WO2022138707A1 - 筋萎縮性側索硬化症の治療用医薬組成物 - Google Patents

筋萎縮性側索硬化症の治療用医薬組成物 Download PDF

Info

Publication number
WO2022138707A1
WO2022138707A1 PCT/JP2021/047532 JP2021047532W WO2022138707A1 WO 2022138707 A1 WO2022138707 A1 WO 2022138707A1 JP 2021047532 W JP2021047532 W JP 2021047532W WO 2022138707 A1 WO2022138707 A1 WO 2022138707A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
epha4
seq
amino acid
pharmaceutical composition
Prior art date
Application number
PCT/JP2021/047532
Other languages
English (en)
French (fr)
Inventor
克久 田代
良太 田口
Original Assignee
エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーザイ・アール・アンド・ディー・マネジメント株式会社 filed Critical エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority to US18/029,540 priority Critical patent/US20240010735A1/en
Priority to MX2023004848A priority patent/MX2023004848A/es
Priority to CA3195085A priority patent/CA3195085A1/en
Priority to JP2022571541A priority patent/JPWO2022138707A1/ja
Priority to CN202180078579.1A priority patent/CN116710133A/zh
Priority to EP21910847.9A priority patent/EP4268847A1/en
Priority to KR1020237015047A priority patent/KR20230124547A/ko
Priority to AU2021410290A priority patent/AU2021410290A1/en
Publication of WO2022138707A1 publication Critical patent/WO2022138707A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present disclosure relates to a pharmaceutical composition for treating amyotrophic lateral sclerosis (ALS), which comprises an antibody that binds to EphA4.
  • ALS amyotrophic lateral sclerosis
  • EphA4 is one of the receptor tyrosine kinase families. Ephrin type A and type B are known as ligands for EphA4, and when EphA4 and its ligand, ephrin, bind to each other, a deadhesion signal is induced. EphA4 is expressed in motor neurons, and accurate axon guidance is controlled by the expression of ephrin in the non-projection region of motor neurons in the spinal cord during neural circuit formation. EphA4 is known to be cleaved by matrix metalloproteinase (MMP), ADAM (a disintegrin and metalloproteinase) and ⁇ -secretase in a neural activity-dependent manner.
  • MMP matrix metalloproteinase
  • ADAM a disintegrin and metalloproteinase
  • ALS amyotrophic lateral sclerosis
  • neurodegenerative diseases such as Alzheimer's disease, and spinal cord injury. It is suggested that.
  • EphA4 is a gene that regulates the phenotype of ALS (Patent Document 1, Non-Patent Document 1). It has been shown that genetic deficiency of EphA4 and antagonism due to EphA4-Fc and the like promote axonal elongation and functional recovery during spinal cord injury in mice and rats (Non-Patent Documents 2 and 3).
  • KYL peptide and compound 1 are known as existing EphA4 inhibitors (Patent Document 1, Non-Patent Document 1 and Non-Patent Document 2).
  • Antibodies having an activity of inhibiting the binding of EphA4 and its ligand are also known (Patent Documents 2 and 3), but no antibody having an activity of promoting cleavage of EphA4 has been reported so far.
  • the present disclosure is intended to provide a novel pharmaceutical composition for treating ALS.
  • the present inventors have obtained an antibody effective for the treatment of ALS, which can bind to EphA4 and promote cleavage of EphA4.
  • the anti-EphA4 antibody is (A) Heavy chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 44; (B) Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 27; and (c) Heavy chain containing heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 28; and (d) Heavy chain consisting of the amino acid sequence shown in SEQ ID NO: 29.
  • Light chain CDR1 (E) A light chain comprising a light chain CDR2 consisting of the amino acid sequence set forth in SEQ ID NO: 30; and (f) a light chain comprising a light chain CDR3 consisting of the amino acid sequence set forth in SEQ ID NO: 31.
  • Pharmaceutical composition comprising a light chain CDR1; (E) A light chain comprising a light chain CDR2 consisting of the amino acid sequence set forth in SEQ ID NO: 30; and (f) a light chain comprising a light chain CDR3 consisting of the amino acid sequence set forth in SEQ ID NO: 31.
  • the pharmaceutical composition according to (1) or (2) The anti-EphA4 antibody specifically binds to EphA4 and promotes cleavage of EphA4. Pharmaceutical composition.
  • the pharmaceutical composition according to any one of (1) to (3).
  • the anti-EphA4 antibody specifically binds to EphA4 and inhibits the binding between EphA4 and ephrin.
  • Pharmaceutical composition (4) The pharmaceutical composition according to any one of (1) to (3).
  • the anti-EphA4 antibody specifically binds to EphA4 and inhibits the binding between EphA4 and ephrin.
  • the heavy chain contains a variable region consisting of the amino acid sequence shown in SEQ ID NO: 45.
  • the light chain comprises a variable region consisting of the amino acid sequence set forth in SEQ ID NO: 46.
  • the pharmaceutical composition according to any one of (1) to (5) The constant region of the heavy chain and the constant region of the light chain contain an amino acid sequence derived from a human antibody.
  • Pharmaceutical composition .
  • the pharmaceutical composition according to (6) The constant region of the heavy chain is the constant region of human IgG, Pharmaceutical composition.
  • the pharmaceutical composition according to (7) The constant region of human IgG 2 is a constant region of human IgG 2.
  • the pharmaceutical composition according to (8) The constant region of human IgG 2 comprises the amino acid sequence set forth in SEQ ID NO: 47.
  • the constant region of the light chain is the constant region of human Ig ⁇ .
  • the constant region of human Ig ⁇ comprises the amino acid sequence set forth in SEQ ID NO: 48.
  • a pharmaceutical composition comprising an anti-EphA4 antibody for treating amyotrophic lateral sclerosis (ALS).
  • the anti-EphA4 antibody comprises heavy and light chains.
  • the heavy chain comprises the amino acid sequence set forth in SEQ ID NO: 59.
  • the light chain comprises the amino acid sequence set forth in SEQ ID NO: 60.
  • a pharmaceutical composition in which the C-terminal lysine of the heavy chain may be deleted.
  • a pharmaceutical composition comprising an anti-EphA4 antibody for treating amyotrophic lateral sclerosis (ALS).
  • the anti-EphA4 antibody comprises heavy and light chains.
  • the heavy chain comprises the amino acid sequence set forth in SEQ ID NO: 59.
  • the light chain comprises the amino acid sequence set forth in SEQ ID NO: 60.
  • a pharmaceutical composition comprising an anti-EphA4 antibody for treating amyotrophic lateral sclerosis (ALS).
  • the anti-EphA4 antibody comprises heavy and light chains.
  • the heavy chain comprises the amino acid sequence set forth in SEQ ID NO: 59.
  • the light chain comprises the amino acid sequence set forth in SEQ ID NO: 60.
  • the C-terminal lysine of the heavy chain is deleted, Pharmaceutical composition.
  • composition according to any one of (1) to (15). Further comprising at least one pharmaceutically acceptable carrier, Pharmaceutical composition.
  • An anti-EphA4 antibody is (A) Heavy chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 44; (B) Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 27; and (c) Heavy chain containing heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 28; and (d) Heavy chain consisting of the amino acid sequence shown in SEQ ID NO: 29.
  • Light chain CDR1 (E) A light chain comprising a light chain CDR2 consisting of the amino acid sequence set forth in SEQ ID NO: 30; and (f) a light chain comprising a light chain CDR3 consisting of the amino acid sequence set forth in SEQ ID NO: 31.
  • Anti-EphA4 antibody Anti-EphA4 antibody.
  • the anti-EphA4 antibody according to (17) or (18).
  • the anti-EphA4 antibody specifically binds to EphA4 and promotes cleavage of EphA4.
  • Anti-EphA4 antibody specifically binds to EphA4 and promotes cleavage of EphA4.
  • the anti-EphA4 antibody according to any one of (17) to (19).
  • the anti-EphA4 antibody specifically binds to EphA4 and inhibits the binding between EphA4 and ephrin.
  • Anti-EphA4 antibody specifically binds to EphA4 and inhibits the binding between EphA4 and ephrin.
  • the anti-EphA4 antibody according to any one of (17) to (20).
  • the heavy chain contains a variable region consisting of the amino acid sequence shown in SEQ ID NO: 45.
  • the light chain comprises a variable region consisting of the amino acid sequence set forth in SEQ ID NO: 46.
  • Anti-EphA4 antibody is an antigen specific antibody.
  • the anti-EphA4 antibody according to any one of (17) to (21).
  • the constant region of the heavy chain and the constant region of the light chain contain an amino acid sequence derived from a human antibody.
  • Anti-EphA4 antibody is an antibody that is derived from a human antibody.
  • the anti-EphA4 antibody according to (22) The constant region of the heavy chain is the constant region of human IgG, Anti-EphA4 antibody.
  • the anti-EphA4 antibody according to (23).
  • the constant region of human IgG 2 is a constant region of human IgG 2.
  • the anti-EphA4 antibody according to (24).
  • the constant region of human IgG 2 comprises the amino acid sequence set forth in SEQ ID NO: 47.
  • Anti-EphA4 antibody is an anti-EphA4 antibody.
  • the anti-EphA4 antibody according to any one of (22) to (25).
  • the constant region of the light chain is the constant region of human Ig ⁇ .
  • the constant region of human Ig ⁇ comprises the amino acid sequence set forth in SEQ ID NO: 48.
  • the anti-EphA4 antibody comprises heavy and light chains.
  • the heavy chain comprises the amino acid sequence set forth in SEQ ID NO: 59.
  • the light chain comprises the amino acid sequence set forth in SEQ ID NO: 60.
  • An anti-EphA4 antibody in which the C-terminal lysine of the heavy chain may be deleted.
  • the anti-EphA4 antibody comprises heavy and light chains.
  • the heavy chain comprises the amino acid sequence set forth in SEQ ID NO: 59.
  • the light chain comprises the amino acid sequence set forth in SEQ ID NO: 60.
  • the anti-EphA4 antibody comprises heavy and light chains.
  • the heavy chain comprises the amino acid sequence set forth in SEQ ID NO: 59.
  • the light chain comprises the amino acid sequence set forth in SEQ ID NO: 60.
  • the C-terminal lysine of the heavy chain is deleted, Anti-EphA4 antibody.
  • ALS amyotrophic lateral sclerosis
  • the pharmaceutical composition comprises at least one pharmaceutically acceptable carrier. Use of anti-EphA4 antibody.
  • a novel pharmaceutical composition for treating ALS contains an anti-EphA4 antibody as an active ingredient, which can bind to EphA4 and promote cleavage of EphA4.
  • FIG. 1 shows the binding affinity of an anti-EphA4 monoclonal antibody (antibody A) for mouse and human EphA4.
  • FIG. 2 shows the EphA4 cleavage promoting activity of an anti-EphA4 monoclonal antibody (antibody A) using hippocampal neurons.
  • FIG. 3 shows the mouse EphA4-mouse ligand binding inhibitory activity of the anti-EphA4 monoclonal antibody (antibody A).
  • FIG. 4 shows the human EphA4-human ligand binding inhibitory activity of the anti-EphA4 monoclonal antibody (antibody A).
  • FIG. 5 shows the selectivity of the anti-EphA4 monoclonal antibody (antibody A) for each human Eph receptor.
  • FIG. 1 shows the binding affinity of an anti-EphA4 monoclonal antibody (antibody A) for mouse and human EphA4.
  • FIG. 2 shows the EphA4 cleavage promoting activity of an anti-E
  • FIG. 6 shows the selectivity of the anti-EphA4 monoclonal antibody (antibody A) for each mouse Eph receptor.
  • FIG. 7 shows the reactivity of the anti-EphA4 monoclonal antibody (antibody A) with mouse, rat, monkey and human EphA4.
  • FIG. 8 shows the reaction of an anti-EphA4 monoclonal antibody (antibody A) to the human EphA4 extracellular region (ECD), ligand binding domain (LBD), fibronectin type III domain 1 (FN1), and fibronectin type III domain 2 (FN2). Show sex.
  • FIG. 9 shows the increasing effect of the anti-EphA4 monoclonal antibody (antibody A) on the spine number of hippocampal neurons.
  • ECD EphA4 extracellular region
  • LBD ligand binding domain
  • FN1 fibronectin type III domain 1
  • FN2 fibronectin type III domain 2
  • FIG. 10A shows the horizontal axis shows the amino acid of EphA4-Ligand Binding Domain (EphA4-LBD), and the vertical axis shows the structural region of the antibody A-Fab.
  • the black bits indicate the intersections of the combinations in which the interactions exist.
  • FIG. 10B shows the surface structure of EphA4-Ligand Binding Domain (EphA4-LBD).
  • the amino acid name and residue number contained in the binding region are shown at the corresponding positions, and the CDRs of the H and L chains of the antibody A-Fab to which the binding region is bound are shown by a ribbon model.
  • FIG. 11 shows the affinity of the humanized anti-EphA4 monoclonal antibody (antibody B) for human EphA4.
  • FIG. 12 shows the EphA4 cleavage promoting activity of the humanized anti-EphA4 monoclonal antibody (antibody B) in hippocampal neurons.
  • FIG. 13 shows the human EphA4-human ligand binding inhibitory activity of the humanized anti-EphA4 monoclonal antibody (antibody B).
  • FIG. 14 shows the mouse EphA4-mouse ligand binding inhibitory activity of the humanized anti-EphA4 monoclonal antibody (antibody B).
  • FIG. 15 shows the selectivity of the humanized anti-EphA4 monoclonal antibody (antibody B) to the human Eph receptor.
  • FIG. 16 shows the selectivity of the humanized anti-EphA4 monoclonal antibody (antibody B) to the mouse Eph receptor.
  • FIG. 17 shows the reactivity of humanized anti-EphA4 monoclonal antibody (antibody B) with mouse, rat, monkey and human EphA4.
  • FIG. 18 shows for the human EphA4 extracellular region (ECD), ligand binding domain (LBD), fibronectin type III domain 1 (FN1), and fibronectin type III domain 2 (FN2) of the humanized anti-EphA4 monoclonal antibody (antibody B). Shows reactivity.
  • FIG. 19 shows the increasing effect of humanized anti-EphA4 monoclonal antibody (antibody B) on the number of spines in hippocampal neurons.
  • FIG. 20 shows the human EphA4 cleavage promoting activity in hippocampal neurons of the humanized anti-EphA4 monoclonal antibody (antibody B).
  • FIG. 21 shows the increasing effect of humanized anti-EphA4 monoclonal antibody (antibody B) on the number of spines in hippocampal neurons via MMP and ADAM.
  • FIG. 22 shows a schematic diagram of the evaluation system carried out in Example 13.
  • FIG. 23 shows the effect of humanized anti-EphA4 monoclonal antibody (antibody B) on human iPS cell-derived motor neuron death induced by mutant human SOD1 (G93A) expressing astrocytes.
  • the anti-EphA4 antibody according to the present disclosure is an antibody capable of recognizing and binding to EphA4, and as described below, the antibody may be an intact antibody or has a binding affinity with EphA4. As long as it has sex, it may be a synthetic antibody (for example, recombinant antibody, chimeric antibody, humanized antibody, etc.).
  • EphA4 can be understood to refer to EphA4 from humans, mice, rats and monkeys. EphA4 derived from humans, mice, rats and monkeys can be obtained from public databases in which sequence information is registered, such as Genbank provided by the US Center for Biological Engineering, and the nucleotide sequence information of EphA4 of closely related animal species.
  • sequence information of the EphA4 gene By designing a primer based on the above and cloning from RNA extracted from a desired animal species, it is possible to obtain sequence information of the EphA4 gene.
  • sequence information of the EphA4 gene For example, the nucleotide sequence information of EphA4 in humans, mice, rats, and monkeys can be found in Genbank Accession No. It is registered in the database as NM_004438.5, NM_007936.3, NM_001162411.1, NM_00126087.1.1.
  • the anti-EphA4 antibody is an antibody that specifically binds to EphA4.
  • the term "specific binding” is a term well known to those of skill in the art in the art, and methods for determining specific binding of an antibody or antigen-binding fragment thereof to an antigen or epitope are also well known.
  • "specific binding” means that the anti-EphA4 antibody has greater binding affinity, binding activity, faster and / or longer duration than binding to other target molecules. It is then understood that it can bind to EphA4 by an immunological reaction. This does not mean that the antibody that specifically binds to EphA4 does not bind to other target molecules.
  • “specific binding” is by an antibody having a KD of at least about 10-7 M, or at least about 10-8 M, or at least about 10-9 M, or less to EphA4. Can be shown. In yet another embodiment, it is understood that "specific binding” binds to EphA4 by an immunological reaction, but not substantially to other family molecules of the Eph receptor.
  • the anti-EphA4 antibody is an antibody that binds to the extracellular space of EphA4. In one embodiment, the anti-EphA4 antibody is an antibody that binds to the ligand binding domain (LBD) of the extracellular space of EphA4.
  • LBD ligand binding domain
  • the anti-EphA4 antibody can specifically bind to EphA4 and promote cleavage of EphA4. In certain embodiments, the anti-EphA4 antibody can specifically bind to EphA4 and promote cleavage of the EphA4 extracellular domain by matrix metalloproteinase (MMP) or ADAM (a disintegrin and metalloproteinase).
  • MMP matrix metalloproteinase
  • ADAM a disintegrin and metalloproteinase
  • the anti-EphA4 antibody can specifically bind to EphA4 and inhibit the binding of EphA4 to its ligand, ephrin.
  • the anti-EphA4 antibody can specifically bind to EphA4 to increase the number of spines in hippocampal neurons or stabilize spines in hippocampal neurons.
  • the anti-EphA4 antibody can protect motor neurons from cell death caused by SOD1 gene abnormalities.
  • the present disclosure includes, in one embodiment, an anti-EphA4 antibody capable of specifically binding to at least one of human EphA4, mouse EphA4, rat EphA4, and monkey EphA4 and inhibiting binding to its ligand. do.
  • the present disclosure comprises, in another embodiment, an anti-EphA4 antibody capable of specifically binding to two or more of human EphA4, mouse EphA4, rat EphA4, and monkey EphA4 and inhibiting binding to its ligands. do.
  • the present disclosure includes, in yet another embodiment, an anti-EphA4 antibody capable of specifically binding to all of human EphA4, mouse EphA4, rat EphA4, and monkey EphA4 and inhibiting binding to its ligands.
  • binding affinities include Biacore® biosensors, KinExA biosensors, scintillation proximity assays, ELISAs, ORIGEN immunoassays (IGEN), flow cytometry, fluorescence quenching, fluorescence transfer, yeast displays, and / or. , May be measured using immunostaining, but is not limited to these.
  • the neutralizing activity of the anti-EphA4 antibody against the binding of EphA4 to its ligand may be measured using, but not limited to, Biacore® biosensor, ELISA, and / or flow cytometry.
  • the anti-EphA4 antibody according to the present disclosure may be a monoclonal antibody as long as it binds to EphA4.
  • the anti-EphA4 antibody according to the present disclosure may be any class such as IgG, IgA or IgM (or a subclass thereof), and is not limited to a specific class.
  • Immunoglobulins are classified into different classes by the antibody amino acid sequence of the constant region of the heavy chain (sometimes called the H chain). There are five major immunoglobulin classes: IgA, IgD, IgE, IgG and IgM, some of which are subclasses (isotypes) of, for example, IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 and IgA 2 . ) Can be further subdivided.
  • the corresponding heavy chain constant regions of different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ and ⁇ , respectively.
  • ⁇ chains and ⁇ chains in the types of light chains (sometimes called L chains) of antibodies.
  • the anti-EphA4 antibody according to the present disclosure may be an IgG antibody, for example, an IgG 1 antibody or an IgG 2 antibody. Further, the anti-EphA4 antibody according to the present disclosure may be in the form of a monomer, a dimer or a multimer, as the case may be.
  • variable region of the antibody may mean the variable region of the antibody light chain and / or the variable region of the antibody heavy chain
  • the constant region of the antibody is the constant region of the antibody light chain and / or the antibody heavy chain. It may mean a constant region.
  • the variable regions of the heavy and light chains each consist of four framework regions (FRs) linked by three CDRs, also known as complementarity determining regions. The CDRs in each strand are held in the vicinity by FR and, together with the CDRs in the other strand, contribute to the formation of the antigen binding site of the antibody.
  • the technique for determining the CDR is not limited, but for example, (1) an approach based on interspecies sequence variability (for example, Kabat et al, Sequences of Proteins of Immunological Interest, 5th ed., 1991 National Institute). Of Health, Bethesda MD; and (2) an approach based on the crystal structural study of the antigen-antibody complex (Al-lazikani et al., 1997 J. Molec. Biol. 273: 927-948) can be mentioned. These approaches or other approaches may be used in combination.
  • a monoclonal antibody may mean an antibody obtained from a substantially homogeneous population of antibodies. That is, the individual antibodies contained in the population are identical except for some naturally occurring mutants that may be present. Monoclonal antibodies are for a single antigenic site and are highly specific. Moreover, in contrast to typical polyclonal antibodies that target different antigens or different epitopes, each monoclonal antibody targets a single epitope of the antigen.
  • the modifier "monoclonal" indicates the properties of an antibody obtained from a substantially homogeneous antibody population and should not be construed as limiting as requiring the production of the antibody by a particular method.
  • the anti-EphA4 antibody according to the present disclosure may be a mouse antibody, a chimeric antibody or a humanized antibody.
  • a chimeric antibody is, for example, an antibody obtained by fusing a variable region of a non-human (eg, mouse or rat) antibody to a constant region of a human antibody, for example, the variable region is derived from a non-human antibody and the constant region is derived from a human antibody. You may point to an antibody that has become.
  • the humanized antibody is, for example, an antibody in which a complementarity determining region (CDR (sometimes referred to as a hypervariable region)) of a non-human antibody is introduced into a human antibody, and the CDR is derived from a non-human antibody, for example.
  • CDR complementarity determining region
  • Other antibody regions may refer to antibodies derived from human antibodies.
  • the boundary between the chimeric antibody and the humanized antibody does not necessarily have to be clear, and it may be in a state that can be called both a chimeric antibody and a humanized antibody.
  • the antibody region (FR, constant region) derived from a human antibody does not necessarily have to be composed entirely of amino acids derived from a human antibody, and is one as long as it can be normally used in a human subject. Alternatively, it may contain amino acids derived from a plurality of non-human antibodies.
  • the CDR is an antibody derived from a rodent antibody, and the other antibody regions are derived from a human antibody.
  • the CDR is an antibody derived from a mouse antibody, and the other antibody region is an antibody derived from a human antibody.
  • the CDR may contain amino acids from one or more non-rodental antibodies, or amino acids from one or more non-mouse antibodies, with one antibody region other than CDR. Alternatively, it may contain amino acids derived from a plurality of non-human antibodies.
  • the “plurality” is not limited to this, but is limited to 2 to 20, or 2 to 15, for example, 14, 13, 12, 11, 10, and 9. , 8, 7, 6, 5, 4, 3, or 2, or within 10%, within 9%, within 8%, within 7%, 6 of the number of amino acids in the amino acid sequence.
  • Humanization can be performed using the CDR transplantation method (Kontermann and Dubel, Antibody Engineering, Springer Lab Manual (2001) and Trussita et al., Methods 36: 69-83 (2005), etc.). Known methods (eg Jones et al., Nature 321: 522-525 (1986); Richmann et al., Nature 332: 323-327 (1988); and Verhoeyen et al., Science 239: 1534-1536 (1988). It can also be done by substituting the CDR sequence for the corresponding sequence of the human antibody using).
  • variable regions in both light and heavy chains In order to reduce antigenicity, it may be important to choose the use of human variable regions in both light and heavy chains in the production of humanized antibodies.
  • sequences of variable regions of rodent antibodies are screened against the entire library of known human FR sequences. The human sequence closest to the rodent sequence is then accepted as the human FR of the humanized antibody.
  • Sims et al. J. Immunol. 151: 2296-2308 (1993) and Chothia et al. , J. Mol. Biol. Please refer to 196: 901-917 (1987).
  • a particular framework derived from the common sequence of all human antibodies of a particular subgroup of light or heavy chains is used.
  • the same framework can be used for several different humanized antibodies. For example, Carter et al. , Proc. Natl. Acad. Set USA 89: 4285-4289 (1992) and Presta et al. , J. Immunol. 151: 2623-2632 (1993).
  • humanized antibodies retain high binding affinity for the antigen and other favorable biological properties.
  • humanized antibodies are prepared by the step of analyzing the parent sequence and various conceptual humanized products using a three-dimensional model of the parent sequence and the humanized sequence.
  • Three-dimensional immunoglobulin models are generally available and are known to those of skill in the art.
  • Computer programs are available that illustrate and display promising three-dimensional structures of selected candidate immunoglobulin sequences. By examining these indications, an analysis of the possible role of the residue in the function of the candidate immunoglobulin sequence, i.e., the residue that affects the ability of the candidate immunoglobulin to bind to its antigen. Analysis is possible.
  • FR residues are selected from the recipient sequence and the import sequence so that the desired antibody properties, such as increased binding affinity for one or more target antigens (eg, EphA4 or fragments thereof), are achieved. And can be combined.
  • the chimeric antibody or humanized antibody exemplified above is appropriately modified (for example, modification of the antibody or to improve the function of the antibody) while retaining the function of the antibody (or to add or improve the function of the antibody).
  • Antibodies with partial substitutions, additions and / or deletions in the amino acid sequences of the antibodies are also included in the anti-EphA4 antibodies according to the present disclosure. More specifically, antibodies in which the amino acid sequence of the constant region is modified to modify the effector function of the antibody are also included in the scope of the present disclosure, for example, antibody-dependent cellular cytotoxicity (ADCC) activity and / or antibody-dependent.
  • ADCC antibody-dependent cellular cytotoxicity
  • valine (Val) at position 234 in Eunumbering of human IgG2 antibody is replaced with alanin (Ala), and glycine (Gly) at position 237 is replaced with alanin (Ala).
  • Substituted antibodies and the like are also included in the scope of the present disclosure.
  • the present disclosure also discloses bispecific antibodies (Kontermann (2012), mAbs 4, 182-97) having an antibody binding site having a CDR sequence of an anti-EphA4 antibody according to the present disclosure and an antigen binding site that binds to a different antigen. Included in the range of.
  • the anti-EphA4 antibody according to the present disclosure may be modified if desired.
  • Modifications of anti-EphA4 antibodies include (a) the three-dimensional structure of the amino acid sequence in the modified region, such as a sheet or helix conformation; (b) the charge or hydrophobic state of the molecule at the target site; or (C)
  • the modification may be a modification that alters the effect of the modification on the maintenance of the volume of the side chain, or it may be a modification such that these changes are not clearly observed.
  • Modification of the anti-EphA4 antibody according to the present disclosure may be achieved by, for example, substitution, deletion, addition or the like of a constituent amino acid residue.
  • amino acid is used in its broadest sense and is a natural amino acid such as serine (Ser), aspartin (Asn), valine (Val), leucine (Leu), isoleucine (Ile), alanine (Ala). ), Tyr, glycine (Gly), lysine (Lys), arginine (Arg), histidine (His), aspartic acid (Asp), glutamic acid (Glu), glutamine (Gln), threonine (Thr), cysteine ( It includes not only Cys), methionine (Met), phenylalanine (Phe), tryptophan (Trp), proline (Pro), but also unnatural amino acids such as amino acid variants and derivatives.
  • amino acids herein include, for example, L-amino acids; D-amino acids; chemically modified amino acids such as amino acid variants, amino acid derivatives; norleucine, ⁇ -alanine, and the like. It is naturally understood that amino acids such as ornithine, which are not constituents of proteins in vivo; and chemically synthesized compounds having the characteristics of amino acids known to those skilled in the art can be mentioned.
  • unnatural amino acids include ⁇ -methyl amino acids ( ⁇ -methylalanine, etc.), D-amino acids (D-aspartic acid, D-glutamic acid, etc.), and histidine-like amino acids (2-amino-histidine, ⁇ -hydroxy-histidine, etc.).
  • Homo histidine, ⁇ -fluoromethyl-histidine, ⁇ -methyl-histidine, etc. amino acids with excess methylene in the side chain (“homo” amino acids) and carboxylic acid functional group amino acids in the side chain are replaced with sulfonic acid groups. Examples thereof include amino acids (such as cysteine acid).
  • Naturally occurring amino acid residues can be classified into the following groups, for example, based on general side chain properties: (1) Hydrophobicity: Met, Ala, Val, Leu, Ile; (2) Neutral hydrophilicity: Asn, Gln, Cys, Ser, Thr; (3) Acidity: Asp, Glu; (4) Basicity: His, Lys, Arg; (5) Residues affecting chain orientation: Gly, Pro; and (6) Aromatic: Trp, Tyr, Phe.
  • Non-conservative substitution of the amino acid sequences constituting the antibody may be performed by exchanging an amino acid belonging to one of these groups with an amino acid belonging to the other group. More conservative substitutions may be made by exchanging amino acids belonging to one of these groups with other amino acids in the same group. Similarly, the amino acid sequence may be deleted or substituted as appropriate.
  • the modification of the amino acids constituting the antibody may be, for example, post-translational modification such as glycosylation, acetylation or phosphorylation with sugar.
  • the antibody can be glycosylated at a conserved position in its constant region.
  • Glycosylation of antibodies is usually either N-linked or O-linked.
  • the N-linked type means the binding of the carbohydrate moiety to the side chain of the asparagine residue.
  • O-linked glycosylation may be the binding of either N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid (eg, serine or threonine), optionally 5-hydroxyproline or 5-. It may be a bond to hydroxylysine.
  • hydroxyamino acid eg, serine or threonine
  • 5-hydroxyproline or 5- optionally 5-hydroxyproline or 5-. It may be a bond to hydroxylysine.
  • Those skilled in the art can appropriately select the conditions for glycosylation (for example, when glycosylation is performed using a biological method, the type of host cell or cell medium, pH, etc.). ..
  • the anti-EphA4 antibody according to the present disclosure may be further modified alone or in combination by other modification methods based on the common general knowledge known to those skilled in the art.
