WO2022138815A1 - Brake device for vehicle - Google Patents

Brake device for vehicle Download PDF

Info

Publication number
WO2022138815A1
WO2022138815A1 PCT/JP2021/047853 JP2021047853W WO2022138815A1 WO 2022138815 A1 WO2022138815 A1 WO 2022138815A1 JP 2021047853 W JP2021047853 W JP 2021047853W WO 2022138815 A1 WO2022138815 A1 WO 2022138815A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pressure
output unit
reservoir
cylinder
unit
Prior art date
Application number
PCT/JP2021/047853
Other languages
French (fr)
Japanese (ja)
Inventor
和俊 余語
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2022138815A1 publication Critical patent/WO2022138815A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/148Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/92Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action
    • B60T8/94Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action on a fluid pressure regulator

Definitions

  • the present invention relates to a vehicle braking device.
  • the brake system disclosed in Japanese Patent No. 6202741 includes a reservoir, an electric cylinder, and a foil cylinder.
  • the reservoir and the foil cylinder are connected via an electric cylinder.
  • the switching valve is turned off, the master cylinder and the wheel cylinder of the first system are communicated with each other, and the master cylinder and the master cylinder. It is possible to shut off the wheel cylinder of the second system.
  • the ESC device actuator
  • the fluid sucked from the master cylinder is supplied to the foil cylinder of the first system, and the electric cylinder is supplied to the foil cylinder of the second system.
  • the fluid sucked from the reservoir can be supplied via. By doing so, the braking force can be increased even if a failure occurs in the electric cylinder.
  • the second system when the failure of the electric cylinder is not an electrical failure, but the piston is locked at a position where the communication between the hydraulic chamber (chamber) and the reservoir is cut off, for example, by locking the reduction gear, the second system. It is possible to increase the pressure on the wheel cylinder, but it is not possible to reduce the pressure. Specifically, when the above system detects the piston lock, prohibits the pressure adjustment by the electric cylinder, and tries to perform the assist control by the ESC device, the wheel cylinder of the second system has a seal member (rubber cup) of the electric cylinder. The fluid sucked from the reservoir is supplied through. However, even if an attempt is made to depressurize the foil cylinder of the second system, the flow of fluid from the hydraulic chamber to the reservoir is blocked by the seal member of the electric cylinder, and the decompression of the foil cylinder cannot be performed.
  • An object of the present invention is to provide a vehicle braking device capable of assist control by a downstream unit even when a piston lock failure occurs in an electric cylinder.
  • the vehicle braking device of the present invention is provided in the first liquid passage connecting the reservoir and the first wheel cylinder, and can selectively output the hydraulic pressure to the reservoir side and the first wheel cylinder side.
  • the master cylinder provided between the reservoir and the first hydraulic pressure output unit in the first liquid passage, and the second liquid passage connecting the reservoir and the second wheel cylinder.
  • a second hydraulic pressure output unit capable of selectively outputting hydraulic pressure to the reservoir side and the second wheel cylinder side, and the reservoir and the second hydraulic pressure output unit in the second liquid passage. It has a cylinder and a piston that slides in the cylinder, and the reservoir and the second hydraulic output unit are hydraulically connected or disconnected according to the position of the piston.
  • An electric cylinder that outputs fluid according to the sliding of the piston, and a liquid passage to which the fluid output from the electric cylinder is supplied.
  • the master cylinder In the first liquid passage, the master cylinder and the first hydraulic pressure output.
  • a communication control valve provided in a communication passage connected to a portion between the portions, a failure determination unit for determining whether or not the piston position of the electric cylinder is in an uncontrollable state, and the first hydraulic pressure.
  • a control unit for controlling the output unit, the second hydraulic pressure output unit, and the communication control valve is provided, and the control unit determines that the piston position of the electric cylinder cannot be controlled by the failure determination unit.
  • the first hydraulic pressure output unit is made to output fluid toward the first wheel cylinder with the communication control valve closed, and the second hydraulic pressure output unit is made to output fluid.
  • a specific assist control that does not output fluid toward the second wheel cylinder is executed.
  • the first wheel cylinder that can be hydraulically connected to the reservoir via the master cylinder is added by the first hydraulic output unit.
  • the second wheel cylinder which is compressed and may not be hydraulically communicated with the reservoir due to the uncontrollable piston position of the electric cylinder, is not pressurized.
  • the braking force is increased by pressurizing the first foil cylinder.
  • the reservoir and the master cylinder can communicate with each other hydraulically, and the first hydraulic output unit can return the fluid in the first foil cylinder to the master cylinder and the reservoir. That is, by operating the first hydraulic pressure output unit, it is possible to reduce the pressure (reduce the braking force) of the first foil cylinder.
  • the second foil cylinder may not be hydraulically connected to the reservoir via the electric cylinder because the piston position of the electric cylinder is uncontrollable, but if the piston position is uncontrollable, the second foil No depressurization is necessary because the cylinder is not pressurized.
  • the first hydraulic pressure output unit which is one of the downstream units, performs assist control (braking force adjustment) for the first foil cylinder that can be depressurized later. By doing so, braking force can be obtained.
  • the vehicle braking device 1 of the present embodiment includes an upstream unit 11, a downstream unit 3, a first brake ECU 901, and a second brake ECU 902.
  • the vehicle braking device 1 is a device capable of supplying fluid to the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84 provided on the wheels of the vehicle.
  • the first foil cylinders 81 and 82 are provided on the front wheels
  • the second foil cylinders 83 and 84 are provided on the rear wheels.
  • the first brake ECU 901 controls at least the upstream unit 11.
  • the second brake ECU 902 controls at least the downstream unit 3.
  • the upstream unit 11 includes a master cylinder device 4, a stroke simulator 43, a simulator cut valve 44, a reservoir 45, a first liquid passage 51, an electric cylinder 2, a second liquid passage 52, and a communication passage 53. It includes a master cut valve 62, a communication control valve 61, a stroke sensor 71, pressure sensors 72 and 73, and a level switch 74.
  • FIG. 1 shows a non-energized state of the vehicle braking device 1.
  • the master cylinder device 4 is a device capable of generating hydraulic pressure according to the driver operation.
  • the master cylinder device 4 includes a master cylinder 41, a master piston 42, a master chamber 41a, and an urging member 41b.
  • the master cylinder 41 is a bottomed cylindrical member or portion.
  • the master cylinder 41 is formed with an input port 411 and an output port 412. The input port 411 and the output port 412 will be described later.
  • the master piston 42 is a piston member arranged in the master cylinder 41 and is mechanically connected to the brake pedal Z.
  • the master piston 42 slides in the master cylinder 41 in response to the operation of the brake pedal Z.
  • a through hole 421 is formed in the master piston 42.
  • the master piston 42 is urged toward the initial position by the urging member 41b described later.
  • the initial position is the position of the master piston 42 when the volume of the master chamber 41a is maximized.
  • the master chamber 41a is formed in the master cylinder 41 by the master cylinder 41 and the master piston 42.
  • the number of master chambers 41a formed in the master cylinder 41 is one.
  • the volume of the master chamber 41a changes according to the movement of the master piston 42.
  • the master piston 42 moves to one side in the axial direction, the volume of the master chamber 41a becomes smaller and the hydraulic pressure of the master chamber 41a (hereinafter referred to as “master pressure”) increases.
  • the urging member 41b is a spring member provided in the master chamber 41a.
  • the stroke simulator 43 is connected to the master cylinder device 4 via the simulator cut valve 44.
  • the stroke simulator 43 is a device that generates a reaction force (load) with respect to the operation of the brake pedal Z.
  • the stroke simulator 43 includes a cylinder, a piston, and an urging member.
  • the stroke simulator 43 is connected to the output port 412 of the master cylinder 41 via the liquid passage 43a.
  • the simulator cut valve 44 is a normally closed type solenoid valve provided in the liquid passage 43a.
  • the brake pedal Z is operated while the master cut valve 62, which will be described later, is closed and the simulator cut valve 44 is open, a pedal reaction force is generated by the stroke simulator 43.
  • the reservoir 45 stores fluid.
  • the pressure in the reservoir 45 is maintained at atmospheric pressure.
  • two storage chambers 451 and 452, each of which stores fluid, are formed.
  • the storage chamber 451 is connected to the master cylinder device 4. Specifically, the storage chamber 451 is connected to the input port 411 of the master cylinder 41. When the master piston 42 is located in the initial position, the storage chamber 451 is hydraulically connected to the master chamber 41a via the input port 411 and the through hole 421. When the master piston 42 slides by a predetermined amount, the input port 411 and the through hole 421 are hydraulically disconnected. In this case, the master chamber 41a and the reservoir 45 are hydraulically shut off.
  • the storage chamber 452 is connected to the electric cylinder 2 via a second liquid passage 52 (reservoir liquid passage 522 described later).
  • the reservoir 45 may consist of two separate reservoirs instead of the two reservoirs.
  • the first liquid passage 51 is a liquid passage connecting the reservoir 45 (storage chamber 451) and the first foil cylinders 81 and 82 via the master cylinder device 4 and the downstream unit 3 (first hydraulic pressure output unit 31).
  • first connection liquid passage 511 the portion of the first liquid passage 51 that connects the master cylinder device 4 and the downstream unit 3
  • first connection liquid passage 512 a portion that connects the downstream unit 3 and the first foil cylinders 81 and 82.
  • first downstream liquid passage 512 When the master piston 42 slides so as to make the master chamber 41a smaller while the master chamber 41a and the reservoir 45 are not hydraulically connected, the first connection liquid passage from the master chamber 41a via the output port 412.
  • the first connection liquid passage 511 includes a connection portion 50 connected to a communication passage 53, which will be described later.
  • the first connection liquid passage 511 is provided with a master cut valve 62 and a pressure sensor 72.
  • the master cut valve 62 is a normally open type solenoid valve provided between the connection portion 50 and the master cylinder 41 in the first liquid passage 51. When the master cut valve 62 is closed, the master cylinder device 4 and the downstream unit 3 are hydraulically shut off.
  • the pressure sensor 72 is provided between the master cut valve 62 and the master cylinder 41 in the first liquid passage 51.
  • the pressure sensor 72 detects the pressure in the first connecting liquid passage 511.
  • the pressure detected by the pressure sensor 72 when the master cut valve 62 is closed corresponds to the master pressure, which is the pressure generated in the master chamber 41a.
  • the electric cylinder 2 includes a cylinder 21, an electric motor 22, a piston 23, a hydraulic chamber 24, and an urging member 25.
  • the electric cylinder 2 is a single type electric cylinder in which a single hydraulic chamber 24 is formed in the cylinder 21.
  • the moving direction of the piston 23 in which the volume of the hydraulic chamber 24 is small is defined as the front, and the opposite direction is defined as the rear.
  • the cylinder 21 is a bottomed cylindrical member or part.
  • the cylinder 21 is formed by utilizing, for example, a part of a housing (metal block).
  • the cylinder 21 is formed with an input port 211 and an output port 212.
  • the input port 211 is an opening, and is formed between the seal member X1 provided on the cylinder 21 and the seal member X2.
  • the seal member X1 and the seal member X2 are annular seal members, and their cross sections have a concave shape that opens forward (in other words, a convex arc shape that swells backward).
  • the seal member X1 allows the flow of fluid from the input port 211 to the hydraulic chamber 24 when the hydraulic pressure chamber 24 becomes a negative pressure, and when the pressure in the hydraulic pressure chamber 24 is equal to or higher than the atmospheric pressure, The flow of fluid from the hydraulic chamber 24 to the input port 211 is prohibited.
  • the seal members X1 and X2 are arranged in an annular groove formed on the inner peripheral surface of the cylinder 21.
  • the output port 212 is an opening and is formed in front of the input port 211. At least one input port 211 and one output port 212 may be formed.
  • the electric motor 22 is connected to the piston 23 via a linear motion mechanism 22a that converts rotary motion into linear motion.
  • the piston 23 is a bottomed cylindrical member and slides in the cylinder 21 by being driven by an electric motor 22.
  • a through hole 231 is formed in the piston 23. The through hole 231 communicates with the input port 211 when the piston 23 is located at the initial position.
  • the hydraulic chamber 24 is partitioned by a cylinder 21 and a piston 23, and the volume changes according to the movement of the piston 23.
  • the initial position of the piston 23 is the position where the volume of the hydraulic chamber 24 is maximized (see FIG. 2).
  • the hydraulic chamber 24 can communicate with the reservoir 45 via the input port 211. Specifically, when the piston 23 is located in the initial position, it is hydraulically connected to the reservoir 45 via the through hole 231 and the input port 211. When the through hole 231 and the input port 211 do not communicate with each other, the hydraulic chamber 24 and the reservoir 45 are hydraulically cut off. More specifically, the hydraulic pressure in the hydraulic pressure chamber 24 is negative even when the communication between the input port 211 and the through hole 231 is cut off due to the movement of the piston 23 forward by a predetermined amount. In some cases, the flow of fluid from the reservoir 45 to the hydraulic chamber 24 via the seal member X1 is allowed.
  • the hydraulic chamber 24 is connected to the second liquid passage 52 (second connection liquid passage 521 described later) via the output port 212.
  • the urging member 25 is a spring that is arranged in the hydraulic chamber 24 and urges the piston 23 toward the initial position.
  • the piston 23 is positioned at the initial position due to the urging force of the urging member 25.
  • the hydraulic chamber 24 When the piston 23 is located at the initial position, the hydraulic chamber 24 is connected to the reservoir 45 via the input port 211, the through hole 231 and the second liquid passage 52 (reservoir liquid passage 522 described later).
  • the hydraulic chamber 24 When the piston 23 moves forward by a predetermined amount from the initial position by driving the electric motor 22, the communication between the input port 211 and the through hole 231 is cut off. In this case, the hydraulic chamber 24 is hydraulically shut off from the reservoir 45.
  • the piston 23 slides so as to make the hydraulic chamber 24 smaller while the hydraulic chamber 24 and the reservoir 45 are hydraulically shut off, fluid is output from the hydraulic chamber 24 via the output port 212. To. The output fluid is supplied to the second liquid passage 52 (second connecting liquid passage 521) and the communication passage 53 (described later). As a result, hydraulic pressure is generated in each of the second liquid passage 52 (second connecting liquid passage 521) and the communication passage 53.
  • the electric cylinder 2 is input when the input port 211 is opened by the piston 23 when the relative position of the piston 23 with respect to the cylinder 21 is a predetermined open position, and when the relative position of the piston 23 with respect to the cylinder 21 is a predetermined closed position.
  • the port 211 is configured to be closed by the piston 23.
  • the communication area is the area (including the initial position) between the initial position of the piston 23 and the position (switching position) ahead of the initial position by a predetermined amount
  • the blocking area is the switching position. The area between and the front end surface of the cylinder 21.
  • the second liquid passage 52 is a liquid passage connecting the reservoir 45 (reservoir 452) and the second foil cylinders 83 and 84 via the electric cylinder 2 and the downstream unit 3 (second hydraulic pressure output unit 32). ..
  • the portion of the second liquid passage 52 that connects the electric cylinder 2 and the downstream unit 3 is referred to as a “second connection liquid passage 521”, and the electric cylinder 2 and the reservoir 45 of the second liquid passage 52 are connected.
  • the portion is referred to as "reservoir fluid passage 522”
  • the portion connecting the downstream unit 3 and the second foil cylinders 83 and 84 is referred to as "second downstream fluid passage 523".
  • the hydraulic pressure generated in the hydraulic pressure chamber 24 is supplied to the downstream unit 3 via the second connecting liquid passage 521.
  • a hydraulic pressure sensor 73 is provided in the second connecting liquid passage 521.
  • the hydraulic pressure sensor 73 is a sensor that detects the pressure in the second connecting liquid passage 521.
  • the hydraulic pressure detected by the hydraulic pressure sensor 73 corresponds to the output pressure of the electric cylinder 2 in a state where the control mode of the vehicle braking device 1 is the brake-by-wire mode (hereinafter referred to as “by-wire mode”) described later.
  • the communication passage 53 is a liquid passage connecting the first connecting liquid passage 511 and the second connecting liquid passage 521.
  • the communication passage 53 is connected to the first liquid passage 51 by a connecting portion 50.
  • a communication control valve 61 is provided in the communication passage 53.
  • the communication control valve 61 is a normally closed type solenoid valve.
  • the stroke sensor 71 detects the stroke of the brake pedal Z.
  • two stroke sensors 71 are provided.
  • the data detected by the two stroke sensors 71 is transmitted to the brake ECUs 901 and 902.
  • the brake ECUs 901 and 902 acquire stroke information from the corresponding stroke sensors 71, respectively.
  • the level switch 74 is provided in the reservoir 45 and detects that the liquid level of the reservoir 45 is less than a predetermined position. When the liquid level of the reservoir 45 becomes less than a predetermined value, the level switch 74 transmits data indicating that the liquid level has dropped to the first brake ECU 901.
  • the downstream unit 3 is a so-called ESC actuator (ESC device), and can independently regulate the hydraulic pressure of each of the foil cylinders 81 to 84.
  • the first hydraulic pressure output unit 31 configured to be able to adjust the pressure of the first wheel cylinders 81 and 82 and the second wheel cylinder 83 and 84 configured to be able to adjust the pressure are second.
  • a hydraulic pressure output unit 32 is provided.
  • the position of the upstream unit 11 with respect to the downstream unit 3 is referred to as upstream
  • the positions of the foil cylinders 81 to 84 with respect to the downstream unit 3 are referred to as downstream.
  • the first hydraulic pressure output unit 31 is connected to the first connecting liquid passage 511 on the upstream side and connected to the first foil cylinders 81 and 82 on the downstream side.
  • the second hydraulic pressure output unit 32 is connected to the second connecting liquid passage 521 on the upstream side and connected to the second foil cylinders 83 and 84 on the downstream side.
  • the first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 are independent of each other on the hydraulic pressure circuit in the downstream unit 3.
  • the fluid is supplied from the upstream unit 11 to the first hydraulic pressure output unit 31 via the first connection liquid passage 511.
  • the first hydraulic pressure output unit 31 is configured to be able to increase the hydraulic pressure of the first foil cylinders 81 and 82 based on the basic hydraulic pressure generated by the upstream unit 11.
  • the first hydraulic pressure output unit 31 is configured to pressurize the first wheel cylinders 81 and 82 by generating a differential pressure between the input hydraulic pressure and the hydraulic pressures of the first wheel cylinders 81 and 82. ing.
  • the first hydraulic pressure output unit 31 includes a liquid passage 311, a pump liquid passage 315a, a pressure sensor 75, a differential pressure control valve 312, a check valve 312a, a holding valve 313, a check valve 313a, and a pressure reducing liquid passage. It includes a 314a, a pressure reducing valve 314, a pump 315, an electric motor 316, a reservoir 317, and a recirculation liquid passage 317a.
  • the liquid passage 311 is a liquid passage connecting the first connecting liquid passage 511 and the first downstream liquid passage 512.
  • the liquid passage 311 includes a branch portion X connected to the pump liquid passage 315a.
  • the liquid passage 311 is a branch portion X, and branches into a liquid passage connected to one first foil cylinder 81 and a liquid passage connected to the other first foil cylinder 82. Since the configurations of the liquid passages 311 on the two liquid passages are the same, only the liquid passages connected to the first foil cylinder 81 will be described (referred to as the liquid passages 311).
  • the pressure sensor 75 is provided on the upstream unit 11 side of the differential pressure control valve 312 in the liquid passage 311.
  • the pressure sensor 75 detects the pressure in the liquid passage 311.
  • the pressure detected by the pressure sensor 75 corresponds to the hydraulic pressure input from the first connecting liquid passage 511 to the first hydraulic pressure output unit 31.
  • the data detected by the pressure sensor 75 is transmitted to the second brake ECU 902.
  • the differential pressure control valve 312 is a normally open type linear solenoid valve provided between the branch portion X and the pressure sensor 75 in the liquid passage 311. By controlling the opening degree of the differential pressure control valve 312, it is possible to generate a differential pressure between the upstream and downstream sides of the differential pressure control valve 312.
  • the check valve 312a is provided in parallel with the differential pressure control valve 312. The check valve 312a is configured to allow only fluid flow from the upstream side to the downstream side.
  • the holding valve 313 is a normally open type solenoid valve provided between the branch portion X and the first foil cylinder 81 in the liquid passage 311.
  • the check valve 313a is provided in parallel with the holding valve 313.
  • the check valve 313a is configured to allow only fluid flow from the downstream side to the upstream side.
  • the decompression liquid passage 314a is a liquid passage that connects the portion of the liquid passage 311 between the holding valve 313 and the first foil cylinder 81 and the reservoir 317.
  • a pressure reducing valve 314 is provided in the pressure reducing liquid passage 314a.
  • the pressure reducing valve 314 is a normally closed type solenoid valve provided in the pressure reducing liquid passage 314a.
  • the pressure reducing valve 314 When the pressure reducing valve 314 is in the valve open state, the fluid in the first foil cylinder 81 can flow into the reservoir 317 via the pressure reducing liquid passage 314a. Therefore, the pressure of the first foil cylinder 81 can be reduced by opening the pressure reducing valve 314.
  • Reservoir 317 is a well-known pressure-regulating reservoir that stores fluid, and is connected to a decompression fluid passage 314a and a reflux fluid passage 317a.
  • the reflux liquid passage 317a is a liquid passage that connects a portion of the liquid passage 311 between the pressure sensor 75 and the differential pressure control valve 312 and the reservoir 317.
  • the fluid in the reservoir 317 is sucked by the operation of the pump 315.
  • the valve in the reservoir 317 opens, and the fluid is supplied to the reservoir 317 from the first connecting liquid passage 511 via the reflux liquid passage 317a.
  • the pump liquid passage 315a is a liquid passage that connects the portion between the pressure reducing valve 314 and the reservoir 317 in the pressure reducing liquid passage 314a and the branch portion X of the liquid passage 311.
  • a pump 315 is provided in the pump liquid passage 315a.
  • the pump 315 is a pump that operates in response to the drive of the electric motor 316, and is, for example, a well-known piston pump or gear pump.
