WO2022138516A1 - Thermoplastic liquid crystal polymer film-formed body having colored layer, and method for producing same - Google Patents

Thermoplastic liquid crystal polymer film-formed body having colored layer, and method for producing same Download PDF

Info

Publication number
WO2022138516A1
WO2022138516A1 PCT/JP2021/046888 JP2021046888W WO2022138516A1 WO 2022138516 A1 WO2022138516 A1 WO 2022138516A1 JP 2021046888 W JP2021046888 W JP 2021046888W WO 2022138516 A1 WO2022138516 A1 WO 2022138516A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
thermoplastic liquid
polymer film
colored layer
Prior art date
Application number
PCT/JP2021/046888
Other languages
French (fr)
Japanese (ja)
Inventor
先文 張
辰也 砂本
啓輔 池田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN202180086649.8A priority Critical patent/CN116635235A/en
Priority to KR1020237020855A priority patent/KR20230125199A/en
Priority to JP2022571419A priority patent/JPWO2022138516A1/ja
Publication of WO2022138516A1 publication Critical patent/WO2022138516A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction

Definitions

  • thermoplastic polymer hereinafter referred to as thermoplastic liquid crystal polymer
  • film molded product having a colored layer and capable of forming an optically anisotropic molten phase, and a method for producing the same.
  • thermoplastic liquid crystal polymer film has a milky white color derived from the thermoplastic liquid crystal polymer.
  • a milky white color forms a metal circuit pattern
  • the boundary with the metal circuit pattern tends to be unclear, so that there is a demand for coloring the thermoplastic liquid crystal polymer film.
  • Patent Document 1 International Publication No. 2018/105624
  • a black pigment such as carbon black and a thermoplastic liquid crystal polymer are melt-kneaded and the melt-kneaded product is passed through a filter having a pore size of 40 ⁇ m or less.
  • a black thermoplastic liquid crystal polymer film in which agglomerates of black pigment and generation of high-concentration spots of black pigment are suppressed by molding into a film by a T-die method or an inflation method is disclosed.
  • thermoplastic liquid crystal polymer film can be obtained by adding a black pigment to the thermoplastic liquid crystal polymer film
  • the thermoplastic liquid crystal polymer is derived from a rigid mesogen structure.
  • the pigment is mixed to the extent that the milky white color derived from the thermoplastic liquid crystal polymer is sufficiently colored, it is difficult to effectively utilize the inherent characteristics of the thermoplastic liquid crystal polymer film. ..
  • thermoplastic liquid crystal polymer film to which the black pigment is added for example, the elasticity of the film may change due to the addition of the pigment, and the measured value may deviate from the design value of the thermoplastic liquid crystal polymer film. be.
  • a molded product formed by shaping a thermoplastic liquid crystal polymer film to which a black pigment is added is used for an acoustic diaphragm, the sound quality may be affected due to deterioration of elasticity and vibration damping property.
  • an object of the present invention is to provide a thermoplastic liquid crystal polymer film molded product that is colored while maintaining the original properties of the thermoplastic liquid crystal polymer film.
  • the inventors of the present invention have added a colored layer to the thermoplastic liquid crystal polymer film in order to perform coloring while maintaining the original properties of the thermoplastic liquid crystal polymer film.
  • the thermoplastic liquid crystal polymer film due to the rigid mesogen structure, even if the colored layer is provided on the surface of the molded body, the adhesion to the colored layer is poor, and further. Improves the followability of the colored layer to deformation of the film when the thermoplastic liquid crystal polymer film on which the colored layer is formed is molded into a desired shape or used as an acoustic vibration plate or the like that receives an external force such as vibration.
  • We found the need as a new issue. Therefore, as a result of further research, it was found that problems such as peeling and swelling of the colored layer can be suppressed by performing a specific treatment on the thermoplastic liquid crystal polymer film, and the present invention has been completed.
  • thermoplastic liquid crystal polymer film molded article having a thermoplastic liquid crystal polymer film layer and a colored layer formed on one surface or at least a part of both surfaces of the thermoplastic liquid crystal polymer film layer, wherein JIS P 8115 ( In the folding resistance test according to 2001), the number of reciprocating bendings before cracking exceeds 100 times (preferably more than 200 times, more preferably more than 500 times, still more preferably more than 1000 times), heat.
  • JIS P 8115 In the folding resistance test according to 2001
  • the number of reciprocating bendings before cracking exceeds 100 times (preferably more than 200 times, more preferably more than 500 times, still more preferably more than 1000 times), heat.
  • the adhesiveness evaluation of the colored layer in the cross-cut test by JIS K 5600-5-6 is 3 or less (preferably 2 or less, more preferably 0).
  • Polymer film molded article is 3 or less (preferably 2 or less, more preferably 0).
  • the ratio of the thickness of the colored layer to the thickness of the thermoplastic liquid crystal polymer film layer is 0.001 to 0.9 (preferably 0.005 to 0.5, more preferably 0.005 to 0.5). Is 0.01 to 0.5), a thermoplastic liquid crystal polymer film molded body.
  • thermoplastic liquid crystal polymer film molded body In the thermoplastic liquid crystal polymer film molded body according to any one of aspects 1 to 3, in the X-ray photoelectron spectroscopic analysis result of the surface portion depth of 10 to 100 nm in the adhered region of the thermoplastic liquid crystal polymer film layer, the adhered region was found.
  • the ratio ⁇ CO> of the peak area of [CO bond] to the total peak area of each peak of C (1s) on the surface exceeds 12% (preferably 13.0 to 30.0%, More preferably 16.0 to 28.0%, even more preferably 18.0 to 26.0%, even more preferably 19.0 to 25.0%), a thermoplastic liquid crystal polymer molded body.
  • thermoplastic liquid crystal polymer film molded body In the thermoplastic liquid crystal polymer film molded body according to any one of aspects 1 to 4, the ten-point average roughness (Rz jis ) of the surface of the thermoplastic liquid crystal polymer film layer on the colored layer side is 0.1 to 3.0 ⁇ m (Rz jis).
  • a thermoplastic liquid crystal polymer film molded product preferably 0.30 to 1.90 ⁇ m, more preferably 0.40 to 1.80 ⁇ m, still more preferably 0.50 to 1.70 ⁇ m).
  • thermoplastic liquid crystal polymer film molded body of any one of aspects 1 to 5 the thermoplastic liquid crystal polymer film molding having a storage elastic modulus of 1 GPa or more and 20 GPa or less (preferably 2 to 18 GPa, more preferably 5 to 15 GPa). body.
  • the internal loss is 0.02 or more and 0.1 or less (preferably 0.03 to 0.08, more preferably 0.05 to 0. 08), a thermoplastic liquid crystal polymer film molded body.
  • thermoplastic liquid crystal polymer film molded product made of any one of aspects 1 to 8.
  • the adhered region on at least one surface of the thermoplastic liquid crystal polymer film is subjected to at least one surface treatment selected from the group consisting of plasma treatment, ultraviolet treatment, corrosion treatment, and copper foil replica treatment, and the surface portion is subjected to surface treatment.
  • thermoplastic liquid crystal polymer film molded product comprising a coloring treatment step of forming a colored layer by coating, dry plating, or wet plating on the film to be treated.
  • thermoplastic liquid crystal polymer film molded body means a molded body derived from a laminate in which a colored layer is formed on the thermoplastic liquid crystal polymer film, and for example, a thermoplastic liquid crystal polymer film molded body. Includes both a sheet-like laminate of a thermoplastic liquid crystal polymer film and a colored layer, and a shaped body in which the laminate is shaped into a predetermined shape.
  • the ratio of the peak area of [CO bond] to the total peak area of each peak of C (1s) is defined as ⁇ CO> and the peak area of each peak of C (1s).
  • thermoplastic liquid crystal polymer film molded product of the present invention the followability of the colored layer is good even when the film is shaped together with the colored layer.
  • the present invention is a thermoplastic liquid crystal polymer film molded body having a thermoplastic liquid crystal polymer film layer and a colored layer formed on one surface or at least a part of both surfaces of the thermoplastic liquid crystal polymer film layer.
  • thermoplastic liquid crystal polymer The thermoplastic liquid crystal polymer film is composed of the thermoplastic liquid crystal polymer.
  • the thermoplastic liquid crystal polymer is composed of a liquid crystal polymer that can be melt-molded (or a polymer that can form an optically anisotropic molten phase), and if it is a liquid crystal polymer that can be melt-molded, its chemical composition is particularly high. Examples thereof include, but are not limited to, a thermoplastic liquid crystal polyester, or a thermoplastic liquid crystal polyester amide having an amide bond introduced therein.
  • thermoplastic liquid crystal polymer may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.
  • thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyesteramides derived from the compounds classified into the compounds (1) to (4) and their derivatives exemplified below. Can be mentioned. However, it goes without saying that there is an appropriate range in the combination of various raw material compounds in order to form a polymer capable of forming an optically anisotropic molten phase.
  • Aromatic or aliphatic diols (see Table 1 for typical examples)
  • Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples).
  • thermoplastic liquid crystal polymers obtained from these raw material compounds include copolymers having repeating units shown in Tables 5 and 6.
  • a polymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable, and (i) p-hydroxybenzoic acid and 6-hydroxy- A copolymer containing a repeating unit with 2-naphthoic acid, or at least one aromatic hydroxycarboxylic acid selected from the group consisting of (ii) p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and at least one.
  • a copolymer containing a repeating unit of an aromatic diol and / or an aromatic hydroxyamine of at least one aromatic dicarboxylic acid is preferred.
  • the p-hydroxybenzoic acid of the repeating unit (A) if the thermoplastic liquid crystal polymer contains at least a repeating unit of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, the p-hydroxybenzoic acid of the repeating unit (A).
  • At least one aromatic hydroxycarboxylic acid (C) selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and 4,4'-.
  • aromatic diol (D) selected from the group consisting of dihydroxybiphenyl, hydroquinone, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether, and the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid.
  • the molar ratio of each repeating unit of at least one selected aromatic dicarboxylic acid (E) in the thermoplastic liquid crystal polymer is the aromatic hydroxycarboxylic acid (C): the aromatic diol (D): the aromatic dicarboxylic acid.
  • the molar ratio of the repeating unit derived from 6-hydroxy-2-naphthoic acid in the aromatic hydroxycarboxylic acid (C) may be, for example, 85 mol% or more, preferably 90 mol% or more. It may be preferably 95 mol% or more.
  • the molar ratio of the repeating unit derived from 2,6-naphthalenedicarboxylic acid in the aromatic dicarboxylic acid (E) may be, for example, 85 mol% or more, preferably 90 mol% or more, and more preferably 95 mol%. It may be% or more.
  • optically anisotropic molten phase referred to in the present invention can be formed can be determined, for example, by placing the sample on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample.
  • the thermoplastic liquid crystal polymer preferably has a melting point (hereinafter referred to as Tm 0 ) having a melting point in the range of, for example, 200 to 360 ° C., preferably in the range of 240 to 350 ° C., and more preferably Tm 0 .
  • the temperature is 260 to 330 ° C.
  • the melting point of the thermoplastic liquid crystal polymer can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer sample using a differential scanning calorimeter. That is, the thermoplastic liquid crystal polymer sample was heated from room temperature (for example, 25 ° C.) at a rate of 10 ° C./min to completely melt it, and then the melt was rapidly cooled to 50 ° C. at a rate of 10 ° C./min. The position of the heat absorption peak that appears after the temperature is raised again at a rate of 10 ° C./min may be recorded as the melting point of the thermoplastic liquid crystal polymer sample.
  • the thermoplastic liquid crystal polymer may have a melt viscosity of 30 to 120 Pa ⁇ s at a shear rate of 1000 / s at (Tm 0 + 20) ° C., preferably a melt viscosity. It may have 50 to 100 Pa ⁇ s.
  • thermoplastic liquid crystal polymer includes thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluororesin, as long as the effects of the present invention are not impaired. , Various additives may be added. Further, a filler may be added as needed.
  • thermoplastic liquid crystal polymer film may be a cast film of the above-mentioned thermoplastic liquid crystal polymer, or may be an extrusion-molded film obtained by extrusion-molding the thermoplastic liquid crystal polymer.
  • any extrusion molding method can be used, but the well-known T-die film forming stretching method, laminated body stretching method, inflation method and the like are industrially advantageous.
  • thermoplastic liquid crystal polymer film in the inflation method, stress is applied not only in the mechanical axis direction (hereinafter, abbreviated as MD direction) of the thermoplastic liquid crystal polymer film but also in the direction orthogonal to this (hereinafter, abbreviated as TD direction), and the MD direction, Since it can be uniformly stretched in the TD direction, a thermoplastic liquid crystal polymer film having controlled molecular orientation in the MD direction and the TD direction can be obtained. Therefore, as the thermoplastic liquid crystal polymer film, the one obtained by the inflation method is preferable from the viewpoint of the uniformity of physical properties.
  • the thickness of the thermoplastic liquid crystal polymer film may be 10 to 500 ⁇ m, preferably 20 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 25 to 125 ⁇ m.
  • it may be in the range of 10 to 50 ⁇ m in particular.
  • the thermoplastic liquid crystal polymer film may be molecularly oriented isotropically in the plane direction from the viewpoint of making the vibration characteristics uniform.
  • the molecular orientation degree SOR of the thermoplastic liquid crystal polymer film is 0.80. It may be about 1.40, preferably about 0.85 to 1.25, and more preferably about 0.90 to 1.20.
  • the degree of molecular orientation SOR (Segment Orientation Ratio) is an index that gives the degree of molecular orientation of the segments constituting the molecule, and is a value in consideration of the thickness of the object.
  • the degree of molecular orientation SOR is a value measured by the method described in Examples described later.
  • thermoplastic liquid crystal polymer film A surface treatment step is subsequently performed on the thermoplastic liquid crystal polymer film.
  • the adhered region existing on the surface of the thermoplastic liquid crystal polymer film may be treated, and the adhered region may be a part or the whole of the surface of the thermoplastic liquid crystal polymer film. It may be one side or both sides of the thermoplastic liquid crystal polymer film.
  • Surface treatment includes corrosion treatment with corrosive solution, copper foil replica treatment, ultraviolet treatment, plasma treatment, etc.
  • Treatment with a corrosive solution is a method of roughening the surface of a thermoplastic liquid crystal polymer film by contacting the corrosive solution with the film.
  • a solution showing basicity is preferably used as the corrosive solution.
  • the solution showing basicity include a solution of an inorganic metal hydroxide, a solution of a basic substance such as ammonia and ethylamine, and an inorganic solution such as an alkali metal hydroxide or an alkaline earth metal hydroxide.
  • a solution of metal hydroxide is preferred.
  • alkali metal hydroxide such as potassium hydroxide and sodium hydroxide
  • alkaline earth metal hydroxide such as magnesium hydroxide
  • examples thereof include those dissolved in a solvent such as methanol, ethanol, isopropyl alcohol, etc.).
  • the concentration of the alkali metal hydroxide or alkaline earth metal hydroxide in the solution may be usually 8.5 or more, preferably 8.5 to 16 or more preferably 10 to 15. There may be.
  • the thermoplastic liquid crystal polymer film may be treated by immersing the thermoplastic liquid crystal polymer film in a corrosive solution at a temperature of room temperature or higher for 30 seconds to 120 minutes.
  • the thermoplastic liquid crystal polymer film may be treated at 50 ° C. or higher, preferably 60 to 60 to.
  • the solution may be contacted at a temperature of 90 ° C., more preferably 65-85 ° C.
  • the method of contact is not limited, but it is desirable to immerse the thermoplastic liquid crystal polymer film in the solution for 40 seconds to 120 minutes, preferably 50 seconds to 90 minutes, more preferably 1 to 60 minutes, and then thoroughly wash. ..
  • the surface of the thermoplastic liquid crystal polymer film is chemically treated by laminating the thermoplastic liquid crystal polymer film and the copper foil and then etching to remove the copper foil, and the surface of the copper foil is treated.
  • This is a method of transferring unevenness.
  • a copper foil having a ten-point average roughness (Rz jis ) of 0.10 to 3.0 ⁇ m on the uneven surface to be transferred may be used.
  • the ten-point average roughness (Rz jis ) of the uneven surface of the copper foil is preferably 0.30 to 1.90 ⁇ m, more preferably 0.40 to 1.80 ⁇ m, and further preferably 0.50 to 1.70 ⁇ m. You may.
  • the unevenness of the copper foil can be transferred to the thermoplastic liquid crystal polymer film by superimposing such an uneven surface on the thermoplastic liquid crystal polymer film and laminating by heating and pressurizing.
  • Lamination can be performed by thermocompression bonding or the like, and the conditions may be, for example, a temperature condition of 180 to 350 ° C., preferably 200 to 330 ° C., and a pressure condition of 1 to 10 MPa. It may be, preferably 2 to 8 MPa.
  • the etching solution used for etching is not particularly limited as long as the copper foil can be removed, and examples thereof include ferric chloride solution and cupric chloride solution.
  • the ultraviolet treatment is, for example, ultraviolet rays having a wavelength of 180 to 195 nm (preferably a wavelength of 181 to 190 nm, more preferably a wavelength of 183 to 187 nm) and 240 to 270 nm (preferably a wavelength of 245 to 265 nm, more preferably a wavelength of 250 to 260 nm). , Or a combination of these ultraviolet rays. In particular, it is preferable to simultaneously irradiate ultraviolet rays having wavelengths of 185 ⁇ 1 nm and 254 ⁇ 1 nm.
  • the light source examples include a low-pressure mercury lamp and a high-pressure mercury lamp.
  • the illuminance may be, for example, 1.0 mW / cm 2 or more, preferably 1.0 to 5.0 mW / cm 2 , and more preferably 1.0 to 2.0 mW / cm 2 .
  • the distance between the irradiation surface and the light source may be about 0.3 cm to 5 cm, preferably about 0.4 to 3 cm.
  • the processing time can be appropriately set according to the distance between the irradiation surface and the light source, but may be, for example, about 20 seconds to 5 minutes, preferably about 30 seconds to 3 minutes.
  • Plasma treatment consists of a direct method in which the substrate to be treated is placed in the discharge space and the plasma treatment is performed directly, and a substrate to be treated is placed outside the discharge space and the active species generated in the discharge space is used as the substrate to be treated. It may be any of remote processing in which processing is performed by spraying, but preferably, the processing method may be a direct method from the viewpoint of enabling high output.
  • plasma treatment generates plasma discharge by supplying power between a pair of electrodes of a discharge parallel plate in an atmosphere in which a gas species is introduced in a vacuum or atmospheric pressure, and this is a thermoplastic liquid crystal polymer. This is carried out by irradiating at least a part of the surface of the film with plasma.
  • the output may be 2.5 W / cm 2 or more, preferably 2.8 W / cm 2 or more, and more preferably 3.0 W / cm 2 . Above, more preferably 3.2 W / cm 2 or more may be used.
  • the upper limit of the output in the plasma treatment is not particularly limited, but may be 8.0 W / cm 2 or less, preferably 7.5 W / cm, for example, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer film. It may be cm 2 or less, more preferably 7.0 W / cm 2 or less.
  • the plasma treatment time may be, for example, less than 5 seconds, preferably 4 seconds or less, and more preferably 3 seconds or less.
  • the lower limit of the plasma treatment time is not particularly limited, but may be 0.1 seconds or longer, preferably 0.3 seconds or longer, for example, from the viewpoint of sufficiently modifying the surface of the thermoplastic liquid crystal polymer film. More preferably, it may be 0.5 seconds or longer.
  • the plasma treatment time refers to the time for irradiating the same portion of the thermoplastic liquid crystal polymer film with plasma.
  • the cumulative processing power (value obtained by multiplying the output per unit area by the processing time) obtained by multiplying the output of the plasma processing by the processing time may be 1.2 W ⁇ s / cm 2 or more. It may be preferably 2.0 W ⁇ s / cm 2 or more, and more preferably 2.5 W ⁇ s / cm 2 or more.
  • the upper limit of the output in the plasma treatment is not particularly limited, but may be, for example, 30 W ⁇ s / cm 2 or less, preferably 25 W ⁇ s /, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer film. It may be cm 2 or less, more preferably 20 W ⁇ s / cm 2 or less.
  • the frequency of discharging between the discharge electrodes is not particularly limited, but may be, for example, in the range of 1 kHz to 2.45 GHz, preferably 10 kHz to 100 MHz, and more preferably 30 kHz to 13. It may be 56 MHz.
  • the processing mode in the plasma processing may be the direct plasma mode (DP) or the reactive ion etching (RIE).
  • DP the substrate to be treated is installed on the ground side between the pair of electrodes, and there is an advantage that radicals can act evenly on the entire substrate to be treated.
  • RIE reactive ion etching
  • the substrate to be processed is installed on the RF power source side between the pair of electrodes, and the ions collide with the substrate to be processed while being accelerated.
  • DP direct plasma mode
  • RIE reactive ion etching
  • the plasma processing may be a discharge method in which a voltage having a continuous waveform (AC waveform) is applied, or a discharge method in which a voltage having a pulsed waveform is applied. From the viewpoint of stabilizing the discharge, a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even with the treatment in a short time as described above.
  • AC waveform a discharge method in which a voltage having a continuous waveform
  • a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even with the treatment in a short time as described above.
  • the plasma treatment may be a vacuum plasma treatment or an atmospheric pressure plasma treatment.
  • vacuum plasma treatment even if the pressure in the device to be treated is 0.1 to 20 Pa, from the viewpoint that the density of generated electrons and ions is within a sufficient range for surface modification of the thermoplastic liquid crystal polymer film. It may be preferably 0.3 to 15 Pa, more preferably 0.5 to 13 Pa.
  • the gas type used in the plasma treatment of the present invention is not particularly limited as long as the adhered region of the thermoplastic liquid crystal polymer film has high adhesiveness, and examples of the gas type include nitrogen-containing gas, oxygen-containing gas, and Ar. Rare gas, H2 , CF4 and the like. These gas species may be used alone or in combination of two or more.
  • gas types for example, a plurality of nitrogen-containing gases may be combined; a plurality of oxygen-containing gases may be combined; a single or a plurality of nitrogen-containing gases and a single or a plurality of oxygen-containing gases may be combined. May be combined; oxygen-containing gas (eg O 2 ) and CF 4 may be combined.
  • the gas species may contain at least a nitrogen-containing gas and / or an oxygen-containing gas species, and in particular, the gas species may contain at least a nitrogen-containing gas.
  • the nitrogen-containing gas include N 2 , NH 3, NO 2 , and the like. Of these, N 2 is preferably used. These may be used alone or in combination of two or more.
  • the gas type preferably contains N 2 as a nitrogen-containing gas and optionally contains oxygen-containing gas as another gas type. preferable.
  • oxygen-containing gas examples include O 2 , CO, CO 2 , H 2 O and the like. These may be used alone or in combination of two or more. Of these, O 2 and / or H 2 O are preferably used, and both O 2 and H 2 O are particularly preferred.
  • the gas is a nitrogen-containing gas as long as the nitrogen atom is contained.
  • the volume ratio of the nitrogen-containing gas to the oxygen-containing gas may be 30/70 to 100/0, preferably 40/60 to 95/5, and more preferably 40/60 to 95/5. May be 50/50 to 90/10.
  • the distance between the irradiation head of the plasma processing device and the surface of the thermoplastic liquid crystal polymer film may be 3 to 50 mm (for example, 3 to 10 mm). It may be preferably 4 to 30 mm (for example, 4 to 9 mm), more preferably 5 to 25 mm (for example, 5 to 8 mm).
  • the surface treatment step may be performed continuously or in a batch manner.
  • Peak area ratio ⁇ CO> can exceed 12%.
  • ⁇ CO> may be 13.0 to 30.0%, more preferably 16.0 to 28.0%, still more preferably 18.0 to 26.0%, and even more. It may be preferably 19.0 to 25.0%.
  • X-ray photoelectron spectroscopy exists on the surface of a sample by irradiating the surface of the sample with X-rays from the target metal to excite the inner-shell electrons of the atom and detect the kinetic energy of the emitted photoelectrons. This is a method for identifying elements and analyzing chemical bond states.
  • C (1s) in this X-ray photoelectron spectroscopy analysis is a peak obtained by photoelectrons derived from carbon atoms present on the sample surface. This peak further contains various peaks depending on the bonding state of the carbon atom, and the position of each peak on the spectrum is determined by the bonding state.
  • the distribution function that determines the peak shape is a mixture of the Gaussian function and the Lorentz function, and the half width of each peak is as constant as possible.
  • the surface roughness can be adjusted by these surface treatments.
  • the ten-point average roughness (Rz jis ) of the surface of the thermoplastic liquid crystal polymer film may be 0.1 ⁇ m or more, preferably 0.1 ⁇ m or more. It may be 0.3 ⁇ m or more, more preferably 0.4 ⁇ m or more, still more preferably 0.5 or more. Further, it may be 3.0 ⁇ m or less, preferably 1.90 ⁇ m or less, more preferably 1.80 ⁇ m or less, and further preferably 1.70 ⁇ m or less.
  • a colored layer forming step is performed on the thermoplastic liquid crystal polymer film on which the surface treatment step has been performed.
  • the colored layer is preferably formed in the adhered region of the thermoplastic liquid crystal polymer film by coating, dry plating, wet plating, or the like.
  • the coating film layer is composed of a coating film solid content and a pigment, and the coating film solid content is composed of a resin component and an additive.
  • the solvent used when forming the coating film can be appropriately selected according to the affinity with the resin component.
  • a primer layer may be provided as a base for the coating layer.
  • the resin component examples include synthetic resins, rubber derivatives (for example, rubber chloride, cyclized rubber, etc.), cellulose derivatives (acetyl cellulose, nitrocellulose, etc.), and the like.
  • synthetic resins include acrylic resins, polyurethane resins, vinyl chloride resins, polyvinyl acetal resins, acrylic / silicone resins, silicone resins, polyester resins, epoxy resins, fluorine-containing resins, amide resins, and urea resins.
  • Melamine-based resin, alkyd-based resin, phenol-based resin and the like are contained as resin components. These resins are used alone or in combination. Further, a curing agent is appropriately used in combination with these resins as needed.
  • acrylic resins, urethane resins, epoxy resins, polyester resins and the like are preferable.
  • the additive examples include a plasticizer (DBP, DOP, chlorinated paraffin, etc.), a desiccant (lead naphthenate, cobalt naphthenate, etc.), a precipitation inhibitor, and the like.
  • a plasticizer DBP, DOP, chlorinated paraffin, etc.
  • a desiccant lead naphthenate, cobalt naphthenate, etc.
  • a precipitation inhibitor and the like.
  • these resin components are used as solvent-based paints (for example, organic solvent-based paints), solvent-free paints, water-soluble paints, dispersion-type paints (emulsion paints, NAD paints), and powder paints by known or conventional methods.
  • solvent-based paints for example, organic solvent-based paints
  • solvent-free paints for example, water-soluble paints, dispersion-type paints (emulsion paints, NAD paints), and powder paints by known or conventional methods.
  • an organic solvent paint can be obtained by dissolving a resin component and a curing agent in an organic solvent and dispersing and mixing a pigment and the like.
  • the solvent-free paint can be obtained by mixing an oligomer or a prepolymer with a reactive monomer and dispersing and mixing a pigment or the like.
  • the water-soluble paint can be obtained by using an anionic or cationic resin as a resin component, using water instead of an organic solvent, and adding a curing agent and a pigment.
  • the dispersion-type paint is an oil-in-water (W / O-type) emulsion in which resin particles, pigments, and the like are dispersed in an aqueous solvent.
  • W / O-type oil-in-water
  • resin particles, pigments and the like are dispersed in an aliphatic hydrocarbon solvent, and the surface of the resin particles is dissolved in the aliphatic hydrocarbon to ensure the dispersibility of the particles.
  • Pigments include inorganic pigments, organic pigments, metal pigments (aluminum powder, bronze, zinc powder, mica pieces, etc.), extender pigments, functional pigments, etc., which may be used alone or in combination of two or more. May be good.
  • Inorganic pigments include white pigments (titanium white, etc.), red pigments (molybdate orange, chrome vermillion, etc.), brown pigments (bengala, amber, etc.), and yellow pigments (yellow lead, yellow iron oxide, titanium yellow, etc.). , Cadmium yellow, etc.), Green pigments (chrome oxide green, chrome green, emerald green, etc.), blue pigments (cobalt blue, ultramarine, dark blue, etc.), purple pigments (mineral violet, etc.), black pigments (graphite, carbon) Black, iron oxide, etc.).
  • Organic pigments include red pigments (thioindigo maroon, bonmaroon light, permanent red, quinacridon red, etc.), orange pigments (Induslen Brilliant Orange GR, etc.), yellow pigments (first yellow, benzine yellow, etc.), and green. Examples include system pigments (green gold, phthalocyanine green, etc.), blue pigments (phthalocyanine blue, induthron blue, etc.), black pigments (aniline black, etc.) and the like.
  • black pigments are preferable from the viewpoint of being able to color the thermoplastic liquid crystal polymer film black.
  • the coating film can be appropriately formed by air spray, electrostatic spray, curtain coater, roll coater, airless spray, immersion treatment, electrostatic spray treatment, fluid immersion treatment, etc., depending on the type of paint.
  • a curtain coater or a roll coater is preferable from the viewpoint of unwinding the roll-shaped film to continuously form a colored layer.
  • the roll coater examples include a pre-weighing system such as a direct gravure, an offset gravure, a micro gravure coater, and a reverse roll coater, and a post-weighing system such as a Meyer bar, an air knife coater, a knife coater, and a comma direct.
  • a microgravure coater is preferable.
  • the viscosity of the coating liquid is preferably low, and the viscosity of the coating liquid at the time of coating may be, for example, 100 mPa ⁇ s or less, preferably 80 mPa ⁇ s. It may be as follows.
  • the content of the pigment in the coating liquid is not particularly limited as long as it can be adjusted to the above viscosity, but may be, for example, 2 to 17% by weight.
  • the coating amount of the coating liquid may be 0.1 g / m 2 or more and 40 g / m 2 or less, and particularly in the case of an acoustic diaphragm application, from the viewpoint of forming a thin coating film, 0.1 g / m 2 or more and 10 g / m / It is preferably m 2 or less.
  • the coating film can be appropriately cured by post-treatment such as leaving at room temperature, heat treatment, irradiation treatment (UV treatment, etc.) to form a colored layer.
  • post-treatment such as leaving at room temperature, heat treatment, irradiation treatment (UV treatment, etc.) to form a colored layer.
  • a plurality of layers of coating film may be formed, and when a plurality of layers are formed, each coating film may be post-treated, or a plurality of layers of coating film may be post-treated. good.
  • sputtering Ar ions in plasma can be made to collide with a target portion of a thermoplastic liquid crystal polymer film at high speed by utilizing a sputtering phenomenon, and material atoms can be knocked out to form a colored layer.
  • a colored layer may be formed by utilizing light interference, but it is convenient and preferable in design to form a colored layer by utilizing light absorption by a sputtering material. It is carried out by a method known or commonly used by those skilled in the art using a sputtering material.
  • Examples of the metal for sputtering include copper, aluminum, gold, tin, chromium, and alloys of these metals.
  • examples of the metal for sputtering include red (Be 2C , etc.), yellow (YC 2 , LaC 2 , ZrN, etc.), red-yellow (CeC 2 , etc.), and brown (CeC 2, etc.).
  • NbC, TaC, WN, etc. yellowish brown (HfN, etc.), gray (UC, TiC, ZrC, TaN, Cr 2N, Cr 23C 6 , WC, Be 3N 2, etc.), yellowish green (Mg 3 N 2 etc. ) Etc.), yellow bronze color (TiN, etc.), black color (LaN, MnN, etc.) and the like.
  • plating examples include electroplating, electroless plating, and hot dip plating.
  • electroplating a colored layer can be formed by electrolyzing an aqueous solution or a non-aqueous solution containing metal ions and precipitating a metal on a target portion of a thermoplastic liquid crystal polymer film.
  • the metal used in electroplating include magnesium, aluminum, copper, zinc, nickel, gold, silver, tin, chromium, rhodium, and alloys of these metals.
  • a colored layer can be formed by applying a reducing agent to metal ions in an aqueous solution containing metal ions and reducing and precipitating the metal on the target site of the thermoplastic liquid crystal polymer film.
  • a reducing agent to metal ions in an aqueous solution containing metal ions and reducing and precipitating the metal on the target site of the thermoplastic liquid crystal polymer film.
  • the metal used in electroless plating include magnesium, aluminum, copper, zinc, nickel, cobalt, gold, silver, tin, chromium, rhodium, and alloys of these metals.
  • black plating in particular is referred to as black nickel, black chromium, black rhodium, etc., and the alloy composition thereof is known to those skilled in the art. Further, if necessary, the plating layer may be subjected to an oxidation treatment or a chemical conversion treatment to perform a discoloration treatment (for example, blackening).
  • thermoplastic liquid crystal polymer film molded product Since the thermoplastic liquid crystal polymer film molded body on which the colored layer is formed has excellent bending resistance, the number of reciprocating bendings until cracks occur is 100 times in the folding resistance test by JIS P 8115 (2001). Exceeds.
  • the thermoplastic liquid crystal polymer film molded product of the present invention has a colored layer, but has good adhesiveness and followability, is excellent in shaping workability to a desired shape, and has an external force such as vibration. It is useful for applications such as acoustic diaphragms that receive.
  • the number of reciprocating bends until cracks occur is preferably more than 200 times, more preferably more than 500 times, and even more preferably more than 1000 times.
  • the number of reciprocating bends until cracks occur in the bending strength test is a value measured by the method described in Examples described later.
  • thermoplastic liquid crystal polymer film molded product of the present invention has excellent adhesion of the colored layer, and the evaluation of the colored layer in JIS K 5600-5-6 adhesion (cross-cut test) may be 3 or less. , It may be preferably 2 or less, and particularly preferably 0.
  • the evaluation of the colored layer is a value measured by the method described in Examples described later.
  • the thickness of the colored layer is preferably thin from the viewpoint of the followability of the film when the film is molded, and for example, even if it is about 0.001 to 0.9 times the thickness of the film layer. It may be preferably about 0.005 to 0.5 times, more preferably about 0.01 to 0.5 times.
  • the thickness of the colored layer may be 0.01 to 10 ⁇ m, preferably 0.05 to 8 ⁇ m, and more preferably 0.1 to 7 ⁇ m. Even when the colored layers are arranged on both surfaces of the film, the thickness of the colored layer with respect to the thickness of the film is calculated as the thickness of each colored layer with respect to the film. In that case, it is sufficient that at least one colored layer satisfies the above range, and it is preferable that both colored layers satisfy the above range.
  • the hardness of the colored layer is preferably soft from the viewpoint of the followability of the film when the film is molded, and for example, the hardness measured by the nanoindentation method may be 0.01 to 10 GPa. It may be preferably 0.01 to 5 GPa, more preferably 0.01 to 1 GPa, and even more preferably 0.01 to 0.5 GPa.
  • the colored layer may be a coating layer, a dry plating layer, or a wet plating layer. From the viewpoint of the followability of the film when molding the film, it is preferable to contain a component other than the coloring component.
  • the coloring component include a pigment in the coating layer, a metal for sputtering in the case of the sputtering layer in the dry plating layer, and a metal used for electroplating, electroless plating, and hot-dip plating in the wet plating layer.
  • the colored layer may be a coating layer composed of a coating film solid content and a pigment.
  • the colored layer may have a desired color depending on the above pigment or metal, but from the viewpoint of designability, it may be a dark color, preferably black.
  • a black colored layer may be formed by using a black pigment, using a black metal for sputtering, black plating, blackening the plating, or the like.
  • thermoplastic liquid crystal polymer film molded body on which the colored layer is formed may be used as a circuit board, may be used as various sensor circuits (for example, temperature, humidity, strain gauge), or may be used as an acoustic diaphragm (acoustic diaphragm). For example, it may be used as an acoustic diaphragm of a speaker for an electric-acoustic converter).
  • thermoplastic liquid crystal polymer film molded body (or thermoplastic liquid crystal polymer film laminate) on which the colored layer is formed is further formed and formed, if necessary, and has a desired shape. It can be a body (or a thermoplastic liquid crystal polymer film shaped part).
  • the shape of the thermoplastic liquid crystal polymer film shaped body may be a shape that can be formed by shaping the film.
  • it may have various shapes that can be formed on the film by compressed air forming, vacuum forming, press forming or the like.
  • the compressed air forming method may be a method in which the film is softened and then pressed against a mold by applying pressure to the film using air pressure or the like.
  • the vacuum forming method may be a method in which the film is drawn into the mold and shaped by creating a vacuum in the gap between the mold and the film after the film is softened.
  • the press molding method may be a method in which the film is sandwiched between a pair of dies on the upper and lower sides, and the film is softened by heating between the dies to form a shape.
  • the shape of the thermoplastic liquid crystal polymer film shaped body can be appropriately set, for example, depending on the application, and may be various shapes including a dome shape, a cone shape, a cube shape, an indefinite shape, and a combination thereof. good.
  • the thermoplastic liquid crystal polymer film shaped body when used for the acoustic diaphragm, the thermoplastic liquid crystal polymer film shaped body may have a dome shape as shown in FIG. 1, and the arc length (X) at the cut surface at the apex of the dome. / String length (Y)> 0.001 may be used.
  • the arrow height (Z) may be, for example, 0.1 to 10 mm, preferably 0.3 to 8 mm.
  • the thickness of the thermoplastic liquid crystal polymer film molded product can be appropriately selected depending on the thickness of the film layer, but may be, for example, 10 to 500 ⁇ m, preferably 20 to 200 ⁇ m, and more preferably 20 to 20. It may be 150 ⁇ m, more preferably 25 to 125 ⁇ m. Alternatively, in thin material applications, it may be in the range of 10 to 50 ⁇ m in particular.
  • the elongation of the thermoplastic liquid crystal polymer film molded product may be, for example, 2 to 60%.
  • the thermoplastic liquid crystal polymer film molded body may have extensibility in order to improve moldability and prevent peeling of the colored layer, and its elongation. May be preferably 3 to 60%, and more preferably 5 to 50%, particularly when deeper drawing is required.
  • the storage elastic modulus of the molded product may be, for example, 1 GPa or more and 20 GPa or less, preferably 2 to 18 GPa, and more preferably 5 to 15 GPa.
  • the internal loss of the molded product may be, for example, 0.02 or more and 0.1 or less, preferably in the range of 0.03 to 0.08, and more preferably in the range of 0.05 to 0.08. You may.
  • the storage elastic modulus and the internal loss can be measured by dynamic viscoelasticity measurement (DMA), and are values calculated by the method described in Examples described later.
  • DMA dynamic viscoelasticity measurement
  • thermoplastic liquid crystal polymer film molded body is molded by using the thermoplastic liquid crystal polymer film on which the colored layer is formed, it is possible to maintain good elasticity and vibration damping property of the molded body, for example, electricity.
  • good sound quality derived from a thermoplastic liquid crystal polymer film can be achieved.
  • ⁇ Thickness of colored layer and thermoplastic liquid crystal polymer film> The thickness of the colored layer and the thermoplastic liquid crystal polymer film was measured using a Digimatic Indicator manufactured by Mitutoyo Co., Ltd. In the measurement, 100 points were randomly measured from the sample fragment (length 10 cm, width 10 cm), and the average value was taken as the thickness. The thickness of the colored layer was calculated from the difference between the thickness of the entire thermoplastic liquid crystal polymer film having the colored layer and the thickness of the thermoplastic liquid crystal polymer film alone.
  • thermoplastic liquid crystal polymer film sample is inserted into a microwave resonance waveguide so that the sample surface is perpendicular to the traveling direction of the microwave, and the microwave is transmitted through the sample.
  • the electric field strength microwave transmission strength
  • the m value was calculated by the following equation.
  • m (Zo / ⁇ z) X [1- ⁇ max / ⁇ o]
  • Zo is the device constant
  • ⁇ z is the average thickness of the object
  • ⁇ max is the frequency that gives the maximum microwave transmission intensity when the frequency of the microwave is changed
  • ⁇ o is the average thickness of zero (that is, the object is). (When not) is the frequency that gives the maximum microwave transmission intensity.
  • the minimum microwave transmission intensity is given.
  • the molecular orientation SOR was calculated by m 0 / m 90 , where m 0 was the m value when the direction was matched and m 90 was the m value when the rotation angle was 90 °.
  • thermoplastic liquid crystal polymer film produced in Examples and Comparative Examples The surface of the adhered area of the thermoplastic liquid crystal polymer film produced in Examples and Comparative Examples was measured under the following measurement conditions using a scanning X-ray photoelectron spectroscopy analyzer (“PHI Quantera SXM” manufactured by ULVAC-PHI, Inc.). The ratio of the peak area of each of the following coupled states to the whole was calculated.
  • ⁇ Rz jis ( ⁇ m)> Using a stylus type surface roughness meter (Mitutoyo Co., Ltd., Surftest SJ-201P), refer to JIS B 0601-2001 to check the unevenness of the surface of the thermoplastic liquid crystal polymer film on the side that comes into contact with the colored layer. It was measured and Rz jis (10-point average roughness) was calculated. For the measurement, a needle having a cone taper angle of 60 degrees and a tip radius of curvature of 2 ⁇ m was used. These were measured three times at different locations with a reference length of 0.8 mm, and calculated as an average value of the three times.
  • the colored layer is partially or wholly peeled off along the edges of the cut, and / or various parts of the eye are partially or wholly peeled off.
  • the cross-cut area is clearly affected by more than 15% but not more than 35%.
  • 4 The colored layer is partially or wholly peeled off along the edges of the cut, and / or several eyes are partially or wholly peeled off.
  • the cross-cut area is clearly not affected by more than 35%. 5: Any degree of peeling that cannot be classified even in classification 4.
  • thermoplastic liquid crystal polymer film laminate was cut into strips having a width of 1 cm and used as test pieces.
  • this test piece can withstand a load of 1 kgf, a bending angle of 90 °, a radius of curvature of the bent surface of 0.38 mm, and a bending speed of 90 times / minute using a MIT tester.
  • a folding strength test was performed. For each test piece, the presence or absence of cracks was visually confirmed every 100 reciprocating bends, and the number of reciprocating bends at the time of cracking was measured.
  • the crack means a crack (a crack having a length of 0.1 mm or more) that occurs at a bent portion of at least one layer of the thermoplastic liquid crystal polymer film laminate and can be confirmed with an optical microscope (140 times). If a crack occurred when the number of reciprocating bends was 100, it was determined that the number of reciprocating bends until the crack occurred was 100 or less. If no cracks have occurred when the number of reciprocating bends is 100, then check for cracks after every 100 reciprocating bends, and if no cracks have occurred when the number of reciprocating bends is 1000. It was determined that the number of reciprocating bends until cracks occurred exceeded 1000 times. In the test, the test results (number of reciprocating bends) of three times were averaged.
  • Example 1 Thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter FA", thickness 50 ⁇ m, SOR1.1) is used with a plasma continuous processing device in which the film unwinding and winding are installed inside the vacuum chamber. Then, it was set so as to pass between the parallel plate electrodes (distance between the head and the film 20 mm) (direct method). After exhausting the inside of the vacuum chamber with a vacuum pump, N2 was introduced as a gas type, and the pressure inside the vacuum chamber was adjusted to 3 Pa.
  • the processing mode is set to the direct plasma mode (DP), the discharge frequency is 150 kHz, plasma is generated between the electrodes at an output of 5.6 W / cm 2 by a discharge method in which a continuous waveform voltage is applied, and winding is performed at a speed of 3 m / min.
  • DP direct plasma mode
  • plasma treatment on the surface of the thermoplastic liquid crystal polymer film was continuously performed.
  • the ⁇ CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film subjected to plasma treatment was 20%.
  • thermoplastic liquid crystal polymer film laminate having a colored layer formed on the thermoplastic liquid crystal polymer film.
  • the thickness of the colored layer was 6.0 ⁇ m, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
  • thermoplastic liquid crystal polymer film laminate was shaped at 200 ° C. using a mold having a diameter of ⁇ 20 mm, an arrow height of 2 mm, and an arc length / chord length of 0.03, and the appearance after shaping was performed. It was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
  • Example 2 Same as Example 1 except that the surface of the thermoplastic liquid crystal polymer film is treated with ultraviolet rays using a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 ⁇ m, SOR1.1). A thermoplastic liquid crystal polymer film laminate was obtained. Using an ultraviolet irradiation device (manufactured by Sen Engineering Co., Ltd.) equipped with four low-pressure mercury lamps (EUV200US) on the surface of the thermoplastic liquid crystal polymer film (effective irradiation distance: about 200 mm), 184.9 nm and 253.7 nm.
  • EUV200US low-pressure mercury lamps
  • the ultraviolet rays having a wavelength were continuously treated with ultraviolet rays at a speed of 0.5 m / min, with an illuminance of 1.2 mW / cm 2 and a distance of 2 cm between the light source and the irradiation surface.
  • the ⁇ CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film treated with ultraviolet rays was 14%.
  • thermoplastic liquid crystal polymer film laminate on which a colored layer was formed.
  • the thickness of the colored layer was 6.0 ⁇ m, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
  • thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
  • Example 3 Thermoplastic in the same manner as in Example 1 except that a colored layer is formed by sputtering using a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name “Vexter CTF”, thickness 50 ⁇ m, SOR1.1).
  • a liquid crystal polymer film laminate was obtained.
  • a DC magnetron device was used, aluminum was used as the metal for sputtering, the ultimate vacuum degree was 1 ⁇ 10 -1 Pa or less, and the sputter gas pressure was 0.1 to 5.0 Pa.
  • the treatment was performed with a film power (input power) of 4 kW to obtain a thermoplastic liquid crystal polymer film laminate having a colored layer formed.
  • the thickness of the colored layer was 0.5 ⁇ m, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
  • thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
  • Example 4 Thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 ⁇ m, SOR1.1) is used, and the colored layer is formed by wet plating, but the heat is the same as in Example 1.
  • a thermoplastic liquid crystal polymer film laminate was obtained. After providing a Zn-plated layer containing molten Mg in advance on the plasma-treated thermoplastic liquid crystal polymer film, the surface layer is plated by contacting with steam in a closed container having an oxygen concentration of 13% or less. The layer was blackened to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed.
  • the thickness of the colored layer was 2.0 ⁇ m, and the above-mentioned cross-cut test was performed to evaluate the adhesiveness of the colored layer. There was no peeling and the evaluation was "0". Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
  • thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
  • Example 5 Same as Example 1 except that the surface of the thermoplastic liquid crystal polymer film is corroded using a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 ⁇ m, SOR1.1). A thermoplastic liquid crystal polymer film laminate was obtained. The thermoplastic liquid crystal polymer film was immersed in an alkaline solution (manufactured by Raytec Co., Ltd., "TPE3000”) at 80 ° C. for 1 minute, then taken out, washed thoroughly with water, and dried at room temperature. The ⁇ CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film subjected to the corrosion treatment was 23%.
  • a thermoplastic liquid crystal polymer film manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 ⁇ m, SOR1.1.
  • a thermoplastic liquid crystal polymer film laminate was obtained.
  • thermoplastic liquid crystal polymer film laminate on which a colored layer was formed.
  • the thickness of the colored layer was 6.0 ⁇ m, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
  • thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
  • Example 6 Example 1 except that the surface treatment of the thermoplastic liquid crystal polymer film is performed by copper foil replica treatment using a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 ⁇ m, SOR1.1). In the same manner as above, a thermoplastic liquid crystal polymer film laminate was obtained. Electrolyzed copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., CF-H9A-HD2, Rz jis 1.5 ⁇ m) is superposed on the thermoplastic liquid crystal polymer film, and the heating plate is 300 using a vacuum heat press device.
  • a thermoplastic liquid crystal polymer film manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 ⁇ m, SOR1.1.
  • Electrolyzed copper foil manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., CF-H9A-HD2, Rz jis 1.5 ⁇ m
  • the heating plate is
  • the temperature was set to 4 MPa and pressure was applied for 10 minutes under a pressure of 4 MPa to prepare a laminate having an electrolytic copper foil / thermoplastic liquid crystal polymer film.
  • the electrolytic copper foil of the obtained laminate was removed with a ferric chloride etching solution.
  • the ⁇ CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film subjected to the copper foil replica treatment was 17%.
  • thermoplastic liquid crystal polymer film laminate on which a colored layer was formed.
  • the thickness of the colored layer was 6.0 ⁇ m, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
  • thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
  • thermoplastic liquid crystal polymer film laminate and a thermoplastic liquid crystal polymer film shaped body were obtained in the same manner as in Example 1 except that an untreated film not subjected to plasma treatment was used.
  • the ⁇ CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film of the untreated film was 12%.
  • thermoplastic liquid crystal polymer film laminate on which a colored layer was formed.
  • the thickness of the colored layer was 6.0 ⁇ m, and the above-mentioned cross-cut test was performed to evaluate the adhesiveness of the colored layer, but the adhesion was insufficient and the evaluation was “4”. Further, as a result of conducting the above-mentioned folding resistance test, it was confirmed that cracks were generated by observing the bent portion when bent 100 times.
  • thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body had tears and swelling in appearance.
  • thermoplastic liquid crystal polymer film laminate and a thermoplastic liquid crystal polymer film shaped body were obtained in the same manner as in Example 3 except that an untreated film not subjected to plasma treatment was used.
  • the ⁇ CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film of the untreated film was 12%.
  • thermoplastic liquid crystal polymer film laminate on which a colored layer was formed.
  • the thickness of the colored layer was 0.5 ⁇ m, and the above-mentioned cross-cut test was performed to evaluate the adhesiveness of the colored layer, but the peeling was conspicuous and the evaluation was “5”. Further, as a result of conducting the above-mentioned folding resistance test, it was confirmed that cracks were generated by observing the bent portion when bent 100 times.
  • thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body had tears and swelling in appearance.
  • thermoplastic liquid crystal polymer film laminate and a thermoplastic liquid crystal polymer film shaped body were obtained in the same manner as in Example 4 except that an untreated film not subjected to plasma treatment was used.
  • the ⁇ CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film of the untreated film was 12%.
  • thermoplastic liquid crystal polymer film was subjected to a wet plating treatment to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed.
  • the thickness of the colored layer was 2.0 ⁇ m, and the above-mentioned cross-cut test was performed to evaluate the adhesiveness of the colored layer, but the peeling was conspicuous and the evaluation was “5”. Further, as a result of conducting the above-mentioned folding resistance test, it was confirmed that cracks were generated by observing the bent portion when bent 100 times.
  • thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed.
  • the obtained thermoplastic liquid crystal polymer film shaped body had tears and swelling in appearance.
  • thermoplastic liquid crystal polymer film molded product of the present invention since the thermoplastic liquid crystal polymer film and the colored layer are well adhered to each other, a desired color can be imparted to the milky white thermoplastic liquid crystal polymer. Therefore, it is particularly useful for various applications used as thermoplastic liquid crystal polymer films, circuit boards, acoustic diaphragms, reinforcing plates for flexible circuit boards, circuit surface cover films, various sensor circuits (temperature, humidity, strain gauges), etc. be.

