WO2022138184A1 - Active energy ray-curable resin composition, cured product, insulation material and resist member - Google Patents

Active energy ray-curable resin composition, cured product, insulation material and resist member Download PDF

Info

Publication number
WO2022138184A1
WO2022138184A1 PCT/JP2021/045258 JP2021045258W WO2022138184A1 WO 2022138184 A1 WO2022138184 A1 WO 2022138184A1 JP 2021045258 W JP2021045258 W JP 2021045258W WO 2022138184 A1 WO2022138184 A1 WO 2022138184A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
acid
mass
meth
Prior art date
Application number
PCT/JP2021/045258
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 山田
裕史 亀山
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020237020029A priority Critical patent/KR20230122013A/en
Priority to JP2022518293A priority patent/JP7136386B1/en
Priority to CN202180086345.1A priority patent/CN116601724A/en
Publication of WO2022138184A1 publication Critical patent/WO2022138184A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to an active energy ray-curable resin composition, a cured product, an insulating material, and a resist member, which have excellent alkali developability and excellent elongation, elasticity, and substrate adhesion in a cured product.
  • an acid group-containing epoxy acrylate resin obtained by reacting an epoxy resin with acrylic acid and then reacting with an acid anhydride has been widely used as a resin material for a solder resist for a printed wiring substrate.
  • the required performance for the resin material for solder resist is that it cures with a small exposure amount, it has excellent alkali developability, and it has excellent heat resistance, strength, flexibility, elongation, dielectric properties, substrate adhesion, etc. in the cured product.
  • Various things can be mentioned.
  • the problem to be solved by the present invention is an active energy ray-curable resin composition, a cured product, an insulating material, which has excellent alkali developability and excellent elongation, elasticity, and substrate adhesion in a cured product. It is to provide a resist member.
  • the present invention is an active energy ray containing a resin (A) having an acid group and a polymerizable unsaturated group, and a resin (B) having a polymerizable unsaturated group and a urethane bond other than the resin (A).
  • the active energy ray-curable resin composition of the present invention has excellent alkali developability, and has excellent elongation, elasticity, and substrate adhesion in the cured product, and is therefore suitably used for insulating materials and resist members. be able to.
  • the "excellent elasticity" in the present invention means a low elastic modulus.
  • the active energy ray-curable resin composition of the present invention comprises a resin (A) having an acid group and a polymerizable unsaturated group, and a resin (B) having a polymerizable unsaturated group and a urethane bond other than the resin (A). It is characterized by using and as an essential reaction raw material.
  • (meth) acrylate means acrylate and / or methacrylate.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • (meth) acrylic means acrylic and / or methacrylic.
  • the resin (A) having an acid group and a polymerizable unsaturated group may be any resin (A) having an acid group and a polymerizable unsaturated group in the resin, and for example, an acid group and a polymerizable unsaturated group may be used.
  • Examples thereof include an acrylamide resin having a group, an ester resin having an acid group and a polymerizable unsaturated group, and the like.
  • Examples of the acid group include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • Examples of the polymerizable unsaturated group include (meth) acryloyl group, allyl group, isopropenyl group, 1-propenyl group, styryl group, styrylmethyl group, maleimide group, vinyl ether group and the like.
  • Examples of the epoxy resin having an acid group and a polymerizable unsaturated group include an epoxy resin, an unsaturated monobasic acid, and an epoxy (meth) acrylate resin having an acid group using a polybasic acid anhydride as an essential raw material.
  • Examples thereof include epoxy resins, unsaturated monobasic acids, polybasic acid anhydrides, polyisocyanate compounds, and epoxy (meth) acrylate resins having acid groups and urethane bonds using a (meth) acrylate compound having a hydroxyl group as a reaction raw material. ..
  • epoxy resin examples include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, and cresol.
  • Novolak type epoxy resin bisphenol novolak type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-shrink novolak type epoxy resin, naphthol-cresol co-shrink novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, Cyclopentadiene-phenol addition reaction type epoxy resin, biphenyl aralkyl type epoxy resin, fluorene type epoxy resin, xanthene type epoxy resin, dihydroxybenzene type epoxy resin, trihydroxybenzene type epoxy resin, oxazolidone type epoxy resin and the like can be mentioned. These epoxy resins can be used alone or in combination of two or more.
  • bisphenol type epoxy resin examples include bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy. Examples include resin.
  • Examples of the hydrogenated bisphenol type epoxy resin include hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol B type epoxy resin, hydrogenated bisphenol E type epoxy resin, hydrogenated bisphenol F type epoxy resin, and hydrogenated bisphenol S type epoxy. Examples include resin.
  • biphenol type epoxy resin examples include 4,4'-biphenol type epoxy resin, 2,2'-biphenol type epoxy resin, tetramethyl-4,4'-biphenol type epoxy resin, and tetramethyl-2,2'.
  • -Biphenol type epoxy resin and the like can be mentioned.
  • hydrogenated biphenol type epoxy resin examples include hydrogenated 4,4'-biphenol type epoxy resin, hydrogenated 2,2'-biphenol type epoxy resin, and hydrogenated tetramethyl-4,4'-biphenol type epoxy resin. , Hydrogenated tetramethyl-2,2'-biphenol type epoxy resin and the like.
  • Examples of the unsaturated monobasic acid include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, ⁇ -cyanocinnamic acid, ⁇ -styrylacrylic acid, ⁇ -flufurylacrylic acid and the like. Further, an esterified product of the unsaturated monobasic acid, an acid halide, an acid anhydride and the like can also be used. Further, a compound represented by the following structural formula (1) can also be used.
  • X represents an alkylene chain having 1 to 10 carbon atoms, a polyoxyalkylene chain, a (poly) ester chain, an aromatic hydrocarbon chain, or a (poly) carbonate chain, and a halogen atom in the structure. Or an alkoxy group or the like.
  • Y is a hydrogen atom or a methyl group.
  • polyoxyalkylene chain examples include a polyoxyethylene chain and a polyoxypropylene chain.
  • Examples of the (poly) ester chain include a (poly) ester chain represented by the following structural formula (2).
  • R 1 is an alkylene group having 1 to 10 carbon atoms, and n is an integer of 1 to 5.
  • aromatic hydrocarbon chain examples include a phenylene chain, a naphthylene chain, a biphenylene chain, a phenylnaphthylene chain, and a binaphthylene chain.
  • a hydrocarbon chain having an aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, or a phenanthrene ring can also be used.
  • These unsaturated monobasic acids can be used alone or in combination of two or more.
  • polybasic acid anhydride examples include an aliphatic polybasic acid anhydride, an alicyclic polybasic acid anhydride, and an aromatic polybasic acid anhydride.
  • Examples of the aliphatic polybasic acid anhydride include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid and itacone. Examples thereof include acid, glutaconic acid, and acid anhydrides of 1,2,3,4-butanetetracarboxylic acid.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
  • an alicyclic polybasic acid anhydride having an acid anhydride group bonded to an alicyclic structure is used as an alicyclic polybasic acid anhydride, and the aromatic ring in other structural parts is used. It does not matter whether it is present or not.
  • the alicyclic polybasic acid anhydride include tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, and bicyclo [2.2.1] heptane-2.
  • aromatic polybasic acid anhydride examples include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid and biphenyltetracarboxylic acid.
  • aromatic polybasic acid anhydride examples include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid and biphenyltetracarboxylic acid.
  • examples thereof include acid anhydrides of benzophenone tetracarboxylic acid.
  • polybasic acid anhydrides can be used alone or in combination of two or more.
  • polyisocyanate compound examples include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornan diisocyanate and isophorone diisocyanate.
  • Alicyclic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalenedi isocyanate, 4,4'-diisocyanato-3 , 3'-Aromatic diisocyanate compounds such as dimethylbiphenyl and o-trizine diisocyanate; polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (3); these isocyanurate modified products, biuret modified products, Examples thereof include allophanate modified products. Further, these polyisocyanate compounds may be used alone or in combination of two or more.
  • R 1 is either a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, respectively.
  • R 2 is an alkyl group having 1 to 4 carbon atoms independently, l is an integer of 0 or 1 to 3, and m is an integer of 1 to 15. ]
  • the (meth) acrylate compound having a hydroxyl group is not particularly limited as long as it is a compound having a hydroxyl group and a (meth) acryloyl group in its molecular structure, and a wide variety of compounds can be used. Examples thereof include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol (meth) acrylate, and pentaerythritol di (meth).
  • a (poly) oxyalkylene chain such as a (poly) oxyethylene chain, a (poly) oxypropylene chain, or a (poly) oxytetramethylene chain was introduced into the molecular structure of the (meth) acrylate compound having various hydroxyl groups.
  • a (poly) oxyalkylene modified product, a lactone modified product in which a (poly) lactone structure is introduced into the molecular structure of the (meth) acrylate compound having various hydroxyl groups, or the like can also be used.
  • These (meth) acrylate compounds having a hydroxyl group may be used alone or in combination of two or more.
  • the method for producing the epoxy resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the epoxy resin.
  • it may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
  • organic solvent examples include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolan; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; toluene, xylene and solvent.
  • ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide and methyl isobutyl ketone
  • cyclic ether solvents such as tetrahydrofuran and dioxolan
  • ester solvents such as methyl acetate, ethyl acetate and butyl acetate
  • toluene, xylene and solvent examples of the organic solvent.
  • Aromatic solvents such as naphtha; alicyclic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol and propylene glycol monomethyl ether; alkylene glycol monoalkyl ethers and dialkylene glycol monoalkyl ethers.
  • Glycol ether solvent such as dialkylene glycol monoalkyl ether acetate; methoxypropanol, cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate and the like.
  • These organic solvents may be used alone or in combination of two or more. Further, the amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is good.
  • Examples of the basic catalyst include N-methylmorpholin, pyridine, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonen-. 5 (DBN), 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine or dimethylbenzylamine, butylamine, octylamine, monoethanolamine, diethanolamine, triethanolamine, imidazole, 1 -Methylimidazole, 2,4-dimethylimidazole, 1,4-diethylimidazole, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, 3-( Amine compounds such as 2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl)
  • phosphine compounds such as trimethylphosphine, tributylphosphine, triphenylphosphine; tetramethylphosphonium chloride, tetraethylphosphonium chloride, tetrapropylphosphonium chloride, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, trimethyl (2-hydroxylpropyl) phosphonium chloride , Triphenylphosphonium chloride, phosphonium salts such as benzylphosphonium chloride; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dioctyltin diacetate, dioctyltin dineodecanoate, dibutyltin diacetate, tin octylate, 1 , 1,3,3-Tetrabutyl-1,3-Dodecan
  • alkaline earth metal hydroxides alkali metal carbonates, alkali metal hydroxides and the like can also be used.
  • alkali metal hydroxides are preferable because they are excellent in catalytic activity of the epoxy resin synthesis reaction, and for example, sodium hydroxide and potassium hydroxide are more preferable.
  • These basic catalysts can be used alone or in combination of two or more. When using the basic catalyst, it may be used in the form of an aqueous solution of about 10% by mass to 55% by mass, or may be used in the form of a solid.
  • Examples of the urethane resin having an acid group and a polymerizable unsaturated group include a polyisocyanate compound, a (meth) acrylate compound having a hydroxyl group, a polyol compound having a carboxyl group, and, if necessary, a polybasic acid anhydride.
  • polyisocyanate compound the same one as exemplified as the above-mentioned polyisocyanate compound can be used, and the polyisocyanate compound may be used alone or in combination of two or more.
  • the same compounds as those exemplified for the (meth) acrylate compound having a hydroxyl group can be used, and the (meth) acrylate compound having a hydroxyl group is used alone. It is also possible to use two or more kinds together.
  • polyol compound having a carboxyl group examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolpropane valeric acid and the like.
  • the polyol compound having a carboxyl group may be used alone or in combination of two or more.
  • polybasic acid anhydride the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. You can also.
  • polyol compound other than the polyol compound having a carboxyl group examples include aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol and dipentaerythritol.
  • Aromatic polyol compounds such as biphenol and bisphenol; (poly) oxyalkylene chains such as (poly) oxyethylene chain, (poly) oxypropylene chain and (poly) oxytetramethylene chain in the molecular structure of the various polyol compounds.
  • polystyrene foam in which (poly) lactone structure is introduced into the molecular structure of the various polyol compounds, and the like can be mentioned.
  • the polyol compound other than the polyol compound having a carboxyl group may be used alone or in combination of two or more.
  • the method for producing the urethane resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the urethane resin.
  • it may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
  • organic solvent the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
  • the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
  • the acrylic resin having an acid group and a polymerizable unsaturated group for example, a (meth) acrylate compound ( ⁇ ) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group or a glycidyl group is polymerized as an essential component.
  • the acrylic resin intermediate may be a copolymer of the (meth) acrylate compound ( ⁇ ) and other compounds having a polymerizable unsaturated group, if necessary.
  • the other compounds having a polymerizable unsaturated group include (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • Acrylic acid alkyl ester alicyclic structure-containing (meth) acrylate such as cyclohexyl (meth) acrylate, isoboronyl (meth) acrylate, dicyclopentanyl (meth) acrylate; phenyl (meth) acrylate, benzyl (meth) acrylate, Aromatic ring-containing (meth) acrylates such as phenoxyethyl acrylate; (meth) acrylates having a silyl group such as 3-methacryloxypropyltrimethoxysilane; styrene derivatives such as styrene, ⁇ -methylstyrene and chlorostyrene can be mentioned. These can be used alone or in combination of two or more.