  • the suction side of the pump 315 is connected to the reservoir 317, and the discharge side of the pump 315 is connected to the branch portion X.
  • the pump 315 is activated, the fluid in the reservoir 317 is sucked in to supply the fluid to the branch X.
  • the first hydraulic pressure output unit 31 is configured to be able to pressurize the first foil cylinders 81 and 82 based on the hydraulic pressure input from the upstream side by operating various solenoid valves and pumps. Since the second hydraulic pressure output unit 32 has the same configuration as the first hydraulic pressure output unit 31 except that the pressure sensor 75 is not provided, the description thereof will be omitted. Like the first hydraulic pressure output unit 31, the second hydraulic pressure output unit 32 is also configured to be able to pressurize the second foil cylinders 83 and 84 based on the basic hydraulic pressure.
  • the vehicle braking device 1 of the present embodiment includes a first hydraulic pressure output unit 31, a master cylinder 41, a second hydraulic pressure output unit 32, an electric cylinder 2, a communication control valve 61, a first brake ECU 901, and a second brake ECU 902. It is equipped with.
  • the first hydraulic pressure output unit 31 is provided in the first liquid passage 51 connecting the reservoir 45 and the first foil cylinders 81 and 82, and selectively liquids on the reservoir 45 side and the first foil cylinders 81 and 82 sides. It is a device that can output pressure.
  • the master cylinder 41 is provided between the reservoir 45 and the first hydraulic pressure output unit 31 in the first liquid passage 51.
  • the reservoir 45 and the first hydraulic pressure output unit 31 can be hydraulically connected via the master cylinder 41.
  • the second hydraulic pressure output unit 32 is provided in the second liquid passage 52 connecting the reservoir 45 and the second foil cylinders 83, 84, and selectively liquids on the reservoir 45 side and the second foil cylinders 83, 84 side. It is a device that can output pressure.
  • the electric cylinder 2 is provided between the reservoir 45 and the second hydraulic pressure output unit 32 in the second liquid passage 52, and has a cylinder 21 and a piston 23 that slides in the cylinder 21.
  • the reservoir 45 and the second hydraulic pressure output unit 32 are hydraulically connected or disconnected according to the position, and the fluid is output according to the sliding of the piston 23.
  • the communication control valve 61 is a liquid passage to which the fluid output from the electric cylinder 2 is supplied, and is connected to a portion of the first liquid passage 51 between the master cylinder 41 and the first hydraulic pressure output unit 31. It is provided in the passage 53. More specifically, the communication control valve 61 is electrically operated in the portion between the master cylinder 41 and the first hydraulic pressure output unit 31 (that is, the first connecting liquid passage 511) in the first liquid passage 51 and in the second liquid passage 52. It is provided in a communication passage 53 connecting a portion between the cylinder 2 and the second hydraulic pressure output unit 32 (that is, the second connecting liquid passage 521).
  • the first brake ECU 901 and the second brake ECU 902 are electronic control units including a CPU and a memory, respectively.
  • Each brake ECU 901, 902 includes one or more processors that perform various controls.
  • the first brake ECU 901 and the second brake ECU 902 are separate ECUs, and are connected to each other so that information (control information, etc.) can be communicated with each other.
  • the first brake ECU 901 is configured to be able to control the upstream unit 11. Specifically, the first brake ECU 901 can control the electric cylinder 2 and the solenoid valves 61, 62, 44 based on the data detected by the plurality of sensors 71, 72, 73, 74 of the upstream unit. The first brake ECU 901 can calculate each foil pressure based on the detection results of the pressure sensors 72 and 73 and the control state of the downstream unit 3.
  • the second brake ECU 902 is configured to be able to control the downstream unit 3 based on the data detected by the stroke sensor 71 and the pressure sensor 75.
  • the second brake ECU 902 also receives data detected by a wheel speed sensor (not shown), an acceleration sensor (not shown), or the like provided in the vehicle.
  • the second brake ECU 902 pressurizes the first wheel cylinder 81 by the downstream unit 3
  • the second brake ECU 902 sets the target differential pressure (hydraulic pressure of the first wheel cylinder 81> hydraulic pressure of the first connecting liquid passage 511) to the differential pressure control valve 312.
  • the corresponding control current is applied to close the differential pressure control valve 312.
  • the holding valve 313 is open and the pressure reducing valve 314 is closed.
  • the pump 315 the fluid is supplied from the first connection liquid passage 511 to the branch portion X via the reservoir 317.
  • the first foil cylinder 81 is pressurized.
  • the second brake ECU 902 When the wheel pressure is reduced by the downstream unit 3 by anti-skid control or the like, the second brake ECU 902 operates the pump 315 in a state where the pressure reducing valve 314 is opened and the holding valve 313 is closed, and the first wheel cylinder is operated. Pump back the fluid in 81.
  • the second brake ECU 902 closes the holding valve 313 and the pressure reducing valve 314 when the foil pressure is held by the downstream unit 3.
  • the second brake ECU 902 opens the differential pressure control valve 312 and the holding valve 313, and closes the pressure reducing valve 314.
  • the second brake ECU 902 can calculate each foil pressure based on the control state of the pressure sensor 75 and the downstream unit 3.
  • the detected values of the various sensors may be transmitted to both brake ECUs 901 and 902.
  • the vehicle braking device 1 is configured to be capable of executing normal control. Normal control is also called by-wire mode. In normal control, the output pressure of the upstream unit 11 is the hydraulic pressure output by the electric cylinder 2. The downstream unit 3 can output a hydraulic pressure to the foil cylinders 81 to 84 based on the output pressure of the upstream unit 11. Hereinafter, normal control will be described.
  • the first brake ECU 901 includes a normal control unit 91 that controls an upstream unit 11 including an electric motor 22 and the like, and a failure determination unit 92.
  • the normal control unit 91 is configured to be able to execute normal control.
  • the normal control is a control in which the master cylinder device 4 and the foil cylinders 81 to 84 are hydraulically shut off, and the foil cylinders 81 to 84 are pressurized by at least one of the electric cylinder 2 and the downstream unit 3.
  • Normal control includes preparation control and normal pressurization control.
  • Preparation control is a control that forms a so-called by-wire mode.
  • the normal control unit 91 closes the master cut valve 62 and opens the communication control valve 61 and the simulator cut valve 44.
  • the preparatory control is executed when the vehicle provided with the vehicle braking device 1 is ready to start.
  • the ready-to-start state is, for example, the case where the ignition of the vehicle is turned on or the case where the electric vehicle is started. More specifically, the preparatory control of the first embodiment is executed when the first brake ECU 901 is started (power is turned on).
  • the preparatory control may be executed when the brake pedal is operated, not when the ignition of the vehicle is turned on or when the electric vehicle is started.
  • the by-wire mode may be formed when the brake pedal is operated, and the by-wire mode may not be formed when the brake pedal is not operated.
  • Normal pressurization control is control that pressurizes the foil cylinders 81 to 84 in the by-wire mode (when the preparation control is completed).
  • the normal control unit 91 sets the target output pressure based on the data detected by the stroke sensor 71 and the pressure sensor 72.
  • the electric cylinder 2 is controlled based on the set target output pressure.
  • the second brake ECU 902 operates the downstream unit 3 when executing anti-skid control or the like.
  • the electric cylinder 2, the first hydraulic pressure output unit 31, and the second hydraulic pressure output unit 32 are controlled based on the set target value, so that the liquids in the foil cylinders 81 to 84 are liquid. The pressure can be adjusted.
  • the failure determination unit 92 determines whether or not the position of the piston 23 of the electric cylinder 2 (also referred to as “piston position”) is in an uncontrollable state. Further, the failure determination unit 92 of the present embodiment determines whether or not the reservoir 45 and the second hydraulic pressure output unit 32 are hydraulically connected via the electric cylinder 2 based on the determination result. The failure determination unit 92 estimates the position of the piston 23 at least when it is determined that the piston position is in an uncontrollable state.
  • the failure determination unit 92 determines whether or not the piston 23 of the electric cylinder 2 is locked (which can be said to be stuck) based on the detection result of the rotation angle sensor 22b provided for the electric motor 22. ..
  • the rotation angle sensor 22b is a sensor that detects the rotation angle (rotation position) of the electric motor 22.
  • the piston 23 is mechanically locked (that is, when the piston 23 becomes physically immovable with respect to the cylinder 21) due to the reduction gear forming a part of the linear motion mechanism 22a being locked or the like. Even if the operation instruction (control current) is output to the electric motor 22, the electric motor 22 does not rotate and the detected value of the rotation angle sensor 22b does not change.
  • the failure determination unit 92 can determine whether or not the piston 23 is locked based on the content of the control instruction to the electric motor 22 and the detection result of the rotation angle sensor 22b.
  • the mechanical locking of the piston 23 is also referred to as “piston lock”.
  • the failure determination unit 92 can estimate where the piston 23 is located in the cylinder 21 based on the detection result of the rotation angle sensor 22b. That is, the failure determination unit 92 can estimate whether the piston 23 is located in the communication region or the cutoff region in the cylinder 21 based on the detection result of the rotation angle sensor 22b. Therefore, when the failure determination unit 92 detects the piston lock, it can also estimate at which position the piston 23 is locked. However, when it is difficult to estimate which region the rotation angle sensor 22b is located in, for example, when the detection result of the rotation angle sensor 22b indicates the vicinity of the boundary (switching position) between the communication region and the cutoff region, the failure determination unit 92 The judgment result is "unknown (position cannot be determined)". In this way, the failure determination unit 92 selects any of "communication", “blocking", and "unknown” for the lock position of the piston 23.
  • the brake ECUs 901 and 902 include a control unit 93 that controls the first hydraulic pressure output unit 31, the second hydraulic pressure output unit 32, and the communication control valve 61.
  • the control unit 93 of the first brake ECU 901 controls the communication control valve 61
  • the control unit 93 of the second brake ECU 902 controls the downstream unit 3. Both brake ECUs 901 and 902 cooperate to execute various controls.
  • the control unit 93 sets the control mode to the assist mode when the brake operation is started (the brake pedal Z is depressed) and the piston lock is detected by the failure determination unit 92.
  • the assist mode is a mode in which the assist control by the downstream unit 3 is executed when the piston is locked.
  • the assist control is a control in which the foil pressure is adjusted by the downstream unit 3 according to the required braking force. In the assist mode (each assist control described below), the master cut valve 62 is opened and the simulator cut valve 44 is closed in common.
  • the failure determination unit 92 determines that the piston position of the electric cylinder 2 is in an uncontrollable state, and the reservoir 45 and the second hydraulic output unit 32 are hydraulically connected via the electric cylinder 2. If it is not determined to be the case (only when the determination result is "unknown” in this embodiment), the first hydraulic pressure output unit 31 with the communication control valve 61 closed in order to increase the braking force. Is made to output the hydraulic pressure toward the first wheel cylinders 81 and 82, and the second hydraulic pressure output unit 32 is not made to output the hydraulic pressure toward the second wheel cylinders 83 and 84.
  • the control unit 93 outputs the first hydraulic pressure with the communication control valve 61 closed in order to increase the braking force.
  • the unit 31 is operated, and the second hydraulic pressure output unit 32 is not operated.
  • fluid is supplied from the master cylinder 41 to the first foil cylinders 81 and 82 by the operation of the first hydraulic pressure output unit 31, and only the first foil cylinders 81 and 82 are pressurized.
  • the first hydraulic pressure output unit 31 pressurizes the first foil cylinders 81 and 82 using the master pressure generated by the driver's brake operation as the basic hydraulic pressure.
  • the reservoir 45 (reservoir 451) and the master cylinder 41 can communicate with each other, and the first hydraulic pressure output unit 31 can return the fluid in the first foil cylinders 81 and 82 to the master cylinder 41 and the reservoir 45. That is, the control unit 93 can also operate the first hydraulic pressure output unit 31 to reduce the pressure of the first foil cylinders 81 and 82 (reduce the braking force).
  • the assist control when the determination result is "unknown” is referred to as "unknown assist control (corresponding to" specific assist control ")".
  • the control unit 93 is determined by the failure determination unit 92 that the piston position of the electric cylinder 2 is in an uncontrollable state, and that the reservoir 45 and the second hydraulic output unit 32 are hydraulically shut off. If so, in order to increase the braking force, with the communication control valve 61 open, the first hydraulic pressure output unit 31 is made to output the hydraulic pressure toward the first wheel cylinders 81 and 82, and the second hydraulic pressure output unit is 32 is made to output the hydraulic pressure toward the second wheel cylinders 83 and 84.
  • the control unit 93 has the first hydraulic pressure output unit with the communication control valve 61 open in order to increase the braking force. Both 31 and the second hydraulic pressure output unit 32 are operated.
  • fluid is supplied from the master cylinder 41 to the first foil cylinders 81 and 82 by the operation of the first hydraulic pressure output unit 31, and the communication control valve 61 is supplied from the master cylinder 41 by the operation of the second hydraulic pressure output unit 32.
  • the fluid is supplied to the second foil cylinders 83 and 84 via the above.
  • the first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 pressurize the target wheel cylinders 81 to 84, respectively, using the master pressure generated by the brake operation of the driver as the basic hydraulic pressure. As a result, all the foil cylinders 81 to 84 are pressurized.
  • the control unit 93 operates the first hydraulic pressure output unit 31 to return the fluid in the first foil cylinders 81 and 82 to the master cylinder 41 and the reservoir 45 (storage chamber 451), whereby the first foil cylinders 81 and 82 are returned. Can be depressurized. Further, when the pressure of the second foil cylinders 83 and 84 is reduced, the control unit 93 opens the communication control valve 61 to allow the fluid in the second foil cylinders 83 and 84 to pass through the communication control valve 61 to the master cylinder. It can be returned to 41 and the reservoir 45 (reservoir 451). As described above, the control unit 93 opens the communication control valve 61 when the second hydraulic pressure output unit 32 outputs the hydraulic pressure toward the reservoir 45.
  • the second foil cylinders 83 and 84 can also be depressurized.
  • acceleration / depressurization is possible in all the foil cylinders 81 to 84.
  • the execution condition of the assist control at the time of interruption is that the failure determination unit 92 does not determine "communication” (first condition) and the failure determination unit 92 determines that "blocking” (blocking). It can be said that the second condition) is included.
  • the assist control at the time of interruption is executed.
  • neither "communication” nor “blocking” is determined by the failure determination unit 92, that is, when only the first condition is satisfied, the assist control when the determination cannot be made is executed.
  • the failure determination unit 92 determines that the piston position of the electric cylinder 2 is in an uncontrollable state, and the reservoir 45 and the second hydraulic output unit 32 are hydraulically connected via the electric cylinder 2.
  • the first hydraulic pressure output unit 31 is made to output the hydraulic pressure toward the first wheel cylinders 81 and 82 with the communication control valve 61 closed.
  • the second hydraulic pressure output unit 32 is made to output the hydraulic pressure toward the second wheel cylinders 83 and 84.
  • the control unit 93 has the first hydraulic pressure output unit with the communication control valve 61 closed in order to increase the braking force. Both 31 and the second hydraulic pressure output unit 32 are operated.
  • fluid is supplied from the master cylinder 41 to the first foil cylinders 81 and 82 by the operation of the first hydraulic pressure output unit 31, and from the reservoir 45 (storage chamber 452) by the operation of the second hydraulic pressure output unit 32.
  • the fluid is supplied to the second foil cylinders 83 and 84 via the electric cylinder 2. Since the communication control valve 61 is closed, the first liquid passage 51 and the second liquid passage 52 are independent of each other.
  • the first hydraulic pressure output unit 31 pressurizes the first foil cylinders 81 and 82 using the master pressure generated by the driver's brake operation as the basic hydraulic pressure.
  • the second hydraulic pressure output unit 32 pressurizes the second foil cylinders 83 and 84 by using the fluid of the reservoir 45 (reservoir 452). As a result, all the foil cylinders 81 to 84 are pressurized.
  • the control unit 93 operates the first hydraulic pressure output unit 31 with the communication control valve 61 closed to remove the fluid in the first foil cylinders 81 and 82 from the master cylinder 41 and the reservoir 45 ( By returning to the storage chamber 451), the pressure of the first foil cylinders 81 and 82 can be reduced. Further, when the pressure of the second foil cylinders 83 and 84 is reduced, the control unit 93 operates the second hydraulic pressure output unit 32 with the communication control valve 61 closed, and the control unit 93 operates the second foil cylinders 83 and 84 in the second foil cylinders 83 and 84. The fluid can be returned to the reservoir 45 (reservoir 452) via the electric cylinder 2.
  • the control unit 93 closes the communication control valve 61 when at least one of the first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 outputs the hydraulic pressure toward the reservoir 45.
  • communication assist control acceleration / depressurization is possible in all the foil cylinders 81 to 84.
  • the control flow of the present embodiment will be described with reference to FIG.
  • the brake operation is started, and it is determined whether or not the piston lock is detected by the failure determination unit 92 (S100).
  • the assist mode is started (S101).
  • the control unit 93 confirms whether or not the failure determination unit 92 can determine (estimate) the position of the piston 23 (S102).
  • the failure determination unit 92 determines that the control unit 93 is "unknown (position determination impossible)" (S102: No)
  • the control unit 93 executes assistive control when unknown (S103).
  • the control unit 93 executes the assist control during communication (S105).
  • the control unit 93 executes the assist control at the time of interruption (S106).
  • the determination result is "communication”
  • the control unit 93 executes the communication assist control instead of the unknown assist control
  • the determination result is "block”
  • the control unit 93 interrupts instead of the unknown assist control. Perform time assist control.
  • the first hydraulic pressure output unit 31 can return the fluid in the first foil cylinders 81 and 82 to the master cylinder 41 and the reservoir 45. That is, by operating the first hydraulic pressure output unit 31, depressurization (reduction of braking force) of the first foil cylinders 81 and 82 is also possible. No depressurization is required for the second foil cylinders 83 and 84 that are not pressurized. Therefore, even if a lock failure of the piston 23 occurs in the electric cylinder 2, assist control (braking force adjustment) by the first hydraulic pressure output unit 31, which is one of the downstream units 3, is possible.
  • the control unit 93 can pressurize and depressurize the foil cylinders 81 to 84 as described above. As described above, according to the present embodiment, even if a lock failure of the piston 23 occurs in the electric cylinder 2, assist control (braking force adjustment) by the downstream unit 3 becomes possible.
  • the assist control at the time of interruption may have the same control content as the assist control at the time of unknown.
  • Examples of cases where the determination result of the failure determination unit 92 is not "the reservoir 45 and the second hydraulic pressure output unit 32 communicate with each other" include “unknown” and "blocking".
  • the assist control is executed differently depending on the case of "unknown” and the case of "blocking", but it may be set so that the assist control at the time of unknown is executed regardless of the judgment result. ..
  • the failure determination unit 92 determines “unknown” (S202: No) or determines “blocking” (S203: No)
  • the control unit 93 executes assist control when unknown.
  • the control unit 93 executes the assist control during communication (S205). This also enables assist control (braking force adjustment) by the downstream unit 3 even when a lock failure of the piston 23 occurs. For example, if the failure determination unit 92 does not estimate the lock position of the piston 23, the control unit 93 may execute the assist control when the failure determination unit 92 detects the piston lock. In the case of this configuration, the assist control is only the assist control when unknown (specific assist control).
  • the control unit 93 increases the braking force by using the first liquid with the communication control valve 61 closed.
  • the pressure output unit 31 is made to output the fluid toward the first wheel cylinders 81 and 82, and the second hydraulic pressure output unit 32 executes the specific assist control not to output the fluid toward the second wheel cylinders 83 and 84.
  • the downstream unit 3 may have a configuration as shown in FIG. 6, for example (the reference numeral of the check valve is omitted).
  • the portion different from the above embodiment will be briefly described below by taking the first hydraulic pressure output unit 31 as an example.
  • the reflux fluid channel 317a is a fluid channel in which one is connected to the first connecting liquid passage 511 and the other is connected to the suction port of the pump 315 without passing through the reservoir 317.
  • a normally closed type solenoid valve 318 is arranged in the reflux liquid passage 317a.
  • Reservoir 317 is a reservoir that does not have a valve function like a pressure regulating reservoir and is provided with a cylinder, a piston, and an urging member.
  • the upstream unit 11 and the suction port of the pump 315 can communicate with each other by opening the solenoid valve 318.
  • the pump 315 operates with the solenoid valve 318 opened, the pump 315 sucks fluid from the upstream unit 11 and discharges it to the branch portion X.
  • the second hydraulic pressure output unit 32 has the same configuration as the first hydraulic pressure output unit 31.
  • an electric cylinder not provided with the urging member 25 may be adopted instead of the electric cylinder 2, an electric cylinder not provided with the urging member 25 may be adopted.
  • the energization configuration for the electric motor 22 is a redundant configuration.
  • the downstream unit 3 may be provided with an electric cylinder instead of the pump 315.
  • the present invention can also be applied to, for example, a vehicle including a regenerative braking device (hybrid vehicle or electric vehicle), a vehicle that executes automatic brake control, or an autonomous driving vehicle.
  • the first wheel cylinders 81 and 82 are provided on the front wheels and the second wheel cylinders 83 and 84 are provided on the rear wheels, but the first wheel cylinders 81 and 82 are provided on the right front wheel and the left rear wheel.
  • the second wheel cylinders 83 and 84 may be provided on the left front wheel and the right rear wheel.
  • the communication passage 53 may be, for example, a liquid passage connecting the first liquid passage 51 and the electric cylinder 2. In this case, it can be said that the communication passage 53 connects the first liquid passage 51 and the second liquid passage 52 via the electric cylinder 2. It can be said that the communication passage 53 is a liquid passage in which the fluid output from the electric cylinder 2 is supplied directly or via the second liquid passage 52.

