WO2020027068A1 - Brake control device - Google Patents

Brake control device Download PDF

Info

Publication number
WO2020027068A1
WO2020027068A1 PCT/JP2019/029708 JP2019029708W WO2020027068A1 WO 2020027068 A1 WO2020027068 A1 WO 2020027068A1 JP 2019029708 W JP2019029708 W JP 2019029708W WO 2020027068 A1 WO2020027068 A1 WO 2020027068A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil passage
braking
pressure
hydraulic
holding
Prior art date
Application number
PCT/JP2019/029708
Other languages
French (fr)
Japanese (ja)
Inventor
和寛 中村
泰浩 阿部
宮崎 直人
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2020027068A1 publication Critical patent/WO2020027068A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force

Definitions

  • the present invention relates to a braking control device.
  • the braking control device includes an actuator that increases the hydraulic pressure (wheel pressure) of the wheel cylinder on the downstream side.
  • the wheel cylinder is provided in the hydraulic braking device of each wheel.
  • An oil passage connected to each wheel cylinder is provided in the actuator.
  • the disc brake device and the drum brake device differ in the amount of brake fluid required for the precharge process, and the responsiveness can be improved only by performing a uniform precharge process on a vehicle equipped with both brake devices.
  • a vehicle that can generate a braking force different from the target of the precharge processing such as a regenerative braking force
  • insufficient precharge occurs.
  • the increase in the braking force may temporarily stagnate, giving the driver an uncomfortable feeling.
  • the present invention has been made in view of such circumstances, and has as its object to provide a braking control device capable of improving responsiveness.
  • the present invention includes a first braking device corresponding to a first wheel provided in a vehicle, and a second braking device corresponding to a second wheel provided in the vehicle, wherein the first braking device and the second braking device correspond to each other.
  • a braking control device for applying a braking force to the vehicle by controlling a second braking device, wherein prior to the application of the braking force, the operating characteristics of both the first braking device and the second braking device are adjusted.
  • a preliminary operation control unit that preliminarily activates at least one of the first braking device and the second braking device.
  • a preliminary operation is performed in consideration of the operation characteristics of each of the braking devices (for example, a precharge amount required until the braking force starts to be generated).
  • a precharge amount required until the braking force starts to be generated for example, a precharge amount required until the braking force starts to be generated.
  • 5 is a time chart for explaining a preliminary operation of the present embodiment.
  • 5 is a time chart for explaining a preliminary operation of the present embodiment.
  • the brake control device 1 includes a brake pedal 11, a booster 12, a master cylinder 13, a reservoir 14, a brake switch 15, a stroke sensor 16, an actuator 5,
  • the brake ECU 6, a hydraulic braking device 81, and a regenerative braking device 82 are provided.
  • the brake pedal 11 is an operating member that can be operated by the driver to brake.
  • the brake switch 15 is a sensor that detects whether or not the brake pedal 11 is depressed (ie, whether or not an operation is performed).
  • the brake switch 15 is also called a brake stop switch.
  • the brake switch 15 outputs a detection signal to the brake ECU 6.
  • the booster 12 is a vacuum booster that assists the brake operating force by using the intake negative pressure of the engine.
  • the master cylinder 13 is a device that converts the operation force of the brake pedal 11 by the driver into a master pressure and supplies the master pressure to the wheel cylinders 541 to 544 via the actuator 5.
  • the master cylinder 13 includes a first master chamber 13a and a second master chamber 13b that generate a master pressure according to the operation of the brake pedal 11.
  • the master cylinder 13 is configured such that the same hydraulic pressure is formed in the first master chamber 13a and the second master chamber 13b. That is, the first master chamber 13a is formed between the first master piston 13c and the second master piston 13d, and the second master chamber 13b is formed between the second master piston 13d and the bottom of the master cylinder 13. Have been.
  • a first spring 13e is interposed between the first master piston 13c and the second master piston 13d, and a second spring 13f is interposed between the second master piston 13d and the bottom of the master cylinder 13. Have been.
  • the reservoir 14 is a member for storing the brake fluid and replenishing the master cylinder 13 with the brake fluid.
  • it is a member that stores the brake fluid, and is connected to the master chambers 13a and 13b.
  • the master chambers 13a and 13b communicate with the reservoir 14 in an initial state, and are shut off when the strokes of the master pistons 13c and 13d become equal to or more than a predetermined value. That is, the master pistons 13c and 13d are configured to shut off the space between the master chambers 13a and 13b and the reservoir 14 when the stroke of the brake pedal 11 is equal to or more than the predetermined value.
  • the master pistons 13c and 13d are mechanically connected to the brake pedal 11 via a booster 12. The movement of the master pistons 13c and 13d and the movement of the brake pedal 11 are mechanically linked.
  • the stroke sensor 16 is a sensor that detects the operation amount (stroke) of the brake pedal 11.
  • the stroke sensor 16 outputs a detection signal to the brake ECU 6.
  • an invalid stroke is set for the operation of the brake pedal 11, and the generation of the regenerative braking force is prioritized until the stroke exceeds a predetermined value, and the hydraulic braking force by the master pressure is applied. Is configured not to occur.
  • the actuator 5 is arranged between the first master chamber 13a and the second master chamber 13b in which the master pressure is generated, and the wheel cylinders 541, 542, 543, and 544.
  • the actuator 5 and the first master chamber 13a are connected by an oil passage 31, and the actuator 5 and the second master chamber 13b are connected by an oil passage 32.
  • the actuator 5 is a device that adjusts the hydraulic pressure (wheel pressure) of the wheel cylinders 541 to 544 according to an instruction from the brake ECU 6.
  • the actuator 5 executes a pressure control for further increasing the brake fluid from the master pressure, a pressure reduction control for reducing the wheel pressure, and a holding control for holding the wheel pressure in accordance with a command from the brake ECU 6.
  • the actuator 5 can also execute a pressure increase control for supplying the master pressure to the wheel cylinders 541 to 544 as it is.
  • the actuator 5 executes anti-skid control (ABS control), side skid prevention control (ESC control), brake assist control (BA control), and the like based on a command from the brake ECU 6.
  • the actuator 5 includes a hydraulic circuit 5A and an electric motor 90.
  • the hydraulic circuit 5A includes a first piping system 50a and a second piping system 50b.
  • the first piping system 50a is a system that controls the hydraulic pressure (wheel pressure) applied to the front wheel Wfl and the rear wheel Wrr.
  • the second piping system 50b is a system that controls the hydraulic pressure (wheel pressure) applied to the front wheel Wfr and the rear wheel Wrl.
  • a wheel speed sensor is provided for each wheel W (in some cases, the sign of the wheel is collectively described as “W”, the sign of the front wheel is described as “Wf”, and the code of the rear wheel is collectively described as “Wr”).
  • 73 are provided.
  • an X pipe is employed.
  • the first piping system 50a includes a main oil passage A, a differential pressure control valve 51, holding valves 52 and 53, a pressure reducing oil passage B, pressure reducing valves 54 and 55, a pressure regulating reservoir 56, a reflux oil passage C , A pump 57, an auxiliary oil passage D, an orifice 58, a damper 59, and a pressure sensor 71.
  • oil passage can be replaced with, for example, a hydraulic passage, a flow path, a pipe, a passage, a pipe, or the like.
  • the main oil passage A is an oil passage connecting the oil passage 32 and the wheel cylinders 541 and 542. That is, the main oil passage A (and the oil passage 32) connects the master cylinder 13 (second master chamber 13b) and the wheel cylinders 541 and 542.
  • the differential pressure state can be said to be a throttle state.
  • the differential pressure control valve 51 controls the differential pressure between the hydraulic pressure on the master cylinder 13 side and the hydraulic pressure on the wheel cylinders 541 and 542 relative to itself according to the command pressure (control current) from the brake ECU 6. I do.
  • the differential pressure control valve 51 is an electromagnetic valve that can adjust the difference in hydraulic pressure between the master cylinder 13 and the wheel cylinders 541 to 544.
  • the differential pressure control valve 51 is a valve capable of controlling the fluid pressure on the wheel cylinders 541 to 544 side higher than the fluid pressure on the master chambers 13a and 13b side by the command pressure.
  • the differential pressure control valve 51 is provided with a check valve 51a that permits the flow from the master cylinder 13 side (upstream side) to the wheel cylinders 541 to 544 side (downstream side) and prohibits the reverse flow. .
  • the main oil passage A is branched into two oil passages A1 and A2 at a branch point X on the downstream side of the differential pressure control valve 51 so as to correspond to the wheel cylinders 541 and 542.
  • the holding valves 52 and 53 are electromagnetic valves that are opened and closed according to instructions from the brake ECU 6, and are normally open type electromagnetic valves that are opened (communicated) when not energized.
  • the holding valve 52 is arranged in the oil passage A1, and the holding valve 53 is arranged in the oil passage A2.
  • the holding valves 52 and 53 are opened in a non-energized state during the pressure increasing control to communicate with the wheel cylinders 541 and 542 and the branch point X, and are energized and closed when the holding control and the pressure reducing control are performed. And the branch point X are cut off.
  • the holding valves 52 and 53 may be on / off valves (binary control valves) or linear valves capable of controlling the branch point X side higher than the wheel cylinders 541 and 542 by the indicated pressure.
  • the decompression oil passage B connects the pressure regulating reservoir 56 between the holding valve 52 and the wheel cylinder 541 in the oil passage A1, and connects the pressure regulating reservoir 56 between the holding valve 53 and the wheel cylinder 542 in the oil passage A2.
  • the pressure reducing valves 54 and 55 are electromagnetic valves that open and close according to instructions from the brake ECU 6, and are normally closed type electromagnetic valves that are closed (disconnected) when not energized.
  • the pressure reducing valve 54 is arranged in the pressure reducing oil passage B on the wheel cylinder 541 side.
  • the pressure reducing valve 55 is disposed in the pressure reducing oil passage B on the wheel cylinder 542 side.
  • the pressure-reducing valves 54 and 55 are energized mainly during pressure-reducing control and become open, and communicate the wheel cylinders 541 and 542 and the pressure-regulating reservoir 56 via the pressure-reducing oil passage B.
  • the pressure regulation reservoir 56 is a reservoir having a cylinder, a piston, and a biasing member.
  • the recirculation oil passage C is an oil passage connecting the pressure-reducing oil passage B (or the pressure regulating reservoir 56) and the main oil passage A between the differential pressure control valve 51 and the holding valves 52, 53 (here, the branch point X). It is.
  • the pump 57 is provided in the return oil passage C such that the discharge port is located on the branch point X side and the suction port is located on the pressure regulation reservoir 56 side.
  • the pump 57 is an electric pump driven by the electric motor 90.
  • the pump 57 discharges the brake fluid to a portion of the main oil passage A closer to the wheel cylinders 541 and 542 than the differential pressure control valve 51 (a branch point X in the present embodiment) via the return oil passage C.
  • the pump 57 pumps the brake fluid in the wheel cylinders 541 and 542 back to the master cylinder 13 via the pressure reducing valves 54 and 55 in the open state, for example, during anti-skid control.
  • the pump 57 is disposed between the master cylinder 13 and the wheel cylinders 541 and 542, and can discharge the brake fluid in the wheel cylinders 541 and 542 to the outside of the wheel cylinders 541 and 542.
  • the orifice portion 58 and the damper portion 59 are pulsation reduction mechanisms for reducing pulsation.
  • the auxiliary oil passage D is an oil passage that connects the pressure adjusting hole 56a of the pressure adjusting reservoir 56 with the main oil passage A upstream of the differential pressure control valve 51 (or the master cylinder 13).
  • the pressure regulating reservoir 56 is configured such that the valve hole 56b is closed with an increase in the amount of brake fluid flowing into the pressure regulating hole 56a due to an increase in the stroke.
  • a reservoir chamber 56c is formed on the oil passages B and C sides of the valve hole 56b.
  • the brake fluid in the pressure regulating reservoir 56 or the master cylinder 13 causes a portion (branch point) between the differential pressure control valve 51 and the holding valves 52 and 53 in the main oil passage A via the return oil passage C. X). Then, the wheel pressure is increased according to the control states of the differential pressure control valve 51 and the holding valves 52 and 53.
  • pressurization control is performed by driving the pump 57 and controlling various valves.
  • the pressure sensor 71 is a sensor that detects a master pressure. The pressure sensor 71 transmits a detection result to the brake ECU 6.
  • the second piping system 50b has the same configuration as the first piping system 50a, and corresponds to the main oil passage A, and connects a main oil passage Ab that connects the oil passage 31 with the wheel cylinders 543 and 544;
  • a differential pressure control valve 91 corresponding to 51, holding valves 92 and 93 corresponding to the holding valves 52 and 53, a pressure reducing oil passage Bb corresponding to the pressure reducing oil passage B, and a pressure reducing valve 94 corresponding to the pressure reducing valves 54 and 55.
  • each control state by the brake ECU 6 will be briefly described by taking control of the wheel cylinder 541 as an example.
  • the differential pressure control valve 51 and the holding valve 52 are in the open state, and the pressure reducing valve 54 is in the closed state.
  • the master pressure is supplied to the wheel cylinder 541.
  • the holding valve 52 is closed, and the pressure reduction valve 54 is opened.
  • the holding valve 52 and the pressure reducing valve 54 are closed.
  • the holding control can also be executed by closing the pressure reducing valve 54 and closing the differential pressure control valve 51 without closing the holding valve 52.
  • the differential pressure control valve 51 is in a differential pressure state (a throttle state)
  • the holding valve 52 is in an open state
  • the pressure reducing valve 54 is in a closed state
  • the pump 57 is driven.
  • the brake control device 1 is configured such that the master pistons 13 c and 13 d mechanically connected to the brake pedal 11 and the master pistons 13 c and 13 d are driven by the operation of the brake pedal 11 to thereby drive the master.
  • a master cylinder 13 for generating a master pressure in the chambers 13a and 13b, and an actuator 5 for sucking brake fluid in the master chambers 13a and 13b when increasing the hydraulic braking force and supplying the sucked brake fluid to the wheel cylinders 541 to 544.