  • the anti-EphA4 antibody according to the present disclosure can be produced by a method well known to those skilled in the art.
  • the nucleic acid encoding the anti-EphA4 antibody according to the present disclosure may be incorporated into an expression vector, the expression vector may be introduced into a host cell, and the antibody may be produced by culturing the host cell. Therefore, the present disclosure includes a nucleic acid encoding an anti-EphA4 antibody, a vector containing the nucleic acid, a host cell containing the vector, and a method for producing an anti-EphA4 antibody, which comprises a step of culturing the host cell.
  • the nucleic acid encoding the anti-EphA4 antibody according to the present disclosure may have a DNA encoding a signal sequence, and may have a DNA encoding a heavy chain variable region and a DNA encoding a light chain variable region at the 5'end. It may have a DNA encoding a signal sequence.
  • the signal sequence is an amino acid residue present at the N-terminus of the protein that is required for the secretory protein or integral membrane protein to pass through the lipid bilayer after being synthesized on the ribosome, and in the present disclosure, this is the amino acid residue.
  • the sequence is not particularly limited as long as it has a function.
  • Examples of the signal sequence that the anti-EphA4 antibody according to the present disclosure may contain include signal sequences derived from humans, mice, rats, rabbits, donkeys, goats, horses, birds, dogs, cats, yeasts and the like.
  • a peptide containing the amino acid sequence represented by SEQ ID NO: 12 or 16 can be mentioned as a signal sequence for a heavy chain
  • SEQ ID NO: 14 or 18 can be mentioned as a signal sequence for a light chain.
  • Peptides containing the represented amino acid sequence can be mentioned. Further, if they are functionally equivalent, one or more (for example, 2, 3, 4 or 5) in the amino acid sequence represented by SEQ ID NO: 12 or 16 and the amino acid sequence represented by SEQ ID NO: 14 or 18). May have amino acid substitutions, additions and / or deletions.
  • the anti-EphA4 antibody according to the present disclosure may be isolated or purified according to a method known to those skilled in the art.
  • isolated or purified means artificially isolated or purified from its natural state. If the molecule or composition is naturally occurring, it is “isolated” or “purified” when it is altered, removed from its natural environment, or both. be.
  • isolation or purification methods include electrophoretic, molecular biological, immunological or chromatographic techniques, specifically ion exchange chromatography, hydrophobic chromatography, reverse phase. HPLC chromatography, isoelectric point electrophoresis, alkali extraction method and the like can be mentioned, but the present invention is not limited thereto.
  • the anti-EphA4 antibody comprises the following CDRs: (A) Heavy chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 44; (B) Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 27; (C) Heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 28; (D) Light chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 29; (E) Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 30; and (f) Light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 31.
  • the anti-EphA4 antibody is a humanized antibody or a chimeric antibody, and in a particular embodiment, it is a humanized antibody.
  • the anti-EphA4 antibody comprises a heavy chain and a light chain, wherein the heavy chain comprises a variable region consisting of the amino acid sequence set forth in SEQ ID NO: 45, and the light chain is set forth in SEQ ID NO: 46. It contains a variable region consisting of an amino acid sequence.
  • the variable region of the heavy chain and / or the variable region of the light chain contains one or more amino acids in the amino acid sequence shown in SEQ ID NO: 45 and / or the amino acid sequence shown in SEQ ID NO: 46. It may contain substituted, added and / or deleted amino acid sequences.
  • plality is not limited as long as it retains the binding affinity for EphA4 and promotes cleavage of EphA4, but is limited to 2 to 15 or 2 to 10, for example, 9 or 8. 7, 6, 5, 4, 3 or 2, or within 10% of the number of amino acids in the amino acid sequence, such as within 9%, within 8%, within 7%, within 6%, 5 Within%, within 4%, within 3%, within 2%, or within 1%.
  • the heavy chain of anti-EphA4 antibody comprises a constant region of human IgG 2 .
  • the constant region of human IgG 2 comprises the amino acid sequence of SEQ ID NO: 47.
  • the light chain of the anti-EphA4 antibody comprises a constant region of human Ig ⁇ .
  • the constant region of human Ig ⁇ comprises the amino acid sequence of SEQ ID NO: 48.
  • the anti-EphA4 antibody comprises a heavy chain comprising the amino acid sequence set forth in SEQ ID NO: 59 and a light chain comprising the amino acid sequence set forth in SEQ ID NO: 60.
  • the anti-EphA4 antibody lacks lysine located at the C-terminus (carboxy-terminus) of the heavy chain.
  • the anti-EphA4 antibody in which the heavy chain C-terminal lysine is deleted is the heavy chain C after translation with an anti-EphA4 antibody in which the heavy chain C-terminal lysine is deleted by genetic modification, carboxypeptidase, or the like.
  • anti-EphA4 antibodies in which the terminal lysine has been cleaved.
  • the anti-EphA4 antibody in which the C-terminal lysine of the heavy chain is deleted includes not only the anti-EphA4 antibody in which the C-terminal lysine is deleted in both heavy chains but also only one heavy chain.
  • an anti-EphA4 antibody in which the C-terminal lysine has been deleted is also included.
  • the present disclosure relates to an isolated nucleic acid encoding an anti-EphA4 antibody.
  • An isolated nucleic acid encoding an anti-EphA4 antibody refers to one or more nucleic acid molecules encoding a heavy and / or light chain of an anti-EphA4 antibody.
  • the nucleic acid according to the present disclosure encodes a heavy chain of an anti-EphA4 antibody.
  • the nucleic acid according to the present disclosure encodes the light chain of an anti-EphA4 antibody.
  • the nucleic acids according to the present disclosure encode heavy and light chains of anti-EphA4 antibodies.
  • the nucleic acids according to the present disclosure also include a first nucleic acid molecule encoding the heavy chain of an anti-EphA4 antibody and a second nucleic acid molecule encoding the light chain of an anti-EphA4 antibody.
  • the present disclosure relates to a vector comprising an isolated nucleic acid encoding an anti-EphA4 antibody.
  • the vector according to the present disclosure refers to one or more vectors containing an isolated nucleic acid encoding an anti-EphA4 antibody.
  • the vector according to the present disclosure is a vector containing a nucleic acid encoding a heavy chain of an anti-EphA4 antibody and a nucleic acid encoding a light chain of an anti-EphA4 antibody.
  • the vector according to the present disclosure is a vector comprising nucleic acids encoding the heavy and light chains of an anti-EphA4 antibody.
  • the vector according to the present disclosure comprises a first vector comprising a nucleic acid encoding a heavy chain of an anti-EphA4 antibody and a second vector comprising a nucleic acid encoding the light chain of an anti-EphA4 antibody. ..
  • the vector according to the present disclosure is not particularly limited to these, but may be a plasmid, cosmid, virus, phage or the like.
  • a retrovirus, a lentivirus, an adenovirus, an adeno-associated virus, a simple herpesvirus vector and the like are also included in the vector according to the present disclosure.
  • the present disclosure also includes a host cell containing the vector according to the present disclosure, and a method for producing an anti-EphA4 antibody, which comprises a step of culturing the host cell.
  • the host cells according to the present disclosure are not particularly limited, but may be Escherichia coli cells, monkey COS cells, Chinese hamster ovary (CHO) cells, NS0 cells and the like.
  • the method for producing an anti-EphA4 antibody comprises a step of culturing a host cell and a step of recovering the anti-EphA4 antibody secreted from the host cell (or a culture medium of the host cell).
  • the anti-EphA4 antibody according to the present disclosure is used for treating ALS. Accordingly, the present disclosure relates to a pharmaceutical composition for treating ALS, comprising the anti-EphA4 antibody according to the present disclosure.
  • the present disclosure also comprises a method of treating ALS, comprising administering to a subject suffering from ALS a therapeutically effective amount of an anti-EphA4 antibody in another embodiment.
  • the present disclosure also includes, in yet another embodiment, the use of anti-EphA4 antibodies to produce therapeutic agents for ALS.
  • the present disclosure also includes, in yet another embodiment, an anti-EphA4 antibody for use in the treatment of ALS.
  • the anti-EphA4 antibody according to the present disclosure can be used alone in a therapeutic method or in combination with other drugs or compositions.
  • the anti-EphA4 antibody according to the present disclosure may be administered simultaneously with or at different times with another drug.
  • Such combination therapies include combination administration (including two or more agents in the same or separate formulations) and separate administration (eg, simultaneously or sequentially).
  • the administration of the anti-EphA4 antibody according to the present disclosure may precede or follow the accompanying treatment.
  • the subject to which the anti-EphA4 antibody according to the present disclosure is administered is not limited, and for example, the present invention can be used for human or non-human mammals (monkey, mouse, rat, rabbit, cow, horse, goat, etc.). ..
  • the method of administration of the anti-EphA4 antibody according to the present disclosure to a subject is not particularly limited, and the health condition of the subject, the degree of disease, and the drug to be used in combination are not particularly limited.
  • a person skilled in the art for example, a doctor can appropriately determine the type of the disease.
  • the pharmaceutical composition according to the present disclosure contains the anti-EphA4 antibody according to the above disclosure.
  • the pharmaceutical composition according to the present disclosure can be produced according to a known method such as, for example, the method described in the Japanese Pharmacopoeia (JP), United States Pharmacopeia (USP) or European Pharmacopoeia (EP).
  • JP Japanese Pharmacopoeia
  • USP United States Pharmacopeia
  • EP European Pharmacopoeia
  • the term "comprise” is intended to include the matters described (members, steps, elements or numbers, etc.) unless the context clearly requires a different understanding. It does not preclude the existence of other matters (members, steps, elements or numbers, etc.).
  • the term “consist of” includes aspects described by the terms “consist of” and / or “consentally of”.
  • neutralizing activity refers to the activity of inhibiting the binding of EphA4 to its ligand, and / or the signaling that EphA4 induces in the human body by the binding of its ligand, or to the cell. It means an activity that inhibits a molecular expression response or a functional change.
  • first and second are used to describe various elements, but these elements should not be limited by these terms themselves. These terms are used only to distinguish one element from the other, for example, the first element is referred to as the second element, and similarly, the second element is the first element. Is possible without departing from the scope of the present disclosure.
  • the DNA sequence encoding the signal sequence (SEQ ID NO: 4) and extracellular region (SEQ ID NO: 2) of mouse EphA4 was amplified by RT-PCR using total RNA derived from mouse brain, and then SEAP and histidine tags.
  • the pENTR1A vector (Invitrogen / LifeTechnologies) having the DNA sequence encoding the above was cloned into the SalI / NotI site.
  • the signal sequence of mouse EphA4 and the DNA sequence encoding the extracellular space, SEAP, and histidine tag were transferred to the pcDNA3.1_rfcB vector by the LR reaction of Gateway System (Invitrogen / Life Technologies), and pcDNA3.1-mouse EphA4 cells.
  • An extracellular-SEAP-His expression vector was constructed.
  • the constructed pcDNA3.1-mouse EphA4 extracellular region-SEAP-His expression vector was transfected into HEK293EBNA cells (Invitrogen / Life Technologies) using TransIT-LT1 (TAKARA). After 6 days of incubation (5% CO 2 , 37 ° C.), culture supernatant was collected. From the collected culture supernatant, mouse EphA4 extracellular space-SEAP-His protein (SEQ ID NO: 3) was purified using a Proteino column (MACHEREY-NAGEL).
  • mice 20 ⁇ g of mouse EphA4 extracellular space-SEAP-His protein was mixed with the same amount of TitterMax Gold adjuvant (TitterMax USA) or GERBU adjuvant (GERBU Biotechnik GmbH) and injected subcutaneously into the footpads of Balb / c mice. Then, on days 3, 7, and 10, mouse EphA4 extracellular space-SEAP-His protein was administered in the same manner. At this time, the TitterMax Gold adjuvant (TiterMax USA) was used only on the 10th day, and the GERBU adjuvant (GERBU Biotechnik GmbH) was used on the 3, 7, and 10th days. On day 13, mice were sacrificed and peripheral lymph nodes were harvested to prepare lymph node cells.
  • TitterMax Gold adjuvant TitterMax USA
  • GERBU adjuvant GERBU Biotechnik GmbH
  • GenomeONE-CF Ishihara Sangyo Kaisha, Ltd.
  • the prepared lymph node cells and P3U1 myeloma cells were fused at a ratio of 5: 1.
  • the fusion cells were cultured in 96-well plastic plates. After 7 days of incubation (5% CO 2 , 37 ° C.), culture supernatant was collected.
  • Reactivity to mouse, rat and human EphA4 includes the extracellular region of mouse EphA4, the extracellular region of rat EphA4 (Genbank Accession No. NP_001155883.1) (positions 20-547) or human EphA4 (Genbank Accession No. NP_004429.
  • a protein in which the Fc region of human IgG1 and a histidine tag are fused to the extracellular region (positions 20 to 547) (SEQ ID NO: 6) of SEQ ID NO: 5) hereinafter, “mouse EphA4 extracellular region-Fc”, respectively.
  • Mouse, rat or human EphA4 extracellular space-Fc-His protein was prepared by the following steps. First, pcDNA3.1-mouse, rat or human EphA4 extracellular region-Fc-His expression vector was constructed. First, the signal sequence of mouse, rat or human EphA4 and the DNA sequence encoding the extracellular region are amplified by RT-PCR using total RNA derived from the brain of mouse, rat or human, and Fc and histidine tags are encoded. It was cloned into the SalI / NotI site of a pENTR1A vector (Invitrogen / Life Technologies) having a DNA sequence.
  • pENTR1A vector Invitrogen / Life Technologies
  • the signal sequence and extracellular region of mouse, rat or human EphA4 and the DNA sequence encoding the Fc and histidine tags were transferred to the pcDNA3.1_rfcB vector by the LR reaction of Gateway Systems (Invitrogen / Life Technologies), and pcDNA3.1.
  • -A mouse, rat or human EphA4 extracellular region-Fc-His expression vector was constructed. These constructed expression vectors were transfected into HEK293EBNA cells (Invitrogen / Life Technologies) using TransIT-LT1 (TAKARA). After 6 days of incubation (5% CO 2 , 37 ° C), culture supernatant was collected.
  • ELISA using mouse, rat or human EphA4 extracellular space-Fc-His protein was performed according to the following steps.
  • Anti-human IgG antibody Jackson ImmunoResearch Laboratories
  • 1x Block Ace (Dainippon Pharmaceutical Co., Ltd.) at room temperature for 1 hour.
  • Tween20 / PBS Nacalai Tesque
  • culture supernatant containing mouse, rat or human EphA4 extracellular space-Fc-His protein was added to each well (final concentration 1 nM) and brought to room temperature. Incubated for 1 hour.
  • Hybridomas were cloned from the wells picked up through the above steps by the limiting dilution method, and finally hybridoma clones expressing mouse anti-EphA4 antibody having binding activity to mouse, rat and human EphA4 were obtained.
  • the obtained hybridoma clone was cultured, and a mouse anti-EphA4 monoclonal antibody was purified from the culture supernatant using Protein A (GE Healthcare).
  • Rat hippocampal neurons were prepared according to the following steps. The fetus was taken out from a rat (Charles River, Japan) on the 18th day of gestation, and the head was incised to take out the brain.
  • digestion solution 137 mM NaCl (Wako Pure Chemical Industries, Ltd.), 5 mM KCl (Wako Pure Chemical Industries, Ltd.), 7 mM Na 2 HPO 4 (Wako Pure Chemical Industries, Ltd.), 25 mM Hepes (DOJINDO), 0.5 mg It was placed in / mL DNase (Sigma), 0.25% trypcin (Life technologies) and shaken at 37 ° C. for 10 minutes. The solution was removed and 20% Fetal bovine serum / Hanks buffer (Sigma) was added.
  • EphA4 cleavage promoting activity using hippocampal neurons was performed according to the following steps. Rat hippocampal neurons seeded in 96-weldish (Falcon) were treated with anti-EphA4 monoclonal antibody (67 nM) and ⁇ -secretase inhibitor Compound E (50 nM, Enzo Life Sciences) 16 hours later with PBS (Wako Pure Drug). The cells were collected with SDS sample buffer (Laemmli sample buffer (Bio-Rad), 5% 2-mercaptoethanol (Bio-Rad)), and boiled for 5 minutes. SDS-PAGE was performed using this sample, Western blotting was performed using an anti-EphA4 monoclonal antibody (Abnova), band intensity was quantified, and the value of EphA4C terminal fragment / total length EphA4 was calculated.
  • SDS sample buffer Laemmli sample buffer (Bio-Rad)
  • 2-mercaptoethanol Bio-Rad
  • a mouse anti-EphA4 monoclonal antibody (antibody A) having an activity of promoting cleavage of EphA4 was obtained.
  • the isotype of antibody A was determined by a monoclonal antibody isotyping kit (Serotec), which was IgG 1 for heavy chains and ⁇ for light chains.
  • the obtained cDNA was used as a 5'forward primer (5'-PCR4 primer, AGCTACGCTGAAGTATCAACGCAGAG) (SEQ ID NO: 9) and a 3'reverse primer (GCCAGTGGATAGACTGATGG (SEQ ID NO: 10) for amplification of mouse IgG heavy chain, and mouse Ig ⁇ light.
  • the chain was amplified by GATGGATACAGTTGGTGCAGC (SEQ ID NO: 11).
  • the amplified cDNA was inserted into a pCR2.1 vector (Invitrogen / Life Technologies).
  • the gene sequence of antibody A was analyzed using ABI3130XL.
  • the heavy chain signal sequence is the sequence shown in SEQ ID NO: 12
  • the heavy chain variable region is the sequence shown in SEQ ID NO: 13
  • the light chain signal is the sequence shown in SEQ ID NO: 14
  • the light chain variable region is the sequence shown in SEQ ID NO: 15.
  • the heavy chain signal sequence is the sequence shown in SEQ ID NO: 16
  • the heavy chain variable region is the sequence shown in SEQ ID NO: 17, and the light chain signal sequence is shown in SEQ ID NO: 18. It is a sequence, and the light chain variable region is the sequence shown in SEQ ID NO: 19.
  • RNA was prepared from the hybridoma using RNeasy (QIAGEN) and treated with DNase (QIAGEN, RNase free DNase set).
  • a reverse transcriptase was prepared from the total RNA using the RNA PCR kit (TAKARA). Using the obtained reverse transcript as a template, the gene sequence encoding the heavy chain and light chain of antibody A was lightly used with a 5'forward primer (GCGAAGCTTGCCGCCACCATGGCTGTCCTGGTGCTGCTCC (primerID7455) (SEQ ID NO: 20) for amplification of the heavy chain.
  • the CDR of antibody A was determined by the following method.
  • the amino acid sequence of antibody A was numbered using Abysis software (UCL) according to Kabat's numbering system. Based on this number, it was determined according to the definition of Kabat for identification of CDR (Kabat definition).
  • the amino acid sequence of the CDR of antibody A is shown in Table 1.
  • Reference Example 2 Binding affinity of anti-EphA4 monoclonal antibody to mouse and human EphA4 The binding affinity of antibody A to mouse and human EphA4 was determined by surface plasmon resonance (SPR method) using Biacore T200 (GE Healthcare).
  • SPR method surface plasmon resonance
  • an anti-His antibody (GE Healthcare, 28-9950-56) was immobilized on the sensor chip CM5. Immobilization is performed by an amine coupling method using N-hydroxysuccinimide (NHS) and N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), and ethanolamine is used for blocking.
  • NHS N-hydroxysuccinimide
  • EDC N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride
  • ethanolamine is used for blocking.
  • binding affinities (KD values) of antibody A to mouse and human EphA4 were 1.32 ⁇ 10-9 M and 1.19 ⁇ 10-9 M, respectively (FIG. 1).
  • Other binding parameters for mouse and human EphA4 were similar. Therefore, antibody A is considered to have a similar binding affinity for mouse and human EphA4.
  • Reference Example 3 The EphA4 cleavage promoting activity antibody A in the hippocampal neurons of the anti-EphA4 monoclonal antibody was evaluated for the EphA4 cleavage promoting activity using the hippocampal neurons according to the following steps. Rat hippocampal neurons seeded in 96-weldish (Falcon) were treated with antibody A (2.0, 6.7, 20 nM) and the ⁇ -secretase inhibitor CompoundE (50 nM, Enzo Life Sciences) 24 hours later with PBS.
  • Falcon Rat hippocampal neurons seeded in 96-weldish (Falcon) were treated with antibody A (2.0, 6.7, 20 nM) and the ⁇ -secretase inhibitor CompoundE (50 nM, Enzo Life Sciences) 24 hours later with PBS.
  • the cells were washed with (Wako Junyaku), SDS sample buffer (Laemmli sample buffer (Bio-Rad), 5% 2-mercaptoethanol (Bio-Rad)) was added, and the cells were collected and boiled for 5 minutes. SDS-PAGE was performed using this sample, Western blotting was performed using an anti-EphA4 monoclonal antibody (Abnova), band intensity was quantified, and the value of EphA4C terminal fragment / total length EphA4 was calculated.
  • SDS sample buffer Laemmli sample buffer (Bio-Rad)
  • 2-mercaptoethanol Bio-Rad
  • Antibody A promoted the EphA4 cleavage reaction in hippocampal neurons in a concentration-dependent manner (Fig. 2).
  • Reference Example 4 Mouse EphA4-mouse ligand binding inhibitory activity of anti-EphA4 monoclonal antibody
  • antibody A the binding inhibitory activity between mouse EphA4 and mouse ligand was evaluated according to the following steps.
  • Anti-alkaline phosphatase antibody (Thermo SCIENTIFIC) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical).
  • mouse EphA4 extracellular space-SEAP-His protein was added to the wells (final concentration 10 nM) and incubated for 1 hour at room temperature. After washing 3 times, the wells were loaded with ligand and antibody A (0, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000 nM) was added.
  • biotinylated mouse EphrinA1-Fc chimera R & D Systems, final concentration 6 nM
  • biotinylated mouse EphrinB2-Fc chimera R & D Systems, final concentration 2.5 nM
  • TMBZ horseradish peroxidase-labeled streptavidin
  • TMBZ TMBZ (3,3', 5,5'-tetramethylbenzidine, Sigma) solution was added to the wells, and the mixture was incubated for 2 minutes at room temperature.
  • An equal amount of reaction arrest solution (1NH 2 SO 4 , Wako Pure Chemical Industries, Ltd.) was added to the wells, and the absorbance at 450 nm was read with a microplate reader (PerkinElmer).
  • Antibody A suppressed the binding between mouse EphA4 and mouse ligand in a concentration-dependent manner, and the IC50 values for mouse EphrinA1 and EphrinB2 binding were about 5.9 nM and 3.1 nM, respectively (FIG. 3). Therefore, it was shown that antibody A strongly inhibits the binding between mouse EphA4 and mouse ligand.
  • Reference Example 5 Human EphA4-human ligand binding inhibitory activity of anti-EphA4 monoclonal antibody
  • antibody A the binding inhibitory activity between human EphA4 and human ligand was evaluated according to the following steps.
  • Anti-alkaline phosphatase antibody (Thermo SCIENTIFIC) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical).
  • human EphA4 extracellular space-SEAP-His protein was added to the wells (final concentration 10 nM) and incubated for 1 hour at room temperature. After washing three times, the wells were serially diluted with ligand A (0, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000 nM) was added.
  • a biotinylated human EphrinA5-Fc chimera (R & D Systems, final concentration 0.7 nM) and a biotinylated human EphrinB3-Fc chimera (R & D Systems, final concentration 2.3 nM) were used.
  • horseradish peroxidase-labeled streptavidin (GE Healthcare) was added, and the mixture was incubated at room temperature for 1 hour.
  • TMBZ (3,3', 5,5'-tetramethylbenzidine, Sigma) solution was added to the wells, and the mixture was incubated for 2 to 5 minutes at room temperature.
  • An equal amount of reaction arrest solution (1NH 2 SO 4 , Wako Pure Chemical Industries, Ltd.) was added to the wells, and the absorbance at 450 nm was read by a microplate reader (Molecular Devices or PerkinElmer).
  • Antibody A suppressed the binding between human EphA4 and human ligand in a concentration-dependent manner, and the IC50 values for human EphrinA5 and EphrinB3 binding were about 2.8 nM and 1.4 nM, respectively (FIG. 4). Therefore, it was shown that antibody A also strongly inhibits the binding between human EphA4 and human ligand.
  • Reference Example 6 Selectivity of anti-EphA4 monoclonal antibody for human Eph receptor
  • each human Eph receptor EphA1, EphA2, EphA3, EphA4, EphA5, EphA6, EphA7, EphA8, EphA10, EphB1, EphB2, EphB3, EphB4, EphB6
  • signal sequences and DNA sequences encoding extracellular regions are amplified by RT-PCR using tissue-derived Total RNA and SEAP.
  • a pENTR1A vector Invitrogen / LifeTechnologies
  • each human Eph receptor the DNA sequence encoding the SEAP and histidine tags are transferred to the pcDNA3.1_rfcB vector by the LR reaction of Gateway System (Invitrogen / Life Technologies), and each human Eph receptor is transferred.
  • Gateway System Invitrogen / Life Technologies
  • each human Eph receptor is transferred.
  • a vector that expresses a protein in which SEAP and His tags are fused to the extracellular space of SEAP referred to as "Eph receptor extracellular space-SEAP-His protein" (referred to as "Eph receptor extracellular space-SEAP-His protein expression vector").
  • each human Eph receptor extracellular space-SEAP-His protein expression vector was introduced into Expi293F cells (Gibco / Thermo Fisher). After culturing for 5 days (5% CO2, 37 ° C., 120 rpm), the culture supernatant was collected and centrifuged at 1500 rpm for 5 minutes at room temperature. The centrifugation supernatant was filtered through a 0.45 ⁇ m filter (Millipore).
  • the binding activity of the human Eph receptor was evaluated according to the following steps. Rabbit anti-6-His antibody (Bethyl Laboratories) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical). After washing 3 times with 0.05% Tween20 / PBS (Thermo SCIENTIFIC), each well was inoculated with each human Eph receptor extracellular space-SEAP-His protein (final concentration 1 nM) and incubated for 1 hour at room temperature. ..
  • Antibody A had a specific binding activity only to human EphA4 among the human Eph receptor families (Fig. 5).
  • Reference Example 7 Selectivity of anti-EphA4 monoclonal antibody for mouse Eph receptor
  • each Eph receptor in mice (EphA1, EphA3, EphA4, EphA5, EphA6).
  • EphA7, EphA8, EphA10, EphB1, EphB2, EphB3, EphB4, EphB6) and the DNA sequence encoding the extracellular space were amplified by RT-PCR using tissue - derived Total RNA to obtain human IgG1.
  • mice It was cloned into a pENTR1A vector (Invitrogen / LifeTechnologies) having a DNA sequence encoding an Fc region and a histidine tag.
  • EphA1, EphA3, EphA4, EphA5, EphA6, EphA7, EphA8, EphA10, EphB1, EphB2, EphB3, EphB4, EphB6) of mice are encoded.
  • the DNA sequence was transferred to the pcDNA3.1_rfcB vector by the LR reaction of Gateway System (Invitrogen / LifeTechnologies) to construct the extracellular space-Fc-His protein expression vector of each Eph receptor in mice.
  • Gateway System Invitrogen / LifeTechnologies
  • the signal sequence of mouse EphA2 and the DNA sequence encoding the extracellular region were amplified by RT-PCR using tissue-derived Total RNA, and Fc and Fc and A mouse EphA2 extracellular region-Fc-His protein expression vector was constructed by cloning into a pcDNA3.1 vector having a DNA sequence encoding a histidine tag.
  • each Eph receptor extracellular space-Fc-His protein expression vector of mice was introduced into Expi293F cells (Gibco / Thermo Fisher). After culturing for 5 days (5% CO2, 37 ° C., 120 rpm), the culture supernatant was collected and centrifuged at 1500 rpm for 5 minutes at room temperature. The centrifugation supernatant was filtered through a 0.45 ⁇ m filter (Millipore).
  • the binding activity of the mouse Eph receptor was evaluated according to the following steps. Rabbit anti-6-His antibody (Bethyl Laboratories) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical). After washing 3 times with 0.05% Tween20 / PBS (Thermo SCIENTIFIC), each well was inoculated with each Eph receptor extracellular space-Fc-His protein (final concentration 1 nM) of mice and incubated at room temperature for 1 hour. ..
  • Antibody A had a specific binding activity only to mouse EphA4 among the mouse Eph receptor families (Fig. 6).
  • Reference Example 8 Responsiveness of anti-EphA4 monoclonal antibody to mouse, rat, monkey and human EphA4 Mouse, rat, monkey and human EphA4 extracellular region-Fc-His protein was prepared according to the following steps. First, a monkey EphA4 extracellular region-Fc-His protein expression vector was constructed according to the method for preparing the EphA4 extracellular region-Fc-His protein described in Reference Example 1. The amino acid sequence of monkey EphA4 used in vector construction is shown as SEQ ID NO: 32, and its extracellular space is shown as SEQ ID NO: 33.
  • Antibody A had the same binding activity in all of mouse, rat, monkey and human EphA4 (Fig. 7).
  • pcDNA3.4-human EphA4 extracellular region, ligand binding domain, fibronectin type III domain 1, or fibronectin type III domain 2-MBP-His expression vector was constructed.
  • the signal sequence of human EphA4 (SEQ ID NO: 34) or the signal sequence of preprotrypsin (SEQ ID NO: 35) and the DNA sequence encoding each domain of human EphA4 are amplified by PCR, and the DNA sequence encoding MBP and histidine tag is obtained.
  • the expression vector was transfected into Expi293F cells (Thermo SCIENTIFIC) using the Expi293 expression system (Thermo SCIENTIFIC). After 4 days, the culture supernatant was collected and passed through a 0.45 ⁇ m filter (Millipore). Rough purification was performed using Amylose resin (NEB), and buffer-substituted with PBS (Wako Pure Chemical Industries, Ltd.) using Zeba Spin Deserting colon (Thermo SCIENTIFIC). The monomer fraction was fractionally purified with Superdex200 10/300 (GE Healthcare).
  • antibody A The binding activity of antibody A to various human EphA4 domains was evaluated according to the following steps. Rabbit anti-6-His antibody (Bethyl Laboratories) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical).
  • human EphA4 extracellular region-MBP-His protein, human EphA4 ligand binding domain-MBP-His protein, human EphA4 fibronectin type III domain 1- MBP-His protein and human EphA4 fibronectin type III domain 2-MBP-His protein (final concentration 10 nM) were seeded and incubated at room temperature for 1 hour. After washing 3 times, antibody A (final concentration 10 nM) was added to the wells and incubated at room temperature for 1 hour.
  • Horseradish peroxidase-labeled goat anti-mouse IgG Fc ⁇ fragment antibody (Jackson ImmunoResearch Laboratories) was added and incubated for 1 hour at room temperature. After washing 5 times, add TMB solution (KPL) to the wells, and after confirming appropriate color development, add an equal amount of reaction stop solution (2NH 2 SO 4 , Wako Pure Chemical Industries, Ltd.) to the wells, and microplate reader (PerkinElmer). The absorbance at 450 nm and 650 nm was read.
