝導など種々の原理を採り得るものであり、抵抗値の変化か静電容量の変化のいずれか又は両方を出力信号として読み出してもよい。
 本実施形態のセンシング繊維部材は、外部からの作用によって2つの線状導電体間のインピーダンスが変化し、この外部からの作用を検知できるものである。例えば、接触や荷重の印加によって2つの線状導電体間の距離が変化することによって、2つの線状導電体間の抵抗値及び又は静電容量(すなわちインピーダンス)が変化するため、接触や荷重を検知することができる。また、外部からの作用が引張力や曲げ応力の場合も、線状導電体間の距離が変化し、インピーダンス変化が生じるため、この外部作用を検知することができる。あるいは、2つの線状導電体間に、この間のインピーダンス変化が生じ得る物質を含有させる場合、この物質の有無を検知することができる。例えば、2つの線状導電体間に、水道水などの超純水ではない水や、食塩水、イオン飲料、水とエタノールの混合物等を滴下した場合、この線状導電体間の抵抗値が大きく低下してこの間の電流値が増大するため、これらの液体の有無を検知することができる。また、湿度が変化したときも同じくインピーダンス変化が生じるため、湿度センサとして用いることができる。
 あるいは、接触や荷重の印加と、水分などの液体の接触とを同時に検知することもできる。荷重印加時と水分が滴下された時の抵抗値変化量は、後述するように5倍以上の違いがあり、また、水分が乾燥するにしたがって出力量が刻一刻と変化していくことから、出力値の挙動からこれらの検知を区別することが可能である。かかる実施形態において、例えば、ベッドシーツパッドに既述の諸撚糸を複数本織り込んだ織物を構成することにより、要介護者等のベッド利用者の動きと、水濡れ、尿漏れなどの検知を同時に行うことが可能になる。
 以下の実施例では、本実施形態のセンシングの例として、該センシング繊維部材への物体の接触又は荷重の感知、及び/又は該センシング繊維部材への液体(水道水、エタノールと水の混合液)の接触の感知について述べる。
 以下、実施例、比較例を挙げて本発明の一例について述べるが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例、比較例に用いた各特性値の測定方法は以下のとおりのものであった。
(1)抵抗値(電流)の測定
 近接する2本のカバーリングヤーンの2本の線状導電体間の抵抗値は、カバーリングヤーンの一方の末端では2つの線状導電体を電気的に開放し、もう一方の末端の2つの線状導電体間に、電圧、電流を供給すると同時に、電圧、電流、抵抗を測定することができるソースメーター(SMU:ソース・メジャー・ユニット、Keithley社の2614B)を接続することで測定した。2本の線状導電体間に一定の電圧をかけ、ソースメーターで出力される電流値を常にモニターする自作プログラムを用いて、荷重印加の前後での電流値を計測した。諸撚糸の場合、対をなす線状導電体部分の長さ(センシングが有効な長さ)を10cmとしたサンプルを作製してセンシング特性を測定した。
(2)荷重印加
 サンプル(例えば、諸撚糸の2つの導電性繊維間)に電圧を印加した状態で、印加荷重に対する電流変化を測定する。その際の荷重印加は以下のように行う。
 平らなステージ上にセンシング繊維部材を置き、この上からフォースゲージ(IMADA社製、full-range 20N)を用いて荷重を印加し、そのときの荷重値をモニターする。圧子は、円形でφ12.5mmのものを使用した。
 参考までに、荷重の目安は以下のとおりである:
   0.5N以下:ごく僅かに触れる状態。
   2~5N:指で軽く押す状態。
   ~10N:指で押す場合は、かなり強く押し付ける状態。
(3)接触・荷重センシング特性
 以下の評価基準で接触・荷重センシング特性を判定した:
(評価基準)
 接触や荷重のないときの2本の線状導電体間の電流値をIとし、繊維部材に対して荷重がかかる部分の面積を8.75mm2(直径12.5mm×平均繊維径0.7mm)として、上記(2)の方法で3Nの荷重を印加したときの電流値とIとの差をΔIとするとき、
   ◎:ΔI/Iが20%以上。
   〇:ΔI/Iが1%以上20%未満。
   ×:検知不能。
(4)水分センシング特性
 水分に対する諸撚糸のセンシング特性を以下の手順で測定した。
前記(1)の抵抗値の測定と同様の方法を用いて、諸撚糸の対となる導電性繊維間に10mVを印加し、電流値をモニターする。