  • the brake ECU 6 is an electronic control unit including a CPU, a memory, and the like. Various sensors such as a brake switch 15, a stroke sensor 16, a pressure sensor 71, and a wheel speed sensor 73 are connected to the brake ECU 6 via a communication line (not shown). The brake ECU 6 determines whether the operation of the actuator 5 is necessary based on the detection results of these various sensors. When the brake ECU 6 determines that the operation of the actuator 5 is necessary, the brake ECU 6 calculates a target wheel pressure as a wheel pressure target value for each of the wheel cylinders 541 to 544, and controls the actuator 5. The target wheel pressure corresponds to the target hydraulic braking force.
  • the brake ECU 6 can calculate the master pressure (upstream hydraulic pressure) based on the detection value of the pressure sensor 71 and the control state of the differential pressure control valve 51, and detect the detection value of the pressure sensor 71 and the holding valves 52 and 53.
  • the wheel pressure (downstream hydraulic pressure) can be calculated based on the control state of the pressure reducing valves 54 and 55.
  • a portion of the oil passage A1 between the holding valve 52 and the wheel cylinder 541 is referred to as a first oil passage 81a
  • a portion of the oil passage A2 between the holding valve 53 and the wheel cylinder 542 is referred to as a second oil passage 81b.
  • the pump 57, the motor 90, and the pressure regulating reservoir 56 constitute a hydraulic pressure supply unit 81c that supplies brake fluid to the first oil passage 81a and the second oil passage 81b via the holding valves 52, 53. I have.
  • the first oil passage 81a and the second oil passage 81b are connected via holding valves 52 and 53.
  • the holding valve 52 is an electromagnetic valve that is provided in a first oil passage 81a connected to a disc brake device 811 to be described later and holds the brake fluid in the first oil passage 81a.
  • the holding valve 53 is an electromagnetic valve that is provided in a second oil passage 81b connected to a drum brake device 812 described later, and holds the brake fluid in the second oil passage 81b.
  • the second piping system 50b also has the same configuration as the first piping system 50a.
  • the hydraulic braking device 81 includes a disk brake device (corresponding to a “first braking device” and a “first hydraulic braking device”) 811 provided on each front wheel Wf, and a drum brake provided on each rear wheel Wr. And a device (corresponding to a “second brake device” and a “second hydraulic brake device”) 812.
  • the disc brake device 811 of the first piping system 50a includes a wheel cylinder 541, and the disc brake device 811 of the second piping system 50b includes a wheel cylinder 544.
  • the drum brake device 812 of the first piping system 50a includes a wheel cylinder 542, and the drum brake device 812 of the second piping system 50b includes a wheel cylinder 543.
  • the brake control device 1 of the present embodiment corresponds to the disc brake device 811 corresponding to the first wheels Wfr and Wfl provided in the vehicle and the second wheel Wrr and Wrl provided to the vehicle.
  • a drum brake device 812 is provided, and a braking force is applied to the vehicle by controlling the disk brake device 811 and the drum brake device 812.
  • the regenerative braking device 82 is a device that generates regenerative braking force on the wheels W, and includes a generator, an inverter, a motor, and a hybrid ECU (not shown).
  • the brake ECU 6 performs regenerative cooperative control with the regenerative braking device 82.
  • the regenerative braking device 82 is configured to apply a regenerative braking force to the front wheels or the rear wheels.
  • the target regenerative braking force and the target hydraulic braking force are set such that the total of the regenerative braking force and the hydraulic braking force becomes the target braking force while considering the regeneration efficiency.
  • the change gradient of the target regenerative braking force and the target hydraulic braking force is reflected on the change gradient of the regenerative braking force and the hydraulic braking force as a result.
  • the target braking force (target deceleration) is set according to, for example, a driver's brake operation.
  • the brake ECU 6 includes a preliminary operation control unit 61 and a cooperative control unit 62 as functions for the precharge process and the cooperative control.
  • the preliminary operation control unit 61 preliminarily activates at least one of the disk brake device 811 and the drum brake device 812 based on the operation characteristics of both the disk brake device 811 and the drum brake device 812 prior to the application of the braking force. It is configured to be. That is, the preliminary operation control unit 61 considers the operating characteristics of the hydraulic braking device for the front wheels Wf and the hydraulic braking device for the rear wheels Wr, and controls at least one of the disc brake device 811 and the drum brake device 812. Perform precharge processing.
  • the operating characteristics of the disc brake device 811 include, for example, the stiffness of the wheel cylinder 541, which is the required fluid amount or the required precharge amount related to the hydraulic pressure until the hydraulic braking force starts to be generated, or the required pressure change amount per unit volume change. This is a characteristic that is determined based on such factors.
  • the operation characteristics of the disc brake device 811 are set based on the required precharge amount. In other words, the hydraulic pressure or the amount of fluid required to make the clearance between the brake pad and the brake rotor in the disc brake device 811 substantially zero is considered as the operating characteristic of the disc brake device 811.
  • the operation characteristics of the drum brake device 812 are characteristics determined based on, for example, the required precharge amount or the rigidity of the wheel cylinder 542, and are set in the present embodiment based on the required precharge amount. That is, the hydraulic pressure or the amount of fluid required to make the clearance between the brake shoe and the drum in the drum brake device 812 substantially zero is considered as the operation characteristic of the drum brake device 812.
  • the required precharge amount of the disc brake device 811 is different from the required precharge amount of the drum brake device 812 in both the fluid amount and the fluid pressure.
  • the disc brake device 811 completes the precharge process at 0.1 MPa (clearance # 0)
  • the drum brake device 812 completes the precharge process at 0.4 MPa (clearance # 0).
  • a preliminary operation is performed in consideration of the magnitude relationship between the required precharge amounts of the two braking devices.
  • the precharge process is selectively performed in consideration of the fact that the hydraulic pressure required for completing the precharge differs between the two braking devices.
  • the braking control device 1 of the present embodiment generates regenerative braking force by the regenerative braking device 82 until a predetermined condition is satisfied, and after the predetermined condition is satisfied, the disc brake device 811 and the drum brake device 812 also perform hydraulic pressure control. It is configured to generate power.
  • the braking control device 1 generates a braking force by the regenerative braking device 82 according to the target braking force, and when the target braking force and the regenerative braking force become equal to or more than a predetermined value, the disc brake device 811
  • the drum braking device 812 is configured to generate a braking force.
  • FIG. 2 An example of the precharge process according to the present embodiment will be described with reference to FIG.
  • the target braking force increases, and the target regenerative braking force (regenerative torque command value) also increases so as to satisfy the target braking force only with the regenerative braking force.
  • a preliminary operation that is, a precharge process is performed on the drum brake device 812 having a large required precharge amount.
  • the preliminary operation control unit 61 drives the hydraulic pressure supply unit 81c, closes the holding valve 52, opens the holding valve 53, and sets the hydraulic pressure (hereinafter, “necessary”) corresponding to the required precharge amount.
  • the hydraulic pressure of the wheel cylinder 542 is increased until the hydraulic pressure increases.
  • the preliminary operation control unit 61 closes the holding valve 53, opens the holding valve 52, and stops the hydraulic pressure supply unit 81c. That is, when the hydraulic pressure of the wheel cylinder 542 reaches the required hydraulic pressure, the preliminary operation control unit 61 executes the holding control on the wheel cylinder 542 (the second oil passage 81b). Unless the pressure reduction control is performed, the pressure reduction valves 54 and 55 are closed.
  • the wheel cylinder 541 exceeds the required hydraulic pressure, and thereafter, the disk brake device 811 generates a hydraulic braking force on the front wheel Wf.
  • the preliminary operation control unit 61 opens the holding valve 53. Accordingly, the brake fluid is also supplied to the wheel cylinder 542, and a hydraulic braking force is generated on the rear wheel Wr by the drum brake device 812.
  • the target braking force is equal to or more than a predetermined value
  • a hydraulic braking force is generated in addition to the regenerative braking force, and the braking force follows the target braking force.
  • At least one of the two hydraulic braking devices 811 and 812 preliminarily operates based on the operation characteristics of the two hydraulic braking devices 811 and 812. Therefore, as in the above example, the precharge process can be selectively executed on the hydraulic braking device 812 having the larger required precharge amount.
  • a braking device that requires a large amount of precharge and requires a relatively large amount of brake fluid in the early stages of increasing wheel pressure is selected according to operating characteristics, rather than being precharged like other types of braking devices
  • the present embodiment it is possible to perform a selective (independent) precharge process that is more suitable for exhibiting overall responsiveness than performing a precharge process uniformly for a plurality of braking devices having different operation characteristics. Become. That is, the responsiveness can be improved.
  • the preliminary operation control unit 61 controls the holding valves 52 and 53 and the hydraulic pressure supply unit 81c so that the disc brake device 811 and the drum brake 811 Based on both the required precharge amounts of the device 812, the holding control for holding the brake fluid in at least one of the first oil passage 81a and the second oil passage 81b is executed.
  • the preliminary operation control unit 61 executes the holding control on the second oil passage 81b after generating the required hydraulic pressure in the wheel cylinder 542 (closes the holding valve 53), and thereafter,
  • the hydraulic pressure supply unit 81c is operated to perform the pressurization control, the differential pressure control valve 51 is controlled, and the hydraulic pressure of the wheel cylinder 541 is maintained at the required hydraulic pressure while the holding valve 52 is kept open.
  • the precharge processing may be performed.
  • the holding control is performed for both the wheel cylinders 541 and 542 to maintain the wheel pressure at the required hydraulic pressure.
  • the preparatory operation control unit 61 activates the hydraulic pressure supply unit 81c when applying the hydraulic braking force after the execution of the holding control, and the first hydraulic passage 81a and the second hydraulic passage 81b.
  • the fluid pressure of the first fluid passage 81a (low pressure side fluid passage) which is the lower fluid pressure is changed to the fluid pressure of the second fluid passage 81b (high pressure side fluid passage) which is the higher fluid pressure.
  • the holding control for the second oil passage 81b is continued.
  • the cooperative control unit 62 sets the disc brake device 811 and Of the drum brake devices 812, the braking device with the smaller required precharge amount (here, the disk brake device 811) is configured to generate a braking force.
  • the cooperative control unit 62 activates the hydraulic pressure supply unit 81c and compares the required precharge amount.
  • the pressure of the wheel cylinder 541 of the disc brake device 811 that is not precharged because of its small size and the corresponding holding valve 52 is open is increased. That is, the shortage of the regenerative braking force is compensated only by the braking force of the disk brake device 811 (the front wheel Wf) by the operation of the hydraulic pressure supply unit 81c.
  • the insufficient braking force can be secured by simpler control without changing the state of the holding valves 52 and 53, and malfunctions and the like can be suppressed.
  • responsiveness can be easily ensured by securing the insufficient braking force by the braking device having a small required precharge amount.
  • the braking device that is controlled by the cooperative control unit 62 and that secures the insufficient braking force corresponds to a braking device that has a higher rigidity of the wheel cylinders 541 and 542 that is a pressure change amount required for a unit volume change.
  • the braking device may be determined to be the braking device in which the holding valves 52 and 53 are open, or the braking device provided on the front wheel Wf when the front wheel Wf and the rear wheel Wr can be selected.
  • the rigidity is high, the hydraulic pressure increases with a small amount of liquid, and the responsiveness increases.
  • the control can be simplified as described above.
  • the braking force of the front wheel Wf has a greater effect on the overall braking force than the braking force of the rear wheel Wr, and the responsiveness is improved.
  • the rigidity of the wheel cylinder 541 is relatively high.
  • the preliminary operation control unit 61 opens the holding valves 52 and 53 regardless of whether or not the holding control is performed, or the front wheel that has a relatively large effect on the overall braking force.
  • the holding valve 52 corresponding to Wf is opened.
  • Whether or not the emergency braking is performed is determined based on, for example, whether or not the increasing gradient of the stroke is equal to or greater than a predetermined gradient.
  • the preliminary operation control unit 61 determines that the brake operation is emergency braking and detects the emergency braking.
  • at least one of the holding valves 52 and 53 is provided corresponding to the front wheel Wf of the vehicle, and when the preliminary operation control unit 61 detects the emergency braking, regardless of whether the holding control is performed or not. At least one of the holding valves 52 and 53 corresponding to the front wheel Wf is opened.
  • a braking force (a hydraulic braking force) to be precharged
  • a braking force (a regenerative braking force) that is not to be precharged.
  • the stagnation time of the braking force increase can be reduced, and the braking force can smoothly follow the target braking force.
  • the transition of each braking force and the transition of each wheel pressure in FIGS. 2 and 3 can be regarded as the transition of the target value in the control.
  • each brake device corresponding to a wheel is not limited to a hydraulic brake device, and may be an electric brake device.
  • the third braking device is not limited to the regenerative braking device, and may be, for example, an electric braking device. That is, the third braking force is not limited to the regenerative braking force.
  • the electric brake device is a device that generates a braking force by pressing a brake pad against a brake rotor by, for example, an electric direct acting type.
  • the operation characteristics of the braking device are not limited to the required precharge amount and the rigidity of the wheel cylinder, but may be, for example, a structural hysteresis characteristic, a play amount (ineffective operation amount) in the electric brake device, and the like. Further, according to the present invention, even if each braking device is the same type of device, if the operation characteristics are structurally different, it is possible to perform a precharge process suitable therefor. In addition, the precharge processing of the present embodiment can be said to be a play reduction processing for reducing clearance. Further, the present invention can be applied to the technology of automatic driving and automatic braking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