Abstract

The present invention is provided with: an electric cylinder 2 that makes hydraulic connection or shutoff between a reservoir 45 and a second fluid pressure output unit 32 in accordance with the position of a piston 23 and that outputs fluid in accordance with sliding of the piston 23; and a failure determination unit 92 that determines whether or not the piston position of the electric cylinder 2 is in an uncontrollable state. If it is determined by the failure determination unit 92 that the piston position of the electric cylinder 2 is in an uncontrollable state, a control unit 93 executes, when increasing a brake force, specific assistance control for causing a first fluid pressure output unit 31 to output fluid pressure to first wheel cylinders 81, 82 in a state where a connection control valve 61 is closed and for causing a second fluid pressure output unit 32 not to output fluid pressure to second wheel cylinders 83, 84.

Description

車両用制動装置Vehicle braking device
 本発明は、車両用制動装置に関する。 The present invention relates to a vehicle braking device.
 例えば特許6202741号公報で開示されているブレーキシステムは、リザーバと電動シリンダとホイルシリンダとを備えている。このシステムにおいて、リザーバとホイルシリンダとは、電動シリンダを介して接続されている。 For example, the brake system disclosed in Japanese Patent No. 6202741 includes a reservoir, an electric cylinder, and a foil cylinder. In this system, the reservoir and the foil cylinder are connected via an electric cylinder.
特許6202741号公報Japanese Patent No. 6202741
 上記システムでは、例えば電動シリンダに電気的故障が発生した場合、電動シリンダの制御を禁止し、切替弁を非通電状態としてマスタシリンダと第1系統のホイルシリンダとを連通状態とし、且つマスタシリンダと第2系統のホイルシリンダとを遮断状態とすることが可能である。例えば、この状態で、ブレーキペダルの操に応じてESC装置(アクチュエータ)を作動させることで、第1系統のホイルシリンダにマスタシリンダから吸引したフルードを供給し、第2系統のホイルシリンダに電動シリンダを介してリザーバから吸引したフルードを供給することができる。このようにすることで、電動シリンダに故障が発生した場合でも制動力を増大させることができる。 In the above system, for example, when an electric failure occurs in the electric cylinder, the control of the electric cylinder is prohibited, the switching valve is turned off, the master cylinder and the wheel cylinder of the first system are communicated with each other, and the master cylinder and the master cylinder. It is possible to shut off the wheel cylinder of the second system. For example, in this state, by operating the ESC device (actuator) according to the operation of the brake pedal, the fluid sucked from the master cylinder is supplied to the foil cylinder of the first system, and the electric cylinder is supplied to the foil cylinder of the second system. The fluid sucked from the reservoir can be supplied via. By doing so, the braking force can be increased even if a failure occurs in the electric cylinder.
 しかしながら、上記システムにおいて、電動シリンダの故障が電気的失陥ではなく、例えば減速ギヤのロック等によりピストンが液圧室(チャンバ)とリザーバとの連通を遮断する位置でロックした場合、第2系統のホイルシリンダに対して増圧は可能だが減圧が不可能となる。具体的に、上記システムが、ピストンロックを検出して電動シリンダによる調圧を禁止し、ESC装置による助勢制御を行おうとすると、第2系統のホイルシリンダには電動シリンダのシール部材(ゴムカップ)を介してリザーバから吸引されたフルードが供給される。しかし、第2系統のホイルシリンダを減圧しようとしても、電動シリンダのシール部材では、液圧室からリザーバへのフルードの流通が遮断され、当該ホイルシリンダを減圧することができない。 However, in the above system, when the failure of the electric cylinder is not an electrical failure, but the piston is locked at a position where the communication between the hydraulic chamber (chamber) and the reservoir is cut off, for example, by locking the reduction gear, the second system. It is possible to increase the pressure on the wheel cylinder, but it is not possible to reduce the pressure. Specifically, when the above system detects the piston lock, prohibits the pressure adjustment by the electric cylinder, and tries to perform the assist control by the ESC device, the wheel cylinder of the second system has a seal member (rubber cup) of the electric cylinder. The fluid sucked from the reservoir is supplied through. However, even if an attempt is made to depressurize the foil cylinder of the second system, the flow of fluid from the hydraulic chamber to the reservoir is blocked by the seal member of the electric cylinder, and the decompression of the foil cylinder cannot be performed.
 本発明の目的は、電動シリンダでピストンのロック故障が発生した場合でも、下流ユニットによる助勢制御が可能となる車両用制動装置を提供することである。 An object of the present invention is to provide a vehicle braking device capable of assist control by a downstream unit even when a piston lock failure occurs in an electric cylinder.
 本発明の車両用制動装置は、リザーバと第1ホイルシリンダを接続する第1液路に設けられていて、前記リザーバ側と前記第1ホイルシリンダ側に選択的に液圧を出力可能な第1液圧出力部と、前記第1液路において前記リザーバと前記第1液圧出力部との間に設けられているマスタシリンダと、前記リザーバと第2ホイルシリンダを接続する第2液路に設けられていて、前記リザーバ側と前記第2ホイルシリンダ側に選択的に液圧を出力可能な第2液圧出力部と、前記第2液路において前記リザーバと前記第2液圧出力部との間に設けられていて、シリンダと前記シリンダ内で摺動するピストンとを有し、前記ピストンの位置に応じて前記リザーバと前記第2液圧出力部とを液圧的に接続または遮断し、前記ピストンの摺動に応じてフルードを出力する電動シリンダと、前記電動シリンダから出力されたフルードが供給される液路であって、前記第1液路において前記マスタシリンダと前記第1液圧出力部との間の部分に接続された連通路に設けられている連通制御弁と、前記電動シリンダのピストン位置が制御不能状態であるか否かを判断する故障判断部と、前記第1液圧出力部と前記第2液圧出力部と前記連通制御弁とを制御する制御部と、を備え、前記制御部は、前記故障判断部により前記電動シリンダのピストン位置が制御不能状態であると判断されている場合、制動力を増大させるにあたり、前記連通制御弁を閉じた状態で前記第1液圧出力部に前記第1ホイルシリンダに向けてフルードを出力させ、前記第2液圧出力部に前記第2ホイルシリンダに向けてフルードを出力させない特定助勢制御を実行する。 The vehicle braking device of the present invention is provided in the first liquid passage connecting the reservoir and the first wheel cylinder, and can selectively output the hydraulic pressure to the reservoir side and the first wheel cylinder side. Provided in the hydraulic pressure output unit, the master cylinder provided between the reservoir and the first hydraulic pressure output unit in the first liquid passage, and the second liquid passage connecting the reservoir and the second wheel cylinder. A second hydraulic pressure output unit capable of selectively outputting hydraulic pressure to the reservoir side and the second wheel cylinder side, and the reservoir and the second hydraulic pressure output unit in the second liquid passage. It has a cylinder and a piston that slides in the cylinder, and the reservoir and the second hydraulic output unit are hydraulically connected or disconnected according to the position of the piston. An electric cylinder that outputs fluid according to the sliding of the piston, and a liquid passage to which the fluid output from the electric cylinder is supplied. In the first liquid passage, the master cylinder and the first hydraulic pressure output. A communication control valve provided in a communication passage connected to a portion between the portions, a failure determination unit for determining whether or not the piston position of the electric cylinder is in an uncontrollable state, and the first hydraulic pressure. A control unit for controlling the output unit, the second hydraulic pressure output unit, and the communication control valve is provided, and the control unit determines that the piston position of the electric cylinder cannot be controlled by the failure determination unit. If this is the case, in order to increase the braking force, the first hydraulic pressure output unit is made to output fluid toward the first wheel cylinder with the communication control valve closed, and the second hydraulic pressure output unit is made to output fluid. A specific assist control that does not output fluid toward the second wheel cylinder is executed.
 本発明によれば、ピストンのロック故障が発生してピストン位置を制御不能である場合、マスタシリンダを介してリザーバと液圧的に接続可能な第1ホイルシリンダは第1液圧出力部により加圧され、電動シリンダのピストン位置が制御不能であるためにリザーバと液圧的に連通していない可能性がある第2ホイルシリンダは加圧されない。第1ホイルシリンダの加圧により制動力は増大する。 According to the present invention, when a piston lock failure occurs and the piston position cannot be controlled, the first wheel cylinder that can be hydraulically connected to the reservoir via the master cylinder is added by the first hydraulic output unit. The second wheel cylinder, which is compressed and may not be hydraulically communicated with the reservoir due to the uncontrollable piston position of the electric cylinder, is not pressurized. The braking force is increased by pressurizing the first foil cylinder.
 また、リザーバとマスタシリンダとは液圧的に連通可能であり、第1液圧出力部は、第1ホイルシリンダ内のフルードをマスタシリンダ及びリザーバに戻すことができる。つまり、第1液圧出力部の作動により、第1ホイルシリンダの減圧(制動力の減少)も可能である。第2ホイルシリンダは電動シリンダのピストン位置が制御不能であるために電動シリンダを介してリザーバと液圧的に接続されていない可能性があるが、ピストン位置を制御不能である場合に第2ホイルシリンダは加圧されないため減圧は不要である。したがって、電動シリンダでピストンのロック故障が発生した場合でも、後に減圧が可能な第1ホイルシリンダに対して下流ユニットの1つである第1液圧出力部が助勢制御(制動力調整)を行うことで制動力を得ることができる。 Further, the reservoir and the master cylinder can communicate with each other hydraulically, and the first hydraulic output unit can return the fluid in the first foil cylinder to the master cylinder and the reservoir. That is, by operating the first hydraulic pressure output unit, it is possible to reduce the pressure (reduce the braking force) of the first foil cylinder. The second foil cylinder may not be hydraulically connected to the reservoir via the electric cylinder because the piston position of the electric cylinder is uncontrollable, but if the piston position is uncontrollable, the second foil No depressurization is necessary because the cylinder is not pressurized. Therefore, even if a piston lock failure occurs in the electric cylinder, the first hydraulic pressure output unit, which is one of the downstream units, performs assist control (braking force adjustment) for the first foil cylinder that can be depressurized later. By doing so, braking force can be obtained.
本実施形態の車両用制動装置の構成図である。It is a block diagram of the braking device for a vehicle of this embodiment. 本実施形態の電動シリンダの構成図である。It is a block diagram of the electric cylinder of this embodiment. 本実施形態の下流ユニットの構成図である。It is a block diagram of the downstream unit of this embodiment. 本実施形態の制御の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of control of this embodiment. 本実施形態の制御の別例を説明するためのフローチャートである。It is a flowchart for demonstrating another example of control of this Embodiment. 本実施形態の下流ユニットの別例の構成図である。It is a block diagram of another example of the downstream unit of this embodiment.
 以下、本発明の実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。図1に示すように、本実施形態の車両用制動装置1は、上流ユニット11と、下流ユニット3と、第1ブレーキECU901と、第2ブレーキECU902と、を備えている。車両用制動装置1は、車両の車輪に設けられた第1ホイルシリンダ81、82及び第2ホイルシリンダ83、84にフルードを供給可能な装置である。例えば、第1ホイルシリンダ81、82は前輪に設けられ、第2ホイルシリンダ83、84は後輪に設けられる。第1ブレーキECU901は、少なくとも上流ユニット11を制御する。第2ブレーキECU902は、少なくとも下流ユニット3を制御する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the following embodiments, the parts that are the same or equal to each other are designated by the same reference numerals in the drawings. As shown in FIG. 1, the vehicle braking device 1 of the present embodiment includes an upstream unit 11, a downstream unit 3, a first brake ECU 901, and a second brake ECU 902. The vehicle braking device 1 is a device capable of supplying fluid to the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84 provided on the wheels of the vehicle. For example, the first foil cylinders 81 and 82 are provided on the front wheels, and the second foil cylinders 83 and 84 are provided on the rear wheels. The first brake ECU 901 controls at least the upstream unit 11. The second brake ECU 902 controls at least the downstream unit 3.
(上流ユニット)
 上流ユニット11は、マスタシリンダ装置4と、ストロークシミュレータ43と、シミュレータカット弁44と、リザーバ45と、第1液路51と、電動シリンダ2と、第2液路52と、連通路53と、マスタカット弁62と、連通制御弁61と、ストロークセンサ71と、圧力センサ72、73と、レベルスイッチ74と、を備えている。図1は、車両用制動装置1の非通電状態を示す。
(Upstream unit)
The upstream unit 11 includes a master cylinder device 4, a stroke simulator 43, a simulator cut valve 44, a reservoir 45, a first liquid passage 51, an electric cylinder 2, a second liquid passage 52, and a communication passage 53. It includes a master cut valve 62, a communication control valve 61, a stroke sensor 71, pressure sensors 72 and 73, and a level switch 74. FIG. 1 shows a non-energized state of the vehicle braking device 1.
 マスタシリンダ装置4は、ドライバ操作に応じて液圧を発生可能な装置である。マスタシリンダ装置4は、マスタシリンダ41と、マスタピストン42と、マスタ室41aと、付勢部材41bと、を備えている。マスタシリンダ41は、有底円筒状の部材又は部分である。マスタシリンダ41には、入力ポート411と出力ポート412が形成されている。入力ポート411と出力ポート412については後述する。 The master cylinder device 4 is a device capable of generating hydraulic pressure according to the driver operation. The master cylinder device 4 includes a master cylinder 41, a master piston 42, a master chamber 41a, and an urging member 41b. The master cylinder 41 is a bottomed cylindrical member or portion. The master cylinder 41 is formed with an input port 411 and an output port 412. The input port 411 and the output port 412 will be described later.
 マスタピストン42は、マスタシリンダ41内に配置されたピストン部材であり、ブレーキペダルZと機械的に接続されている。マスタピストン42は、ブレーキペダルZの操作に応じてマスタシリンダ41内で摺動する。マスタピストン42には貫通孔421が形成されている。マスタピストン42は、後述する付勢部材41bによって初期位置に向けて付勢されている。初期位置とは、マスタ室41aの容積が最大となる場合のマスタピストン42の位置である。マスタピストン42が初期位置に位置する場合、貫通孔421と入力ポート411とは連通する。 The master piston 42 is a piston member arranged in the master cylinder 41 and is mechanically connected to the brake pedal Z. The master piston 42 slides in the master cylinder 41 in response to the operation of the brake pedal Z. A through hole 421 is formed in the master piston 42. The master piston 42 is urged toward the initial position by the urging member 41b described later. The initial position is the position of the master piston 42 when the volume of the master chamber 41a is maximized. When the master piston 42 is located at the initial position, the through hole 421 and the input port 411 communicate with each other.
 マスタ室41aは、マスタシリンダ41とマスタピストン42とにより、マスタシリンダ41内に形成されている。本実施形態では、マスタシリンダ41内に形成されたマスタ室41aの数は1つである。マスタ室41aの容積は、マスタピストン42の移動に応じて変化する。マスタピストン42が軸方向一方側に移動すると、マスタ室41aの容積が小さくなり、マスタ室41aの液圧(以下「マスタ圧」という)が増大する。 The master chamber 41a is formed in the master cylinder 41 by the master cylinder 41 and the master piston 42. In the present embodiment, the number of master chambers 41a formed in the master cylinder 41 is one. The volume of the master chamber 41a changes according to the movement of the master piston 42. When the master piston 42 moves to one side in the axial direction, the volume of the master chamber 41a becomes smaller and the hydraulic pressure of the master chamber 41a (hereinafter referred to as “master pressure”) increases.
 付勢部材41bは、マスタ室41a内に設けられたバネ部材である。マスタピストン42に対して力が作用していない状態では、マスタピストン42は初期位置に位置する。ストロークシミュレータ43は、シミュレータカット弁44を介してマスタシリンダ装置4に接続されている。ストロークシミュレータ43は、ブレーキペダルZの操作に対して反力(負荷)を発生させる装置である。ストロークシミュレータ43は、シリンダ、ピストン、及び付勢部材を含む。ストロークシミュレータ43は液路43aを介してマスタシリンダ41の出力ポート412に接続されている。 The urging member 41b is a spring member provided in the master chamber 41a. When no force is applied to the master piston 42, the master piston 42 is located at the initial position. The stroke simulator 43 is connected to the master cylinder device 4 via the simulator cut valve 44. The stroke simulator 43 is a device that generates a reaction force (load) with respect to the operation of the brake pedal Z. The stroke simulator 43 includes a cylinder, a piston, and an urging member. The stroke simulator 43 is connected to the output port 412 of the master cylinder 41 via the liquid passage 43a.
 シミュレータカット弁44は、液路43aに設けられたノーマルクローズ型の電磁弁である。後述するマスタカット弁62が閉弁し且つシミュレータカット弁44が開弁した状態でブレーキペダルZが操作された場合、ストロークシミュレータ43によってペダル反力が発生する。 The simulator cut valve 44 is a normally closed type solenoid valve provided in the liquid passage 43a. When the brake pedal Z is operated while the master cut valve 62, which will be described later, is closed and the simulator cut valve 44 is open, a pedal reaction force is generated by the stroke simulator 43.
 リザーバ45は、フルードを貯留する。リザーバ45内の圧力は大気圧に保たれている。リザーバ45の内部には、各々にフルードが貯留された2つの貯留室451、452が形成されている。 The reservoir 45 stores fluid. The pressure in the reservoir 45 is maintained at atmospheric pressure. Inside the reservoir 45, two storage chambers 451 and 452, each of which stores fluid, are formed.
 貯留室451はマスタシリンダ装置4に接続されている。詳細には、貯留室451はマスタシリンダ41の入力ポート411と接続されている。マスタピストン42が初期位置に位置する場合、貯留室451は入力ポート411と貫通孔421とを介してマスタ室41aに液圧的に接続される。マスタピストン42が所定量摺動した場合、入力ポート411と貫通孔421とは液圧的に非接続となる。この場合、マスタ室41aとリザーバ45とは液圧的に遮断される。貯留室452は第2液路52(後述するリザーバ液路522)を介して電動シリンダ2に接続されている。リザーバ45は、2つの貯留室でなく、2つの別々のリザーバで構成されてもよい。 The storage chamber 451 is connected to the master cylinder device 4. Specifically, the storage chamber 451 is connected to the input port 411 of the master cylinder 41. When the master piston 42 is located in the initial position, the storage chamber 451 is hydraulically connected to the master chamber 41a via the input port 411 and the through hole 421. When the master piston 42 slides by a predetermined amount, the input port 411 and the through hole 421 are hydraulically disconnected. In this case, the master chamber 41a and the reservoir 45 are hydraulically shut off. The storage chamber 452 is connected to the electric cylinder 2 via a second liquid passage 52 (reservoir liquid passage 522 described later). The reservoir 45 may consist of two separate reservoirs instead of the two reservoirs.
 第1液路51は、マスタシリンダ装置4及び下流ユニット3(第1液圧出力部31)を介して、リザーバ45(貯留室451)と第1ホイルシリンダ81、82とを接続する液路である。以下、第1液路51のうちマスタシリンダ装置4と下流ユニット3とを接続する部分を「第1接続液路511」と称し、下流ユニット3と第1ホイルシリンダ81、82とを接続する部分を「第1下流液路512」と称する。マスタ室41aとリザーバ45とが液圧的に非接続な状態で、マスタピストン42がマスタ室41aを小さくするように摺動した場合、マスタ室41aから出力ポート412を介して第1接続液路511にフルードが供給され、第1接続液路511に液圧が発生する。マスタ室41aで発生された液圧は第1接続液路511を介して下流ユニット3に供給される。第1接続液路511は、後述する連通路53と接続されている接続部50を含む。第1接続液路511には、マスタカット弁62と圧力センサ72とが設けられている。 The first liquid passage 51 is a liquid passage connecting the reservoir 45 (storage chamber 451) and the first foil cylinders 81 and 82 via the master cylinder device 4 and the downstream unit 3 (first hydraulic pressure output unit 31). be. Hereinafter, the portion of the first liquid passage 51 that connects the master cylinder device 4 and the downstream unit 3 is referred to as a “first connection liquid passage 511”, and a portion that connects the downstream unit 3 and the first foil cylinders 81 and 82. Is referred to as "first downstream liquid passage 512". When the master piston 42 slides so as to make the master chamber 41a smaller while the master chamber 41a and the reservoir 45 are not hydraulically connected, the first connection liquid passage from the master chamber 41a via the output port 412. Fluid is supplied to 511, and hydraulic pressure is generated in the first connecting liquid passage 511. The hydraulic pressure generated in the master chamber 41a is supplied to the downstream unit 3 via the first connecting liquid passage 511. The first connection liquid passage 511 includes a connection portion 50 connected to a communication passage 53, which will be described later. The first connection liquid passage 511 is provided with a master cut valve 62 and a pressure sensor 72.
 マスタカット弁62は、第1液路51において、接続部50とマスタシリンダ41との間に設けられたノーマルオープン型の電磁弁である。マスタカット弁62が閉弁されている場合、マスタシリンダ装置4と下流ユニット3とは液圧的に遮断される。 The master cut valve 62 is a normally open type solenoid valve provided between the connection portion 50 and the master cylinder 41 in the first liquid passage 51. When the master cut valve 62 is closed, the master cylinder device 4 and the downstream unit 3 are hydraulically shut off.
 圧力センサ72は、第1液路51において、マスタカット弁62とマスタシリンダ41との間に設けられている。圧力センサ72は、第1接続液路511内の圧力を検出する。マスタカット弁62が閉弁されている状態で圧力センサ72が検出する圧力は、マスタ室41a内で発生している圧力であるマスタ圧に相当する。 The pressure sensor 72 is provided between the master cut valve 62 and the master cylinder 41 in the first liquid passage 51. The pressure sensor 72 detects the pressure in the first connecting liquid passage 511. The pressure detected by the pressure sensor 72 when the master cut valve 62 is closed corresponds to the master pressure, which is the pressure generated in the master chamber 41a.
 電動シリンダ2は、シリンダ21と、電気モータ22と、ピストン23と、液圧室24と、付勢部材25と、を有する。電動シリンダ2は、シリンダ21内に単一の液圧室24が形成されているシングルタイプの電動シリンダである。以下、電動シリンダ2の説明において、液圧室24の容積が小さくなるピストン23の移動方向を前方とし、その反対方向を後方とする。 The electric cylinder 2 includes a cylinder 21, an electric motor 22, a piston 23, a hydraulic chamber 24, and an urging member 25. The electric cylinder 2 is a single type electric cylinder in which a single hydraulic chamber 24 is formed in the cylinder 21. Hereinafter, in the description of the electric cylinder 2, the moving direction of the piston 23 in which the volume of the hydraulic chamber 24 is small is defined as the front, and the opposite direction is defined as the rear.