  • Antibody A had binding activity to the human EphA4 extracellular space (ECD) and ligand binding domain (LBD) (FIG. 8). It did not react with fibronectin type III domain 1 (FN1) and fibronectin type III domain 2 (FN2). Therefore, it was found that antibody A specifically binds to the ligand-binding domain of the extracellular region of human EphA4.
  • Reference Example 10 Increasing effect of anti-EphA4 monoclonal antibody on the number of spines of hippocampal neurons
  • Preparation of rat hippocampal neurons was performed as described in (B) of Reference Example 1 above.
  • a 24-well plate containing a poly-L-lysine-coated cover glass (Matsunami Glass Ind.) In which the EGFP gene was introduced into rat hippocampal neurons using Nucleofector (Lonza) and mixed with rat hippocampal neurons without gene transfer. It was sown in Falcon).
  • Control antibody (mouse IgG 1 ; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A (mouse IgG 1; BioLegend) or antibody A 6.7, 20 nM) was treated for 24 hours.
  • the cover glass was transferred to 2% PFA (Wako Pure Chemical Industries, Ltd.) / 4% Sucrose (Wako Pure Chemical Industries, Ltd.) / PBS and allowed to stand for 20 minutes to fix the cells. After removing the fixation solution, the cells were washed 3 times with PBS, 0.25% Triton X-100 (Wako Pure Chemical Industries, Ltd.) / PBS was added, and cell permeation treatment was performed for 15 minutes. Remove the liquid, transfer the cover glass to 2% BSA (Sigma) / 0.25% TritonX-100 / Opti-MEM (GIBCO), block for 1 hour, and then apply anti-GFP antibody (Nacalai Tesque) for 1 hour.
  • the reaction was carried out for 30 minutes.
  • the primary antibody solution was removed, the cells were washed 3 times with PBS, and then the secondary antibody was reacted for 1 hour.
  • Prolong Gold antibody reagent (Molecular probes) was added and encapsulated, and observation was performed with LSM800 (ZEISS).
  • the above-mentioned experiments were carried out three times, and neurons were extracted from two cover glasses for each experiment, and the spines on each dendrite were counted using the image analysis software Imaris (registered trademark) (Bitplane). , The number of spines per 10 ⁇ m in each neuron was calculated.
  • Antibody A increased the number of spines in hippocampal neurons (Fig. 9). This result indicates that antibody A has the activity of stabilizing spines in hippocampal neurons.
  • Reference Example 11 Preparation of the epitope mapping antibody A-Fab of the EphA4-ligand binding domain (EphA4-LBD) by X-ray crystal structure analysis was carried out according to the following steps. 101.1 mg of antibody A was dissolved in 0.1 M sodium phosphate buffer (pH 7.0) containing 30 mM L-cysteine and 2 mM EDTA at a concentration of 15 mg / mL. To this antibody solution, 1/200 amount of papain (Sigma) was added to the antibody, and enzymatic digestion was performed at 37 ° C. for 18 hours.
  • papain Sigma
  • the antibody A enzyme digestion solution was dialyzed against PBS, and then the precipitate was removed by centrifugation (the resulting precipitate was redissolved in PBS and mixed with the centrifugation supernatant). Next, the following steps were performed for the purpose of removing impurities other than the antibody A-Fab.
  • 1) Purification by Protein A column This enzyme digestion solution was applied to 2 mL of ProSep vA High Capacity (Millipore) equilibrated with PBS, and the pass-through fraction and the washed fraction with PBS were collected.
  • EphA4-LBD was prepared in order to prepare a complex of the antibody A-Fab and the antigen EphA4-LBD (Qin H. et al., J. Biol. Chem., 283: 29473-29484 (2008)). 0.68 ⁇ mol (200 ⁇ M, 3.4 mL) of EphA4-LBD and 0.45 ⁇ mol (300 ⁇ M, 1.5 mL) so that EphA4-LBD has a molar ratio of about 1.5 times that of antibody A-Fab. The antibody A-Fab was mixed.
  • the mixed solution was applied to HILOAD 26/60 Superdex 75 prep grade (GE Healthcare) and eluted with a chromatographic buffer (25 mM Tris / HCl (pH 7.5), 100 mM NaCl). Fractions containing the complex were analyzed by SDS PAGE, high-purity fractions were collected and concentrated to about 40.8 mg / mL, which was used for crystallization.
  • a chromatographic buffer 25 mM Tris / HCl (pH 7.5), 100 mM NaCl.
  • the crystallization of the complex was carried out by a sitting drop steam diffusion method using an automatic crystallization device Hydra II Plus One system (Matrix Technologies Corp., Ltd.).
  • the plate used was MRC-2 (Molecular Dimensions).
  • the composition of the reservoir solution is 100 mM HEPES (pH 7.5), 10% Polyethylene Glycol 8000, 8% Ethylene Glycol, and the volume ratio of this reservoir solution and the above complex solution is 1: 1 and crystallization drops. A let was made.
  • the prepared crystallization plate was allowed to stand at 20 ° C.
  • the crystal structure of the obtained antibody A-Fab / EphA4-LBD complex was analyzed using the interaction detection tool installed in the computational chemistry system MOE 2018.0101 (Chemical Computing Group Inc.), and the antibody A-Fab was analyzed.
  • Amino acid residues on EphA4-LBD in direct contact with were identified (FIG. 10A).
  • the identified amino acid residues are Glu51, Gly52, Ile59, Gln71, Cys73, Asn74, Val75, Met76, Glu77, Thr104, Arg106, Leu111, Pro112, Met115, Arg162, Met164, Cys191, Ala193, Val195.
  • FIG. 10A The identified amino acid residues are Glu51, Gly52, Ile59, Gln71, Cys73, Asn74, Val75, Met76, Glu77, Thr104, Arg106, Leu111, Pro112, Met115, Arg162, Met164, Cys191, Ala193, Val195.
  • Example 1 Preparation of a humanized antibody of antibody A
  • Preparation of humanized anti-EphA4 antibody A variable region of the humanized antibody was designed. Based on the high homology to the framework region (FR) of antibody A, among the FRs of human antibodies, IGHV3-33 * 03 (SEQ ID NO: 42), JH6 (SEQ ID NO: 43), and light chain for heavy chains. For, IGKV1-17 * 01 (SEQ ID NO: 40) and JK4 (SEQ ID NO: 41) were selected as FRs of humanized antibodies.
  • the heavy chain constant region the constant region of human IgG 2 (SEQ ID NO: 47) was used.
  • Human Ig ⁇ (SEQ ID NO: 48) was used as the light chain constant region.
  • an expression vector (pcDNA3.4) containing a gene sequence encoding the amino acid sequence of a humanized antibody was transfected into Expi293F cells (Gibco / ThermoFiser).
  • the gene sequence encoding the amino acid sequence of the humanized antibody the nucleic acid sequence shown in SEQ ID NO: 55 is used for the heavy chain variable region, and the nucleic acid sequence shown in SEQ ID NO: 56 is used for the light chain variable region.
  • the nucleic acid sequence shown in SEQ ID NO: 57 was used for the region, and the nucleic acid sequence shown in SEQ ID NO: 58 was used for the light chain constant region.
  • the amino acid sequence of the full length of the heavy chain (not including the signal sequence) of the humanized antibody is the amino acid sequence shown in SEQ ID NO: 59, and the amino acid sequence of the full length of the light chain (not including the signal sequence) is the amino acid shown in SEQ ID NO: 60. It is an array.
  • the nucleic acid sequence encoding the full length of the heavy chain of the humanized antibody is the nucleic acid sequence shown in SEQ ID NO: 61
  • the nucleic acid sequence encoding the full length of the light chain is the nucleic acid sequence shown in SEQ ID NO: 62.
  • the supernatant was collected, and the humanized antibody (antibody B) of antibody A was purified using MabSelectSuRe (GE Healthcare).
  • Example 2 Affinity of humanized anti-EphA4 monoclonal antibody to human EphA4 The binding affinity of antibody B obtained in Example 1 to human EphA4 was determined by surface plasmon resonance (SPR method) using Biacore T200 (GE Healthcare). did.
  • SPR method surface plasmon resonance
  • Biacore T200 Biacore T200
  • an anti-His antibody (GE Healthcare, 28-9950-56) was immobilized on the sensor chip CM5. Immobilization is performed by an amine coupling method using N-hydroxysuccinimide (NHS) and N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), and ethanolamine is used for blocking.
  • NHS N-hydroxysuccinimide
  • EDC N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride
  • ethanolamine is used for blocking.
  • the binding affinity (KD value) of antibody B to human EphA4 was 1.34 ⁇ 10-9 M (FIG. 11). It was found that antibody B showed almost the same affinity as antibody A before humanization.
  • Example 3 EphA4 cleavage promoting activity of humanized anti-EphA4 monoclonal antibody in hippocampal neurons
  • the antibody B obtained in Example 1 was evaluated for EphA4 cleavage promoting activity using hippocampal neurons according to the following steps. Rat hippocampal neurons seeded in 96-weldish (Falcon) were treated with antibody B (2.0, 6.7, 20 nM) and the ⁇ -secretase inhibitor CompoundE (50 nM, Enzo Life Sciences) 24 hours later with PBS.
  • the cells were washed with (Wako Junyaku), SDS sample buffer (Laemmli sample buffer (Bio-Rad), 5% 2-mercaptoethanol (Bio-Rad)) was added, and the cells were collected and boiled for 5 minutes. SDS-PAGE was performed using this sample, Western blotting was performed using an anti-EphA4 monoclonal antibody (Abnova), band intensity was quantified, and the value of EphA4C terminal fragment / total length EphA4 was calculated.
  • SDS sample buffer Laemmli sample buffer (Bio-Rad)
  • 2-mercaptoethanol Bio-Rad
  • Antibody B promoted the EphA4 cleavage reaction in hippocampal neurons in a concentration-dependent manner (Fig. 12).
  • Example 4 Human EphA4-human ligand binding inhibitory activity of humanized anti-EphA4 monoclonal antibody
  • Anti-alkaline phosphatase antibody (Thermo SCIENTIFIC) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical).
  • the wells were inoculated with human EphA4 extracellular space-SEAP-His protein (final concentration 10 nM) and incubated at room temperature for 1 hour. After washing three times, the wells were serially diluted with ligand B (0, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000 nM) was added.
  • a biotinylated human EphrinA5-Fc chimera (R & D Systems, final concentration 0.7 nM) and a biotinylated human EphrinB3-Fc chimera (R & D Systems, final concentration 2.3 nM) were used.
  • horseradish peroxidase-labeled streptavidin (GE Healthcare) was added, and the mixture was incubated at room temperature for 1 hour.
  • TMBZ (3,3', 5,5'-tetramethylbenzidine, Sigma) solution was added to the wells, and the mixture was incubated for 2 to 5 minutes at room temperature.
  • An equal amount of reaction arrest solution (1NH 2 SO 4 , Wako Pure Chemical Industries, Ltd.) was added to the wells, and the absorbance at 450 nm was read by a microplate reader (Molecular Devices or PerkinElmer).
  • Antibody B suppressed the binding between human EphA4 and human ligand in a concentration-dependent manner, and the IC50 values for human EphrinA5 and EphrinB3 binding were about 4.9 nM and 1.6 nM, respectively. Therefore, it was found that antibody B strongly inhibits the binding between human EphA4 and human ligand, and exhibits almost the same inhibitory activity as antibody A before humanization (FIG. 13).
  • Example 5 Mouse EphA4-mouse ligand binding inhibitory activity of humanized anti-EphA4 monoclonal antibody With respect to the antibody B obtained in Example 1, the binding inhibitory activity between mouse EphA4 and mouse ligand was evaluated according to the following steps. Anti-alkaline phosphatase antibody (Thermo SCIENTIFIC) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical).
  • Anti-alkaline phosphatase antibody Thermo SCIENTIFIC
  • mouse EphA4 extracellular space-SEAP-His protein was added to the wells (final concentration 10 nM) and incubated for 1 hour at room temperature. After washing three times, the wells were serially diluted with ligand B (0, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000 nM) was added.
  • biotinylated mouse EphrinA1-Fc chimera R & D Systems, final concentration 6 nM
  • biotinylated mouse EphrinB2-Fc chimera R & D Systems, final concentration 2.5 nM
  • TMBZ horseradish peroxidase-labeled streptavidin
  • TMBZ TMBZ (3,3', 5,5'-tetramethylbenzidine, Sigma) solution was added to the wells, and the mixture was incubated for 2 minutes at room temperature.
  • An equal amount of reaction arrest solution (1NH 2 SO 4 , Wako Pure Chemical Industries, Ltd.) was added to the wells, and the absorbance at 450 nm was read by a microplate reader (Molecular Devices or PerkinElmer).
  • Antibody B suppressed the binding between mouse EphA4 and mouse ligand in a concentration-dependent manner, and the IC50 values for mouse EphrinA1 and EphrinB2 binding were about 8.7 nM and 4.2 nM, respectively. Therefore, it was found that antibody B strongly inhibits the binding between mouse EphA4 and mouse ligand, and exhibits almost the same inhibitory activity as antibody A before humanization (FIG. 14).
  • Example 6 Selectivity of humanized anti-EphA4 monoclonal antibody for human Eph receptor Similar to the method for preparing mouse EphA4 extracellular region-SEAP-His protein described in Reference Example 1, each human Eph receptor (EphA1, EphA2, EphA3, EphA4, EphA5, EphA6, EphA7, EphA8, EphA10, EphB1, EphB2, EphB3, EphB4, EphB6) signal sequences and DNA sequences encoding extracellular regions using tissue-derived Total RNA by RT-PCR. It was amplified and cloned into a pENTR1A vector (Invitrogen / Life Technologies) having a DNA sequence encoding the SEAP protein and histidine tag.
  • pENTR1A vector Invitrogen / Life Technologies
  • each human Eph receptor the DNA sequence encoding the SEAP protein and the histidine tag are transferred to the pcDNA3.1_rfcB vector by the LR reaction of Gateway System (Invitrogen / LifeTechnologies), and each Eph in human is transferred.
  • a vector that expresses a protein in which a SEAP protein and a His tag are fused to the extracellular region of the receptor referred to as "Eph receptor extracellular space-SEAP-His protein" ("Eph receptor extracellular space-SEAP-His protein expression vector"). ") was constructed.
  • each human Eph receptor extracellular space-SEAP-His protein expression vector was introduced into Expi293F cells (Gibco / Thermo Fisher). After 5 days of incubation (5% CO 2 , 37 ° C.), the culture supernatant was collected and centrifuged at 1500 rpm for 5 minutes at room temperature. The centrifugation supernatant was filtered through a 0.45 ⁇ m filter (Millipore).
  • the binding activity of the human Eph receptor was evaluated according to the following steps. Rabbit anti-6-His antibody (Bethyl Laboratories) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical). After washing 3 times with 0.05% Tween20 / PBS (Thermo SCIENTIFIC), each well was inoculated with each human Eph receptor extracellular space-SEAP-His protein (final concentration 1 nM) and incubated for 1 hour at room temperature. ..
  • antibody B specifically binds to human EphA4 among the human Eph receptor families, similar to antibody A before humanization (FIG. 15).
  • Example 7 Selectivity of humanized anti-EphA4 monoclonal antibody for mouse Eph receptor
  • each Eph receptor in mice (EphA1, EphA3, EphA4, EphA5).
  • EphA6, EphA7, EphA8, EphA10, EphB1, EphB2, EphB3, EphB4, EphB6) and DNA sequences encoding extracellular regions are amplified by RT-PCR using tissue-derived Total RNA and human IgG.
  • mice It was cloned into a pENTR1A vector (Invitrogen / LifeTechnologies) having a DNA sequence encoding the Fc region of 1 and the histidine tag.
  • EphA1, EphA3, EphA4, EphA5, EphA6, EphA7, EphA8, EphA10, EphB1, EphB2, EphB3, EphB4, EphB6) of mice are encoded.
  • the DNA sequence was transferred to the pcDNA3.1_rfcB vector by the LR reaction of Gateway System (Invitrogen / LifeTechnologies) to construct the extracellular space-Fc-His protein expression vector of each Eph receptor in mice.
  • Gateway System Invitrogen / LifeTechnologies
  • the signal sequence of mouse EphA2 and the DNA sequence encoding the extracellular region were amplified by RT-PCR using tissue-derived Total RNA, and Fc and Fc and A mouse EphA2 extracellular region-Fc-His protein expression vector was constructed by cloning into a pcDNA3.1 vector having a DNA sequence encoding a histidine tag.
  • each Eph receptor extracellular space-Fc-His protein expression vector of mice was introduced into Expi293F cells (Gibco / Thermo Fisher). After culturing for 5 days (5% CO2, 37 ° C., 120 rpm), the culture supernatant was collected and centrifuged at 1500 rpm for 5 minutes at room temperature. The centrifugation supernatant was filtered through a 0.45 ⁇ m filter (Millipore).
  • the binding activity of the mouse Eph receptor was evaluated according to the following steps. Rabbit anti-6-His antibody (Bethyl Laboratories) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical). After washing 3 times with 0.05% Tween20 / PBS (Thermo SCIENTIFIC), each well was inoculated with each Eph receptor extracellular space-Fc-His protein (final concentration 1 nM) of mice and incubated at room temperature for 1 hour. ..
  • Antibody B had a specific binding activity only to mouse EphA4 among the mouse Eph receptor families (FIG. 16).
  • Example 8 Reactivity of humanized anti-EphA4 monoclonal antibody to mouse, rat, monkey and human EphA4
  • the binding activity of antibody B to various EphA4s was evaluated according to the following steps.
  • Anti-alkaline phosphatase antibody (Thermo SCIENTIFIC) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical). After washing 3 times with 0.05% Tween20 / PBS (Thermo SCIENTIFIC), the wells were inoculated with mouse, rat, monkey and human EphA4 extracellular space-SEAP-His protein (final concentration 1 nM) for 1 hour at room temperature. Incubated.
  • Antibody B had the same binding activity in all of mouse, rat, monkey and human EphA4 (Fig. 17).
  • Example 9 Reactivity of humanized anti-EphA4 monoclonal antibody to human EphA4 extracellular region, ligand-binding domain, fibronectin type III domain 1, fibronectin type III domain 2
  • Antibodies B obtained in Example 1 have various human EphA4 intra-domains.
  • the evaluation of the binding activity with was performed according to the following steps. Rabbit anti-6-His antibody (Bethyl Laboratories) was coated on wells of 96-well plates (Nunc). After incubating overnight at 4 ° C., wells were blocked at room temperature for 1 hour with 1% Block Ace (DS Pharma Biomedical).
  • human EphA4 extracellular space-MBP-His protein, human EphA4 ligand binding domain-MBP-His protein, human EphA4 fibronectin type III domain 1- MBP-His protein and human EphA4 fibronectin type III domain 2-MBP-His protein (final concentration 10 nM) were seeded and incubated at room temperature for 1 hour. After washing 3 times, antibody B (final concentration 10 nM) was added to the wells and incubated at room temperature for 1 hour.
  • Horseradish peroxidase-labeled rabbit anti-human IgG Fc ⁇ fragment antibody (Jackson ImmunoResearch Laboratories) was added and incubated for 1 hour at room temperature. After washing 5 times, add TMB (KPL) solution to the wells, and after confirming appropriate color development, add an equal amount of reaction stop solution (2NH 2 SO 4 , Wako Pure Chemical Industries, Ltd.) to the wells, and use a microplate reader (PerkinElmer). The absorbance at 450 nm and 650 nm was read.
  • Antibody B had binding activity to the human EphA4 extracellular space (ECD) and ligand binding domain (LBD) (FIG. 18). It did not react with fibronectin type III domain 1 (FN1) and fibronectin type III domain 2 (FN2). Therefore, it was found that antibody B specifically binds to the ligand-binding domain of the extracellular region of human EphA4.
  • Example 10 Increasing effect of humanized anti-EphA4 monoclonal antibody on the spine number of hippocampal neurons
  • Preparation of rat hippocampal neurons was performed as described in Reference Example 1 (B).
  • the EGFP gene was introduced into rat hippocampal neurons using Nucleofector (Lonza) and seeded on a 24-well plate (Falcon) containing a cover glass coated with poly-L lysine (Matsunami Glass Ind.).
  • Counting of spines using hippocampal neurons was performed according to the following steps. Control antibody (human IgG 2 ; Sigma) or antibody B (human IgG 2; Sigma) or antibody B (human IgG 2; Sigma) or antibody B (human IgG 2; Sigma) or antibody B (human IgG 2; 6.7, 20 nM) was treated for 24 hours. Then, the cover glass was transferred to 2% PFA (Wako Pure Chemical Industries, Ltd.) / 4% Sucrose (Wako Pure Chemical Industries, Ltd.) / PBS and allowed to stand for 20 minutes to fix the cells.
  • the cells were washed 3 times with PBS, 0.25% Triton X-100 (Wako Pure Chemical Industries, Ltd.) / PBS was added, and cell permeation treatment was performed for 15 minutes. Remove the liquid, transfer the cover glass to 2% BSA (Sigma) / 0.25% TritonX-100 / OPTI-MEM (GIBCO), block for 1 hour, and then apply anti-GFP antibody (Nacalai Tesque) for 1 hour. The reaction was carried out for 30 minutes. The primary antibody solution was removed, the cells were washed 3 times with PBS, and then the secondary antibody was reacted for 1 hour.
  • Antibody B increased the number of spines in hippocampal neurons (Fig. 19). This result indicates that antibody B has the activity of stabilizing spines in hippocampal neurons.
  • Example 11 Human EphA4 cleavage promoting activity of humanized anti-EphA4 monoclonal antibody With respect to the antibody B obtained in Example 1, the cleavage promoting activity against human EphA4 was evaluated according to the following steps. Preparation of rat hippocampal neurons was performed as described in Reference Example 1 (B). A human EphA4-HA protein expression vector was introduced into rat hippocampal neurons using a Nucleifier (Lonza) and seeded on a polyL-lysine-coated 96-weldish (Falcon).
  • the seeded rat hippocampus neurons were treated with antibody B (6.7, 20, 67 nM) and the ⁇ -secretase inhibitor CompoundE (50 nM, Enzo Life Sciences), and washed with PBS (Wako Pure Drug) about 24 hours later. Then, SDS sample buffer (Laemmli sample buffer (Bio-Rad), 5% 2-mercaptoethanol (Bio-Rad)) was added to collect the cells, and the cells were boiled for 5 minutes. SDS-PAGE was performed using this sample, Western blotting was performed using a rat anti-HA monoclonal antibody (Roche), the band intensity was quantified, and the value of EphA4C terminal fragment / total length EphA4 was calculated.
  • SDS sample buffer Laemmli sample buffer (Bio-Rad), 5% 2-mercaptoethanol (Bio-Rad)
  • Antibody B promoted the human EphA4 cleavage reaction in hippocampal neurons (Fig. 20).
  • Example 12 Involvement of MMP and ADAM in the spine-increasing effect of humanized anti-EphA4 monoclonal antibody on hippocampal neurons
  • Preparation of rat hippocampal neurons was performed as described in Reference Example 1 (B).
  • the EGFP gene was introduced into some rat hippocampal neurons using Nucleofector (Lonza) and seeded on a 24-well plate (Falcon) containing a cover glass coated with poly-L lysine (Matsunami Glass Ind.).
  • Control antibody human IgG 2 ; Sigma or antibody B (human IgG 2; Sigma) or antibody B (human IgG 2; Sigma) or antibody B (human IgG 2; Sigma) or antibody B (human IgG 2; Sigma) or antibody B (human IgG 2; Sigma) or antibody B (human IgG 2; 20 nM) and DMSO (Sigma) or GM6001 (2.5 ⁇ M, MedChemExpress), an inhibitor of MMP and ADAM, were treated for 24 hours.
  • the cover glass was transferred to 2% PFA (Wako Pure Chemical Industries, Ltd.) / 4% Sucrose (Wako Pure Chemical Industries, Ltd.) / PBS and allowed to stand for 20 minutes to fix the cells. After removing the fixation solution, the cells were washed 3 times with PBS, 0.25% Triton X-100 (Wako Pure Chemical Industries, Ltd.) / PBS was added, and cell permeation treatment was performed for 15 minutes. Except for 0.25% TritonX-100 / PBS, transfer the cover glass to 2% BSA (Sigma) / 0.25% TritonX-100 / OPTI-MEM (GIBCO), block for 1 hour, and then anti-GFP.
  • the antibody (Nacalai Tesque) was reacted for 1 hour and 30 minutes.
  • the primary antibody solution was removed, the cells were washed 3 times with PBS, and then the secondary antibody was reacted for 1 hour.
  • Prolong Gold antibody reagent (Molecular probes) was added and encapsulated, and observation was performed with LSM800 (ZEISS).
  • the above-mentioned experiments were carried out three times, and neurons were extracted from two cover glasses for each experiment, and the spines on each dendrite were counted using the image analysis software Imaris (registered trademark) (Bitplane). , The number of spines per 10 ⁇ m in each neuron was calculated.
  • Example 13 Human iPS cell-derived motor neuron protective effect in in vitro ALS model of humanized anti-EphA4 monoclonal antibody
  • A Maintenance culture of human iPS cells The maintenance culture of human iPS cells was performed according to the following steps. Human iPS cells (201B7) cryopreserved in a Stem cell banker (Takara) in liquid nitrogen were taken out from the liquid nitrogen air layer and preheated to 37 ° C. in human iPS cell culture medium (Essential 8, Thermovier scientific). ) Suspended in 5 mL and thawed.
  • the culture medium of human iPS cells in the subconfluent state is aspirated, washed with 2 mL of PBS (WAKO), and then 1 mL of Accutase (Nacalai Tesque) is added, and 5 in a CO 2 incubator (37 ° C., 5% CO 2 ). Incubated for minutes.
  • Human iPS cells were dissociated into single cells by suspension in 4 mL of human iPS cell culture medium containing 10 ⁇ M Y-27632 and then recovered in a 15 mL conical tube.
  • human iPS cells were suspended in 1 mL of human iPS cell culture medium containing 10 ⁇ M Y-27632. The number of cells was counted, 2 ⁇ 10 5 human iPS cells were suspended in 4 mL of human iPS cell culture medium, and then seeded in a ⁇ 60 mm cell culture dish coated with 0.3 ⁇ g / cm 2 iMatrix-511 and CO. Incubation was carried out in 2 incubators (37 ° C., 5% CO 2 ). For the experiment, human iPS cells that had been subcultured at least once were used.
  • Dulvecco's Modified Eagle Medium (Thermovisher Scientific) containing 10% FBS (Thermovisher Scientific) and 1% penicillin streptomycin (Nacalai Tesque) was diluted with 10% FBS (Thermovisher Scientific) and 10% Penicillin Streptomycin (Nacalai Tesque). Then, impurities other than single cells were filtered by a cell strainer (Corning) and centrifuged at 1500 rpm for 5 minutes. The supernatant was aspirated, cells were diluted to 4 mL of new 10% FBS-DMEM, seeded in ⁇ 60 mm cell culture dishes for each individual, and cultured at 37 ° C.
  • Genotyping of mutant human SOD1 was performed using the REDExtract-N-Amp TM Tissue PCR kit (Sigma).
  • the cell suspension collected during subculture of astrocytes was transferred to a 1.5 mL tube and centrifuged at 1500 rpm for 3 minutes. After centrifugation, the supernatant was aspirated, 1 mL of PBS was added to the cells, washed, centrifuged again, and then aspirated. 50 ⁇ L of the extract solution and 12.5 ⁇ L of the tissue preparation solution were mixed and added to the sample. After mixing, transfer to a polymerase chain reaction (PCR) tube and GeneAmp®.
  • PCR polymerase chain reaction
  • the reaction was carried out in PCR system9700 (Applied biosystems (registered trademark)) at 55 ° C. for 10 minutes and 95 ° C. for 3 minutes, and then 50 ⁇ L of the neutralizing solution attached to the kit was added to prepare genomic DNA.
  • PCR system9700 Applied biosystems (registered trademark)
  • Genomic PCR was performed using the extracted genomic DNA with the composition shown in Table 4.
  • the primer sequences used in PCR are shown in Table 5.
  • electrophoresis was performed on a 1% agarose gel / 100 V / 20 minutes. Two bands of the internal standard 324 bp and the mutant human SOD1 (G93A) 236 bp were detected as mutant human SOD1 (G93A) expressing astrocytes.
  • Red mix REDExtract-N-Amp PCR reaction mix.
  • iPS cells Human iPS cells are subjected to DFK20 medium (20% Knockout thermoreprecement (KSR, Thermo Fisher Scientific), 1% Non-essential amino acid (NEAA, Thermo Fisher Scientific) After suspension in DMEM / F12 (Thermorphisher Scientific) containing / mL Streptomycin (Nacalai Tesque) and 100 ⁇ M ⁇ -mercaptoethanol (Thermorphisher Scientific), the number of cells was counted.
  • KSR Knockout thermoreprecement
  • NEAA Non-essential amino acid
  • DFK20 medium containing 10 ⁇ M SB431542 (Sigma), 100 nM LDN193189 (Sigma), 3 ⁇ M CHIR99021 (Cayman Chemical), 10 ⁇ M Y-27632 was suspended in 2 mL for 3 ⁇ 10 5 human iPS cells and 6 wells with low adhesion.
  • the cells were seeded in 1 well of a cell culture plate (Corning) and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ).
  • human iPS cell differentiated cell masses SFEBs
  • SFEBs human iPS cell differentiated cell masses
  • SFEBs are gently suspended in DFK20 medium containing 10 ⁇ M SB431542, 100 nM LDN193189, 3 ⁇ M CHIR99021 (Cayman), 5 ⁇ M Y-27632, and 1 ⁇ M Retinoic Acid (Sigma), and returned to the original well.
  • Exchanged Medium exchange was carried out in the same manner on the 5th day of culture. However, the medium was exchanged at a concentration of Y-27632 of 2.5 ⁇ M (other compounds were the same as on the third day of culture).
  • SFEBs were collected together with the medium in a 15 mL conical tube and allowed to stand at room temperature for 10 minutes to precipitate SFEBs.
  • This supernatant is aspirated and contains 3 mL of DFK5 medium (5% KSR, 1% NEAA, 1% GlutaMAX-I Streptomycin, 100 units / mL penicillin- SFEBs were suspended in DMEM / F12) containing 100 ⁇ M ⁇ -mercaptoethanol, returned to the original wells, and cultured in a CO 2 incubator (37 ° C., 5% CO 2 ). Then, every 2-3 days, the medium was exchanged in the same process as on the 7th day of culture, and the differentiation of human iPS cells into motor neurons was induced.
  • DFK5 medium 5% KSR, 1% NEAA, 1% GlutaMAX-I Streptomycin, 100 units / mL penicillin- SFEBs were suspended in DMEM / F12
  • DMEM / F12 100 ⁇ M ⁇ -mercaptoethanol
  • SFEBs were collected together with the medium in a 15 mL conical tube and allowed to stand at room temperature for 5 minutes to precipitate SFEBs.
  • the supernatant was aspirated, 2 mL of Accutase containing 10 ⁇ M Y-27632 was added, and the mixture was incubated in a 37 ° C. constant temperature water bath for 10 minutes.
  • the cell mass was dispersed by pipetting 30 times with a P1000 pipette, and then the enzyme reaction was stopped with 10 mL of DFK5 medium containing 10 ⁇ M Y-27632.
  • the cell suspension was collected in a new 15 mL conical tube, centrifuged at 1000 rpm for 5 minutes at room temperature, and the supernatant was aspirated. After resuspending the cells in DFK5 medium containing 10 ⁇ M Y-27632, filtration was performed with a cell strainer (Corning), and then the number of cells was counted.
  • Co-culture medium (2% B27 Suspension (Thermovisher Scientific), 10 ⁇ M Y-27632, 1% GlutaMax-I Suspension, 100 units / mL penicillin-100 ⁇ g / mL Streptomycin-containing Neurobasic cells (Neurobisal) Cell 5 cells with Streptomycin in 10 ⁇ M Y-27632 It was prepared in a suspension of / mL and divided into a control group, a peptide-added group and a drug treatment group. The drug was diluted using a co-culture medium.
  • mouse-derived wild-type astrosites or mutant human SOD1 (G93A) -expressing astrosites were previously seeded in 8 ⁇ 10 4 cells / well in an 8-well chamber at 200 ⁇ L / well, and astrosites and motor neurons were seeded.
  • the number of motor neurons observed in the co-culture of wild-type astrosite and motor neurons was controlled as the number of motor neurons observed as co-cultured cells.
  • Co-culture of the site and motor neurons was performed, and the conditions were added with vehicle (1% co-culture medium) and antibody B (10, 30, 100 nmol / L). Under each condition, in a CO 2 incubator (37 ° C., 5%).
  • FIG. 22 shows a simple schematic diagram showing the steps of the evaluation system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】 EphA4に結合し、EphA4の切断を促進し得る、抗EphA4抗体を有効成分として含むALSを治療するための新規医薬組成物を提供する。 【解決手段】 抗EphA4抗体を含むALSを治療するための医薬組成物であって、前記抗EphA4抗体は、配列番号44に示すアミノ酸配列からなる重鎖CDR1、配列番号27に示すアミノ酸配列からなる重鎖CDR2および配列番号28に示すアミノ酸配列からなる重鎖CDR3を含む重鎖および、配列番号29に示すアミノ酸配列からなる軽鎖CDR1、配列番号30に示すアミノ酸配列からなる軽鎖CDR2および配列番号31に示すアミノ酸配列からなる軽鎖CDR3を含む軽鎖を含む、医薬組成物。