The present invention is a brake control device which is provided with a first braking device 811 that corresponds to first wheels Wfr, Wfl provided on a vehicle and a second braking device 812 that corresponds to second wheels Wrr, Wrl provided on the vehicle, and which applies a braking force on the vehicle by controlling the first braking device 811 and the second braking device 812. The brake control device comprises a preliminary operation control unit 61 that preliminarily, prior to applying the braking force, operates the first braking device 811 and/or the second braking device 812 on the basis of the operating characteristics of both the first braking device 811 and the second braking device 812.

Description

制動制御装置Braking control device
 本発明は、制動制御装置に関する。 The present invention relates to a braking control device.
 制動制御装置は、例えば液圧制動力を発生させる構成である場合、下流側にホイールシリンダの液圧(ホイール圧)を加圧するアクチュエータを備えている。ホイールシリンダは、各車輪の液圧制動装置に設けられている。アクチュエータ内には、各ホイールシリンダに接続される油路が設けられている。従来から、制動制御装置では、応答性を向上させるために、例えばブレーキパッドとブレーキロータの間のクリアランスを予め詰めるプリチャージ処理が行われている。プリチャージ処理では、制動開始前に、共通のアクチュエータにより、予めホイールシリンダにブレーキ液が供給される。プリチャージ処理については、例えば特開2006-69495号公報に記載されている。 In the case where the braking control device is configured to generate a hydraulic braking force, for example, the braking control device includes an actuator that increases the hydraulic pressure (wheel pressure) of the wheel cylinder on the downstream side. The wheel cylinder is provided in the hydraulic braking device of each wheel. An oil passage connected to each wheel cylinder is provided in the actuator. 2. Description of the Related Art Conventionally, in a brake control device, for example, a precharge process of previously reducing a clearance between a brake pad and a brake rotor has been performed in order to improve responsiveness. In the precharge process, the brake fluid is supplied to the wheel cylinder in advance by a common actuator before the start of braking. The precharge processing is described in, for example, JP-A-2006-69495.
特開2006-69495号公報JP 2006-69495 A
 しかしながら、例えばディスクブレーキ装置とドラムブレーキ装置とでは、プリチャージ処理に必要なブレーキ液の液量等が異なり、両方のブレーキ装置を備える車両に対して、一律のプリチャージ処理をするだけでは応答性の向上に限界がある。特に、例えば回生制動力など、プリチャージ処理の対象と異なる制動力も発生可能な車両においては、例えばプリチャージ処理対象外の制動力にプリチャージ処理対象の制動力を加える際に、プリチャージ不足により制動力増大が一時的に停滞し、ドライバに違和感を与えるおそれがある。 However, for example, the disc brake device and the drum brake device differ in the amount of brake fluid required for the precharge process, and the responsiveness can be improved only by performing a uniform precharge process on a vehicle equipped with both brake devices. There is a limit to improvement. In particular, in a vehicle that can generate a braking force different from the target of the precharge processing, such as a regenerative braking force, for example, when the braking force of the precharge processing target is added to the braking force of the precharge processing target, insufficient precharge occurs. As a result, the increase in the braking force may temporarily stagnate, giving the driver an uncomfortable feeling.
 本発明は、このような事情に鑑みて為されたものであり、応答性の向上が可能な制動制御装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and has as its object to provide a braking control device capable of improving responsiveness.
 本発明は、車両に設けられた第1の車輪に対応する第1制動装置と、前記車両に設けられた第2の車輪に対応する第2制動装置とを備え、前記第1制動装置及び前記第2制動装置を制御することにより前記車両に制動力を付与する制動制御装置であって、前記制動力の付与に先立って、前記第1制動装置及び前記第2制動装置の両方の作動特性に基づいて、前記第1制動装置及び前記第2制動装置の少なくとも一方を予備的に作動させる予備作動制御部を備える。 The present invention includes a first braking device corresponding to a first wheel provided in a vehicle, and a second braking device corresponding to a second wheel provided in the vehicle, wherein the first braking device and the second braking device correspond to each other. A braking control device for applying a braking force to the vehicle by controlling a second braking device, wherein prior to the application of the braking force, the operating characteristics of both the first braking device and the second braking device are adjusted. A preliminary operation control unit that preliminarily activates at least one of the first braking device and the second braking device.
 本発明によれば、各制動装置の作動特性(例えば制動力が発生開始するまでに必要なプリチャージ量など)が考慮された予備的な作動が行われる。これにより、複数の制動装置に対して一律にプリチャージ処理を実行するよりも、全体の応答性発揮により適した選択的なプリチャージ処理が可能となる。つまり、本発明によれば、応答性の向上が可能となる。 According to the present invention, a preliminary operation is performed in consideration of the operation characteristics of each of the braking devices (for example, a precharge amount required until the braking force starts to be generated). As a result, it is possible to perform a selective precharge process more suitable for exhibiting overall responsiveness, rather than performing the precharge process uniformly for a plurality of braking devices. That is, according to the present invention, the responsiveness can be improved.
本実施形態の制動制御装置の構成図である。It is a lineblock diagram of a brake control device of this embodiment. 本実施形態の予備的作動を説明するためのタイムチャートである。5 is a time chart for explaining a preliminary operation of the present embodiment. 本実施形態の予備的作動を説明するためのタイムチャートである。5 is a time chart for explaining a preliminary operation of the present embodiment.
 以下、本発明の実施形態について図に基づいて説明する。なお、説明に用いる各図は概念図であり、各部の形状は必ずしも厳密なものではない。本実施形態の制動制御装置1は、図1に示すように、ブレーキペダル11と、倍力装置12と、マスタシリンダ13と、リザーバ14、ブレーキスイッチ15と、ストロークセンサ16と、アクチュエータ5と、ブレーキECU6と、液圧制動装置81と、回生制動装置82と、を備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each drawing used for explanation is a conceptual diagram, and the shape of each part is not always strict. As shown in FIG. 1, the brake control device 1 according to the present embodiment includes a brake pedal 11, a booster 12, a master cylinder 13, a reservoir 14, a brake switch 15, a stroke sensor 16, an actuator 5, The brake ECU 6, a hydraulic braking device 81, and a regenerative braking device 82 are provided.
 ブレーキペダル11は、ドライバがブレーキ操作可能な操作部材である。ブレーキスイッチ15は、ブレーキペダル11の踏み込みの有無(操作の有無)を検出するセンサである。ブレーキスイッチ15は、ブレーキストップスイッチとも呼ばれる。ブレーキスイッチ15は、検出信号をブレーキECU6に出力する。 The brake pedal 11 is an operating member that can be operated by the driver to brake. The brake switch 15 is a sensor that detects whether or not the brake pedal 11 is depressed (ie, whether or not an operation is performed). The brake switch 15 is also called a brake stop switch. The brake switch 15 outputs a detection signal to the brake ECU 6.
 倍力装置12は、エンジンの吸気負圧を利用してブレーキ操作力を助勢するバキュームブースタである。マスタシリンダ13は、運転者によるブレーキペダル11の操作力をマスタ圧に変換し、そのマスタ圧を、アクチュエータ5を介してホイールシリンダ541~544に供給する装置である。マスタシリンダ13は、ブレーキペダル11の操作に応じたマスタ圧を発生させる第1マスタ室13aおよび第2マスタ室13bを備えている。マスタシリンダ13は、第1マスタ室13aと第2マスタ室13bとに同一の液圧が形成されるように構成されている。すなわち、第1マスタ室13aは、第1マスタピストン13cと第2マスタピストン13dとの間に形成され、第2マスタ室13bは、第2マスタピストン13dとマスタシリンダ13の底部との間に形成されている。第1マスタピストン13cと第2マスタピストン13dとの間には、第1スプリング13eが介装され、第2マスタピストン13dとマスタシリンダ13の底部との間には、第2スプリング13fが介装されている。 The booster 12 is a vacuum booster that assists the brake operating force by using the intake negative pressure of the engine. The master cylinder 13 is a device that converts the operation force of the brake pedal 11 by the driver into a master pressure and supplies the master pressure to the wheel cylinders 541 to 544 via the actuator 5. The master cylinder 13 includes a first master chamber 13a and a second master chamber 13b that generate a master pressure according to the operation of the brake pedal 11. The master cylinder 13 is configured such that the same hydraulic pressure is formed in the first master chamber 13a and the second master chamber 13b. That is, the first master chamber 13a is formed between the first master piston 13c and the second master piston 13d, and the second master chamber 13b is formed between the second master piston 13d and the bottom of the master cylinder 13. Have been. A first spring 13e is interposed between the first master piston 13c and the second master piston 13d, and a second spring 13f is interposed between the second master piston 13d and the bottom of the master cylinder 13. Have been.
 リザーバ14は、ブレーキ液を貯蔵してマスタシリンダ13にそのブレーキ液を補給するための部材である。換言すると、ブレーキ液を貯留する部材であって、マスタ室13a、13bに接続されている。マスタ室13a、13bとリザーバ14とは、初期状態で連通し、マスタピストン13c、13dのストロークが所定値以上となることにより遮断される。つまり、マスタピストン13c、13dは、ブレーキペダル11のストロークが所定値以上である場合にマスタ室13a、13bとリザーバ14との間を遮断するように構成されている。マスタピストン13c、13dは、倍力装置12を介して、ブレーキペダル11と機械的に連結されている。マスタピストン13c、13dの移動とブレーキペダル11の移動とは、機械的に連動している。 The reservoir 14 is a member for storing the brake fluid and replenishing the master cylinder 13 with the brake fluid. In other words, it is a member that stores the brake fluid, and is connected to the master chambers 13a and 13b. The master chambers 13a and 13b communicate with the reservoir 14 in an initial state, and are shut off when the strokes of the master pistons 13c and 13d become equal to or more than a predetermined value. That is, the master pistons 13c and 13d are configured to shut off the space between the master chambers 13a and 13b and the reservoir 14 when the stroke of the brake pedal 11 is equal to or more than the predetermined value. The master pistons 13c and 13d are mechanically connected to the brake pedal 11 via a booster 12. The movement of the master pistons 13c and 13d and the movement of the brake pedal 11 are mechanically linked.
 ストロークセンサ16は、ブレーキペダル11の操作量(ストローク)を検出するセンサである。ストロークセンサ16は、検出信号をブレーキECU6に出力する。なお、制動制御装置1には、ブレーキペダル11の操作に対して無効ストロークが設定されており、ストロークが所定値以上になるまでは、回生制動力の発生を優先し、マスタ圧による液圧制動力が発生しないように構成されている。 The stroke sensor 16 is a sensor that detects the operation amount (stroke) of the brake pedal 11. The stroke sensor 16 outputs a detection signal to the brake ECU 6. In the braking control device 1, an invalid stroke is set for the operation of the brake pedal 11, and the generation of the regenerative braking force is prioritized until the stroke exceeds a predetermined value, and the hydraulic braking force by the master pressure is applied. Is configured not to occur.
 アクチュエータ5は、マスタ圧が発生する第1マスタ室13a及び第2マスタ室13bと、ホイールシリンダ541、542、543、544の間に配置されている。アクチュエータ5と第1マスタ室13aとは油路31により接続され、アクチュエータ5と第2マスタ室13bは油路32により接続されている。アクチュエータ5は、ブレーキECU6の指示に応じて、ホイールシリンダ541~544の液圧(ホイール圧)を調整する装置である。アクチュエータ5は、ブレーキECU6の指令に応じて、ブレーキ液をマスタ圧からさらに加圧する加圧制御、ホイール圧を減圧する減圧制御、及びホイール圧を保持する保持制御を実行する。また、アクチュエータ5は、マスタ圧をそのままホイールシリンダ541~544に供給する増圧制御も実行可能である。アクチュエータ5は、ブレーキECU6の指令に基づき、アンチスキッド制御(ABS制御)、横滑り防止制御(ESC制御)、又はブレーキアシスト制御(BA制御)等を実行する。 The actuator 5 is arranged between the first master chamber 13a and the second master chamber 13b in which the master pressure is generated, and the wheel cylinders 541, 542, 543, and 544. The actuator 5 and the first master chamber 13a are connected by an oil passage 31, and the actuator 5 and the second master chamber 13b are connected by an oil passage 32. The actuator 5 is a device that adjusts the hydraulic pressure (wheel pressure) of the wheel cylinders 541 to 544 according to an instruction from the brake ECU 6. The actuator 5 executes a pressure control for further increasing the brake fluid from the master pressure, a pressure reduction control for reducing the wheel pressure, and a holding control for holding the wheel pressure in accordance with a command from the brake ECU 6. The actuator 5 can also execute a pressure increase control for supplying the master pressure to the wheel cylinders 541 to 544 as it is. The actuator 5 executes anti-skid control (ABS control), side skid prevention control (ESC control), brake assist control (BA control), and the like based on a command from the brake ECU 6.