 シリンダ21は、有底筒状の部材又は部分である。シリンダ21は、例えばハウジング(金属ブロック)の一部を利用して形成されている。シリンダ21には、入力ポート211及び出力ポート212が形成されている。図2に示すように、入力ポート211は開口部であり、シリンダ21に設けられたシール部材X1とシール部材X2との間に形成されている。シール部材X1とシール部材X2は環状シール部材であり、それらの断面は前方に開口した凹形状(換言すると後方に膨らむ凸弧状)となっている。したがって、シール部材X1は、液圧室24が負圧になった場合、入力ポート211から液圧室24へのフルードの流れを許容し、液圧室24の圧力が大気圧以上である場合、液圧室24から入力ポート211へのフルードの流れを禁止する。シール部材X1、X2は、シリンダ21内周面に形成された環状溝に配置されている。出力ポート212は開口部であり、入力ポート211よりも前方に形成されている。入力ポート211と出力ポート212は夫々、少なくとも1つ形成されていればよい。 The cylinder 21 is a bottomed cylindrical member or part. The cylinder 21 is formed by utilizing, for example, a part of a housing (metal block). The cylinder 21 is formed with an input port 211 and an output port 212. As shown in FIG. 2, the input port 211 is an opening, and is formed between the seal member X1 provided on the cylinder 21 and the seal member X2. The seal member X1 and the seal member X2 are annular seal members, and their cross sections have a concave shape that opens forward (in other words, a convex arc shape that swells backward). Therefore, the seal member X1 allows the flow of fluid from the input port 211 to the hydraulic chamber 24 when the hydraulic pressure chamber 24 becomes a negative pressure, and when the pressure in the hydraulic pressure chamber 24 is equal to or higher than the atmospheric pressure, The flow of fluid from the hydraulic chamber 24 to the input port 211 is prohibited. The seal members X1 and X2 are arranged in an annular groove formed on the inner peripheral surface of the cylinder 21. The output port 212 is an opening and is formed in front of the input port 211. At least one input port 211 and one output port 212 may be formed.
 電気モータ22は、回転運動を直線運動に変換する直動機構22aを介してピストン23に接続されている。ピストン23は有底円筒状部材であり、電気モータ22の駆動によりシリンダ21内を摺動する。ピストン23には貫通孔231が形成されている。貫通孔231はピストン23が初期位置に位置する場合、入力ポート211と連通する。 The electric motor 22 is connected to the piston 23 via a linear motion mechanism 22a that converts rotary motion into linear motion. The piston 23 is a bottomed cylindrical member and slides in the cylinder 21 by being driven by an electric motor 22. A through hole 231 is formed in the piston 23. The through hole 231 communicates with the input port 211 when the piston 23 is located at the initial position.
 液圧室24は、シリンダ21とピストン23により区画されており、ピストン23の移動に応じて容積が変化する。ピストン23の初期位置は、液圧室24の容積が最大となる位置である(図2参照)。 The hydraulic chamber 24 is partitioned by a cylinder 21 and a piston 23, and the volume changes according to the movement of the piston 23. The initial position of the piston 23 is the position where the volume of the hydraulic chamber 24 is maximized (see FIG. 2).
 液圧室24は、入力ポート211を介してリザーバ45と連通可能である。詳細には、ピストン23が初期位置に位置する場合、貫通孔231と入力ポート211とを介してリザーバ45に液圧的に接続される。貫通孔231と入力ポート211とが連通していない場合、液圧室24とリザーバ45とは液圧的に遮断される。なお詳細には、ピストン23が前方に所定量移動したことに伴い入力ポート211と貫通孔231との連通が遮断された状態であっても、液圧室24内の液圧が負圧である場合には、シール部材X1を介してリザーバ45から液圧室24へのフルードの流れが許容される。しかし説明を分かりやすくするために本実施形態では、液圧室24内には負圧が発生していない例を用いて説明する。液圧室24は、出力ポート212を介して第2液路52(後述する第2接続液路521)に接続されている。 The hydraulic chamber 24 can communicate with the reservoir 45 via the input port 211. Specifically, when the piston 23 is located in the initial position, it is hydraulically connected to the reservoir 45 via the through hole 231 and the input port 211. When the through hole 231 and the input port 211 do not communicate with each other, the hydraulic chamber 24 and the reservoir 45 are hydraulically cut off. More specifically, the hydraulic pressure in the hydraulic pressure chamber 24 is negative even when the communication between the input port 211 and the through hole 231 is cut off due to the movement of the piston 23 forward by a predetermined amount. In some cases, the flow of fluid from the reservoir 45 to the hydraulic chamber 24 via the seal member X1 is allowed. However, in order to make the explanation easy to understand, in the present embodiment, an example in which a negative pressure is not generated in the hydraulic pressure chamber 24 will be described. The hydraulic chamber 24 is connected to the second liquid passage 52 (second connection liquid passage 521 described later) via the output port 212.
 付勢部材25は、液圧室24に配置され、ピストン23を初期位置に向けて付勢するバネである。電気モータ22が駆動していない場合、付勢部材25の付勢力によりピストン23は初期位置に位置する。 The urging member 25 is a spring that is arranged in the hydraulic chamber 24 and urges the piston 23 toward the initial position. When the electric motor 22 is not driven, the piston 23 is positioned at the initial position due to the urging force of the urging member 25.
 ピストン23が初期位置に位置する場合、液圧室24は入力ポート211と貫通孔231と第2液路52(後述するリザーバ液路522)とを介してリザーバ45に接続される。電気モータ22の駆動によりピストン23が初期位置から前方に所定量移動した場合、入力ポート211と貫通孔231との連通は遮断される。この場合、液圧室24はリザーバ45と液圧的に遮断される。液圧室24とリザーバ45とが液圧的に遮断された状態でピストン23が液圧室24を小さくするように摺動した場合、液圧室24から出力ポート212を介してフルードが出力される。出力されたフルードは第2液路52(第2接続液路521)と連通路53(後述)に供給される。これにより第2液路52(第2接続液路521)と連通路53のそれぞれに液圧が発生する。 When the piston 23 is located at the initial position, the hydraulic chamber 24 is connected to the reservoir 45 via the input port 211, the through hole 231 and the second liquid passage 52 (reservoir liquid passage 522 described later). When the piston 23 moves forward by a predetermined amount from the initial position by driving the electric motor 22, the communication between the input port 211 and the through hole 231 is cut off. In this case, the hydraulic chamber 24 is hydraulically shut off from the reservoir 45. When the piston 23 slides so as to make the hydraulic chamber 24 smaller while the hydraulic chamber 24 and the reservoir 45 are hydraulically shut off, fluid is output from the hydraulic chamber 24 via the output port 212. To. The output fluid is supplied to the second liquid passage 52 (second connecting liquid passage 521) and the communication passage 53 (described later). As a result, hydraulic pressure is generated in each of the second liquid passage 52 (second connecting liquid passage 521) and the communication passage 53.
 電動シリンダ2は、ピストン23のシリンダ21に対する相対位置が所定の開放位置である場合に入力ポート211がピストン23により開放され、ピストン23のシリンダ21に対する相対位置が所定の閉鎖位置である場合に入力ポート211がピストン23により閉鎖されるように構成されている。換言すると、ピストン23がシリンダ21内の「連通領域」に位置する場合、リザーバ45と液圧室24とが連通し、ピストン23がシリンダ21内の「遮断領域」に位置する場合、リザーバ45と液圧室24との接続が遮断される。ピストン23の可動領域のうち、連通領域は、ピストン23の初期位置と当該初期位置から所定量前方の位置(切替位置)との間の領域(初期位置含む)であり、遮断領域は、切替位置とシリンダ21の前端面との間の領域である。 The electric cylinder 2 is input when the input port 211 is opened by the piston 23 when the relative position of the piston 23 with respect to the cylinder 21 is a predetermined open position, and when the relative position of the piston 23 with respect to the cylinder 21 is a predetermined closed position. The port 211 is configured to be closed by the piston 23. In other words, when the piston 23 is located in the "communication region" in the cylinder 21, the reservoir 45 and the hydraulic chamber 24 communicate with each other, and when the piston 23 is located in the "blocking region" in the cylinder 21, the reservoir 45 and The connection with the hydraulic chamber 24 is cut off. Of the movable area of the piston 23, the communication area is the area (including the initial position) between the initial position of the piston 23 and the position (switching position) ahead of the initial position by a predetermined amount, and the blocking area is the switching position. The area between and the front end surface of the cylinder 21.
 第2液路52は、電動シリンダ2及び下流ユニット3(第2液圧出力部32)を介して、リザーバ45(貯留室452)と第2ホイルシリンダ83、84とを接続する液路である。以下、第2液路52のうち電動シリンダ2と下流ユニット3とを接続する部分を「第2接続液路521」と称し、第2液路52のうち電動シリンダ2とリザーバ45とを接続する部分を「リザーバ液路522」と称し、下流ユニット3と第2ホイルシリンダ83、84とを接続する部分を「第2下流液路523」と称する。液圧室24で発生された液圧は、第2接続液路521を介して下流ユニット3に供給される。第2接続液路521には液圧センサ73が設けられている。 The second liquid passage 52 is a liquid passage connecting the reservoir 45 (reservoir 452) and the second foil cylinders 83 and 84 via the electric cylinder 2 and the downstream unit 3 (second hydraulic pressure output unit 32). .. Hereinafter, the portion of the second liquid passage 52 that connects the electric cylinder 2 and the downstream unit 3 is referred to as a “second connection liquid passage 521”, and the electric cylinder 2 and the reservoir 45 of the second liquid passage 52 are connected. The portion is referred to as "reservoir fluid passage 522", and the portion connecting the downstream unit 3 and the second foil cylinders 83 and 84 is referred to as "second downstream fluid passage 523". The hydraulic pressure generated in the hydraulic pressure chamber 24 is supplied to the downstream unit 3 via the second connecting liquid passage 521. A hydraulic pressure sensor 73 is provided in the second connecting liquid passage 521.
 液圧センサ73は、第2接続液路521内の圧力を検出するセンサである。車両用制動装置1の制御モードが後述するブレーキバイワイヤモード(以下「バイワイヤモード」という)である状態において、液圧センサ73が検出する液圧は、電動シリンダ2の出力圧に相当する。 The hydraulic pressure sensor 73 is a sensor that detects the pressure in the second connecting liquid passage 521. The hydraulic pressure detected by the hydraulic pressure sensor 73 corresponds to the output pressure of the electric cylinder 2 in a state where the control mode of the vehicle braking device 1 is the brake-by-wire mode (hereinafter referred to as “by-wire mode”) described later.
 連通路53は、第1接続液路511と第2接続液路521とを接続する液路である。連通路53は接続部50で第1液路51と接続されている。連通路53には連通制御弁61が設けられている。連通制御弁61はノーマルクローズ型の電磁弁である。 The communication passage 53 is a liquid passage connecting the first connecting liquid passage 511 and the second connecting liquid passage 521. The communication passage 53 is connected to the first liquid passage 51 by a connecting portion 50. A communication control valve 61 is provided in the communication passage 53. The communication control valve 61 is a normally closed type solenoid valve.
 ストロークセンサ71は、ブレーキペダルZのストロークを検出する。本実施形態では、2つのストロークセンサ71が設けられている。2つのストロークセンサ71によって検出されたデータは、各ブレーキECU901、902に送信される。ブレーキECU901、902は、それぞれ対応するストロークセンサ71からストローク情報を取得する。 The stroke sensor 71 detects the stroke of the brake pedal Z. In this embodiment, two stroke sensors 71 are provided. The data detected by the two stroke sensors 71 is transmitted to the brake ECUs 901 and 902. The brake ECUs 901 and 902 acquire stroke information from the corresponding stroke sensors 71, respectively.
 レベルスイッチ74はリザーバ45に設けられていて、リザーバ45の液面レベルが所定位置未満になったことを検出する。レベルスイッチ74はリザーバ45の液面レベルが所定値未満となった場合、液面レベルが低下したことを示すデータを第1ブレーキECU901に送信する。 The level switch 74 is provided in the reservoir 45 and detects that the liquid level of the reservoir 45 is less than a predetermined position. When the liquid level of the reservoir 45 becomes less than a predetermined value, the level switch 74 transmits data indicating that the liquid level has dropped to the first brake ECU 901.
(下流ユニット)
 次に、図3を参照して、下流ユニット3を説明する。下流ユニット3は、いわゆるESCアクチュエータ(ESC装置)であって、各ホイルシリンダ81~84の液圧を独立に調圧することができる。詳細には、下流ユニット3は、第1ホイルシリンダ81、82を調圧可能に構成された第1液圧出力部31と、第2ホイルシリンダ83、84を調圧可能に構成された第2液圧出力部32と、を備える。以下、下流ユニット3の説明において、下流ユニット3に対する上流ユニット11の位置を上流とし、下流ユニット3に対するホイルシリンダ81~84の位置を下流とする。
(Downstream unit)
Next, the downstream unit 3 will be described with reference to FIG. The downstream unit 3 is a so-called ESC actuator (ESC device), and can independently regulate the hydraulic pressure of each of the foil cylinders 81 to 84. Specifically, in the downstream unit 3, the first hydraulic pressure output unit 31 configured to be able to adjust the pressure of the first wheel cylinders 81 and 82 and the second wheel cylinder 83 and 84 configured to be able to adjust the pressure are second. A hydraulic pressure output unit 32 is provided. Hereinafter, in the description of the downstream unit 3, the position of the upstream unit 11 with respect to the downstream unit 3 is referred to as upstream, and the positions of the foil cylinders 81 to 84 with respect to the downstream unit 3 are referred to as downstream.
 第1液圧出力部31は、上流側で第1接続液路511に接続され、下流側で第1ホイルシリンダ81、82に接続されている。第2液圧出力部32は、上流側で第2接続液路521に接続され、下流側で第2ホイルシリンダ83、84に接続されている。第1液圧出力部31と第2液圧出力部32とは、下流ユニット3内で液圧回路上、互いに独立している。 The first hydraulic pressure output unit 31 is connected to the first connecting liquid passage 511 on the upstream side and connected to the first foil cylinders 81 and 82 on the downstream side. The second hydraulic pressure output unit 32 is connected to the second connecting liquid passage 521 on the upstream side and connected to the second foil cylinders 83 and 84 on the downstream side. The first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 are independent of each other on the hydraulic pressure circuit in the downstream unit 3.
 第1液圧出力部31には、第1接続液路511を介して上流ユニット11からフルードが供給される。第1液圧出力部31は、上流ユニット11が発生させた基礎液圧を基に、第1ホイルシリンダ81、82の液圧を増大可能に構成されている。第1液圧出力部31は、入力された液圧と第1ホイルシリンダ81、82の液圧との間に差圧を発生させることで第1ホイルシリンダ81、82を加圧するように構成されている。 The fluid is supplied from the upstream unit 11 to the first hydraulic pressure output unit 31 via the first connection liquid passage 511. The first hydraulic pressure output unit 31 is configured to be able to increase the hydraulic pressure of the first foil cylinders 81 and 82 based on the basic hydraulic pressure generated by the upstream unit 11. The first hydraulic pressure output unit 31 is configured to pressurize the first wheel cylinders 81 and 82 by generating a differential pressure between the input hydraulic pressure and the hydraulic pressures of the first wheel cylinders 81 and 82. ing.
 第1液圧出力部31は、液路311と、ポンプ液路315aと、圧力センサ75と、差圧制御弁312と、チェックバルブ312aと、保持弁313と、チェックバルブ313aと、減圧液路314aと、減圧弁314と、ポンプ315と、電気モータ316と、リザーバ317と、還流液路317aと、を備えている。 The first hydraulic pressure output unit 31 includes a liquid passage 311, a pump liquid passage 315a, a pressure sensor 75, a differential pressure control valve 312, a check valve 312a, a holding valve 313, a check valve 313a, and a pressure reducing liquid passage. It includes a 314a, a pressure reducing valve 314, a pump 315, an electric motor 316, a reservoir 317, and a recirculation liquid passage 317a.
 液路311は、第1接続液路511と第1下流液路512とを接続する液路である。液路311は、ポンプ液路315aと接続された分岐部Xを含む。液路311は、分岐部Xで、一方の第1ホイルシリンダ81に接続する液路と他方の第1ホイルシリンダ82に接続する液路とに分岐する。液路311の2つの液路上の構成は同様であるため、第1ホイルシリンダ81に接続する液路のみを(液路311として)説明する。 The liquid passage 311 is a liquid passage connecting the first connecting liquid passage 511 and the first downstream liquid passage 512. The liquid passage 311 includes a branch portion X connected to the pump liquid passage 315a. The liquid passage 311 is a branch portion X, and branches into a liquid passage connected to one first foil cylinder 81 and a liquid passage connected to the other first foil cylinder 82. Since the configurations of the liquid passages 311 on the two liquid passages are the same, only the liquid passages connected to the first foil cylinder 81 will be described (referred to as the liquid passages 311).
 圧力センサ75は、液路311において差圧制御弁312よりも上流ユニット11側に設けられている。圧力センサ75は液路311内の圧力を検出する。圧力センサ75が検出する圧力は、第1接続液路511から第1液圧出力部31に入力される液圧に相当する。圧力センサ75によって検出されたデータは第2ブレーキECU902に送信される。 The pressure sensor 75 is provided on the upstream unit 11 side of the differential pressure control valve 312 in the liquid passage 311. The pressure sensor 75 detects the pressure in the liquid passage 311. The pressure detected by the pressure sensor 75 corresponds to the hydraulic pressure input from the first connecting liquid passage 511 to the first hydraulic pressure output unit 31. The data detected by the pressure sensor 75 is transmitted to the second brake ECU 902.
 差圧制御弁312は、液路311において、分岐部Xと圧力センサ75との間に設けられたノーマルオープン型のリニアソレノイドバルブである。差圧制御弁312の開度が制御されることで、差圧制御弁312を挟んだ上下流間に差圧を発生させることができる。チェックバルブ312aは、差圧制御弁312に対して並列に設けられている。チェックバルブ312aは、上流側から下流側に向けてのフルードの流通のみを許可するよう構成されている。 The differential pressure control valve 312 is a normally open type linear solenoid valve provided between the branch portion X and the pressure sensor 75 in the liquid passage 311. By controlling the opening degree of the differential pressure control valve 312, it is possible to generate a differential pressure between the upstream and downstream sides of the differential pressure control valve 312. The check valve 312a is provided in parallel with the differential pressure control valve 312. The check valve 312a is configured to allow only fluid flow from the upstream side to the downstream side.
 保持弁313は、液路311において、分岐部Xと第1ホイルシリンダ81との間に設けられたノーマルオープン型の電磁弁である。チェックバルブ313aは、保持弁313に対して並列に設けられている。チェックバルブ313aは下流側から上流側に向けてのフルードの流通のみを許可するように構成されている。 The holding valve 313 is a normally open type solenoid valve provided between the branch portion X and the first foil cylinder 81 in the liquid passage 311. The check valve 313a is provided in parallel with the holding valve 313. The check valve 313a is configured to allow only fluid flow from the downstream side to the upstream side.
 減圧液路314aは、液路311のうち保持弁313と第1ホイルシリンダ81との間の部分と、リザーバ317とを接続する液路である。減圧液路314aには、減圧弁314が設けられている。 The decompression liquid passage 314a is a liquid passage that connects the portion of the liquid passage 311 between the holding valve 313 and the first foil cylinder 81 and the reservoir 317. A pressure reducing valve 314 is provided in the pressure reducing liquid passage 314a.
 減圧弁314は、減圧液路314aに設けられたノーマルクローズ型の電磁弁である。減圧弁314が開弁状態の場合、第1ホイルシリンダ81内のフルードは減圧液路314aを介してリザーバ317に流入可能である。したがって、減圧弁314を開弁させることで、第1ホイルシリンダ81の圧力を減圧可能である。 The pressure reducing valve 314 is a normally closed type solenoid valve provided in the pressure reducing liquid passage 314a. When the pressure reducing valve 314 is in the valve open state, the fluid in the first foil cylinder 81 can flow into the reservoir 317 via the pressure reducing liquid passage 314a. Therefore, the pressure of the first foil cylinder 81 can be reduced by opening the pressure reducing valve 314.
 リザーバ317はフルードを貯留する周知の調圧リザーバであり、減圧液路314aおよび還流液路317aと接続されている。還流液路317aは、液路311において圧力センサ75と差圧制御弁312との間の部分と、リザーバ317とを接続する液路である。リザーバ317内のフルードは、ポンプ315の作動により吸入される。リザーバ317内のフルード量が減少すると、リザーバ317内の弁が開弁し、リザーバ317に還流液路317aを介して第1接続液路511からフルードが供給される。 Reservoir 317 is a well-known pressure-regulating reservoir that stores fluid, and is connected to a decompression fluid passage 314a and a reflux fluid passage 317a. The reflux liquid passage 317a is a liquid passage that connects a portion of the liquid passage 311 between the pressure sensor 75 and the differential pressure control valve 312 and the reservoir 317. The fluid in the reservoir 317 is sucked by the operation of the pump 315. When the amount of fluid in the reservoir 317 decreases, the valve in the reservoir 317 opens, and the fluid is supplied to the reservoir 317 from the first connecting liquid passage 511 via the reflux liquid passage 317a.
 ポンプ液路315aは、減圧液路314aにおいて減圧弁314とリザーバ317との間の部分と、液路311の分岐部Xとを接続する液路である。ポンプ液路315aにはポンプ315が設けられている。 The pump liquid passage 315a is a liquid passage that connects the portion between the pressure reducing valve 314 and the reservoir 317 in the pressure reducing liquid passage 314a and the branch portion X of the liquid passage 311. A pump 315 is provided in the pump liquid passage 315a.
 ポンプ315は、電気モータ316の駆動に応じて作動するポンプであり、例えば周知のピストンポンプやギアポンプである。ポンプ315の吸入側はリザーバ317と接続されていて、ポンプ315の吐出側は分岐部Xに接続されている。ポンプ315が作動すると、リザーバ317内のフルードを吸入して、分岐部Xにフルードを供給する。 The pump 315 is a pump that operates in response to the drive of the electric motor 316, and is, for example, a well-known piston pump or gear pump. The suction side of the pump 315 is connected to the reservoir 317, and the discharge side of the pump 315 is connected to the branch portion X. When the pump 315 is activated, the fluid in the reservoir 317 is sucked in to supply the fluid to the branch X.
 第1液圧出力部31は、各種電磁弁やポンプの作動により、上流側から入力された液圧を基に第1ホイルシリンダ81、82を加圧可能に構成されている。第2液圧出力部32は圧力センサ75が設けられていない点を除き、第1液圧出力部31と同様の構成であるため、説明を省略する。第2液圧出力部32も第1液圧出力部31と同様に、基礎液圧を基に第2ホイルシリンダ83、84を加圧可能に構成されている。 The first hydraulic pressure output unit 31 is configured to be able to pressurize the first foil cylinders 81 and 82 based on the hydraulic pressure input from the upstream side by operating various solenoid valves and pumps. Since the second hydraulic pressure output unit 32 has the same configuration as the first hydraulic pressure output unit 31 except that the pressure sensor 75 is not provided, the description thereof will be omitted. Like the first hydraulic pressure output unit 31, the second hydraulic pressure output unit 32 is also configured to be able to pressurize the second foil cylinders 83 and 84 based on the basic hydraulic pressure.