Description

筋萎縮性側索硬化症の治療用医薬組成物
 本開示は、EphA4に結合する抗体を含む、筋萎縮性側索硬化症(ALS)を治療するための医薬組成物に関する。
 EphA4は、レセプター型チロシンキナーゼファミリーの1つである。Ephrin type Aおよびtype BがEphA4のリガンドとして知られており、EphA4とそのリガンドであるephrinが結合すると、脱接着シグナルが誘導される。EphA4は、運動ニューロンに発現しており、神経回路形成期の脊髄において、運動ニューロンの非投射領域にephrinが発現されていることにより、正確な軸索ガイダンスが制御されている。EphA4は、神経活動依存的にマトリックスメタロプロテアーゼ(MMP)、ADAM(a disintegrin and metalloproteinase)およびγセクレターゼによって切断されることが知られている。
 従来の研究から、EphA4の機能阻害は、筋萎縮性側索硬化症(Amyotrophic lateral sclerosis、以下「ALS」とも称する)やアルツハイマー病等の神経変性疾患、脊髄損傷に対して有効な治療手段であることが示唆されている。
 EphA4がALSの表現型を調整する遺伝子であることが報告されている(特許文献1、非特許文献1)。EphA4の遺伝的欠損やEphA4-Fc等によるアンタゴニズムが、マウス・ラットにおける脊髄損傷時の軸索伸長や機能的回復を促進することを示している(非特許文献2および非特許文献3)。
 既存のEphA4阻害薬として、KYLペプチドや化合物1が知られている(特許文献1、非特許文献1および非特許文献2)。EphA4とそのリガンドの結合を阻害する活性を有する抗体についても知られているが(特許文献2および特許文献3)、EphA4の切断を促進する活性を有する抗体についてはこれまで報告がない。
WO2012/156351A1 WO2016/019280A1 WO2017/043466A1
Van Hoecke et al., Nature Medicine, vol18: 1418-1422,2012 Goldshmit et al., PLoS one,vol6:e24636,2011 Spanevello et al., Journal of Neurotrauma,vol30:1023-1034,2013
 本開示は、ALSを治療するための新規医薬組成物を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、EphA4に結合し、EphA4の切断を促進し得る、ALSの治療に有効な抗体を取得するに至った。
 本開示は、以下の特徴を包含する。
 (1)抗EphA4抗体を含む、筋萎縮性側索硬化症(ALS)を治療するための医薬組成物であって、
 前記抗EphA4抗体は、
 (a)配列番号44に示すアミノ酸配列からなる重鎖CDR1;
 (b)配列番号27に示すアミノ酸配列からなる重鎖CDR2;および
 (c)配列番号28に示すアミノ酸配列からなる重鎖CDR3を含む重鎖;および
 (d)配列番号29に示すアミノ酸配列からなる軽鎖CDR1;
 (e)配列番号30に示すアミノ酸配列からなる軽鎖CDR2;および
 (f)配列番号31に示すアミノ酸配列からなる軽鎖CDR3を含む軽鎖
を含む、
医薬組成物。
 (2) (1)に記載の医薬組成物であって、
 前記抗EphA4抗体は、ヒト化されている、
医薬組成物。
 (3) (1)または(2)に記載の医薬組成物であって、
 前記抗EphA4抗体は、EphA4に特異的に結合し、EphA4の切断を促進する、
医薬組成物。
 (4) (1)~(3)のいずれかに記載の医薬組成物であって、
 前記抗EphA4抗体は、EphA4に特異的に結合し、EphA4とephrinとの結合を阻害する、
医薬組成物。
 (5) (1)~(4)のいずれかに記載の医薬組成物であって、
 前記重鎖は配列番号45に示すアミノ酸配列からなる可変領域を含み、
 前記軽鎖は配列番号46に示すアミノ酸配列からなる可変領域を含む、
医薬組成物。
 (6) (1)~(5)のいずれかに記載の医薬組成物であって、
 前記重鎖の定常領域および前記軽鎖の定常領域がヒト抗体由来のアミノ酸配列を含む、
医薬組成物。
 (7) (6)に記載の医薬組成物であって、
 前記重鎖の定常領域はヒトIgGの定常領域である、
医薬組成物。
 (8) (7)に記載の医薬組成物であって、
 前記ヒトIgGの定常領域はヒトIgGの定常領域である、
医薬組成物。
 (9) (8)に記載の医薬組成物であって、
 前記ヒトIgGの定常領域は、配列番号47に示すアミノ酸配列を含む、
医薬組成物。
 (10) (6)~(9)のいずれかに記載の医薬組成物であって、
 前記軽鎖の定常領域はヒトIgκの定常領域である、
医薬組成物。
 (11) (10)に記載の医薬組成物であって、
 前記ヒトIgκの定常領域は、配列番号48に示すアミノ酸配列を含む、
医薬組成物。
 (12) 抗EphA4抗体を含む、筋萎縮性側索硬化症(ALS)を治療するための医薬組成物であって、
 前記抗EphA4抗体は、重鎖および軽鎖を含み、
 前記重鎖は、配列番号59に示すアミノ酸配列を含み、
 前記軽鎖は、配列番号60に示すアミノ酸配列を含み、
 前記重鎖のC末端リシンが欠失されていてもよい
医薬組成物。
 (13) (12)に記載の医薬組成物であって、
 前記重鎖のC末端リシンが欠失されている、
医薬組成物。
 (14) 抗EphA4抗体を含む、筋萎縮性側索硬化症(ALS)を治療するための医薬組成物であって、
 前記抗EphA4抗体は、重鎖および軽鎖を含み、
 前記重鎖は、配列番号59に示すアミノ酸配列を含み、
 前記軽鎖は、配列番号60に示すアミノ酸配列を含む、
医薬組成物。
 (15) 抗EphA4抗体を含む、筋萎縮性側索硬化症(ALS)を治療するための医薬組成物であって、
 前記抗EphA4抗体は、重鎖および軽鎖を含み、
 前記重鎖は、配列番号59に示すアミノ酸配列を含み、
 前記軽鎖は、配列番号60に示すアミノ酸配列を含み、
 前記重鎖のC末端リシンが欠失されている、
医薬組成物。
 (16) (1)~(15)のいずれかに記載の医薬組成物であって、
 少なくとも一つの薬剤学的に許容される担体をさらに含む、
医薬組成物。
 (17)抗EphA4抗体であって、
 前記抗EphA4抗体は、
 (a)配列番号44に示すアミノ酸配列からなる重鎖CDR1;
 (b)配列番号27に示すアミノ酸配列からなる重鎖CDR2;および
 (c)配列番号28に示すアミノ酸配列からなる重鎖CDR3を含む重鎖;および
 (d)配列番号29に示すアミノ酸配列からなる軽鎖CDR1;
 (e)配列番号30に示すアミノ酸配列からなる軽鎖CDR2;および
 (f)配列番号31に示すアミノ酸配列からなる軽鎖CDR3を含む軽鎖
を含む、
抗EphA4抗体。
 (18) (17)に記載の抗EphA4抗体であって、
 前記抗EphA4抗体は、ヒト化されている、
抗EphA4抗体。
 (19) (17)または(18)に記載の抗EphA4抗体であって、
 前記抗EphA4抗体は、EphA4に特異的に結合し、EphA4の切断を促進する、
抗EphA4抗体。
 (20) (17)~(19)のいずれかに記載の抗EphA4抗体であって、
 前記抗EphA4抗体は、EphA4に特異的に結合し、EphA4とephrinとの結合を阻害する、
抗EphA4抗体。
 (21) (17)~(20)のいずれかに記載の抗EphA4抗体であって、
 前記重鎖は配列番号45に示すアミノ酸配列からなる可変領域を含み、
 前記軽鎖は配列番号46に示すアミノ酸配列からなる可変領域を含む、
抗EphA4抗体。
 (22) (17)~(21)のいずれかに記載の抗EphA4抗体であって、
 前記重鎖の定常領域および前記軽鎖の定常領域がヒト抗体由来のアミノ酸配列を含む、
抗EphA4抗体。
 (23) (22)に記載の抗EphA4抗体であって、
 前記重鎖の定常領域はヒトIgGの定常領域である、
抗EphA4抗体。
 (24) (23)に記載の抗EphA4抗体であって、
 前記ヒトIgGの定常領域はヒトIgGの定常領域である、
抗EphA4抗体。
 (25) (24)に記載の抗EphA4抗体であって、
 前記ヒトIgGの定常領域は、配列番号47に示すアミノ酸配列を含む、
抗EphA4抗体。
 (26) (22)~(25)のいずれかに記載の抗EphA4抗体であって、
 前記軽鎖の定常領域はヒトIgκの定常領域である、
抗EphA4抗体。
 (27) (26)に記載の抗EphA4抗体であって、
 前記ヒトIgκの定常領域は、配列番号48に示すアミノ酸配列を含む、
抗EphA4抗体。
 (28) 抗EphA4抗体であって、
 前記抗EphA4抗体は、重鎖および軽鎖を含み、
 前記重鎖は、配列番号59に示すアミノ酸配列を含み、
 前記軽鎖は、配列番号60に示すアミノ酸配列を含み、
 前記重鎖のC末端リシンが欠失されていてもよい
抗EphA4抗体。
 (29) (28)に記載の抗EphA4抗体であって、
 前記重鎖のC末端リシンが欠失されている、
抗EphA4抗体。
 (30) 抗EphA4抗体であって、
 前記抗EphA4抗体は、重鎖および軽鎖を含み、
 前記重鎖は、配列番号59に示すアミノ酸配列を含み、
 前記軽鎖は、配列番号60に示すアミノ酸配列を含む、
抗EphA4抗体。
 (31) 抗EphA4抗体であって、
 前記抗EphA4抗体は、重鎖および軽鎖を含み、
 前記重鎖は、配列番号59に示すアミノ酸配列を含み、
 前記軽鎖は、配列番号60に示すアミノ酸配列を含み、
 前記重鎖のC末端リシンが欠失されている、
抗EphA4抗体。
 (32) 筋萎縮性側索硬化症(ALS)の治療において使用するための(17)~(31)のいずれかに記載の抗EphA4抗体。
 (33) 治療上有効量の(17)~(31)のいずれかに記載の抗EphA4抗体を、それを必要とする患者に投与することを含む、筋萎縮性側索硬化症(ALS)の治療方法。
 (34) 筋萎縮性側索硬化症(ALS)治療用の医薬組成物を製造するための(17)~(31)のいずれかに記載の抗EphA4抗体の使用。
 (35) (34)に記載の抗EphA4抗体の使用であって、
 前記医薬組成物は、少なくとも一つの薬剤学的に許容される担体を含む、
抗EphA4抗体の使用。
 (36) (17)~(31)のいずれかに記載の抗EphA4抗体を含む、筋萎縮性側索硬化症(ALS)の治療剤。
 本開示によれば、ALSを治療するための新規医薬組成物が提供される。前記医薬組成物は、EphA4に結合し、EphA4の切断を促進し得る抗EphA4抗体を有効成分として含んでいる。
図1は、抗EphA4モノクローナル抗体(抗体A)のマウスおよびヒトEphA4に対する結合親和性を示す。 図2は、海馬ニューロンを用いた抗EphA4モノクローナル抗体(抗体A)のEphA4切断促進活性を示す。 図3は、抗EphA4モノクローナル抗体(抗体A)のマウスEphA4-マウスリガンド結合阻害活性を示す。 図4は、抗EphA4モノクローナル抗体(抗体A)のヒトEphA4-ヒトリガンド結合阻害活性を示す。 図5は、抗EphA4モノクローナル抗体(抗体A)の各ヒトEphレセプターに対する選択性を示す。 図6は、抗EphA4モノクローナル抗体(抗体A)の各マウスEphレセプターに対する選択性を示す。 図7は、抗EphA4モノクローナル抗体(抗体A)のマウス、ラット、サルおよびヒトEphA4に対する反応性を示す。 図8は、抗EphA4モノクローナル抗体(抗体A)の、ヒトEphA4細胞外領域(ECD)、リガンド結合ドメイン(LBD)、フィブロネクチンIII型ドメイン1(FN1)、およびフィブロネクチンIII型ドメイン2(FN2)に対する反応性を示す。 図9は、抗EphA4モノクローナル抗体(抗体A)による海馬ニューロンのスパイン数に対する増加効果を示す。 図10Aは、横軸にEphA4-Ligand Binding Domain(EphA4-LBD)のアミノ酸、縦軸に抗体A-Fabの構造領域を示す。黒のビットは相互作用が存在する組み合わせの交点を示す。 図10Bは、EphA4-Ligand Binding Domain(EphA4-LBD)の表面構造を示す。図10Bにおいて、結合領域に含まれるアミノ酸名と残基番号が該当する位置に示され、結合する抗体A-FabのH鎖およびL鎖のCDRがリボンモデルで示される。 図11は、ヒト化抗EphA4モノクローナル抗体(抗体B)のヒトEphA4に対する親和性を示す。 図12は、ヒト化抗EphA4モノクローナル抗体(抗体B)の海馬ニューロンにおけるEphA4切断促進活性を示す。 図13は、ヒト化抗EphA4モノクローナル抗体(抗体B)のヒトEphA4-ヒトリガンド結合阻害活性を示す。 図14は、ヒト化抗EphA4モノクローナル抗体(抗体B)のマウスEphA4-マウスリガンド結合阻害活性を示す。 図15は、ヒト化抗EphA4モノクローナル抗体(抗体B)のヒトEphレセプターに対する選択性を示す。 図16は、ヒト化抗EphA4モノクローナル抗体(抗体B)のマウスEphレセプターに対する選択性を示す。 図17は、ヒト化抗EphA4モノクローナル抗体(抗体B)のマウス、ラット、サルおよびヒトEphA4に対する反応性を示す。 図18は、ヒト化抗EphA4モノクローナル抗体(抗体B)のヒトEphA4細胞外領域(ECD)、リガンド結合ドメイン(LBD)、フィブロネクチンIII型ドメイン1(FN1)、およびフィブロネクチンIII型ドメイン2(FN2)に対する反応性を示す。 図19は、ヒト化抗EphA4モノクローナル抗体(抗体B)による海馬ニューロンのスパイン数に対する増加効果を示す。 図20は、ヒト化抗EphA4モノクローナル抗体(抗体B)の海馬ニューロンにおけるヒトEphA4切断促進活性を示す。 図21は、ヒト化抗EphA4モノクローナル抗体(抗体B)によるMMPおよびADAMを介した海馬ニューロンのスパイン数に対する増加効果を示す。 図22は、実施例13で実施した評価系の模式図を示す。 図23は、変異ヒトSOD1(G93A)発現アストロサイトによって誘発されるヒトiPS細胞由来運動ニューロン死に対する、ヒト化抗EphA4モノクローナル抗体(抗体B)の効果を示す。
 本明細書で使用される配列番号によって特定またはコードされる領域は下記のとおりである:
Figure JPOXMLDOC01-appb-I000001
 本開示に係る抗EphA4抗体は、EphA4を認識して結合することができる抗体であり、以下に述べるように、当該抗体は、無傷の抗体であってもよいし、あるいは、EphA4との結合親和性を有する限り、合成抗体(例えば組換え抗体、キメラ抗体、ヒト化抗体等)であってもよい。本明細書において、EphA4は、ヒト、マウス、ラットおよびサル由来のEphA4を指すものと理解することができる。ヒト、マウス、ラットおよびサル由来のEphA4は、米国生物工学情報センターが提供するGenbank等、配列情報が登録された公共のデータベースから入手できるほか、近縁関係にある動物種のEphA4の塩基配列情報を元にプライマーを設計し、所望の動物種から抽出したRNAからクローニングすることで、EphA4遺伝子の配列情報を入手することが可能である。例えば、ヒト、マウス、ラット、サルのEphA4の塩基配列情報は、それぞれGenbank Accession No.NM_004438.5、NM_007936.3、NM_001162411.1、NM_001260870.1としてデータベース上に登録されている。
 一態様において、抗EphA4抗体は、EphA4に特異的に結合する抗体である。「特異的な結合」という用語は、当該技術分野において当業者に周知の用語であり、抗体またはその抗原結合断片の、抗原やエピトープに対する特異的な結合を決定するための方法も周知である。一実施形態において、「特異的な結合」は、抗EphA4抗体が、他の標的分子に結合するよりも、より大きな結合親和性、結合活性で、より迅速に、および/または、より長時間持続して、EphA4に免疫学的反応により結合可能であると理解される。これは、EphA4に特異的に結合する抗体が他の標的分子に結合しないことを意味するものではない。別の実施形態において、「特異的な結合」は、EphA4に対して少なくとも約10-7M、または少なくとも約10-8M、または少なくとも約10-9M、またはそれ以下のKDを持つ抗体によって示されうる。また、さらに別の実施形態では、「特異的な結合」は、EphA4と免疫学的反応により結合するが、Ephレセプターの他のファミリー分子とは実質的に結合しないと理解される。
 一態様において、抗EphA4抗体は、EphA4の細胞外領域に結合する抗体である。一実施形態において、抗EphA4抗体は、EphA4の細胞外領域のうちリガンド結合ドメイン(LBD)に結合する抗体である。
 一実施形態において、抗EphA4抗体は、EphA4に特異的に結合し、EphA4の切断を促進することができる。特定の実施形態において、抗EphA4抗体は、EphA4に特異的に結合し、マトリックスメタロプロテアーゼ(MMP)やADAM(a disintegrin and metalloproteinase)によるEphA4細胞外ドメインの切断を促進することができる。
 一実施形態において、抗EphA4抗体は、EphA4に特異的に結合し、EphA4とそのリガンドであるephrinとの結合を阻害することができる。
 別の実施形態において、抗EphA4抗体は、EphA4に特異的に結合し、海馬ニューロンのスパイン数を増加または海馬ニューロンのスパインを安定化することができる。
 別の実施形態において、抗EphA4抗体は、SOD1遺伝子異常によって引き起こされる細胞死から運動ニューロンを保護することができる。
 本開示は、一実施形態において、ヒトEphA4、マウスEphA4、ラットEphA4、およびサルEphA4のうちの少なくとも1つに特異的に結合し、そのリガンドとの結合を阻害することができる抗EphA4抗体を包含する。本開示は、別の実施形態において、ヒトEphA4、マウスEphA4、ラットEphA4、およびサルEphA4のうち2つ以上に特異的に結合し、そのリガンドとの結合を阻害することができる抗EphA4抗体を包含する。本開示は、さらに別の実施形態において、ヒトEphA4、マウスEphA4、ラットEphA4、およびサルEphA4の全てと特異的に結合し、そのリガンドとの結合を阻害することができる抗EphA4抗体を包含する。
 抗EphA4抗体の、抗原への結合特性(例えば、結合親和性および種交差反応性)を測定する方法は、当該技術分野において当業者に公知の方法を用いてよい。例えば、結合親和性は、Biacore(登録商標)バイオセンサー、KinExAバイオセンサー、シンチレーション近接アッセイ、ELISA、ORIGEN免疫測定法(IGEN社)、フローサイトメトリー、蛍光消光、蛍光転移、酵母ディスプレイ、および/または、免疫染色を使用して測定してよいが、これらに限定されない。抗EphA4抗体の、EphA4とそのリガンドの結合に対する中和活性は、Biacore(登録商標)バイオセンサー、ELISA、および/または、フローサイトメトリーを使用して測定してよいが、これらに限定されない。
 本開示に係る抗EphA4抗体は、EphA4と結合する限り、モノクローナル抗体であってよい。
 本開示に係る抗EphA4抗体は、IgG、IgAまたはIgM(またはこれらのサブクラス)等の任意のクラスであってよく、特定のクラスに限定されない。重鎖(H鎖と呼ぶこともある)の定常領域の抗体アミノ酸配列により、免疫グロブリンは、異なるクラスに分類される。5つの主な免疫グロブリンのクラス:IgA、IgD、IgE、IgGおよびIgMがあり、これらの幾つかは、例えば、IgG、IgG、IgG、IgG、IgAおよびIgAというサブクラス(アイソタイプ)にさらに細分化され得る。異なるクラスの免疫グロブリンの対応する重鎖の定常領域は、それぞれ、α、δ、ε、γおよびμと呼ばれている。また、抗体の軽鎖(L鎖と呼ぶこともある)の種類にはλ鎖およびκ鎖が存在する。本開示に係る抗EphA4抗体は、IgG抗体であってよく、例えば、IgG抗体またはIgG抗体等であってよい。また、本開示に係る抗EphA4抗体は、場合により、単量体、二量体または多量体の形態であってよい。
 本開示に係る抗体の可変領域は、抗体軽鎖の可変領域および/または抗体重鎖の可変領域を意味してよく、抗体の定常領域は、抗体軽鎖の定常領域および/または抗体重鎖の定常領域を意味してよい。重鎖および軽鎖の可変領域は、それぞれ、相補性決定領域としても知られる3つのCDRにより連結される4つのフレームワーク領域(FR)からなる。各鎖におけるCDRは、FRにより、近傍に保持されており、他方の鎖におけるCDRと共に、抗体の抗原結合部位の形成に寄与している。CDRを決定するための技術としては、限定はされないが、例えば、(1)異種間配列可変性に基づくアプローチ(例えば、Kabat et al, Sequences of Proteins of Immunological Interest, 5th ed., 1991, National Institutes of Health, Bethesda MD);および(2)抗原-抗体複合体の結晶構造学的研究に基づくアプローチ(Al-lazikani et al., 1997 J. Molec. Biol. 273:927-948)が挙げられる。これらのアプローチや、他のアプローチを組合せて用いてもよい。
 本明細書において、モノクローナル抗体は、実質的に均一な抗体のポピュレーションから得られる抗体を意味してよい。すなわち、そのポピュレーションに含まれる個々の抗体は、若干存在し得る可能性のある天然の突然変異体を除いて同一である。モノクローナル抗体は、単一抗原部位に対するものであり、非常に特異的である。さらに、異なる抗原や異なるエピトープを標的とする典型的なポリクローナル抗体とは対照的に、各モノクローナル抗体は、抗原の単一のエピトープを標的とするものである。修飾語「モノクローナル」は、実質的に均一な抗体ポピュレーションから得られる抗体の特性を示し、特定の方法による抗体の生産を必要とするものとして限定的に解されるべきではない。
 本開示に係る抗EphA4抗体は、マウス抗体、キメラ抗体またはヒト化抗体であってよい。キメラ抗体は、例えば、非ヒト(例えば、マウスまたはラット)抗体の可変領域をヒト抗体の定常領域に融合させた抗体であり、例えば、可変領域は非ヒト抗体由来、定常領域はヒト抗体由来となっている抗体を指してよい。ヒト化抗体は、例えば、非ヒト抗体の相補性決定領域(complementarity-determining region:CDR(超可変領域ということもある))をヒト抗体に導入した抗体であり、例えば、CDRは非ヒト抗体由来、それ以外の抗体領域はヒト抗体由来となっている抗体を指してよい。ただし、キメラ抗体とヒト化抗体の境界は必ずしも明確である必要はなく、キメラ抗体ともヒト化抗体とも呼びうるような状態であってもよい。また、キメラ抗体またはヒト化抗体において、ヒト抗体由来の抗体領域(FR、定常領域)は、必ずしもすべてがヒト抗体由来のアミノ酸から構成される必要はなく、ヒト対象において正常に使用できる限り、一個または複数個の非ヒト抗体由来のアミノ酸を含んでもよい。ヒト化抗体の一実施態様としては、CDRはげっ歯類抗体由来、それ以外の抗体領域はヒト抗体由来となっている抗体である。ヒト化抗体の特定の実施態様としては、CDRはマウス抗体由来、それ以外の抗体領域はヒト抗体由来となっている抗体である。これらの実施態様において、CDRは、一個または複数個の非げっ歯類抗体由来のアミノ酸、または、一個または複数個の非マウス抗体由来のアミノ酸を含んでいてもよく、CDR以外の抗体領域は一個または複数個の非ヒト抗体由来のアミノ酸を含んでもよい。ここで、「複数個」は、これに限定されるものではないが、2個~20個、または2個~15個、例えば、14個、13個、12個、11個、10個、9個、8個、7個、6個、5個、4個、3個または2個であり、またはアミノ酸配列中のアミノ酸数の10%以内、9%以内、8%以内、7%以内、6%以内、5%以内、4%以内、3%以内、2%以内または1%以内である。ヒト化は、CDR移植法(Kontermann and Dubel, Antibody Engineering, Springer Lab Manual(2001)およびTsurushita et al., Methods 36:69-83(2005))を用いて行うことができる他、当該技術分野において公知の方法(例えばJones et al., Nature 321:522-525(1986); Riechmann et al., Nature 332:323-327(1988);およびVerhoeyen et al., Science 239:1534-1536(1988)を参照)を用いて、CDR配列を、ヒト抗体の対応する配列に対して置換することによっても行うことができる。
 抗原性を減少させるためには、ヒト化抗体の作製において、軽鎖および重鎖の両方でヒト可変領域の使用を選択することが重要であり得る。「最良適合」法によれば、既知のヒトFR配列の全ライブラリーに対して、げっ歯類抗体の可変領域の配列がスクリーニングされる。次に、げっ歯類の配列に最も近いヒト配列が、ヒト化抗体のヒトFRとして受け入れられる。例えば、Sims et al., J. Immunol. 151:2296-2308(1993)およびChothia et al., J. Mol. Biol. 196:901-917(1987)を参照されたい。別の方法では、軽鎖または重鎖の特定の亜群の、全てのヒト抗体の共通配列に由来する特定のフレームワークが用いられる。いくつかの異なるヒト化抗体に対して、同じフレームワークが用いられ得る。例えば、Carter et al., Proc. Natl. Acad. Set USA 89:4285-4289(1992)およびPresta et al., J. Immunol. 151 :2623-2632(1993)を参照されたい。
 さらに、ヒト化抗体は一般に、抗原に対する高い結合親和性およびその他の好ましい生物学的性質を保持されることが望ましい。この目標を達成するため、一方法によれば、ヒト化抗体は、親配列およびヒト化配列の三次元モデルを用いた、親配列および様々な概念的ヒト化産物の分析工程によって調製される。一般に三次元の免疫グロブリンモデルが利用可能であり、当業者に知られている。選択された候補である免疫グロブリン配列の有望な三次元立体構造を模式化し、表示するコンピュータプログラムが利用可能である。これらの表示を検討することにより、候補である免疫グロブリン配列の機能における残基の可能性のある役割の分析、すなわち、候補である免疫グロブリンがその抗原に結合する能力に影響を及ぼす残基の分析が可能となる。この方法により、単数または複数の標的抗原(例えばEphA4またはその断片)に対する結合親和性の増大のような、望ましい抗体の特性が達成されるように、FR残基をレシピエント配列およびインポート配列から選択して、組み合わせることができる。
 言うまでもなく、上記に例示したキメラ抗体またはヒト化抗体を、当該抗体の機能を保持させたまま(あるいは、当該抗体の機能を付加、向上させるために)適宜改変(例えば、抗体の修飾、または、抗体のアミノ酸配列の部分的な置換、付加および/または欠失)した抗体も、本開示に係る抗EphA4抗体に含まれる。より具体的には、抗体のエフェクター機能を修飾するために定常領域のアミノ酸配列を改変した抗体も本開示の範囲に含まれ、例えば、抗体依存性細胞傷害(ADCC)活性および/または抗体依存性細胞食作用(ADCP)活性を低下させるために、ヒトIgG抗体のEu numberingにおける234位のバリン(Val)がアラニン(Ala)に置換され、237位のグリシン(Gly)がアラニン(Ala)に置換された抗体等も本開示の範囲に含まれる。さらに、本開示に係る抗EphA4抗体のCDR配列を有する抗体結合部位と共に、異なる抗原に結合する抗原結合部位を併せ持つ二重特異性抗体(Kontermann(2012),mAbs 4, 182-97)も本開示の範囲に含まれる。
 本開示に係る抗EphA4抗体は、所望により、修飾してもよい。抗EphA4抗体の修飾は、(a)例えばシートまたはヘリックスコンホメーション等の、修飾領域におけるアミノ酸配列の三次元的な構造;(b)標的部位での分子の電荷または疎水性の状態;または、(c)側鎖の容積の維持に対する修飾の効果、を変化させる修飾であってもよく、あるいはこれらの変化が明白に観察されないような修飾であってもよい。
 本開示に係る抗EphA4抗体の修飾は、例えば、構成するアミノ酸残基の置換、欠失、付加等によって達成してよい。
 本明細書において、アミノ酸とは、その最も広い意味で用いられ、天然のアミノ酸、例えばセリン(Ser)、アスパラギン(Asn)、バリン(Val)、ロイシン(Leu)、イソロイシン(Ile)、アラニン(Ala)、チロシン(Tyr)、グリシン(Gly)、リシン(Lys)、アルギニン(Arg)、ヒスチジン(His)、アスパラギン酸(Asp)、グルタミン酸(Glu)、グルタミン(Gln)、スレオニン(Thr)、システイン(Cys)、メチオニン(Met)、フェニルアラニン(Phe)、トリプトファン(Trp)、プロリン(Pro)のみならず、アミノ酸変異体および誘導体といった、非天然アミノ酸も含まれる。当業者であれば、この広い定義を考慮して、本明細書におけるアミノ酸として、例えばL-アミノ酸;D-アミノ酸;アミノ酸変異体、アミノ酸誘導体等の化学修飾されたアミノ酸;ノルロイシン、β-アラニン、オルニチン等、生体内でタンパク質の構成材料とならないアミノ酸;および当業者に公知のアミノ酸の特性を有する、化学的に合成された化合物等が挙げられることを当然に理解する。非天然アミノ酸の例としては、α-メチルアミノ酸(α-メチルアラニン等)、D-アミノ酸(D-アスパラギン酸、D-グルタミン酸等)、ヒスチジン様アミノ酸(2-アミノ-ヒスチジン、β-ヒドロキシ-ヒスチジン、ホモヒスチジン、α-フルオロメチル-ヒスチジン、α-メチル-ヒスチジン等)、側鎖に余分なメチレンを有するアミノ酸(「ホモ」アミノ酸)および側鎖中のカルボン酸官能基アミノ酸がスルホン酸基で置換されるアミノ酸(システイン酸等)等が挙げられる。
 天然に存在するアミノ酸残基は、例えば、一般的な側鎖特性に基づいて、次のグループに分類され得る:
(1)疎水性:Met、Ala、Val、Leu、Ile;
(2)中性親水性:Asn、Gln、Cys、Ser、Thr;
(3)酸性:Asp、Glu;
(4)塩基性:His、Lys、Arg;
(5)鎖配向に影響を及ぼす残基:Gly、Pro;および
(6)芳香族:Trp、Tyr、Phe。
 抗体を構成するアミノ酸配列の非保存的置換は、これらのグループの1つに属するアミノ酸を他のグループに属するアミノ酸と交換することにより行ってもよい。より保存的な置換は、これらのグループの1つに属するアミノ酸を同一グループの他のアミノ酸と交換することにより行ってもよい。同様に、アミノ酸配列の欠失または置換を適宜行ってもよい。
 抗体を構成するアミノ酸の修飾としては、例えば、糖によるグリコシル化、アセチル化またはリン酸化等の翻訳後修飾であってもよい。抗体は、その定常領域における保存された位置でグリコシル化され得る。抗体のグリコシル化は、通常、N-結合型またはO-結合型のいずれかである。N-結合型は、アスパラギン残基の側鎖に対する糖質部分の結合を意味する。トリペプチド配列であるアスパラギン-X-セリン、アスパラギン-X-スレオニン、および、アスパラギン-X-システイン(式中、Xはプロリン以外の任意のアミノ酸である)は、アスパラギン側鎖に対する糖質部分を酵素的に付加するための認識配列である。これらのトリペプチド配列のいずれかが抗体に存在することにより、潜在的なグリコシル化部位が存在する。O-結合型グリコシル化は、N-アセチルガラクトサミン、ガラクトース、または、キシロースのいずれかの、ヒドロキシアミノ酸(例えば、セリンまたはスレオニン)への結合であってよく、場合により、5-ヒドロキシプロリンまたは5-ヒドロキシリシンへの結合であってもよい。グリコシル化の条件(グリコシル化を、生物学的手法を用いて行う場合には、例えば、宿主細胞や細胞培地の種類、pH等)を、当業者は目的に応じて適宜、選択することができる。