Abstract

Provided is a thermoplastic liquid crystal polymer film-formed body that has a colored layer. This thermoplastic liquid crystal polymer film-formed body includes: a thermoplastic liquid crystal polymer film layer; and a colored layer which is formed on at least part of one side or both sides of the thermoplastic liquid crystal polymer film layer. In a bending resistance test in accordance with JIS P 8115 (2001), the thermoplastic liquid crystal polymer film-formed body was subjected to reciprocal bending more than 100 times before cracking began to occur.

Description

着色層を有する熱可塑性液晶ポリマーフィルム成形体とその製造方法Thermoplastic liquid crystal polymer film molded body having a colored layer and its manufacturing method 関連出願Related application
 本願は2020年12月25日出願の特願2020-216795の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2020-216795 filed on December 25, 2020, and the entire application is cited as a part of this application by reference.
 本発明は、着色層を有する、光学的異方性の溶融相を形成し得る熱可塑性ポリマー(以下、熱可塑性液晶ポリマーと称する)フィルム成形体とその製造方法に関する。 The present invention relates to a thermoplastic polymer (hereinafter referred to as thermoplastic liquid crystal polymer) film molded product having a colored layer and capable of forming an optically anisotropic molten phase, and a method for producing the same.
 熱可塑性液晶ポリマーフィルムは、熱可塑性液晶ポリマーに由来する乳白色を有している。このような乳白色は、例えば、金属回路パターンを形成した場合に金属回路パターンとの境界が不明瞭になりやすいため、熱可塑性液晶ポリマーフィルムを着色する要望が存在している。 The thermoplastic liquid crystal polymer film has a milky white color derived from the thermoplastic liquid crystal polymer. For example, when such a milky white color forms a metal circuit pattern, the boundary with the metal circuit pattern tends to be unclear, so that there is a demand for coloring the thermoplastic liquid crystal polymer film.
 例えば、特許文献1(国際公開第2018/105624号明細書)には、カーボンブラックなどの黒色顔料と熱可塑性液晶ポリマーとを溶融混練し、この溶融混練物を40μm以下の孔径を有するフィルターに通し、その後Tダイ法またはインフレーション法によりフィルムに成形することにより、黒色顔料の凝集体や、黒色顔料の高濃度スポットの発生が抑制された黒色熱可塑性液晶ポリマーフィルムが開示されている。 For example, in Patent Document 1 (International Publication No. 2018/105624), a black pigment such as carbon black and a thermoplastic liquid crystal polymer are melt-kneaded and the melt-kneaded product is passed through a filter having a pore size of 40 μm or less. Then, a black thermoplastic liquid crystal polymer film in which agglomerates of black pigment and generation of high-concentration spots of black pigment are suppressed by molding into a film by a T-die method or an inflation method is disclosed.
国際公開第2018/105624号明細書International Publication No. 2018/105624
 しかしながら、特許文献1では、熱可塑性液晶ポリマーフィルムに対して黒色顔料を添加することにより、黒色の熱可塑性液晶ポリマーフィルムを得ることができるものの、熱可塑性液晶ポリマーは、剛直なメソゲン構造に由来して顔料の混和が困難であり、その結果、熱可塑性液晶ポリマーに由来する乳白色を十分着色する程度に顔料を混和すると、熱可塑性液晶ポリマーフィルムが本来有する特性を有効に利用することが困難である。 However, in Patent Document 1, although a black thermoplastic liquid crystal polymer film can be obtained by adding a black pigment to the thermoplastic liquid crystal polymer film, the thermoplastic liquid crystal polymer is derived from a rigid mesogen structure. As a result, when the pigment is mixed to the extent that the milky white color derived from the thermoplastic liquid crystal polymer is sufficiently colored, it is difficult to effectively utilize the inherent characteristics of the thermoplastic liquid crystal polymer film. ..
 また、黒色顔料が添加された熱可塑性液晶ポリマーフィルムでは、例えば、顔料の添加に由来してフィルムの伸縮性に変化が生じ、熱可塑性液晶ポリマーフィルムの設計値から実測値が乖離する可能性がある。
 さらに、黒色顔料が添加された熱可塑性液晶ポリマーフィルムを賦形した成形体を音響振動板に用いる場合、伸縮性や制振性の悪化により、音質に影響を与える恐れがある。
Further, in the thermoplastic liquid crystal polymer film to which the black pigment is added, for example, the elasticity of the film may change due to the addition of the pigment, and the measured value may deviate from the design value of the thermoplastic liquid crystal polymer film. be.
Further, when a molded product formed by shaping a thermoplastic liquid crystal polymer film to which a black pigment is added is used for an acoustic diaphragm, the sound quality may be affected due to deterioration of elasticity and vibration damping property.
 したがって、本発明の目的は、熱可塑性液晶ポリマーフィルム本来の性質を維持した状態で着色されている熱可塑性液晶ポリマーフィルム成形体を提供することである。 Therefore, an object of the present invention is to provide a thermoplastic liquid crystal polymer film molded product that is colored while maintaining the original properties of the thermoplastic liquid crystal polymer film.
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、熱可塑性液晶ポリマーフィルム本来の性質を維持しつつ着色を行うためには、熱可塑性液晶ポリマーフィルムに対して着色層を設ければよいことに気づく一方で、熱可塑性液晶ポリマーフィルムでは、剛直なメソゲン構造に由来して、成形体表面に着色層を設けた場合であっても着色層との付着性が悪く、さらに、着色層が形成された熱可塑性液晶ポリマーフィルムを所望の形状に成形する場合や振動のような外力を受ける音響振動板等として用いる場合などにおいて、フィルムの変形に対する着色層の追随性を改良する必要があることを新たな課題として見出した。
 そこで、さらに研究を重ねた結果、熱可塑性液晶ポリマーフィルムに対して特定の処理を行なうことにより、着色層の剥がれ、ふくらみなどの問題を抑制できることを見出し、本発明を完成した。
As a result of diligent studies to achieve the above object, the inventors of the present invention have added a colored layer to the thermoplastic liquid crystal polymer film in order to perform coloring while maintaining the original properties of the thermoplastic liquid crystal polymer film. On the other hand, in the thermoplastic liquid crystal polymer film, due to the rigid mesogen structure, even if the colored layer is provided on the surface of the molded body, the adhesion to the colored layer is poor, and further. Improves the followability of the colored layer to deformation of the film when the thermoplastic liquid crystal polymer film on which the colored layer is formed is molded into a desired shape or used as an acoustic vibration plate or the like that receives an external force such as vibration. We found the need as a new issue.
Therefore, as a result of further research, it was found that problems such as peeling and swelling of the colored layer can be suppressed by performing a specific treatment on the thermoplastic liquid crystal polymer film, and the present invention has been completed.
 すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
 熱可塑性液晶ポリマーフィルム層と、熱可塑性液晶ポリマーフィルム層の一方の面または双方の面の少なくとも一部に形成された着色層とを有する熱可塑性液晶ポリマーフィルム成形体であって、JIS P 8115(2001)による耐折強さ試験において、クラックが発生するまでの往復折り曲げ回数が100回を超える(好ましくは200回を超える、より好ましくは500回を超える、さらに好ましくは1000回を超える)、熱可塑性液晶ポリマーフィルム成形体。
〔態様2〕
 態様1の熱可塑性液晶ポリマーフィルム成形体において、JIS K 5600-5-6によるクロスカット試験における着色層の付着性評価が3以下(好ましくは2以下、より好ましくは0)である、熱可塑性液晶ポリマーフィルム成形体。
〔態様3〕
 態様1または2の熱可塑性液晶ポリマーフィルム成形体において、熱可塑性液晶ポリマーフィルム層の厚みに対する着色層の厚みの比が0.001~0.9(好ましくは0.005~0.5、より好ましくは0.01~0.5)である、熱可塑性液晶ポリマーフィルム成形体。
〔態様4〕
 態様1~3のいずれか一態様の熱可塑性液晶ポリマーフィルム成形体において、熱可塑性液晶ポリマーフィルム層の被付着領域における表面部深さ10~100nmのX線光電子分光分析結果において、被付着領域の表面のC(1s)の各ピークのピーク面積の合計に対する[C-O結合]のピーク面積の割合<C-O>が12%を超えている(好ましくは13.0~30.0%、より好ましくは16.0~28.0%、さらに好ましくは18.0~26.0%、さらにより好ましくは19.0~25.0%である)、熱可塑性液晶ポリマー成形体。
〔態様5〕
 態様1~4のいずれか一態様の熱可塑性液晶ポリマーフィルム成形体において、着色層側の熱可塑性液晶ポリマーフィルム層の表面の十点平均粗さ(Rzjis)が0.1~3.0μm(好ましくは0.30~1.90μm、より好ましくは0.40~1.80μm、さらに好ましくは0.50~1.70μm)である、熱可塑性液晶ポリマーフィルム成形体。
〔態様6〕
 態様1~5のいずれか一態様の熱可塑性液晶ポリマーフィルム成形体において、貯蔵弾性率が1GPa以上20GPa以下(好ましくは2~18GPa、より好ましくは5~15GPa)である、熱可塑性液晶ポリマーフィルム成形体。
〔態様7〕
 態様1~6のいずれか一態様の熱可塑性液晶ポリマーフィルム成形体において、内部損失が0.02以上0.1以下(好ましくは0.03~0.08、より好ましくは0.05~0.08)である、熱可塑性液晶ポリマーフィルム成形体。
〔態様8〕
 態様1~7のいずれか一態様の熱可塑性液晶ポリマーフィルム成形体において、ドーム状の形状を有する、熱可塑性液晶ポリマーフィルム成形体。
〔態様9〕
 態様1~8のいずれか一態様の熱可塑性液晶ポリマーフィルム成形体で構成される音響振動板。
〔態様10〕
 熱可塑性液晶ポリマーフィルムの少なくとも一方の表面における被付着領域に対して、プラズマ処理、紫外線処理、腐食処理、および銅箔レプリカ処理からなる群から選択される少なくとも1種の表面処理を行ない、表面部深さ10~100nmのX線光電子分光分析結果において、前記被付着領域の表面のC(1s)の各ピークのピーク面積の合計に対する[C-O結合]のピーク面積の割合<C-O>が12%を超える被処理フィルムを得る表面処理工程と、
 前記被処理フィルムに対して、コーティング、乾式メッキ、または湿式メッキにより、着色層を形成する着色処理工程と、を備える、熱可塑性液晶ポリマーフィルム成形体の製造方法。
〔態様11〕
 態様10の製造方法において、着色処理された被処理フィルムを賦形処理する、熱可塑性液晶ポリマーフィルム成形体の製造方法。
That is, the present invention can be configured in the following aspects.
[Aspect 1]
A thermoplastic liquid crystal polymer film molded article having a thermoplastic liquid crystal polymer film layer and a colored layer formed on one surface or at least a part of both surfaces of the thermoplastic liquid crystal polymer film layer, wherein JIS P 8115 ( In the folding resistance test according to 2001), the number of reciprocating bendings before cracking exceeds 100 times (preferably more than 200 times, more preferably more than 500 times, still more preferably more than 1000 times), heat. Thermoplastic polymer film molded article.
[Aspect 2]
In the thermoplastic liquid crystal polymer film molded product of the first aspect, the adhesiveness evaluation of the colored layer in the cross-cut test by JIS K 5600-5-6 is 3 or less (preferably 2 or less, more preferably 0). Polymer film molded article.
[Aspect 3]
In the thermoplastic liquid crystal polymer film molded body of the first or second aspect, the ratio of the thickness of the colored layer to the thickness of the thermoplastic liquid crystal polymer film layer is 0.001 to 0.9 (preferably 0.005 to 0.5, more preferably 0.005 to 0.5). Is 0.01 to 0.5), a thermoplastic liquid crystal polymer film molded body.
[Aspect 4]
In the thermoplastic liquid crystal polymer film molded body according to any one of aspects 1 to 3, in the X-ray photoelectron spectroscopic analysis result of the surface portion depth of 10 to 100 nm in the adhered region of the thermoplastic liquid crystal polymer film layer, the adhered region was found. The ratio <CO> of the peak area of [CO bond] to the total peak area of each peak of C (1s) on the surface exceeds 12% (preferably 13.0 to 30.0%, More preferably 16.0 to 28.0%, even more preferably 18.0 to 26.0%, even more preferably 19.0 to 25.0%), a thermoplastic liquid crystal polymer molded body.
[Aspect 5]
In the thermoplastic liquid crystal polymer film molded body according to any one of aspects 1 to 4, the ten-point average roughness (Rz jis ) of the surface of the thermoplastic liquid crystal polymer film layer on the colored layer side is 0.1 to 3.0 μm (Rz jis). A thermoplastic liquid crystal polymer film molded product preferably 0.30 to 1.90 μm, more preferably 0.40 to 1.80 μm, still more preferably 0.50 to 1.70 μm).
[Aspect 6]
In the thermoplastic liquid crystal polymer film molded body of any one of aspects 1 to 5, the thermoplastic liquid crystal polymer film molding having a storage elastic modulus of 1 GPa or more and 20 GPa or less (preferably 2 to 18 GPa, more preferably 5 to 15 GPa). body.
[Aspect 7]
In the thermoplastic liquid crystal polymer film molded product according to any one of aspects 1 to 6, the internal loss is 0.02 or more and 0.1 or less (preferably 0.03 to 0.08, more preferably 0.05 to 0. 08), a thermoplastic liquid crystal polymer film molded body.
[Aspect 8]
A thermoplastic liquid crystal polymer film molded product having a dome-like shape in the thermoplastic liquid crystal polymer film molded product according to any one of aspects 1 to 7.
[Aspect 9]
An acoustic diaphragm made of a thermoplastic liquid crystal polymer film molded product according to any one of aspects 1 to 8.
[Aspect 10]
The adhered region on at least one surface of the thermoplastic liquid crystal polymer film is subjected to at least one surface treatment selected from the group consisting of plasma treatment, ultraviolet treatment, corrosion treatment, and copper foil replica treatment, and the surface portion is subjected to surface treatment. In the result of X-ray photoelectron spectroscopy at a depth of 10 to 100 nm, the ratio of the peak area of [CO bond] to the total peak area of each peak of C (1s) on the surface of the adhered region <CO>. In the surface treatment process to obtain a film to be treated with a value of more than 12%,
A method for producing a thermoplastic liquid crystal polymer film molded product, comprising a coloring treatment step of forming a colored layer by coating, dry plating, or wet plating on the film to be treated.
[Aspect 11]
A method for producing a thermoplastic liquid crystal polymer film molded product, wherein the colored film to be treated is shaped in the production method according to the tenth aspect.
 本明細書において、熱可塑性液晶ポリマーフィルム成形体とは、熱可塑性液晶ポリマーフィルムに対して着色層が形成された積層体に由来する成形体という意味であり、例えば、熱可塑性液晶ポリマーフィルム成形体には、熱可塑性液晶ポリマーフィルムと着色層とのシート状の積層体、および前記積層体が所定の形状に賦形された賦形体の双方が含まれる。 In the present specification, the thermoplastic liquid crystal polymer film molded body means a molded body derived from a laminate in which a colored layer is formed on the thermoplastic liquid crystal polymer film, and for example, a thermoplastic liquid crystal polymer film molded body. Includes both a sheet-like laminate of a thermoplastic liquid crystal polymer film and a colored layer, and a shaped body in which the laminate is shaped into a predetermined shape.
 なお、ピーク面積の割合とは、各結合状態に応じて観察されるC(1s)の各ピークのピーク面積の合計に対する[C-O結合]および[C=O結合]のピーク面積の割合を算出したものである。本明細書では、以下において、C(1s)の各ピークのピーク面積の合計に対する[C-O結合]のピーク面積の割合を<C-O>、C(1s)の各ピークのピーク面積の合計に対する[C=O結合]のピーク面積の割合を<C=O>と表記する。 The ratio of the peak area is the ratio of the peak area of [CO bond] and [C = O bond] to the total peak area of each peak of C (1s) observed according to each bond state. It is calculated. In the present specification, in the following, the ratio of the peak area of [CO bond] to the total peak area of each peak of C (1s) is defined as <CO> and the peak area of each peak of C (1s). The ratio of the peak area of [C = O bond] to the total is expressed as <C = O>.
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。 It should be noted that any combination of at least two components disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims described in the claims is included in the invention.
 本発明の熱可塑性液晶ポリマーフィルム成形体によれば、着色層とともにフィルムの賦形処理を行なった場合でも着色層の追随性が良好である。 According to the thermoplastic liquid crystal polymer film molded product of the present invention, the followability of the colored layer is good even when the film is shaped together with the colored layer.
ドーム状の形状の寸法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the dimension of a dome shape.
 本発明は、熱可塑性液晶ポリマーフィルム層と、熱可塑性液晶ポリマーフィルム層の一方の面または双方の面の少なくとも一部に形成された着色層とを有する熱可塑性液晶ポリマーフィルム成形体である。 The present invention is a thermoplastic liquid crystal polymer film molded body having a thermoplastic liquid crystal polymer film layer and a colored layer formed on one surface or at least a part of both surfaces of the thermoplastic liquid crystal polymer film layer.
(熱可塑性液晶ポリマー)
 熱可塑性液晶ポリマーフィルムは、熱可塑性液晶ポリマーで構成される。熱可塑性液晶ポリマーは、溶融成形できる液晶性ポリマー(または光学的に異方性の溶融相を形成し得るポリマー)で構成され、溶融成形できる液晶性ポリマーであれば特にその化学的構成については特に限定されるものではないが、例えば、熱可塑性液晶ポリエステル、又はこれにアミド結合が導入された熱可塑性液晶ポリエステルアミドなどを挙げることができる。
(Thermoplastic liquid crystal polymer)
The thermoplastic liquid crystal polymer film is composed of the thermoplastic liquid crystal polymer. The thermoplastic liquid crystal polymer is composed of a liquid crystal polymer that can be melt-molded (or a polymer that can form an optically anisotropic molten phase), and if it is a liquid crystal polymer that can be melt-molded, its chemical composition is particularly high. Examples thereof include, but are not limited to, a thermoplastic liquid crystal polyester, or a thermoplastic liquid crystal polyester amide having an amide bond introduced therein.
 また熱可塑性液晶ポリマーは、芳香族ポリエステルまたは芳香族ポリエステルアミドに、更にイミド結合、カーボネート結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。 Further, the thermoplastic liquid crystal polymer may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.
 本発明に用いられる熱可塑性液晶ポリマーの具体例としては、以下に例示する(1)から(4)に分類される化合物およびその誘導体から導かれる公知の熱可塑性液晶ポリエステルおよび熱可塑性液晶ポリエステルアミドを挙げることができる。ただし、光学的に異方性の溶融相を形成し得るポリマーを形成するためには、種々の原料化合物の組合せには適当な範囲があることは言うまでもない。 Specific examples of the thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyesteramides derived from the compounds classified into the compounds (1) to (4) and their derivatives exemplified below. Can be mentioned. However, it goes without saying that there is an appropriate range in the combination of various raw material compounds in order to form a polymer capable of forming an optically anisotropic molten phase.
(1)芳香族または脂肪族ジオール(代表例は表1参照)
Figure JPOXMLDOC01-appb-T000001
(1) Aromatic or aliphatic diols (see Table 1 for typical examples)
Figure JPOXMLDOC01-appb-T000001
(2)芳香族または脂肪族ジカルボン酸(代表例は表2参照)
Figure JPOXMLDOC01-appb-T000002
(2) Aromatic or aliphatic dicarboxylic acids (see Table 2 for typical examples)
Figure JPOXMLDOC01-appb-T000002
(3)芳香族ヒドロキシカルボン酸(代表例は表3参照)
Figure JPOXMLDOC01-appb-T000003
(3) Aromatic hydroxycarboxylic acid (see Table 3 for typical examples)
Figure JPOXMLDOC01-appb-T000003
(4)芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸(代表例は表4参照)
Figure JPOXMLDOC01-appb-T000004
(4) Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples).
Figure JPOXMLDOC01-appb-T000004
 これらの原料化合物から得られる熱可塑性液晶ポリマーの代表例として表5および6に示す繰り返し単位を有する共重合体を挙げることができる。 Typical examples of thermoplastic liquid crystal polymers obtained from these raw material compounds include copolymers having repeating units shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 これらの共重合体のうち、p-ヒドロキシ安息香酸および/または6-ヒドロキシ-2-ナフトエ酸を少なくとも繰り返し単位として含む重合体が好ましく、特に、(i)p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む共重合体、又は(ii)p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸と、少なくとも一種の芳香族ジオールおよび/または芳香族ヒドロキシアミンと、少なくとも一種の芳香族ジカルボン酸との繰り返し単位を含む共重合体が好ましい。 Among these copolymers, a polymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable, and (i) p-hydroxybenzoic acid and 6-hydroxy- A copolymer containing a repeating unit with 2-naphthoic acid, or at least one aromatic hydroxycarboxylic acid selected from the group consisting of (ii) p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and at least one. A copolymer containing a repeating unit of an aromatic diol and / or an aromatic hydroxyamine of at least one aromatic dicarboxylic acid is preferred.
 例えば、(i)の共重合体では、熱可塑性液晶ポリマーが、少なくともp-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む場合、繰り返し単位(A)のp-ヒドロキシ安息香酸と、繰り返し単位(B)の6-ヒドロキシ-2-ナフトエ酸とのモル比(A)/(B)は、熱可塑性液晶ポリマー中、(A)/(B)=10/90~90/10程度であることが望ましく、より好ましくは、(A)/(B)=15/85~85/15程度であってもよく、さらに好ましくは、(A)/(B)=20/80~80/20程度であってもよい。 For example, in the copolymer of (i), if the thermoplastic liquid crystal polymer contains at least a repeating unit of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, the p-hydroxybenzoic acid of the repeating unit (A). The molar ratio (A) / (B) of the acid to the 6-hydroxy-2-naphthoic acid of the repeating unit (B) is (A) / (B) = 10/90 to 90 / in the thermoplastic liquid crystal polymer. It is preferably about 10, more preferably (A) / (B) = about 15/85 to 85/15, and even more preferably (A) / (B) = 20/80 to. It may be about 80/20.
 また、(ii)の共重合体の場合、p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸(C)と、4,4’-ジヒドロキシビフェニル、ヒドロキノン、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる少なくとも一種の芳香族ジオール(D)と、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸(E)の、熱可塑性液晶ポリマーにおける各繰り返し単位のモル比は、前記芳香族ヒドロキシカルボン酸(C):前記芳香族ジオール(D):前記芳香族ジカルボン酸(E)=(30~80):(35~10):(35~10)程度であってもよく、より好ましくは、(C):(D):(E)=(35~75):(32.5~12.5):(32.5~12.5)程度であってもよく、さらに好ましくは、(C):(D):(E)=(40~70):(30~15):(30~15)程度であってもよい。 Further, in the case of the copolymer of (ii), at least one aromatic hydroxycarboxylic acid (C) selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and 4,4'-. From the group consisting of at least one aromatic diol (D) selected from the group consisting of dihydroxybiphenyl, hydroquinone, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether, and the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid. The molar ratio of each repeating unit of at least one selected aromatic dicarboxylic acid (E) in the thermoplastic liquid crystal polymer is the aromatic hydroxycarboxylic acid (C): the aromatic diol (D): the aromatic dicarboxylic acid. (E) = (30 to 80): (35 to 10): may be about (35 to 10), and more preferably (C) :( D) :( E) = (35 to 75) :. (32.5 to 12.5): It may be about (32.5 to 12.5), and more preferably (C) :( D) :( E) = (40 to 70) :( 30). ~ 15): It may be about (30 ~ 15).