  • the (meth) acrylate compound ( ⁇ ) is not particularly limited as long as it can react with the reactive functional group of the (meth) acrylate compound ( ⁇ ), but the combination is as follows from the viewpoint of reactivity. Is preferable. That is, when a (meth) acrylate having a hydroxyl group is used as the (meth) acrylate compound ( ⁇ ), it is preferable to use a (meth) acrylate having an isocyanate group as the (meth) acrylate compound ( ⁇ ).
  • a (meth) acrylate having a carboxyl group is used as the (meth) acrylate compound ( ⁇ )
  • a (meth) acrylate having an isocyanate group is used as the (meth) acrylate compound ( ⁇ )
  • the (meth) acrylate compound ( ⁇ ) When a (meth) acrylate having a glycidyl group is used as the (meth) acrylate compound ( ⁇ ), it is preferable to use a (meth) acrylate having a carboxyl group as the (meth) acrylate compound ( ⁇ ).
  • the (meth) acrylate compound ( ⁇ ) can be used alone or in combination of two or more.
  • polybasic acid anhydride the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. can.
  • the method for producing the acrylic resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the acrylic resin.
  • it may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
  • organic solvent the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
  • the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
  • Examples of the amideimide resin having an acid group and a polymerizable unsaturated group include an amideimide resin having an acid group and / or an acid anhydride group, and a (meth) acrylate compound having a hydroxyl group and / or an epoxy group (meth).
  • the compound having a reactive functional group may or may not have a (meth) acryloyl group.
  • the amidimide resin may have only one of an acid group and an acid anhydride group, or may have both. From the viewpoint of reactivity with (meth) acrylate compounds having a hydroxyl group and epoxy compounds having a (meth) acryloyl group and reaction control, those having an acid anhydride group are preferable, and the acid group and the acid anhydride group are used. It is more preferable to have both of them.
  • the solid acid value of the amideimide resin is preferably in the range of 60 to 350 mgKOH / g under neutral conditions, that is, under conditions where the acid anhydride group is not opened. On the other hand, the measured value under the condition that the acid anhydride group is opened, such as in the presence of water, is preferably in the range of 61 to 360 mgKOH / g.
  • amidoimide resin examples include those obtained by using a polyisocyanate compound and a polybasic acid anhydride as reaction raw materials.
  • polyisocyanate compound the same one as exemplified as the above-mentioned polyisocyanate compound can be used, and the polyisocyanate compound may be used alone or in combination of two or more.
  • polybasic acid anhydride the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. You can also.
  • amidoimide resin a polybasic acid can be used as a reaction raw material in addition to the polyisocyanate compound and the polybasic acid anhydride, if necessary.
  • any compound having two or more carboxyl groups in one molecule can be used.
  • Phthalic acid methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2.2.1] heptane- 2,3-Dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetratetra-3-yl) -1,2,3,4-tetrahydro Naphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, biphenyltetracar
  • polybasic acid for example, a copolymer of a conjugated diene-based vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used. These polybasic acids can be used alone or in combination of two or more.
  • the same compounds as those exemplified for the (meth) acrylate compound having a hydroxyl group can be used, and the (meth) acrylate compound having a hydroxyl group is used alone. It is also possible to use two or more kinds together.
  • the (meth) acrylate compound having an epoxy group is not particularly limited as long as it has a (meth) acryloyl group and an epoxy group in its molecular structure, and a wide variety of compounds can be used.
  • (meth) acrylate monomers having a glycidyl group such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and epoxycyclohexylmethyl (meth) acrylate; dihydroxybenzene diglycidyl ether, dihydroxynaphthalenedi glycidyl ether.
  • Mono (meth) acrylates of diglycidyl ether compounds such as biphenol diglycidyl ether and bisphenol diglycidyl ether.
  • These epoxy group-containing (meth) acrylate compounds may be used alone or in combination of two or more.
  • one epoxy group can be obtained because an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained.
  • the (meth) acrylate compound having (meth) is preferable, and an active energy ray-curable resin composition capable of forming a cured product having excellent alkali developability, excellent elongation, elasticity, and substrate adhesion can be obtained.
  • a (meth) acrylate monomer having a glycidyl group is preferable. Further, the molecular weight of the (meth) acrylate monomer having a glycidyl group is preferably 500 or less. Further, the ratio of the (meth) acrylate monomer having a glycidyl group to the total mass of the (meth) acrylate compound having an epoxy group is preferably 70% by mass or more, and more preferably 90% by mass or more.
  • the method for producing the amidoimide resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for production. In the production of the amidoimide resin having an acid group and a polymerizable unsaturated group, it may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
  • organic solvent the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
  • the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
  • Examples of the acrylamide resin having an acid group and a polymerizable unsaturated group include a compound having a phenolic hydroxyl group, an alkylene oxide or an alkylene carbonate, an N-alkoxyalkyl (meth) acrylamide compound, and a polybasic acid anhydride. , If necessary, those obtained by reacting with unsaturated monobasic acid can be mentioned.
  • the same compound as exemplified as the above-mentioned compound having a phenolic hydroxyl group (a1) can be used, and the compound having the phenolic hydroxyl group can be used alone. It is also possible to use more than seeds together.
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide, and pentylene oxide.
  • ethylene oxide or propylene oxide can be obtained because an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained. Is preferable.
  • the alkylene oxide can be used alone or in combination of two or more.
  • alkylene carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate and the like.
  • ethylene carbonate or propylene carbonate can be obtained. Is preferable.
  • the alkylene carbonate can be used alone or in combination of two or more.
  • N-alkoxyalkyl (meth) acrylamide compound examples include N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, and N-methoxyethyl (meth) acrylamide. , N-ethoxyethyl (meth) acrylamide, N-butoxyethyl (meth) acrylamide and the like.
  • the N-alkoxyalkyl (meth) acrylamide compound may be used alone or in combination of two or more.
  • polybasic acid anhydride the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. You can also.
  • unsaturated monobasic acid the same as those exemplified as the above-mentioned unsaturated monobasic acid can be used, and the unsaturated monobasic acid can be used alone or in combination of two or more. ..
  • the method for producing the acrylamide resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the acrylamide resin.
  • the acrylamide resin having an acid group and a polymerizable unsaturated group it may be carried out in an organic solvent if necessary, and a basic catalyst and an acidic catalyst may be used as necessary.
  • organic solvent the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
  • the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride and zinc chloride. And so on. Further, a solid acid catalyst having a strong acid such as a sulfonyl group can also be used. These acidic catalysts can be used alone or in combination of two or more.
  • ester resin having an acid group and a polymerizable unsaturated group for example, a compound having a phenolic hydroxyl group, an alkylene oxide or an alkylene carbonate, an unsaturated monobasic acid, and a polybasic acid anhydride are reacted with each other.
  • the obtained ones can be mentioned.
  • the compound having a phenolic hydroxyl group means a compound having at least one phenolic hydroxyl group in the molecule.
  • Examples of the compound having at least one phenolic hydroxyl group in the molecule include compounds represented by the following structural formulas (4-1) to (4-5).
  • R 1 is any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group, and a halogen atom.
  • R 2 are independently hydrogen atoms or methyl groups.
  • p is 0 or an integer of 1 or more, preferably an integer of 0 or 1 to 3, more preferably 0 or 1, and even more preferably 0.
  • q is an integer of 1 or more, preferably 2 or 3.
  • the position of the substituent on the aromatic ring in the above structural formula is arbitrary, and for example, in the naphthalene ring of the structural formula (4-2), it may be substituted on any ring, and the structural formula ( In 4-3), it may be substituted on any ring of the benzene ring present in one molecule, and in the structural formula (4-4), it may be substituted on any ring of the benzene ring present in one molecule.
  • the structural formula (4-5) it is shown that it may be substituted on any ring of the benzene ring present in one molecule, and the number of substituents in one molecule is indicated. Is shown to be p and q.
  • the compound having a phenolic hydroxyl group includes, for example, a compound having at least one phenolic hydroxyl group in the molecule and a compound represented by any of the following structural formulas (x-1) to (x-5).
  • a reaction product or the like using the above as an essential reaction raw material can also be used.
  • a novolak type phenol resin or the like using one or more of compounds having at least one phenolic hydroxyl group in the molecule as a reaction raw material can also be used.
  • h is 0 or 1.
  • R 3 is any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group, and a halogen atom, and i. Is 0 or an integer from 1 to 4.
  • Z is any one of a vinyl group, a halomethyl group, a hydroxymethyl group and an alkyloxymethyl group.
  • Y is any of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group, and j is an integer of 1 to 4.
  • alkylene oxide the same ones as those exemplified as the above-mentioned alkylene oxide can be used.
  • ethylene oxide or propylene oxide can be obtained because an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained. Is preferable.
  • the alkylene oxide can be used alone or in combination of two or more.
  • alkylene carbonate the same ones as those exemplified as the above-mentioned alkylene carbonate can be used. Among these, since an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained, ethylene carbonate or propylene carbonate can be obtained. Is preferable.
  • the alkylene carbonate can be used alone or in combination of two or more.
  • unsaturated monobasic acid the same as those exemplified as the above-mentioned unsaturated monobasic acid can be used, and the unsaturated monobasic acid can be used alone or in combination of two or more. ..
  • polybasic acid anhydride the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. You can also.
  • the method for producing the ester resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the ester resin.
  • the ester resin having an acid group and a polymerizable unsaturated group it may be carried out in an organic solvent if necessary, or a basic catalyst and an acidic catalyst may be used if necessary.
  • organic solvent the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
  • the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
  • the same ones as those exemplified as the above-mentioned acidic catalyst can be used, and the acidic catalyst can be used alone or in combination of two or more.
  • the acid value of the resin (A) having an acid group and a polymerizable unsaturated group of the present invention has excellent alkali developability, and is active energy ray curable having elongation, elasticity and substrate adhesion in a cured product. Since a resin composition can be obtained, the range of 50 to 150 mgKOH / g is preferable, and the range of 60 to 120 mgKOH / g is more preferable.
  • the acid value of the (meth) acrylate resin having an acid group is a value measured by the neutralization titration method of JIS K0070 (1992).
  • the resin (B) having a polymerizable unsaturated group and a urethane bond includes an epoxy resin (b1), an unsaturated monobasic acid (b2), a (meth) acrylate compound having a hydroxyl group (b3), and a compound having an isocyanate group. It is characterized in that (b4) is used as an essential raw material.
  • the resin having an acid group, a polymerizable unsaturated group, and a urethane bond is treated as the resin (A).
  • the epoxy resin (b1) the same ones as those exemplified as the above-mentioned epoxy resin can be used, and the epoxy resin (b1) can be used alone or in combination of two or more. Further, among these, a novolak type epoxy resin can be obtained because an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Preferably, a cresol novolac type epoxy resin is more preferable.
  • the epoxy resin (b1) preferably has a softening point of 78 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower, and more preferably 60 ° C. or higher and 70 ° C. or lower.
  • the softening point is a value measured by a method based on JIS K7234 (1986).
  • the unsaturated monobasic acid (b2) the same ones as those exemplified as the above-mentioned unsaturated monobasic acid can be used, and the unsaturated monobasic acid (b2) can also be used alone. It is also possible to use more than seeds together. Further, among these, acrylic acid and methacrylic acid can be obtained because an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Is preferable.
  • the amount of the unsaturated monobasic acid (b2) used is 0.95 with respect to 1 mol of the epoxy group of the epoxy resin (b1) based on the acid group of the unsaturated monobasic acid (b2). It is preferably in the range of ⁇ 1.1 mol, more preferably 0.95 to 1.05.
  • the (meth) acrylate compound (b3) having a hydroxyl group the same compound as those exemplified for the (meth) acrylate compound having a hydroxyl group can be used, and the compound (b3) may be used alone. Can also be used in combination of two or more. Further, among these, hydroxyethyl (meth) can be obtained because an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Acrylate, pentaerythritol di (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferable.
  • the amount of the compound (b3) used is such that an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained.
  • the range of 0.3 to 0.7 mol is preferable with respect to 1 mol of the isocyanate group of the compound (b4) having an isocyanate group described later, and 0.4 to 0. A range of 6 mol is more preferred.
  • the compound (b4) having an isocyanate group the same compounds as those exemplified as the above-mentioned polyisocyanate compound can be used, and the compound (b4) may be used alone or in combination of two or more. You can also. Further, among these, an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained, and thus an aliphatic and / or an aliphatic and / or a substrate can be obtained.
  • a compound having an isocyanate group having an alicyclic skeleton is preferable, a compound having an isocyanate group having an alicyclic skeleton is more preferable, and isophorone diisocyanate is more preferable.
  • the amount of the compound (b4) used is such that an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Therefore, the range of 0.1 to 0.7 mol is preferable with respect to 1 mol of the epoxy group of the epoxy resin (b1), preferably 0.2 to 0, based on the isocyanate group of the compound (b4). A range of 6 mol is more preferred.
  • an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity, and substrate adhesion in a cured product can be obtained, and thus (meth). It preferably has an acryloyl group, an isocyanate group, and a urethane bond.
  • the method for producing the resin (B) is not particularly limited, and any method may be used for producing the resin (B). For example, it may be produced by a method of reacting all of the reaction raw materials at once, or by a method of sequentially reacting the reaction raw materials.
  • an epoxy resin (b1) for example, an epoxy resin (b1), an unsaturated monobasic acid (b2), a (meth) acrylate compound having a hydroxyl group (b3), and a compound having an isocyanate group (b3)
  • Examples thereof include a method of reacting a reaction raw material containing b4) in the presence of a basic catalyst in a temperature range of 60 to 150 ° C.
  • an epoxy resin (b1) and an unsaturated monobasic acid (b2) are previously reacted in the presence of a basic catalyst in a temperature range of 80 to 150 ° C. for reaction.