(構成のまとめ)
 本実施形態の車両用制動装置1は、第1液圧出力部31、マスタシリンダ41、第2液圧出力部32、電動シリンダ2、連通制御弁61、第1ブレーキECU901、及び第2ブレーキECU902を備えている。第1液圧出力部31は、リザーバ45と第1ホイルシリンダ81、82を接続する第1液路51に設けられていて、リザーバ45側と第1ホイルシリンダ81、82側に選択的に液圧を出力可能な装置である。マスタシリンダ41は、第1液路51においてリザーバ45と第1液圧出力部31との間に設けられている。マスタシリンダ41を介してリザーバ45と第1液圧出力部31は液圧的に接続可能である。第2液圧出力部32は、リザーバ45と第2ホイルシリンダ83、84を接続する第2液路52に設けられていて、リザーバ45側と第2ホイルシリンダ83、84側に選択的に液圧を出力可能な装置である。電動シリンダ2は、第2液路52においてリザーバ45と第2液圧出力部32との間に設けられていて、シリンダ21とシリンダ21内で摺動するピストン23とを有し、ピストン23の位置に応じてリザーバ45と第2液圧出力部32とを液圧的に接続または遮断し、ピストン23の摺動に応じてフルードを出力する。連通制御弁61は、電動シリンダ2から出力されたフルードが供給される液路であって第1液路51におけるマスタシリンダ41と第1液圧出力部31との間の部分に接続された連通路53に設けられている。より詳細に、連通制御弁61は、第1液路51においてマスタシリンダ41と第1液圧出力部31との間の部分(すなわち第1接続液路511)と、第2液路52において電動シリンダ2と第2液圧出力部32との間の部分(すなわち第2接続液路521)とを接続する連通路53に設けられている。
(Summary of composition)
The vehicle braking device 1 of the present embodiment includes a first hydraulic pressure output unit 31, a master cylinder 41, a second hydraulic pressure output unit 32, an electric cylinder 2, a communication control valve 61, a first brake ECU 901, and a second brake ECU 902. It is equipped with. The first hydraulic pressure output unit 31 is provided in the first liquid passage 51 connecting the reservoir 45 and the first foil cylinders 81 and 82, and selectively liquids on the reservoir 45 side and the first foil cylinders 81 and 82 sides. It is a device that can output pressure. The master cylinder 41 is provided between the reservoir 45 and the first hydraulic pressure output unit 31 in the first liquid passage 51. The reservoir 45 and the first hydraulic pressure output unit 31 can be hydraulically connected via the master cylinder 41. The second hydraulic pressure output unit 32 is provided in the second liquid passage 52 connecting the reservoir 45 and the second foil cylinders 83, 84, and selectively liquids on the reservoir 45 side and the second foil cylinders 83, 84 side. It is a device that can output pressure. The electric cylinder 2 is provided between the reservoir 45 and the second hydraulic pressure output unit 32 in the second liquid passage 52, and has a cylinder 21 and a piston 23 that slides in the cylinder 21. The reservoir 45 and the second hydraulic pressure output unit 32 are hydraulically connected or disconnected according to the position, and the fluid is output according to the sliding of the piston 23. The communication control valve 61 is a liquid passage to which the fluid output from the electric cylinder 2 is supplied, and is connected to a portion of the first liquid passage 51 between the master cylinder 41 and the first hydraulic pressure output unit 31. It is provided in the passage 53. More specifically, the communication control valve 61 is electrically operated in the portion between the master cylinder 41 and the first hydraulic pressure output unit 31 (that is, the first connecting liquid passage 511) in the first liquid passage 51 and in the second liquid passage 52. It is provided in a communication passage 53 connecting a portion between the cylinder 2 and the second hydraulic pressure output unit 32 (that is, the second connecting liquid passage 521).
(ブレーキECU)
 第1ブレーキECU901及び第2ブレーキECU902(以下「ブレーキECU901、902」ともいう)は、それぞれCPUやメモリを備える電子制御ユニットである。各ブレーキECU901、902は、各種制御を実行する1つ又は複数のプロセッサを備えている。第1ブレーキECU901と第2ブレーキECU902とは、別個のECUであって、互いに情報(制御情報等)を通信可能に接続されている。
(Brake ECU)
The first brake ECU 901 and the second brake ECU 902 (hereinafter, also referred to as " brake ECUs 901 and 902") are electronic control units including a CPU and a memory, respectively. Each brake ECU 901, 902 includes one or more processors that perform various controls. The first brake ECU 901 and the second brake ECU 902 are separate ECUs, and are connected to each other so that information (control information, etc.) can be communicated with each other.
 第1ブレーキECU901は、上流ユニット11を制御可能に構成されている。詳細には、第1ブレーキECU901は、上流ユニットの複数のセンサ71、72、73、74によって検出されたデータに基づいて、電動シリンダ2及び各電磁弁61、62、44を制御可能である。第1ブレーキECU901は、圧力センサ72、73の検出結果及び下流ユニット3の制御状態に基づいて、各ホイル圧を演算することができる。 The first brake ECU 901 is configured to be able to control the upstream unit 11. Specifically, the first brake ECU 901 can control the electric cylinder 2 and the solenoid valves 61, 62, 44 based on the data detected by the plurality of sensors 71, 72, 73, 74 of the upstream unit. The first brake ECU 901 can calculate each foil pressure based on the detection results of the pressure sensors 72 and 73 and the control state of the downstream unit 3.
 第2ブレーキECU902は、ストロークセンサ71及び圧力センサ75によって検出されたデータに基づいて、下流ユニット3を制御可能に構成されている。また第2ブレーキECU902は、車両に設けられた車輪速度センサ(図示略)や加速度センサ(図示略)等によって検出されたデータも受信する。第2ブレーキECU902は、下流ユニット3により第1ホイルシリンダ81を加圧する場合、差圧制御弁312に目標差圧(第1ホイルシリンダ81の液圧>第1接続液路511の液圧)に応じた制御電流を印加し、差圧制御弁312を閉弁させる。この際、保持弁313は開弁しており、減圧弁314は閉弁している。また、ポンプ315を作動させることで、第1接続液路511からリザーバ317を介して分岐部Xにフルードが供給される。これにより、第1ホイルシリンダ81が加圧される。 The second brake ECU 902 is configured to be able to control the downstream unit 3 based on the data detected by the stroke sensor 71 and the pressure sensor 75. The second brake ECU 902 also receives data detected by a wheel speed sensor (not shown), an acceleration sensor (not shown), or the like provided in the vehicle. When the second brake ECU 902 pressurizes the first wheel cylinder 81 by the downstream unit 3, the second brake ECU 902 sets the target differential pressure (hydraulic pressure of the first wheel cylinder 81> hydraulic pressure of the first connecting liquid passage 511) to the differential pressure control valve 312. The corresponding control current is applied to close the differential pressure control valve 312. At this time, the holding valve 313 is open and the pressure reducing valve 314 is closed. Further, by operating the pump 315, the fluid is supplied from the first connection liquid passage 511 to the branch portion X via the reservoir 317. As a result, the first foil cylinder 81 is pressurized.
 第2ブレーキECU902は、アンチスキッド制御等で下流ユニット3によりホイル圧を減圧する場合、減圧弁314を開弁させ且つ保持弁313を閉弁させた状態でポンプ315を作動させ、第1ホイルシリンダ81内のフルードをポンプバックさせる。第2ブレーキECU902は、下流ユニット3によりホイル圧を保持する場合、保持弁313及び減圧弁314を閉弁させる。電動シリンダ2又はマスタシリンダ装置4の作動のみによりホイル圧を加圧又は減圧する場合、第2ブレーキECU902は、差圧制御弁312及び保持弁313を開弁し、減圧弁314を閉弁させる。 When the wheel pressure is reduced by the downstream unit 3 by anti-skid control or the like, the second brake ECU 902 operates the pump 315 in a state where the pressure reducing valve 314 is opened and the holding valve 313 is closed, and the first wheel cylinder is operated. Pump back the fluid in 81. The second brake ECU 902 closes the holding valve 313 and the pressure reducing valve 314 when the foil pressure is held by the downstream unit 3. When the wheel pressure is pressurized or reduced only by the operation of the electric cylinder 2 or the master cylinder device 4, the second brake ECU 902 opens the differential pressure control valve 312 and the holding valve 313, and closes the pressure reducing valve 314.
 第2ブレーキECU902は、圧力センサ75及び下流ユニット3の制御状態に基づいて、各ホイル圧を演算することができる。なお、各種センサの検出値は、両方のブレーキECU901、902に送信されてもよい。 The second brake ECU 902 can calculate each foil pressure based on the control state of the pressure sensor 75 and the downstream unit 3. The detected values of the various sensors may be transmitted to both brake ECUs 901 and 902.
 車両用制動装置1は、通常制御を実行可能に構成されている。通常制御は、バイワイヤモードとも呼ばれる。通常制御において、上流ユニット11の出力圧は、電動シリンダ2で出力した液圧である。下流ユニット3は、上流ユニット11の出力圧に基づいて、ホイルシリンダ81~84に液圧を出力可能である。以下、通常制御について説明する。 The vehicle braking device 1 is configured to be capable of executing normal control. Normal control is also called by-wire mode. In normal control, the output pressure of the upstream unit 11 is the hydraulic pressure output by the electric cylinder 2. The downstream unit 3 can output a hydraulic pressure to the foil cylinders 81 to 84 based on the output pressure of the upstream unit 11. Hereinafter, normal control will be described.
(通常制御)
 第1ブレーキECU901は、電気モータ22等を含む上流ユニット11を制御する通常制御部91と、故障判断部92と、を備えている。通常制御部91は、通常制御を実行可能に構成されている。通常制御は、マスタシリンダ装置4とホイルシリンダ81~84とを液圧的に遮断し、電動シリンダ2と下流ユニット3との少なくとも一方によってホイルシリンダ81~84を加圧する制御である。通常制御は、準備制御と通常加圧制御とを含む。
(Normal control)
The first brake ECU 901 includes a normal control unit 91 that controls an upstream unit 11 including an electric motor 22 and the like, and a failure determination unit 92. The normal control unit 91 is configured to be able to execute normal control. The normal control is a control in which the master cylinder device 4 and the foil cylinders 81 to 84 are hydraulically shut off, and the foil cylinders 81 to 84 are pressurized by at least one of the electric cylinder 2 and the downstream unit 3. Normal control includes preparation control and normal pressurization control.
 準備制御は、いわゆるバイワイヤモードを形成する制御である。準備制御では、通常制御部91は、マスタカット弁62を閉弁し、連通制御弁61及びシミュレータカット弁44を開弁させる。準備制御は、車両用制動装置1が設けられている車両が発進可能な状態になった場合に実行される。発進可能な状態になった場合とは、例えば、車両のイグニッションがオンされた場合や、電気自動車が起動された場合である。より詳細に、第1実施形態の準備制御は、第1ブレーキECU901が起動(電源オン)した場合に実行される。 Preparation control is a control that forms a so-called by-wire mode. In the preparatory control, the normal control unit 91 closes the master cut valve 62 and opens the communication control valve 61 and the simulator cut valve 44. The preparatory control is executed when the vehicle provided with the vehicle braking device 1 is ready to start. The ready-to-start state is, for example, the case where the ignition of the vehicle is turned on or the case where the electric vehicle is started. More specifically, the preparatory control of the first embodiment is executed when the first brake ECU 901 is started (power is turned on).
 なお、準備制御は、車両のイグニッションがオンされた場合や、電気自動車が起動された場合ではなく、ブレーキペダルが操作された場合に実行されてもよい。この場合、ブレーキペダルが操作されている状態でバイワイヤモードが形成され、ブレーキペダルが操作されていない状態ではバイワイヤモードが形成されなくてもよい。 Note that the preparatory control may be executed when the brake pedal is operated, not when the ignition of the vehicle is turned on or when the electric vehicle is started. In this case, the by-wire mode may be formed when the brake pedal is operated, and the by-wire mode may not be formed when the brake pedal is not operated.
 通常加圧制御は、バイワイヤモード(準備制御が完了した状態)でホイルシリンダ81~84を加圧する制御である。通常加圧制御において、通常制御部91は、ストロークセンサ71及び圧力センサ72が検出したデータを基に、目標出力圧を設定する。設定された目標出力圧に基づいて、電動シリンダ2を制御する。第2ブレーキECU902は、アンチスキッド制御等の実行に際して下流ユニット3を作動させる。このように通常制御では、設定された目標値を基に、電動シリンダ2と第1液圧出力部31と第2液圧出力部32とが制御されることで、ホイルシリンダ81~84の液圧が調整可能となる。 Normal pressurization control is control that pressurizes the foil cylinders 81 to 84 in the by-wire mode (when the preparation control is completed). In the normal pressurization control, the normal control unit 91 sets the target output pressure based on the data detected by the stroke sensor 71 and the pressure sensor 72. The electric cylinder 2 is controlled based on the set target output pressure. The second brake ECU 902 operates the downstream unit 3 when executing anti-skid control or the like. As described above, in the normal control, the electric cylinder 2, the first hydraulic pressure output unit 31, and the second hydraulic pressure output unit 32 are controlled based on the set target value, so that the liquids in the foil cylinders 81 to 84 are liquid. The pressure can be adjusted.
(電動シリンダの故障検出)
 故障判断部92は、電動シリンダ2のピストン23の位置(「ピストン位置」ともいう)が制御不能状態であるか否かを判断する。さらに、本実施形態の故障判断部92は、当該判断結果に基づいてリザーバ45と第2液圧出力部32が電動シリンダ2を介して液圧的に接続されているか否かを判断する。故障判断部92は、少なくともピストン位置が制御不能状態であると判断した場合に、ピストン23の位置を推定する。
(Failure detection of electric cylinder)
The failure determination unit 92 determines whether or not the position of the piston 23 of the electric cylinder 2 (also referred to as “piston position”) is in an uncontrollable state. Further, the failure determination unit 92 of the present embodiment determines whether or not the reservoir 45 and the second hydraulic pressure output unit 32 are hydraulically connected via the electric cylinder 2 based on the determination result. The failure determination unit 92 estimates the position of the piston 23 at least when it is determined that the piston position is in an uncontrollable state.
 より詳細に、故障判断部92は、電気モータ22に対して設けられた回転角センサ22bの検出結果に基づいて、電動シリンダ2のピストン23がロック(固着ともいえる)したか否かを判断する。回転角センサ22bは、電気モータ22の回転角(回転位置)を検出するセンサである。直動機構22aの一部を構成する減速ギヤがロックするなどにより、ピストン23が機械的にロックした場合(すなわちピストン23をシリンダ21に対して物理的に移動不能な状態になった場合)、電気モータ22への作動指示(制御電流)が出力されていても電気モータ22は回転せず、回転角センサ22bの検出値は変化しない。この原理を利用し、故障判断部92は、電気モータ22への制御指示内容と回転角センサ22bの検出結果に基づいて、ピストン23がロックしているか否かを判断することができる。以下、説明において、ピストン23が機械的にロックすることを「ピストンロック」とも称する More specifically, the failure determination unit 92 determines whether or not the piston 23 of the electric cylinder 2 is locked (which can be said to be stuck) based on the detection result of the rotation angle sensor 22b provided for the electric motor 22. .. The rotation angle sensor 22b is a sensor that detects the rotation angle (rotation position) of the electric motor 22. When the piston 23 is mechanically locked (that is, when the piston 23 becomes physically immovable with respect to the cylinder 21) due to the reduction gear forming a part of the linear motion mechanism 22a being locked or the like. Even if the operation instruction (control current) is output to the electric motor 22, the electric motor 22 does not rotate and the detected value of the rotation angle sensor 22b does not change. Using this principle, the failure determination unit 92 can determine whether or not the piston 23 is locked based on the content of the control instruction to the electric motor 22 and the detection result of the rotation angle sensor 22b. Hereinafter, in the description, the mechanical locking of the piston 23 is also referred to as “piston lock”.
 また、故障判断部92は、回転角センサ22bの検出結果に基づいて、ピストン23がシリンダ21内のどこに位置しているかを推定することができる。つまり、故障判断部92は、回転角センサ22bの検出結果に基づいて、ピストン23がシリンダ21内の連通領域及び遮断領域のいずれに位置しているのかを推定することができる。したがって、故障判断部92は、ピストンロックを検出した場合、どの位置でピストン23がロックしたのかも推定することができる。ただし、例えば回転角センサ22bの検出結果が連通領域と遮断領域との境界(切替位置)付近を示している場合など、いずれの領域に位置するかの推定が困難な場合、故障判断部92の判断結果は「不明(位置判断不能)」となる。このように、故障判断部92は、ピストン23のロック位置について、「連通」、「遮断」、及び「不明」のうちいずれかを選択する。 Further, the failure determination unit 92 can estimate where the piston 23 is located in the cylinder 21 based on the detection result of the rotation angle sensor 22b. That is, the failure determination unit 92 can estimate whether the piston 23 is located in the communication region or the cutoff region in the cylinder 21 based on the detection result of the rotation angle sensor 22b. Therefore, when the failure determination unit 92 detects the piston lock, it can also estimate at which position the piston 23 is locked. However, when it is difficult to estimate which region the rotation angle sensor 22b is located in, for example, when the detection result of the rotation angle sensor 22b indicates the vicinity of the boundary (switching position) between the communication region and the cutoff region, the failure determination unit 92 The judgment result is "unknown (position cannot be determined)". In this way, the failure determination unit 92 selects any of "communication", "blocking", and "unknown" for the lock position of the piston 23.
(ピストンロック時の助勢制御)
 ブレーキECU901、902は、第1液圧出力部31と第2液圧出力部32と連通制御弁61とを制御する制御部93を備えている。ピストンロック時の助勢制御において、例えば、第1ブレーキECU901の制御部93は連通制御弁61を制御し、第2ブレーキECU902の制御部93は下流ユニット3を制御する。両ブレーキECU901、902は連携して各種制御を実行する。
(Assistance control when the piston is locked)
The brake ECUs 901 and 902 include a control unit 93 that controls the first hydraulic pressure output unit 31, the second hydraulic pressure output unit 32, and the communication control valve 61. In the assist control at the time of piston lock, for example, the control unit 93 of the first brake ECU 901 controls the communication control valve 61, and the control unit 93 of the second brake ECU 902 controls the downstream unit 3. Both brake ECUs 901 and 902 cooperate to execute various controls.
 制御部93は、ブレーキ操作が開始され(ブレーキペダルZが踏み込まれ)、故障判断部92によりピストンロックが検出された場合、制御モードを助勢モードに設定する。助勢モードは、ピストンロック時に下流ユニット3による助勢制御を実行するモードである。助勢制御は、要求制動力に応じて下流ユニット3によりホイル圧を調整する制御である。助勢モード(以下に説明する各助勢制御)では、共通して、マスタカット弁62は開弁し、シミュレータカット弁44は閉弁している。 The control unit 93 sets the control mode to the assist mode when the brake operation is started (the brake pedal Z is depressed) and the piston lock is detected by the failure determination unit 92. The assist mode is a mode in which the assist control by the downstream unit 3 is executed when the piston is locked. The assist control is a control in which the foil pressure is adjusted by the downstream unit 3 according to the required braking force. In the assist mode (each assist control described below), the master cut valve 62 is opened and the simulator cut valve 44 is closed in common.
(判断結果が「不明」である場合の助勢制御)
 制御部93は、故障判断部92により電動シリンダ2のピストン位置が制御不能状態であると判断され且つリザーバ45と第2液圧出力部32とが電動シリンダ2を介して液圧的に接続されていると判断されていない場合(本実施形態では判断結果が「不明」である場合のみ)、制動力を増大させるにあたり、連通制御弁61を閉弁させた状態で第1液圧出力部31に第1ホイルシリンダ81、82に向けて液圧を出力させ、第2液圧出力部32に第2ホイルシリンダ83、84に向けて液圧を出力させない。つまり、制御部93は、故障判断部92によりピストン23のロック位置が不明であると判断されている場合、制動力を増大させるにあたり、連通制御弁61を閉じた状態で、第1液圧出力部31を作動させ、第2液圧出力部32を作動させない。
(Assistance control when the judgment result is "unknown")
In the control unit 93, the failure determination unit 92 determines that the piston position of the electric cylinder 2 is in an uncontrollable state, and the reservoir 45 and the second hydraulic output unit 32 are hydraulically connected via the electric cylinder 2. If it is not determined to be the case (only when the determination result is "unknown" in this embodiment), the first hydraulic pressure output unit 31 with the communication control valve 61 closed in order to increase the braking force. Is made to output the hydraulic pressure toward the first wheel cylinders 81 and 82, and the second hydraulic pressure output unit 32 is not made to output the hydraulic pressure toward the second wheel cylinders 83 and 84. That is, when the failure determination unit 92 determines that the lock position of the piston 23 is unknown, the control unit 93 outputs the first hydraulic pressure with the communication control valve 61 closed in order to increase the braking force. The unit 31 is operated, and the second hydraulic pressure output unit 32 is not operated.
 この助勢制御では、第1液圧出力部31の作動によりマスタシリンダ41から第1ホイルシリンダ81、82にフルードが供給され、第1ホイルシリンダ81、82のみが加圧される。第1液圧出力部31は、ドライバのブレーキ操作により発生されるマスタ圧を基礎液圧として、第1ホイルシリンダ81、82を加圧する。 In this assist control, fluid is supplied from the master cylinder 41 to the first foil cylinders 81 and 82 by the operation of the first hydraulic pressure output unit 31, and only the first foil cylinders 81 and 82 are pressurized. The first hydraulic pressure output unit 31 pressurizes the first foil cylinders 81 and 82 using the master pressure generated by the driver's brake operation as the basic hydraulic pressure.
 リザーバ45(貯留室451)とマスタシリンダ41とは連通可能であり、第1液圧出力部31は、第1ホイルシリンダ81、82内のフルードをマスタシリンダ41及びリザーバ45に戻すことができる。つまり、制御部93は、第1液圧出力部31を作動させて、第1ホイルシリンダ81、82を減圧すること(制動力を減少させること)も可能である。以下、判断結果が「不明」である場合の助勢制御を「不明時助勢制御(「特定助勢制御」に相当する)」と称する。 The reservoir 45 (reservoir 451) and the master cylinder 41 can communicate with each other, and the first hydraulic pressure output unit 31 can return the fluid in the first foil cylinders 81 and 82 to the master cylinder 41 and the reservoir 45. That is, the control unit 93 can also operate the first hydraulic pressure output unit 31 to reduce the pressure of the first foil cylinders 81 and 82 (reduce the braking force). Hereinafter, the assist control when the determination result is "unknown" is referred to as "unknown assist control (corresponding to" specific assist control ")".
(判断結果が「遮断」である場合の助勢制御)
 制御部93は、故障判断部92により電動シリンダ2のピストン位置が制御不能状態であると判断され且つリザーバ45と第2液圧出力部32とが液圧的に遮断されていると判断されている場合、制動力を増大させるにあたり、連通制御弁61を開けた状態で、第1液圧出力部31に第1ホイルシリンダ81、82に向けて液圧を出力させ且つ第2液圧出力部32に第2ホイルシリンダ83、84に向けて液圧を出力させる。つまり、制御部93は、故障判断部92によりピストン23のロック位置が遮断領域と判断されている場合、制動力を増大させるにあたり、連通制御弁61を開けた状態で、第1液圧出力部31及び第2液圧出力部32の両方を作動させる。
(Assistance control when the judgment result is "blocking")