 霧吹きを用いて水道水をサンプルに噴霧し、この時の電流値の変化をモニターする。
 その後、キッチンペーパーで拭き取り、ドライヤーで乾燥させ、電流値が元に戻るかを確認する。
 以下の評価基準で水分センシング特性を判定した:
(評価基準)
   ◎:ΔI/Iが100%以上、かつ電流値が元の値の±20%以内に戻る。
   △:ΔI/Iが1%以上100%未満。あるいは電流値が元の値の±20%以内の値に戻らない。
   ×:検知不能。
(5)風合い
 以下の評価基準で、実施例及び比較例で得られた糸又は織編物を測定者の手首に接触させ擦ったときの感触を風合いとして判定した:
(評価基準)
   ◎:柔らかく、手首への刺激が殆どない。
   〇:わずかに手首への刺激(ざらつき、ごわごわ感)を有する。
   △:ざらつきが強く、手首が擦られる感覚が強い。
   ×:ごわごわして違和感が大きく、衣料として適さない。
[実施例1]
 線状導電体として、ナイロン66繊維に銀めっきを施したマルチフィラメントからなる導電性繊維を用いた。ナイロン繊維の繊度が220dtex、銀めっき後の繊度が300dtex、フィラメント数が68本のものを線状導電体として用いた。
 上記の線状導電体を芯糸として、鞘糸にポリエステルからなる繊維を用いてダブルカバーリングヤーンを作製した。カバーリング条件は、ポリエステル252dtex/108フィラメントのウ-リー糸を鞘糸に2ボビンを用いて各々Z撚りにし、撚り数がZ732T/mのものを用いた。得られたダブルカバーリングヤーン2本を纏めてさらにS撚りし、撚り数がS170T/mの諸撚糸を作製した。この絶縁性繊維の繊度は2000dtexであった。本諸撚糸の撚り係数K=(300+252×2)1/2×732=20756であった。
 上記で得られた諸撚糸に荷重を印加した時の電流値(センサ出力)の変化状態、印加荷重と電流値変化率の関係を、それぞれ、図7と図8に示す。これらの図に示す結果から、本諸撚糸が接触センシング繊維部材として有用であると判断し、上記で得られた諸撚糸を用いて、荷重印加したときのセンシング特性等を評価した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
[実施例2]
 カバーリング糸として、280dtex/48fのポリ乳酸からなるマルチフィラメントを用いた以外は、実施例1と同様に諸撚糸を作製した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
[実施例3]
 カバーリング糸として、276dtex/96fのナイロンからなるマルチフィラメントを用いた以外は、実施例1と同様に諸撚糸を作製した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
[実施例4]
 線状導電体として、軟銅線の表面を錫めっきで被覆し、その周囲をさらにPTFE(ポリテトラフルオロエチレン)樹脂で被覆した、直径260μm(金属部分の直径は76μm)の金属ワイヤーを用いた以外は、実施例1と同様に諸撚糸を作製した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
[比較例1]
 実施例1において、カバーリング糸のかわりに、厚み2mmの絶縁性ビニル樹脂で表面被覆した電線を2本用い、諸撚りにしたサンプルを作製した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
[比較例2]
 線状導電体として実施例4と同じ金属ワイヤーを用い、厚み100μmのテフロン(登録商標)樹脂で被覆した電線を2本用いて諸撚りした以外は、比較例1と同様にサンプルを作製した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
[実施例5]
 実施例1で得られた諸撚糸を経糸に1本配置し、それ以外の経糸にウーリーポリエステル334dtex/96f、緯糸にウーリーポリエステル167dtex/48fを用い、絡み糸としてウーリーポリエステル84dtex/36fを用いて、幅方向のほぼ中央部に諸撚糸が配された、幅10mm、厚み450μm、目付2.14g/m2の細幅織物を作製した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
[実施例6]