 また、芳香族ヒドロキシカルボン酸(C)のうち6-ヒドロキシ-2-ナフトエ酸に由来する繰り返し単位のモル比率は、例えば、85モル%以上であってもよく、好ましくは90モル%以上、より好ましくは95モル%以上であってもよい。芳香族ジカルボン酸(E)のうち2,6-ナフタレンジカルボン酸に由来する繰り返し単位のモル比率は、例えば、85モル%以上であってもよく、好ましくは90モル%以上、より好ましくは95モル%以上であってもよい。 Further, the molar ratio of the repeating unit derived from 6-hydroxy-2-naphthoic acid in the aromatic hydroxycarboxylic acid (C) may be, for example, 85 mol% or more, preferably 90 mol% or more. It may be preferably 95 mol% or more. The molar ratio of the repeating unit derived from 2,6-naphthalenedicarboxylic acid in the aromatic dicarboxylic acid (E) may be, for example, 85 mol% or more, preferably 90 mol% or more, and more preferably 95 mol%. It may be% or more.
 また、芳香族ジオール(D)は、ヒドロキノン、4,4’-ジヒドロキシビフェニル、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる互いに異なる二種の芳香族ジオールに由来する繰り返し単位(D1)と(D2)であってもよく、その場合、二種の芳香族ジオールのモル比は、(D1)/(D2)=23/77~77/23であってもよく、より好ましくは25/75~75/25、さらに好ましくは30/70~70/30であってもよい。 The aromatic diol (D) is a repeating unit derived from two different aromatic diols selected from the group consisting of hydroquinone, 4,4'-dihydroxybiphenyl, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether. It may be (D1) and (D2), and in that case, the molar ratio of the two aromatic diols may be (D1) / (D2) = 23/77 to 77/23, which is more preferable. May be 25/75 to 75/25, more preferably 30/70 to 70/30.
 また、芳香族ジオール(D)に由来する繰り返し単位と芳香族ジカルボン酸(E)に由来する繰り返し単位とのモル比は、(D)/(E)=95/100~100/95であることが好ましい。この範囲をはずれると、重合度が上がらず機械強度が低下する傾向がある。 The molar ratio of the repeating unit derived from the aromatic diol (D) to the repeating unit derived from the aromatic dicarboxylic acid (E) is (D) / (E) = 95/100 to 100/95. Is preferable. If it deviates from this range, the degree of polymerization does not increase and the mechanical strength tends to decrease.
 なお、本発明にいう光学的異方性の溶融相を形成し得るとは、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。 The fact that the optically anisotropic molten phase referred to in the present invention can be formed can be determined, for example, by placing the sample on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample.
 熱可塑性液晶ポリマーとして好ましいものは、融点(以下、Tmと称す)が、例えば、200~360℃の範囲のものであり、好ましくは240~350℃の範囲のもの、さらに好ましくはTmが260~330℃のものである。なお、熱可塑性液晶ポリマーの融点は、示差走査熱量計を用いて、熱可塑性液晶ポリマーサンプルの熱挙動を観察して得ることができる。すなわち、熱可塑性液晶ポリマーサンプルを室温(例えば、25℃)から10℃/minの速度で昇温して完全に溶融させた後、溶融物を10℃/minの速度で50℃まで急冷し、再び10℃/minの速度で昇温した後に現れる吸熱ピークの位置を、熱可塑性液晶ポリマーサンプルの融点として記録すればよい。 The thermoplastic liquid crystal polymer preferably has a melting point (hereinafter referred to as Tm 0 ) having a melting point in the range of, for example, 200 to 360 ° C., preferably in the range of 240 to 350 ° C., and more preferably Tm 0 . The temperature is 260 to 330 ° C. The melting point of the thermoplastic liquid crystal polymer can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer sample using a differential scanning calorimeter. That is, the thermoplastic liquid crystal polymer sample was heated from room temperature (for example, 25 ° C.) at a rate of 10 ° C./min to completely melt it, and then the melt was rapidly cooled to 50 ° C. at a rate of 10 ° C./min. The position of the heat absorption peak that appears after the temperature is raised again at a rate of 10 ° C./min may be recorded as the melting point of the thermoplastic liquid crystal polymer sample.
 また、熱可塑性液晶ポリマーは、溶融成形性の観点から、例えば、(Tm+20)℃におけるせん断速度1000/sでの溶融粘度30~120Pa・sを有していてもよく、好ましくは溶融粘度50~100Pa・sを有していてもよい。 Further, from the viewpoint of melt moldability, the thermoplastic liquid crystal polymer may have a melt viscosity of 30 to 120 Pa · s at a shear rate of 1000 / s at (Tm 0 + 20) ° C., preferably a melt viscosity. It may have 50 to 100 Pa · s.
 前記熱可塑性液晶ポリマーには、本発明の効果を損なわない範囲内で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマー、各種添加剤を添加してもよい。また、必要に応じて充填剤を添加してもよい。 The thermoplastic liquid crystal polymer includes thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluororesin, as long as the effects of the present invention are not impaired. , Various additives may be added. Further, a filler may be added as needed.
 熱可塑性液晶ポリマーフィルムは、上記の熱可塑性液晶ポリマーのキャストフィルムであってもよいし、熱可塑性液晶ポリマーを押出成形した押出成形フィルムであってもよい。このとき、任意の押出成形法を使用できるが、周知のTダイ製膜延伸法、ラミネート体延伸法、インフレーション法等が工業的に有利である。特に、インフレーション法では、熱可塑性液晶ポリマーフィルムの機械軸方向(以下、MD方向と略す)だけでなく、これと直交する方向(以下、TD方向と略す)にも応力が加えられ、MD方向、TD方向に均一に延伸できることから、MD方向とTD方向における分子配向性等を制御した熱可塑性液晶ポリマーフィルムが得られる。そのため、熱可塑性液晶ポリマーフィルムは、インフレーション法によるものが物性の均一性の観点から好ましい。 The thermoplastic liquid crystal polymer film may be a cast film of the above-mentioned thermoplastic liquid crystal polymer, or may be an extrusion-molded film obtained by extrusion-molding the thermoplastic liquid crystal polymer. At this time, any extrusion molding method can be used, but the well-known T-die film forming stretching method, laminated body stretching method, inflation method and the like are industrially advantageous. In particular, in the inflation method, stress is applied not only in the mechanical axis direction (hereinafter, abbreviated as MD direction) of the thermoplastic liquid crystal polymer film but also in the direction orthogonal to this (hereinafter, abbreviated as TD direction), and the MD direction, Since it can be uniformly stretched in the TD direction, a thermoplastic liquid crystal polymer film having controlled molecular orientation in the MD direction and the TD direction can be obtained. Therefore, as the thermoplastic liquid crystal polymer film, the one obtained by the inflation method is preferable from the viewpoint of the uniformity of physical properties.
 例えば、熱可塑性液晶ポリマーフィルムの厚さは、10~500μmであってもよく、好ましくは20~200μm、より好ましくは20~150μm、さらに好ましくは25~125μmであってもよい。または、薄物用途においては、特に、10~50μmの範囲であってもよい。 For example, the thickness of the thermoplastic liquid crystal polymer film may be 10 to 500 μm, preferably 20 to 200 μm, more preferably 20 to 150 μm, and even more preferably 25 to 125 μm. Alternatively, in thin material applications, it may be in the range of 10 to 50 μm in particular.
 熱可塑性液晶ポリマーフィルムは、振動特性を均一にする観点から、面方向に等方的に分子配向されていてもよく、具体的には、熱可塑性液晶ポリマーフィルムの分子配向度SORは0.80~1.40であってもよく、好ましくは0.85~1.25程度、より好ましくは0.90~1.20程度であってもよい。ここで、分子配向度SOR(Segment Orientation Ratio)とは、分子を構成するセグメントについての分子配向の度合いを与える指標をいい、物体の厚さを考慮した値である。なお、この分子配向度SORは、後述する実施例に記載された方法により測定される値である。 The thermoplastic liquid crystal polymer film may be molecularly oriented isotropically in the plane direction from the viewpoint of making the vibration characteristics uniform. Specifically, the molecular orientation degree SOR of the thermoplastic liquid crystal polymer film is 0.80. It may be about 1.40, preferably about 0.85 to 1.25, and more preferably about 0.90 to 1.20. Here, the degree of molecular orientation SOR (Segment Orientation Ratio) is an index that gives the degree of molecular orientation of the segments constituting the molecule, and is a value in consideration of the thickness of the object. The degree of molecular orientation SOR is a value measured by the method described in Examples described later.
(表面処理工程)
 熱可塑性液晶ポリマーフィルムに対して、続いて表面処理工程が行われる。表面処理工程は、熱可塑性液晶ポリマーフィルムの表面に存在する被付着領域を処理すればよく、被付着領域は、熱可塑性液晶ポリマーフィルムの表面の一部であってもよく、全体であってもよく、熱可塑性液晶ポリマーフィルムの一方の面であってもよく、双方の面であってもよい。
(Surface treatment process)
A surface treatment step is subsequently performed on the thermoplastic liquid crystal polymer film. In the surface treatment step, the adhered region existing on the surface of the thermoplastic liquid crystal polymer film may be treated, and the adhered region may be a part or the whole of the surface of the thermoplastic liquid crystal polymer film. It may be one side or both sides of the thermoplastic liquid crystal polymer film.
 表面処理は、腐食性溶液による腐食処理、銅箔レプリカ処理、紫外線処理、プラズマ処理などが挙げられる。 Surface treatment includes corrosion treatment with corrosive solution, copper foil replica treatment, ultraviolet treatment, plasma treatment, etc.
(腐食処理)
 腐食性溶液による処理は、熱可塑性液晶ポリマーフィルムに腐食性溶液を接触させることによりその表面を粗化する方法である。腐食性溶液による処理では、腐食性溶液として塩基性を示す溶液が好ましく使用される。塩基性を示す溶液としては、例えば、無機金属水酸化物の溶液、アンモニアやエチルアミン等の塩基性物質の溶液等が挙げられるが、アルカリ金属水酸化物やアルカリ土類金属水酸化物等の無機金属水酸化物の溶液が好ましい。アルカリ金属水酸化物またはアルカリ土類金属水酸化物の溶液としては、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物;水酸化マグネシウム等のアルカリ土類金属水酸化物を水、アルコール(メタノール、エタノール、イソプロピルアルコール等)等の溶媒に溶解したものを例示することができる。
(Corrosion treatment)
Treatment with a corrosive solution is a method of roughening the surface of a thermoplastic liquid crystal polymer film by contacting the corrosive solution with the film. In the treatment with a corrosive solution, a solution showing basicity is preferably used as the corrosive solution. Examples of the solution showing basicity include a solution of an inorganic metal hydroxide, a solution of a basic substance such as ammonia and ethylamine, and an inorganic solution such as an alkali metal hydroxide or an alkaline earth metal hydroxide. A solution of metal hydroxide is preferred. As a solution of alkali metal hydroxide or alkaline earth metal hydroxide, alkali metal hydroxide such as potassium hydroxide and sodium hydroxide; alkaline earth metal hydroxide such as magnesium hydroxide is used as water and alcohol ( Examples thereof include those dissolved in a solvent such as methanol, ethanol, isopropyl alcohol, etc.).
 該溶液中のアルカリ金属水酸化物またはアルカリ土類金属水酸化物の濃度は、通常8.5規定以上であってもよく、好ましくは8.5~16規定、より好ましくは10~15規定であってもよい。 The concentration of the alkali metal hydroxide or alkaline earth metal hydroxide in the solution may be usually 8.5 or more, preferably 8.5 to 16 or more preferably 10 to 15. There may be.
 腐食処理では、熱可塑性液晶ポリマーフィルムを室温以上の温度で30秒~120分間腐食性溶液に浸漬することにより処理してもよく、例えば、熱可塑性液晶ポリマーフィルムを50℃以上、好ましくは60~90℃、より好ましくは65~85℃の温度で該溶液と接触させればよい。接触の方法に制限はないが、熱可塑性液晶ポリマーフィルムを該溶液に40秒~120分間、好ましくは50秒~90分間、より好ましくは1~60分間浸漬し、その後十分に洗浄することが望ましい。 In the corrosion treatment, the thermoplastic liquid crystal polymer film may be treated by immersing the thermoplastic liquid crystal polymer film in a corrosive solution at a temperature of room temperature or higher for 30 seconds to 120 minutes. For example, the thermoplastic liquid crystal polymer film may be treated at 50 ° C. or higher, preferably 60 to 60 to. The solution may be contacted at a temperature of 90 ° C., more preferably 65-85 ° C. The method of contact is not limited, but it is desirable to immerse the thermoplastic liquid crystal polymer film in the solution for 40 seconds to 120 minutes, preferably 50 seconds to 90 minutes, more preferably 1 to 60 minutes, and then thoroughly wash. ..
(銅箔レプリカ処理)
 銅箔レプリカ処理は、熱可塑性液晶ポリマーフィルムと銅箔とを積層した後エッチングして銅箔を除去することにより、熱可塑性液晶ポリマーフィルムの表面を化学的に処理するとともに、銅箔の表面の凹凸を転写する方法である。銅箔レプリカ処理では、転写する凹凸面の十点平均粗さ(Rzjis)が0.10~3.0μmである銅箔を用いてもよい。銅箔の凹凸面の十点平均粗さ(Rzjis)は、好ましくは0.30~1.90μm、より好ましくは0.40~1.80μm、さらに好ましくは0.50~1.70μmであってもよい。このような凹凸面を熱可塑性液晶ポリマーフィルムに重ね合わせて、加熱加圧して積層することにより銅箔の凹凸を熱可塑性液晶ポリマーフィルムに転写することができる。積層は、熱圧着等により行うことができ、その条件としては、例えば、180~350℃の温度条件であってもよく、好ましくは200~330℃であってもよく、1~10MPaの圧力条件であってもよく、好ましくは2~8MPaであってもよい。また、エッチングで銅箔を除去することにより、転写した凹凸を変形させることがないため、銅箔の凹凸を再現できる。エッチングに用いるエッチング液としては、銅箔を除去できる限り特に限定されず、例えば、塩化第二鉄溶液、塩化第二銅溶液等が挙げられる。
(Copper foil replica processing)
In the copper foil replica treatment, the surface of the thermoplastic liquid crystal polymer film is chemically treated by laminating the thermoplastic liquid crystal polymer film and the copper foil and then etching to remove the copper foil, and the surface of the copper foil is treated. This is a method of transferring unevenness. In the copper foil replica treatment, a copper foil having a ten-point average roughness (Rz jis ) of 0.10 to 3.0 μm on the uneven surface to be transferred may be used. The ten-point average roughness (Rz jis ) of the uneven surface of the copper foil is preferably 0.30 to 1.90 μm, more preferably 0.40 to 1.80 μm, and further preferably 0.50 to 1.70 μm. You may. The unevenness of the copper foil can be transferred to the thermoplastic liquid crystal polymer film by superimposing such an uneven surface on the thermoplastic liquid crystal polymer film and laminating by heating and pressurizing. Lamination can be performed by thermocompression bonding or the like, and the conditions may be, for example, a temperature condition of 180 to 350 ° C., preferably 200 to 330 ° C., and a pressure condition of 1 to 10 MPa. It may be, preferably 2 to 8 MPa. Further, by removing the copper foil by etching, the transferred unevenness is not deformed, so that the unevenness of the copper foil can be reproduced. The etching solution used for etching is not particularly limited as long as the copper foil can be removed, and examples thereof include ferric chloride solution and cupric chloride solution.
(紫外線処理)
 紫外線処理は、例えば、波長180~195nm(好ましくは波長181~190nm、より好ましくは波長183~187nm)の紫外線、240~270nm(好ましくは波長245~265nm、より好ましくは波長250~260nm)の紫外線、または、これらの紫外線の組み合わせにより行ってもよい。特に、185±1nmおよび254±1nmの波長の紫外線を同時に照射することが好ましい。
(Ultraviolet treatment)
The ultraviolet treatment is, for example, ultraviolet rays having a wavelength of 180 to 195 nm (preferably a wavelength of 181 to 190 nm, more preferably a wavelength of 183 to 187 nm) and 240 to 270 nm (preferably a wavelength of 245 to 265 nm, more preferably a wavelength of 250 to 260 nm). , Or a combination of these ultraviolet rays. In particular, it is preferable to simultaneously irradiate ultraviolet rays having wavelengths of 185 ± 1 nm and 254 ± 1 nm.
 光源としては、低圧水銀ランプ、高圧水銀ランプなどが挙げられる。照度は、例えば1.0mW/cm以上であってもよく、好ましくは1.0~5.0mW/cm、より好ましくは1.0~2.0mW/cmであってもよい。 Examples of the light source include a low-pressure mercury lamp and a high-pressure mercury lamp. The illuminance may be, for example, 1.0 mW / cm 2 or more, preferably 1.0 to 5.0 mW / cm 2 , and more preferably 1.0 to 2.0 mW / cm 2 .
 照射面と光源との距離は、0.3cm~5cm程度、好ましくは0.4~3cm程度であってもよい。また、照射面と光源との距離に応じて、処理時間は適宜設定できるが、例えば20秒~5分程度、好ましくは30秒~3分程度であってもよい。 The distance between the irradiation surface and the light source may be about 0.3 cm to 5 cm, preferably about 0.4 to 3 cm. The processing time can be appropriately set according to the distance between the irradiation surface and the light source, but may be, for example, about 20 seconds to 5 minutes, preferably about 30 seconds to 3 minutes.
(プラズマ処理)
 プラズマ処理は、放電空間内に被処理基材を配置し直接プラズマ処理を行うダイレクト方式と、放電空間の外に被処理基材を配置し、放電空間で生成した活性種を被処理基材に吹き付けて処理を行うリモート処理のいずれであってもよいが、好ましくは、高い出力が可能である観点から、処理方式がダイレクト方式であってもよい。
(Plasma processing)
Plasma treatment consists of a direct method in which the substrate to be treated is placed in the discharge space and the plasma treatment is performed directly, and a substrate to be treated is placed outside the discharge space and the active species generated in the discharge space is used as the substrate to be treated. It may be any of remote processing in which processing is performed by spraying, but preferably, the processing method may be a direct method from the viewpoint of enabling high output.
 ダイレクト方式において、プラズマ処理は、真空または大気圧中にガス種を導入した雰囲気中で、放電平行平板の一対の電極間に電力の供給を行ってプラズマ放電を発生させ、これを熱可塑性液晶ポリマーフィルムの表面の少なくとも一部にプラズマ照射することにより実施する。 In the direct method, plasma treatment generates plasma discharge by supplying power between a pair of electrodes of a discharge parallel plate in an atmosphere in which a gas species is introduced in a vacuum or atmospheric pressure, and this is a thermoplastic liquid crystal polymer. This is carried out by irradiating at least a part of the surface of the film with plasma.
 高出力で短時間にプラズマ処理を行なうのが好ましく、例えば、出力は2.5W/cm以上であってもよく、好ましくは2.8W/cm以上、より好ましくは3.0W/cm以上、さらに好ましくは3.2W/cm以上であってもよい。プラズマ処理における出力の上限は、特に限定されないが、例えば、熱可塑性液晶ポリマーフィルム表面の過剰な損傷を抑制する観点から、8.0W/cm以下であってもよく、好ましくは7.5W/cm以下、より好ましくは7.0W/cm以下であってもよい。 It is preferable to perform plasma treatment at a high output in a short time. For example, the output may be 2.5 W / cm 2 or more, preferably 2.8 W / cm 2 or more, and more preferably 3.0 W / cm 2 . Above, more preferably 3.2 W / cm 2 or more may be used. The upper limit of the output in the plasma treatment is not particularly limited, but may be 8.0 W / cm 2 or less, preferably 7.5 W / cm, for example, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer film. It may be cm 2 or less, more preferably 7.0 W / cm 2 or less.
 また、プラズマ処理の時間は、例えば、5秒未満であってもよく、好ましくは4秒以下、より好ましくは3秒以下であってもよい。プラズマ処理の時間の下限は、特に限定されないが、例えば、熱可塑性液晶ポリマーフィルムの表面を十分に改質する観点から、0.1秒以上であってもよく、好ましくは0.3秒以上、より好ましくは0.5秒以上であってもよい。なお、プラズマ処理の時間とは、熱可塑性液晶ポリマーフィルムの同一部分に対してプラズマ照射する時間をいう。 Further, the plasma treatment time may be, for example, less than 5 seconds, preferably 4 seconds or less, and more preferably 3 seconds or less. The lower limit of the plasma treatment time is not particularly limited, but may be 0.1 seconds or longer, preferably 0.3 seconds or longer, for example, from the viewpoint of sufficiently modifying the surface of the thermoplastic liquid crystal polymer film. More preferably, it may be 0.5 seconds or longer. The plasma treatment time refers to the time for irradiating the same portion of the thermoplastic liquid crystal polymer film with plasma.
 本発明では、プラズマ処理の出力に処理時間を掛けた累積処理パワー(単位面積当たりの出力に処理時間をかけた数値)が1.2W・s/cm以上であってもよい。好ましくは2.0W・s/cm以上、より好ましくは2.5W・s/cm以上であってもよい。プラズマ処理における出力の上限は、特に限定されないが、例えば、熱可塑性液晶ポリマーフィルム表面の過剰な損傷を抑制する観点から、30W・s/cm以下であってもよく、好ましくは25W・s/cm以下、より好ましくは20W・s/cm以下であってもよい。 In the present invention, the cumulative processing power (value obtained by multiplying the output per unit area by the processing time) obtained by multiplying the output of the plasma processing by the processing time may be 1.2 W · s / cm 2 or more. It may be preferably 2.0 W · s / cm 2 or more, and more preferably 2.5 W · s / cm 2 or more. The upper limit of the output in the plasma treatment is not particularly limited, but may be, for example, 30 W · s / cm 2 or less, preferably 25 W · s /, from the viewpoint of suppressing excessive damage to the surface of the thermoplastic liquid crystal polymer film. It may be cm 2 or less, more preferably 20 W · s / cm 2 or less.
 本発明では、プラズマ処理において、放電電極間に放電する周波数は、特に限定されないが、例えば、1kHz~2.45GHzの範囲であってもよく、好ましくは10kHz~100MHz、より好ましくは30kHz~13.56MHzであってもよい。 In the present invention, in the plasma treatment, the frequency of discharging between the discharge electrodes is not particularly limited, but may be, for example, in the range of 1 kHz to 2.45 GHz, preferably 10 kHz to 100 MHz, and more preferably 30 kHz to 13. It may be 56 MHz.
 プラズマ処理における処理モードは、ダイレクトプラズマモード(DP)で行われてもよく、リアクティブイオンエッチング(RIE)で行われてもよい。DPでは、一対の電極間のアース側に被処理基材が設置され、ラジカルが被処理基材全体へ満遍なく作用できるという利点がある。一方、RIEでは、一対の電極間のRF電源側に被処理基材を設置する方式であり、イオンが加速されつつ被処理基材に衝突する。本発明では、ラジカルを被処理基材全体へ満遍なく作用させ、均一に表面改質させる観点から、処理モードにDPを用いることが好ましい。 The processing mode in the plasma processing may be the direct plasma mode (DP) or the reactive ion etching (RIE). In DP, the substrate to be treated is installed on the ground side between the pair of electrodes, and there is an advantage that radicals can act evenly on the entire substrate to be treated. On the other hand, in RIE, the substrate to be processed is installed on the RF power source side between the pair of electrodes, and the ions collide with the substrate to be processed while being accelerated. In the present invention, it is preferable to use DP as the treatment mode from the viewpoint of causing radicals to act evenly on the entire substrate to be treated and uniformly surface-modifying the surface.
 プラズマ処理は、連続波形(交流波形)の電圧を加える放電方式であってもよく、パルス状の波形の電圧を加える放電方式であってもよい。放電を安定させる観点から、パルス状の波形の電圧を加える放電方式が好ましい。この場合、上述のような短時間での処理でも均一に表面改質効果を得ることが可能である。 The plasma processing may be a discharge method in which a voltage having a continuous waveform (AC waveform) is applied, or a discharge method in which a voltage having a pulsed waveform is applied. From the viewpoint of stabilizing the discharge, a discharge method in which a voltage having a pulsed waveform is applied is preferable. In this case, it is possible to uniformly obtain the surface modification effect even with the treatment in a short time as described above.