 具体的に、アクチュエータ5は、油圧回路5Aと、電気モータ90と、を備えている。油圧回路5Aは、第1配管系統50aと、第2配管系統50bと、を備えている。第1配管系統50aは、前輪Wfl、後輪Wrrに加えられる液圧(ホイール圧)を制御する系統である。第2配管系統50bは、前輪Wfr、後輪Wrlに加えられる液圧(ホイール圧)を制御する系統である。また、各車輪W(車輪の符号をまとめて「W」、前輪の符号をまとめて「Wf」、後輪の符号をまとめて「Wr」と記載する場合がある)に対して、車輪速度センサ73が設置されている。本実施形態ではX配管が採用されている。 Specifically, the actuator 5 includes a hydraulic circuit 5A and an electric motor 90. The hydraulic circuit 5A includes a first piping system 50a and a second piping system 50b. The first piping system 50a is a system that controls the hydraulic pressure (wheel pressure) applied to the front wheel Wfl and the rear wheel Wrr. The second piping system 50b is a system that controls the hydraulic pressure (wheel pressure) applied to the front wheel Wfr and the rear wheel Wrl. In addition, a wheel speed sensor is provided for each wheel W (in some cases, the sign of the wheel is collectively described as “W”, the sign of the front wheel is described as “Wf”, and the code of the rear wheel is collectively described as “Wr”). 73 are provided. In this embodiment, an X pipe is employed.
 第1配管系統50aは、主油路Aと、差圧制御弁51と、保持弁52、53と、減圧油路Bと、減圧弁54、55と、調圧リザーバ56と、還流油路Cと、ポンプ57と、補助油路Dと、オリフィス部58と、ダンパ部59と、圧力センサ71と、を備えている。説明において、「油路」の用語は、例えば液圧路、流路、管路、通路、又は配管等に置換可能である。 The first piping system 50a includes a main oil passage A, a differential pressure control valve 51, holding valves 52 and 53, a pressure reducing oil passage B, pressure reducing valves 54 and 55, a pressure regulating reservoir 56, a reflux oil passage C , A pump 57, an auxiliary oil passage D, an orifice 58, a damper 59, and a pressure sensor 71. In the description, the term “oil passage” can be replaced with, for example, a hydraulic passage, a flow path, a pipe, a passage, a pipe, or the like.
 主油路Aは、油路32とホイールシリンダ541、542とを接続する油路である。つまり、主油路A(及び油路32)は、マスタシリンダ13(第2マスタ室13b)とホイールシリンダ541、542とを接続している。差圧制御弁51は、主油路Aに設けられ、主油路Aを開状態(指示圧=0)と差圧状態(指示圧>0)に制御する電磁弁である。差圧状態は、絞り状態ともいえる。差圧制御弁51は、ブレーキECU6からの指示圧(制御電流)に応じて、自身よりもマスタシリンダ13側の液圧と自身よりもホイールシリンダ541、542側の液圧との差圧を制御する。つまり、差圧制御弁51は、マスタシリンダ13とホイールシリンダ541~544との液圧の差を調整可能な電磁弁である。差圧制御弁51は、自身よりホイールシリンダ541~544側の液圧を自身よりマスタ室13a、13b側の液圧よりも指示圧分だけ高く制御可能な弁である。 The main oil passage A is an oil passage connecting the oil passage 32 and the wheel cylinders 541 and 542. That is, the main oil passage A (and the oil passage 32) connects the master cylinder 13 (second master chamber 13b) and the wheel cylinders 541 and 542. The differential pressure control valve 51 is an electromagnetic valve that is provided in the main oil passage A and controls the main oil passage A between an open state (instruction pressure = 0) and a differential pressure state (instruction pressure> 0). The differential pressure state can be said to be a throttle state. The differential pressure control valve 51 controls the differential pressure between the hydraulic pressure on the master cylinder 13 side and the hydraulic pressure on the wheel cylinders 541 and 542 relative to itself according to the command pressure (control current) from the brake ECU 6. I do. That is, the differential pressure control valve 51 is an electromagnetic valve that can adjust the difference in hydraulic pressure between the master cylinder 13 and the wheel cylinders 541 to 544. The differential pressure control valve 51 is a valve capable of controlling the fluid pressure on the wheel cylinders 541 to 544 side higher than the fluid pressure on the master chambers 13a and 13b side by the command pressure.
 差圧制御弁51には、マスタシリンダ13側(上流側)からホイールシリンダ541~544側(下流側)への流通を許可し、その反対の流通は禁止する逆止弁51aが設置されている。また、主油路Aは、ホイールシリンダ541、542に対応するように、差圧制御弁51の下流側の分岐点Xで2つの油路A1、A2に分岐している。 The differential pressure control valve 51 is provided with a check valve 51a that permits the flow from the master cylinder 13 side (upstream side) to the wheel cylinders 541 to 544 side (downstream side) and prohibits the reverse flow. . The main oil passage A is branched into two oil passages A1 and A2 at a branch point X on the downstream side of the differential pressure control valve 51 so as to correspond to the wheel cylinders 541 and 542.
 保持弁52、53は、ブレーキECU6の指示により開閉する電磁弁であって、非通電状態で開状態(連通状態)となるノーマルオープンタイプの電磁弁である。保持弁52は油路A1に配置され、保持弁53は油路A2に配置されている。保持弁52、53は、増圧制御時に非通電状態で開状態となってホイールシリンダ541、542と分岐点Xと連通させ、保持制御及び減圧制御時に通電されて閉状態となりホイールシリンダ541、542と分岐点Xとを遮断する。保持弁52、53は、オンオフ弁(2値制御弁)であっても、分岐点X側をホイールシリンダ541、542側より指示圧分だけ高く制御可能なリニア弁であっても良い。 The holding valves 52 and 53 are electromagnetic valves that are opened and closed according to instructions from the brake ECU 6, and are normally open type electromagnetic valves that are opened (communicated) when not energized. The holding valve 52 is arranged in the oil passage A1, and the holding valve 53 is arranged in the oil passage A2. The holding valves 52 and 53 are opened in a non-energized state during the pressure increasing control to communicate with the wheel cylinders 541 and 542 and the branch point X, and are energized and closed when the holding control and the pressure reducing control are performed. And the branch point X are cut off. The holding valves 52 and 53 may be on / off valves (binary control valves) or linear valves capable of controlling the branch point X side higher than the wheel cylinders 541 and 542 by the indicated pressure.
 減圧油路Bは、油路A1における保持弁52とホイールシリンダ541との間と調圧リザーバ56とを接続し、油路A2における保持弁53とホイールシリンダ542との間と調圧リザーバ56とを接続する油路である。減圧弁54、55は、ブレーキECU6の指示により開閉する電磁弁であって、非通電状態で閉状態(遮断状態)となるノーマルクローズタイプの電磁弁である。減圧弁54は、ホイールシリンダ541側の減圧油路Bに配置されている。減圧弁55は、ホイールシリンダ542側の減圧油路Bに配置されている。減圧弁54、55は、主に減圧制御時に通電されて開状態となり、減圧油路Bを介してホイールシリンダ541、542と調圧リザーバ56とを連通させる。調圧リザーバ56は、シリンダ、ピストン、及び付勢部材を有するリザーバである。 The decompression oil passage B connects the pressure regulating reservoir 56 between the holding valve 52 and the wheel cylinder 541 in the oil passage A1, and connects the pressure regulating reservoir 56 between the holding valve 53 and the wheel cylinder 542 in the oil passage A2. Is an oil path that connects The pressure reducing valves 54 and 55 are electromagnetic valves that open and close according to instructions from the brake ECU 6, and are normally closed type electromagnetic valves that are closed (disconnected) when not energized. The pressure reducing valve 54 is arranged in the pressure reducing oil passage B on the wheel cylinder 541 side. The pressure reducing valve 55 is disposed in the pressure reducing oil passage B on the wheel cylinder 542 side. The pressure-reducing valves 54 and 55 are energized mainly during pressure-reducing control and become open, and communicate the wheel cylinders 541 and 542 and the pressure-regulating reservoir 56 via the pressure-reducing oil passage B. The pressure regulation reservoir 56 is a reservoir having a cylinder, a piston, and a biasing member.
 還流油路Cは、減圧油路B(又は調圧リザーバ56)と、主油路Aにおける差圧制御弁51と保持弁52、53の間(ここでは分岐点X)とを接続する油路である。ポンプ57は、吐出ポートが分岐点X側で吸入ポートが調圧リザーバ56側に配置されるように、還流油路Cに設けられている。ポンプ57は、電気モータ90によって駆動される電動ポンプである。ポンプ57は、還流油路Cを介して、ブレーキ液を主油路Aのうち差圧制御弁51よりもホイールシリンダ541、542側の部分(本実施形態では分岐点X)に吐出する。また、ポンプ57は、例えばアンチスキッド制御の際、開状態の減圧弁54、55を介して、ホイールシリンダ541、542内のブレーキ液をマスタシリンダ13に汲み戻す。このように、ポンプ57は、マスタシリンダ13とホイールシリンダ541、542との間に配置され、ホイールシリンダ541、542内のブレーキ液をホイールシリンダ541、542外に吐出することができる。オリフィス部58及びダンパ部59は、脈動を低減する脈動低減機構である。 The recirculation oil passage C is an oil passage connecting the pressure-reducing oil passage B (or the pressure regulating reservoir 56) and the main oil passage A between the differential pressure control valve 51 and the holding valves 52, 53 (here, the branch point X). It is. The pump 57 is provided in the return oil passage C such that the discharge port is located on the branch point X side and the suction port is located on the pressure regulation reservoir 56 side. The pump 57 is an electric pump driven by the electric motor 90. The pump 57 discharges the brake fluid to a portion of the main oil passage A closer to the wheel cylinders 541 and 542 than the differential pressure control valve 51 (a branch point X in the present embodiment) via the return oil passage C. Further, the pump 57 pumps the brake fluid in the wheel cylinders 541 and 542 back to the master cylinder 13 via the pressure reducing valves 54 and 55 in the open state, for example, during anti-skid control. As described above, the pump 57 is disposed between the master cylinder 13 and the wheel cylinders 541 and 542, and can discharge the brake fluid in the wheel cylinders 541 and 542 to the outside of the wheel cylinders 541 and 542. The orifice portion 58 and the damper portion 59 are pulsation reduction mechanisms for reducing pulsation.
 補助油路Dは、調圧リザーバ56の調圧孔56aと、主油路Aにおける差圧制御弁51よりも上流側(又はマスタシリンダ13)とを接続する油路である。調圧リザーバ56は、ストローク増加による調圧孔56aへのブレーキ液の流入量増加に伴い、弁孔56bが閉塞されるように構成されている。弁孔56bの油路B、C側にはリザーバ室56cが形成される。 The auxiliary oil passage D is an oil passage that connects the pressure adjusting hole 56a of the pressure adjusting reservoir 56 with the main oil passage A upstream of the differential pressure control valve 51 (or the master cylinder 13). The pressure regulating reservoir 56 is configured such that the valve hole 56b is closed with an increase in the amount of brake fluid flowing into the pressure regulating hole 56a due to an increase in the stroke. A reservoir chamber 56c is formed on the oil passages B and C sides of the valve hole 56b.
 ポンプ57の駆動により、調圧リザーバ56又はマスタシリンダ13内のブレーキ液が、還流油路Cを介して主油路Aにおける差圧制御弁51と保持弁52、53の間の部分(分岐点X)に吐出される。そして、差圧制御弁51及び保持弁52、53の制御状態に応じて、ホイール圧が加圧される。このようにアクチュエータ5では、ポンプ57の駆動と各種弁の制御により加圧制御が実行される。圧力センサ71は、マスタ圧を検出するセンサである。圧力センサ71は、ブレーキECU6に検出結果を送信する。 By driving the pump 57, the brake fluid in the pressure regulating reservoir 56 or the master cylinder 13 causes a portion (branch point) between the differential pressure control valve 51 and the holding valves 52 and 53 in the main oil passage A via the return oil passage C. X). Then, the wheel pressure is increased according to the control states of the differential pressure control valve 51 and the holding valves 52 and 53. As described above, in the actuator 5, pressurization control is performed by driving the pump 57 and controlling various valves. The pressure sensor 71 is a sensor that detects a master pressure. The pressure sensor 71 transmits a detection result to the brake ECU 6.