The control unit 93 is determined by the failure determination unit 92 that the piston position of the electric cylinder 2 is in an uncontrollable state, and that the reservoir 45 and the second hydraulic output unit 32 are hydraulically shut off. If so, in order to increase the braking force, with the communication control valve 61 open, the first hydraulic pressure output unit 31 is made to output the hydraulic pressure toward the first wheel cylinders 81 and 82, and the second hydraulic pressure output unit is 32 is made to output the hydraulic pressure toward the second wheel cylinders 83 and 84. That is, when the failure determination unit 92 determines that the lock position of the piston 23 is the cutoff region, the control unit 93 has the first hydraulic pressure output unit with the communication control valve 61 open in order to increase the braking force. Both 31 and the second hydraulic pressure output unit 32 are operated.
 この助勢制御では、第1液圧出力部31の作動によりマスタシリンダ41から第1ホイルシリンダ81、82にフルードが供給され、第2液圧出力部32の作動によりマスタシリンダ41から連通制御弁61を介して第2ホイルシリンダ83、84にフルードが供給される。第1液圧出力部31及び第2液圧出力部32は、それぞれ、ドライバのブレーキ操作により発生されるマスタ圧を基礎液圧として、対象のホイルシリンダ81~84を加圧する。これにより、すべてのホイルシリンダ81~84が加圧される。 In this assist control, fluid is supplied from the master cylinder 41 to the first foil cylinders 81 and 82 by the operation of the first hydraulic pressure output unit 31, and the communication control valve 61 is supplied from the master cylinder 41 by the operation of the second hydraulic pressure output unit 32. The fluid is supplied to the second foil cylinders 83 and 84 via the above. The first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 pressurize the target wheel cylinders 81 to 84, respectively, using the master pressure generated by the brake operation of the driver as the basic hydraulic pressure. As a result, all the foil cylinders 81 to 84 are pressurized.
 制御部93は、第1液圧出力部31を作動させて第1ホイルシリンダ81、82内のフルードをマスタシリンダ41及びリザーバ45(貯留室451)に戻すことで、第1ホイルシリンダ81、82を減圧することができる。また、制御部93は、第2ホイルシリンダ83、84を減圧する場合、連通制御弁61を開弁させることで、第2ホイルシリンダ83、84内のフルードを連通制御弁61を介してマスタシリンダ41及びリザーバ45(貯留室451)に戻すことができる。このように、制御部93は、第2液圧出力部32にリザーバ45に向けて液圧を出力させる場合には連通制御弁61を開弁させる。これにより、第2ホイルシリンダ83、84も減圧可能となる。このように、判断結果が「遮断」である場合の助勢制御(以下「遮断時助勢制御」という)において、すべてのホイルシリンダ81~84で加減圧可能である。 The control unit 93 operates the first hydraulic pressure output unit 31 to return the fluid in the first foil cylinders 81 and 82 to the master cylinder 41 and the reservoir 45 (storage chamber 451), whereby the first foil cylinders 81 and 82 are returned. Can be depressurized. Further, when the pressure of the second foil cylinders 83 and 84 is reduced, the control unit 93 opens the communication control valve 61 to allow the fluid in the second foil cylinders 83 and 84 to pass through the communication control valve 61 to the master cylinder. It can be returned to 41 and the reservoir 45 (reservoir 451). As described above, the control unit 93 opens the communication control valve 61 when the second hydraulic pressure output unit 32 outputs the hydraulic pressure toward the reservoir 45. As a result, the second foil cylinders 83 and 84 can also be depressurized. As described above, in the assist control when the determination result is "disconnection" (hereinafter referred to as "disruption assist control"), acceleration / depressurization is possible in all the foil cylinders 81 to 84.
 本実施形態において、遮断時助勢制御の実行条件は、故障判断部92により「連通」と判断されていないこと(第1条件)と、故障判断部92により「遮断」と判断されていること(第2条件)を含んでいるといえる。2つの条件が満たされることで、遮断時助勢制御が実行される。故障判断部92により「連通」とも「遮断」とも判断されていない場合、すなわち第1条件のみが満たされている場合、判断不能時の助勢制御が実行される。 In the present embodiment, the execution condition of the assist control at the time of interruption is that the failure determination unit 92 does not determine "communication" (first condition) and the failure determination unit 92 determines that "blocking" (blocking). It can be said that the second condition) is included. When the two conditions are satisfied, the assist control at the time of interruption is executed. When neither "communication" nor "blocking" is determined by the failure determination unit 92, that is, when only the first condition is satisfied, the assist control when the determination cannot be made is executed.
(判断結果が「連通」である場合の助勢制御)
 制御部93は、故障判断部92により電動シリンダ2のピストン位置が制御不能状態であると判断され且つリザーバ45と第2液圧出力部32とが電動シリンダ2を介して液圧的に接続されていると判断されている場合、制動力を増大させるにあたり、連通制御弁61を閉じた状態で、第1液圧出力部31に第1ホイルシリンダ81、82に向けて液圧を出力させ且つ第2液圧出力部32に第2ホイルシリンダ83、84に向けて液圧を出力させる。つまり、制御部93は、故障判断部92によりピストン23のロック位置が連通領域と判断されている場合、制動力を増大させるにあたり、連通制御弁61を閉じた状態で、第1液圧出力部31及び第2液圧出力部32の両方を作動させる。
(Assistance control when the judgment result is "communication")
In the control unit 93, the failure determination unit 92 determines that the piston position of the electric cylinder 2 is in an uncontrollable state, and the reservoir 45 and the second hydraulic output unit 32 are hydraulically connected via the electric cylinder 2. When it is determined that the braking force is increased, the first hydraulic pressure output unit 31 is made to output the hydraulic pressure toward the first wheel cylinders 81 and 82 with the communication control valve 61 closed. The second hydraulic pressure output unit 32 is made to output the hydraulic pressure toward the second wheel cylinders 83 and 84. That is, when the failure determination unit 92 determines that the lock position of the piston 23 is the communication region, the control unit 93 has the first hydraulic pressure output unit with the communication control valve 61 closed in order to increase the braking force. Both 31 and the second hydraulic pressure output unit 32 are operated.
 この助勢制御では、第1液圧出力部31の作動によりマスタシリンダ41から第1ホイルシリンダ81、82にフルードが供給され、第2液圧出力部32の作動によりリザーバ45(貯留室452)から電動シリンダ2を介して第2ホイルシリンダ83、84にフルードが供給される。連通制御弁61が閉じているため、第1液路51と第2液路52とは互いに独立している。 In this assist control, fluid is supplied from the master cylinder 41 to the first foil cylinders 81 and 82 by the operation of the first hydraulic pressure output unit 31, and from the reservoir 45 (storage chamber 452) by the operation of the second hydraulic pressure output unit 32. The fluid is supplied to the second foil cylinders 83 and 84 via the electric cylinder 2. Since the communication control valve 61 is closed, the first liquid passage 51 and the second liquid passage 52 are independent of each other.
 第1液圧出力部31は、ドライバのブレーキ操作により発生されるマスタ圧を基礎液圧として、第1ホイルシリンダ81、82を加圧する。第2液圧出力部32は、リザーバ45(貯留室452)のフルードを利用して第2ホイルシリンダ83、84を加圧する。これにより、すべてのホイルシリンダ81~84が加圧される。 The first hydraulic pressure output unit 31 pressurizes the first foil cylinders 81 and 82 using the master pressure generated by the driver's brake operation as the basic hydraulic pressure. The second hydraulic pressure output unit 32 pressurizes the second foil cylinders 83 and 84 by using the fluid of the reservoir 45 (reservoir 452). As a result, all the foil cylinders 81 to 84 are pressurized.
 制御部93は、不明時助勢制御と同様、連通制御弁61が閉じた状態で第1液圧出力部31を作動させて第1ホイルシリンダ81、82内のフルードをマスタシリンダ41及びリザーバ45(貯留室451)に戻すことで、第1ホイルシリンダ81、82を減圧することができる。また、制御部93は、第2ホイルシリンダ83、84を減圧する場合、連通制御弁61を閉じた状態で、第2液圧出力部32を作動させて、第2ホイルシリンダ83、84内のフルードを電動シリンダ2を介してリザーバ45(貯留室452)に戻すことができる。制御部93は、第1液圧出力部31と第2液圧出力部32の少なくとも一方に、リザーバ45に向けて液圧を出力させる場合、連通制御弁61を閉弁させる。このように、判断結果が「連通」である場合の助勢制御(以下「連通時助勢制御」という)においても、すべてのホイルシリンダ81~84で加減圧可能である。 Similar to the assist control when unknown, the control unit 93 operates the first hydraulic pressure output unit 31 with the communication control valve 61 closed to remove the fluid in the first foil cylinders 81 and 82 from the master cylinder 41 and the reservoir 45 ( By returning to the storage chamber 451), the pressure of the first foil cylinders 81 and 82 can be reduced. Further, when the pressure of the second foil cylinders 83 and 84 is reduced, the control unit 93 operates the second hydraulic pressure output unit 32 with the communication control valve 61 closed, and the control unit 93 operates the second foil cylinders 83 and 84 in the second foil cylinders 83 and 84. The fluid can be returned to the reservoir 45 (reservoir 452) via the electric cylinder 2. The control unit 93 closes the communication control valve 61 when at least one of the first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 outputs the hydraulic pressure toward the reservoir 45. As described above, even in the assist control when the determination result is "communication" (hereinafter referred to as "communication assist control"), acceleration / depressurization is possible in all the foil cylinders 81 to 84.
(制御の流れ)
 図4を参照して本実施形態の制御の流れを説明する。図4に示すように、ブレーキ操作が開始され、故障判断部92によりピストンロックが検出されているか否かが判断される(S100)。ピストンロックが検出されている場合(S100:Yes)、助勢モードが開始される(S101)。制御部93は、故障判断部92がピストン23の位置を判断(推定)可能か否かを確認する(S102)。制御部93は、故障判断部92により「不明(位置判断不能)」と判断されている場合(S102:No)、不明時助勢制御を実行する(S103)。
(Control flow)
The control flow of the present embodiment will be described with reference to FIG. As shown in FIG. 4, the brake operation is started, and it is determined whether or not the piston lock is detected by the failure determination unit 92 (S100). When the piston lock is detected (S100: Yes), the assist mode is started (S101). The control unit 93 confirms whether or not the failure determination unit 92 can determine (estimate) the position of the piston 23 (S102). When the failure determination unit 92 determines that the control unit 93 is "unknown (position determination impossible)" (S102: No), the control unit 93 executes assistive control when unknown (S103).
 故障判断部92により「連通」と判断されている場合(S102:Yes、S104:Yes)、制御部93は、連通時助勢制御を実行する(S105)。故障判断部92により「遮断」と判断されている場合(S102:Yes、S104:No)、制御部93は、遮断時助勢制御を実行する(S106)。このように、制御部93は、判断結果が「連通」である場合、不明時助勢制御でなく連通時助勢制御を実行し、判断結果が「遮断」である場合、不明時助勢制御でなく遮断時助勢制御を実行する。 When the failure determination unit 92 determines "communication" (S102: Yes, S104: Yes), the control unit 93 executes the assist control during communication (S105). When it is determined by the failure determination unit 92 to be "blocked" (S102: Yes, S104: No), the control unit 93 executes the assist control at the time of interruption (S106). As described above, when the determination result is "communication", the control unit 93 executes the communication assist control instead of the unknown assist control, and when the determination result is "block", the control unit 93 interrupts instead of the unknown assist control. Perform time assist control.
(本実施形態の効果)
 本実施形態によれば、ピストン23のロック故障が発生し、故障判断部92の判断結果が「リザーバ45と第2液圧出力部32とが連通している」でない場合(本実施形態では判断結果が「不明」である場合のみ)、第1ホイルシリンダ81、82のみが助勢制御により加圧され、リザーバ45と連通していない第2ホイルシリンダ83、84は加圧されない。第1ホイルシリンダ81、82の加圧により制動力(本実施形態では前輪の制動力)は増大する。
(Effect of this embodiment)
According to the present embodiment, a lock failure of the piston 23 has occurred, and the judgment result of the failure determination unit 92 is not "the reservoir 45 and the second hydraulic pressure output unit 32 are in communication" (determined in the present embodiment). (Only when the result is "unknown"), only the first wheel cylinders 81 and 82 are pressurized by the assist control, and the second wheel cylinders 83 and 84 that do not communicate with the reservoir 45 are not pressurized. The braking force (braking force of the front wheels in this embodiment) is increased by pressurizing the first foil cylinders 81 and 82.
 また、第1液圧出力部31は、第1ホイルシリンダ81、82内のフルードをマスタシリンダ41及びリザーバ45に戻すことができる。つまり、第1液圧出力部31の作動により、第1ホイルシリンダ81、82の減圧(制動力の減少)も可能である。加圧されていない第2ホイルシリンダ83、84に対して減圧は不要となる。したがって、電動シリンダ2でピストン23のロック故障が発生した場合でも、下流ユニット3の1つである第1液圧出力部31による助勢制御(制動力調整)が可能となる。 Further, the first hydraulic pressure output unit 31 can return the fluid in the first foil cylinders 81 and 82 to the master cylinder 41 and the reservoir 45. That is, by operating the first hydraulic pressure output unit 31, depressurization (reduction of braking force) of the first foil cylinders 81 and 82 is also possible. No depressurization is required for the second foil cylinders 83 and 84 that are not pressurized. Therefore, even if a lock failure of the piston 23 occurs in the electric cylinder 2, assist control (braking force adjustment) by the first hydraulic pressure output unit 31, which is one of the downstream units 3, is possible.
 また、遮断時助勢制御及び連通時助勢制御でも、制御部93は、上記のとおり、ホイルシリンダ81~84を加減圧可能である。このように、本実施形態によれば、電動シリンダ2でピストン23のロック故障が発生した場合でも、下流ユニット3による助勢制御(制動力調整)が可能となる。 Further, in the assist control at the time of interruption and the assist control at the time of communication, the control unit 93 can pressurize and depressurize the foil cylinders 81 to 84 as described above. As described above, according to the present embodiment, even if a lock failure of the piston 23 occurs in the electric cylinder 2, assist control (braking force adjustment) by the downstream unit 3 becomes possible.
(その他)
 本発明は、上記実施形態に限られない。例えば、遮断時助勢制御が不明時助勢制御と同じ制御内容であってもよい。故障判断部92の判断結果が「リザーバ45と第2液圧出力部32とが連通している」ではない場合の例として、「不明」と「遮断」がある。上記実施形態では、「不明」の場合と「遮断」の場合とで異なる助勢制御が実行されるが、いずれの判断結果であっても不明時助勢制御が実行されるように設定されてもよい。例えば図5に示すように、故障判断部92が「不明」と判断した場合(S202:No)又は「遮断」と判断した場合(S203:No)、制御部93は、不明時助勢制御を実行し、第1ホイルシリンダ81、82のみを加圧する(S204)。故障判断部92が「連通」と判断した場合(S203:Yes)、制御部93は、連通時助勢制御を実行する(S205)。これによっても、ピストン23のロック故障が発生した場合でも、下流ユニット3による助勢制御(制動力調整)が可能となる。なお、例えば故障判断部92がピストン23のロック位置を推定しない構成であれば、故障判断部92がピストンロックを検出した場合、制御部93が不明時助勢制御を実行してもよい。この構成の場合、助勢制御は不明時助勢制御(特定助勢制御)のみとなる。つまり、制御部93は、故障判断部92により電動シリンダ2のピストン位置が制御不能状態であると判断されている場合、制動力を増大させるにあたり、連通制御弁61を閉じた状態で第1液圧出力部31に第1ホイルシリンダ81、82に向けてフルードを出力させ、第2液圧出力部32に第2ホイルシリンダ83、84に向けてフルードを出力させない特定助勢制御を実行する。
(others)
The present invention is not limited to the above embodiment. For example, the assist control at the time of interruption may have the same control content as the assist control at the time of unknown. Examples of cases where the determination result of the failure determination unit 92 is not "the reservoir 45 and the second hydraulic pressure output unit 32 communicate with each other" include "unknown" and "blocking". In the above embodiment, the assist control is executed differently depending on the case of "unknown" and the case of "blocking", but it may be set so that the assist control at the time of unknown is executed regardless of the judgment result. .. For example, as shown in FIG. 5, when the failure determination unit 92 determines “unknown” (S202: No) or determines “blocking” (S203: No), the control unit 93 executes assist control when unknown. Then, only the first foil cylinders 81 and 82 are pressurized (S204). When the failure determination unit 92 determines “communication” (S203: Yes), the control unit 93 executes the assist control during communication (S205). This also enables assist control (braking force adjustment) by the downstream unit 3 even when a lock failure of the piston 23 occurs. For example, if the failure determination unit 92 does not estimate the lock position of the piston 23, the control unit 93 may execute the assist control when the failure determination unit 92 detects the piston lock. In the case of this configuration, the assist control is only the assist control when unknown (specific assist control). That is, when the failure determination unit 92 determines that the piston position of the electric cylinder 2 is in an uncontrollable state, the control unit 93 increases the braking force by using the first liquid with the communication control valve 61 closed. The pressure output unit 31 is made to output the fluid toward the first wheel cylinders 81 and 82, and the second hydraulic pressure output unit 32 executes the specific assist control not to output the fluid toward the second wheel cylinders 83 and 84.
 また、下流ユニット3は、例えば図6に示すような構成(逆止弁の符号は省略する)であってもよい。上記実施形態と異なる部分について、第1液圧出力部31を例に以下に簡単に説明する。還流液路317aは、一方が第1接続液路511に接続され、他方がリザーバ317を介さずにポンプ315の吸入ポートに接続された液路である。還流液路317aには、ノーマルクローズ型の電磁弁318が配置されている。リザーバ317は、調圧リザーバのような弁機能がなく、シリンダ、ピストン、及び付勢部材を備えるリザーバである。この下流ユニット3では、電磁弁318を開弁させることで、上流ユニット11とポンプ315の吸入ポートとを連通させることができる。電磁弁318が開弁した状態でポンプ315が作動すると、ポンプ315は、上流ユニット11からフルードを吸入して分岐部Xに吐出する。第2液圧出力部32は第1液圧出力部31と同構成である。 Further, the downstream unit 3 may have a configuration as shown in FIG. 6, for example (the reference numeral of the check valve is omitted). The portion different from the above embodiment will be briefly described below by taking the first hydraulic pressure output unit 31 as an example. The reflux fluid channel 317a is a fluid channel in which one is connected to the first connecting liquid passage 511 and the other is connected to the suction port of the pump 315 without passing through the reservoir 317. A normally closed type solenoid valve 318 is arranged in the reflux liquid passage 317a. Reservoir 317 is a reservoir that does not have a valve function like a pressure regulating reservoir and is provided with a cylinder, a piston, and an urging member. In the downstream unit 3, the upstream unit 11 and the suction port of the pump 315 can communicate with each other by opening the solenoid valve 318. When the pump 315 operates with the solenoid valve 318 opened, the pump 315 sucks fluid from the upstream unit 11 and discharges it to the branch portion X. The second hydraulic pressure output unit 32 has the same configuration as the first hydraulic pressure output unit 31.
 このような下流ユニット3において、制御部93は、不明時助勢制御を実行する場合、第1液圧出力部31の電磁弁318を開弁させ、第2液圧出力部32の電磁弁318を開弁させない。これにより、減圧制御可能な第1液圧出力部31のみがフルードをマスタシリンダ41から吸入して第1ホイルシリンダ81、82に供給できる。また、制御部93は、遮断時助勢制御又は連通時助勢制御を実行する場合、第1液圧出力部31及び第2液圧出力部32の両方の電磁弁318を開弁させる。これにより、第1液圧出力部31及び第2液圧出力部32の両方が、それぞれ上流ユニット11からフルードを吸入することができる。 In such a downstream unit 3, when the control unit 93 executes assistive control when unknown, the solenoid valve 318 of the first hydraulic pressure output unit 31 is opened, and the solenoid valve 318 of the second hydraulic pressure output unit 32 is opened. Do not open the valve. As a result, only the first hydraulic pressure output unit 31 capable of controlling the depressurization can suck the fluid from the master cylinder 41 and supply it to the first foil cylinders 81 and 82. Further, the control unit 93 opens both the solenoid valves 318 of the first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 when executing the assist control at the time of interruption or the assist control at the time of communication. As a result, both the first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 can suck the fluid from the upstream unit 11, respectively.
 また、電動シリンダ2に替えて、付勢部材25を備えない電動シリンダを採用してもよい。この場合、電気モータ22への通電構成が冗長構成となっていることが好ましい。また、下流ユニット3は、ポンプ315に替えて電動シリンダを備えてもよい。また、本発明は、例えば、回生制動装置を含む車両(ハイブリッド車や電気自動車)、自動ブレーキ制御を実行する車両、又は自動運転車両にも適用できる。 Further, instead of the electric cylinder 2, an electric cylinder not provided with the urging member 25 may be adopted. In this case, it is preferable that the energization configuration for the electric motor 22 is a redundant configuration. Further, the downstream unit 3 may be provided with an electric cylinder instead of the pump 315. The present invention can also be applied to, for example, a vehicle including a regenerative braking device (hybrid vehicle or electric vehicle), a vehicle that executes automatic brake control, or an autonomous driving vehicle.
 また、上記実施形態では第1ホイルシリンダ81、82は前輪に設けられ、第2ホイルシリンダ83、84は後輪に設けられるとしていたが、第1ホイルシリンダ81、82は右前輪と左後輪に設けられ、第2ホイルシリンダ83、84は左前輪と右後輪に設けられるようにしてもよい。連通路53は、例えば、第1液路51と電動シリンダ2とを接続する液路であってもよい。この場合、連通路53は、電動シリンダ2を介して第1液路51と第2液路52とを接続するといえる。連通路53は、電動シリンダ2から出力されたフルードが直接又は第2液路52を介して供給される液路であるといえる。 Further, in the above embodiment, the first wheel cylinders 81 and 82 are provided on the front wheels and the second wheel cylinders 83 and 84 are provided on the rear wheels, but the first wheel cylinders 81 and 82 are provided on the right front wheel and the left rear wheel. The second wheel cylinders 83 and 84 may be provided on the left front wheel and the right rear wheel. The communication passage 53 may be, for example, a liquid passage connecting the first liquid passage 51 and the electric cylinder 2. In this case, it can be said that the communication passage 53 connects the first liquid passage 51 and the second liquid passage 52 via the electric cylinder 2. It can be said that the communication passage 53 is a liquid passage in which the fluid output from the electric cylinder 2 is supplied directly or via the second liquid passage 52.