 プラズマ処理は、真空プラズマ処理を行ってもよく、大気圧プラズマ処理を行ってもよい。真空プラズマ処理の場合、発生する電子とイオンの密度を、熱可塑性液晶ポリマーフィルムの表面改質に十分な範囲とする観点から、処理を行う装置内の圧力が0.1~20Paであってもよく、好ましくは0.3~15Pa、より好ましくは0.5~13Paであってもよい。 The plasma treatment may be a vacuum plasma treatment or an atmospheric pressure plasma treatment. In the case of vacuum plasma treatment, even if the pressure in the device to be treated is 0.1 to 20 Pa, from the viewpoint that the density of generated electrons and ions is within a sufficient range for surface modification of the thermoplastic liquid crystal polymer film. It may be preferably 0.3 to 15 Pa, more preferably 0.5 to 13 Pa.
 本発明のプラズマ処理において用いられるガス種は、熱可塑性液晶ポリマーフィルムの被付着領域を高接着性にできる限り特に制限されないが、ガス種としては、例えば、窒素含有ガス、酸素含有ガス、Arなどの希ガス、H、CFなどが挙げられる。これらのガス種は単独でまたは二種以上組み合わせて使用してもよい。
 ガス種を組み合わせる場合、例えば、複数の窒素含有ガス同士を組み合わせてもよく;複数の酸素含有ガス同士を組み合わせてもよく;単独または複数の窒素含有ガスと、単独または複数の酸素含有ガスとを組み合わせてもよく;酸素含有ガス(例えばO)とCFとを組み合わせてもよい。
The gas type used in the plasma treatment of the present invention is not particularly limited as long as the adhered region of the thermoplastic liquid crystal polymer film has high adhesiveness, and examples of the gas type include nitrogen-containing gas, oxygen-containing gas, and Ar. Rare gas, H2 , CF4 and the like. These gas species may be used alone or in combination of two or more.
When combining gas types, for example, a plurality of nitrogen-containing gases may be combined; a plurality of oxygen-containing gases may be combined; a single or a plurality of nitrogen-containing gases and a single or a plurality of oxygen-containing gases may be combined. May be combined; oxygen-containing gas (eg O 2 ) and CF 4 may be combined.
 好ましくは、本発明におけるプラズマ処理は、ガス種が窒素含有ガスおよび/または酸素含有ガス種を少なくとも含んでいてもよく、特に、ガス種が窒素含有ガスを少なくとも含んでいてもよい。窒素含有ガスとしては、例えば、N、NH3、NOなどが挙げられる。これらのうち、Nが好ましく用いられる。これらは単独でまたは二種以上組み合わせて使用してもよい。 Preferably, in the plasma treatment in the present invention, the gas species may contain at least a nitrogen-containing gas and / or an oxygen-containing gas species, and in particular, the gas species may contain at least a nitrogen-containing gas. Examples of the nitrogen-containing gas include N 2 , NH 3, NO 2 , and the like. Of these, N 2 is preferably used. These may be used alone or in combination of two or more.
 ガス種として窒素含有ガスや酸素含有ガスを含むプラズマ処理では、処理後の時間経過において、最表面部位(最表面から深さ方向に5~10nmの範囲)における接着性に寄与する官能基が内方へ反転しにくいことや、二酸化炭素の脱離による影響を受けにくいためか、長期的な接着性をも向上させることができる。そのメカニズムについては定かではないが、原子レベルで考えた場合、本発明のように従来よりも出力を上げる一方で、処理時間を短くするプラズマ処理によって、最表面部位(5~10nm)よりも深い最表面近傍(10~100nm)でその効果を発現させることができるためか、最表面部位での官能基の変動を避ける一方で、最表面近傍には接着性に寄与する官能基が存在することにより接着性低下の影響を小さくできることが考えられる。 In plasma treatment containing nitrogen-containing gas or oxygen-containing gas as a gas type, functional groups that contribute to adhesion at the outermost surface portion (range of 5 to 10 nm in the depth direction from the outermost surface) are contained in the plasma treatment with the passage of time after the treatment. It is possible to improve long-term adhesiveness, probably because it is hard to turn over and is not easily affected by the desorption of carbon dioxide. The mechanism is not clear, but when considered at the atomic level, it is deeper than the outermost surface (5 to 10 nm) due to plasma treatment that shortens the treatment time while increasing the output as in the present invention. Perhaps because the effect can be exhibited near the outermost surface (10 to 100 nm), while avoiding fluctuations in the functional groups at the outermost surface, there are functional groups that contribute to adhesiveness near the outermost surface. Therefore, it is considered that the influence of the decrease in adhesiveness can be reduced.
 また、熱可塑性液晶ポリマーフィルムの表面改質を十分に行う観点から、好ましくは、ガス種は、窒素含有ガスとしてNを含み、任意でその他のガス種として酸素含有ガスを含んでいることが好ましい。 Further, from the viewpoint of sufficiently modifying the surface of the thermoplastic liquid crystal polymer film, the gas type preferably contains N 2 as a nitrogen-containing gas and optionally contains oxygen-containing gas as another gas type. preferable.
 酸素含有ガスとしては、例えば、O、CO、CO、HOなどが挙げられる。これらは単独でまたは二種以上組み合わせて使用してもよい。これらのうち、Oおよび/またはHOが好ましく用いられ、OおよびHOの双方を使用することが特に好ましい。なお、NOのように窒素原子および酸素原子の双方が含まれる場合は、窒素原子が含まれる限り、窒素含有ガスとする。 Examples of the oxygen-containing gas include O 2 , CO, CO 2 , H 2 O and the like. These may be used alone or in combination of two or more. Of these, O 2 and / or H 2 O are preferably used, and both O 2 and H 2 O are particularly preferred. When both a nitrogen atom and an oxygen atom are contained as in NO 2 , the gas is a nitrogen-containing gas as long as the nitrogen atom is contained.
 例えば、前記窒素含有ガスと酸素含有ガスとの体積比(窒素含有ガス/酸素含有ガス)は、30/70~100/0であってもよく、好ましくは40/60~95/5、より好ましくは50/50~90/10であってもよい。 For example, the volume ratio of the nitrogen-containing gas to the oxygen-containing gas (nitrogen-containing gas / oxygen-containing gas) may be 30/70 to 100/0, preferably 40/60 to 95/5, and more preferably 40/60 to 95/5. May be 50/50 to 90/10.
 プラズマ処理におけるその他の条件は、適宜調節すればよい。例えば、プラズマ処理装置の照射ヘッドと熱可塑性液晶ポリマーフィルム表面との距離(例えば、ヘッド-フィルム間距離)は、3~50mm(例えば、3~10mm)であってもよい。好ましくは4~30mm(例えば、4~9mm)、より好ましくは5~25mm(例えば、5~8mm)であってもよい。 Other conditions in plasma processing may be adjusted as appropriate. For example, the distance between the irradiation head of the plasma processing device and the surface of the thermoplastic liquid crystal polymer film (for example, the distance between the head and the film) may be 3 to 50 mm (for example, 3 to 10 mm). It may be preferably 4 to 30 mm (for example, 4 to 9 mm), more preferably 5 to 25 mm (for example, 5 to 8 mm).
 本発明では、表面処理工程を、連続的に行ってもよいし、バッチ式で行ってもよい。 In the present invention, the surface treatment step may be performed continuously or in a batch manner.
 これらの表面処理により、被付着領域における表面部深さ10~100nmのX線光電子分光分析結果において、被付着領域の表面のC(1s)の各ピークのピーク面積の合計に対する[C-O結合]のピーク面積の割合<C-O>が12%を超え得る。好ましくは、<C-O>は、13.0~30.0%であってもよく、より好ましくは16.0~28.0%、さらに好ましくは18.0~26.0%、さらにより好ましくは19.0~25.0%であってもよい。 By these surface treatments, in the X-ray photoelectron spectroscopic analysis result of the surface portion depth of 10 to 100 nm in the adhered region, [CO bond] with respect to the total peak area of each peak of C (1s) on the surface of the adhered region. ] Peak area ratio <CO> can exceed 12%. Preferably, <CO> may be 13.0 to 30.0%, more preferably 16.0 to 28.0%, still more preferably 18.0 to 26.0%, and even more. It may be preferably 19.0 to 25.0%.
 X線光電子分光分析は、試料表面にターゲット金属からのX線を照射することにより原子の内殻電子を励起し、それにより放出された光電子の運動エネルギーを検出することによって、試料表面に存在する元素の同定や化学結合状態の分析を行う方法である。このX線光電子分光分析におけるC(1s)は、試料表面に存在する炭素原子由来の光電子により得られるピークである。このピークの中には、さらにその炭素原子の結合状態に依存する様々なピークが含まれており、その各ピークのスペクトル上での位置は結合状態により決まる。 X-ray photoelectron spectroscopy exists on the surface of a sample by irradiating the surface of the sample with X-rays from the target metal to excite the inner-shell electrons of the atom and detect the kinetic energy of the emitted photoelectrons. This is a method for identifying elements and analyzing chemical bond states. C (1s) in this X-ray photoelectron spectroscopy analysis is a peak obtained by photoelectrons derived from carbon atoms present on the sample surface. This peak further contains various peaks depending on the bonding state of the carbon atom, and the position of each peak on the spectrum is determined by the bonding state.
 例えば、各結合状態のピーク位置としては、[C-H結合]:285eV、[C-N結合]:285.7eV、[C-O結合]:286.6eV、[C=O結合]:287.7eV、[COO結合]:289.4eV、[OCOO結合]:290eV、[π-π*サテライトピーク]:291.9eVとなり、装置に取り付けられている波形分離機構により、それぞれのピークに分離することができる。なお、[C-O結合]のピークには、エーテル結合およびヒドロキシ基の両方のピークが含まれており、[COO結合]のピークには、エステル結合およびカルボキシ基の両方のピークが含まれている。 For example, as the peak position of each bond state, [CH bond]: 285 eV, [CN bond]: 285.7 eV, [CO bond]: 286.6 eV, [C = O bond]: 287. It becomes .7 eV, [COO bond]: 289.4 eV, [OCOO bond]: 290 eV, [π-π * satellite peak]: 291.9 eV, and is separated into each peak by the waveform separation mechanism attached to the device. be able to. The peak of [CO bond] includes both peaks of ether bond and hydroxy group, and the peak of [COO bond] includes peaks of both ester bond and carboxy group. There is.
 ピーク分離方法について、ピーク形状を決定する分布関数は、ガウス関数とローレンツ関数の混合にし、各ピークの半値幅を出来るだけ一定にすることが好ましい。 Regarding the peak separation method, it is preferable that the distribution function that determines the peak shape is a mixture of the Gaussian function and the Lorentz function, and the half width of each peak is as constant as possible.
 また、表面処理工程の後、被付着領域の表面のC(1s)の各ピークのピーク面積の合計に対するカルボニル基に由来する[C=O結合]のピーク面積の割合<C=O>は高い方が好ましい。例えば、<C=O>は、1.0~10.0%であってもよく、好ましくは1.5~9.0%、さらに好ましくは3.0~8.0%、さらにより好ましくは3.5~6.5%であってもよい。 Further, after the surface treatment step, the ratio <C = O> of the peak area of the [C = O bond] derived from the carbonyl group to the total peak area of each peak of C (1s) on the surface of the adhered region is high. Is preferable. For example, <C = O> may be 1.0 to 10.0%, preferably 1.5 to 9.0%, more preferably 3.0 to 8.0%, and even more preferably. It may be 3.5 to 6.5%.
 また、これらの表面処理により表面粗さを調整することが可能であり、例えば、熱可塑性液晶ポリマーフィルム表面の十点平均粗さ(Rzjis)は0.1μm以上であってもよく、好ましくは0.3μm以上、より好ましくは0.4μm以上、さらに好ましくは0.5以上であってもよい。また、3.0μm以下であってもよく、好ましくは1.90μm以下、より好ましくは1.80μm以下、さらに好ましくは1.70μm以下であってもよい。 Further, the surface roughness can be adjusted by these surface treatments. For example, the ten-point average roughness (Rz jis ) of the surface of the thermoplastic liquid crystal polymer film may be 0.1 μm or more, preferably 0.1 μm or more. It may be 0.3 μm or more, more preferably 0.4 μm or more, still more preferably 0.5 or more. Further, it may be 3.0 μm or less, preferably 1.90 μm or less, more preferably 1.80 μm or less, and further preferably 1.70 μm or less.
(着色層形成工程)
 表面処理工程が行われた熱可塑性液晶ポリマーフィルムに対して、着色層形成工程が行われる。
 着色層は、コーティング、乾式メッキ、湿式メッキなどにより、熱可塑性液晶ポリマーフィルムの被付着領域に形成されるのが好ましい。
(Colored layer forming process)
A colored layer forming step is performed on the thermoplastic liquid crystal polymer film on which the surface treatment step has been performed.
The colored layer is preferably formed in the adhered region of the thermoplastic liquid crystal polymer film by coating, dry plating, wet plating, or the like.
(コーティングによる着色層)
 コーティング層は、塗膜固形分および顔料で構成され、塗膜固形分は、樹脂成分および添加剤で構成される。塗膜を形成する際に用いられる溶剤は、樹脂成分との親和性に合わせて、適宜選択することができる。また、必要に応じて、コーティング層の下地として、プライマー層を設けてもよい。
(Colored layer by coating)
The coating film layer is composed of a coating film solid content and a pigment, and the coating film solid content is composed of a resin component and an additive. The solvent used when forming the coating film can be appropriately selected according to the affinity with the resin component. Further, if necessary, a primer layer may be provided as a base for the coating layer.
 樹脂成分は、合成樹脂、ゴム誘導体(例えば、塩化ゴム、環化ゴムなど)、セルロース誘導体(アセチルセルロース、ニトロセルロースなど)などが挙げられる。合成樹脂としては、アクリル系樹脂、ポリウレタン系樹脂、塩化ビニル系樹脂、ポリビニルアセタール樹脂、アクリル・シリコーン樹脂、シリコーン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、フッ素含有樹脂、アミド系樹脂、尿素樹脂、メラミン系樹脂、アルキド系樹脂、フェノール系樹脂などが樹脂成分として含まれる。これらの樹脂は、単独でまたは組み合わせて使用される。また、これらの樹脂に対して、必要に応じて適宜硬化剤が組み合わせて用いられる。これらの樹脂のうち、アクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂などが好ましい。 Examples of the resin component include synthetic resins, rubber derivatives (for example, rubber chloride, cyclized rubber, etc.), cellulose derivatives (acetyl cellulose, nitrocellulose, etc.), and the like. Examples of synthetic resins include acrylic resins, polyurethane resins, vinyl chloride resins, polyvinyl acetal resins, acrylic / silicone resins, silicone resins, polyester resins, epoxy resins, fluorine-containing resins, amide resins, and urea resins. Melamine-based resin, alkyd-based resin, phenol-based resin and the like are contained as resin components. These resins are used alone or in combination. Further, a curing agent is appropriately used in combination with these resins as needed. Among these resins, acrylic resins, urethane resins, epoxy resins, polyester resins and the like are preferable.
 添加剤としては、可塑剤(DBP、DOP、塩素化パラフィンなど)、乾燥剤(ナフテン酸鉛、ナフテン酸コバルトなど)、沈殿防止剤などが挙げられる。 Examples of the additive include a plasticizer (DBP, DOP, chlorinated paraffin, etc.), a desiccant (lead naphthenate, cobalt naphthenate, etc.), a precipitation inhibitor, and the like.
 例えば、これらの樹脂成分は、溶剤型塗料(例えば、有機溶剤塗料)、無溶剤型塗料、水溶性塗料、分散型塗料(エマルション塗料、NAD塗料)、粉体塗料として、公知または慣用の方法により用いられることができる。
 例えば、有機溶剤塗料は、樹脂成分、硬化剤を有機溶剤に溶解し、顔料などを分散・混合することにより得られる。
 無溶剤型塗料は、オリゴマーまたはプレポリマーと反応性モノマーとを混合し、顔料などを分散・混合することにより得られる。
 水溶性塗料は、樹脂成分として、アニオンまたはカチオン性樹脂を用い、有機溶剤に代えて水を用い、硬化剤、顔料を添加することにより得られる。
 分散型塗料は、水性溶媒中に樹脂粒子および顔料などが分散している、水中油滴型(W/O型)エマルションである。
 NAD塗料は、脂肪族炭化水素系溶剤中に樹脂粒子および顔料などが分散しており、樹脂粒子表面が脂肪族炭化水素に溶解することにより粒子の分散性を担保している。
For example, these resin components are used as solvent-based paints (for example, organic solvent-based paints), solvent-free paints, water-soluble paints, dispersion-type paints (emulsion paints, NAD paints), and powder paints by known or conventional methods. Can be used.
For example, an organic solvent paint can be obtained by dissolving a resin component and a curing agent in an organic solvent and dispersing and mixing a pigment and the like.
The solvent-free paint can be obtained by mixing an oligomer or a prepolymer with a reactive monomer and dispersing and mixing a pigment or the like.
The water-soluble paint can be obtained by using an anionic or cationic resin as a resin component, using water instead of an organic solvent, and adding a curing agent and a pigment.
The dispersion-type paint is an oil-in-water (W / O-type) emulsion in which resin particles, pigments, and the like are dispersed in an aqueous solvent.
In the NAD paint, resin particles, pigments and the like are dispersed in an aliphatic hydrocarbon solvent, and the surface of the resin particles is dissolved in the aliphatic hydrocarbon to ensure the dispersibility of the particles.
 顔料は、無機顔料、有機顔料、金属顔料(アルミニウム粉、ブロンズ、亜鉛末、マイカ片など)、体質顔料、機能性顔料などが挙げられ、これらは、単独でまたは二種以上組み合わせて使用してもよい。 Pigments include inorganic pigments, organic pigments, metal pigments (aluminum powder, bronze, zinc powder, mica pieces, etc.), extender pigments, functional pigments, etc., which may be used alone or in combination of two or more. May be good.
 無機顔料としては、白系顔料(チタン白など)、赤系顔料(モリブデートオレンジ、クロムバーミリオンなど)、茶系顔料(べんがら、アンバーなど)、黄系顔料(黄鉛、黄色酸化鉄、チタンイエロー、カドミウムイエローなど)、緑系顔料(酸化クロムグリーン、クロムグリーン、エメラルドグリーンなど)、青系顔料(コバルトブルー、群青、紺青など)、紫系(ミネラルバイオレットなど)、黒系顔料(グラファイト、カーボンブラック、酸化鉄など)などが挙げられる。 Inorganic pigments include white pigments (titanium white, etc.), red pigments (molybdate orange, chrome vermillion, etc.), brown pigments (bengala, amber, etc.), and yellow pigments (yellow lead, yellow iron oxide, titanium yellow, etc.). , Cadmium yellow, etc.), Green pigments (chrome oxide green, chrome green, emerald green, etc.), blue pigments (cobalt blue, ultramarine, dark blue, etc.), purple pigments (mineral violet, etc.), black pigments (graphite, carbon) Black, iron oxide, etc.).
 有機顔料としては、赤系顔料(チオインジゴマルーン、ボンマルーンライト、パーマネントレッド、キナクリドンレッドなど)、橙系顔料(インダスレンブリリアントオレンジGRなど)、黄系顔料(ファーストイエロー、ベンジジンイエローなど)、緑系顔料(グリーンゴールド、フタロシアニングリーンなど)、青系顔料(フタロシアニンブルー、インダスロンブルーなど)、黒系顔料(アニリンブラックなど)などが挙げられる。 Organic pigments include red pigments (thioindigo maroon, bonmaroon light, permanent red, quinacridon red, etc.), orange pigments (Induslen Brilliant Orange GR, etc.), yellow pigments (first yellow, benzine yellow, etc.), and green. Examples include system pigments (green gold, phthalocyanine green, etc.), blue pigments (phthalocyanine blue, induthron blue, etc.), black pigments (aniline black, etc.) and the like.
 これらのうち、熱可塑性液晶ポリマーフィルムを黒色に着色できる観点から、黒系顔料が好ましい。 Of these, black pigments are preferable from the viewpoint of being able to color the thermoplastic liquid crystal polymer film black.
 コーティング被膜は、塗料の種類に応じて、エアスプレー、静電スプレー、カーテンコーター、ロールコーター、エアレススプレー、浸漬処理、静電吹付処理、流動浸漬処理などにより、適宜形成することができる。熱可塑性液晶ポリマーフィルムがロール状である場合、ロール状のフィルムを巻き出して着色層を連続的に形成する観点から、カーテンコーター、ロールコーターが好ましい。 The coating film can be appropriately formed by air spray, electrostatic spray, curtain coater, roll coater, airless spray, immersion treatment, electrostatic spray treatment, fluid immersion treatment, etc., depending on the type of paint. When the thermoplastic liquid crystal polymer film is in the form of a roll, a curtain coater or a roll coater is preferable from the viewpoint of unwinding the roll-shaped film to continuously form a colored layer.
 ロールコーターとしては、ダイレクトグラビア、オフセットグラビア、マイクログラビアコーター、リバースロールコーターなどの前計量システム、マイヤーバー、エアナイフコーター、ナイフコーター、コンマダイレクトなどの後計量システムなどが挙げられ、これらのうちグラビアコーター、特に、マイクログラビアコーターが好ましい。 Examples of the roll coater include a pre-weighing system such as a direct gravure, an offset gravure, a micro gravure coater, and a reverse roll coater, and a post-weighing system such as a Meyer bar, an air knife coater, a knife coater, and a comma direct. In particular, a microgravure coater is preferable.
 コーティング被膜を薄く形成する観点からは、コーティング液の粘度は、低粘度であるのが好ましく、塗布時におけるコーティング液の粘度は、例えば、100mPa・s以下であってもよく、好ましくは80mPa・s以下であってもよい。コーティング液中の顔料の含有量は、上記粘度に調整することができれば特に限定されないが、例えば、2~17重量%であってもよい。コーティング液の塗布量は0.1g/m以上40g/m以下であってもよく、特に音響振動板用途の場合、コーティング被膜を薄く形成する観点から、0.1g/m以上10g/m以下であることが好ましい。 From the viewpoint of forming a thin coating film, the viscosity of the coating liquid is preferably low, and the viscosity of the coating liquid at the time of coating may be, for example, 100 mPa · s or less, preferably 80 mPa · s. It may be as follows. The content of the pigment in the coating liquid is not particularly limited as long as it can be adjusted to the above viscosity, but may be, for example, 2 to 17% by weight. The coating amount of the coating liquid may be 0.1 g / m 2 or more and 40 g / m 2 or less, and particularly in the case of an acoustic diaphragm application, from the viewpoint of forming a thin coating film, 0.1 g / m 2 or more and 10 g / m / It is preferably m 2 or less.
 コーティング被膜は、適宜、常温での放置、加熱処理、放射線照射処理(UV処理など)などの後処理により硬化され、着色層を形成することができる。なお、複数層のコーティング被膜が形成されてもよく、複数層形成された場合、それぞれのコーティング被膜に後処理が行われてもよく、複数層のコーティング被膜に対して後処理が行われてもよい。 The coating film can be appropriately cured by post-treatment such as leaving at room temperature, heat treatment, irradiation treatment (UV treatment, etc.) to form a colored layer. In addition, a plurality of layers of coating film may be formed, and when a plurality of layers are formed, each coating film may be post-treated, or a plurality of layers of coating film may be post-treated. good.
(乾式メッキによる着色層)
 乾式メッキとしては、真空蒸着、イオンプレーティング、スパッタリングなどが挙げられるが、量産性の観点からスパッタリングが好ましい。
 スパッタリングでは、スパッタ現象を利用して、プラズマ中のArイオンを熱可塑性液晶ポリマーフィルムの対象部位に高速で衝突させ、材料原子をたたき出して着色層を形成することができる。スパッタリングでは、光の干渉を利用して着色層を形成してもよいが、スパッタリング材料による光吸収を利用して着色層を形成するのが設計上簡便で好ましい。スパッタリング材料を用いる当業者に公知または慣用の方法により行われる。
(Colored layer by dry plating)
Examples of the dry plating include vacuum deposition, ion plating, sputtering, and the like, but sputtering is preferable from the viewpoint of mass productivity.
In sputtering, Ar ions in plasma can be made to collide with a target portion of a thermoplastic liquid crystal polymer film at high speed by utilizing a sputtering phenomenon, and material atoms can be knocked out to form a colored layer. In sputtering, a colored layer may be formed by utilizing light interference, but it is convenient and preferable in design to form a colored layer by utilizing light absorption by a sputtering material. It is carried out by a method known or commonly used by those skilled in the art using a sputtering material.
 スパッタリング用金属としては、例えば、銅、アルミニウム、金、すず、クロム、これらの金属の合金等が挙げられる。また、スパッタリング材料による光吸収を利用する場合、スパッタリング用金属としては、例えば、赤色(BeCなど)、黄色(YC、LaC、ZrNなど)、赤黄色(CeCなど)、褐色(NbC、TaC、WNなど)、黄褐色(HfNなど)、灰色(UC、TiC、ZrC、TaN、CrN、Cr23、WC、Beなど)、黄緑色(Mgなど)、黄ブロンズ色(TiNなど)、黒色(LaN、MnNなど)などが挙げられる。 Examples of the metal for sputtering include copper, aluminum, gold, tin, chromium, and alloys of these metals. When light absorption by a sputtering material is used, examples of the metal for sputtering include red (Be 2C , etc.), yellow (YC 2 , LaC 2 , ZrN, etc.), red-yellow (CeC 2 , etc.), and brown (CeC 2, etc.). NbC, TaC, WN, etc.), yellowish brown (HfN, etc.), gray (UC, TiC, ZrC, TaN, Cr 2N, Cr 23C 6 , WC, Be 3N 2, etc.), yellowish green (Mg 3 N 2 etc. ) Etc.), yellow bronze color (TiN, etc.), black color (LaN, MnN, etc.) and the like.
(湿式メッキによる着色層)