  • the substance (I) is obtained, and the (meth) acrylate compound (b3) having a hydroxyl group and the compound (b4) having an isocyanate group are reacted in the presence of a basic catalyst in a temperature range of 50 to 120 ° C.
  • the reaction product (I) and the reaction product (II) are reacted in the presence of a basic catalyst in a temperature range of 50 to 150 ° C. and the like.
  • an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained. Therefore, the reaction can be obtained.
  • a method of sequentially reacting the raw materials is preferable, and a method of obtaining the reaction product (I) and the reaction product (II) and then reacting the reaction product (I) with the reaction product (II) to produce the reaction product (I) is preferable. More preferred.
  • reaction product (II) can also be carried out in an organic solvent, if necessary.
  • organic solvent the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
  • the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
  • the amount of the basic catalyst used is, for example, an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in the cured product.
  • an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in the cured product.
  • the mass ratio of the solid content between the resin (A) and the resin (B) [(A) / (B)] has excellent alkali developability, and has excellent elongation, elasticity, and group in the cured product. Since an active energy ray-curable resin composition having material adhesion can be obtained, the range of 95/5 to 50/50 is preferable, the range of 95/5 to 60/40 is more preferable, and 95 / The range of 5 to 70/30 is more preferable.
  • the method for producing the active energy ray-curable resin composition of the present invention is not particularly limited, and any method may be used for production.
  • a method of mixing and producing each compounding component can be mentioned.
  • the mixing method is not particularly limited, and a paint shaker, a disper, a roll mill, a bead mill, a ball mill, an attritor, a sand mill, a bead mill and the like may be used.
  • the active energy ray-curable resin composition of the present invention it is preferable to use a photopolymerization initiator depending on the type of active energy ray used.
  • photopolymerization initiator examples include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-. Hydroxy-2-methyl-1-propane-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl (2,4,6-trimethoxybenzoyl) phosphenyl Oxide, 2,4,6-trimethylbenzoyldiphenylphosphenyl oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphenyl oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1- Examples thereof include photoradical polymerization initiators such as on, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone.
  • Examples of commercially available products of the other photopolymerization initiators include “Omnirad 1173”, “Omnirad 184”, “Omnirad 127”, “Omnirad 2959”, “Omnirad 369”, “Omnirad 379”, “Omnirad 90".
  • the amount of the photopolymerization initiator added is preferably in the range of 0.05 to 15% by mass, preferably 0.1 to 10% by mass, in the total of the components other than the solvent of the active energy ray-curable resin composition, for example. More preferably, it is in the range of%.
  • the active energy ray-curable resin composition of the present invention may contain other resin components other than the resin (A) and the resin (B).
  • the other resin components include various (meth) acrylate monomers.
  • the total content of the resin (A) and the resin (B) has excellent alkali developability, and has excellent elongation, elasticity, and substrate adhesion in the cured product, and has active energy ray curability. Since a resin composition can be obtained, 10% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and 50% by mass, based on the total components other than the solvent of the active energy ray-curable resin composition. % Or more is particularly preferable.
  • Examples of the various (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and hexyl (meth) acrylate, 2 -Alipid mono (meth) acrylate compounds such as ethylhexyl (meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate.
  • Acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylbenzyl (meth) acrylate, phenoxy (meth) acrylate, Aromatic mono (meth) such as phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, and phenylphenoxyethyl (meth) acrylate.
  • heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate
  • benzyl (meth) acrylate phenyl (meth) acrylate, phenylbenzyl (meth
  • Mono (meth) acrylate compounds such as acrylate compounds: Polyoxy such as (poly) oxyethylene chain, (poly) oxypropylene chain, and (poly) oxytetramethylene chain in the molecular structure of the various mono (meth) acrylate monomers.
  • An aliphatic di (meth) acrylate compound such as glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, and neopentyl glycol di (meth) acrylate; 1,4-Cyclohexanedimethanol di (meth) acrylate, norbornandi (meth) acrylate, norbornan dimethanol di (meth) acrylate, dicyclopentanyldi (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, etc.
  • An aliphatic tri (meth) acrylate compound such as (meth) acrylate and glycerin tri (meth) acrylate; a (poly) oxyethylene chain, a (poly) oxypropylene chain, etc. in the molecular structure of the aliphatic tri (meth) acrylate compound.
  • a (meth) acrylate monomer in addition to the above-mentioned one, a (meth) acrylate monomer containing a phenol compound, a cyclic carbonate compound or a cyclic ether compound, and an unsaturated monocarboxylic acid as essential reaction raw materials. Can be used.
  • phenol compound examples include cresol, xylenol, catechol, resorcinol, hydroquinone, 3-methylcatechol, 4-methylcatechol, 4-allylpyrocatechol, 1,2,3-trihydroxybenzene, 1,2,4-.
  • Trihydroxybenzene 1-naphthol, 2-naphthol, 1,3-naphthalenediol, 1,5-naphthalenediol, 2,6-naphthalenediol, 2,7-naphthalenediol, hydrogenated bisphenol, hydrogenated biphenol, polyphenylene ether
  • type diols polynaphthylene ether type diols, phenol novolac resins, cresol novolak resins, bisphenol novolak type resins, naphthol novolak type resins, phenol aralkyl type resins, naphthol aralkyl type resins, phenol resins having a cycloring structure and the like.
  • cyclic carbonate compound examples include ethylene carbonate, propylene carbonate, butylene carbonate, and pentylene carbonate. These cyclic carbonate compounds may be used alone or in combination of two or more.
  • cyclic ether compound examples include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds may be used alone or in combination of two or more.
  • unsaturated monocarboxylic acid the same one as exemplified as the unsaturated monocarboxylic acid (B) described above can be used.
  • the content of the other (meth) acrylate monomer is preferably 90% by mass or less in the non-volatile content of the active energy ray-curable resin composition of the present invention.
  • the active energy ray-curable resin composition of the present invention may contain, if necessary, a curing agent, a curing accelerator, an ultraviolet absorber, a polymerization inhibitor, an antioxidant, an organic solvent, an inorganic filler or polymer fine particles. It can also contain various additives such as pigments, defoaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers.
  • curing agent examples include epoxy resins, polybasic acids, unsaturated monobasic acids, amine compounds, amide compounds, azo compounds, organic peroxides, polyol compounds, and epoxy resins.
  • the same ones as those exemplified as the above-mentioned epoxy resin can be used, and the epoxy resin can be used alone or in combination of two or more.
  • polybasic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, and terephthalic acid.
  • Tetrahydrophthalic acid Tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2 .2.1] Heptane-2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetraxoxy-3-yl) -1, 2,3,4-Tetrahydronaphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic
  • polybasic acid for example, a copolymer of a conjugated diene-based vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used.
  • polybasic acids can be used alone or in combination of two or more.
  • the same ones as those exemplified as the above-mentioned unsaturated monobasic acid can be used, and the unsaturated monobasic acid may be used alone or in combination of two or more. You can also.
  • amine compound examples include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF3-amine complex, guanidine derivative and the like. These amine compounds may be used alone or in combination of two or more.
  • amide compound examples include a polyamide resin synthesized from a dimer of dicyandiamide and linolenic acid and ethylenediamine. These amide compounds may be used alone or in combination of two or more.
  • azo compound examples include azobisisobutyronitrile.
  • organic peroxide examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates, alkyl peroxycarbonates and the like. These organic peroxides can be used alone or in combination of two or more.
  • polyol compound examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1, 5-Pentanediol, Neopentylglycol, 1,6-hexanediol, Glycerin, Glycerin mono (meth) acrylate, Trimethylol ethane, Trimethylol methanemono (meth) acrylate, Trimethylol propane, Trimethylol propane mono (meth) acrylate , Pentaerythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate and other polyol monomers; , Hexahydrophthalic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, polyester polyol obtained by coco
  • the same ones as those exemplified as the above-mentioned epoxy resin can be used, and the epoxy resin can be used alone or in combination of two or more.
  • the curing accelerator examples include phosphorus-based compounds, amine-based compounds, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like, which promote the curing reaction. These curing accelerators can be used alone or in combination of two or more.
  • the amount of the curing accelerator added is preferably in the range of 0.01 to 10% by mass in the solid content of the active energy ray-curable resin composition, for example.
  • UV absorber examples include 2- [4- ⁇ (2-hydroxy-3-dodecyloxypropyl) oxy ⁇ -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1. , 3,5-Triazine, 2- [4- ⁇ (2-Hydroxy-3-tridecyloxypropyl) oxy ⁇ -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, Triazine derivatives such as 3,5-triazine, 2- (2'-xanthencarboxy-5'-methylphenyl) benzotriazole, 2- (2'-o-nitrobenzyloxy-5'-methylphenyl) benzotriazole, 2 -Xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone and the like can be mentioned. These UV absorbers can be used alone or in combination of two or more.
  • polymerization inhibitor examples include p-methoxyphenol, p-methoxycresol, 4-methoxy-1-naphthol, 4,4'-dialkoxy-2,2'-bi-1-naphthol, 3- (N).
  • -Salicyloyl amino-1,2,4-triazole, N'1, N'12-bis (2-hydroxybenzoyl) dodecanedihydrazide, styrenated phenol, N-isopropyl-N'-phenylbenzene-1,4-diamine , 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinone and other phenolic compounds, hydroquinone, methylhydroquinone, p-benzoquinone, methyl-p-benzoquinone, 2,5-diphenylbenzoquinone, 2-hydroxy- Quinone compounds such as 1,4-naphthoquinone, anthraquinone and diphenoquinone, melamine, p-phenylenediamine, 4-aminodiphenylamine, N.I.
  • N'-diphenyl-p-phenylenediamine, N-i-propyl-N'-phenyl-p-phenylenediamine, N- (1.3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, diphenylamine, 4 , 4'-dicumyl-diphenylamine, 4,4'-dioctyl-diphenylamine, poly (2,2,4-trimethyl-1,2-dihydroquinoline), sylated diphenylamine, sylated diphenylamine and 2,4,4-trimethyl Penten reaction products, amine compounds such as diphenylamine and 2,4,4-trimethylpenten reaction products, phenothiazine, distearylthiodipropionate, 2,2-bis ( ⁇ [3- (dodecylthio) propionyl] oxy ⁇ Methyl) -1,3-propanediyl bis [3- (
  • the same compounds as those exemplified for the polymerization inhibitor can be used, and the antioxidant may be used alone or in combination of two or more.
  • Examples of commercially available products of the polymerization inhibitor and the antioxidant include "Q-1300” and “Q-1301” manufactured by Wako Pure Chemical Industries, Ltd. and “Smilizer BBM-S” manufactured by Sumitomo Chemical Industries, Ltd. , “Smilizer GA-80 is” and the like.
  • organic solvent the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
  • inorganic filler examples include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide and the like.
  • the pigment a known and commonly used inorganic pigment or organic pigment can be used.
  • inorganic pigment examples include white pigment, antimony red, red iron oxide, cadmium red, cadmium yellow, cobalt blue, navy blue, ultramarine blue, carbon black, graphite and the like. These inorganic pigments can be used alone or in combination of two or more.
  • white pigment examples include titanium oxide, zinc oxide, magnesium oxide, zirconium oxide, aluminum oxide, barium sulfate, silica, talc, mica, aluminum hydroxide, calcium silicate, aluminum silicate, hollow resin particles, and zinc sulfide. And so on.
  • organic pigment examples include quinacridone pigment, quinacridone quinone pigment, dioxazine pigment, phthalocyanine pigment, anthrapyrimidine pigment, anthanthrone pigment, indanslon pigment, flavanthron pigment, perylene pigment, diketopyrrolopyrrole pigment, perinone pigment, and the like.
  • organic pigments examples include quinophthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments, and azo pigments. These organic pigments can be used alone or in combination of two or more.
  • the flame retardant examples include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphate such as ammonium polyphosphate, and inorganic phosphorus compounds such as phosphate amide; phosphoric acid ester compounds and phosphoruses.
  • Organophosphorus compounds such as phosphorus compounds and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins; nitrogen-based flame retardants such as triazine compounds, cyanuric acid compounds, isocyanuric acid compounds and phenothiazine; silicone oils, silicone rubbers, Silicone-based flame retardants such as silicone resins; examples thereof include metal hydroxides, metal oxides, metal carbonate compounds, metal powders,
  • the cured product of the present invention can be obtained by irradiating the active energy ray-curable resin composition with active energy rays.
  • the active energy ray include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • ultraviolet rays When ultraviolet rays are used as the active energy rays, they may be irradiated in an atmosphere of an inert gas such as nitrogen gas or in an air atmosphere in order to efficiently carry out the curing reaction by the ultraviolet rays.
  • an ultraviolet lamp As a source of ultraviolet rays, an ultraviolet lamp is generally used from the viewpoint of practicality and economy. Specific examples thereof include low pressure mercury lamps, high pressure mercury lamps, ultrahigh pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, sunlight, LEDs and the like.
  • the integrated light amount of the active energy rays is not particularly limited, but is preferably 0.1 to 50 kJ / m 2 , and more preferably 0.5 to 10 kJ / m 2 .
  • the integrated light amount is in the above range, it is preferable because the generation of the uncured portion can be prevented or suppressed.
  • the irradiation of the active energy beam may be performed in one step or may be divided into two or more steps.
  • the cured product of the present invention has excellent alkali developability and is excellent in elongation, elasticity and substrate adhesion, for example, solder resist, interlayer insulating material, packaging material and undercoat in semiconductor device applications. It can be suitably used as a package adhesive layer for a fill material, a circuit element, or the like, or as an adhesive layer between an integrated circuit element and a circuit board. Further, it can be suitably used for a thin film transistor protective film, a liquid crystal color filter protective film, a pigment resist for a color filter, a resist for a black matrix, a spacer and the like in a thin display application typified by LCD and OELD. Among these, it can be particularly preferably used for solder resist applications.