 実施例2で得られた諸撚糸を用いた以外は、実施例5と同様に細幅織物を作製した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
[実施例7]
 実施例1で得られたカバーリングヤーンを経糸として5本、緯糸として1本用いて、図5に示す織物構造で、大きさ1cm×10cm、厚み850μmの細幅織物を得た。
 本織物の該カバーリングヤーン交差部付近に指で荷重をかけ、その後引っ張り力を与えたときの、電流値(センサ出力)の経時変化を図9に示す。これにより、本織物が接触センシング繊維部材として有用であると判断し、上記で得られた織物を用いて、荷重印加したときのセンシング特性等を評価した。接触・荷重センシング特性、風合い、及び水分センシング特性の結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例8]
 線状導電体を構成するナイロン66繊維の繊度が66dtex、フィラメント数が14本のものを線状導電体として用い、カバーリング糸として繊度が100dtexのクラカーボ(クラレ社製、KC-782R B20T4)を用いた以外は、実施例1と同様に諸撚糸を作製した。鞘糸のカバーリング時の撚り数は1570T/mとし、諸撚糸を作製する際の撚り数は280T/mとし、完成した諸撚糸の繊度は1270dtexであった。10cm長さで切り出した諸撚糸のセンサ抵抗値は、2.1kΩであり、10cm長さの線状導電体の抵抗値は20.0Ωであった。すなわち、諸撚糸センサの抵抗値と配線抵抗の比率は、約105倍である。接触・荷重センシング特性、及び風合いの結果を以下の表2に示す。
[実施例9]
 カバーリング糸を240dtexのカーボンベルトロンB31(KBセーレン社製)とし、鞘糸のカバーリング撚り数を653T/m、諸撚り時の撚り数を250T/mとした以外は実施例8と同様とした諸撚糸を作製した。完成した諸撚糸の繊度は1260dtexであった。10cm長さの諸撚糸のセンサ抵抗値は10.0MΩ、10cm長さの線状導電体の抵抗値は20.0Ωであり、諸撚糸センサの抵抗値と配線抵抗の比率は、約5×10倍であった。接触・荷重センシング特性、及び風合いの結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明に係る接触センシング繊維部材は、長尺での加工が可能であり、量産性に優れ、織物や経編の経糸として使用可能であり、しなやかで風合いに優れ、従来の圧電材料を用いた接触に対する接触センシング繊維部材(圧電糸)に比較して格段に低コストである。すなわち、本発明に係る接触センシング繊維部材は、特殊な圧電材料を必要とせず、一般的な繊維材料であるポリエステル、ナイロン等を用いて荷重のセンシングが可能であるため、非常に低コストで接触センシング繊維を実現でき、また、ノウハウが確立している繊維加工技術であるカバーリング技術を用いるため、長尺での加工が可能であり、量産性に優れ、さらに、圧電糸に比較して、非常に風合い良い加工糸が実現できるため、織物や編物等の繊維部材への加工が容易となる。
 本発明に係る接触センシング繊維部材は、静電容量だけでなく、抵抗値が変化するため、荷重を連続的に印加している状態を検知することができる。
 したがって、本発明に係る接触センシング繊維部材は、柔軟性や伸縮性のある繊維基材の上に電気的な機能素子を設けたスマートテキスタイル用途、例えば、踏んだら検知可能なラグ、人の出入り検知用防犯マット、人数カウント用マット等、接触センシング織編物、例えば、看護や介護等の現場での見守りセンサ、工場等の生産現場での触覚をデジタル化して伝達するセンサ、車両シートベルト等へのセンサ埋め込み用部材、例えば、車両用シートベルト、ハンドル、ダッシュボード等への接触センサ(生体センサ)の埋め込み、人の在・不在の検知センサ、後部座席の子供の放置防止、見守りセンサ等の各種用途に広く利用可能である。
 1 導電性繊維
 2 圧電材料
 3 導体
 4 従来技術の圧電糸
 5 芯材としての線状導電体
 6 被覆材(カバー糸)としての絶縁性繊維
 7 カバーリングヤーン
 8 カバーリングヤーンを諸撚りした諸撚糸
 9 芯糸(芯材)
 10 スピンドル
 11 ボビン
 12 フライヤ
 13 フライヤキャップ
 14 カバー糸
 15 フライヤ足ガイド
 16 フライヤ足ガイド
 17 フライヤ足ガイド
 18 フライヤ足ガイド