 第2配管系統50bは、第1配管系統50aと同様の構成であって、主油路Aに相当し油路31とホイールシリンダ543、544とを接続する主油路Abと、差圧制御弁51に相当する差圧制御弁91と、保持弁52、53に相当する保持弁92、93と、減圧油路Bに相当する減圧油路Bbと、減圧弁54、55に相当する減圧弁94、95と、調圧リザーバ56に相当する調圧リザーバ96と、還流油路Cに相当する還流油路Cbと、ポンプ57に相当するポンプ97と、補助油路Dに相当する補助油路Dbと、オリフィス部58に相当するオリフィス部58aと、ダンパ部59に相当するダンパ部59aと、を備えている。第2配管系統50bの詳細構成については、第1配管系統50aの説明を参照できるため、説明を省略する。 The second piping system 50b has the same configuration as the first piping system 50a, and corresponds to the main oil passage A, and connects a main oil passage Ab that connects the oil passage 31 with the wheel cylinders 543 and 544; A differential pressure control valve 91 corresponding to 51, holding valves 92 and 93 corresponding to the holding valves 52 and 53, a pressure reducing oil passage Bb corresponding to the pressure reducing oil passage B, and a pressure reducing valve 94 corresponding to the pressure reducing valves 54 and 55. , 95, a pressure regulating reservoir 96 corresponding to the pressure regulating reservoir 56, a return oil passage Cb corresponding to the return oil passage C, a pump 97 corresponding to the pump 57, and an auxiliary oil passage Db corresponding to the auxiliary oil passage D And an orifice portion 58 a corresponding to the orifice portion 58 and a damper portion 59 a corresponding to the damper portion 59. For the detailed configuration of the second piping system 50b, the description of the first piping system 50a can be referred to, and the description is omitted.
 ここで、ホイールシリンダ541に対する制御を例にブレーキECU6による各制御状態について簡単に説明すると、制御のない状態では、差圧制御弁51及び保持弁52が開状態となり、減圧弁54が閉状態となって、マスタ圧がホイールシリンダ541に供給される。減圧制御では、保持弁52が閉状態となり、減圧弁54が開状態となる。保持制御では、保持弁52及び減圧弁54が閉状態となる。また、保持制御は、保持弁52を閉じず、減圧弁54を閉じ、差圧制御弁51を絞ることでも実行できる。加圧制御では、差圧制御弁51が差圧状態(絞り状態)となり、保持弁52が開状態となり、減圧弁54が閉状態となり、ポンプ57が駆動する。 Here, each control state by the brake ECU 6 will be briefly described by taking control of the wheel cylinder 541 as an example. In a state without control, the differential pressure control valve 51 and the holding valve 52 are in the open state, and the pressure reducing valve 54 is in the closed state. As a result, the master pressure is supplied to the wheel cylinder 541. In the pressure reduction control, the holding valve 52 is closed, and the pressure reduction valve 54 is opened. In the holding control, the holding valve 52 and the pressure reducing valve 54 are closed. The holding control can also be executed by closing the pressure reducing valve 54 and closing the differential pressure control valve 51 without closing the holding valve 52. In the pressurization control, the differential pressure control valve 51 is in a differential pressure state (a throttle state), the holding valve 52 is in an open state, the pressure reducing valve 54 is in a closed state, and the pump 57 is driven.
 このように、本実施形態の制動制御装置1は、ブレーキペダル11に対して機械的に連結されたマスタピストン13c、13dと、ブレーキペダル11の操作によりマスタピストン13c、13dが駆動することでマスタ室13a、13bにマスタ圧が発生するマスタシリンダ13と、液圧制動力を増大させるに際してマスタ室13a、13b内のブレーキ液を吸引し、吸引したブレーキ液をホイールシリンダ541~544に供給するアクチュエータ5と、を備え、車両の車輪Wに液圧制動力及び回生制動力の少なくとも一方を付与するシステムである。 As described above, the brake control device 1 according to the present embodiment is configured such that the master pistons 13 c and 13 d mechanically connected to the brake pedal 11 and the master pistons 13 c and 13 d are driven by the operation of the brake pedal 11 to thereby drive the master. A master cylinder 13 for generating a master pressure in the chambers 13a and 13b, and an actuator 5 for sucking brake fluid in the master chambers 13a and 13b when increasing the hydraulic braking force and supplying the sucked brake fluid to the wheel cylinders 541 to 544. And a system for applying at least one of a hydraulic braking force and a regenerative braking force to the wheel W of the vehicle.
 ブレーキECU6は、CPUやメモリ等を備える電子制御ユニットである。ブレーキECU6には、通信線(図示略)により、ブレーキスイッチ15、ストロークセンサ16、圧力センサ71及び車輪速度センサ73等の各種センサが接続されている。ブレーキECU6は、これら各種センサの検出結果に基づき、アクチュエータ5の作動が必要か否かを判定する。ブレーキECU6は、アクチュエータ5の作動が必要であると判定した場合、各ホイールシリンダ541~544に対してホイール圧の目標値である目標ホイール圧を演算し、アクチュエータ5を制御する。目標ホイール圧は、目標液圧制動力に対応する。ブレーキECU6は、圧力センサ71の検出値と差圧制御弁51の制御状態に基づいてマスタ圧(上流の液圧)を演算することができ、また圧力センサ71の検出値と保持弁52、53及び減圧弁54、55の制御状態に基づいてホイール圧(下流の液圧)を演算することができる。 The brake ECU 6 is an electronic control unit including a CPU, a memory, and the like. Various sensors such as a brake switch 15, a stroke sensor 16, a pressure sensor 71, and a wheel speed sensor 73 are connected to the brake ECU 6 via a communication line (not shown). The brake ECU 6 determines whether the operation of the actuator 5 is necessary based on the detection results of these various sensors. When the brake ECU 6 determines that the operation of the actuator 5 is necessary, the brake ECU 6 calculates a target wheel pressure as a wheel pressure target value for each of the wheel cylinders 541 to 544, and controls the actuator 5. The target wheel pressure corresponds to the target hydraulic braking force. The brake ECU 6 can calculate the master pressure (upstream hydraulic pressure) based on the detection value of the pressure sensor 71 and the control state of the differential pressure control valve 51, and detect the detection value of the pressure sensor 71 and the holding valves 52 and 53. The wheel pressure (downstream hydraulic pressure) can be calculated based on the control state of the pressure reducing valves 54 and 55.
 ここで、第1配管系統50aについてさらに説明する。油路A1のうち保持弁52とホイールシリンダ541との間の部分を第1油路81aと称し、油路A2のうち保持弁53とホイールシリンダ542との間の部分を第2油路81bと称する。また、ポンプ57、モータ90、及び調圧リザーバ56は、保持弁52、53を介して、第1油路81a及び第2油路81bにブレーキ液を供給する液圧供給部81cを構成している。第1油路81aと第2油路81bとは、保持弁52、53を介して接続されている。保持弁52は、後述するディスクブレーキ装置811に接続された第1油路81aに設けられ、第1油路81aのブレーキ液を保持する電磁弁である。保持弁53は、後述するドラムブレーキ装置812に接続された第2油路81bに設けられ、第2油路81bのブレーキ液を保持する電磁弁である。第2配管系統50bも、第1配管系統50aと同様の構成を有する。 Here, the first piping system 50a will be further described. A portion of the oil passage A1 between the holding valve 52 and the wheel cylinder 541 is referred to as a first oil passage 81a, and a portion of the oil passage A2 between the holding valve 53 and the wheel cylinder 542 is referred to as a second oil passage 81b. Name. The pump 57, the motor 90, and the pressure regulating reservoir 56 constitute a hydraulic pressure supply unit 81c that supplies brake fluid to the first oil passage 81a and the second oil passage 81b via the holding valves 52, 53. I have. The first oil passage 81a and the second oil passage 81b are connected via holding valves 52 and 53. The holding valve 52 is an electromagnetic valve that is provided in a first oil passage 81a connected to a disc brake device 811 to be described later and holds the brake fluid in the first oil passage 81a. The holding valve 53 is an electromagnetic valve that is provided in a second oil passage 81b connected to a drum brake device 812 described later, and holds the brake fluid in the second oil passage 81b. The second piping system 50b also has the same configuration as the first piping system 50a.
 液圧制動装置81は、各前輪Wfに設けられたディスクブレーキ装置(「第1制動装置」及び「第1液圧制動装置」に相当する)811と、各後輪Wrに設けられたドラムブレーキ装置(「第2制動装置」及び「第2液圧制動装置」に相当する)812と、を備えている。第1配管系統50aのディスクブレーキ装置811はホイールシリンダ541を備え、第2配管系統50bのディスクブレーキ装置811はホイールシリンダ544を備えている。第1配管系統50aのドラムブレーキ装置812はホイールシリンダ542を備え、第2配管系統50bのドラムブレーキ装置812はホイールシリンダ543を備えている。 The hydraulic braking device 81 includes a disk brake device (corresponding to a “first braking device” and a “first hydraulic braking device”) 811 provided on each front wheel Wf, and a drum brake provided on each rear wheel Wr. And a device (corresponding to a “second brake device” and a “second hydraulic brake device”) 812. The disc brake device 811 of the first piping system 50a includes a wheel cylinder 541, and the disc brake device 811 of the second piping system 50b includes a wheel cylinder 544. The drum brake device 812 of the first piping system 50a includes a wheel cylinder 542, and the drum brake device 812 of the second piping system 50b includes a wheel cylinder 543.
 このように、本実施形態の制動制御装置1は、車両に設けられた第1の車輪Wfr、Wflに対応するディスクブレーキ装置811と、車両に設けられた第2の車輪Wrr、Wrlに対応するドラムブレーキ装置812とを備え、ディスクブレーキ装置811及びドラムブレーキ装置812を制御することにより車両に制動力を付与するように構成されている。 As described above, the brake control device 1 of the present embodiment corresponds to the disc brake device 811 corresponding to the first wheels Wfr and Wfl provided in the vehicle and the second wheel Wrr and Wrl provided to the vehicle. A drum brake device 812 is provided, and a braking force is applied to the vehicle by controlling the disk brake device 811 and the drum brake device 812.
 回生制動装置82は、車輪Wに回生制動力を発生させる装置であって、図示しない発電機、インバータ、モータ、及びハイブリッドECU等により構成されている。ブレーキECU6は、回生制動装置82との間で回生協調制御を実行する。回生制動装置82は、前輪又は後輪に対して回生制動力を付与するように構成されている。回生協調制御では、回生効率が考慮された中、回生制動力と液圧制動力との合計が目標制動力となるように、目標回生制動力と目標液圧制動力が設定される。目標回生制動力及び目標液圧制動力の変化勾配は、結果として回生制動力及び液圧制動力の変化勾配に反映される。目標制動力(目標減速度)は、例えばドライバのブレーキ操作などに応じて設定される。 The regenerative braking device 82 is a device that generates regenerative braking force on the wheels W, and includes a generator, an inverter, a motor, and a hybrid ECU (not shown). The brake ECU 6 performs regenerative cooperative control with the regenerative braking device 82. The regenerative braking device 82 is configured to apply a regenerative braking force to the front wheels or the rear wheels. In the regenerative cooperative control, the target regenerative braking force and the target hydraulic braking force are set such that the total of the regenerative braking force and the hydraulic braking force becomes the target braking force while considering the regeneration efficiency. The change gradient of the target regenerative braking force and the target hydraulic braking force is reflected on the change gradient of the regenerative braking force and the hydraulic braking force as a result. The target braking force (target deceleration) is set according to, for example, a driver's brake operation.
(プリチャージ処理)
 ブレーキECU6は、プリチャージ処理及び協調制御に関して、機能として、予備作動制御部61と、協調制御部62と、を備えている。予備作動制御部61は、制動力の付与に先立って、ディスクブレーキ装置811及びドラムブレーキ装置812の両方の作動特性に基づいて、ディスクブレーキ装置811及びドラムブレーキ装置812の少なくとも一方を予備的に作動させるように構成されている。つまり、予備作動制御部61は、前輪Wfの液圧制動装置の作動特性と、後輪Wrの液圧制動装置の作動特性を考慮して、ディスクブレーキ装置811及びドラムブレーキ装置812の少なくとも一方にプリチャージ処理を実行する。プリチャージ処理に関する制御は、第1配管系統50aと第2配管系統50bとで同じであるため、第1配管系統50a及びホイールシリンダ541、542について説明して、第2配管系統50bについては説明を省略する。
(Precharge processing)
The brake ECU 6 includes a preliminary operation control unit 61 and a cooperative control unit 62 as functions for the precharge process and the cooperative control. The preliminary operation control unit 61 preliminarily activates at least one of the disk brake device 811 and the drum brake device 812 based on the operation characteristics of both the disk brake device 811 and the drum brake device 812 prior to the application of the braking force. It is configured to be. That is, the preliminary operation control unit 61 considers the operating characteristics of the hydraulic braking device for the front wheels Wf and the hydraulic braking device for the rear wheels Wr, and controls at least one of the disc brake device 811 and the drum brake device 812. Perform precharge processing. Since the control related to the precharge process is the same for the first piping system 50a and the second piping system 50b, the first piping system 50a and the wheel cylinders 541 and 542 will be described, and the second piping system 50b will be described. Omitted.