  • the resist member of the present invention is, for example, a photomask in which the resin material for solder resist is applied onto a substrate, an organic solvent is volatilized and dried in a temperature range of about 60 to 100 ° C., and then a desired pattern is formed. It can be obtained by exposing the unexposed portion with an alkaline aqueous solution, developing the unexposed portion with an alkaline aqueous solution, and further heating and curing the unexposed portion in a temperature range of about 140 to 200 ° C.
  • Examples of the base material include metal-clad laminates such as copper and aluminum.
  • the reaction was carried out at 160 ° C. for 5 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less.
  • the solid content acid value measured under the acid anhydride group non-ring-opening condition was 160 mgKOH / g. 0.3 parts by mass of methquinone, pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toagosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value 159.7 mgKOH / g) 172 parts by mass and triphenylphosphine 3.6 parts by mass was added, and the mixture was reacted at 110 ° C.
  • a resin (1) having an acid group having a non-volatile content of 62% by mass and a polymerizable unsaturated group was obtained.
  • the solid acid value of the resin (1) having the acid group and the polymerizable unsaturated group was 79 mgKOH / g.
  • the acid value is a value measured based on the neutralization titration method of JIS K 0070 (1992).
  • Equivalent amount 214 g / eq,) (hereinafter abbreviated as "epoxy resin (1)”) 214 parts by mass is dissolved, 0.9 parts by mass of dibutylhydroxytoluene and 0.2 parts by mass of methquinone are added, and then acrylic acid 72. A mass part and 1.4 parts by mass of triphenylphosphine were added, and the reaction was carried out at 120 ° C. for 10 hours while blowing air. Next, 72 parts by mass of diethylene glycol monomethyl ether acetate and 76 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 3 hours to obtain a resin (2) having an acid group and a polymerizable unsaturated group. The non-volatile content of the resin (2) having an acid group and a polymerizable unsaturated group was 65% by mass, and the solid content acid value was 80 mgKOH / g.
  • urethane-containing acrylate resin (2) having an NCO% of 11.4%.
  • the number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.3 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
  • urethane-containing acrylate resin (3) having an NCO% of 13.5%.
  • the number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.25 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
  • urethane-containing acrylate resin (4) having an NCO% of 2.8%.
  • the number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.7 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
  • urethane-containing acrylate resin (5) having an NCO% of 2.2%.
  • the number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.75 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
  • urethane-containing acrylate resin (6) having an NCO% of 21.9%.
  • the number of moles of hydroxyl groups of hydroxyethyl acrylate was 0.5 with respect to 1 mole of isocyanate groups of isophorone diisocyanate.
  • m-xylylene diisocyanate (“Takenate 500” manufactured by Mitsui Chemicals, Inc.) was added in portions, and the reaction was carried out at 70 ° C. for 3 hours to obtain a urethane-containing acrylate resin having an NCO% of 6.2%. 7) was obtained.
  • the number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.5 with respect to 1 mol of isocyanate groups contained in m-xylylene diisocyanate.
  • the reaction was carried out at 80 ° C. for 8 hours to obtain a resin (2) having the desired polymerizable unsaturated group and urethane bond.
  • the non-volatile content of the resin (2) having a polymerizable unsaturated group and a urethane bond was 62% by mass.
  • the number of moles of acrylic acid is 1.0 with respect to 1 mol of epoxy group contained in the orthocresol novolak type epoxy resin, and the number of moles of isocyanate group contained in the urethane-containing acrylate resin (1) is 0.4. Met.
  • epoxy resin (2) Softening point 69 ° C.
  • epoxy resin (2) 207 parts by mass is dissolved, 0.8 parts by mass of dibutylhydroxytoluene and 0.2 parts by mass of methquinone are added, and then 72 parts by mass of acrylic acid. A part, 1.4 parts by mass of triphenylphosphine was added, and an esterification reaction was carried out at 120 ° C. for 10 hours while blowing air to obtain an epoxy acrylate resin (X1).
  • the non-volatile content of the resin (4) having a polymerizable unsaturated group and a urethane bond was 62% by mass.
  • the number of moles of acrylic acid is 1.0 with respect to 1 mol of epoxy groups contained in the orthocresol novolak type epoxy resin, and the number of moles of isocyanate groups contained in the urethane-containing acrylate resin (1) is 0.4. Met.
  • the esterification reaction was carried out at 120 ° C. for 9 hours while blowing. Next, 222 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.05 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (10) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (10) having a polymerizable unsaturated group and a urethane bond was 62% by mass.
  • the number of moles of acrylic acid is 1.0 with respect to 1 mol of epoxy group contained in the phenol novolac type epoxy resin, and the number of moles of isocyanate group contained in the urethane-containing acrylate resin (1) is 0.4. there were.
  • the non-volatile content of the resin (11) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the naphthalene type epoxy resin, and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. rice field.
  • the non-volatile content of the resin (12) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.12. there were.
  • the non-volatile content of the resin (13) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.08. there were.
  • the non-volatile content of the resin (14) having a polymerizable unsaturated group and a urethane bond was 60% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.68. there were.
  • the non-volatile content of the resin (15) having a polymerizable unsaturated group and a urethane bond was 60% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.72. there were.
  • the non-volatile content of the resin (16) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (2) is 0.4. there were.
  • the non-volatile content of the resin (17) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (3) is 0.4. there were.
  • the non-volatile content of the resin (18) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (4) is 0.4. there were.
  • the non-volatile content of the resin (19) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (5) is 0.4. there were.
  • the non-volatile content of the resin (20) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (6) is 0.4. there were.
  • the non-volatile content of the resin (21) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (7) is 0.4. there were.
  • the number of moles of methacrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
  • Example 1 Preparation of active energy ray-curable resin composition (1)
  • the resin (1) having an acid group and a polymerizable unsaturated group obtained in Synthesis Example 1, the resin (3) having a polymerizable unsaturated group and a urethane bond obtained in Synthesis Example 11, and orthocresol novolac as a curing agent.
  • Type epoxy resin (“EPICLON N-680” manufactured by DIC Co., Ltd.), dipentaerythritol hexaacrylate, diethylene glycol monoethyl ether acetate, photopolymerization initiator (“Omnirad 907” manufactured by IGM Co., Ltd.), and 2-ethyl- 4-Methylimidazole and phthalocyanine green were blended in parts by mass shown in Tables 1 to 3 and kneaded with a roll mill to obtain an active energy ray-curable resin composition (1).
  • the evaluation results are shown in Tables 1 to 3.
  • Example 29 Preparation of active energy ray-curable resin composition (29)
  • Type epoxy resin (“EPICLON N-680” manufactured by DIC Co., Ltd.), 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one (IMnirad manufactured by IGM Resins) as a photopolymerization initiator 907 ”) and diethylene glycol monomethyl ether acetate as an organic solvent were blended in parts by mass shown in Table 4 to obtain an active energy ray-curable resin composition (29).
  • Example 30 to 56 Preparation of active energy ray-curable resin compositions (30) to (56)
  • the active energy ray-curable resin compositions (30) to (56) were obtained in the same manner as in Example 29 with the compositions and formulations shown in Tables 4 to 6.
  • Curable resin compositions (R3) and (R4) were obtained in the same manner as in Example 29 with the compositions and formulations shown in Table 6.
  • test piece 1 The active energy ray-curable resin composition obtained in Examples and Comparative Examples was applied onto a copper foil (manufactured by Furukawa Sangyo Co., Ltd., electrolytic copper foil "F2-WS" 18 ⁇ m) with a 50 ⁇ m applicator, and a metal halide lamp was used. After irradiating with ultraviolet rays of 10 kJ / m 2 , it was heated at 160 ° C. for 1 hour. The cured product was peeled off from the copper foil to obtain a test piece 1 (cured product).
  • ⁇ Tensile test> The test piece 1 was cut into a size of 10 mm ⁇ 80 mm, and a tensile test was performed on the test piece 1 under the following measurement conditions using a precision universal testing machine Autograph “AG-IS” manufactured by Shimadzu Corporation. The elongation (%) and elastic modulus (MPa) until the test piece broke were measured and evaluated according to the following criteria.
  • Measurement conditions temperature 23 ° C, humidity 50%, distance between marked lines 20 mm, distance between fulcrums 20 mm, tensile speed 10 mm / min
  • the substrate adhesion was evaluated by measuring the peel strength.
  • ⁇ Preparation of test piece 2> The active energy ray-curable resin composition obtained in Examples and Comparative Examples was applied onto a copper foil (manufactured by Furukawa Sangyo Co., Ltd., electrolytic copper foil "F2-WS" 18 ⁇ m) with a 50 ⁇ m applicator, and a metal halide lamp was used. After irradiating with ultraviolet rays of 10 kJ / m 2 , the test piece 2 was obtained by heating at 160 ° C. for 1 hour.
  • the test piece 2 was cut into a size of 1 cm in width and 12 cm in length, and the 90 ° peel strength was measured using a peeling tester (“A & D Tensilon” manufactured by A & D Co., Ltd., peeling speed 50 mm / min). Evaluated according to.
  • the description of the mass part of the resin having an acid group and a polymerizable unsaturated group, the polymerizable unsaturated group and the resin having a urethane bond in Tables 1 to 6 is a solid content value.
  • “Curing agent” in Tables 1 to 6 indicates an orthocresol novolak type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation).
  • Organic solvent in Tables 1 to 6 indicates diethylene glycol monomethyl ether acetate.
  • Photopolymerization initiator in Tables 1 to 6 indicates “Omnirad-907” manufactured by IGM Resins.
  • Examples 1 to 28 shown in Tables 1 to 3 are examples of the active energy ray-curable resin composition of the present invention. It was confirmed that these active energy ray-curable resin compositions have excellent alkali developability.
  • Examples 29 to 56 shown in Tables 4 to 6 are examples of the active energy ray-curable resin composition of the present invention. It was confirmed that the cured product of these active energy ray-curable resin compositions had excellent elongation, elasticity and adhesion.
  • Comparative Example 1 is an example of an active energy ray-curable resin composition that does not use a resin having a polymerizable unsaturated group and a urethane bond specified in the present invention. It was confirmed that this active energy ray-curable resin composition had insufficient alkali developability.
  • Comparative Example 2 is an example of an active energy ray-curable resin composition that does not use a resin having an acid group and a polymerizable unsaturated group specified in the present invention. It was confirmed that this active energy ray-curable resin composition had insufficient alkali developability.
  • Comparative Example 3 is an example of an active energy ray-curable resin composition which does not use a resin having a polymerizable unsaturated group and a urethane bond defined in the present invention as in Comparative Example 1. It was confirmed that this active energy ray-curable resin composition was remarkably insufficient in elongation, elasticity and substrate adhesion.
  • Comparative Example 4 is an example of an active energy ray-curable resin composition that does not use a resin having an acid group and a polymerizable unsaturated group specified in the present invention as in Comparative Example 2. It was confirmed that this active energy ray-curable resin composition was remarkably insufficient in elongation, elasticity and substrate adhesion.

Abstract

The present invention provides an active energy ray-curable resin composition comprising a resin (A) that has an acid group and a polymerizable unsaturated group and a resin (B) that is other than the resin (A) and has a polymerizable unsaturated group and a urethane bond, said active energy ray-curable resin composition being characterized in that the resin (B) comprises, as essential starting materials, an epoxy resin (b1), an unsaturated monobasic acid (b2), a (meth)acrylate compound (b3) having a hydroxyl group and a compound (b4) having an isocyanate group. This active energy ray-curable resin composition has excellent alkali developability and a cured product thereof shows excellent elongation, high elasticity and good adhesion to a base material.

Description

活性エネルギー線硬化性樹脂組成物、硬化物、絶縁材料及びレジスト部材Active energy ray curable resin composition, cured product, insulating material and resist member
 本発明は、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物、硬化物、絶縁材料及びレジスト部材に関する。 The present invention relates to an active energy ray-curable resin composition, a cured product, an insulating material, and a resist member, which have excellent alkali developability and excellent elongation, elasticity, and substrate adhesion in a cured product.
 近年、プリント配線基板用のソルダーレジスト用樹脂材料には、エポキシ樹脂をアクリル酸でアクリレート化した後、酸無水物を反応させて得られる酸基含有エポキシアクリレート樹脂が広く用いられている。ソルダーレジスト用樹脂材料に対する要求性能は、少ない露光量で硬化すること、アルカリ現像性に優れること、硬化物における耐熱性や強度、柔軟性、伸び、誘電特性、基材密着性等に優れることなど様々なものが挙げられる。 In recent years, an acid group-containing epoxy acrylate resin obtained by reacting an epoxy resin with acrylic acid and then reacting with an acid anhydride has been widely used as a resin material for a solder resist for a printed wiring substrate. The required performance for the resin material for solder resist is that it cures with a small exposure amount, it has excellent alkali developability, and it has excellent heat resistance, strength, flexibility, elongation, dielectric properties, substrate adhesion, etc. in the cured product. Various things can be mentioned.
 従来知られているソルダーレジスト用樹脂材料としては、ノボラック型エポキシ樹脂と不飽和モノカルボン酸との反応物と、飽和または不飽和多塩基酸無水物とを反応させて得られる活性エネルギー線硬化性樹脂が知られているが(例えば、下記特許文献1参照。)、伸度及び基材密着性においては今後ますます高まる要求特性を満足するものではなく、昨今の市場要求に対し十分なものではなかった。 As a conventionally known resin material for solder resist, active energy ray curable obtained by reacting a reaction product of a novolak type epoxy resin and an unsaturated monocarboxylic acid with a saturated or unsaturated polybasic acid anhydride. Although resins are known (see, for example, Patent Document 1 below), they do not satisfy the ever-increasing requirements for elongation and substrate adhesion, and are not sufficient for the recent market requirements. There wasn't.