 本開示に係る抗EphA4抗体は、さらに、当業者に公知の技術常識に基づいて、その他の修飾方法により、単独または組み合わせて、修飾されてよい。
 本開示に係る抗EphA4抗体は、当業者に周知の方法によって産生することができる。例えば、本開示に係る抗EphA4抗体をコードする核酸を発現ベクターに組み込み、当該発現ベクターを宿主細胞に導入し、当該宿主細胞を培養することによって抗体を産生させてもよい。したがって、本開示は、抗EphA4抗体をコードする核酸、当該核酸を含むベクター、当該ベクターを含む宿主細胞、および当該宿主細胞を培養する工程を含む抗EphA4抗体の作製方法を包含する。
 本開示に係る抗EphA4抗体をコードする核酸は、シグナル配列をコードするDNAを有してもよく、重鎖可変領域をコードするDNA、および、軽鎖可変領域をコードするDNAの5´末端にシグナル配列をコードするDNAを有してもよい。シグナル配列は、分泌タンパク質や膜内在性タンパク質が、リボソーム上で合成された後に、脂質2重層を通り抜けるのに必要な、タンパク質のN末端に存在するアミノ酸残基であり、本開示においては、この機能を有する配列であれば特に限定されるものではない。本開示に係る抗EphA4抗体が含み得るシグナル配列としては、ヒト、マウス、ラット、ウサギ、ロバ、ヤギ、ウマ、トリ、イヌ、ネコ、酵母等に由来するシグナル配列が挙げられる。本開示においては、具体的に、重鎖に関するシグナル配列として、配列番号12または16で表されるアミノ酸配列を含むペプチドを挙げることができ、軽鎖に関するシグナル配列としては、配列番号14または18で表されるアミノ酸配列を含むペプチドを挙げることができる。また、機能的に同等であれば、配列番号12または16で表されるアミノ酸配列、配列番号14または18で表されるアミノ酸配列において、1または複数個(例えば2、3、4または5個)のアミノ酸の置換、付加および/または欠失を有してもよい。
 本開示に係る抗EphA4抗体は、当業者に公知の方法に従って、単離または精製されたものであってよい。
 本明細書において、「単離された」または「精製された」は、自然の状態から、人為的に単離されたか、精製されたことを意味する。分子または組成物が自然に発生したものである場合、それが変化したかもしくは本来の環境から除去されたか、またはその両方であるとき、それは「単離された」かまたは「精製された」である。単離または精製の方法の例としては、電気泳動的、分子生物学的、免疫学的またはクロマトグラフィー的手法等が挙げられ、具体的には、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、逆相HPLCクロマトグラフィー、等電点電気泳動、または、アルカリ抽出法等が挙げられるがこれらに限定されない。
 一実施形態において、抗EphA4抗体は、以下のCDRを含んでいる:
(a)配列番号44に示すアミノ酸配列からなる重鎖CDR1;
(b)配列番号27に示すアミノ酸配列からなる重鎖CDR2;
(c)配列番号28に示すアミノ酸配列からなる重鎖CDR3;
(d)配列番号29に示すアミノ酸配列からなる軽鎖CDR1;
(e)配列番号30に示すアミノ酸配列からなる軽鎖CDR2;および
(f)配列番号31に示すアミノ酸配列からなる軽鎖CDR3。
 一実施態様において、前記抗EphA4抗体は、ヒト化抗体またはキメラ抗体であり、特定の実施態様においてはヒト化抗体である。
 別の実施形態において、抗EphA4抗体は、重鎖および軽鎖を含んでおり、前記重鎖は、配列番号45に示すアミノ酸配列からなる可変領域を含み、前記軽鎖は、配列番号46に示すアミノ酸配列からなる可変領域を含んでいる。なお、当該実施形態において、前記重鎖の可変領域および/または前記軽鎖の可変領域は、配列番号45に示すアミノ酸配列および/または配列番号46に示すアミノ酸配列において1個または複数個のアミノ酸が置換、付加および/または欠失したアミノ酸配列を含んでもよい。ここで、「複数個」は、EphA4に対する結合親和性を保持し、EphA4の切断を促進する限り限定されないが、2個~15個、または2個~10個、例えば、9個、8個、7個、6個、5個、4個、3個または2個であり、またはアミノ酸配列中のアミノ酸数の10%以内、例えば9%以内、8%以内、7%以内、6%以内、5%以内、4%以内、3%以内、2%以内または1%以内である。
 一実施形態において、抗EphA4抗体の重鎖は、ヒトIgGの定常領域を含んでいる。
 特定の実施形態において、ヒトIgGの定常領域は、配列番号47のアミノ酸配列を含んでいる。
 一実施形態において、抗EphA4抗体の軽鎖は、ヒトIgκの定常領域を含んでいる。
 特定の実施形態において、ヒトIgκの定常領域は、配列番号48のアミノ酸配列を含んでいる。
 一実施形態において、抗EphA4抗体は、配列番号59に示すアミノ酸配列を含む重鎖と配列番号60に示すアミノ酸配列を含む軽鎖を含んでいる。
 別の実施形態において、例えば、抗体産生細胞により産生される抗体の不均一性を減少させる等の理由から(米国特許出願公開第2010/0297697号明細書やLiu H et al., MAbs. 2014 Sep-Oct;6(5):1145-1154)、抗EphA4抗体は、重鎖のC末端(カルボキシ末端)に位置するリシンが欠失されている。本開示において、重鎖のC末端リシンが欠失されている抗EphA4抗体には、重鎖のC末端リシンを遺伝子改変によって欠失させた抗EphA4抗体やカルボキシペプチダーゼ等によって翻訳後に重鎖のC末端リシンが切断された抗EphA4抗体等も含まれる。また、本開示において、重鎖のC末端リシンが欠失されている抗EphA4抗体には、両方の重鎖においてC末端リシンが欠失されている抗EphA4抗体だけでなく、片方のみの重鎖においてC末端リシンが欠失されている抗EphA4抗体も含まれる。
 一態様において、本開示は、抗EphA4抗体をコードする単離された核酸に関する。抗EphA4抗体をコードする単離された核酸は、抗EphA4抗体の重鎖および/または軽鎖をコードする一以上の核酸分子を指す。一実施形態において、本開示に係る核酸は抗EphA4抗体の重鎖をコードする。別の実施形態において、本開示に係る核酸は抗EphA4抗体の軽鎖をコードする。さらに別の実施形態において、本開示に係る核酸は、抗EphA4抗体の重鎖および軽鎖をコードする。本開示に係る核酸には、抗EphA4抗体の重鎖をコードする第一の核酸分子、および抗EphA4抗体の軽鎖をコードする第二の核酸分子も含まれる。
 別の態様において、本開示は、抗EphA4抗体をコードする単離された核酸を含むベクターに関する。本開示に係るベクターは、抗EphA4抗体をコードする単離された核酸を含む一以上のベクターを指す。一実施形態において、本開示に係るベクターは、抗EphA4抗体の重鎖をコードする核酸および抗EphA4抗体の軽鎖をコードする核酸を含むベクターである。別の実施形態において、本開示に係るベクターは、抗EphA4抗体の重鎖および軽鎖をコードする核酸を含むベクターである。さらに別の実施形態において、本開示に係るベクターは、抗EphA4抗体の重鎖をコードする核酸を含む第一のベクター、および抗EphA4抗体の軽鎖をコードする核酸を含む第二のベクターを含む。本開示に係るベクターは、特にこれらに限定されるものではないが、プラスミド、コスミド、ウイルス、ファージ等であってよい。例えば、ウイルスベクターとしては、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルスまたは単純ヘルペスウイルスベクター等も本開示に係るベクターに含まれる。
 さらに別の態様において、本開示に係るベクターを含む宿主細胞、および当該宿主細胞を培養する工程を含む抗EphA4抗体の作製方法も本開示に含まれる。本開示に係る宿主細胞は、特にこれらに限定されるものではないが、大腸菌細胞、サルCOS細胞、チャイニーズハムスター卵巣(CHO)細胞、NS0細胞等であってよい。一実施形態において、抗EphA4抗体の作製方法は、宿主細胞を培養する工程、および当該宿主細胞(または宿主細胞の培養培地)から分泌された抗EphA4抗体を回収する工程を含む。
 本開示に係る抗EphA4抗体は、ALSを治療するために使用される。したがって、本開示は、本開示に係る抗EphA4抗体を含む、ALSを治療するための医薬組成物に関する。本開示はまた、別の態様において、治療上有効量の抗EphA4抗体をALSに罹患した対象に投与することを含む、ALSの治療方法を包含する。
 本開示はまた、さらに別の態様において、ALSの治療薬を製造するための抗EphA4抗体の使用を包含する。
 本開示はまた、さらに別の態様において、ALSの治療において使用するための抗EphA4抗体を包含する。
 本開示に係る抗EphA4抗体は、治療法において単独か、または、その他の薬剤または組成物と併用して用いることができる。例えば本開示に係る抗EphA4抗体は、別の薬剤と同時または異時に投与されてよい。このような併用療法には、併用投与(同じかまたは別々の製剤に2以上の薬剤が含まれる)および分離投与(例えば同時にまたは連続的に)が含まれる。2以上の薬剤を別々に投与する場合、本開示に係る抗EphA4抗体の投与は、付随する治療法に先立つか、または続いて行われてよい。
 本開示に係る抗EphA4抗体を投与する対象は限定されず、例えば、ヒトまたは非ヒト哺乳動物(サル、マウス、ラット、ウサギ、ウシ、ウマ、ヤギ等)に対して本発明を用いることができる。
 本開示に係る抗EphA4抗体の対象への投与方法(投与経路、投与量、1日の投与回数、投与のタイミング、等)は特に限定されず、対象の健康状態、疾患の程度、併用する薬剤の種類等に応じて、当業者(例えば、医師)が適宜決定することができる。
 本開示に係る医薬組成物は、上記本開示に係る抗EphA4抗体を含む。本開示に係る医薬組成物は、例えば、日本薬局方(JP)、米国薬局方(USP)または欧州薬局方(EP)に記載された方法等、既知の方法に従って製造することができる。
 技術的に矛盾しない限り、本明細書に記載の、あらゆる態様の任意の一または複数を、適宜組み合わせて、本開示を実施してよいことを当業者は理解する。さらに、技術的に矛盾しない限り、本明細書に記載の、好ましいまたは有利なあらゆる態様を、適宜組み合わせて、本開示を実施することが好ましいであろうことを当業者は理解する。
 本明細書中に引用される文献は、参照により、それらのすべての開示が、明確に本明細書に援用されているとみなされるべきであって、当業者は、本明細書の文脈に従って、本開示の精神および範囲を逸脱することなく、それらの文献における関連する開示内容を、本明細書の一部として援用して理解できる。
 本明細書中に引用される文献は、本出願の出願日前の関連技術の開示のみを目的として提供され、本発明者らが、先行発明または任意の他の理由によって、かかる開示に先行する権利を持たないことを自認するものとして解釈されてはならない。これらの文献のすべての記述は、本出願人が入手可能であった情報に基づいており、これらの記述内容が正確であるという自認を何ら構成しない。
 本明細書において用いられる用語は、特定の実施態様を説明するために用いられるのであり、発明を限定する意図ではない。
 本明細書において用いられる「を含む(comprise)」という用語は、文脈上明らかに異なる理解をすべき場合を除き、記載された事項(部材、ステップ、要素または数字等)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素または数字等)が存在することを排除しない。「からなる(consist of)」という用語は、「からなる(consist of)」および/または「実質的に~からなる(consist essentially of)」という用語で記載される態様を包含する。
 本明細書において用いられる「中和活性」という用語は、EphA4とそのリガンドの結合を阻害する活性、および/または、EphA4がそのリガンドの結合によりヒト生体内で誘導する、シグナル伝達や、細胞の分子発現応答もしくは機能性変化を阻害する活性を意味する。
 異なる定義が無い限り、ここに用いられるすべての用語(技術用語および科学用語を含む。)は、本開示が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書および関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、または、過度に形式的な意味において解釈されるべきではない。
 第1の、第2の等の用語が種々の要素を表現するために用いられるが、これらの要素はこれらの用語自身によって限定されるべきではないことが理解される。これらの用語は一つの要素を他の要素と区別するためのみに用いられているのであり、例えば、第1の要素を第2の要素と記し、同様に、第2の要素は第1の要素と記すことは、本開示の範囲を逸脱することなく可能である。
 本明細書において、成分含有量や数値範囲等を示すのに用いられる数値は、特に明示がない限り、用語「約」で修飾されているものと理解されるべきである。例えば、「4℃」とは、特に明示がない限り、「約4℃」を意味するものと理解され、その程度を、当業者は技術常識と本明細書の文意に従って、合理的に理解できることは当然である。
 文脈上明白に他の意味を示す場合を除き、本明細書および請求の範囲で使用される場合、単数形で表される各態様は、技術的に矛盾しない限り、複数形であってもよいことが理解され、逆もまた真である。
 以下において、本開示を、実施例を参照してより詳細に説明する。しかしながら、本開示はいろいろな態様により具現化することができ、ここに記載される実施例に限定されるものとして解釈されてはならない。関連技術分野の当業者は、本開示の精神または範囲を変更させることなく、様々な改変、付加、欠失、置換等を伴って本開示を実施できる。
参考例1:抗EphA4モノクローナル抗体の作製
(A)マウス抗EphA4モノクローナル抗体の作製
 マウスEphA4(Genbank Accession No. NP_031962.2、配列番号1)に結合するモノクローナル抗体を作製するため、マウスEphA4の細胞外領域(20~547位)(配列番号2)に分泌型アルカリフォスファターゼ(SEAP)およびヒスチジンタグを融合したタンパク質(以下、「マウスEphA4細胞外領域-SEAP-Hisタンパク質」という、配列番号3)を以下の工程により調製した。
 まず、マウスEphA4のシグナル配列(配列番号4)と細胞外領域(配列番号2)をコードするDNA配列をマウスの脳由来のTotal RNAを用いて、RT-PCRによって増幅し、SEAP、およびヒスチジンタグをコードするDNA配列を有するpENTR1Aベクター(Invitrogen/LifeTechnologies)のSalI/NotIサイトにクローニングした。次に、マウスEphA4のシグナル配列と細胞外領域、SEAP、およびヒスチジンタグをコードするDNA配列をGateway System(Invitrogen/LifeTechnologies)のLR反応により、pcDNA3.1_rfcBベクターに移し、pcDNA3.1-マウスEphA4細胞外領域-SEAP-His発現ベクターを構築した。構築したpcDNA3.1-マウスEphA4細胞外領域-SEAP-His発現ベクターを、TransIT-LT1 (TAKARA)を用いてHEK293EBNA細胞(Invitrogen/LifeTechnologies)へ形質移入した。6日間のインキュベーション(5%CO、37℃)の後、培養上清を回収した。回収した培養上清より、マウスEphA4細胞外領域-SEAP-Hisタンパク質(配列番号3)を、Protinoカラム(MACHEREY-NAGEL)を用いて精製した。
 20μgのマウスEphA4細胞外領域-SEAP-Hisタンパク質を、同量のTiterMax Goldアジュバント(TiterMax USA)、あるいはGERBUアジュバント(GERBU Biotechnik GmbH)と混合し、Balb/cマウスの足蹠へ皮下注射した。その後、3、7、および10日目に同様にマウスEphA4細胞外領域-SEAP-Hisタンパク質を投与した。このとき、TiterMax Goldアジュバント(TiterMax USA)は10日目のみ、GERBUアジュバント(GERBU Biotechnik GmbH)は3、7、および10日目に使用した。13日目にマウスを屠殺し(sacrificed)、末梢リンパ節を回収してリンパ節細胞を調製した。GenomeONE-CF(Ishihara Sangyo Kaisha,Ltd.)の存在下で、調製したリンパ節細胞とP3U1ミエローマ細胞(京都大学より分与)とを5:1の割合で融合した。前記融合細胞は、96ウェルプラスチックプレートで培養した。7日間のインキュベーション(5%CO、37℃)の後、培養上清を回収した。
 得られた培養上清を用いて、マウス、ラットおよびヒトEphA4に対する反応性を有するウェルをピックアップした。
 マウス、ラットおよびヒトのEphA4に対する反応性は、マウスEphA4の細胞外領域、ラットEphA4(Genbank Accession No. NP_001155883.1)の細胞外領域(20~547位)またはヒトEphA4(Genbank Accession No. NP_004429.1、配列番号5)の細胞外領域(20~547位)(配列番号6)に対して、ヒトIgGのFc領域とヒスチジンタグを融合したタンパク質(以下、それぞれ「マウスEphA4細胞外領域-Fc-Hisタンパク質」、「ラットEphA4細胞外領域-Fc-Hisタンパク質」または「ヒトEphA4細胞外領域-Fc-Hisタンパク質」という)を用い、ELISAにて評価した。
 マウス、ラットまたはヒトEphA4細胞外領域-Fc-Hisタンパク質は、以下の工程により調製した。最初に、pcDNA3.1-マウス、ラットまたはヒトEphA4細胞外領域-Fc-His発現ベクターを構築した。まず、マウス、ラットまたはヒトEphA4のシグナル配列と細胞外領域をコードするDNA配列をマウス、ラットまたはヒトの脳由来のTotal RNAを用いて、RT-PCRによって増幅し、FcおよびヒスチジンタグをコードするDNA配列を有するpENTR1Aベクター(Invitrogen/LifeTechnologies)のSalI/NotIサイトにクローニングした。次に、マウス、ラットまたはヒトのEphA4のシグナル配列と細胞外領域、FcおよびヒスチジンタグをコードするDNA配列をGateway System(Invitrogen/LifeTechnologies)のLR反応により、pcDNA3.1_rfcBベクターに移し、pcDNA3.1-マウス、ラットまたはヒトEphA4細胞外領域-Fc-His発現ベクターを構築した。構築したこれらの発現ベクターを、TransIT-LT1(TAKARA)を用いてHEK293EBNA細胞(Invitrogen/LifeTechnologies)へ形質移入した。6日間のインキュベーション(5%CO、37°C)の後、培養上清を回収した。
 マウス、ラットまたはヒトEphA4細胞外領域-Fc-Hisタンパク質を用いたELISAは、以下の工程に従って行った。抗ヒトIgG抗体(Jackson ImmunoResearch Laboratories)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1xブロックエース(大日本製薬)により、ウェルを室温にて1時間ブロッキングした。0.02% Tween20/PBS(ナカライテスク)で3回洗浄した後、各ウェルにマウス、ラットまたはヒトEphA4細胞外領域-Fc-Hisタンパク質を含む培養上清を加え(最終濃度1nM)、室温にて1時間インキュベートした。3回洗浄した後、各ウェルに前記融合細胞の培養上清を添加した。室温にて1時間インキュベートして3回洗浄した後、西洋ワサビペルオキシダーゼ標識抗マウスIgG抗体(Jackson ImmunoResearch Laboratories)を加え、室温にて1時間インキュベートした。3回洗浄した後、各ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、5~20分、室温にてインキュベートした。各ウェルに等量の反応停止溶液(2N HSO、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmの吸光度を読み取った。
 上記工程を経てピックアップしたウェルより限界希釈法にてハイブリドーマをクローニングし、最終的にマウス、ラットおよびヒトのEphA4に対する結合活性を有するマウス抗EphA4抗体を発現するハイブリドーマクローンを得た。
 得られたハイブリドーマクローンを培養し、培養上清からProtein A(GE Healthcare)を用いてマウス抗EphA4モノクローナル抗体を精製した。
(B)EphA4切断促進活性の評価
 ラット海馬ニューロンの調製は、以下の工程に従って行った。妊娠18日目のラット(日本チャールズ・リバー)から胎仔を取り出し、頭部を切開して脳を取り出した。実体顕微鏡下で海馬領域を切り出したのち、digestion溶液(137mM NaCl(和光純薬),5mM KCl(和光純薬),7mM NaHPO(和光純薬),25mM Hepes(DOJINDO)、0.5mg/mL DNase(Sigma),0.25%トリプシン(Life technologies))に入れて37℃で10分間振とうした。溶液を除き、20%Fetal bovine serum/Hanks緩衝液(Sigma)を加えた。液を除いて、Hanks緩衝液で2回洗浄したのち、Hanks緩衝液中で海馬組織をピペッティングして細胞懸濁液を作製した。培養液(Neurobasal medium(Life technologies)、1×B-27supplement(Life technologies)、0.5mM L-グルタミン(Life technologies))を入れたポリLリジンをコートした96ウェルディッシュ(Falcon)に細胞を播種した。
 海馬ニューロンを用いたEphA4切断促進活性評価は、以下の工程に従って行った。96ウェルディッシュ(Falcon)に播種したラット海馬ニューロンに、抗EphA4モノクローナル抗体(67nM)およびγセクレターゼ阻害薬であるCompound E(50nM、Enzo Life Sciences)を処置して16時間後にPBS(和光純薬)で洗浄して、SDS sample buffer(Laemmliサンプルバッファー(バイオ・ラッド)、5% 2-メルカプトエタノール(バイオ・ラッド))を加えて細胞を回収し、5分間煮沸した。このサンプルを用いてSDS-PAGEを行い、抗EphA4モノクローナル抗体(Abnova)を用いたウェスタンブロッティングを行い、バンド強度を定量化し、EphA4C末端フラグメント/全長EphA4の値を算出した。
 EphA4の切断を促進する活性を有するマウス抗EphA4モノクローナル抗体(抗体A)を得た。抗体Aのアイソタイプは、モノクローナル抗体アイソタイピングキット(Serotec)にて決定し、重鎖に対してはIgG、軽鎖に対してはκであった。
(C)抗体Aの配列解析
 抗体Aの重鎖および軽鎖のシグナル配列、および可変領域をコードするDNA配列を、5’-RACE(5’-rapid amplification of cDNA ends)法によって増幅した。前記ハイブリドーマから、RNeasy(QIAGEN)を用いて全RNAを調製し、DNase(QIAGEN, RNase free DNase set)で処理した。cDNA合成キット(TAKARA)を用いて、前記全RNAから二本鎖cDNAを調製した。オリゴDNA ad29S(ACATCACTCCGT)(配列番号7)およびオリゴDNA ad29AS(ACGGAGTGATGTCCGTCGACGTATCTCTGCGTTGATACTTCAGCGTAGCT)(配列番号8)のアニーリングによって得られた5’アダプターを前記cDNAに付加した。得られたcDNAを、5’フォワードプライマー(5’-PCR4 primer、AGCTACGCTGAAGTATCAACGCAGAG) (配列番号9)および3’リバースプライマー(マウスIgG重鎖の増幅にはGCCAGTGGATAGACTGATGG(配列番号10)を用い、マウスIgκ軽鎖の増幅にはGATGGATACAGTTGGTGCAGC(配列番号11)を用いた)によって増幅した。増幅されたcDNAを、pCR2.1ベクター(Invitrogen/LifeTechnologies)に挿入した。抗体Aの遺伝子配列を、ABI3130XLを用いて解析した。本解析によって同定された抗体Aの遺伝子配列にコードされたアミノ酸配列として、重鎖シグナル配列は配列番号12に示す配列であり、重鎖可変領域は配列番号13に示す配列であり、軽鎖シグナル配列は配列番号14に示す配列であり、軽鎖可変領域は配列番号15に示す配列である。抗体Aの遺伝子配列をコードするヌクレオチド配列として、重鎖シグナル配列は配列番号16に示す配列であり、重鎖可変領域は配列番号17に示す配列であり、軽鎖シグナル配列は配列番号18に示す配列であり、軽鎖可変領域は配列番号19に示す配列である。
 抗体Aの重鎖および軽鎖の全長配列は、以下の工程により取得した。前記ハイブリドーマから、RNeasy(QIAGEN)を用いて全RNAを調製し、DNase(QIAGEN, RNase free DNase set)で処理した。RNA PCRキット(TAKARA)を用いて、前記全RNAから逆転写産物を調製した。得られた逆転写産物を鋳型に用い、抗体Aの重鎖および軽鎖をコードする遺伝子配列を5’フォワードプライマー(重鎖の増幅にはGCGAAGCTTGCCGCCACCATGGCTGTCCTGGTGCTGCTCC(primerID7455)(配列番号20)を使用し、軽鎖の増幅にはGCGAAGCTTGCCGCCACCATGGACATGAGGGTTCCTGCTCACG(primerID7453)(配列番号21)を使用した)と3’リバースプライマー(重鎖の増幅にはGCGGAATTCATCATTTACCAGGAGAGTGGGAGAGGC(primerID7257)(配列番号22)を使用し、軽鎖の増幅にはCGCGAATTCACTAACACTCATTCCTGTTGAAGCTCTTGAC(primer ID7249)(配列番号23)を使用した)を用いて、PCRにて増幅し、pEE6.4、およびpEE12.4ベクター(Lonza)にそれぞれクローニングした。遺伝子配列を、ABI3130XLを用いて解析した。本解析によって同定された抗体Aの遺伝子配列にコードされたアミノ酸配列として、重鎖定常領域は配列番号24に示す配列であり、軽鎖定常領域は配列番号25に示す配列である。
 抗体AのCDRは、以下の方法で決定した。抗体Aのアミノ酸配列を、Kabatの番号付システム(Kabat numbering system)に従って、Abysisソフトウェア(UCL)を用いて番号付けした。この番号を基に、CDRの同定のためのKabatの定義(Kabat definition)に従って決定した。抗体AのCDRのアミノ酸配列を表1に示す。
Figure JPOXMLDOC01-appb-T000002
参考例2:抗EphA4モノクローナル抗体のマウスおよびヒトEphA4に対する結合親和性
 抗体AのマウスおよびヒトEphA4に対する結合親和性をBiacore T200(GE Healthcare)を用いた表面プラズモン共鳴(SPR法)により決定した。まず、抗His抗体(GE Healthcare、28-9950-56)をセンサーチップCM5へ固定化した。固定化は、N-ヒドロキシスクシンイミド(NHS)、および、N-エチル-N’-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を用いたアミンカップリング法にて行い、ブロッキングにはエタノールアミンを用いた(センサーチップや固定化用試薬は、全てGE Healthcare社製)。固定化用緩衝液(10mM酢酸ナトリウム、pH4.5)を用いて3.5μg/mLに希釈し、Biacore T200付属のプロトコルに従い、センサーチップ上に固定した。マウスもしくはヒトEphA4細胞外領域-SEAP-His10をランニング緩衝液HBS-EP(GE Healthcare、BR-1001-88)を用いて希釈し、フローセル上に120秒間送液しキャプチャーさせた(10RU程度のキャプチャー量)。続いてHBS-EPを用いて100、50、25、12.5、6.3、3.2、1.6、0nMの範囲で系列希釈した抗体Aを120秒間センサーチップに添加し、添加時(結合相、120秒間)、および、添加終了後(解離相、600秒間)の結合反応曲線を順次観測した。各々の観測終了後に、4M MgCl(60秒間、和光純薬)を添加してセンサーチップを再生した。得られた結合反応曲線に対して、システム付属ソフトBIA evaluationソフトを用いた1:1の結合モデルによるフィッティング解析を行い、マウスおよびヒトのEphA4に対する結合親和性(KD=kd/ka)を算出した。
 抗体AのマウスおよびヒトEphA4に対する結合親和性(KD値)は、それぞれ1.32×10-9M、1.19×10-9Mであった(図1)。マウスおよびヒトEphA4に対するその他の結合パラメータもほぼ同程度であった。よって、抗体Aは、マウスおよびヒトのEphA4に対して同程度の結合親和性を持つと考えられる。
参考例3:抗EphA4モノクローナル抗体の海馬ニューロンにおけるEphA4切断促進活性
 抗体Aについて、海馬ニューロンを用いたEphA4切断促進活性の評価を以下の工程に従って行った。96ウェルディッシュ(Falcon)に播種したラット海馬ニューロンに、抗体A(2.0、6.7、20nM)およびγセクレターゼ阻害薬であるCompoundE(50nM、Enzo Life Sciences)を処置して24時間後にPBS(和光純薬)で洗浄して、SDS sample buffer(Laemmliサンプルバッファー(バイオ・ラッド)、5%2-メルカプトエタノール(バイオ・ラッド))を加えて細胞を回収し、5分間煮沸した。このサンプルを用いてSDS-PAGEを行い、抗EphA4モノクローナル抗体(Abnova)を用いたウェスタンブロッティングを行い、バンド強度を定量化し、EphA4C末端フラグメント/全長EphA4の値を算出した。
 抗体Aは、海馬ニューロンにおいて、濃度依存的にEphA4切断反応を促進した(図2)。
参考例4:抗EphA4モノクローナル抗体のマウスEphA4-マウスリガンド結合阻害活性