 メッキは、電気メッキ、無電解メッキ、溶融メッキなどが挙げられる。電気メッキでは、金属イオンを含む水溶液あるいは非水溶液を電解し、熱可塑性液晶ポリマーフィルムの対象部位に金属を析出させることにより、着色層を形成することができる。電気メッキで用いられる金属としては、マグネシウム、アルミニウム、銅、亜鉛、ニッケル、金、銀、すず、クロム、ロジウム、これらの金属の合金等が挙げられる。
(Colored layer by wet plating)
Examples of plating include electroplating, electroless plating, and hot dip plating. In electroplating, a colored layer can be formed by electrolyzing an aqueous solution or a non-aqueous solution containing metal ions and precipitating a metal on a target portion of a thermoplastic liquid crystal polymer film. Examples of the metal used in electroplating include magnesium, aluminum, copper, zinc, nickel, gold, silver, tin, chromium, rhodium, and alloys of these metals.
 また、無電解メッキでは、金属イオンを含む水溶液中の金属イオンに対して還元剤を適用し、熱可塑性液晶ポリマーフィルムの対象部位に金属を還元析出させることにより着色層を形成することができる。無電解メッキで用いられる金属としては、マグネシウム、アルミニウム、銅、亜鉛、ニッケル、コバルト、金、銀、すず、クロム、ロジウム、これらの金属の合金等が挙げられる。 Further, in electroless plating, a colored layer can be formed by applying a reducing agent to metal ions in an aqueous solution containing metal ions and reducing and precipitating the metal on the target site of the thermoplastic liquid crystal polymer film. Examples of the metal used in electroless plating include magnesium, aluminum, copper, zinc, nickel, cobalt, gold, silver, tin, chromium, rhodium, and alloys of these metals.
 これらのうち、特に黒色メッキとしては、黒ニッケル、黒クロム、黒ロジウムなどと称され、その合金組成は、当業者において公知である。
 また、必要に応じてメッキ層に対して酸化処理や化成処理を行なって、変色(例えば黒色化)処理を行なってもよい。
Among these, black plating in particular is referred to as black nickel, black chromium, black rhodium, etc., and the alloy composition thereof is known to those skilled in the art.
Further, if necessary, the plating layer may be subjected to an oxidation treatment or a chemical conversion treatment to perform a discoloration treatment (for example, blackening).
(熱可塑性液晶ポリマーフィルム成形体)
 着色層が形成された熱可塑性液晶ポリマーフィルム成形体は、耐折り曲げ性に優れているため、JIS P 8115(2001)による耐折強さ試験において、クラックが発生するまでの往復折り曲げ回数が100回を超える。本発明の熱可塑性液晶ポリマーフィルム成形体は、着色層を備えているが、その接着性および追随性が良好であり、所望の形状への賦形加工性に優れており、振動のような外力を受ける音響振動板等の用途に有用である。また、クラックが発生するまでの往復折り曲げ回数は200回を超えることが好ましく、500回を超えることがより好ましく、1000回を超えることがさらに好ましい。なお、耐折強さ試験におけるクラックが発生するまでの往復折り曲げ回数は、後述する実施例に記載された方法により測定される値である。
(Thermoplastic liquid crystal polymer film molded product)
Since the thermoplastic liquid crystal polymer film molded body on which the colored layer is formed has excellent bending resistance, the number of reciprocating bendings until cracks occur is 100 times in the folding resistance test by JIS P 8115 (2001). Exceeds. The thermoplastic liquid crystal polymer film molded product of the present invention has a colored layer, but has good adhesiveness and followability, is excellent in shaping workability to a desired shape, and has an external force such as vibration. It is useful for applications such as acoustic diaphragms that receive. Further, the number of reciprocating bends until cracks occur is preferably more than 200 times, more preferably more than 500 times, and even more preferably more than 1000 times. The number of reciprocating bends until cracks occur in the bending strength test is a value measured by the method described in Examples described later.
 本発明の熱可塑性液晶ポリマーフィルム成形体は、着色層の付着性に優れており、JIS K 5600-5-6 付着性(クロスカット試験)における着色層の評価として、3以下であってもよく、好ましくは2以下、特に好ましくは0であってもよい。着色層の評価は、後述する実施例に記載された方法により測定される値である。 The thermoplastic liquid crystal polymer film molded product of the present invention has excellent adhesion of the colored layer, and the evaluation of the colored layer in JIS K 5600-5-6 adhesion (cross-cut test) may be 3 or less. , It may be preferably 2 or less, and particularly preferably 0. The evaluation of the colored layer is a value measured by the method described in Examples described later.
 着色層の厚さは、フィルムを成形加工する場合の被膜の追随性の観点から薄いのが好ましく、例えば、フィルム層の厚さに対して、0.001~0.9倍程度であってもよく、好ましくは0.005~0.5倍程度、より好ましくは0.01~0.5倍程度であってもよい。着色層の厚さは、0.01~10μmであってもよく、好ましくは0.05~8μm、より好ましくは0.1~7μmであってもよい。なお、フィルムの双方の面に着色層が配設されている場合であっても、フィルムの厚みに対する着色層の厚みは、それぞれの着色層がフィルムに対する厚みとして算出される。その場合、少なくとも一方の着色層が前記範囲を満たしていればよく、双方の着色層が前記範囲を満たすのが好ましい。 The thickness of the colored layer is preferably thin from the viewpoint of the followability of the film when the film is molded, and for example, even if it is about 0.001 to 0.9 times the thickness of the film layer. It may be preferably about 0.005 to 0.5 times, more preferably about 0.01 to 0.5 times. The thickness of the colored layer may be 0.01 to 10 μm, preferably 0.05 to 8 μm, and more preferably 0.1 to 7 μm. Even when the colored layers are arranged on both surfaces of the film, the thickness of the colored layer with respect to the thickness of the film is calculated as the thickness of each colored layer with respect to the film. In that case, it is sufficient that at least one colored layer satisfies the above range, and it is preferable that both colored layers satisfy the above range.
 着色層の硬さは、フィルムを成形加工する場合の被膜の追随性の観点から軟質であるのが好ましく、例えば、ナノインデンテーション法によって測定された硬度が0.01~10GPaであってもよく、好ましくは0.01~5GPa、より好ましくは0.01~1GPa、さらに好ましくは0.01~0.5GPaであってもよい。 The hardness of the colored layer is preferably soft from the viewpoint of the followability of the film when the film is molded, and for example, the hardness measured by the nanoindentation method may be 0.01 to 10 GPa. It may be preferably 0.01 to 5 GPa, more preferably 0.01 to 1 GPa, and even more preferably 0.01 to 0.5 GPa.
 着色層は、コーティング層、乾式メッキ層、または湿式メッキ層であってもよい。フィルムを成形加工する場合の被膜の追随性の観点から、着色成分以外の成分を含んでいることが好ましい。着色成分としては、コーティング層では顔料、乾式メッキ層ではスパッタリング層の場合はスパッタリング用金属、湿式メッキ層では電気メッキや無電解メッキ、溶融メッキに用いられる金属が挙げられる。好ましくは、着色層は、塗膜固形分および顔料で構成されるコーティング層であってもよい。 The colored layer may be a coating layer, a dry plating layer, or a wet plating layer. From the viewpoint of the followability of the film when molding the film, it is preferable to contain a component other than the coloring component. Examples of the coloring component include a pigment in the coating layer, a metal for sputtering in the case of the sputtering layer in the dry plating layer, and a metal used for electroplating, electroless plating, and hot-dip plating in the wet plating layer. Preferably, the colored layer may be a coating layer composed of a coating film solid content and a pigment.
 着色層は、上記の顔料や金属により所望の色を有していてもよいが、意匠性の観点から、濃色であってもよく、好ましくは黒色であってもよい。例えば、黒系顔料を用いる場合や、黒色のスパッタリング用金属を用いる場合、黒色メッキ、メッキに黒色化処理を行う場合等により、黒色の着色層を形成してもよい。 The colored layer may have a desired color depending on the above pigment or metal, but from the viewpoint of designability, it may be a dark color, preferably black. For example, a black colored layer may be formed by using a black pigment, using a black metal for sputtering, black plating, blackening the plating, or the like.
 着色層が形成された熱可塑性液晶ポリマーフィルム成形体は、回路基板として利用してもよいし、各種センサー回路(例えば、温度、湿度、ひずみゲージ)として利用してもよいし、音響振動板(例えば、電気-音響変換機用のスピーカの音響振動板)として利用してもよい。 The thermoplastic liquid crystal polymer film molded body on which the colored layer is formed may be used as a circuit board, may be used as various sensor circuits (for example, temperature, humidity, strain gauge), or may be used as an acoustic diaphragm (acoustic diaphragm). For example, it may be used as an acoustic diaphragm of a speaker for an electric-acoustic converter).
 着色層が形成されたシート状の熱可塑性液晶ポリマーフィルム成形体(または熱可塑性液晶ポリマーフィルム積層体)は、必要に応じて、さらに賦形成形され、所望の形状を有する熱可塑性液晶ポリマーフィルム成形体(または熱可塑性液晶ポリマーフィルム賦形体)とすることができる。 The sheet-shaped thermoplastic liquid crystal polymer film molded body (or thermoplastic liquid crystal polymer film laminate) on which the colored layer is formed is further formed and formed, if necessary, and has a desired shape. It can be a body (or a thermoplastic liquid crystal polymer film shaped part).
 熱可塑性液晶ポリマーフィルム賦形体の形状は、フィルムを賦形して形成できる形状であってもよい。例えば、賦形成形される場合、フィルムに対して圧空成形、真空成形、プレス成形等により成形可能な各種形状であってもよい。 The shape of the thermoplastic liquid crystal polymer film shaped body may be a shape that can be formed by shaping the film. For example, in the case of being formed, it may have various shapes that can be formed on the film by compressed air forming, vacuum forming, press forming or the like.
 圧空成形法は、フィルムを軟化させた後、空気圧等を用いてフィルムに圧力をかけることにより、金型に押し付けて賦形する方法であってもよい。また、真空成形法は、フィルムを軟化させた後、金型とフィルムとの隙間を真空にすることにより、フィルムを金型に引き込んで賦形する方法であってもよい。プレス成型法は、フィルムを上下で対となる金型の間に挟み、金型間でフィルムを加熱により軟化させて賦形する方法であってもよい。 The compressed air forming method may be a method in which the film is softened and then pressed against a mold by applying pressure to the film using air pressure or the like. Further, the vacuum forming method may be a method in which the film is drawn into the mold and shaped by creating a vacuum in the gap between the mold and the film after the film is softened. The press molding method may be a method in which the film is sandwiched between a pair of dies on the upper and lower sides, and the film is softened by heating between the dies to form a shape.
 熱可塑性液晶ポリマーフィルム賦形体の形状は、例えば、用途に応じて適宜設定することができ、ドーム状、錐体状、立方体状、不定形状、およびこれらの組み合わせからなる様々な形状であってもよい。
 例えば、熱可塑性液晶ポリマーフィルム賦形体を音響振動板に用いる場合、熱可塑性液晶ポリマーフィルム賦形体は、図1に示すドーム状であってもよく、ドーム頂点における切断面において、弧長(X)/弦長(Y)>0.001であってもよい。
 また、矢高(Z)は、例えば、0.1~10mmであってもよく、好ましくは0.3~8mmであってもよい。
The shape of the thermoplastic liquid crystal polymer film shaped body can be appropriately set, for example, depending on the application, and may be various shapes including a dome shape, a cone shape, a cube shape, an indefinite shape, and a combination thereof. good.
For example, when the thermoplastic liquid crystal polymer film shaped body is used for the acoustic diaphragm, the thermoplastic liquid crystal polymer film shaped body may have a dome shape as shown in FIG. 1, and the arc length (X) at the cut surface at the apex of the dome. / String length (Y)> 0.001 may be used.
Further, the arrow height (Z) may be, for example, 0.1 to 10 mm, preferably 0.3 to 8 mm.
 熱可塑性液晶ポリマーフィルム成形体の厚さは、フィルム層の厚みに由来して適宜選択することができるが、例えば、10~500μmであってもよく、好ましくは20~200μm、より好ましくは20~150μm、さらに好ましくは25~125μmであってもよい。または、薄物用途においては、特に、10~50μmの範囲であってもよい。 The thickness of the thermoplastic liquid crystal polymer film molded product can be appropriately selected depending on the thickness of the film layer, but may be, for example, 10 to 500 μm, preferably 20 to 200 μm, and more preferably 20 to 20. It may be 150 μm, more preferably 25 to 125 μm. Alternatively, in thin material applications, it may be in the range of 10 to 50 μm in particular.
 着色層とフィルム層との追随性の観点から、熱可塑性液晶ポリマーフィルム成形体の伸度は、例えば、2~60%であってもよい。音響振動板等の賦形加工を施す用途において、成形性の向上および着色層の剥がれ等の防止のために、熱可塑性液晶ポリマーフィルム成形体は伸張性を有していてもよく、その伸度は、好ましくは3~60%であってもよく、特に、より深絞りが必要とされる場合には、5~50%であることがより好ましい。 From the viewpoint of followability between the colored layer and the film layer, the elongation of the thermoplastic liquid crystal polymer film molded product may be, for example, 2 to 60%. In an application for performing shaping processing such as an acoustic diaphragm, the thermoplastic liquid crystal polymer film molded body may have extensibility in order to improve moldability and prevent peeling of the colored layer, and its elongation. May be preferably 3 to 60%, and more preferably 5 to 50%, particularly when deeper drawing is required.
 成形体の貯蔵弾性率は、例えば、1GPa以上20GPa以下であってもよく、好ましくは2~18GPa、より好ましくは5~15GPaの範囲内であってもよい。
 また、成形体の内部損失は、例えば、0.02以上0.1以下であってもよく、好ましくは0.03~0.08、より好ましくは0.05~0.08の範囲内であってもよい。なお、貯蔵弾性率および内部損失は、動的粘弾性測定(DMA)により測定でき、後述の実施例に記載した方法により算出される値である。
The storage elastic modulus of the molded product may be, for example, 1 GPa or more and 20 GPa or less, preferably 2 to 18 GPa, and more preferably 5 to 15 GPa.
Further, the internal loss of the molded product may be, for example, 0.02 or more and 0.1 or less, preferably in the range of 0.03 to 0.08, and more preferably in the range of 0.05 to 0.08. You may. The storage elastic modulus and the internal loss can be measured by dynamic viscoelasticity measurement (DMA), and are values calculated by the method described in Examples described later.
 熱可塑性液晶ポリマーフィルム成形体は、着色層が形成された熱可塑性液晶ポリマーフィルムを利用して成形されるため、成形体の伸縮性や制振性を良好に維持することができ、例えば、電気-音響変換機用のスピーカの音響振動板に用いた場合、熱可塑性液晶ポリマーフィルムに由来した良好な音質を達成することができる。 Since the thermoplastic liquid crystal polymer film molded body is molded by using the thermoplastic liquid crystal polymer film on which the colored layer is formed, it is possible to maintain good elasticity and vibration damping property of the molded body, for example, electricity. -When used for the acoustic vibration plate of a speaker for an acoustic converter, good sound quality derived from a thermoplastic liquid crystal polymer film can be achieved.
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。なお、以下の実施例及び比較例においては、下記の方法により各種物性を測定した。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the present Examples. In the following Examples and Comparative Examples, various physical properties were measured by the following methods.
<着色層および熱可塑性液晶ポリマーフィルムの厚み>
 着色層および熱可塑性液晶ポリマーフィルムの厚みは、(株)ミツトヨ製デジマチックインジケータを用いて測定した。測定は、試料断片(縦10cm、横10cm)から、ランダムに100点を測定し、その平均値を厚みとした。着色層を有する熱可塑性液晶ポリマーフィルム全体の厚みと熱可塑性液晶ポリマーフィルム単体の厚みの差から着色層の厚みを算出した。
<Thickness of colored layer and thermoplastic liquid crystal polymer film>
The thickness of the colored layer and the thermoplastic liquid crystal polymer film was measured using a Digimatic Indicator manufactured by Mitutoyo Co., Ltd. In the measurement, 100 points were randomly measured from the sample fragment (length 10 cm, width 10 cm), and the average value was taken as the thickness. The thickness of the colored layer was calculated from the difference between the thickness of the entire thermoplastic liquid crystal polymer film having the colored layer and the thickness of the thermoplastic liquid crystal polymer film alone.
<分子配向度(SOR)>
 マイクロ波分子配向度測定機において、熱可塑性液晶ポリマーフィルムサンプルを、マイクロ波の進行方向にサンプル面が垂直になるように、マイクロ波共振導波管中に挿入し、該サンプルを透過したマイクロ波の電場強度(マイクロ波透過強度)を測定した。そして、この測定値に基づいて、次式により、m値(屈折率と称する)を算出した。
 m=(Zo/Δz)X[1-νmax/νo]
 ここで、Zoは装置定数、Δzは物体の平均厚、νmaxはマイクロ波の振動数を変化させたとき、最大のマイクロ波透過強度を与える振動数、νoは平均厚ゼロのとき(すなわち物体がないとき)の最大マイクロ波透過強度を与える振動数である。
<Molecular orientation (SOR)>
In the microwave molecular orientation measuring machine, a thermoplastic liquid crystal polymer film sample is inserted into a microwave resonance waveguide so that the sample surface is perpendicular to the traveling direction of the microwave, and the microwave is transmitted through the sample. The electric field strength (microwave transmission strength) was measured. Then, based on this measured value, the m value (referred to as the refractive index) was calculated by the following equation.
m = (Zo / Δz) X [1-νmax / νo]
Here, Zo is the device constant, Δz is the average thickness of the object, νmax is the frequency that gives the maximum microwave transmission intensity when the frequency of the microwave is changed, and νo is the average thickness of zero (that is, the object is). (When not) is the frequency that gives the maximum microwave transmission intensity.
 次に、マイクロ波の振動方向に対する物体の回転角が0°のとき、つまり、マイクロ波の振動方向と、物体の分子が最もよく配向されている方向であって、最小マイクロ波透過強度を与える方向とが合致しているときのm値をm、回転角が90°のときのm値をm90として、分子配向度SORをm/m90により算出した。 Next, when the rotation angle of the object with respect to the vibration direction of the microwave is 0 °, that is, the vibration direction of the microwave and the direction in which the molecules of the object are most oriented, the minimum microwave transmission intensity is given. The molecular orientation SOR was calculated by m 0 / m 90 , where m 0 was the m value when the direction was matched and m 90 was the m value when the rotation angle was 90 °.
<XPS分析>
 実施例および比較例で作製した熱可塑性液晶ポリマーフィルムの被付着領域の表面について、走査型X線光電子分光分析装置(アルバック・ファイ社製、「PHI Quantera SXM」)を用いて、以下の測定条件により、以下の各結合状態のピーク面積の全体に対する割合を算出した。各結合状態のピーク位置としては、[C-H結合]:285eV、[C-O結合]:286.6eV、[C-N結合]:285.7eV、[C=O結合]:287.7eV、[COO結合]:289.4eV、[OCOO結合]:290eV、[π-π*サテライトピーク]:291.9eVであり、装置に取り付けられている波形分離機構により、それぞれのピークに分離する。
 X線源:単色化 AlKα(1486.6eV)
 X線ビーム径:100μmφ(25W、15kV)
 測定範囲:1000μm(ヨコ)×300μm(タテ)
 信号の取り込み角:45°
 帯電中和条件:中和電子銃、Arイオン銃
 真空度:1×10-6Pa以下
<XPS analysis>
The surface of the adhered area of the thermoplastic liquid crystal polymer film produced in Examples and Comparative Examples was measured under the following measurement conditions using a scanning X-ray photoelectron spectroscopy analyzer (“PHI Quantera SXM” manufactured by ULVAC-PHI, Inc.). The ratio of the peak area of each of the following coupled states to the whole was calculated. The peak positions of each bond state are [CH bond]: 285 eV, [CO bond]: 286.6 eV, [CN bond]: 285.7 eV, and [C = O bond]: 287.7 eV. , [COO bond]: 289.4 eV, [OCOO bond]: 290 eV, [π-π * satellite peak]: 291.9 eV, and each peak is separated by the waveform separation mechanism attached to the apparatus.
X-ray source: monochromatic AlKα (1486.6 eV)
X-ray beam diameter: 100 μmφ (25W, 15kV)
Measurement range: 1000 μm (horizontal) x 300 μm (vertical)
Signal capture angle: 45 °
Charge neutralization condition: Neutralization electron gun, Ar + ion gun Vacuum degree: 1 × 10 -6 Pa or less
<Rzjis(μm)>
 触針式の表面粗さ計(株式会社ミツトヨ製、サーフテスト SJ-201P)を用い、JIS B 0601-2001を参考にして、着色層と接触する側の熱可塑性液晶ポリマーフィルムの表面の凹凸を測定し、Rzjis(十点平均粗さ)を算出した。測定には、円錐のテーパ角度が60度、先端曲率半径が2μmの針を使用した。これらは、基準長さを0.8mmとして別の場所で3回測定し、3回の平均値として算出した。
<Rz jis (μm)>
Using a stylus type surface roughness meter (Mitutoyo Co., Ltd., Surftest SJ-201P), refer to JIS B 0601-2001 to check the unevenness of the surface of the thermoplastic liquid crystal polymer film on the side that comes into contact with the colored layer. It was measured and Rz jis (10-point average roughness) was calculated. For the measurement, a needle having a cone taper angle of 60 degrees and a tip radius of curvature of 2 μm was used. These were measured three times at different locations with a reference length of 0.8 mm, and calculated as an average value of the three times.
<着色層の付着状態(付着性評価)>
 JIS K 5600-5-6 付着性(クロスカット法)を参考にして、着色層と熱可塑性液晶ポリマーフィルムとの付着状態を、0~5の6段階で評価した。
0:カットの縁が完全に滑らかで、どの格子の目にもはがれがない。
1:カットの交差点における着色層の小さなはがれがあるが、クロスカット部分で影響を受けるのは、明確に5%を上回ることはない。
2:着色層がカットの縁に沿って、及び/又は交差点においてはがれている。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない。
3:着色層がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は目のいろいろな部分が、部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に15%を超えるが35%を上回ることはない。
4:着色層がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は数か所の目が部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に35%を上回ることはない。
5:分類4でも分類できないはがれ程度のいずれか。
<Adhesion state of colored layer (adhesion evaluation)>
With reference to JIS K 5600-5-6 adhesion (cross-cut method), the adhesion state between the colored layer and the thermoplastic liquid crystal polymer film was evaluated on a scale of 0 to 5.
0: The edges of the cut are perfectly smooth and there is no peeling in the eyes of any grid.
1: There is a small peeling of the colored layer at the intersection of the cuts, but the effect at the crosscuts is clearly no more than 5%.
2: The colored layer is peeled off along the edge of the cut and / or at the intersection. The cross-cut area is clearly affected by more than 5% but not more than 15%.
3: The colored layer is partially or wholly peeled off along the edges of the cut, and / or various parts of the eye are partially or wholly peeled off. The cross-cut area is clearly affected by more than 15% but not more than 35%.
4: The colored layer is partially or wholly peeled off along the edges of the cut, and / or several eyes are partially or wholly peeled off. The cross-cut area is clearly not affected by more than 35%.
5: Any degree of peeling that cannot be classified even in classification 4.
<耐折り曲げ性>
 熱可塑性液晶ポリマーフィルム積層体を1cm幅の短冊に切り出して試験片とした。この試験片を、JIS P 8115(2001)を参考にして、MIT試験機を用いて、荷重1kgf、折り曲げ角度90°、折り曲げ面の曲率半径0.38mm、折り曲げ速度90回/分の条件で耐折強さ試験を行った。各試験片について、往復折り曲げ回数100回毎に目視によりクラックの発生の有無を確認し、クラックが入った時点の往復折り曲げ回数を測定した。ここで、クラックとは、熱可塑性液晶ポリマーフィルム積層体の少なくとも一つの層の折り曲げ箇所で生じ、光学顕微鏡(140倍)で確認できる亀裂(長さ0.1mm以上の亀裂)をいう。往復折り曲げ回数100回のときにクラックが発生していた場合には、クラックが発生するまでの往復折り曲げ回数は100回以下と判断した。往復折り曲げ回数100回のときにクラックが発生していない場合には、以後往復折り曲げ回数100回毎にクラックの発生の有無を確認し、往復折り曲げ回数1000回の時点でクラックが発生していない場合には、クラックが発生するまでの往復折り曲げ回数は1000回を超えると判断した。試験は、3回の試験結果(往復折り曲げ回数)を平均した。