 そこで、優れたアルカリ現像性を有し、硬化物における伸度、弾性及び基材密着性により一層優れた材料が求められていた。 Therefore, there has been a demand for a material that has excellent alkali developability and is more excellent in elongation, elasticity, and substrate adhesion in the cured product.
特開昭61-243869号公報Japanese Unexamined Patent Publication No. 61-243869
 本発明が解決しようとする課題は、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物、硬化物、絶縁材料及びレジスト部材を提供することである。 The problem to be solved by the present invention is an active energy ray-curable resin composition, a cured product, an insulating material, which has excellent alkali developability and excellent elongation, elasticity, and substrate adhesion in a cured product. It is to provide a resist member.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、酸基及び重合性不飽和基を有する樹脂と重合性不飽和基及びウレタン結合を有する樹脂とを含有する活性エネルギー線硬化性樹脂組成物を用いることによって、上記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have made an active energy ray-curable resin containing a resin having an acid group and a polymerizable unsaturated group and a resin having a polymerizable unsaturated group and a urethane bond. We have found that the above problems can be solved by using the composition, and have completed the present invention.
 すなわち、本発明は、酸基及び重合性不飽和基を有する樹脂(A)と、前記樹脂(A)以外の重合性不飽和基及びウレタン結合を有する樹脂(B)とを含有する活性エネルギー線硬化性樹脂組成物であって、前記樹脂(B)が、エポキシ樹脂(b1)、不飽和一塩基酸(b2)、水酸基を有する(メタ)アクリレート化合物(b3)、及びイソシアネート基を有する化合物(b4)とを必須原料とするものであることを特徴とする活性エネルギー線硬化性樹脂組成物、硬化物、絶縁材料及びレジスト部材に関するものである。 That is, the present invention is an active energy ray containing a resin (A) having an acid group and a polymerizable unsaturated group, and a resin (B) having a polymerizable unsaturated group and a urethane bond other than the resin (A). A curable resin composition in which the resin (B) has an epoxy resin (b1), an unsaturated monobasic acid (b2), a (meth) acrylate compound (b3) having a hydroxyl group, and a compound having an isocyanate group (b3). It relates to an active energy ray-curable resin composition, a cured product, an insulating material and a resist member, which are characterized by using b4) as an essential raw material.
 本発明の活性エネルギー線硬化性樹脂組成物は、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有することから、絶縁材料及びレジスト部材に好適に用いることができる。なお、本発明でいう「優れた弾性」とは、低弾性率のことを云う。 The active energy ray-curable resin composition of the present invention has excellent alkali developability, and has excellent elongation, elasticity, and substrate adhesion in the cured product, and is therefore suitably used for insulating materials and resist members. be able to. The "excellent elasticity" in the present invention means a low elastic modulus.
 本発明の活性エネルギー線硬化性樹脂組成物は、酸基及び重合性不飽和基を有する樹脂(A)と、前記樹脂(A)以外の重合性不飽和基及びウレタン結合を有する樹脂(B)とを必須の反応原料とすることを特徴とする。 The active energy ray-curable resin composition of the present invention comprises a resin (A) having an acid group and a polymerizable unsaturated group, and a resin (B) having a polymerizable unsaturated group and a urethane bond other than the resin (A). It is characterized by using and as an essential reaction raw material.
 なお、本発明において、「(メタ)アクリレート」とは、アクリレート及び/またはメタクリレートを意味する。また、「(メタ)アクリロイル」とは、アクリロイル及び/またはメタクリロイルを意味する。さらに、「(メタ)アクリル」とは、アクリル及び/またはメタクリルを意味する。 In the present invention, "(meth) acrylate" means acrylate and / or methacrylate. Further, "(meth) acryloyl" means acryloyl and / or methacryloyl. Further, "(meth) acrylic" means acrylic and / or methacrylic.
 前記酸基及び重合性不飽和基を有する樹脂(A)としては、樹脂中に酸基及び重合性不飽和基を有するものであれば何れでもよく、例えば、酸基及び重合性不飽和基を有するエポキシ樹脂、酸基及び重合性不飽和基を有するウレタン樹脂、酸基及び重合性不飽和基を有するアクリル樹脂、酸基及び重合性不飽和基を有するアミドイミド樹脂、酸基及び重合性不飽和基を有するアクリルアミド樹脂、酸基及び重合性不飽和基を有するエステル樹脂等が挙げられる。 The resin (A) having an acid group and a polymerizable unsaturated group may be any resin (A) having an acid group and a polymerizable unsaturated group in the resin, and for example, an acid group and a polymerizable unsaturated group may be used. Epoxy resin, urethane resin having acid group and polymerizable unsaturated group, acrylic resin having acid group and polymerizable unsaturated group, amidoimide resin having acid group and polymerizable unsaturated group, acid group and polymerizable unsaturated group. Examples thereof include an acrylamide resin having a group, an ester resin having an acid group and a polymerizable unsaturated group, and the like.
 前記酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。 Examples of the acid group include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
 前記重合性不飽和基としては、例えば、(メタ)アクリロイル基、アリル基、イソプロペニル基、1-プロぺニル基、スチリル基、スチリルメチル基、マレイミド基、ビニルエーテル基等が挙げられる。 Examples of the polymerizable unsaturated group include (meth) acryloyl group, allyl group, isopropenyl group, 1-propenyl group, styryl group, styrylmethyl group, maleimide group, vinyl ether group and the like.
 前記酸基及び重合性不飽和基を有するエポキシ樹脂としては、例えば、エポキシ樹脂、不飽和一塩基酸、及び多塩基酸無水物を必須原料とする酸基を有するエポキシ(メタ)アクリレート樹脂や、エポキシ樹脂、不飽和一塩基酸、多塩基酸無水物、ポリイソシアネート化合物、及び水酸基を有する(メタ)アクリレート化合物を反応原料とする酸基及びウレタン結合を有するエポキシ(メタ)アクリレート樹脂などが挙げられる。 Examples of the epoxy resin having an acid group and a polymerizable unsaturated group include an epoxy resin, an unsaturated monobasic acid, and an epoxy (meth) acrylate resin having an acid group using a polybasic acid anhydride as an essential raw material. Examples thereof include epoxy resins, unsaturated monobasic acids, polybasic acid anhydrides, polyisocyanate compounds, and epoxy (meth) acrylate resins having acid groups and urethane bonds using a (meth) acrylate compound having a hydroxyl group as a reaction raw material. ..
 前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂、オキサゾリドン型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも2種以上を併用することもできる。 Examples of the epoxy resin include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, and cresol. Novolak type epoxy resin, bisphenol novolak type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-shrink novolak type epoxy resin, naphthol-cresol co-shrink novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, Cyclopentadiene-phenol addition reaction type epoxy resin, biphenyl aralkyl type epoxy resin, fluorene type epoxy resin, xanthene type epoxy resin, dihydroxybenzene type epoxy resin, trihydroxybenzene type epoxy resin, oxazolidone type epoxy resin and the like can be mentioned. These epoxy resins can be used alone or in combination of two or more.
 前記ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールBP型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等が挙げられる。 Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy. Examples include resin.
 前記水添ビスフェノール型エポキシ樹脂としては、例えば、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールB型エポキシ樹脂、水添ビスフェノールE型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、水添ビスフェノールS型エポキシ樹脂等が挙げられる。 Examples of the hydrogenated bisphenol type epoxy resin include hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol B type epoxy resin, hydrogenated bisphenol E type epoxy resin, hydrogenated bisphenol F type epoxy resin, and hydrogenated bisphenol S type epoxy. Examples include resin.
 前記ビフェノール型エポキシ樹脂としては、例えば、4,4’-ビフェノール型エポキシ樹脂、2,2’-ビフェノール型エポキシ樹脂、テトラメチル-4,4’-ビフェノール型エポキシ樹脂、テトラメチル-2,2’-ビフェノール型エポキシ樹脂等が挙げられる。 Examples of the biphenol type epoxy resin include 4,4'-biphenol type epoxy resin, 2,2'-biphenol type epoxy resin, tetramethyl-4,4'-biphenol type epoxy resin, and tetramethyl-2,2'. -Biphenol type epoxy resin and the like can be mentioned.
 前記水添ビフェノール型エポキシ樹脂としては、例えば、水添4,4’-ビフェノール型エポキシ樹脂、水添2,2’-ビフェノール型エポキシ樹脂、水添テトラメチル-4,4’-ビフェノール型エポキシ樹脂、水添テトラメチル-2,2’-ビフェノール型エポキシ樹脂等が挙げられる。 Examples of the hydrogenated biphenol type epoxy resin include hydrogenated 4,4'-biphenol type epoxy resin, hydrogenated 2,2'-biphenol type epoxy resin, and hydrogenated tetramethyl-4,4'-biphenol type epoxy resin. , Hydrogenated tetramethyl-2,2'-biphenol type epoxy resin and the like.
 前記不飽和一塩基酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、桂皮酸、α-シアノ桂皮酸、β-スチリルアクリル酸、β-フルフリルアクリル酸等が挙げられる。また、前記不飽和一塩基酸のエステル化物、酸ハロゲン化物、酸無水物等も用いることができる。さらに、下記構造式(1)で表される化合物等も用いることができる。 Examples of the unsaturated monobasic acid include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, α-cyanocinnamic acid, β-styrylacrylic acid, β-flufurylacrylic acid and the like. Further, an esterified product of the unsaturated monobasic acid, an acid halide, an acid anhydride and the like can also be used. Further, a compound represented by the following structural formula (1) can also be used.
Figure JPOXMLDOC01-appb-C000001
[式(1)中、Xは、炭素数1~10のアルキレン鎖、ポリオキシアルキレン鎖、(ポリ)エステル鎖、芳香族炭化水素鎖、又は(ポリ)カーボネート鎖を表し、構造中にハロゲン原子やアルコキシ基等を有していても良い。Yは、水素原子又はメチル基である。]
Figure JPOXMLDOC01-appb-C000001
[In the formula (1), X represents an alkylene chain having 1 to 10 carbon atoms, a polyoxyalkylene chain, a (poly) ester chain, an aromatic hydrocarbon chain, or a (poly) carbonate chain, and a halogen atom in the structure. Or an alkoxy group or the like. Y is a hydrogen atom or a methyl group. ]
 前記ポリオキシアルキレン鎖としては、例えば、ポリオキシエチレン鎖、ポリオキシプロピレン鎖等が挙げられる。 Examples of the polyoxyalkylene chain include a polyoxyethylene chain and a polyoxypropylene chain.
 前記(ポリ)エステル鎖としては、例えば、下記構造式(2)で表される(ポリ)エステル鎖が挙げられる。 Examples of the (poly) ester chain include a (poly) ester chain represented by the following structural formula (2).
Figure JPOXMLDOC01-appb-C000002
[式(2)中、Rは、炭素原子数1~10のアルキレン基であり、nは1~5の整数である。]
Figure JPOXMLDOC01-appb-C000002
[In the formula (2), R 1 is an alkylene group having 1 to 10 carbon atoms, and n is an integer of 1 to 5. ]
 前記芳香族炭化水素鎖としては、例えば、フェニレン鎖、ナフチレン鎖、ビフェニレン鎖、フェニルナフチレン鎖、ビナフチレン鎖等が挙げられる。また、部分構造として、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環等の芳香環を有する炭化水素鎖も用いることができる。 Examples of the aromatic hydrocarbon chain include a phenylene chain, a naphthylene chain, a biphenylene chain, a phenylnaphthylene chain, and a binaphthylene chain. Further, as a partial structure, a hydrocarbon chain having an aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, or a phenanthrene ring can also be used.
 これらの不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 These unsaturated monobasic acids can be used alone or in combination of two or more.
 前記多塩基酸無水物としては、例えば、脂肪族多塩基酸無水物、脂環式多塩基酸無水物、芳香族多塩基酸無水物等が挙げられる。 Examples of the polybasic acid anhydride include an aliphatic polybasic acid anhydride, an alicyclic polybasic acid anhydride, and an aromatic polybasic acid anhydride.
 前記脂肪族多塩基酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸の酸無水物等が挙げられる。また、前記脂肪族多塩基酸無水物としては、脂肪族炭化水素基は直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。 Examples of the aliphatic polybasic acid anhydride include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid and itacone. Examples thereof include acid, glutaconic acid, and acid anhydrides of 1,2,3,4-butanetetracarboxylic acid. Further, as the aliphatic polybasic acid anhydride, the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
 前記脂環式多塩基酸無水物としては、本発明では、酸無水物基が脂環構造に結合しているものを脂環式多塩基酸無水物とし、それ以外の構造部位における芳香環の有無は問わないものとする。前記脂環式多塩基酸無水物としては、例えば、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸の酸無水物等が挙げられる。 As the alicyclic polybasic acid anhydride, in the present invention, an alicyclic polybasic acid anhydride having an acid anhydride group bonded to an alicyclic structure is used as an alicyclic polybasic acid anhydride, and the aromatic ring in other structural parts is used. It does not matter whether it is present or not. Examples of the alicyclic polybasic acid anhydride include tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, and bicyclo [2.2.1] heptane-2. 3-Dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetratetra-3-yl) -1,2,3,4-tetrahydronaphthalene- Examples thereof include acid anhydrides of 1,2-dicarboxylic acids.