Claims (15)

  1.  芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを少なくとも2本有し、その内の2本が互いに近接して配置されているセンシング繊維部材であって、該互いに近接して配置されている2本のカバーリングヤーンの線状導電体間の抵抗の変化及び/又は静電容量の変化を読み取ることを特徴とする前記センシング繊維部材。
  2.  前記絶縁性繊維が、マルチフィラメント絶縁性繊維又は絶縁性紡績糸のいずれかを含む、請求項1に記載のセンシング繊維部材。
  3.  前記センシング繊維部材が、該センシング繊維部材への物体の接触又は荷重を感知する、請求項1又は2に記載のセンシング繊維部材。
  4.  前記センシング繊維部材が、該センシング繊維部材の伸縮又は曲げ変形を感知する、請求項1又は2に記載のセンシング繊維部材。
  5.  前記センシング繊維部材が、該センシング繊維部材への液体の接触又は湿度の変化を感知する、請求項1又は2に記載のセンシング繊維部材。
  6.  前記カバーリングヤーンの以下の式:
       撚り係数K=(SS+SC)1/2×R
    {式中、SSは、芯材としての線状導電体の繊度(dtex)であり、SCは、被覆材の総繊度(dtex)であり、そしてRは、被覆材の巻き付け数(撚り数)(回/m)である。}で表される撚り係数Kが、7000以上30,000以下である、請求項1~5のいずれか1項に記載のセンシング繊維部材。
  7.  前記カバーリングヤーンが、芯材としての線状導電体の周囲を2本の被覆材でカバーリングした、ダブルカバーリングヤーンであり、該2本の被覆材の巻き付け方向が、同一方向である、請求項1~6のいずれか1項に記載のセンシング繊維部材。
  8.  前記互いに近接して配置されている2本のカバーリングヤーン同士が、交差する接点を有する、請求項1~7のいずれか1項に記載のセンシング繊維部材。
  9.  前記芯材としての線状導電体は、マルチフィラメント導電性繊維である、請求項1~8のいずれか1項に記載のセンシング繊維部材。
  10.  前記カバーリングヤーンが少なくとも2本以上配された織物である、請求項1~9のいずれか1項に記載のセンシング繊維部材。
  11.  前記カバーリングヤーンが少なくとも2本以上配された編物である、請求項1~9のいずれか1項に記載のセンシング繊維部材。
  12.  前記互いに近接して配置される2本のカバーリングヤーンにおけるマルチフィラメント絶縁性繊維の巻き付け方向が同じであり、該2本のカバーリングヤーン同士が、該マルチフィラメント絶縁性繊維の巻き付け方向と反対の方向に諸撚された諸撚糸である、請求項1~9のいずれか1項に記載のセンシング繊維部材。
  13.  諸撚糸である請求項12に記載のセンシング繊維部材が、織り込まれている織物。
  14.  諸撚糸である請求項12に記載のセンシング繊維部材が、編み込まれている編物。
  15.  芯材としての線状導電体の周りに被覆材としての絶縁性繊維を一方向に巻き付けてカバーリングしたカバーリングヤーンを少なくとも1本有する、物体の近接又は接触を感知するためのセンシング繊維部材であって、該少なくとも1本のカバーリングヤーンの線状導電体とグラウンドとの間の該物体の近接又は接触による静電容量の変化により、該センシング繊維部材への物体の近接又は接触が感知される、前記センシング繊維部材。
PCT/JP2021/048008 2020-12-23 2021-12-23 センシング繊維部材 WO2022138862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022571646A JPWO2022138862A1 (ja) 2020-12-23 2021-12-23
US18/268,341 US20240035209A1 (en) 2020-12-23 2021-12-23 Sensing Fiber Member
EP21911001.2A EP4269673A1 (en) 2020-12-23 2021-12-23 Sensing fiber member
CN202180094254.2A CN116981921A (zh) 2020-12-23 2021-12-23 传感纤维构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213589 2020-12-23
JP2020213589 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138862A1 true WO2022138862A1 (ja) 2022-06-30