Claims (4)

  1.  リザーバと第1ホイルシリンダを接続する第1液路に設けられていて、前記リザーバ側と前記第1ホイルシリンダ側に選択的に液圧を出力可能な第1液圧出力部と、
     前記第1液路において前記リザーバと前記第1液圧出力部との間に設けられているマスタシリンダと、
     前記リザーバと第2ホイルシリンダを接続する第2液路に設けられていて、前記リザーバ側と前記第2ホイルシリンダ側に選択的に液圧を出力可能な第2液圧出力部と、
     前記第2液路において前記リザーバと前記第2液圧出力部との間に設けられていて、シリンダと前記シリンダ内で摺動するピストンとを有し、前記ピストンの位置に応じて前記リザーバと前記第2液圧出力部とを液圧的に接続または遮断し、前記ピストンの摺動に応じてフルードを出力する電動シリンダと、
     前記電動シリンダから出力されたフルードが供給される液路であって、前記第1液路において前記マスタシリンダと前記第1液圧出力部との間の部分に接続された連通路に設けられている連通制御弁と、
     前記電動シリンダのピストン位置が制御不能状態であるか否かを判断する故障判断部と、
     前記第1液圧出力部と前記第2液圧出力部と前記連通制御弁とを制御する制御部と、
     を備え、
     前記制御部は、前記故障判断部により前記電動シリンダのピストン位置が制御不能状態であると判断されている場合、制動力を増大させるにあたり、前記連通制御弁を閉じた状態で前記第1液圧出力部に前記第1ホイルシリンダに向けてフルードを出力させ、前記第2液圧出力部に前記第2ホイルシリンダに向けてフルードを出力させない特定助勢制御を実行する、車両用制動装置。
    A first hydraulic pressure output unit provided in the first liquid passage connecting the reservoir and the first foil cylinder and capable of selectively outputting the hydraulic pressure to the reservoir side and the first foil cylinder side.
    A master cylinder provided between the reservoir and the first hydraulic pressure output unit in the first liquid passage, and
    A second hydraulic pressure output unit provided in the second liquid passage connecting the reservoir and the second foil cylinder and capable of selectively outputting the hydraulic pressure to the reservoir side and the second foil cylinder side.
    It has a cylinder and a piston that slides in the cylinder, which is provided between the reservoir and the second hydraulic pressure output unit in the second liquid passage, and has the reservoir according to the position of the piston. An electric cylinder that hydraulically connects or disconnects the second hydraulic output unit and outputs fluid according to the sliding of the piston.
    A liquid passage to which the fluid output from the electric cylinder is supplied, which is provided in a communication passage connected to a portion between the master cylinder and the first hydraulic pressure output portion in the first liquid passage. Communication control valve and
    A failure determination unit that determines whether or not the piston position of the electric cylinder is in an uncontrollable state.
    A control unit that controls the first hydraulic pressure output unit, the second hydraulic pressure output unit, and the communication control valve.
    Equipped with
    When the failure determination unit determines that the piston position of the electric cylinder is in an uncontrollable state, the control unit increases the braking force by the first hydraulic pressure with the communication control valve closed. A vehicle braking device that causes an output unit to output fluid toward the first wheel cylinder and does not cause the second hydraulic pressure output unit to output fluid toward the second wheel cylinder.
  2.  前記故障判断部は、前記リザーバと前記第2液圧出力部が前記電動シリンダを介して液圧的に接続されているか否かを判断し、
     前記制御部は、
     前記故障判断部により前記電動シリンダのピストン位置が制御不能状態であると判断され且つ前記リザーバと前記第2液圧出力部とが液圧的に遮断されていると判断されている場合、
     前記制動力を増大させるにあたり、前記特定助勢制御ではなく、前記連通制御弁を開けた状態で、前記第1液圧出力部に前記第1ホイルシリンダに向けて液圧を出力させ且つ前記第2液圧出力部に前記第2ホイルシリンダに向けて液圧を出力させる遮断時助勢制御を実行し、
     前記遮断時助勢制御において、前記第2液圧出力部に前記リザーバに向けて液圧を出力させる場合には、前記連通制御弁を開弁させる、請求項1に記載の車両用制動装置。
    The failure determination unit determines whether or not the reservoir and the second hydraulic pressure output unit are hydraulically connected via the electric cylinder.
    The control unit
    When it is determined by the failure determination unit that the piston position of the electric cylinder is in an uncontrollable state and the reservoir and the second hydraulic pressure output unit are hydraulically cut off.
    In increasing the braking force, the first hydraulic pressure output unit is made to output the hydraulic pressure toward the first wheel cylinder with the communication control valve open instead of the specific assist control, and the second hydraulic pressure is output. The assist control at the time of shutoff, which causes the hydraulic pressure output unit to output the hydraulic pressure toward the second wheel cylinder, is executed.
    The vehicle braking device according to claim 1, wherein in the shutoff assist control, when the second hydraulic pressure output unit is to output the hydraulic pressure toward the reservoir, the communication control valve is opened.
  3.  前記故障判断部は、前記リザーバと前記第2液圧出力部が前記電動シリンダを介して液圧的に接続されているか否かを判断し、
     前記制御部は、
     前記故障判断部により前記電動シリンダのピストン位置が制御不能状態であると判断され且つ前記リザーバと前記第2液圧出力部とが前記電動シリンダを介して液圧的に接続されていると判断されている場合、
     前記制動力を増大させるにあたり、前記特定助勢制御ではなく、前記連通制御弁を閉じた状態で、前記第1液圧出力部に前記第1ホイルシリンダに向けて液圧を出力させ且つ前記第2液圧出力部に前記第2ホイルシリンダに向けて液圧を出力させる連通時助勢制御を実行し、
     前記連通時助勢制御において、前記第1液圧出力部と前記第2液圧出力部の少なくとも一方に、前記リザーバに向けて液圧を出力させる場合、前記連通制御弁を閉弁させる、請求項1又は2に記載の車両用制動装置。
    The failure determination unit determines whether or not the reservoir and the second hydraulic pressure output unit are hydraulically connected via the electric cylinder.
    The control unit
    It is determined by the failure determination unit that the piston position of the electric cylinder is in an uncontrollable state, and that the reservoir and the second hydraulic pressure output unit are hydraulically connected via the electric cylinder. If so,
    In increasing the braking force, instead of the specific assist control, the communication control valve is closed, and the first hydraulic pressure output unit outputs the hydraulic pressure toward the first wheel cylinder and the second hydraulic pressure is output. The assist control at the time of communication is executed to output the hydraulic pressure toward the second wheel cylinder to the hydraulic pressure output unit.
    The communication control valve is closed when at least one of the first hydraulic pressure output unit and the second hydraulic pressure output unit outputs the hydraulic pressure toward the reservoir in the communication assist control. The vehicle braking device according to 1 or 2.
  4.  前記故障判断部は、前記リザーバと前記第2液圧出力部が前記電動シリンダを介して液圧的に接続されているか否かを判断し、
     前記制御部は、前記故障判断部により前記電動シリンダのピストン位置が制御不能状態であると判断され且つ前記リザーバと前記第2液圧出力部とが前記電動シリンダを介して液圧的に接続されているか否かが判断できない場合、前記制動力を増大させるにあたり、前記特定助勢制御を実行する、請求項1~3の何れか一項に記載の車両用制動装置。
    The failure determination unit determines whether or not the reservoir and the second hydraulic pressure output unit are hydraulically connected via the electric cylinder.
    In the control unit, the failure determination unit determines that the piston position of the electric cylinder is in an uncontrollable state, and the reservoir and the second hydraulic output unit are hydraulically connected via the electric cylinder. The vehicle braking device according to any one of claims 1 to 3, which executes the specific assist control in increasing the braking force when it cannot be determined whether or not the braking force is applied.
PCT/JP2021/047853 2020-12-23 2021-12-23 Brake device for vehicle WO2022138815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020213066A JP2022099362A (en) 2020-12-23 2020-12-23 Vehicular braking device
JP2020-213066 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138815A1 true WO2022138815A1 (en) 2022-06-30