 前記芳香族多塩基酸無水物としては、例えば、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸の酸無水物等が挙げられる。 Examples of the aromatic polybasic acid anhydride include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid and biphenyltetracarboxylic acid. Examples thereof include acid anhydrides of benzophenone tetracarboxylic acid.
 これらの多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 These polybasic acid anhydrides can be used alone or in combination of two or more.
 前記ポリイソシアネート化合物としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、o-トリジンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(3)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。また、これらのポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyisocyanate compound include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornan diisocyanate and isophorone diisocyanate. Alicyclic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalenedi isocyanate, 4,4'-diisocyanato-3 , 3'-Aromatic diisocyanate compounds such as dimethylbiphenyl and o-trizine diisocyanate; polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (3); these isocyanurate modified products, biuret modified products, Examples thereof include allophanate modified products. Further, these polyisocyanate compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000003
[式中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基であり、lは0又は1~3の整数であり、mは1~15の整数である。]
Figure JPOXMLDOC01-appb-C000003
[In the formula, R 1 is either a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, respectively. R 2 is an alkyl group having 1 to 4 carbon atoms independently, l is an integer of 0 or 1 to 3, and m is an integer of 1 to 15. ]
 前記水酸基を有する(メタ)アクリレート化合物としては、分子構造中に水酸基と(メタ)アクリロイル基とを有する化合物であれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。その一例としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトール(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパン(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等が挙げられる。また、前記各種の水酸基を有する(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体や、前記各種の水酸基を有する(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等も用いることができる。これらの水酸基を有する(メタ)アクリレート化合物は、単独で用いることも、2種以上を併用することもできる。 The (meth) acrylate compound having a hydroxyl group is not particularly limited as long as it is a compound having a hydroxyl group and a (meth) acryloyl group in its molecular structure, and a wide variety of compounds can be used. Examples thereof include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol (meth) acrylate, and pentaerythritol di (meth). ) Acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta Examples thereof include (meth) acrylate, ditrimethylolpropane (meth) acrylate, ditrimethylolpropane di (meth) acrylate, and ditrimethylolpropane tri (meth) acrylate. Further, a (poly) oxyalkylene chain such as a (poly) oxyethylene chain, a (poly) oxypropylene chain, or a (poly) oxytetramethylene chain was introduced into the molecular structure of the (meth) acrylate compound having various hydroxyl groups. A (poly) oxyalkylene modified product, a lactone modified product in which a (poly) lactone structure is introduced into the molecular structure of the (meth) acrylate compound having various hydroxyl groups, or the like can also be used. These (meth) acrylate compounds having a hydroxyl group may be used alone or in combination of two or more.
 前記酸基及び重合性不飽和基を有するエポキシ樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和基を有するエポキシ樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the epoxy resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the epoxy resin. In the production of the epoxy resin having an acid group and a polymerizable unsaturated group, it may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
 前記有機溶剤としては、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤;メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。また、前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計質量に対し0.1~5倍量程度の範囲で用いることが好ましい。 Examples of the organic solvent include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolan; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; toluene, xylene and solvent. Aromatic solvents such as naphtha; alicyclic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol and propylene glycol monomethyl ether; alkylene glycol monoalkyl ethers and dialkylene glycol monoalkyl ethers. , Glycol ether solvent such as dialkylene glycol monoalkyl ether acetate; methoxypropanol, cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate and the like. These organic solvents may be used alone or in combination of two or more. Further, the amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is good.
 前記塩基性触媒としては、例えば、N-メチルモルフォリン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミンもしくはジメチルベンジルアミン、ブチルアミン、オクチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イミダゾール、1-メチルイミダゾール、2,4-ジメチルイミダゾール、1,4-ジエチルイミダゾール、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、テトラメチルアンモニウムヒドロキシド等のアミン化合物;トリオクチルメチルアンモニウムクロライド、トリオクチルメチルアンモニウムアセテート等の四級アンモニウム塩;トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のホスフィン化合物;テトラメチルホスホニウムクロライド、テトラエチルホスホニウムクロライド、テトラプロピルホスホニウムクロライド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、トリメチル(2-ヒドロキシルプロピル)ホスホニウムクロライド、トリフェニルホスホニウムクロライド、ベンジルホスホニウムクロライド等のホスホニウム塩;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジオクチル錫ジアセテート、ジオクチル錫ジネオデカノエート、ジブチル錫ジアセテート、オクチル酸錫、1,1,3,3-テトラブチル-1,3-ドデカノイルジスタノキサン等の有機錫化合物;オクチル酸亜鉛、オクチル酸ビスマス等の有機金属化合物;オクタン酸錫等の無機錫化合物;無機金属化合物などが挙げられる。また、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等を用いることもできる。特にエポキシ樹脂合成反応の触媒活性に優れることからアルカリ金属水酸化物が好ましく、例えば、水酸化ナトリウム、水酸化カリウムがより好ましい。これらの塩基性触媒は、単独で用いることも2種以上を併用することもできる。なお、前記塩基性触媒の使用に際しては、10質量%~55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用してもよい。 Examples of the basic catalyst include N-methylmorpholin, pyridine, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonen-. 5 (DBN), 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine or dimethylbenzylamine, butylamine, octylamine, monoethanolamine, diethanolamine, triethanolamine, imidazole, 1 -Methylimidazole, 2,4-dimethylimidazole, 1,4-diethylimidazole, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, 3-( Amine compounds such as 2-aminoethyl) aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, and tetramethylammonium hydroxide; quaternary such as trioctylmethylammonium chloride and trioctylmethylammonium acetate. Ammonium salt; phosphine compounds such as trimethylphosphine, tributylphosphine, triphenylphosphine; tetramethylphosphonium chloride, tetraethylphosphonium chloride, tetrapropylphosphonium chloride, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, trimethyl (2-hydroxylpropyl) phosphonium chloride , Triphenylphosphonium chloride, phosphonium salts such as benzylphosphonium chloride; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dioctyltin diacetate, dioctyltin dineodecanoate, dibutyltin diacetate, tin octylate, 1 , 1,3,3-Tetrabutyl-1,3-Dodecanoyl dystanoxane and other organic tin compounds; Zinc octylate, bismuth octylate and other organic metal compounds; Inorganic tin compounds such as tin octanate; Inorganic metal compounds and the like Can be mentioned. Further, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydroxides and the like can also be used. In particular, alkali metal hydroxides are preferable because they are excellent in catalytic activity of the epoxy resin synthesis reaction, and for example, sodium hydroxide and potassium hydroxide are more preferable. These basic catalysts can be used alone or in combination of two or more. When using the basic catalyst, it may be used in the form of an aqueous solution of about 10% by mass to 55% by mass, or may be used in the form of a solid.
 前記酸基及び重合性不飽和基を有するウレタン樹脂としては、例えば、ポリイソシアネート化合物、水酸基を有する(メタ)アクリレート化合物、カルボキシル基を有するポリオール化合物、及び必要に応じて多塩基酸無水物、前記カルボキシル基を有するポリオール化合物以外のポリオール化合物とを反応させて得られたものや、ポリイソシアネート化合物、水酸基を有する(メタ)アクリレート化合物、多塩基酸無水物、及びカルボキシル基を有するポリオール化合物以外のポリオール化合物とを反応させて得られたもの等が挙げられる。 Examples of the urethane resin having an acid group and a polymerizable unsaturated group include a polyisocyanate compound, a (meth) acrylate compound having a hydroxyl group, a polyol compound having a carboxyl group, and, if necessary, a polybasic acid anhydride. Polyisocyanate compounds obtained by reacting with polyol compounds other than polyol compounds having a carboxyl group, polyisocyanate compounds, (meth) acrylate compounds having a hydroxyl group, polybasic acid anhydrides, and polyols other than polyol compounds having a carboxyl group. Examples thereof include those obtained by reacting with a compound.
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物として例示したものと同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 As the polyisocyanate compound, the same one as exemplified as the above-mentioned polyisocyanate compound can be used, and the polyisocyanate compound may be used alone or in combination of two or more.
 前記水酸基を有する(メタ)アクリレート化合物としては、上述の水酸基を有する(メタ)アクリレート化合物として例示したものと同様のものを用いることができ、前記水酸基を有する(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 As the (meth) acrylate compound having a hydroxyl group, the same compounds as those exemplified for the (meth) acrylate compound having a hydroxyl group can be used, and the (meth) acrylate compound having a hydroxyl group is used alone. It is also possible to use two or more kinds together.
 前記カルボキシル基を有するポリオール化合物としては、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール吉草酸等が挙げられる。前記カルボキシル基を有するポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyol compound having a carboxyl group include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolpropane valeric acid and the like. The polyol compound having a carboxyl group may be used alone or in combination of two or more.
 前記多塩基酸無水物としては、上述の多塩基酸無水物として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. You can also.
 前記カルボキシル基を有するポリオール化合物以外のポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の脂肪族ポリオール化合物;ビフェノール、ビスフェノール等の芳香族ポリオール化合物;前記各種のポリオール化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のポリオール化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。前記カルボキシル基を有するポリオール化合物以外のポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyol compound other than the polyol compound having a carboxyl group include aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol and dipentaerythritol. Aromatic polyol compounds such as biphenol and bisphenol; (poly) oxyalkylene chains such as (poly) oxyethylene chain, (poly) oxypropylene chain and (poly) oxytetramethylene chain in the molecular structure of the various polyol compounds. (Poly) oxyalkylene modified product in which (poly) lactone structure is introduced into the molecular structure of the various polyol compounds, and the like can be mentioned. The polyol compound other than the polyol compound having a carboxyl group may be used alone or in combination of two or more.
 前記酸基及び重合性不飽和基を有するウレタン樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和基を有するウレタン樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the urethane resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the urethane resin. In the production of the urethane resin having an acid group and a polymerizable unsaturated group, it may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
 前記酸基及び重合性不飽和基を有するアクリル樹脂としては、例えば、水酸基やカルボキシル基、イソシアネート基、グリシジル基等の反応性官能基を有する(メタ)アクリレート化合物(α)を必須の成分として重合させて得られるアクリル樹脂中間体に、これらの官能基と反応し得る反応性官能基を有する(メタ)アクリレート化合物(β)をさらに反応させることにより(メタ)アクリロイル基を導入して得られる反応生成物や、前記反応生成物中の水酸基に多塩基酸無水物を反応させて得られるもの等が挙げられる。 As the acrylic resin having an acid group and a polymerizable unsaturated group, for example, a (meth) acrylate compound (α) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group or a glycidyl group is polymerized as an essential component. A reaction obtained by introducing a (meth) acryloyl group by further reacting a (meth) acrylate compound (β) having a reactive functional group capable of reacting with these functional groups with the acrylic resin intermediate obtained by the above treatment. Examples thereof include products obtained by reacting a hydroxyl group in the reaction product with a polybasic acid anhydride.
 前記アクリル樹脂中間体は、前記(メタ)アクリレート化合物(α)の他、必要に応じてその他の重合性不飽和基を有する化合物を共重合させたものであってもよい。前記その他の重合性不飽和基を有する化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基を有する(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。 The acrylic resin intermediate may be a copolymer of the (meth) acrylate compound (α) and other compounds having a polymerizable unsaturated group, if necessary. The other compounds having a polymerizable unsaturated group include (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. ) Acrylic acid alkyl ester; alicyclic structure-containing (meth) acrylate such as cyclohexyl (meth) acrylate, isoboronyl (meth) acrylate, dicyclopentanyl (meth) acrylate; phenyl (meth) acrylate, benzyl (meth) acrylate, Aromatic ring-containing (meth) acrylates such as phenoxyethyl acrylate; (meth) acrylates having a silyl group such as 3-methacryloxypropyltrimethoxysilane; styrene derivatives such as styrene, α-methylstyrene and chlorostyrene can be mentioned. These can be used alone or in combination of two or more.
 前記(メタ)アクリレート化合物(β)は、前記(メタ)アクリレート化合物(α)が有する反応性官能基と反応し得るものであれば特に限定されないが、反応性の観点から以下の組み合わせであることが好ましい。即ち、前記(メタ)アクリレート化合物(α)として水酸基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてイソシアネート基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてカルボキシル基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてグリシジル基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてイソシアネート基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)として水酸基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてグリシジル基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてカルボキシル基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(β)は、単独で用いることも2種以上を併用することもできる。 The (meth) acrylate compound (β) is not particularly limited as long as it can react with the reactive functional group of the (meth) acrylate compound (α), but the combination is as follows from the viewpoint of reactivity. Is preferable. That is, when a (meth) acrylate having a hydroxyl group is used as the (meth) acrylate compound (α), it is preferable to use a (meth) acrylate having an isocyanate group as the (meth) acrylate compound (β). When a (meth) acrylate having a carboxyl group is used as the (meth) acrylate compound (α), it is preferable to use a (meth) acrylate having a glycidyl group as the (meth) acrylate compound (β). When a (meth) acrylate having an isocyanate group is used as the (meth) acrylate compound (α), it is preferable to use a (meth) acrylate having a hydroxyl group as the (meth) acrylate compound (β). When a (meth) acrylate having a glycidyl group is used as the (meth) acrylate compound (α), it is preferable to use a (meth) acrylate having a carboxyl group as the (meth) acrylate compound (β). The (meth) acrylate compound (β) can be used alone or in combination of two or more.
 前記多塩基酸無水物は、上述の多塩基酸無水物として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. can.