Family

ID=82158025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048008 WO2022138862A1 (ja) 2020-12-23 2021-12-23 センシング繊維部材

Country Status (5)

Country Link
US (1) US20240035209A1 (ja)
EP (1) EP4269673A1 (ja)
JP (1) JPWO2022138862A1 (ja)
CN (1) CN116981921A (ja)
WO (1) WO2022138862A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025635A (ja) 1996-07-08 1998-01-27 Asahi Chem Ind Co Ltd カバリング糸
JP2006234716A (ja) 2005-02-28 2006-09-07 Aichi Prefecture シート状センサ装置
JP2010101836A (ja) * 2008-10-27 2010-05-06 Toyota Boshoku Corp 布材及び物体検知システム
JP2011086114A (ja) * 2009-10-15 2011-04-28 Tsuchiya Co Ltd 導電性織物及び導電性織物を使用したタッチパネル装置
JP2013231246A (ja) 2012-04-27 2013-11-14 Asahi Kasei Fibers Corp カバリングヤーン並びにその製造方法および装置
JP5754946B2 (ja) 2010-07-09 2015-07-29 旭化成せんい株式会社 導電性三層構造布帛
JP2016173685A (ja) 2015-03-16 2016-09-29 Smk株式会社 静電容量式タッチパネル
JP6025854B2 (ja) 2012-10-12 2016-11-16 帝人株式会社 圧電素子
JP6107069B2 (ja) 2011-12-19 2017-04-05 トヨタ自動車株式会社 センサ信号処理方法、センサ信号処理システム、座席荷重センサシステム
JP2017120237A (ja) * 2015-12-28 2017-07-06 帝人株式会社 布帛状センサーおよびそれを用いたデバイス
US20170224280A1 (en) * 2014-11-04 2017-08-10 North Carolina State University Smart sensing systems and related methods
JP2019219395A (ja) * 2018-06-14 2019-12-26 鳥光 慶一 力覚素子及びセンサ
JP2020016554A (ja) * 2018-07-26 2020-01-30 タカノ株式会社 感圧センサ
JP2020036027A (ja) 2015-12-25 2020-03-05 三井化学株式会社 圧電基材、圧電織物、圧電編物、圧電デバイス、力センサー、アクチュエータ、及び生体情報取得デバイス
JP6689943B1 (ja) 2018-11-26 2020-04-28 帝人フロンティア株式会社 樹脂構造体
JP2020090768A (ja) 2018-11-26 2020-06-11 帝人フロンティア株式会社 抗菌撚糸、並びに抗菌撚糸を備える抗菌糸及び抗菌布