 抗体Aについて、マウスEphA4とマウスリガンドとの結合阻害活性の評価は、以下の工程に従って行った。抗アルカリフォスファターゼ抗体(Thermo SCIENTIFIC)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.02% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、ウェルにマウスEphA4細胞外領域-SEAP-Hisタンパク質を加え(最終濃度10nM)、室温にて1時間インキュベートした。3回洗浄した後、ウェルにリガンドと抗体Aを(0、0.003、0.01、0.03、0.1、0.3、1、3、10、30、100、300、1000、3000nM)を添加した。なお、リガンドにはビオチン化マウスEphrinA1-Fcキメラ(R&D Systems、最終濃度6nM)およびビオチン化マウスEphrinB2-Fcキメラ(R&D Systems、最終濃度2.5nM)を用いた。室温にて1時間インキュベートして3回洗浄した後、西洋ワサビペルオキシダーゼ標識ストレプトアビジン(GE Healthcare)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、2分、室温にてインキュベートした。ウェルに等量の反応停止溶液(1N HSO、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmの吸光度を読み取った。
 抗体Aは、マウスEphA4とマウスリガンドとの結合を濃度依存的に抑制し、マウスEphrinA1、EphrinB2結合に対するIC50値はそれぞれ約5.9nM、3.1nMであった(図3)。よって、抗体AはマウスEphA4とマウスリガンドとの結合を強く阻害することが示された。
参考例5:抗EphA4モノクローナル抗体のヒトEphA4-ヒトリガンド結合阻害活性
 抗体Aについて、ヒトEphA4とヒトリガンドとの結合阻害活性の評価は、以下の工程に従って行った。抗アルカリフォスファターゼ抗体(Thermo SCIENTIFIC)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.05% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、ウェルにヒトEphA4細胞外領域-SEAP-Hisタンパク質を加え(最終濃度10nM)、室温にて1時間インキュベートした。3回洗浄した後、ウェルにリガンドと系列希釈した抗体A(0、0.003、0.01、0.03、0.1、0.3、1、3、10、30、100、300、1000、3000nM)を添加した。なお、リガンドにはビオチン化ヒトEphrinA5-Fcキメラ(R&D Systems、最終濃度0.7nM)およびビオチン化ヒトEphrinB3-Fcキメラ(R&D Systems、最終濃度2.3nM)を用いた。室温にて1時間インキュベートして3回洗浄した後、西洋ワサビペルオキシダーゼ標識ストレプトアビジン(GE Healthcare)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、2~5分、室温にてインキュベートした。ウェルに等量の反応停止溶液(1N HSO、和光純薬)を加え、マイクロプレートリーダー(Molecular DevicesまたはPerkinElmer)により450nmの吸光度を読み取った。
 抗体Aは、ヒトEphA4とヒトリガンドとの結合を濃度依存的に抑制し、ヒトEphrinA5、EphrinB3結合に対するIC50値はそれぞれ約2.8nM、1.4nMであった(図4)。よって、抗体AはヒトEphA4とヒトリガンドとの結合も強く阻害することが示された。
参考例6:抗EphA4モノクローナル抗体のヒトEphレセプターに対する選択性
 参考例1に記載のマウスEphA4細胞外領域-SEAP-Hisタンパク質の調製方法に従って、ヒトの各Ephレセプター(EphA1、EphA2、EphA3、EphA4、EphA5、EphA6、EphA7、EphA8、EphA10、EphB1、EphB2、EphB3、EphB4、EphB6)のシグナル配列と細胞外領域をコードするDNA配列を組織由来のTotal RNAを用いて、RT-PCRによって増幅し、SEAPおよびヒスチジンタグをコードするDNA配列を有するpENTR1Aベクター(Invitrogen/LifeTechnologies)にクローニングした。次に、ヒトの各Ephレセプターのシグナル配列と細胞外領域、SEAPおよびヒスチジンタグをコードするDNA配列をGateway System(Invitrogen/LifeTechnologies)のLR反応により、pcDNA3.1_rfcBベクターに移し、ヒトの各Ephレセプターの細胞外領域に対してSEAPとHisタグを融合したタンパク質(「Ephレセプター細胞外領域-SEAP-Hisタンパク質」という)を発現するベクター(「Ephレセプター細胞外領域-SEAP-Hisタンパク質発現ベクター」という)を構築した。
 次に、Expi293発現システム(Gibco/ThermoFisher)を用いて、ヒトの各Ephレセプター細胞外領域-SEAP-Hisタンパク質発現ベクターを、Expi293F細胞(Gibco/ThermoFisher)に導入した。5日間の培養(5%CO2、37℃、120rpm)の後、培養上清を回収し、室温で1500rpm、5分間遠心した。遠心上清を0.45μmフィルター (Millipore)でろ過した。
 抗体Aについて、ヒトEphレセプターの結合活性の評価は、以下の工程に従って行った。
 ウサギ抗6―His抗体(Bethyl Laboratories)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.05% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、各ウェルにヒトの各Ephレセプター細胞外領域-SEAP-Hisタンパク質(最終濃度1nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルにヒトIgG溶液(100μg/mL、三菱ウェルファーマ)および抗体A(10μg/mL)を添加し、室温にて1時間インキュベートした。西洋ワサビペルオキシダーゼ標識ロバ抗マウスIgG抗体(Jackson ImmunoResearch Laboratories)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、適度な発色を確認したらウェルに等量の反応停止溶液(1N HSO4、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmの吸光度を読み取った。
 抗体Aは、ヒトEphレセプターファミリー間ではヒトEphA4にのみ特異的に結合活性を有していた(図5)。
参考例7:抗EphA4モノクローナル抗体のマウスEphレセプターに対する選択性
 参考例1に記載のEphA4細胞外領域-Fc-Hisタンパク質の調製方法に従って、マウスの各Ephレセプター(EphA1、EphA3、EphA4、EphA5、EphA6、EphA7、EphA8、EphA10、EphB1、EphB2、EphB3、EphB4、EphB6)のシグナル配列と細胞外領域をコードするDNA配列を組織由来のTotal RNAを用いて、RT-PCRによって増幅し、ヒトIgGのFc領域およびヒスチジンタグをコードするDNA配列を有するpENTR1Aベクター(Invitrogen/LifeTechnologies)にクローニングした。次に、マウスの各Ephレセプター(EphA1、EphA3、EphA4、EphA5、EphA6、EphA7、EphA8、EphA10、EphB1、EphB2、EphB3、EphB4、EphB6)のシグナル配列と細胞外領域、FcおよびヒスチジンタグをコードするDNA配列をGateway System(Invitrogen/LifeTechnologies)のLR反応により、pcDNA3.1_rfcBベクターに移し、マウスの各Ephレセプターの細胞外領域-Fc-Hisタンパク質発現ベクターを構築した。マウスEphA2の細胞外領域-Fc-Hisタンパク質発現ベクターの構築では、マウスEphA2のシグナル配列と細胞外領域をコードするDNA配列を組織由来のTotal RNAを用いて、RT-PCRによって増幅し、FcおよびヒスチジンタグをコードするDNA配列を有するpcDNA3.1ベクターにクローニングして、マウスEphA2細胞外領域-Fc-Hisタンパク質発現ベクターを構築した。
 次に、Expi293発現システム(Gibco/ThermoFisher)を用いて、マウスの各Ephレセプター細胞外領域―Fc―Hisタンパク質発現ベクター を、Expi293F細胞(Gibco/ThermoFisher)に導入した。5日間の培養(5%CO2、37℃、120rpm)の後、培養上清を回収し、室温で1500rpm、5分間遠心した。遠心上清を0.45μmフィルター(Millipore)でろ過した。
 抗体Aについて、マウスEphレセプターの結合活性の評価は、以下の工程に従って行った。
 ウサギ抗6―His抗体(Bethyl Laboratories)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.05% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、各ウェルにマウスの各Ephレセプター細胞外領域‐Fc-Hisタンパク質(最終濃度1nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルにヒトIgG溶液(100μg/mL、Sigma)および抗体A(10μg/mL)を添加し、室温にて1時間インキュベートした。西洋ワサビペルオキシダーゼ標識ロバ抗マウスIgG抗体(Jackson ImmunoResearch Laboratories)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、適度な発色を確認したらウェルに等量の反応停止溶液(1N HSO4、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmの吸光度を読み取った。
 抗体Aは、マウスEphレセプターファミリー間ではマウスEphA4にのみ特異的に結合活性を有していた(図6)。
参考例8:抗EphA4モノクローナル抗体のマウス、ラット、サルおよびヒトEphA4に対する反応性
 マウス、ラット、サルおよびヒトEphA4細胞外領域-Fc-Hisタンパク質の作製は、以下の工程に従って行った。まず、参考例1に記載のEphA4細胞外領域-Fc-Hisタンパク質の調製方法に従って、サルEphA4細胞外領域-Fc-Hisタンパク質発現ベクターを構築した。ベクター構築において利用するサルEphA4のアミノ酸配列を配列番号32、その細胞外領域は配列番号33として示す。サルEphA4細胞外領域-Fc-Hisタンパク質発現ベクター、および参考例1に記載のマウス、ラットおよびヒトEphA4細胞外領域-Fc-Hisタンパク質発現ベクターを用いて、各種EphA4細胞外領域-Fc-Hisタンパク質を調製した。
 抗体Aについて、各種EphA4細胞外領域との結合活性の評価は、以下の工程に従って行った。
 ロバ抗ヒトIgG抗体(Jackson ImmunoResearch Laboratories)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.05% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、ウェルにマウス、ラット、サルおよびヒトEphA4細胞外領域-Fc-Hisタンパク質(最終濃度1nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルにヒトIgG溶液(100μg/mL、三菱ウェルファーマ)および抗体A(0、0.00013、0.00064、0.0032、0.016、0.08、0.4、2、10、μg/mL)を添加し、室温にて1時間インキュベートした。西洋ワサビペルオキシダーゼ標識ロバ抗マウスIgG抗体(Jackson ImmunoResearch Laboratories)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、適度な発色を確認したらウェルに等量の反応停止溶液(1N HSO、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmの吸光度を読み取った。
 抗体Aは、マウス、ラット、サルおよびヒトEphA4いずれにおいても同等の結合活性を有していた(図7)。
参考例9:抗EphA4モノクローナル抗体のヒトEphA4細胞外領域、リガンド結合ドメイン、フィブロネクチンIII型ドメイン1、フィブロネクチンIII型ドメイン2に対する反応性
 ヒトEphA4の細胞外領域(ECD)、リガンド結合ドメイン(LBD)、フィブロネクチンIII型ドメイン1(FN1)あるいはフィブロネクチンIII型ドメイン2(FN2)とマルトース結合タンパク質(MBP)およびヒスチジンタグを融合したタンパク質(以下、「ヒトEphA4細胞外領域-MBP-Hisタンパク質」、「ヒトEphA4リガンド結合ドメイン-MBP-Hisタンパク質」、「ヒトEphA4フィブロネクチンIII型ドメイン1-MBP-Hisタンパク質」、および「ヒトEphA4フィブロネクチンIII型ドメイン2-MBP-Hisタンパク質」という)の作製は、以下の工程に従って行った。最初に、pcDNA3.4-ヒトEphA4細胞外領域、リガンド結合ドメイン、フィブロネクチンIII型ドメイン1、あるいはフィブロネクチンIII型ドメイン2-MBP-His発現ベクターを構築した。まず、ヒトEphA4のシグナル配列(配列番号34)あるいはプレプロトリプシンのシグナル配列(配列番号35)とヒトEphA4の各ドメインをコードするDNA配列をPCRによって増幅し、MBPおよびヒスチジンタグをコードするDNA配列を有するpcDNA3.4ベクター(Invitrogen/LifeTechnologies)にクローニングして、ヒトEphA4細胞外領域-MBP-Hisタンパク質、ヒトEphA4リガンド結合ドメイン-MBP-Hisタンパク質、ヒトEphA4フィブロネクチンIII型ドメイン1-MBP-Hisタンパク質、およびヒトEphA4フィブロネクチンIII型ドメイン2-MBP-Hisタンパク質の発現ベクターを構築した。ベクター構築において利用するヒトEphA4のアミノ酸配列を配列番号5、その細胞外領域は配列番号36、リガンド結合ドメインは配列番号37、フィブロネクチンIII型ドメイン1は配列番号38、フィブロネクチンIII型ドメイン2は配列番号39として示す。Expi293発現システム(Thermo SCIENTIFIC)を用いて、上記発現ベクターをExpi293F細胞(Thermo SCIENTIFIC)へ形質移入した。4日後に培養上清を回収し、0.45μmフィルター(Millipore)を通した。Amylose resin(NEB)を用いて粗精製を行い、Zeba Spin Desalting column(Thermo SCIENTIFIC)を用いてPBS(和光純薬)にバッファー置換した。Superdex200 10/300(GE Healthcare)にて単量体画分を分画精製した。
 抗体Aについて、各種ヒトEphA4内ドメインとの結合活性の評価は、以下の工程に従って行った。
 ウサギ抗6―His抗体(Bethyl Laboratories)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.02% Tween20/PBS(ナカライテスク)で2回洗浄した後、ウェルにヒトEphA4細胞外領域-MBP-Hisタンパク質、ヒトEphA4リガンド結合ドメイン-MBP-Hisタンパク質、ヒトEphA4フィブロネクチンIII型ドメイン1-MBP-Hisタンパク質、およびヒトEphA4フィブロネクチンIII型ドメイン2-MBP-Hisタンパク質(最終濃度10nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルに抗体A(最終濃度10nM)を添加し、室温にて1時間インキュベートした。西洋ワサビペルオキシダーゼ標識ヤギ抗マウスIgG Fcγフラグメント抗体(Jackson ImmunoResearch Laboratories)を加え、室温にて1時間インキュベートした。5回洗浄した後、ウェルにTMB溶液(KPL)を加え、適度な発色を確認したらウェルに等量の反応停止溶液(2N HSO、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmおよび650nmの吸光度を読み取った。
 抗体Aは、ヒトEphA4細胞外領域(ECD)およびリガンド結合ドメイン(LBD)に結合活性を有していた(図8)。フィブロネクチンIII型ドメイン1(FN1)およびフィブロネクチンIII型ドメイン2(FN2)には反応しなかった。よって、抗体AはヒトEphA4細胞外領域のリガンド結合ドメインに特異的に結合することが分かった。
参考例10:抗EphA4モノクローナル抗体の海馬ニューロンのスパイン数に対する増加効果
 ラット海馬ニューロンの調製は、上記参考例1の(B)に記載されるように行った。ラット海馬ニューロンにNucleofector(Lonza)を用いてEGFP遺伝子を導入し、遺伝子導入を行わないラット海馬ニューロンと混合して、ポリLリジンをコートしたカバーガラス(松浪硝子工業)を入れた24ウェルプレート(Falcon)に播種した。
 海馬ニューロンを用いたスパインの計数は、以下の工程に従って行った。ポリLリジンをコートしたカバーガラス(松浪硝子工業)を入れた24ウェルプレート(Falcon)に播種した培養13日目のEGFP導入ラット海馬ニューロンに、コントロール抗体(マウスIgG;BioLegend)もしくは抗体A(6.7、20nM)を24時間処置した。その後、カバーガラスを2%PFA(和光純薬)/4%Sucrose(和光純薬)/PBSに移し、20分間静置し、細胞を固定した。固定液を除き、細胞をPBSで3回洗浄したのち、0.25%TritonX-100(和光純薬)/PBSを加えて、15分間、細胞透過処理を行った。液を除き、2%BSA(Sigma)/0.25%TritonX-100/Opti-MEM(GIBCO)にカバーガラスを移して、1時間ブロッキングを施したあと、抗GFP抗体(ナカライテスク)を1時間30分反応させた。1次抗体液を除き、PBSで3回洗浄したのち、2次抗体を1時間反応させた。2次抗体液を除き、PBSで3回洗浄したのち、Prolong Gold antifade reagent(Molecular probes)を加えて封入し、LSM800(ZEISS)で観察を行った。上述の実験を3回実施し、1回の実験につき、カバーガラス2枚からニューロンを抽出し、それぞれの樹状突起にあるスパインを画像解析ソフトImaris(登録商標)(Bitplane)を用いて計数し、各ニューロンにおける10μmあたりのスパイン数を算出した。
 抗体Aは、海馬ニューロンのスパイン数を増加させた(図9)。本結果は、抗体Aが海馬ニューロンにおいてスパインを安定化させる活性を有することを示すものである。
参考例11:X線結晶構造解析によるEphA4-リガンド結合ドメイン(EphA4-LBD)のエピトープマッピング
 抗体A-Fabの調製は、以下の工程に従って行った。抗体A 101.1mgを、15 mg/mLの濃度で30mM L-システインおよび2mM EDTAを含む0.1Mリン酸ナトリウム緩衝液(pH7.0)に溶解した。この抗体溶液に、パパイン(Sigma)を抗体に対して1/200量加えて、37℃で18時間酵素消化を行った。抗体A酵素消化液は、PBSに対して透析したのち、遠心分離にて沈殿を除去した(生じた沈殿はPBSで再溶解して、遠心分離上清と混合した)。次に、抗体A-Fab以外の不純物を除去する目的で、以下の工程を行った。
1)Protein Aカラムによる精製
 この酵素消化溶液を、PBSで平衡化した2mLのProSep vA High Capacity (Millipore)にアプライして、素通り画分および、PBSでの洗浄画分を回収した。
2)抗ヒトIgG Fcγ抗体を用いたアフィニティー精製
 抗ヒトIgG Fcγ抗体(Jackson ImmunoResearch Laboratories)を、NHS-ActivatedSepharose 4FF(GE Healthcare)に共有結合させたアフィニティーカラムを、このSepharoseのマニュアルに従って調製した。このアフィニティーカラムに対して、上記1)で回収した溶液をチャージして、その素通り溶液とPBSでの洗浄液を回収した。
3)ゲルろ過による精製
 上記2)で得た素通り画分を、限外ろ過膜を用いて濃縮した。Superose 12(GE Healthcare)をPBSで平衡化し、濃縮した標品をアプライして分離精製した。分離精製した画分の一部を、SDS-PAGEで分析して、純度高く抗体A-Fabを含む画分を回収してプールした。このようにして精製した標品を、抗体A-Fabとした。
 抗体A-Fabと抗原であるEphA4-LBDの複合体を作製するため、EphA4-LBDを調製した(Qin H. et al., J. Biol. Chem., 283: 29473-29484(2008))。EphA4-LBDが抗体A-Fabに対して約1.5倍のモル比になるように、0.68μmol(200μM、3.4mL)のEphA4-LBDと0.45μmol(300μM、1.5mL)の抗体A-Fabを混合した。次に混合液をHILOAD 26/60 Superdex 75 prep grade(GE Healthcare)にアプライし、クロマト用緩衝液(25mM Tris/HCl(pH7.5)、100mM NaCl)で溶出を行った。複合体を含む画分をSDS PAGEで分析し、高純度の画分を集めて約40.8mg/mLまで濃縮し、これを結晶化に用いた。
 複合体の結晶化は、自動結晶化装置Hydra II Plus Oneシステム(Matrix Technologies Corp., Ltd.)を用いたシッティングドロップ蒸気拡散法によって行った。プレートはMRC-2(Molecular Dimensions)を使用した。リザーバー溶液の組成は100mM HEPES(pH7.5)、10% Polyethylene Glycol 8000、8% Ethylene Glycolで、このリザーバー溶液と上記の複合体溶液の体積比が1:1になるよう混合して結晶化ドロップレットを作製した。作製した結晶化プレートは20℃で静置した。
 上記の条件で結晶化を行ったところ、空間群P212121、格子定数a=71.0Å、b=84.5Å、c=116.1Åの結晶が得られた。得られた結晶に放射光X線(1.0Å)を入射して1.79Åの回折データを取得した。回折データをHKL2000 (HKL Research Inc.)によって処理し、分子置換法によって位相決定を行った。分子置換法にはCCP4 Software Suite(Collaborative computational project number 4、[CCP4] version 6.5.0、 Acta Cryst. D 67:235-242(2011))に含まれるプログラムPHASER(version 2.5.0、 McCoy A. J. et al., J. Appl. Cryst. 40:658-674(2007))を用いた。分子置換法のサーチモデルとしてはEphA4-LBDの結晶構造(PDBID:3CKH)とIgGのFab領域の結晶構造(PDBID:2VXT(L鎖)と1FGN(H鎖))を用いた。決定した位相から得られた電子密度に合うように分子モデルをプログラムCOOT(Emsley P. et al., Acta Cryst. D 60: 2126-2132n(2004))を用いて構築し、構造精密化をプログラムREFMAC (Murshudov G.N., Acta Cryst. D 53:240-255(1997))を用いて行った。
 以上の構造計算によって2.0Å分解能の複合体結晶構造を得た(R=0.212、Rfree=0.258)。
 得られた抗体A-Fab/EphA4-LBD複合体の結晶構造を計算化学システムMOE 2018.0101(Chemical Computing Group Inc.)に搭載されている相互作用検出ツールを用いて解析し、抗体A-Fabと直接接触しているEphA4-LBD上のアミノ酸残基を同定した(図10A)。同定されたアミノ酸残基は、Glu51、Gly52、Ile59、Gln71、Cys73、Asn74、Val75、Met76、Glu77、Thr104、Arg106、Leu111、Pro112、Met115、Arg162、Met164、Cys191、Ala193、Val195である。図10Bに、Maestro(version 11.0、Schrodinger、LLC)で作成したEphA4-LBDの表面構造を示す。この結果、本発明者らはこれらのアミノ酸残基が存在する領域がEphA4-LBDにおける抗体A-Fab結合領域であると結論づけた。
実施例1:抗体Aのヒト化抗体の作製
ヒト化抗EphA4抗体の調製
 ヒト化抗体の可変領域を設計した。抗体Aのフレームワーク領域(FR)に対する高い相同性を基に、ヒト抗体のFRの中から、重鎖についてはIGHV3-33*03(配列番号42)、およびJH6(配列番号43)、軽鎖についてはIGKV1-17*01(配列番号40)、およびJK4(配列番号41)をヒト化抗体のFRとして選択した。その後、マウス抗体Aの3D構造予測モデルを用いて、CDRのアミノ酸と相互作用するFRにおけるアミノ酸を予測し、重鎖のCDR1にY32Fの変異を有する抗体AのCDR(配列番号44、27、28、および29-31)とともに移植し、ヒト化抗体の重鎖可変領域としてHK2-42(配列番号45)が設計され、ヒト化抗体の軽鎖可変領域としてL1-8(配列番号46)が設計された。移植したCDRのアミノ酸配列を表2に示し、核酸配列を表3に示す。
 重鎖定常領域として、ヒトIgGの定常領域(配列番号47)を用いた。軽鎖定常領域としては、ヒトIgκ(配列番号48)を用いた。Expi293発現システム(Gibco/ThermoFisher)を用いて、ヒト化抗体のアミノ酸配列をコードする遺伝子配列を含む発現ベクター(pcDNA3.4)をExpi293F細胞(Gibco/ThermoFisher)へ形質移入した。ヒト化抗体のアミノ酸配列をコードする遺伝子配列として、それぞれ、重鎖可変領域については配列番号55に示す核酸配列を用い、軽鎖可変領域については配列番号56に示す核酸配列を用い、重鎖定常領域については配列番号57に示す核酸配列を用い、軽鎖定常領域については配列番号58に示す核酸配列を用いた。ヒト化抗体の重鎖全長(シグナル配列は含まない)のアミノ酸配列は、配列番号59に示すアミノ酸配列であり、軽鎖全長(シグナル配列は含まない)のアミノ酸配列は、配列番号60に示すアミノ酸配列である。ヒト化抗体の重鎖全長をコードする核酸配列は、配列番号61に示す核酸配列であり、軽鎖全長をコードする核酸配列は、配列番号62に示す核酸配列である。上清を回収し、MabSelectSuRe(GE Healthcare)を用いて抗体Aのヒト化抗体(抗体B)を精製した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
実施例2:ヒト化抗EphA4モノクローナル抗体のヒトEphA4に対する親和性
 実施例1で得た抗体BのヒトEphA4に対する結合親和性をBiacore  T200(GE Healthcare)を用いた表面プラズモン共鳴(SPR法)により決定した。まず、抗His抗体(GE Healthcare,28-9950-56)をセンサーチップCM5へ固定化した。固定化は、N-ヒドロキシスクシンイミド(NHS)、および、N-エチル-N’-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を用いたアミンカップリング法にて行い、ブロッキングにはエタノールアミンを用いた(センサーチップや固定化用試薬は、全てGE Healthcare社製)。固定化用緩衝液(10mM酢酸ナトリウム、pH4.5)を用いて3.5μg/mLに希釈し、Biacore T200付属のプロトコルに従い、センサーチップ上に固定した。ヒトEphA4細胞外領域-SEAP-His10をランニング緩衝液HBS-EP(GE Healthcare、BR-1001-88)を用いて希釈し、フローセル上に120秒間送液しキャプチャーさせた(10RU程度のキャプチャー量)。続いてHBS-EPを用いて100、50、25、12.5、6.3、3.2、1.6、0nMの範囲で系列希釈した抗体Bを120秒間センサーチップに添加し、添加時(結合相、120秒間)、および、添加終了後(解離相、600秒間)の結合反応曲線を順次観測した。各々の観測終了後に、4M MgCl(60秒間、和光純薬)を添加してセンサーチップを再生した。得られた結合反応曲線に対して、システム付属ソフトBIA evaluationソフトを用いた1:1の結合モデルによるフィッティング解析を行い、ヒトのEphA4に対する親和性(KD=kd/ka)を算出した。
 抗体BのヒトEphA4に対する結合親和性(KD値)は、1.34×10-9Mであった(図11)。抗体Bは、ヒト化を行う前の抗体Aとほぼ同等の親和性を示すことが分かった。
実施例3:ヒト化抗EphA4モノクローナル抗体の海馬ニューロンにおけるEphA4切断促進活性
 実施例1で得た抗体Bについて、海馬ニューロンを用いたEphA4切断促進活性の評価は、以下の工程に従って行った。
 96ウェルディッシュ(Falcon)に播種したラット海馬ニューロンに、抗体B(2.0、6.7、20nM)およびγセクレターゼ阻害薬であるCompoundE(50nM、Enzo Life Sciences)を処置して24時間後にPBS(和光純薬)で洗浄して、SDS sample buffer(Laemmliサンプルバッファー(バイオ・ラッド)、5% 2-メルカプトエタノール(バイオ・ラッド))を加えて細胞を回収し、5分間煮沸した。このサンプルを用いてSDS-PAGEを行い、抗EphA4モノクローナル抗体(Abnova)を用いたウェスタンブロッティングを行い、バンド強度を定量化し、EphA4C末端フラグメント/全長EphA4の値を算出した。
 抗体Bは、海馬ニューロンにおいて、濃度依存的にEphA4切断反応を促進した(図12)
実施例4:ヒト化抗EphA4モノクローナル抗体のヒトEphA4-ヒトリガンド結合阻害活性
 実施例1で得た抗体Bについて、ヒトEphA4とヒトリガンドとの結合阻害活性の評価は、以下の工程に従って行った。抗アルカリフォスファターゼ抗体(Thermo SCIENTIFIC)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.05%Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、ウェルにヒトEphA4細胞外領域-SEAP-Hisタンパク質(最終濃度10nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルにリガンドと系列希釈した抗体B (0、0.003、0.01、0.03、0.1、0.3、1、3、10、30、100、300、1000、3000nM)を添加した。なお、リガンドにはビオチン化ヒトEphrinA5-Fcキメラ(R&D Systems、最終濃度0.7nM)およびビオチン化ヒトEphrinB3-Fcキメラ(R&D Systems、最終濃度2.3nM)を用いた。室温にて1時間インキュベートして3回洗浄した後、西洋ワサビペルオキシダーゼ標識ストレプトアビジン(GE Healthcare)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、2~5分、室温にてインキュベートした。ウェルに等量の反応停止溶液(1N HSO、和光純薬)を加え、マイクロプレートリーダー(Molecular DevicesまたはPerkinElmer)により450nmの吸光度を読み取った。