 前記酸基及び重合性不飽和基を有するアクリル樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和基を有するアクリル樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the acrylic resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the acrylic resin. In the production of the acrylic resin having an acid group and a polymerizable unsaturated group, it may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
 前記酸基及び重合性不飽和基を有するアミドイミド樹脂としては、例えば、酸基及び/又は酸無水物基を有するアミドイミド樹脂と、水酸基を有する(メタ)アクリレート化合物及び/又はエポキシ基を有する(メタ)アクリレート化合物と、必要に応じて、水酸基、カルボキシル基、イソシアネート基、グリシジル基、及び酸無水物基からなる群より選ばれる1種以上の反応性官能基を有する化合物を反応させて得られるものが挙げられる。なお、前記反応性官能基を有する化合物は、(メタ)アクリロイル基を有していてもよいし、有していなくてもよい。 Examples of the amideimide resin having an acid group and a polymerizable unsaturated group include an amideimide resin having an acid group and / or an acid anhydride group, and a (meth) acrylate compound having a hydroxyl group and / or an epoxy group (meth). ) A compound obtained by reacting an acrylate compound with a compound having one or more reactive functional groups selected from the group consisting of a hydroxyl group, a carboxyl group, an isocyanate group, a glycidyl group, and an acid anhydride group, if necessary. Can be mentioned. The compound having a reactive functional group may or may not have a (meth) acryloyl group.
 前記アミドイミド樹脂としては、酸基又は酸無水物基のどちらか一方のみを有するものであってもよいし、両方を有するものであってもよい。水酸基を有する(メタ)アクリレート化合物や(メタ)アクリロイル基を有するエポキシ化合物との反応性や反応制御の観点から、酸無水物基を有するものであることが好ましく、酸基と酸無水物基との両方を有するものであることがより好ましい。前記アミドイミド樹脂の固形分酸価は、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~350mgKOH/gの範囲であることが好ましい。他方、水の存在下等、酸無水物基を開環させた条件での測定値が61~360mgKOH/gの範囲であることが好ましい。 The amidimide resin may have only one of an acid group and an acid anhydride group, or may have both. From the viewpoint of reactivity with (meth) acrylate compounds having a hydroxyl group and epoxy compounds having a (meth) acryloyl group and reaction control, those having an acid anhydride group are preferable, and the acid group and the acid anhydride group are used. It is more preferable to have both of them. The solid acid value of the amideimide resin is preferably in the range of 60 to 350 mgKOH / g under neutral conditions, that is, under conditions where the acid anhydride group is not opened. On the other hand, the measured value under the condition that the acid anhydride group is opened, such as in the presence of water, is preferably in the range of 61 to 360 mgKOH / g.
 前記アミドイミド樹脂としては、例えば、ポリイソシアネート化合物と、多塩基酸無水物とを反応原料として得られるものが挙げられる。 Examples of the amidoimide resin include those obtained by using a polyisocyanate compound and a polybasic acid anhydride as reaction raw materials.
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物として例示したものと同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 As the polyisocyanate compound, the same one as exemplified as the above-mentioned polyisocyanate compound can be used, and the polyisocyanate compound may be used alone or in combination of two or more.
 前記多塩基酸無水物としては、上述の多塩基酸無水物として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. You can also.
 また、前記アミドイミド樹脂は、必要に応じて、前記ポリイソシアネート化合物及び多塩基酸無水物以外に、多塩基酸を反応原料として併用することもできる。 Further, as the amidoimide resin, a polybasic acid can be used as a reaction raw material in addition to the polyisocyanate compound and the polybasic acid anhydride, if necessary.
 前記多塩基酸としては、一分子中にカルボキシル基を2つ以上有する化合物であれば何れのものも用いることができる。例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。また、前記多塩基酸としては、例えば、共役ジエン系ビニルモノマーとアクリロニトリルとの共重合体であって、その分子中にカルボキシル基を有する重合体も用いることができる。これらの多塩基酸は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid, any compound having two or more carboxyl groups in one molecule can be used. For example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydro. Phthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2.2.1] heptane- 2,3-Dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetratetra-3-yl) -1,2,3,4-tetrahydro Naphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, biphenyltetracarboxylic acid, benzophenonetetracarboxylic acid and the like can be mentioned. Will be. Further, as the polybasic acid, for example, a copolymer of a conjugated diene-based vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used. These polybasic acids can be used alone or in combination of two or more.
 前記水酸基を有する(メタ)アクリレート化合物としては、上述の水酸基を有する(メタ)アクリレート化合物として例示したものと同様のものを用いることができ、前記水酸基を有する(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 As the (meth) acrylate compound having a hydroxyl group, the same compounds as those exemplified for the (meth) acrylate compound having a hydroxyl group can be used, and the (meth) acrylate compound having a hydroxyl group is used alone. It is also possible to use two or more kinds together.
 前記エポキシ基を有する(メタ)アクリレート化合物としては、分子構造中に(メタ)アクリロイル基とエポキシ基とを有するものであれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、エポキシシクロへキシルメチル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレートモノマー;ジヒドロキシベンゼンジグリシジルエーテル、ジヒドロキシナフタレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、ビスフェノールジグリシジルエーテル等のジグリシジルエーテル化合物のモノ(メタ)アクリレート化物等が挙げられる。これらのエポキシ基を有する(メタ)アクリレート化合物は、単独で用いることも、2種以上を併用することもできる。これらの中でも、優れたアルカリ現像性を有し、伸度、弾性及び基材密着性に優れた硬化物を形成可能な活性エネルギー線硬化性樹脂組成物が得られることから、エポキシ基を1つ有する(メタ)アクリレート化合物が好ましく、優れたアルカリ現像性を有し、優れた伸度、弾性及び基材密着性を有する硬化物を形成可能な活性エネルギー線硬化性樹脂組成物が得られることから、グリシジル基を有する(メタ)アクリレートモノマーが好ましい。また、前記グリシジル基を有する(メタ)アクリレートモノマーの分子量は500以下であることが好ましい。さらに、前記エポキシ基を有する(メタ)アクリレート化合物の総質量に対する前記グリシジル基を有する(メタ)アクリレートモノマーの割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。 The (meth) acrylate compound having an epoxy group is not particularly limited as long as it has a (meth) acryloyl group and an epoxy group in its molecular structure, and a wide variety of compounds can be used. can. For example, (meth) acrylate monomers having a glycidyl group such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and epoxycyclohexylmethyl (meth) acrylate; dihydroxybenzene diglycidyl ether, dihydroxynaphthalenedi glycidyl ether. , Mono (meth) acrylates of diglycidyl ether compounds such as biphenol diglycidyl ether and bisphenol diglycidyl ether. These epoxy group-containing (meth) acrylate compounds may be used alone or in combination of two or more. Among these, one epoxy group can be obtained because an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained. The (meth) acrylate compound having (meth) is preferable, and an active energy ray-curable resin composition capable of forming a cured product having excellent alkali developability, excellent elongation, elasticity, and substrate adhesion can be obtained. , A (meth) acrylate monomer having a glycidyl group is preferable. Further, the molecular weight of the (meth) acrylate monomer having a glycidyl group is preferably 500 or less. Further, the ratio of the (meth) acrylate monomer having a glycidyl group to the total mass of the (meth) acrylate compound having an epoxy group is preferably 70% by mass or more, and more preferably 90% by mass or more.
 前記酸基及び重合性不飽和基を有するアミドイミド樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和基を有するアミドイミド樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the amidoimide resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for production. In the production of the amidoimide resin having an acid group and a polymerizable unsaturated group, it may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
 前記酸基及び重合性不飽和基を有するアクリルアミド樹脂としては、例えば、フェノール性水酸基を有する化合物と、アルキレンオキサイド又はアルキレンカーボネートと、N-アルコキシアルキル(メタ)アクリルアミド化合物と、多塩基酸無水物と、必要に応じて不飽和一塩基酸とを反応させて得られたものが挙げられる。 Examples of the acrylamide resin having an acid group and a polymerizable unsaturated group include a compound having a phenolic hydroxyl group, an alkylene oxide or an alkylene carbonate, an N-alkoxyalkyl (meth) acrylamide compound, and a polybasic acid anhydride. , If necessary, those obtained by reacting with unsaturated monobasic acid can be mentioned.
 前記フェノール性水酸基を有する化合物としては、上述のフェノール性水酸基を有する化合物(a1)として例示したものと同様のものを用いることができ、前記フェノール性水酸基を有する化合物は、単独で用いることも2種以上を併用することもできる。 As the compound having a phenolic hydroxyl group, the same compound as exemplified as the above-mentioned compound having a phenolic hydroxyl group (a1) can be used, and the compound having the phenolic hydroxyl group can be used alone. It is also possible to use more than seeds together.
 前記アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、ペンチレンオキサイド等が挙げられる。これらの中でも、優れたアルカリ現像性を有し、伸度、弾性及び基材密着性に優れた硬化物を形成可能な活性エネルギー線硬化性樹脂組成物が得られることから、エチレンオキサイド又はプロピレンオキサイドが好ましい。前記アルキレンオキサイドは、単独で用いることも2種以上を併用することもできる。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, and pentylene oxide. Among these, ethylene oxide or propylene oxide can be obtained because an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained. Is preferable. The alkylene oxide can be used alone or in combination of two or more.
 前記アルキレンカーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネート等が挙げられる。これらの中でも、優れたアルカリ現像性を有し、伸度、弾性及び基材密着性に優れた硬化物を形成可能な活性エネルギー線硬化性樹脂組成物が得られることから、エチレンカーボネート又はプロピレンカーボネートが好ましい。前記アルキレンカーボネートは、単独で用いることも2種以上を併用することもできる。 Examples of the alkylene carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate and the like. Among these, since an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained, ethylene carbonate or propylene carbonate can be obtained. Is preferable. The alkylene carbonate can be used alone or in combination of two or more.
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物としては、例えば、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-ブトキシエチル(メタ)アクリルアミド等が挙げられる。前記N-アルコキシアルキル(メタ)アクリルアミド化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the N-alkoxyalkyl (meth) acrylamide compound include N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, and N-methoxyethyl (meth) acrylamide. , N-ethoxyethyl (meth) acrylamide, N-butoxyethyl (meth) acrylamide and the like. The N-alkoxyalkyl (meth) acrylamide compound may be used alone or in combination of two or more.
 前記多塩基酸無水物としては、上述の多塩基酸無水物として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. You can also.
 前記不飽和一塩基酸としては、上述の不飽和一塩基酸として例示したものと同様を用いることができ、前記不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 As the unsaturated monobasic acid, the same as those exemplified as the above-mentioned unsaturated monobasic acid can be used, and the unsaturated monobasic acid can be used alone or in combination of two or more. ..
 前記酸基及び重合性不飽和基を有するアクリルアミド樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和基を有するアクリルアミド樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒及び酸性触媒を用いてもよい。 The method for producing the acrylamide resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the acrylamide resin. In the production of the acrylamide resin having an acid group and a polymerizable unsaturated group, it may be carried out in an organic solvent if necessary, and a basic catalyst and an acidic catalyst may be used as necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。また、スルホニル基等の強酸を有する固体酸触媒等も用いることができる。これらの酸性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride and zinc chloride. And so on. Further, a solid acid catalyst having a strong acid such as a sulfonyl group can also be used. These acidic catalysts can be used alone or in combination of two or more.
 前記酸基及び重合性不飽和基を有するエステル樹脂としては、例えば、フェノール性水酸基を有する化合物と、アルキレンオキサイド又はアルキレンカーボネートと、不飽和一塩基酸と、多塩基酸無水物とを反応させて得られたものが挙げられる。 As the ester resin having an acid group and a polymerizable unsaturated group, for example, a compound having a phenolic hydroxyl group, an alkylene oxide or an alkylene carbonate, an unsaturated monobasic acid, and a polybasic acid anhydride are reacted with each other. The obtained ones can be mentioned.
 前記フェノール性水酸基を有する化合物としては、分子内にフェノール性水酸基を少なくとも1つ有する化合物をいう。前記分子内にフェノール性水酸基を少なくとも1つ有する化合物としては、例えば、下記構造式(4-1)~(4-5)で表される化合物が挙げられる。 The compound having a phenolic hydroxyl group means a compound having at least one phenolic hydroxyl group in the molecule. Examples of the compound having at least one phenolic hydroxyl group in the molecule include compounds represented by the following structural formulas (4-1) to (4-5).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記構造式(4-1)~(4-5)において、Rは、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、アリール基、ハロゲン原子の何れかであり、Rは、それぞれ独立して、水素原子またはメチル基である。また、pは、0または1以上の整数であり、好ましくは0または1~3の整数であり、より好ましくは0または1であり、さらに好ましくは0である。qは、1以上の整数であり、好ましくは、2または3である。なお、上記構造式における芳香環上の置換基の位置については、任意であり、例えば、構造式(4-2)のナフタレン環においてはいずれの環上に置換していてもよく、構造式(4-3)では、1分子中に存在するベンゼン環のいずれの環上に置換していてもよく、構造式(4-4)では、1分子中に存在するベンゼン環のいずれかの環上に置換していてもよく、構造式(4-5)では、1分子中に存在するベンゼン環のいずれかの環上に置換していてもよいことを示し、1分子中における置換基の個数がp及びqであることを示している。 In the structural formulas (4-1) to (4-5), R 1 is any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group, and a halogen atom. , R 2 are independently hydrogen atoms or methyl groups. Further, p is 0 or an integer of 1 or more, preferably an integer of 0 or 1 to 3, more preferably 0 or 1, and even more preferably 0. q is an integer of 1 or more, preferably 2 or 3. The position of the substituent on the aromatic ring in the above structural formula is arbitrary, and for example, in the naphthalene ring of the structural formula (4-2), it may be substituted on any ring, and the structural formula ( In 4-3), it may be substituted on any ring of the benzene ring present in one molecule, and in the structural formula (4-4), it may be substituted on any ring of the benzene ring present in one molecule. In the structural formula (4-5), it is shown that it may be substituted on any ring of the benzene ring present in one molecule, and the number of substituents in one molecule is indicated. Is shown to be p and q.