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025635A (ja) 1996-07-08 1998-01-27 Asahi Chem Ind Co Ltd カバリング糸
JP2006234716A (ja) 2005-02-28 2006-09-07 Aichi Prefecture シート状センサ装置
JP2010101836A (ja) * 2008-10-27 2010-05-06 Toyota Boshoku Corp 布材及び物体検知システム
JP2011086114A (ja) * 2009-10-15 2011-04-28 Tsuchiya Co Ltd 導電性織物及び導電性織物を使用したタッチパネル装置
JP5754946B2 (ja) 2010-07-09 2015-07-29 旭化成せんい株式会社 導電性三層構造布帛
JP6107069B2 (ja) 2011-12-19 2017-04-05 トヨタ自動車株式会社 センサ信号処理方法、センサ信号処理システム、座席荷重センサシステム
JP2013231246A (ja) 2012-04-27 2013-11-14 Asahi Kasei Fibers Corp カバリングヤーン並びにその製造方法および装置
JP6025854B2 (ja) 2012-10-12 2016-11-16 帝人株式会社 圧電素子
US20170224280A1 (en) * 2014-11-04 2017-08-10 North Carolina State University Smart sensing systems and related methods
JP2016173685A (ja) 2015-03-16 2016-09-29 Smk株式会社 静電容量式タッチパネル
JP2020036027A (ja) 2015-12-25 2020-03-05 三井化学株式会社 圧電基材、圧電織物、圧電編物、圧電デバイス、力センサー、アクチュエータ、及び生体情報取得デバイス
JP2017120237A (ja) * 2015-12-28 2017-07-06 帝人株式会社 布帛状センサーおよびそれを用いたデバイス
JP2019219395A (ja) * 2018-06-14 2019-12-26 鳥光 慶一 力覚素子及びセンサ
JP2020016554A (ja) * 2018-07-26 2020-01-30 タカノ株式会社 感圧センサ
JP6689943B1 (ja) 2018-11-26 2020-04-28 帝人フロンティア株式会社 樹脂構造体
JP2020090768A (ja) 2018-11-26 2020-06-11 帝人フロンティア株式会社 抗菌撚糸、並びに抗菌撚糸を備える抗菌糸及び抗菌布

Also Published As

Publication number Publication date
CN116981921A (zh) 2023-10-31
US20240035209A1 (en) 2024-02-01
JPWO2022138862A1 (ja) 2022-06-30
EP4269673A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
CN111227812B (zh) 一种全纤维基柔性传感器及其制备方法与应用
US7544627B2 (en) Pressure sensing fabric
CA2493145C (en) Electrically conductive yarn
CN106894133A (zh) 一种电阻式可拉伸多维力传感纱线
KR101109989B1 (ko) 전기적으로 전도성인 탄성 복합사, 이의 제조 방법, 및탄성 복합사를 결합한 제품
WO2015014950A1 (en) Textile pressure sensor and method for fabricating the same
US20150294756A1 (en) Flexible conducting materials and methods for the manufacture thereof
JP2009516839A (ja) 圧力センサ
JP5352795B2 (ja) e−テキスタイル用導電糸を用いた織編物
WO2021212927A1 (zh) 多功能传感集成的柔性织物基传感器及其应用
JP2013164365A (ja) 布状圧力センサー
JP7377011B2 (ja) 力覚素子及びセンサ
KR20160118110A (ko) 복합센서
CN112595445A (zh) 点接触式可穿戴压力传感器
US20210388543A1 (en) Fabric material with electrode wiring
CN109239139A (zh) 一种纱线状湿度传感器
KR20180083220A (ko) 압력 측정이 가능한 직물 및 이를 이용한 압력 측정 장치
WO2022138862A1 (ja) センシング繊維部材
CN112082675B (zh) 一种弹性阵列压力传感器
JP2024001824A (ja) センシング繊維部材
CN114622317B (zh) 一种电阻式应变传感包覆纱及其制备方法
CN110184731A (zh) 一种具有负压阻效应的织物传感器及其应用
JP2023068483A (ja) センシング繊維部材及びセンシング布帛
Uno et al. Pressure sensor yarns with a sheath-core structure using multi-fiber polymer
Sofronova Application and technologies for textile sensors production used in pressure distribution measurement-a critical review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18268341

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022571646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911001

Country of ref document: EP

Effective date: 20230724

WWE Wipo information: entry into national phase

Ref document number: 202180094254.2

Country of ref document: CN