Family

ID=82159797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047853 WO2022138815A1 (en) 2020-12-23 2021-12-23 Brake device for vehicle

Country Status (2)

Country Link
JP (1) JP2022099362A (en)
WO (1) WO2022138815A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326395A (en) * 2006-06-06 2007-12-20 Honda Motor Co Ltd Brake control system
JP2009184576A (en) * 2008-02-07 2009-08-20 Honda Motor Co Ltd Brake device
WO2011105406A1 (en) * 2010-02-26 2011-09-01 本田技研工業株式会社 Vehicle brake device and vehicle brake device control method
JP6202741B2 (en) * 2013-12-27 2017-09-27 オートリブ日信ブレーキシステムジャパン株式会社 Brake fluid pressure generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326395A (en) * 2006-06-06 2007-12-20 Honda Motor Co Ltd Brake control system
JP2009184576A (en) * 2008-02-07 2009-08-20 Honda Motor Co Ltd Brake device
WO2011105406A1 (en) * 2010-02-26 2011-09-01 本田技研工業株式会社 Vehicle brake device and vehicle brake device control method
JP6202741B2 (en) * 2013-12-27 2017-09-27 オートリブ日信ブレーキシステムジャパン株式会社 Brake fluid pressure generator

Also Published As

Publication number Publication date
JP2022099362A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US8801110B2 (en) Vehicle brake device
JP5892706B2 (en) Brake fluid pressure generator
EP2441630B1 (en) Vehicle brake device
JP2009067262A (en) Brake control device and its control method
US10946849B2 (en) Brake system for vehicle
US20150158472A1 (en) Vehicle braking system
WO2022138815A1 (en) Brake device for vehicle
JP2005132306A (en) Brake device
JP5093082B2 (en) Brake hydraulic pressure control device
JP7367427B2 (en) vehicle braking system
JP2015123934A (en) Brake hydraulic pressure generator
JP5947691B2 (en) Brake device
WO2022138814A1 (en) Vehicular braking device and electric cylinder
JP7424165B2 (en) Vehicle braking device
JP7443872B2 (en) Vehicle braking device
US20220203944A1 (en) Braking control device
WO2021187435A1 (en) Vehicle braking device
JP2009067269A (en) Brake control device
CN114423652B (en) Brake device for vehicle
WO2023054492A1 (en) Brake device for vehicle
WO2022210930A1 (en) Brake device for vehicle
US20220324428A1 (en) Braking control device for vehicle
WO2022065394A1 (en) Braking device for vehicle
WO2020027068A1 (en) Brake control device
JP2001260844A (en) Braking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910954

Country of ref document: EP

Kind code of ref document: A1