<Bending resistance>
The thermoplastic liquid crystal polymer film laminate was cut into strips having a width of 1 cm and used as test pieces. With reference to JIS P 8115 (2001), this test piece can withstand a load of 1 kgf, a bending angle of 90 °, a radius of curvature of the bent surface of 0.38 mm, and a bending speed of 90 times / minute using a MIT tester. A folding strength test was performed. For each test piece, the presence or absence of cracks was visually confirmed every 100 reciprocating bends, and the number of reciprocating bends at the time of cracking was measured. Here, the crack means a crack (a crack having a length of 0.1 mm or more) that occurs at a bent portion of at least one layer of the thermoplastic liquid crystal polymer film laminate and can be confirmed with an optical microscope (140 times). If a crack occurred when the number of reciprocating bends was 100, it was determined that the number of reciprocating bends until the crack occurred was 100 or less. If no cracks have occurred when the number of reciprocating bends is 100, then check for cracks after every 100 reciprocating bends, and if no cracks have occurred when the number of reciprocating bends is 1000. It was determined that the number of reciprocating bends until cracks occurred exceeded 1000 times. In the test, the test results (number of reciprocating bends) of three times were averaged.
<貯蔵弾性率・内部損失>
 矩形状の測定用熱可塑性液晶ポリマーフィルム積層体試料(4mm×10mm)を、動的粘弾性測定装置(レオロジー株式会社製、FTレオスペクトラDVE-V4)を用いて、周波数10Hz、昇温速度3℃/min(-100℃~+300℃)、歪0.025%で測定を行い、20℃において、得られた複素弾性率の実数部(E’:貯蔵弾性率)および虚数部(E”:損失弾性率)を求め、その比(E”/E’)からさらに内部損失(tanδ)を求めた。
<Storage modulus / internal loss>
Using a dynamic elastic modulus measuring device (FT Leospectra DVE-V4 manufactured by Rheology Co., Ltd.), a rectangular thermoplastic liquid crystal polymer film laminate sample (4 mm × 10 mm) for measurement was used at a frequency of 10 Hz and a heating rate of 3. Measurement was performed at ° C./min (-100 ° C. to + 300 ° C.) and a strain of 0.025%, and at 20 ° C., the real part (E': stored elastic modulus) and the imaginary part (E ": of the obtained complex elastic modulus The loss elastic modulus) was obtained, and the internal loss (tan δ) was further obtained from the ratio (E "/ E').
(実施例1)
 熱可塑性液晶ポリマーフィルム(株式会社クラレ製、製品名「ベクスターFA」、厚さ50μm、SOR1.1)を、フィルムの巻出しおよび巻取りが真空槽内部に設置されているプラズマ連続処理装置を用いて、平行平板電極間(ヘッド-フィルム間距離20mm)に通すようにセットした(ダイレクト方式)。真空槽内部を真空ポンプにより排気した後、ガス種としてNを導入し、真空槽内部の圧力を3Paに調整した。処理モードをダイレクトプラズマモード(DP)に設定し、放電周波数150kHzとして、連続波形の電圧を加える放電方式により電極間に出力5.6W/cmでプラズマを発生させ、速度:3m/minで巻き取ることにより(処理時間1秒)、連続的に熱可塑性液晶ポリマーフィルム表面のプラズマ処理を行った。プラズマ処理を行った熱可塑性液晶ポリマーフィルム表面のX線光電子分光分析により得られた結果から算出した<C-O>は20%であった。
(Example 1)
Thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter FA", thickness 50 μm, SOR1.1) is used with a plasma continuous processing device in which the film unwinding and winding are installed inside the vacuum chamber. Then, it was set so as to pass between the parallel plate electrodes (distance between the head and the film 20 mm) (direct method). After exhausting the inside of the vacuum chamber with a vacuum pump, N2 was introduced as a gas type, and the pressure inside the vacuum chamber was adjusted to 3 Pa. The processing mode is set to the direct plasma mode (DP), the discharge frequency is 150 kHz, plasma is generated between the electrodes at an output of 5.6 W / cm 2 by a discharge method in which a continuous waveform voltage is applied, and winding is performed at a speed of 3 m / min. By taking (treatment time 1 second), plasma treatment on the surface of the thermoplastic liquid crystal polymer film was continuously performed. The <CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film subjected to plasma treatment was 20%.
 その後、グラビア装置を用いて、顔料としてカーボンブラックを配合した塗工液(ライオン・スペシャリティ・ケミカルズ株式会社製、「ライオンペーストW-370C」、カーボンブラック含有量15.5%、粘度100mPa・s以下)を熱可塑性液晶ポリマーフィルムの表面処理面に対して塗布し、塗布後10分間乾燥を行い熱可塑性液晶ポリマーフィルムの上に着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは6.0μmであり、着色層の付着性を評価するために上述のクロスカット試験を行った結果、剥がれはなく評価“0”であった。また、上述の耐折強さ試験を行った結果、1000回折り曲げてもクラックは発生しなかった。 After that, using a gravure device, a coating liquid containing carbon black as a pigment (Lion Specialty Chemicals Co., Ltd., "Lion Paste W-370C", carbon black content 15.5%, viscosity 100 mPa · s or less ) Was applied to the surface-treated surface of the thermoplastic liquid crystal polymer film and dried for 10 minutes after the coating to obtain a thermoplastic liquid crystal polymer film laminate having a colored layer formed on the thermoplastic liquid crystal polymer film. The thickness of the colored layer was 6.0 μm, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に、径:φ20mm、矢高:2mm、弧長/弦長:0.03の金型を用いて、200℃下で賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れ、膨れもなく良好であった。 Next, the thermoplastic liquid crystal polymer film laminate was shaped at 200 ° C. using a mold having a diameter of φ20 mm, an arrow height of 2 mm, and an arc length / chord length of 0.03, and the appearance after shaping was performed. It was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
(実施例2)
 熱可塑性液晶ポリマーフィルム(株式会社クラレ製、製品名「ベクスターCTF」、厚さ50μm、SOR1.1)を用い、熱可塑性液晶ポリマーフィルムの表面処理を紫外線処理で行う以外は、実施例1と同様にして、熱可塑性液晶ポリマーフィルム積層体を得た。
 熱可塑性液晶ポリマーフィルムの表面に、低圧水銀ランプ(EUV200US)を上下4本(有効照射距離:約200mm)備える紫外線照射装置(センエンジニアリング株式会社製)を用いて、184.9nmおよび253.7nmの波長の紫外線を、照度1.2mW/cm、光源と照射面との間の距離2cmとして、速度0.5m/minで連続的に紫外線処理を行った。紫外線処理を行った熱可塑性液晶ポリマーフィルム表面のX線光電子分光分析により得られた結果から算出した<C-O>は14%であった。
(Example 2)
Same as Example 1 except that the surface of the thermoplastic liquid crystal polymer film is treated with ultraviolet rays using a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 μm, SOR1.1). A thermoplastic liquid crystal polymer film laminate was obtained.
Using an ultraviolet irradiation device (manufactured by Sen Engineering Co., Ltd.) equipped with four low-pressure mercury lamps (EUV200US) on the surface of the thermoplastic liquid crystal polymer film (effective irradiation distance: about 200 mm), 184.9 nm and 253.7 nm. The ultraviolet rays having a wavelength were continuously treated with ultraviolet rays at a speed of 0.5 m / min, with an illuminance of 1.2 mW / cm 2 and a distance of 2 cm between the light source and the irradiation surface. The <CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film treated with ultraviolet rays was 14%.
 その後、実施例1と同様にして、熱可塑性液晶ポリマーフィルムに対して塗工液を塗布し、着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは6.0μmであり、着色層の付着性を評価するために上述のクロスカット試験を行った結果、剥がれはなく評価“0”であった。また、上述の耐折強さ試験を行った結果、1000回折り曲げてもクラックは発生しなかった。 Then, in the same manner as in Example 1, a coating liquid was applied to the thermoplastic liquid crystal polymer film to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed. The thickness of the colored layer was 6.0 μm, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に実施例1と同様にして賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れ、膨れもなく良好であった。 Next, the thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
(実施例3)
 熱可塑性液晶ポリマーフィルム(株式会社クラレ製、製品名「ベクスターCTF」、厚さ50μm、SOR1.1)を用い、着色層の形成をスパッタリングで行う以外は、実施例1と同様にして、熱可塑性液晶ポリマーフィルム積層体を得た。
 プラズマ処理された熱可塑性液晶ポリマーフィルムに対して、DCマグネトロン装置を用い、スパッタリング用金属としてアルミニウムを用い、到達真空度1×10-1Pa以下、スパッタガス圧0.1~5.0Pa、成膜パワー(投入電力)4kWで処理を行い、着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは0.5μmであり、着色層の付着性を評価するために上述のクロスカット試験を行った結果、剥がれはなく評価“0”であった。また、上述の耐折強さ試験を行った結果、1000回折り曲げてもクラックは発生しなかった。
(Example 3)
Thermoplastic in the same manner as in Example 1 except that a colored layer is formed by sputtering using a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name “Vexter CTF”, thickness 50 μm, SOR1.1). A liquid crystal polymer film laminate was obtained.
For the thermoplastic liquid crystal polymer film treated with plasma, a DC magnetron device was used, aluminum was used as the metal for sputtering, the ultimate vacuum degree was 1 × 10 -1 Pa or less, and the sputter gas pressure was 0.1 to 5.0 Pa. The treatment was performed with a film power (input power) of 4 kW to obtain a thermoplastic liquid crystal polymer film laminate having a colored layer formed. The thickness of the colored layer was 0.5 μm, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に実施例1と同様にして賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れ、膨れもなく良好であった。 Next, the thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
(実施例4)
 熱可塑性液晶ポリマーフィルム(株式会社クラレ製、製品名「ベクスターCTF」、厚さ50μm、SOR1.1)を用い、着色層の形成を湿式メッキで行う以外は、実施例1と同様にして、熱可塑性液晶ポリマーフィルム積層体を得た。
 プラズマ処理された熱可塑性液晶ポリマーフィルムに対して、予め溶融Mg含有Znメッキ層を設けた後、酸素濃度が13%以下の密閉容器中で水蒸気に接触させて表層を水蒸気処理することにより、メッキ層を黒色化し、着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは2.0μmであり、着色層の付着性を評価するために上述のクロスカット試験を行った。剥がれはなく評価“0”であった。また、上述の耐折強さ試験を行った結果、1000回折り曲げてもクラックは発生しなかった。
(Example 4)
Thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 μm, SOR1.1) is used, and the colored layer is formed by wet plating, but the heat is the same as in Example 1. A thermoplastic liquid crystal polymer film laminate was obtained.
After providing a Zn-plated layer containing molten Mg in advance on the plasma-treated thermoplastic liquid crystal polymer film, the surface layer is plated by contacting with steam in a closed container having an oxygen concentration of 13% or less. The layer was blackened to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed. The thickness of the colored layer was 2.0 μm, and the above-mentioned cross-cut test was performed to evaluate the adhesiveness of the colored layer. There was no peeling and the evaluation was "0". Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に実施例1と同様にして賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れ、膨れもなく良好であった。 Next, the thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
(実施例5)
 熱可塑性液晶ポリマーフィルム(株式会社クラレ製、製品名「ベクスターCTF」、厚さ50μm、SOR1.1)を用い、熱可塑性液晶ポリマーフィルムの表面処理を腐食処理で行う以外は、実施例1と同様にして、熱可塑性液晶ポリマーフィルム積層体を得た。
 熱可塑性液晶ポリマーフィルムを、アルカリ液(レイテック株式会社製、「TPE3000」)に、80℃で1分間浸漬し、その後、取り出して十分に水洗して室温で乾燥させた。腐食処理を行った熱可塑性液晶ポリマーフィルム表面のX線光電子分光分析により得られた結果から算出した<C-O>は23%であった。
(Example 5)
Same as Example 1 except that the surface of the thermoplastic liquid crystal polymer film is corroded using a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 μm, SOR1.1). A thermoplastic liquid crystal polymer film laminate was obtained.
The thermoplastic liquid crystal polymer film was immersed in an alkaline solution (manufactured by Raytec Co., Ltd., "TPE3000") at 80 ° C. for 1 minute, then taken out, washed thoroughly with water, and dried at room temperature. The <CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film subjected to the corrosion treatment was 23%.
 その後、実施例1と同様にして、熱可塑性液晶ポリマーフィルムに対して塗工液を塗布し、着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは6.0μmであり、着色層の付着性を評価するために上述のクロスカット試験を行った結果、剥がれはなく評価“0”であった。また、上述の耐折強さ試験を行った結果、1000回折り曲げてもクラックは発生しなかった。 Then, in the same manner as in Example 1, a coating liquid was applied to the thermoplastic liquid crystal polymer film to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed. The thickness of the colored layer was 6.0 μm, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に実施例1と同様にして賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れ、膨れもなく良好であった。 Next, the thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
(実施例6)
 熱可塑性液晶ポリマーフィルム(株式会社クラレ製、製品名「ベクスターCTF」、厚さ50μm、SOR1.1)を用い、熱可塑性液晶ポリマーフィルムの表面処理を銅箔レプリカ処理で行う以外は、実施例1と同様にして、熱可塑性液晶ポリマーフィルム積層体を得た。
 熱可塑性液晶ポリマーフィルムに対して、電解銅箔(福田金属箔粉工業株式会社製、CF-H9A-HD2、Rzjis1.5μm)を重ね合わせ、真空熱プレス装置を用いて、加熱盤を300℃に設定し、4MPaの圧力下、10分間、圧着して、電解銅箔/熱可塑性液晶ポリマーフィルムの構成の積層体を作製した。得られた積層体の電解銅箔を塩化第二鉄エッチング液により除去した。銅箔レプリカ処理を行った熱可塑性液晶ポリマーフィルム表面のX線光電子分光分析により得られた結果から算出した<C-O>は17%であった。
(Example 6)
Example 1 except that the surface treatment of the thermoplastic liquid crystal polymer film is performed by copper foil replica treatment using a thermoplastic liquid crystal polymer film (manufactured by Kuraray Co., Ltd., product name "Vexter CTF", thickness 50 μm, SOR1.1). In the same manner as above, a thermoplastic liquid crystal polymer film laminate was obtained.
Electrolyzed copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., CF-H9A-HD2, Rz jis 1.5 μm) is superposed on the thermoplastic liquid crystal polymer film, and the heating plate is 300 using a vacuum heat press device. The temperature was set to 4 MPa and pressure was applied for 10 minutes under a pressure of 4 MPa to prepare a laminate having an electrolytic copper foil / thermoplastic liquid crystal polymer film. The electrolytic copper foil of the obtained laminate was removed with a ferric chloride etching solution. The <CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film subjected to the copper foil replica treatment was 17%.
 その後、実施例1と同様にして、熱可塑性液晶ポリマーフィルムに対して塗工液を塗布し、着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは6.0μmであり、着色層の付着性を評価するために上述のクロスカット試験を行った結果、剥がれはなく評価“0”であった。また、上述の耐折強さ試験を行った結果、1000回折り曲げてもクラックは発生しなかった。 Then, in the same manner as in Example 1, a coating liquid was applied to the thermoplastic liquid crystal polymer film to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed. The thickness of the colored layer was 6.0 μm, and as a result of the above-mentioned cross-cut test for evaluating the adhesiveness of the colored layer, there was no peeling and the evaluation was “0”. Further, as a result of performing the above-mentioned folding resistance test, no crack was generated even after bending 1000 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に実施例1と同様にして賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れ、膨れもなく良好であった。 Next, the thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body was good in appearance without swelling.
(比較例1)
 プラズマ処理を行わない未処理フィルムを用いる以外は、実施例1と同様にして、熱可塑性液晶ポリマーフィルム積層体および熱可塑性液晶ポリマーフィルム賦形体を得た。
 未処理フィルムの熱可塑性液晶ポリマーフィルム表面のX線光電子分光分析により得られた結果から算出した<C-O>は12%であった。
(Comparative Example 1)
A thermoplastic liquid crystal polymer film laminate and a thermoplastic liquid crystal polymer film shaped body were obtained in the same manner as in Example 1 except that an untreated film not subjected to plasma treatment was used.
The <CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film of the untreated film was 12%.
 その後、実施例1と同様にして、熱可塑性液晶ポリマーフィルムに対して塗工液を塗布し、着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは6.0μmであり、着色層の付着性を評価するために上述のクロスカット試験を行ったが、密着力が不足しており、評価“4”であった。また、上述の耐折強さ試験を行った結果、100回折り曲げた時に、折り曲げた箇所を観察してクラックが発生していることを確認した。 Then, in the same manner as in Example 1, a coating liquid was applied to the thermoplastic liquid crystal polymer film to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed. The thickness of the colored layer was 6.0 μm, and the above-mentioned cross-cut test was performed to evaluate the adhesiveness of the colored layer, but the adhesion was insufficient and the evaluation was “4”. Further, as a result of conducting the above-mentioned folding resistance test, it was confirmed that cracks were generated by observing the bent portion when bent 100 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に実施例1と同様にして賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れと膨れが発生した。 Next, the thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body had tears and swelling in appearance.
(比較例2)
 プラズマ処理を行わない未処理フィルムを用いる以外は、実施例3と同様にして、熱可塑性液晶ポリマーフィルム積層体および熱可塑性液晶ポリマーフィルム賦形体を得た。
 未処理フィルムの熱可塑性液晶ポリマーフィルム表面のX線光電子分光分析により得られた結果から算出した<C-O>は12%であった。
(Comparative Example 2)
A thermoplastic liquid crystal polymer film laminate and a thermoplastic liquid crystal polymer film shaped body were obtained in the same manner as in Example 3 except that an untreated film not subjected to plasma treatment was used.
The <CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film of the untreated film was 12%.
 その後、実施例3と同様にして、熱可塑性液晶ポリマーフィルムに対してスパッタリングを行い、着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは0.5μmであり、着色層の付着性を評価するために上述のクロスカット試験を行ったが、剥がれが目立ち、評価“5”であった。また、上述の耐折強さ試験を行った結果、100回折り曲げた時に、折り曲げた箇所を観察してクラックが発生していることを確認した。 Then, in the same manner as in Example 3, sputtering was performed on the thermoplastic liquid crystal polymer film to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed. The thickness of the colored layer was 0.5 μm, and the above-mentioned cross-cut test was performed to evaluate the adhesiveness of the colored layer, but the peeling was conspicuous and the evaluation was “5”. Further, as a result of conducting the above-mentioned folding resistance test, it was confirmed that cracks were generated by observing the bent portion when bent 100 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に実施例1と同様にして賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れと膨れが発生した。 Next, the thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body had tears and swelling in appearance.
(比較例3)
 プラズマ処理を行わない未処理フィルムを用いる以外は、実施例4と同様にして、熱可塑性液晶ポリマーフィルム積層体および熱可塑性液晶ポリマーフィルム賦形体を得た。
 未処理フィルムの熱可塑性液晶ポリマーフィルム表面のX線光電子分光分析により得られた結果から算出した<C-O>は12%であった。
(Comparative Example 3)
A thermoplastic liquid crystal polymer film laminate and a thermoplastic liquid crystal polymer film shaped body were obtained in the same manner as in Example 4 except that an untreated film not subjected to plasma treatment was used.
The <CO> calculated from the results obtained by X-ray photoelectron spectroscopy on the surface of the thermoplastic liquid crystal polymer film of the untreated film was 12%.
 その後、実施例4と同様にして、熱可塑性液晶ポリマーフィルムに対して湿式メッキ処理を行い、着色層を形成した熱可塑性液晶ポリマーフィルム積層体を得た。着色層の厚みは2.0μmであり、着色層の付着性を評価するために上述のクロスカット試験を行ったが、剥がれが目立ち、評価“5”であった。また、上述の耐折強さ試験を行った結果、100回折り曲げた時に、折り曲げた箇所を観察してクラックが発生していることを確認した。 Then, in the same manner as in Example 4, the thermoplastic liquid crystal polymer film was subjected to a wet plating treatment to obtain a thermoplastic liquid crystal polymer film laminate on which a colored layer was formed. The thickness of the colored layer was 2.0 μm, and the above-mentioned cross-cut test was performed to evaluate the adhesiveness of the colored layer, but the peeling was conspicuous and the evaluation was “5”. Further, as a result of conducting the above-mentioned folding resistance test, it was confirmed that cracks were generated by observing the bent portion when bent 100 times.
 次いで、熱可塑性液晶ポリマーフィルム積層体に実施例1と同様にして賦形処理を行い、賦形後の外観を確認した。得られた熱可塑性液晶ポリマーフィルム賦形体は、外観に破れと膨れが発生した。 Next, the thermoplastic liquid crystal polymer film laminate was subjected to a shaping treatment in the same manner as in Example 1, and the appearance after shaping was confirmed. The obtained thermoplastic liquid crystal polymer film shaped body had tears and swelling in appearance.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の熱可塑性液晶ポリマーフィルム成形体は、熱可塑性液晶ポリマーフィルムと着色層とが良好に付着しているため、その乳白色の熱可塑性液晶ポリマーに対して所望の色を付与することができる。そのため、熱可塑性液晶ポリマーフィルムとして使用される各種用途、回路基板、音響振動板、フレキシブル回路基板の補強板、回路面のカバーフィルム、各種センサー回路(温度、湿度、ひずみゲージ)などとして特に有用である。 In the thermoplastic liquid crystal polymer film molded product of the present invention, since the thermoplastic liquid crystal polymer film and the colored layer are well adhered to each other, a desired color can be imparted to the milky white thermoplastic liquid crystal polymer. Therefore, it is particularly useful for various applications used as thermoplastic liquid crystal polymer films, circuit boards, acoustic diaphragms, reinforcing plates for flexible circuit boards, circuit surface cover films, various sensor circuits (temperature, humidity, strain gauges), etc. be.
 以上のとおり、本発明の好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。
 したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
As described above, a preferred embodiment of the present invention has been described, but those skilled in the art will easily assume various changes and modifications within a trivial range by looking at the present specification.
Therefore, such changes and amendments are construed as being within the scope of the invention as defined by the claims.
 X・・・弧長
 Y・・・弦長
 Z・・・矢高
X ... Arc length Y ... String length Z ... Yataka