 ディスクブレーキ装置811の作動特性は、例えば、液圧制動力が発生開始するまでに必要な液量又は液圧に関する必要プリチャージ量、若しくは単位容積変化に必要な圧力変化量であるホイールシリンダ541の剛性などに基づいて決まる特性である。本実施形態では、ディスクブレーキ装置811の作動特性がその必要プリチャージ量に基づいて設定されている。換言すると、ディスクブレーキ装置811におけるブレーキパッドとブレーキロータとのクリアランスをほぼ0にするために必要な液圧又は液量が、ディスクブレーキ装置811の作動特性として考慮されている。同様に、ドラムブレーキ装置812の作動特性は、例えば必要プリチャージ量又はホイールシリンダ542の剛性などに基づいて決まる特性であり、本実施形態では必要プリチャージ量に基づいて設定されている。つまり、ドラムブレーキ装置812におけるブレーキシューとドラムとのクリアランスをほぼ0にするために必要な液圧又は液量が、ドラムブレーキ装置812の作動特性として考慮されている。 The operating characteristics of the disc brake device 811 include, for example, the stiffness of the wheel cylinder 541, which is the required fluid amount or the required precharge amount related to the hydraulic pressure until the hydraulic braking force starts to be generated, or the required pressure change amount per unit volume change. This is a characteristic that is determined based on such factors. In the present embodiment, the operation characteristics of the disc brake device 811 are set based on the required precharge amount. In other words, the hydraulic pressure or the amount of fluid required to make the clearance between the brake pad and the brake rotor in the disc brake device 811 substantially zero is considered as the operating characteristic of the disc brake device 811. Similarly, the operation characteristics of the drum brake device 812 are characteristics determined based on, for example, the required precharge amount or the rigidity of the wheel cylinder 542, and are set in the present embodiment based on the required precharge amount. That is, the hydraulic pressure or the amount of fluid required to make the clearance between the brake shoe and the drum in the drum brake device 812 substantially zero is considered as the operation characteristic of the drum brake device 812.
 ディスクブレーキ装置811の必要プリチャージ量は、液量及び液圧のいずれにおいても、ドラムブレーキ装置812の必要プリチャージ量と異なる。例えば、ディスクブレーキ装置811は0.1MPaでプリチャージ処理が完了し(クリアランス≒0)、ドラムブレーキ装置812は0.4MPaでプリチャージ処理が完了する(クリアランス≒0)。本実施形態では、この両制動装置の必要プリチャージ量の大小関係を考慮して、予備的作動(プリチャージ処理)が実行される。本実施形態では、プリチャージ完了に必要な液圧が両制動装置で異なることを考慮して、選択的にプリチャージ処理が為される。 The required precharge amount of the disc brake device 811 is different from the required precharge amount of the drum brake device 812 in both the fluid amount and the fluid pressure. For example, the disc brake device 811 completes the precharge process at 0.1 MPa (clearance # 0), and the drum brake device 812 completes the precharge process at 0.4 MPa (clearance # 0). In the present embodiment, a preliminary operation (precharge processing) is performed in consideration of the magnitude relationship between the required precharge amounts of the two braking devices. In the present embodiment, the precharge process is selectively performed in consideration of the fact that the hydraulic pressure required for completing the precharge differs between the two braking devices.
 ここで、本実施形態の制動制御装置1は、所定条件が満たされるまで回生制動装置82により回生制動力を発生させ、所定条件が満たされた後にディスクブレーキ装置811及びドラムブレーキ装置812でも液圧制動力を発生させるように構成されている。制動制御装置1は、目標制動力に応じて、回生制動装置82により制動力を発生させ、目標制動力及び回生制動力が所定値以上となると、主にマスタ圧の増大によりディスクブレーキ装置811及びドラムブレーキ装置812で制動力を発生させるように構成されている。 Here, the braking control device 1 of the present embodiment generates regenerative braking force by the regenerative braking device 82 until a predetermined condition is satisfied, and after the predetermined condition is satisfied, the disc brake device 811 and the drum brake device 812 also perform hydraulic pressure control. It is configured to generate power. The braking control device 1 generates a braking force by the regenerative braking device 82 according to the target braking force, and when the target braking force and the regenerative braking force become equal to or more than a predetermined value, the disc brake device 811 The drum braking device 812 is configured to generate a braking force.
 本実施形態のプリチャージ処理の一例について図2を参照して説明する。図2に示すように、ストロークの増大に応じて、目標制動力が増大し、回生制動力のみで目標制動力を満たすように目標回生制動力(回生トルク指令値)も増大する。また、ストロークの増大開始の直後に、必要プリチャージ量が大きいドラムブレーキ装置812に対して、予備的作動すなわちプリチャージ処理が実行される。 An example of the precharge process according to the present embodiment will be described with reference to FIG. As shown in FIG. 2, as the stroke increases, the target braking force increases, and the target regenerative braking force (regenerative torque command value) also increases so as to satisfy the target braking force only with the regenerative braking force. Immediately after the start of the stroke increase, a preliminary operation, that is, a precharge process is performed on the drum brake device 812 having a large required precharge amount.
 具体的に、予備作動制御部61は、液圧供給部81cを駆動させ、保持弁52を閉弁させ、保持弁53を開弁させて、必要プリチャージ量に対応する液圧(以下「必要液圧」という)までホイールシリンダ542の液圧を増大させる。そして、ホイールシリンダ542の液圧がその必要液圧に達したら、予備作動制御部61は、保持弁53を閉弁させ、保持弁52を開弁させ、液圧供給部81cを停止させる。つまり、予備作動制御部61は、ホイールシリンダ542の液圧がその必要液圧に達したら、ホイールシリンダ542(第2油路81b)に対して保持制御を実行する。なお、減圧制御が為されない限り、減圧弁54、55は閉弁している。 Specifically, the preliminary operation control unit 61 drives the hydraulic pressure supply unit 81c, closes the holding valve 52, opens the holding valve 53, and sets the hydraulic pressure (hereinafter, “necessary”) corresponding to the required precharge amount. The hydraulic pressure of the wheel cylinder 542 is increased until the hydraulic pressure increases. When the hydraulic pressure of the wheel cylinder 542 reaches the required hydraulic pressure, the preliminary operation control unit 61 closes the holding valve 53, opens the holding valve 52, and stops the hydraulic pressure supply unit 81c. That is, when the hydraulic pressure of the wheel cylinder 542 reaches the required hydraulic pressure, the preliminary operation control unit 61 executes the holding control on the wheel cylinder 542 (the second oil passage 81b). Unless the pressure reduction control is performed, the pressure reduction valves 54 and 55 are closed.
 そして、目標制動力及び回生制動力が所定値に達すると、無効ストロークが終了してストロークに応じたマスタ圧が発生する。この際、予備作動制御部61は、ホイールシリンダ542に対する保持制御を継続し、保持弁53の閉状態を維持し、ホイールシリンダ542を他の油路から遮断する。マスタ圧の増大により、分岐点X周辺の油路、第1油路81a、及びホイールシリンダ541を含む非プリチャージ領域が増圧される。そして、非プリチャージ領域の液圧がホイールシリンダ542の保持液圧(=必要液圧)に達したら、予備作動制御部61は、保持弁53を開弁させる。 When the target braking force and the regenerative braking force reach predetermined values, the invalid stroke ends and a master pressure corresponding to the stroke is generated. At this time, the preliminary operation control unit 61 continues the holding control on the wheel cylinder 542, maintains the closed state of the holding valve 53, and shuts off the wheel cylinder 542 from another oil path. Due to the increase in the master pressure, the pressure in the non-precharge region including the oil passage around the branch point X, the first oil passage 81a, and the wheel cylinder 541 is increased. Then, when the hydraulic pressure in the non-precharge area reaches the holding hydraulic pressure (= required hydraulic pressure) of the wheel cylinder 542, the preliminary operation control unit 61 opens the holding valve 53.
 非プリチャージ領域の液圧がホイールシリンダ542の保持液圧に達する前に、ホイールシリンダ541がその必要液圧を超えるため、それ以降、ディスクブレーキ装置811により前輪Wfに液圧制動力が発生する。その後、非プリチャージ領域の液圧(ここではマスタ圧)がホイールシリンダ542の保持液圧に達した際に、予備作動制御部61は、保持弁53を開弁させる。これにより、ホイールシリンダ542にもブレーキ液が供給され、ドラムブレーキ装置812により後輪Wrに液圧制動力が発生する。本実施形態の制動制御装置1では、目標制動力が所定値以上となると、回生制動力に加えて液圧制動力が発生し、制動力が目標制動力に追従する。 (4) Before the hydraulic pressure in the non-precharged area reaches the holding hydraulic pressure of the wheel cylinder 542, the wheel cylinder 541 exceeds the required hydraulic pressure, and thereafter, the disk brake device 811 generates a hydraulic braking force on the front wheel Wf. Thereafter, when the hydraulic pressure in the non-precharge region (here, the master pressure) reaches the holding hydraulic pressure of the wheel cylinder 542, the preliminary operation control unit 61 opens the holding valve 53. Accordingly, the brake fluid is also supplied to the wheel cylinder 542, and a hydraulic braking force is generated on the rear wheel Wr by the drum brake device 812. In the braking control device 1 of the present embodiment, when the target braking force is equal to or more than a predetermined value, a hydraulic braking force is generated in addition to the regenerative braking force, and the braking force follows the target braking force.
 本実施形態によれば、2つの液圧制動装置811、812の作動特性に基づいて、2つの液圧制動装置811、812の少なくとも一方が予備的に作動する。このため、上記例のように、必要プリチャージ量が大きい方の液圧制動装置812に対して選択的にプリチャージ処理を実行することができる。必要プリチャージ量が大きく、ホイール圧増圧の序盤に比較的大量のブレーキ液が必要となる制動装置が、他種類の制動装置と同様にプリチャージ処理されるよりも、作動特性に応じて選択的にプリチャージ処理を行っておくことで、全体として液圧制動力の応答性を向上させることができる。本実施形態によれば、作動特性の異なる複数の制動装置に対して一律にプリチャージ処理を実行するよりも、全体の応答性発揮により適した選択的な(独立した)プリチャージ処理が可能となる。つまり、応答性の向上が可能となる。 According to the present embodiment, at least one of the two hydraulic braking devices 811 and 812 preliminarily operates based on the operation characteristics of the two hydraulic braking devices 811 and 812. Therefore, as in the above example, the precharge process can be selectively executed on the hydraulic braking device 812 having the larger required precharge amount. A braking device that requires a large amount of precharge and requires a relatively large amount of brake fluid in the early stages of increasing wheel pressure is selected according to operating characteristics, rather than being precharged like other types of braking devices By performing the precharge processing in advance, the responsiveness of the hydraulic braking force can be improved as a whole. According to the present embodiment, it is possible to perform a selective (independent) precharge process that is more suitable for exhibiting overall responsiveness than performing a precharge process uniformly for a plurality of braking devices having different operation characteristics. Become. That is, the responsiveness can be improved.
 また、上記例で説明したように、予備作動制御部61は、保持弁52、53及び液圧供給部81cを制御することで、液圧制動力の付与に先立って、ディスクブレーキ装置811及びドラムブレーキ装置812の両方の必要プリチャージ量に基づいて、第1油路81a及び第2油路81bの少なくとも一方に対してブレーキ液を保持させる保持制御を実行する。 Further, as described in the above example, the preliminary operation control unit 61 controls the holding valves 52 and 53 and the hydraulic pressure supply unit 81c so that the disc brake device 811 and the drum brake 811 Based on both the required precharge amounts of the device 812, the holding control for holding the brake fluid in at least one of the first oil passage 81a and the second oil passage 81b is executed.