 抗体Bは、ヒトEphA4とヒトリガンドとの結合を濃度依存的に抑制し、ヒトEphrinA5、EphrinB3結合に対するIC50値はそれぞれ約4.9nM、1.6nMであった。よって、抗体Bは、ヒトEphA4とヒトリガンドとの結合を強く阻害し、ヒト化を行う前の抗体Aとほぼ同等の阻害活性を示すことが分かった(図13)。
実施例5:ヒト化抗EphA4モノクローナル抗体のマウスEphA4-マウスリガンド結合阻害活性
 実施例1で得た抗体Bについて、マウスEphA4とマウスリガンドとの結合阻害活性の評価は、以下の工程に従って行った。抗アルカリフォスファターゼ抗体(Thermo SCIENTIFIC)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.02% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、ウェルにマウスEphA4細胞外領域-SEAP-Hisタンパク質を加え(最終濃度10nM)、室温にて1時間インキュベートした。3回洗浄した後、ウェルにリガンドと系列希釈した抗体B(0、0.003、0.01、0.03、0.1、0.3、1、3、10、30、100、300、1000、3000nM)を添加した。なお、リガンドにはビオチン化マウスEphrinA1-Fcキメラ(R&D Systems、最終濃度6nM)およびビオチン化マウスEphrinB2-Fcキメラ(R&D Systems、最終濃度2.5nM)を用いた。室温にて1時間インキュベートして3回洗浄した後、西洋ワサビペルオキシダーゼ標識ストレプトアビジン(GE Healthcare)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、2分、室温にてインキュベートした。ウェルに等量の反応停止溶液(1N HSO、和光純薬)を加え、マイクロプレートリーダー(Molecular DevicesまたはPerkinElmer)により450nmの吸光度を読み取った。
 抗体Bは、マウスEphA4とマウスリガンドとの結合を濃度依存的に抑制し、マウスEphrinA1、EphrinB2結合に対するIC50値はそれぞれ約8.7nM、4.2nMであった。よって、抗体Bは、マウスEphA4とマウスリガンドとの結合を強く阻害し、ヒト化を行う前の抗体Aとほぼ同等の阻害活性を示すことが分かった(図14)。
実施例6:ヒト化抗EphA4モノクローナル抗体のヒトEphレセプターに対する選択性
 参考例1に記載のマウスEphA4細胞外領域-SEAP-Hisタンパク質の調製方法と同様に、ヒトの各Ephレセプター(EphA1、EphA2、EphA3、EphA4、EphA5、EphA6、EphA7、EphA8、EphA10、EphB1、EphB2、EphB3、EphB4、EphB6)のシグナル配列と細胞外領域をコードするDNA配列を組織由来のTotal RNAを用いて、RT-PCRによって増幅し、SEAPタンパク質およびヒスチジンタグをコードするDNA配列を有するpENTR1Aベクター(Invitrogen/LifeTechnologies)にクローニングした。次に、ヒトの各Ephレセプターのシグナル配列と細胞外領域、SEAPタンパク質およびヒスチジンタグをコードするDNA配列をGateway System(Invitrogen/LifeTechnologies)のLR反応により、pcDNA3.1_rfcBベクターに移し、ヒトの各Ephレセプターの細胞外領域に対してSEAPタンパク質とHisタグを融合したタンパク質(「Ephレセプター細胞外領域-SEAP-Hisタンパク質」という)を発現するベクター(「Ephレセプター細胞外領域-SEAP-Hisタンパク質発現ベクター」という)を構築した。
 次に、Expi293発現システム(Gibco/ThermoFisher)を用いて、ヒトの各Ephレセプター細胞外領域-SEAP-Hisタンパク質発現ベクターを、Expi293F細胞(Gibco/ThermoFisher)に導入した。5日間のインキュベーション(5%CO、37℃)の後、培養上清を回収し、室温で1500rpm、5分間遠心した。遠心上清を0.45μmフィルター (Millipore)でろ過した。
 実施例1で得た抗体Bについて、ヒトEphレセプターの結合活性の評価は、以下の工程に従って行った。
 ウサギ抗6―His抗体(Bethyl Laboratories)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.05% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、各ウェルにヒトの各Ephレセプター細胞外領域-SEAP-Hisタンパク質(最終濃度1nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルにヒトIgG溶液(100μg/mL、三菱ウェルファーマ)および抗体B(10μg/mL)を添加し、室温にて1時間インキュベートした。西洋ワサビペルオキシダーゼ標識ロバ抗ヒトIgG抗体(Jackson ImmunoResearch Laboratories)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、適度な発色を確認したらウェルに等量の反応停止溶液(1N HSO4、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmの吸光度を読み取った。
 抗体Bは、ヒト化を行う前の抗体A同様、ヒトEphレセプターファミリー間ではヒトEphA4に対して特異的に結合することが分かった(図15)。
実施例7:ヒト化抗EphA4モノクローナル抗体のマウスEphレセプターに対する選択性
 参考例1に記載のEphA4細胞外領域-Fc-Hisタンパク質の調製方法に従って、マウスの各Ephレセプター(EphA1、EphA3、EphA4、EphA5、EphA6、EphA7、EphA8、EphA10、EphB1、EphB2、EphB3、EphB4、EphB6)のシグナル配列と細胞外領域をコードするDNA配列を組織由来のTotal RNAを用いて、RT-PCRによって増幅し、ヒトIgGのFc領域およびヒスチジンタグをコードするDNA配列を有するpENTR1Aベクター(Invitrogen/LifeTechnologies)にクローニングした。次に、マウスの各Ephレセプター(EphA1、EphA3、EphA4、EphA5、EphA6、EphA7、EphA8、EphA10、EphB1、EphB2、EphB3、EphB4、EphB6)のシグナル配列と細胞外領域、FcおよびヒスチジンタグをコードするDNA配列をGateway System(Invitrogen/LifeTechnologies)のLR反応により、pcDNA3.1_rfcBベクターに移し、マウスの各Ephレセプターの細胞外領域-Fc-Hisタンパク質発現ベクターを構築した。マウスEphA2の細胞外領域-Fc-Hisタンパク質発現ベクターの構築では、マウスEphA2のシグナル配列と細胞外領域をコードするDNA配列を組織由来のTotal RNAを用いて、RT-PCRによって増幅し、FcおよびヒスチジンタグをコードするDNA配列を有するpcDNA3.1ベクターにクローニングして、マウスEphA2細胞外領域-Fc-Hisタンパク質発現ベクターを構築した。
 次に、Expi293発現システム(Gibco/ThermoFisher)を用いて、マウスの各Ephレセプター細胞外領域―Fc―Hisタンパク質発現ベクターを、Expi293F細胞(Gibco/ThermoFisher)に導入した。5日間の培養(5%CO2、37℃、120rpm)の後、培養上清を回収し、室温で1500rpm、5 分間遠心した。遠心上清を0.45μmフィルター(Millipore)でろ過した。
 抗体Bについて、マウスEphレセプターの結合活性の評価は、以下の工程に従って行った。
 ウサギ抗6―His抗体(Bethyl Laboratories)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.05% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、各ウェルにマウスの各Ephレセプター細胞外領域‐Fc-Hisタンパク質(最終濃度1nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルにヒトIgG溶液(100μg/mL、Sigma)および抗体B(10μg/mL)を添加し、室温にて1時間インキュベートした。西洋ワサビペルオキシダーゼ標識ヤギ抗ヒトKappa Light Chain抗体(IBL)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、適度な発色を確認したらウェルに等量の反応停止溶液(1N HSO4、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmの吸光度を読み取った。
 抗体Bは、マウスEphレセプターファミリー間ではマウスEphA4にのみ特異的に結合活性を有していた(図16)。
実施例8:ヒト化抗EphA4モノクローナル抗体のマウス、ラット、サルおよびヒトEphA4に対する反応性
 抗体Bについて、各種EphA4との結合活性の評価は、以下の工程に従って行った。
 抗アルカリフォスファターゼ抗体(Thermo SCIENTIFIC)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.05% Tween20/PBS(Thermo SCIENTIFIC)で3回洗浄した後、ウェルにマウス、ラット、サルおよびヒトEphA4細胞外領域-SEAP-Hisタンパク質(最終濃度1nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルにヒトIgG溶液(100μg/mL、三菱ウェルファーマ)および抗体B(0、0.00013、0.00064、0.0032、0.016、0.08、0.4、2、10μg/mL)を添加し、室温にて1時間インキュベートした。西洋ワサビペルオキシダーゼ標識ロバ抗ヒトIgG抗体(Jackson ImmunoResearch Laboratories)を加え、室温にて1時間インキュベートした。3回洗浄した後、ウェルにTMBZ(3,3’,5,5’-テトラメチルベンジジン、Sigma)溶液を加え、適度な発色を確認したらウェルに等量の反応停止溶液(1N HSO、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmの吸光度を読み取った。
 抗体Bは、マウス、ラット、サルおよびヒトEphA4いずれにおいても同等の結合活性を有していた(図17)。
実施例9:ヒト化抗EphA4モノクローナル抗体のヒトEphA4細胞外領域、リガンド結合ドメイン、フィブロネクチンIII型ドメイン1、フィブロネクチンIII型ドメイン2に対する反応性
 実施例1で得た抗体Bについて、各種ヒトEphA4内ドメインとの結合活性の評価は、以下の工程に従って行った。
 ウサギ抗6―His抗体(Bethyl Laboratories)を、96ウェルプレート(Nunc)のウェル上にコートした。4℃にて一晩インキュベートした後、1%ブロックエース(DSファーマバイオメディカル)により、ウェルを室温にて1時間ブロッキングした。0.02% Tween20/PBS(ナカライテスク)で2回洗浄した後、ウェルにヒトEphA4細胞外領域-MBP-Hisタンパク質、ヒトEphA4リガンド結合ドメイン-MBP-Hisタンパク質、ヒトEphA4フィブロネクチンIII型ドメイン1-MBP-Hisタンパク質、およびヒトEphA4フィブロネクチンIII型ドメイン2-MBP-Hisタンパク質(最終濃度10nM)を播種し、室温にて1時間インキュベートした。3回洗浄した後、ウェルに抗体B(最終濃度10nM)を添加し、室温にて1時間インキュベートした。西洋ワサビペルオキシダーゼ標識ウサギ抗ヒトIgG Fcγフラグメント抗体(Jackson ImmunoResearch Laboratories)を加え、室温にて1時間インキュベートした。5回洗浄した後、ウェルにTMB(KPL)溶液を加え、適度な発色を確認したらウェルに等量の反応停止溶液(2N HSO、和光純薬)を加え、マイクロプレートリーダー(PerkinElmer)により450nmおよび650nmの吸光度を読み取った。
 抗体Bは、ヒトEphA4細胞外領域(ECD)およびリガンド結合ドメイン(LBD)に結合活性を有していた(図18)。フィブロネクチンIII型ドメイン1(FN1)およびフィブロネクチンIII型ドメイン2(FN2)には反応しなかった。よって、抗体BはヒトEphA4細胞外領域のリガンド結合ドメインに特異的に結合することが分かった。
実施例10:ヒト化抗EphA4モノクローナル抗体の海馬ニューロンのスパイン数に対する増加効果
 ラット海馬ニューロンの調製は、参考例1の(B)に記載されるように行った。ラット海馬ニューロンにNucleofector(Lonza)を用いてEGFP遺伝子を導入し、ポリLリジンをコートしたカバーガラス(松浪硝子工業)を入れた24ウェルプレート(Falcon)に播種した。
 海馬ニューロンを用いたスパインの計数は、以下の工程に従って行った。ポリLリジンをコートしたカバーガラス(松浪硝子工業)を入れた24ウェルプレート(Falcon)に播種した培養13日目のEGFP導入ラット海馬ニューロンに、コントロール抗体(ヒトIgG;Sigma)あるいは抗体B(6.7、20nM)を24時間処置した。その後、カバーガラスを2%PFA(和光純薬)/4%Sucrose(和光純薬)/PBSに移し、20分間静置し、細胞を固定した。固定液を除き、細胞をPBSで3回洗浄したのち、0.25%TritonX-100(和光純薬)/PBSを加えて、15分間、細胞透過処理を行った。液を除き、2%BSA(Sigma)/0.25%TritonX-100/OPTI-MEM(GIBCO)にカバーガラスを移して、1時間ブロッキングを施したあと、抗GFP抗体(ナカライテスク)を1時間30分反応させた。1次抗体液を除き、PBSで3回洗浄したのち、2次抗体を1時間反応させた。2次抗体液を除き、PBSで3回洗浄したのち、Prolong Gold antifade reagent(Molecular probes)を加えて封入し、LSM800(ZEISS)で観察を行った。上述の実験を3回実施し、1回の実験につき、カバーガラス2枚からニューロンを抽出し、それぞれの樹状突起にあるスパインを画像解析ソフトImaris(登録商標)(Bitplane)を用いて計数し、各ニューロンにおける10 μmあたりのスパイン数を算出した。
 抗体Bは、海馬ニューロンのスパイン数を増加させた(図19)。本結果は、抗体Bが海馬ニューロンにおいてスパインを安定化させる活性を有することを示すものである。
実施例11:ヒト化抗EphA4モノクローナル抗体のヒトEphA4切断促進活性
 実施例1で得た抗体Bについて、ヒトEphA4に対する切断促進活性の評価は、以下の工程に従って行った。
 ラット海馬ニューロンの調製は、参考例1の(B)に記載されるように行った。ラット海馬ニューロンにNucleofector(Lonza)を用いてヒトEphA4-HAタンパク質発現ベクターを導入し、ポリLリジンをコートした96ウェルディッシュ(Falcon)に播種した。播種したラット海馬ニューロンに、抗体B(6.7、20、67nM)およびγセクレターゼ阻害薬であるCompoundE(50nM、Enzo Life Sciences)を処置して約24時間後にPBS(和光純薬)で洗浄して、SDS sample buffer(Laemmliサンプルバッファー(バイオ・ラッド)、5% 2-メルカプトエタノール(バイオ・ラッド))を加えて細胞を回収し、5分間煮沸した。このサンプルを用いてSDS-PAGEを行い、ラット抗HAモノクローナル抗体(Roche)を用いたウェスタンブロッティングを行い、バンド強度を定量化し、EphA4C末端フラグメント/全長EphA4の値を算出した。
 抗体Bは、海馬ニューロンにおいてヒトEphA4切断反応を促進した(図20)。
実施例12:ヒト化抗EphA4モノクローナル抗体の海馬ニューロンのスパイン数増加効果に対するMMPおよびADAMの関与
 ラット海馬ニューロンの調製は、参考例1の(B)に記載されるように行った。一部のラット海馬ニューロンにNucleofector(Lonza)を用いてEGFP遺伝子を導入し、ポリLリジンをコートしたカバーガラス(松浪硝子工業)を入れた24ウェルプレート(Falcon)に播種した。
 海馬ニューロンを用いたスパインの計数は、以下の工程に従って行った。ポリLリジンをコートしたカバーガラス(松浪硝子工業)を入れた24ウェルプレート(Falcon)に播種した培養13日目のEGFP導入ラット海馬ニューロンに、コントロール抗体(ヒトIgG;Sigma)あるいは抗体B(20nM)と、DMSO(Sigma)あるいはMMPおよびADAMの阻害剤であるGM6001(2.5μM、MedChemExpress)を24時間処置した。その後、カバーガラスを2%PFA(和光純薬)/4%Sucrose(和光純薬)/PBSに移し、20分間静置し、細胞を固定した。固定液を除き、細胞をPBSで3回洗浄したのち、0.25%TritonX-100(和光純薬)/PBSを加えて、15分間、細胞透過処理を行った。0.25%TritonX-100/PBSを除き、2%BSA(Sigma)/0.25%TritonX-100/OPTI-MEM(GIBCO)にカバーガラスを移して、1時間ブロッキングを施したあと、抗GFP抗体(ナカライテスク)を1時間30分反応させた。1次抗体液を除き、PBSで3回洗浄したのち、2次抗体を1時間反応させた。2次抗体液を除き、PBSで3回洗浄したのち、Prolong Gold antifade reagent(Molecular probes)を加えて封入し、LSM800(ZEISS)で観察を行った。上述の実験を3回実施し、1回の実験につき、カバーガラス2枚からニューロンを抽出し、それぞれの樹状突起にあるスパインを画像解析ソフトImaris(登録商標)(Bitplane)を用いて計数し、各ニューロンにおける10μmあたりのスパイン数を算出した。
 抗体Bによる海馬ニューロンのスパイン数増加は、GM6001を同時処理することにより阻害された(図21)。本結果は、抗体Bが海馬ニューロンにおいて、MMPおよびADAMを介したスパイン安定化活性を有することを示すものである。
実施例13:ヒト化抗EphA4モノクローナル抗体のin vitro ALSモデルにおけるヒトiPS細胞由来運動ニューロン保護効果
(A)ヒトiPS細胞の維持培養
 ヒトiPS細胞の維持培養は、以下の工程に従って行った。液体窒素でStem cell banker(Takara)にて凍結保存されたヒトiPS細胞(201B7)を液体窒素気層から取り出し、予め37℃に加温しておいたヒトiPS細胞培養培地(Essential 8、Thermofisher scientific)5mLに懸濁、融解した。15mLコニカルチューブ(Thermofisher scientific)に細胞懸濁液を回収し、1000rpm、5分、室温で遠心後、上清を除き、新たな培地に懸濁後、予め0.3μg/cm iMatrix-511(Nippi)でコーティングを行ったφ60mm細胞培養ディッシュ(Corning)に播種し、10μM Y-27632(WAKO)を添加した後、CO2インキュベーター内(37℃、5%CO2)で培養を行った。毎日、培地交換を行い、サブコンフルエントに達した時点で継代培養を行うことでヒトiPS細胞の維持培養を行った。継代培養は以下のように実施した。サブコンフルエントの状態のヒトiPS細胞の培養培地をアスピレートし、2mLのPBS(WAKO)で洗浄後、Accutase(Nacalai Tesque)1mLを添加してCOインキュベーター内(37℃、5%CO)で5分間インキュベートした。10μM Y-27632を含む4mLのヒトiPS細胞培養培地で懸濁することによってヒトiPS細胞を単細胞に解離し、その後15mLのコニカルチューブに回収した。1000rpm、5分、室温で遠心を行い、上清をアスピレートした後、ヒトiPS細胞を10μM Y-27632を含む1mLのヒトiPS細胞培養培地に懸濁した。細胞数を計測し、2×10個のヒトiPS細胞を4mLのヒトiPS細胞培養培地に懸濁した後、0.3μg/cm iMatrix-511でコーティングしたφ60mm細胞培養ディッシュに播種し、COインキュベーター内(37℃、5%CO)で培養を行った。実験には、継代培養を1回以上実施したヒトiPS細胞を用いた。
(B)アストロサイトの樹立および維持培養
 マウス新生仔からのアストロサイトの樹立および維持培養は、以下の工程に従って行った。生後2日齢の野生型マウス新生仔(C57BL/6JJmsSlc(日本エスエルシー))および野生型マウスと変異ヒトSOD1(G93A)Tg-(B6.Cg-Tg(SOD1 G93A)1Gur/J(Jackson Laboratories))マウスとの交雑マウスの新生仔をイソフルラン(インターベット)吸入麻酔下で断頭により安楽死させた後、大脳皮質を単離し、0.25%トリプシン‐EDTA(Thermofisher Scientific)で37℃、15分処理により分散した。酵素処理後、10%FBS(Thermofisher Scientific)および1%ペニシリン ストレプトマイシン(Nacalai Tesque)含有Dulbecco’s Modified Eagle Medium(Thermofisher Scientific)(10%FBS-DMEM)4mLによって希釈し、酵素消化を停止させた。その後、セルストレーナー(Corning)により、単一細胞以外の不純物をフィルトレーションし、1500rpmで5分遠心した。上清をアスピレートし、細胞を新しい10%FBS-DMEM 4mLに希釈して、個体毎にφ60mm細胞培養ディッシュに播種、37℃にて培養した。播種2日後に培地をアスピレートし、新たな10%FBS-DMEM 4mLを細胞に加え培地交換を行った。コンフルエントに達した後、継代培養を実施した。マウス新生仔由来アストロサイトの継代培養は以下のように実施した。φ60mm細胞培養ディッシュ上でコンフルエントに達したアストロサイトの10%FBS-DMEMをアスピレートした後、PBS(WAKO)2mLで洗浄し、0.25%トリプシン‐EDTA 1mLを加えてCOインキュベーター内(37℃、5%CO)で3分インキュベートした。10%FBS-DMEM 3mLで懸濁することによりアストロサイトを単細胞に解離し、その後15mLコニカルチューブに回収した。1500rpm、3分、室温で遠心し、上清をアスピレートした後、細胞に新たな10%FBS-DMEM 8mLを加え、φ100mm細胞培養ディッシュに播種した(継代1)。継代培養は細胞がコンフルエントに達した際に上記と同様の方法で実施した。なお、φ100mm細胞培養ディッシュで培養したアストロサイトの継代培養時には、4mLのPBS、および2mLの0.25%トリプシン‐EDTAを使用した。また、継代培養時に細胞懸濁液の一部を回収し、変異ヒトSOD1(G93A)のジェノタイピングに供した。継代培養を合計3回実施したアストロサイトをCell banker(日本全薬工業)に希釈して試験供試まで-80℃で凍結保存した。試験供試に際しては、凍結保存した細胞懸濁液をそれぞれ恒温槽内で融解した後、予め37℃に加温した10%FBS-DMEMで希釈した。各細胞懸濁液を遠心後(1500rpm、3分、室温)、上清を除き、新たな培地に懸濁後、8ウェルチャンバー(ibidi)に播種し、COインキュベーター内(37℃、5%CO)で維持培養を行った。
 変異ヒトSOD1(G93A)のジェノタイピングは、REDExtract-N-AmpTM Tissue PCR kit(Sigma)を用いて行った。アストロサイトの継代培養時に回収した細胞懸濁液を1.5mLチューブに移し、1500rpm、3分遠心を行った。遠心後、上清をアスピレートし、PBS 1mLを細胞に加えて洗浄、再度遠心した後にアスピレートした。抽出溶液50μLおよび組織調製溶液12.5μLを混合し、サンプルに加えた。混和後、polymerase chain reaction(PCR)チューブに移して、GeneAmp(登録商標) PCR system9700(Applied biosystems(登録商標))にて55℃で10分、95℃で3分、反応させ、その後、kit付属の中和溶液を50μL加えてゲノムDNAを調製した。
 抽出したゲノムDNAを用いて表4に示す組成でゲノミックPCRを行った。PCRで使用するプライマー配列は表5に示す。PCR後1%アガロースゲル/100V/20分にて電気泳動を行った。内部標準324bp、および変異ヒトSOD1(G93A)236bpの2つのバンドが検出されたものを変異ヒトSOD1(G93A)発現アストロサイトと同定した。
Figure JPOXMLDOC01-appb-T000005
Red mix=REDExtract-N-Amp PCR反応ミックス. 
Figure JPOXMLDOC01-appb-T000006
(C)In vitro ALSモデルにおけるヒトiPS細胞由来運動ニューロン保護効果の評価
 In vitro ALSモデルにおけるヒトiPS細胞由来運動ニューロン保護効果の評価は、以下の工程に従って行った。上記(A)の継代培養と同様の方法でヒトiPS細胞の単細胞懸濁液を得たのち、1000rpm、5分、室温で遠心を行い、上清をアスピレートした。ヒトiPS細胞をDFK20培地(20%Knockout serum replacement(KSR、Thermofisher Scientific)、1%Non-essential amino acid(NEAA、Thermofishere Scientific)、1%GlutaMAX-I Supplement(Thermofisher scientific)、100units/mL ペニシリン-100μg/mLストレプトマイシン(Nacalai Tesque)、100μM β-メルカプトエタノール(Thermofisher Scientific)を含むDMEM/F12(Thermofisher Scientific))で懸濁した後、細胞数を計測した。3×10個のヒトiPS細胞に対して10μM SB431542(Sigma)、100nM LDN193189(Sigma)、3μM CHIR99021(Cayman Chemical)、10μM Y-27632を含むDFK20培地を2mLで懸濁し、低接着性6ウェル細胞培養プレート(Corning)の1ウェルに播種し、CO2インキュベーター内(37℃、5%CO2)で培養した。培養3日目、ヒトiPS細胞分化細胞塊(SFEBs)を培地ごと15mLコニカルチューブに回収し、300rpm、2分、常温で遠心することで、細胞塊を沈殿させた。この上清をアスピレートし、SFEBsを10μM SB431542、100nM LDN193189、3μM CHIR99021(Cayman)、5μM Y-27632、1μM Retinoic Acid(Sigma)を含むDFK20培地で緩やかに懸濁し、元のウェルに戻すことで培地交換を行った。培養5日目も同様の方法で培地交換を実施した。ただし、Y-27632の濃度は2.5μMにして培地交換を実施した(その他の化合物は培養3日目と同じ)。培養7日目、SFEBsを培地ごと15mLコニカルチューブに回収し、10分常温で静置することで、SFEBsを沈殿させた。この上清をアスピレートし、1μM Retinoic Acid、1μM Purmorphamine(Myltenyi Biotech)を含む、3mLのDFK5培地(5%KSR、1%NEAA、1%GlutaMAX-I Supplement、100units/mL ペニシリン-100μg/mLストレプトマイシン、100μM β-メルカプトエタノールを含むDMEM/F12)でSFEBsを懸濁して元のウェルに戻し、CO2インキュベーター内(37℃、5%CO2)で培養した。その後、2-3日毎に、培養7日目と同じ工程で培地交換を行い、ヒトiPS細胞を運動ニューロンへと分化誘導した。培養33日目に、SFEBsを培地ごと15mLコニカルチューブに回収し、5分常温で静置することで、SFEBsを沈殿させた。上清をアスピレートし、10μM Y-27632を含む2mLのAccutaseを加えて、37℃恒温水槽で10分インキュベートした。その後、P1000ピペットで、30回ピペッティングして細胞塊を分散させたのち、10μM Y-27632を含む10mLのDFK5培地で酵素反応を停止させた。細胞懸濁液を新たな15mLコニカルチューブに回収し、1000rpm、5分、室温で遠心し、上清をアスピレートした。10μM Y-27632を含むDFK5培地で細胞を再懸濁した後、セルストレーナー(Corning)でフィルトレーションを行い、その後、細胞数を計測した。共培養培地(2%B27 Supplement(Thermofisher Scientific)、10μM Y-27632、1%GlutaMax-I Supplement、100units/mL ペニシリン-100μg/mL ストレプトマイシンを含むNeurobasal培地(Thermofisher Scientific)で細胞を5×10個/mLの懸濁液に調製し、コントロール群、vehicle添加群および薬物処置群に分けた。薬物の希釈は共培養培地を用いた。Vehicle(共培養培地)および薬物である抗体Bをそれぞれの群に添加した後、予めマウス由来野生型アストロサイトまたは変異ヒトSOD1(G93A)発現アストロサイトを8×10個/ウェルで播種した8ウェルチャンバーに200μL/ウェルで播種し、アストロサイトと運動ニューロンの共培養細胞として評価に使用した。野生型アストロサイトと運動ニューロンとの共培養で観察される運動ニューロン数をコントロールとした。Vehicle添加群および薬物処置群では、変異ヒトSOD1(G93A)発現アストロサイトと運動ニューロンとの共培養を行い、条件をvehicle添加(1%共培養培地)、抗体B(10、30、100nmol/L)とした。各条件でCOインキュベーター内(37℃、5%CO)において2日間培養後、抗ISL1抗体(Abcam)および抗Human Nuclear Antigen(HNA)抗体(Millipore)を用いて運動神経細胞を免疫細胞化学的に染色した。1ウェルあたりのISL1/HNA共陽性細胞を生存運動ニューロンとして計数し、運動ニューロン生存率はコントロールに対する%として算出した。なお、図22に評価系の工程を示す簡単な模式図を示す。
 変異ヒトSOD1(G93A)発現アストロサイト/ヒトiPS細胞由来運動ニューロン共培養(in vitro ALSモデル)では、運動ニューロン生存率は著しく低下した。抗体Bは、変異ヒトSOD1(G93A)発現アストロサイトにより誘発されるヒトiPS細胞由来運動ニューロン死を濃度依存的に抑制した(図23)。本結果は、抗体Bがin vitro ALSモデルにおいて運動ニューロンの生存を促進することを示すものである。