Claims (11)

  1.  熱可塑性液晶ポリマーフィルム層と、熱可塑性液晶ポリマーフィルム層の一方の面または双方の面の少なくとも一部に形成された着色層とを有する熱可塑性液晶ポリマーフィルム成形体であって、JIS P 8115(2001)による耐折強さ試験において、クラックが発生するまでの往復折り曲げ回数が100回を超える、熱可塑性液晶ポリマーフィルム成形体。 A thermoplastic liquid crystal polymer film molded product having a thermoplastic liquid crystal polymer film layer and a colored layer formed on one surface or at least a part of both surfaces of the thermoplastic liquid crystal polymer film layer, wherein JIS P 8115 ( A thermoplastic liquid crystal polymer film molded product in which the number of reciprocating bends until cracks occur exceeds 100 times in the folding resistance test according to 2001).
  2.  請求項1の熱可塑性液晶ポリマーフィルム成形体において、JIS K 5600-5-6によるクロスカット試験における着色層の付着性評価が3以下である、熱可塑性液晶ポリマーフィルム成形体。 The thermoplastic liquid crystal polymer film molded product according to claim 1, wherein the adhesiveness evaluation of the colored layer in the cross-cut test according to JIS K 5600-5-6 is 3 or less.
  3.  請求項1または2の熱可塑性液晶ポリマーフィルム成形体において、熱可塑性液晶ポリマーフィルム層の厚みに対する着色層の厚みの比が0.001~0.9である、熱可塑性液晶ポリマーフィルム成形体。 The thermoplastic liquid crystal polymer film molded product according to claim 1 or 2, wherein the ratio of the thickness of the colored layer to the thickness of the thermoplastic liquid crystal polymer film layer is 0.001 to 0.9.
  4.  請求項1~3のいずれか一項の熱可塑性液晶ポリマーフィルム成形体において、熱可塑性液晶ポリマーフィルム層の被付着領域における表面部深さ10~100nmのX線光電子分光分析結果において、被付着領域の表面のC(1s)の各ピークのピーク面積の合計に対する[C-O結合]のピーク面積の割合<C-O>が12%を超えている、熱可塑性液晶ポリマー成形体。 In the thermoplastic liquid crystal polymer film molded body according to any one of claims 1 to 3, in the X-ray photoelectron spectroscopic analysis result of the surface portion depth 10 to 100 nm in the adhered region of the thermoplastic liquid crystal polymer film layer, the adhered region A thermoplastic liquid crystal polymer molded product in which the ratio <CO> of the peak area of [CO bond] to the total peak area of each peak of C (1s) on the surface of the surface exceeds 12%.
  5.  請求項1~4のいずれか一項の熱可塑性液晶ポリマーフィルム成形体において、着色層側の熱可塑性液晶ポリマーフィルム層の表面の十点平均粗さ(Rzjis)が0.1~3.0μmである、熱可塑性液晶ポリマーフィルム成形体。 In the thermoplastic liquid crystal polymer film molded product according to any one of claims 1 to 4, the ten-point average roughness (Rz jis ) of the surface of the thermoplastic liquid crystal polymer film layer on the colored layer side is 0.1 to 3.0 μm. A thermoplastic liquid crystal polymer film molded article.
  6.  請求項1~5のいずれか一項の熱可塑性液晶ポリマーフィルム成形体において、貯蔵弾性率が1GPa以上20GPa以下である、熱可塑性液晶ポリマーフィルム成形体。 A thermoplastic liquid crystal polymer film molded body having a storage elastic modulus of 1 GPa or more and 20 GPa or less in the thermoplastic liquid crystal polymer film molded body according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか一項の熱可塑性液晶ポリマーフィルム成形体において、内部損失が0.02以上0.1以下である、熱可塑性液晶ポリマーフィルム成形体。 A thermoplastic liquid crystal polymer film molded product having an internal loss of 0.02 or more and 0.1 or less in the thermoplastic liquid crystal polymer film molded product according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか一項の熱可塑性液晶ポリマーフィルム成形体において、ドーム状の形状を有する、熱可塑性液晶ポリマーフィルム成形体。 The thermoplastic liquid crystal polymer film molded body according to any one of claims 1 to 7, which has a dome-shaped shape.
  9.  請求項1~8のいずれか一項の熱可塑性液晶ポリマーフィルム成形体で構成される音響振動板。 An acoustic diaphragm composed of the thermoplastic liquid crystal polymer film molded product according to any one of claims 1 to 8.
  10.  熱可塑性液晶ポリマーフィルムの少なくとも一方の表面における被付着領域に対して、プラズマ処理、紫外線処理、腐食処理、および銅箔レプリカ処理からなる群から選択される少なくとも1種の表面処理を行ない、表面部深さ10~100nmのX線光電子分光分析結果において、前記被付着領域の表面のC(1s)の各ピークのピーク面積の合計に対する[C-O結合]のピーク面積の割合<C-O>が12%を超える被処理フィルムを得る表面処理工程と、
     前記被処理フィルムに対して、コーティング、乾式メッキ、または湿式メッキにより、着色層を形成する着色処理工程と、を備える、熱可塑性液晶ポリマーフィルム成形体の製造方法。
    The adhered region on at least one surface of the thermoplastic liquid crystal polymer film is subjected to at least one surface treatment selected from the group consisting of plasma treatment, ultraviolet treatment, corrosion treatment, and copper foil replica treatment, and the surface portion is subjected to surface treatment. In the result of X-ray photoelectron spectroscopy at a depth of 10 to 100 nm, the ratio of the peak area of [CO bond] to the total peak area of each peak of C (1s) on the surface of the adhered region <CO>. In the surface treatment process to obtain a film to be treated with a value of more than 12%,
    A method for producing a thermoplastic liquid crystal polymer film molded product, comprising a coloring treatment step of forming a colored layer by coating, dry plating, or wet plating on the film to be treated.
  11.  請求項10の製造方法において、着色処理された被処理フィルムを賦形処理する、熱可塑性液晶ポリマーフィルム成形体の製造方法。 The method for producing a thermoplastic liquid crystal polymer film molded product, wherein the colored film to be treated is shaped in the production method according to claim 10.
PCT/JP2021/046888 2020-12-25 2021-12-17 Thermoplastic liquid crystal polymer film-formed body having colored layer, and method for producing same WO2022138516A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180086649.8A CN116635235A (en) 2020-12-25 2021-12-17 Thermoplastic liquid crystal polymer film molded body having colored layer and method for producing same
KR1020237020855A KR20230125199A (en) 2020-12-25 2021-12-17 Thermoplastic liquid crystal polymer film molded body having a colored layer and manufacturing method thereof
JP2022571419A JPWO2022138516A1 (en) 2020-12-25 2021-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216795 2020-12-25
JP2020-216795 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138516A1 true WO2022138516A1 (en) 2022-06-30