 この構成によれば、液圧制動装置811,812に対して、それらの必要プリチャージ量に応じた適切かつ選択的なプリチャージ処理が実行できる。つまり、応答性の向上が可能となる。また、上記例のように、必要プリチャージ量が比較的大きいドラムブレーキ装置812に対してプリチャージ処理が実行されることで、ドラムブレーキ装置812で制動力を発生させる際に、大量のブレーキ液を供給する必要がなくなるため、応答性を確保しやすく、さらにマスタシリンダ13からのポンプ57の急激なブレーキ液吸入によるブレーキペダル11の吸い込みが生じにくくなる。これにより、ブレーキフィーリングの悪化も抑制される。 According to this configuration, appropriate and selective precharge processing can be performed on the hydraulic braking devices 811 and 812 according to their required precharge amounts. That is, the responsiveness can be improved. Further, as in the above-described example, by performing the precharge processing on the drum brake device 812 having a relatively large required precharge amount, a large amount of brake fluid is generated when the drum brake device 812 generates a braking force. Therefore, it is easy to ensure responsiveness, and it is difficult for the pump 57 to suck the brake pedal 11 due to the sudden suction of the brake fluid from the master cylinder 13. Thereby, deterioration of the brake feeling is also suppressed.
 なお、上記例において、予備作動制御部61は、ホイールシリンダ542に必要液圧を発生させた後に第2油路81bに対して保持制御を実行し(保持弁53を閉弁し)、その後、液圧供給部81cを作動させて加圧制御を実行し、差圧制御弁51を制御して、保持弁52を開弁したままで、ホイールシリンダ541の液圧が必要液圧で保持されるように、プリチャージ処理を実行してもよい。この場合、液圧供給部81cが作動し続けるが、両方のホイールシリンダ541、542に対して、ホイール圧を必要液圧で保持する保持制御が実行される。 In the above example, the preliminary operation control unit 61 executes the holding control on the second oil passage 81b after generating the required hydraulic pressure in the wheel cylinder 542 (closes the holding valve 53), and thereafter, The hydraulic pressure supply unit 81c is operated to perform the pressurization control, the differential pressure control valve 51 is controlled, and the hydraulic pressure of the wheel cylinder 541 is maintained at the required hydraulic pressure while the holding valve 52 is kept open. As described above, the precharge processing may be performed. In this case, while the hydraulic pressure supply unit 81c continues to operate, the holding control is performed for both the wheel cylinders 541 and 542 to maintain the wheel pressure at the required hydraulic pressure.
 また、上記例のように、予備作動制御部61は、保持制御の実行後、液圧制動力の付与に際して、液圧供給部81cを作動させ、第1油路81a及び第2油路81bのうち液圧が低い方の油路である第1油路81a(低圧側油路)の液圧が、液圧が高い方の油路である第2油路81b(高圧側油路)の液圧に追従するまで、第2油路81bに対する保持制御を継続する。 Further, as in the above example, the preparatory operation control unit 61 activates the hydraulic pressure supply unit 81c when applying the hydraulic braking force after the execution of the holding control, and the first hydraulic passage 81a and the second hydraulic passage 81b. The fluid pressure of the first fluid passage 81a (low pressure side fluid passage) which is the lower fluid pressure is changed to the fluid pressure of the second fluid passage 81b (high pressure side fluid passage) which is the higher fluid pressure. , The holding control for the second oil passage 81b is continued.
 この構成により、高圧側油路である第2油路81bから低圧側油路である第1油路81aへのブレーキ液の回り込みを抑制することができ、より確実に各作動特性を活かしたプリチャージ処理が可能となる。回り込みが生じると、プリチャージ処理したブレーキ液の液量及び液圧が変動するため、応答性にも変動が生じ得るが、上記構成によればそれを抑制することができる。ドラムブレーキ装置812については、保持制御が解除されるまで液圧制動力が発生しないが、そのホイールシリンダ542につながる流路が遮断されていることで、ホイールシリンダ542の特性(例えば剛性)にかかわらず非プリチャージ領域を増圧させることができる。つまり、効率的に非プリチャージ領域を増圧させることができ、応答性の向上が可能となる。 With this configuration, it is possible to suppress the brake fluid from flowing from the second oil passage 81b, which is the high-pressure side oil passage, to the first oil passage 81a, which is the low-pressure side oil passage, and to more reliably use the pre-operation that utilizes each operation characteristic. Charge processing becomes possible. When the wraparound occurs, the fluid amount and hydraulic pressure of the pre-charged brake fluid fluctuate, so that the responsiveness may also fluctuate. Regarding the drum brake device 812, no hydraulic braking force is generated until the holding control is released. However, since the flow path connected to the wheel cylinder 542 is blocked, regardless of the characteristics (eg, rigidity) of the wheel cylinder 542. The pressure in the non-precharged region can be increased. That is, the pressure in the non-precharge region can be efficiently increased, and the responsiveness can be improved.
 ここで、協調制御部62は、所定条件が満たされる前に、すなわち目標制動力が所定値以上となる前に、回生制動装置82の回生制動力に不足が生じた場合、ディスクブレーキ装置811及びドラムブレーキ装置812のうち、必要プリチャージ量が小さい方の制動装置(ここではディスクブレーキ装置811)により制動力を発生させるように構成されている。 Here, when the regenerative braking force of the regenerative braking device 82 becomes insufficient before the predetermined condition is satisfied, that is, before the target braking force becomes equal to or more than the predetermined value, the cooperative control unit 62 sets the disc brake device 811 and Of the drum brake devices 812, the braking device with the smaller required precharge amount (here, the disk brake device 811) is configured to generate a braking force.
 図3に示すように、例えば第2油路81bに対する保持制御が実行された後に回生制動力が不足した場合、協調制御部62は、液圧供給部81cを作動させ、必要プリチャージ量が比較的小さいためにプリチャージ処理されず、かつ対応する保持弁52が開弁しているディスクブレーキ装置811のホイールシリンダ541を増圧させる。つまり、回生制動力の当該不足は、液圧供給部81cに作動により、ディスクブレーキ装置811(前輪Wf)の制動力のみで補われる。 As shown in FIG. 3, for example, when the regenerative braking force is insufficient after the holding control for the second oil passage 81b is executed, the cooperative control unit 62 activates the hydraulic pressure supply unit 81c and compares the required precharge amount. The pressure of the wheel cylinder 541 of the disc brake device 811 that is not precharged because of its small size and the corresponding holding valve 52 is open is increased. That is, the shortage of the regenerative braking force is compensated only by the braking force of the disk brake device 811 (the front wheel Wf) by the operation of the hydraulic pressure supply unit 81c.
 この構成によれば、保持弁52、53の状態変更をすることなく、より単純な制御により不足分の制動力を確保することができ、誤作動等を抑制することができる。また、必要プリチャージ量が小さい制動装置により不足分の制動力を確保することで、応答性が確保しやすくなる。 According to this configuration, the insufficient braking force can be secured by simpler control without changing the state of the holding valves 52 and 53, and malfunctions and the like can be suppressed. In addition, responsiveness can be easily ensured by securing the insufficient braking force by the braking device having a small required precharge amount.
 なお、協調制御部62の制御対象である不足分の制動力を確保する制動装置は、単位容積変化に必要な圧力変化量であるホイールシリンダ541、542の剛性が高い方の制動装置、対応する保持弁52、53が開弁している方の制動装置、又は、前輪Wfと後輪Wrとで選択できる場合における前輪Wfに設けられた制動装置に決定してもよい。剛性が高いと、少しの液量で液圧が高くなり、応答性が高くなる。また、対応する保持弁52、53が開弁している制動装置では、上記のように制御の簡素化が可能となる。また、前輪Wfの制動力のほうが、後輪Wrの制動力よりも、全体の制動力に与える影響が大きく、応答性が高くなる。本実施形態では、ホイールシリンダ541の剛性が比較的高くなっている。 Note that the braking device that is controlled by the cooperative control unit 62 and that secures the insufficient braking force corresponds to a braking device that has a higher rigidity of the wheel cylinders 541 and 542 that is a pressure change amount required for a unit volume change. The braking device may be determined to be the braking device in which the holding valves 52 and 53 are open, or the braking device provided on the front wheel Wf when the front wheel Wf and the rear wheel Wr can be selected. When the rigidity is high, the hydraulic pressure increases with a small amount of liquid, and the responsiveness increases. Further, in the braking device in which the corresponding holding valves 52 and 53 are open, the control can be simplified as described above. Further, the braking force of the front wheel Wf has a greater effect on the overall braking force than the braking force of the rear wheel Wr, and the responsiveness is improved. In the present embodiment, the rigidity of the wheel cylinder 541 is relatively high.
 また、予備作動制御部61は、緊急制動を検出した場合、保持制御の実行の有無にかかわらず、保持弁52、53を開弁させる、又は、全体の制動力に与える影響が比較的大きい前輪Wfに対応する保持弁52を開弁させる。緊急制動であるか否かは、例えばストロークの増大勾配が所定勾配以上であるか否かにより判定される。ストロークの増大勾配が所定勾配以上である場合、予備作動制御部61は、そのブレーキ操作を緊急制動と判定し、緊急制動を検出する。緊急制動時は、上記例のような保持制御の継続条件等を無視して、ブレーキ液の回り込みやブレーキペダル11の吸い込み等の発生によるブレーキフィーリングへの影響は無視し、制御の単純化を図って、応答性を最優先する。これにより、より状況に応じた制動制御が可能となる。本実施形態において、保持弁52、53のうち少なくとも一方は車両の前輪Wfに対応して設けられ、予備作動制御部61は、緊急制動を検出した場合、保持制御の実行の有無にかかわらず、保持弁52、53のうち少なくとも前輪Wfに対応する保持弁52を開弁させる。 When the emergency braking is detected, the preliminary operation control unit 61 opens the holding valves 52 and 53 regardless of whether or not the holding control is performed, or the front wheel that has a relatively large effect on the overall braking force. The holding valve 52 corresponding to Wf is opened. Whether or not the emergency braking is performed is determined based on, for example, whether or not the increasing gradient of the stroke is equal to or greater than a predetermined gradient. When the increase gradient of the stroke is equal to or greater than the predetermined gradient, the preliminary operation control unit 61 determines that the brake operation is emergency braking and detects the emergency braking. At the time of emergency braking, ignoring the continuation conditions of the holding control as in the above example, ignoring the influence on the brake feeling caused by the spillage of the brake fluid and the suction of the brake pedal 11, simplifies the control. Therefore, responsiveness is given the highest priority. As a result, the braking control according to the situation becomes possible. In the present embodiment, at least one of the holding valves 52 and 53 is provided corresponding to the front wheel Wf of the vehicle, and when the preliminary operation control unit 61 detects the emergency braking, regardless of whether the holding control is performed or not. At least one of the holding valves 52 and 53 corresponding to the front wheel Wf is opened.
 また、本実施形態によれば、図2及び図3に示すように、プリチャージ処理対象外の制動力(回生制動力)にプリチャージ処理対象の制動力(液圧制動力)を加える際に、制動力増大の停滞時間を低減させ、滑らかに制動力を目標制動力に追従させることができる。これにより、制動力追加時に、ドライバに違和感を与えることを抑制することができる。また、本実施形態によれば、ドライバの違和感発生を抑制しつつ、回生制動力によるエネルギーを最大値まで回収でき、エネルギー効率の面でも好適である。なお、図2及び図3の各制動力の推移と各ホイール圧の推移は、制御における目標値の推移といえる。 According to the present embodiment, as shown in FIGS. 2 and 3, when a braking force (a hydraulic braking force) to be precharged is applied to a braking force (a regenerative braking force) that is not to be precharged. The stagnation time of the braking force increase can be reduced, and the braking force can smoothly follow the target braking force. Thus, it is possible to prevent the driver from feeling uncomfortable when the braking force is added. Further, according to the present embodiment, it is possible to recover the energy due to the regenerative braking force to the maximum value while suppressing the driver from feeling uncomfortable, which is preferable in terms of energy efficiency. Note that the transition of each braking force and the transition of each wheel pressure in FIGS. 2 and 3 can be regarded as the transition of the target value in the control.
<その他>
 本発明は、上記実施形態に限られない。例えば、車輪に対応する各制動装置は、液圧制動装置に限らず、電動ブレーキ装置であってもよい。また、第3の制動装置は、回生制動装置に限らず、例えば電動ブレーキ装置であってもよい。つまり、第3の制動力は回生制動力に限られない。電動ブレーキ装置は、例えば、電動直動式によりブレーキパッドをブレーキロータに押し付けて、制動力を発生させる装置である。また、制動装置の作動特性は、必要プリチャージ量やホイールシリンダの剛性などに限らず、例えば、構造的なヒステリシス特性や、電動ブレーキ装置における遊び量(無効作動量)などでもよい。また、本発明によれば、各制動装置が同種の装置であっても、構造的に作動特性が異なれば、それに適したプリチャージ処理が可能である。また、本実施形態のプリチャージ処理は、クリアランスを詰めるガタ詰め処理ともいえる。また、本発明は、自動運転や自動ブレーキの技術に適用することができる。
 