Claims (15)

  1.  抗EphA4抗体を含む、筋萎縮性側索硬化症(ALS)を治療するための医薬組成物であって、
     前記抗EphA4抗体は、
     (a)配列番号44に示すアミノ酸配列からなる重鎖CDR1;
     (b)配列番号27に示すアミノ酸配列からなる重鎖CDR2;および
     (c)配列番号28に示すアミノ酸配列からなる重鎖CDR3を含む重鎖;および
     (d)配列番号29に示すアミノ酸配列からなる軽鎖CDR1;
     (e)配列番号30に示すアミノ酸配列からなる軽鎖CDR2;および
     (f)配列番号31に示すアミノ酸配列からなる軽鎖CDR3を含む軽鎖
    を含む、
    医薬組成物。
  2.  請求項1に記載の医薬組成物であって、
     前記抗EphA4抗体は、ヒト化されている、
    医薬組成物。
  3.  請求項1または2に記載の医薬組成物であって、
     前記抗EphA4抗体は、EphA4に特異的に結合し、EphA4の切断を促進する、
    医薬組成物。
  4.  請求項1~3のいずれか1項に記載の医薬組成物であって、
     前記抗EphA4抗体は、EphA4に特異的に結合し、EphA4とephrinとの結合を阻害する、
    医薬組成物。
  5.  請求項1~4のいずれか1項に記載の医薬組成物であって、
     前記重鎖は配列番号45に示すアミノ酸配列からなる可変領域を含み、
     前記軽鎖は配列番号46に示すアミノ酸配列からなる可変領域を含む、
    医薬組成物。
  6.  請求項1~5のいずれか1項に記載の医薬組成物であって、
     前記重鎖の定常領域および前記軽鎖の定常領域がヒト抗体由来のアミノ酸配列を含む、
    医薬組成物。
  7.  請求項6に記載の医薬組成物であって、
     前記重鎖の定常領域はヒトIgGの定常領域である、
    医薬組成物。
  8.  請求項7に記載の医薬組成物であって、
     前記ヒトIgGの定常領域はヒトIgGの定常領域である、
    医薬組成物。
  9.  請求項8に記載の医薬組成物であって、
     前記ヒトIgGの定常領域は、配列番号47に示すアミノ酸配列を含む、
    医薬組成物。
  10.  請求項6~9のいずれか1項に記載の医薬組成物であって、
     前記軽鎖の定常領域はヒトIgκの定常領域である、
    医薬組成物。
  11.  請求項10に記載の医薬組成物であって、
     前記ヒトIgκの定常領域は、配列番号48に示すアミノ酸配列を含む、
    医薬組成物。
  12.  抗EphA4抗体を含む、筋萎縮性側索硬化症(ALS)を治療するための医薬組成物であって、
     前記抗EphA4抗体は、重鎖および軽鎖を含み、
     前記重鎖は、配列番号59に示すアミノ酸配列を含み、
     前記軽鎖は、配列番号60に示すアミノ酸配列を含み、
     前記重鎖のC末端リシンが欠失されていてもよい、
    医薬組成物。
  13.  請求項12に記載の医薬組成物であって、
     前記重鎖のC末端リシンが欠失されている、
    医薬組成物。
  14.   筋萎縮性側索硬化症(ALS)治療用の医薬組成物を製造するための抗EphA4抗体の使用であって、
     前記抗EphA4抗体は、
     (a)配列番号44に示すアミノ酸配列からなる重鎖CDR1;
     (b)配列番号27に示すアミノ酸配列からなる重鎖CDR2;および
     (c)配列番号28に示すアミノ酸配列からなる重鎖CDR3を含む重鎖;および
     (d)配列番号29に示すアミノ酸配列からなる軽鎖CDR1;
     (e)配列番号30に示すアミノ酸配列からなる軽鎖CDR2;および
     (f)配列番号31に示すアミノ酸配列からなる軽鎖CDR3を含む軽鎖
    を含む、
    抗EphA4抗体の使用。
  15.  請求項14に記載の抗EphA4抗体の使用であって、
     前記重鎖は配列番号45に示すアミノ酸配列からなる可変領域を含み、
     前記軽鎖は配列番号46に示すアミノ酸配列からなる可変領域を含む、
    抗EphA4抗体の使用。
     

     
PCT/JP2021/047532 2020-12-24 2021-12-22 筋萎縮性側索硬化症の治療用医薬組成物 WO2022138707A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US18/029,540 US20240010735A1 (en) 2020-12-24 2021-12-22 Therapeutic pharmaceutical composition for amyotrophic lateral sclerosis
MX2023004848A MX2023004848A (es) 2020-12-24 2021-12-22 Composicion farmaceutica terapeutica para tratar la esclerosis lateral amiotrofica.
CA3195085A CA3195085A1 (en) 2020-12-24 2021-12-22 Therapeutic pharmaceutical composition for amyotrophic lateral sclerosis
JP2022571541A JPWO2022138707A1 (ja) 2020-12-24 2021-12-22
CN202180078579.1A CN116710133A (zh) 2020-12-24 2021-12-22 肌萎缩侧索硬化的治疗用药物组合物
EP21910847.9A EP4268847A1 (en) 2020-12-24 2021-12-22 Pharmaceutical composition for treatment of amyotrophic lateral sclerosis
KR1020237015047A KR20230124547A (ko) 2020-12-24 2021-12-22 근위축성 측삭 경화증에 대한 치료적 약학 조성물
AU2021410290A AU2021410290A1 (en) 2020-12-24 2021-12-22 Pharmaceutical composition for treatment of amyotrophic lateral sclerosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-214739 2020-12-24
JP2020214739 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138707A1 true WO2022138707A1 (ja) 2022-06-30

Family

ID=82159764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047532 WO2022138707A1 (ja) 2020-12-24 2021-12-22 筋萎縮性側索硬化症の治療用医薬組成物

Country Status (10)

Country Link
US (1) US20240010735A1 (ja)
EP (1) EP4268847A1 (ja)
JP (1) JPWO2022138707A1 (ja)
KR (1) KR20230124547A (ja)
CN (1) CN116710133A (ja)
AU (1) AU2021410290A1 (ja)
CA (1) CA3195085A1 (ja)
MX (1) MX2023004848A (ja)
TW (1) TW202241503A (ja)
WO (1) WO2022138707A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150010A1 (ja) * 2007-06-08 2008-12-11 Eisai R & D Management Co., Ltd. γ-セクレターゼの新規基質EphA4を利用したスクリーニング方法
US20100297697A1 (en) 2007-08-29 2010-11-25 Boehringer Ingelheim Pharma Gmbh & Co Kg Methods for increasing protein titers
WO2012081502A1 (ja) * 2010-12-17 2012-06-21 エーザイ・アール・アンド・ディー・マネジメント株式会社 ゼラチナーゼによるEphA4の切断反応を指標としたスクリーニング方法
WO2012156351A1 (en) 2011-05-13 2012-11-22 Vib Vzw Epha4 is a disease modifier in motor neuron disease
WO2016019280A1 (en) 2014-07-31 2016-02-04 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Human monoclonal antibodies against epha4 and their use
WO2017043466A1 (ja) 2015-09-08 2017-03-16 エーザイ・アール・アンド・ディー・マネジメント株式会社 抗EphA4抗体
WO2021002312A1 (ja) * 2019-07-01 2021-01-07 エーザイ・アール・アンド・ディー・マネジメント株式会社 抗EphA4抗体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150010A1 (ja) * 2007-06-08 2008-12-11 Eisai R & D Management Co., Ltd. γ-セクレターゼの新規基質EphA4を利用したスクリーニング方法
US20100297697A1 (en) 2007-08-29 2010-11-25 Boehringer Ingelheim Pharma Gmbh & Co Kg Methods for increasing protein titers
WO2012081502A1 (ja) * 2010-12-17 2012-06-21 エーザイ・アール・アンド・ディー・マネジメント株式会社 ゼラチナーゼによるEphA4の切断反応を指標としたスクリーニング方法
WO2012156351A1 (en) 2011-05-13 2012-11-22 Vib Vzw Epha4 is a disease modifier in motor neuron disease
WO2016019280A1 (en) 2014-07-31 2016-02-04 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Human monoclonal antibodies against epha4 and their use
WO2017043466A1 (ja) 2015-09-08 2017-03-16 エーザイ・アール・アンド・ディー・マネジメント株式会社 抗EphA4抗体
WO2021002312A1 (ja) * 2019-07-01 2021-01-07 エーザイ・アール・アンド・ディー・マネジメント株式会社 抗EphA4抗体

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
"Genbank", Database accession no. NM_001260870.1
ACTA CRYST, vol. 67, 2011, pages 235 - 242
AL-LAZIKANI ET AL., J. MOLEC. BIOL., vol. 273, 1997, pages 927 - 948
CARTER ET AL., PROC. NATL. ACAD. SET USA, vol. 89, 1992, pages 4285 - 4289
CHOTHIA ET AL., J. MOL. BIOL., vol. 196, 1987, pages 901 - 917
EMSLEY P ET AL., ACTA CRYST, vol. 60, 2004, pages 2126 - 2132
GOLDSHMIT ET AL., PLOS ONE, vol. 6, 2011, pages e24636
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NATIONAL INSTITUTES OF HEALTH
KONTERMANN, MABS, vol. 4, 2012, pages 182 - 97
KONTERMANNDUBEL: "Springer Lab Manual", 2001, article "Antibody Engineering"
LIU H ET AL., MABS, vol. 6, no. 5, September 2014 (2014-09-01), pages 1145 - 1154
MCCOY A. J. ET AL., J. APPL. CRYST., vol. 40, 2007, pages 658 - 674
MURSHUDOV G.N., ACTA CRYST, vol. 53, 1997, pages 240 - 255
PRESTA ET AL., J. IMMUNOL., vol. 151, 1993, pages 2623 - 2632
QIN H ET AL., J. BIOL. CHEM., vol. 283, 2008, pages 29473 - 29484
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 327
SPANEVELLO ET AL., JOURNAL OF NEUROTRAUMA, vol. 30, 2013, pages 1023 - 1034
TSURUSHITA ET AL., METHODS, vol. 36, 2005, pages 69 - 83
VAN HOECKE ET AL., NATURE MEDICINE, vol. 18, 2012, pages 1418 - 1422
VERHOEYEN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536

Also Published As

Publication number Publication date
US20240010735A1 (en) 2024-01-11
CA3195085A1 (en) 2022-06-30
AU2021410290A1 (en) 2023-06-29
MX2023004848A (es) 2023-05-10
JPWO2022138707A1 (ja) 2022-06-30
TW202241503A (zh) 2022-11-01
EP4268847A1 (en) 2023-11-01
KR20230124547A (ko) 2023-08-25
CN116710133A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN107847595B (zh) 特异性针对过度磷酸化τ蛋白的抗体及其使用方法
JP6770153B2 (ja) 抗EphA4抗体
JP7072114B2 (ja) 抗EphA4抗体
WO2022138707A1 (ja) 筋萎縮性側索硬化症の治療用医薬組成物
WO2022138708A1 (ja) 抗EphA4抗体
RU2816371C2 (ru) АНТИТЕЛО К EphA4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3195085

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022571541

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18029540

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180078579.1

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023011278

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021410290

Country of ref document: AU

Date of ref document: 20211222

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023115025

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112023011278

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230607

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910847

Country of ref document: EP

Effective date: 20230724