Family

ID=82157839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046888 WO2022138516A1 (en) 2020-12-25 2021-12-17 Thermoplastic liquid crystal polymer film-formed body having colored layer, and method for producing same

Country Status (5)

Country Link
JP (1) JPWO2022138516A1 (en)
KR (1) KR20230125199A (en)
CN (1) CN116635235A (en)
TW (1) TW202239834A (en)
WO (1) WO2022138516A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274098A (en) * 1989-04-14 1990-11-08 Mitsubishi Electric Corp Manufacture of speaker diaphragm and voice coil bobbin
JPH11302402A (en) * 1998-04-27 1999-11-02 Sumitomo Chem Co Ltd Light shielding film
JP2001506767A (en) * 1996-12-05 2001-05-22 ヘキスト・セラニーズ・コーポレーション Peelable thermoplastic skin layer
JP2007187892A (en) * 2006-01-13 2007-07-26 Canon Electronics Inc Light shielding blade and optical path opening/closing device
WO2021095758A1 (en) * 2019-11-15 2021-05-20 株式会社クラレ Acoustic diaphragm, manufacturing method therefor, and acoustic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105624A1 (en) 2016-12-05 2018-06-14 株式会社村田製作所 Black liquid crystal polymer film and multilayer substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274098A (en) * 1989-04-14 1990-11-08 Mitsubishi Electric Corp Manufacture of speaker diaphragm and voice coil bobbin
JP2001506767A (en) * 1996-12-05 2001-05-22 ヘキスト・セラニーズ・コーポレーション Peelable thermoplastic skin layer
JPH11302402A (en) * 1998-04-27 1999-11-02 Sumitomo Chem Co Ltd Light shielding film
JP2007187892A (en) * 2006-01-13 2007-07-26 Canon Electronics Inc Light shielding blade and optical path opening/closing device
WO2021095758A1 (en) * 2019-11-15 2021-05-20 株式会社クラレ Acoustic diaphragm, manufacturing method therefor, and acoustic device

Also Published As

Publication number Publication date
KR20230125199A (en) 2023-08-29
CN116635235A (en) 2023-08-22
JPWO2022138516A1 (en) 2022-06-30
TW202239834A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
JP7382926B2 (en) Thermoplastic liquid crystal polymer molded body and its manufacturing method
KR102345700B1 (en) Process for producing article from layered hardcoat object, and article formed from layered hardcoat object including poly(meth)acrylimide-based resin layer
EP2554366B1 (en) Laminate and production method for same
JP4892274B2 (en) Highly adhesive liquid crystal polymer molded body and method for producing the same
WO2004050352A1 (en) Laminate, printed wiring board and method for manufacturing them
EP0543293B1 (en) Coated article and method for producing same
TWI787249B (en) Metal-clad laminate, production method thereof, and circuit board
CN110382739B (en) Organic resin-coated plated steel sheet
WO2022138516A1 (en) Thermoplastic liquid crystal polymer film-formed body having colored layer, and method for producing same
WO2021039769A1 (en) Thermoplastic liquid crystal polymer molded body and method for producing same
CN112673030B (en) Method for producing polymer and metal-polymer composite
WO2021251265A1 (en) Thermoplastic liquid crystal polymer molded body
WO2021251262A1 (en) Thermoplastic liquid crystal polymer molded body
JP6897043B2 (en) Laminate
WO2021251261A1 (en) Thermoplastic liquid crystal polymer molded article
RU2816187C1 (en) Method of producing decorative coatings on articles from alloys of valve metals
WO2024004952A1 (en) Stretched liquid crystal polymer film, laminate, circuit board, and production method for liquid crystal polymer film
WO2021251264A1 (en) Thermoplastic liquid crystal polymer molded article
JP2010247482A (en) Method for manufacturing optical-member molding mold
WO2021251263A1 (en) Thermoplastic liquid crystal polymer molded article
TW202403112A (en) Copper foil and light-shielding material
JP2012016930A (en) Method of manufacturing mirror surface designable resin-coated metal sheet, mirror surface designable resin-coated metal sheet, prefabricated bath member, and building interior material
JP2018024244A (en) Laminate
JP2019025765A (en) Laminate, cover film, and production method of laminate
JP2018150389A (en) Resin molding and laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571419

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086649.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910661

Country of ref document: EP

Kind code of ref document: A1