 
<Others>
The present invention is not limited to the above embodiment. For example, each brake device corresponding to a wheel is not limited to a hydraulic brake device, and may be an electric brake device. The third braking device is not limited to the regenerative braking device, and may be, for example, an electric braking device. That is, the third braking force is not limited to the regenerative braking force. The electric brake device is a device that generates a braking force by pressing a brake pad against a brake rotor by, for example, an electric direct acting type. The operation characteristics of the braking device are not limited to the required precharge amount and the rigidity of the wheel cylinder, but may be, for example, a structural hysteresis characteristic, a play amount (ineffective operation amount) in the electric brake device, and the like. Further, according to the present invention, even if each braking device is the same type of device, if the operation characteristics are structurally different, it is possible to perform a precharge process suitable therefor. In addition, the precharge processing of the present embodiment can be said to be a play reduction processing for reducing clearance. Further, the present invention can be applied to the technology of automatic driving and automatic braking.

Claims (4)

  1.  車両に設けられた第1の車輪に対応する第1制動装置と、前記車両に設けられた第2の車輪に対応する第2制動装置とを備え、前記第1制動装置及び前記第2制動装置を制御することにより前記車両に制動力を付与する制動制御装置であって、
     前記制動力の付与に先立って、前記第1制動装置及び前記第2制動装置の両方の作動特性に基づいて、前記第1制動装置及び前記第2制動装置の少なくとも一方を予備的に作動させる予備作動制御部を備える制動制御装置。
    A first braking device corresponding to a first wheel provided in the vehicle; and a second braking device corresponding to a second wheel provided in the vehicle, wherein the first braking device and the second braking device are provided. A braking control device that applies a braking force to the vehicle by controlling
    Prior to the application of the braking force, a preliminary operation of preliminarily operating at least one of the first braking device and the second braking device based on the operating characteristics of both the first braking device and the second braking device A braking control device including an operation control unit.
  2.  前記第1制動装置としての第1液圧制動装置に接続された第1油路に設けられ、前記第1油路のブレーキ液を保持する第1保持弁と、
     前記第2制動装置としての第2液圧制動装置に接続された第2油路に設けられ、前記第2油路のブレーキ液を保持する第2保持弁と、
     前記第1保持弁及び前記第2保持弁を介して、前記第1油路及び前記第2油路にブレーキ液を供給する液圧供給部と、
     を備え、
     前記予備作動制御部は、前記第1保持弁、前記第2保持弁、及び前記液圧供給部を制御することで、液圧制動力の付与に先立って、前記第1液圧制動装置及び前記第2液圧制動装置の両方についての前記液圧制動力が発生開始するまでに必要な液量又は液圧に関する必要プリチャージ量に基づいて、前記第1油路及び前記第2油路の少なくとも一方に対してブレーキ液を保持させる保持制御を実行する請求項1に記載の制動制御装置。
    A first holding valve that is provided in a first oil passage connected to a first hydraulic braking device as the first braking device and that holds brake fluid in the first oil passage;
    A second holding valve that is provided in a second oil passage connected to a second hydraulic braking device as the second braking device and that holds brake fluid in the second oil passage;
    A hydraulic pressure supply unit that supplies brake fluid to the first oil passage and the second oil passage via the first holding valve and the second holding valve;
    With
    The preliminary operation control unit controls the first holding valve, the second holding valve, and the hydraulic pressure supply unit, so that, prior to the application of the hydraulic braking force, the first hydraulic braking device and the At least one of the first oil passage and the second oil passage is based on a required fluid amount or a required precharge amount related to the hydraulic pressure until the hydraulic braking force for both of the two hydraulic braking devices starts to be generated. The brake control device according to claim 1, wherein the brake control device executes a holding control for holding the brake fluid.
  3.  前記第1油路と前記第2油路とは、前記第1保持弁及び前記第2保持弁を介して接続され、
     前記予備作動制御部は、前記保持制御の実行後、前記液圧制動力の付与に際して、前記液圧供給部を作動させ、前記第1油路及び前記第2油路のうち液圧が低い方の油路である低圧側油路の液圧が、液圧が高い方の油路である高圧側油路の液圧に追従するまで、前記高圧側油路に対する前記保持制御を継続する請求項2に記載の制動制御装置。
    The first oil passage and the second oil passage are connected via the first holding valve and the second holding valve,
    The preparatory operation control unit activates the hydraulic pressure supply unit when the hydraulic braking force is applied after the execution of the holding control, and selects the lower hydraulic pressure of the first hydraulic passage and the second hydraulic passage. The holding control for the high-pressure side oil passage is continued until the hydraulic pressure of the low-pressure side oil passage that is the oil passage follows the hydraulic pressure of the high-pressure side oil passage that is the higher oil pressure. A braking control device according to claim 1.
  4.  前記第1保持弁及び前記第2保持弁のうち少なくとも一方が前記車両の前輪に対応して設けられ、
     前記予備作動制御部は、緊急制動を検出した場合、前記保持制御の実行の有無にかかわらず、前記第1保持弁及び前記第2保持弁のうち少なくとも前記前輪に対応する保持弁を開弁させる請求項2又は3に記載の制動制御装置。
     
     
    At least one of the first holding valve and the second holding valve is provided corresponding to a front wheel of the vehicle,
    When detecting the emergency braking, the preliminary operation control unit opens at least one of the first holding valve and the second holding valve corresponding to the front wheel, regardless of whether the holding control is performed. The braking control device according to claim 2.

PCT/JP2019/029708 2018-07-30 2019-07-29 Brake control device WO2020027068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018142666A JP2020019306A (en) 2018-07-30 2018-07-30 Braking control device
JP2018-142666 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020027068A1 true WO2020027068A1 (en) 2020-02-06

Family

ID=69232471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029708 WO2020027068A1 (en) 2018-07-30 2019-07-29 Brake control device

Country Status (2)

Country Link
JP (1) JP2020019306A (en)
WO (1) WO2020027068A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069495A (en) * 2004-09-06 2006-03-16 Hitachi Ltd Brake control device
WO2007032091A1 (en) * 2005-09-14 2007-03-22 Hitachi, Ltd. Travel control device and travel control method
WO2017170596A1 (en) * 2016-03-30 2017-10-05 株式会社アドヴィックス Braking device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069495A (en) * 2004-09-06 2006-03-16 Hitachi Ltd Brake control device
WO2007032091A1 (en) * 2005-09-14 2007-03-22 Hitachi, Ltd. Travel control device and travel control method
WO2017170596A1 (en) * 2016-03-30 2017-10-05 株式会社アドヴィックス Braking device for vehicle

Also Published As

Publication number Publication date
JP2020019306A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6341580B2 (en) Brake control device, brake system, and brake fluid pressure generation method
US9403518B2 (en) Brake system for a vehicle and method for operating a brake system of a vehicle
US20150232076A1 (en) Brake Control Device
US8517476B2 (en) Brake controller, brake control system, and brake control method
KR20130056373A (en) Integrated electronic hydraulic brake system
JP2015003622A (en) Brake control device
JP6544335B2 (en) Vehicle braking system
WO2021132510A1 (en) Braking control device
JP7396056B2 (en) Brake control device
JP6657540B2 (en) Brake device and brake control method
WO2020027068A1 (en) Brake control device
US20230008163A1 (en) Braking device for vehicle
WO2021145390A1 (en) Braking control device
JP7367427B2 (en) vehicle braking system
JP7167656B2 (en) vehicle braking device
WO2020067367A1 (en) Brake control device
JP5044583B2 (en) Brake control device
JP7318458B2 (en) vehicle braking device
JP7443872B2 (en) Vehicle braking device
JP7121677B2 (en) brake controller
WO2020235531A1 (en) Braking control device
WO2022138815A1 (en) Brake device for vehicle
CN115335266B (en) Brake device for vehicle
WO2021200661A1 (en) Vehicular braking device
JP6615939B2 (en) Brake control device, brake system, and brake fluid pressure generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845302

Country of ref document: EP

Kind code of ref document: A1