 また、前記フェノール性水酸基を有する化合物としては、例えば、分子内にフェノール性水酸基を少なくとも1つ有する化合物と下記構造式(x-1)~(x-5)の何れかで表される化合物とを必須の反応原料とする反応生成物なども用いることができる。また、分子内にフェノール性水酸基を少なくとも1つ有する化合物の1種又は2種以上を反応原料とするノボラック型フェノール樹脂なども用いることができる。 The compound having a phenolic hydroxyl group includes, for example, a compound having at least one phenolic hydroxyl group in the molecule and a compound represented by any of the following structural formulas (x-1) to (x-5). A reaction product or the like using the above as an essential reaction raw material can also be used. Further, a novolak type phenol resin or the like using one or more of compounds having at least one phenolic hydroxyl group in the molecule as a reaction raw material can also be used.
Figure JPOXMLDOC01-appb-C000005
[式(x-1)中、hは0または1である。式(x-2)~(x-5)中、Rは、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、アリール基、ハロゲン原子の何れかであり、iは、0または1~4の整数である。式(x-2)、(x-3)及び(x-5)中、Zは、ビニル基、ハロメチル基、ヒドロキシメチル基、アルキルオキシメチル基の何れかである。式(x-5)中、Yは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかであり、jは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000005
[In equation (x-1), h is 0 or 1. In the formulas (x-2) to (x-5), R 3 is any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group, and a halogen atom, and i. Is 0 or an integer from 1 to 4. In the formulas (x-2), (x-3) and (x-5), Z is any one of a vinyl group, a halomethyl group, a hydroxymethyl group and an alkyloxymethyl group. In the formula (x-5), Y is any of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group, and j is an integer of 1 to 4. ]
 これらのフェノール性水酸基を有する化合物は、単独で用いることも2種以上を併用することもできる。 These compounds having phenolic hydroxyl groups can be used alone or in combination of two or more.
 前記アルキレンオキサイドとしては、上述のアルキレンオキサイドとして例示したものと同様のものを用いることができる。これらの中でも、優れたアルカリ現像性を有し、伸度、弾性及び基材密着性に優れた硬化物を形成可能な活性エネルギー線硬化性樹脂組成物が得られることから、エチレンオキサイド又はプロピレンオキサイドが好ましい。前記アルキレンオキサイドは、単独で用いることも2種以上を併用することもできる。 As the alkylene oxide, the same ones as those exemplified as the above-mentioned alkylene oxide can be used. Among these, ethylene oxide or propylene oxide can be obtained because an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained. Is preferable. The alkylene oxide can be used alone or in combination of two or more.
 前記アルキレンカーボネートとしては、上述のアルキレンカーボネートとして例示したものと同様のものを用いることができる。これらの中でも、優れたアルカリ現像性を有し、伸度、弾性及び基材密着性に優れた硬化物を形成可能な活性エネルギー線硬化性樹脂組成物が得られることから、エチレンカーボネート又はプロピレンカーボネートが好ましい。前記アルキレンカーボネートは、単独で用いることも2種以上を併用することもできる。 As the alkylene carbonate, the same ones as those exemplified as the above-mentioned alkylene carbonate can be used. Among these, since an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained, ethylene carbonate or propylene carbonate can be obtained. Is preferable. The alkylene carbonate can be used alone or in combination of two or more.
 前記不飽和一塩基酸としては、上述の不飽和一塩基酸として例示したものと同様を用いることができ、前記不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 As the unsaturated monobasic acid, the same as those exemplified as the above-mentioned unsaturated monobasic acid can be used, and the unsaturated monobasic acid can be used alone or in combination of two or more. ..
 前記多塩基酸無水物としては、上述の多塩基酸無水物として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, the same ones as those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride may be used alone or in combination of two or more. You can also.
 前記酸基及び重合性不飽和基を有するエステル樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和基を有するエステル樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒及び酸性触媒を用いてもよい。 The method for producing the ester resin having the acid group and the polymerizable unsaturated group is not particularly limited, and any method may be used for producing the ester resin. In the production of the ester resin having an acid group and a polymerizable unsaturated group, it may be carried out in an organic solvent if necessary, or a basic catalyst and an acidic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
 前記酸性触媒としては、上述の酸性触媒として例示したものと同様のものを用いることができ、前記酸性触媒は、単独で用いることも2種以上を併用することもできる。 As the acidic catalyst, the same ones as those exemplified as the above-mentioned acidic catalyst can be used, and the acidic catalyst can be used alone or in combination of two or more.
 本発明の酸基及び重合性不飽和基を有する樹脂(A)の酸価は、優れたアルカリ現像性を有し、硬化物における伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、50~150mgKOH/gの範囲が好ましく、60~120mgKOH/gの範囲であることがより好ましい。なお、本願発明において酸基を有する(メタ)アクリレート樹脂の酸価はJIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the resin (A) having an acid group and a polymerizable unsaturated group of the present invention has excellent alkali developability, and is active energy ray curable having elongation, elasticity and substrate adhesion in a cured product. Since a resin composition can be obtained, the range of 50 to 150 mgKOH / g is preferable, and the range of 60 to 120 mgKOH / g is more preferable. In the present invention, the acid value of the (meth) acrylate resin having an acid group is a value measured by the neutralization titration method of JIS K0070 (1992).
 前記重合性不飽和基及びウレタン結合を有する樹脂(B)は、エポキシ樹脂(b1)、不飽和一塩基酸(b2)、水酸基を有する(メタ)アクリレート化合物(b3)、及びイソシアネート基を有する化合物(b4)とを必須原料とするものであることを特徴とする。なお、本発明において、酸基、重合性不飽和基、及びウレタン結合を有する樹脂は、前記樹脂(A)として扱う。 The resin (B) having a polymerizable unsaturated group and a urethane bond includes an epoxy resin (b1), an unsaturated monobasic acid (b2), a (meth) acrylate compound having a hydroxyl group (b3), and a compound having an isocyanate group. It is characterized in that (b4) is used as an essential raw material. In the present invention, the resin having an acid group, a polymerizable unsaturated group, and a urethane bond is treated as the resin (A).
 前記エポキシ樹脂(b1)としては、上述のエポキシ樹脂として例示したものと同様のものを用いることができ、前記エポキシ樹脂(b1)は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、ノボラック型エポキシ樹脂が好ましく、クレゾールノボラック型エポキシ樹脂がより好ましい。 As the epoxy resin (b1), the same ones as those exemplified as the above-mentioned epoxy resin can be used, and the epoxy resin (b1) can be used alone or in combination of two or more. Further, among these, a novolak type epoxy resin can be obtained because an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Preferably, a cresol novolac type epoxy resin is more preferable.
 前記エポキシ樹脂(b1)としては、軟化点が78℃以下であることが好ましく、50℃以上70℃以下の範囲がより好ましく、60℃以上70℃以下の範囲がより好ましい。なお、本発明において軟化点は、JIS K7234(1986)に準拠した方法で測定した値である。 The epoxy resin (b1) preferably has a softening point of 78 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower, and more preferably 60 ° C. or higher and 70 ° C. or lower. In the present invention, the softening point is a value measured by a method based on JIS K7234 (1986).
 前記不飽和一塩基酸(b2)としては、上述の不飽和一塩基酸として例示したものと同様のものを用いることができ、前記不飽和一塩基酸(b2)は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、アクリル酸、メタクリル酸が好ましい。 As the unsaturated monobasic acid (b2), the same ones as those exemplified as the above-mentioned unsaturated monobasic acid can be used, and the unsaturated monobasic acid (b2) can also be used alone. It is also possible to use more than seeds together. Further, among these, acrylic acid and methacrylic acid can be obtained because an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Is preferable.
 前記不飽和一塩基酸(b2)の使用量が、前記不飽和一塩基酸(b2)の有する酸基を基準として、前記エポキシ樹脂(b1)が有するエポキシ基1モルに対して、0.95~1.1モルの範囲が好ましく、0.95~1.05がより好ましい。 The amount of the unsaturated monobasic acid (b2) used is 0.95 with respect to 1 mol of the epoxy group of the epoxy resin (b1) based on the acid group of the unsaturated monobasic acid (b2). It is preferably in the range of ~ 1.1 mol, more preferably 0.95 to 1.05.
 前記水酸基を有する(メタ)アクリレート化合物(b3)としては、上述の水酸基を有する(メタ)アクリレート化合物として例示したものと同様のものを用いることができ、前記化合物(b3)は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、ヒドロキシエチル(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましい。 As the (meth) acrylate compound (b3) having a hydroxyl group, the same compound as those exemplified for the (meth) acrylate compound having a hydroxyl group can be used, and the compound (b3) may be used alone. Can also be used in combination of two or more. Further, among these, hydroxyethyl (meth) can be obtained because an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Acrylate, pentaerythritol di (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferable.
 前記化合物(b3)の使用量は、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、前記化合物(b3)の有する水酸基を基準として、後述するイソシアネート基を有する化合物(b4)が有するイソシアネート基1モルに対して、0.3~0.7モルの範囲が好ましく、0.4~0.6モルの範囲がより好ましい。 The amount of the compound (b3) used is such that an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Based on the hydroxyl group of the compound (b3), the range of 0.3 to 0.7 mol is preferable with respect to 1 mol of the isocyanate group of the compound (b4) having an isocyanate group described later, and 0.4 to 0. A range of 6 mol is more preferred.
 前記イソシアネート基を有する化合物(b4)としては、上述のポリイソシアネート化合物として例示したものと同様のものを用いることができ、前記化合物(b4)は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、脂肪族及び/または脂環式骨格を有するイソシアネート基を有する化合物が好ましく、脂環式骨格を有するイソシアネート基を有する化合物がより好ましく、イソホロンジイソシアネートがより好ましい。 As the compound (b4) having an isocyanate group, the same compounds as those exemplified as the above-mentioned polyisocyanate compound can be used, and the compound (b4) may be used alone or in combination of two or more. You can also. Further, among these, an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained, and thus an aliphatic and / or an aliphatic and / or a substrate can be obtained. A compound having an isocyanate group having an alicyclic skeleton is preferable, a compound having an isocyanate group having an alicyclic skeleton is more preferable, and isophorone diisocyanate is more preferable.
 前記化合物(b4)の使用量の使用量は、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、前記化合物(b4)の有するイソシアネート基を基準として、前記エポキシ樹脂(b1)が有するエポキシ基1モルに対して、0.1~0.7モルの範囲が好ましく、0.2~0.6モルの範囲がより好ましい。 The amount of the compound (b4) used is such that an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in a cured product can be obtained. Therefore, the range of 0.1 to 0.7 mol is preferable with respect to 1 mol of the epoxy group of the epoxy resin (b1), preferably 0.2 to 0, based on the isocyanate group of the compound (b4). A range of 6 mol is more preferred.
 前記樹脂(B)としては、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、(メタ)アクリロイル基及びイソシアネート基、並びにウレタン結合を有するものであることが好ましい。 As the resin (B), an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity, and substrate adhesion in a cured product can be obtained, and thus (meth). It preferably has an acryloyl group, an isocyanate group, and a urethane bond.
 前記樹脂(B)の製造方法としては、特に制限されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。 The method for producing the resin (B) is not particularly limited, and any method may be used for producing the resin (B). For example, it may be produced by a method of reacting all of the reaction raw materials at once, or by a method of sequentially reacting the reaction raw materials.
 前記反応原料の全てを一括で反応させる方法としては、例えば、エポキシ樹脂(b1)、不飽和一塩基酸(b2)、水酸基を有する(メタ)アクリレート化合物(b3)、とイソシアネート基を有する化合物(b4)を含む反応原料を、塩基性触媒の存在下、60~150℃の温度範囲で反応させる方法が挙げられる。 As a method for reacting all of the reaction raw materials at once, for example, an epoxy resin (b1), an unsaturated monobasic acid (b2), a (meth) acrylate compound having a hydroxyl group (b3), and a compound having an isocyanate group (b3) Examples thereof include a method of reacting a reaction raw material containing b4) in the presence of a basic catalyst in a temperature range of 60 to 150 ° C.
 前記反応原料を順次反応させる方法としては、予め、エポキシ樹脂(b1)と、不飽和一塩基酸(b2)とを、塩基性触媒の存在下、80~150℃の温度範囲で反応させて反応物(I)を得、また、水酸基を有する(メタ)アクリレート化合物(b3)、とイソシアネート基を有する化合物(b4)とを、塩基性触媒の存在下、50~120℃の温度範囲で反応させて反応物(II)を得たのち、反応物(I)と反応物(II)とを、塩基性触媒の存在下、50~150℃の温度範囲で反応させる方法等が挙げられる。 As a method for sequentially reacting the reaction raw materials, an epoxy resin (b1) and an unsaturated monobasic acid (b2) are previously reacted in the presence of a basic catalyst in a temperature range of 80 to 150 ° C. for reaction. The substance (I) is obtained, and the (meth) acrylate compound (b3) having a hydroxyl group and the compound (b4) having an isocyanate group are reacted in the presence of a basic catalyst in a temperature range of 50 to 120 ° C. After obtaining the reaction product (II), the reaction product (I) and the reaction product (II) are reacted in the presence of a basic catalyst in a temperature range of 50 to 150 ° C. and the like.
 これらの製造方法の中でも、優れたアルカリ現像性を有し、優れた伸度、弾性及び基材密着性を有する硬化物を形成可能な活性エネルギー線硬化性樹脂組成物が得られることから、反応原料を順次反応させる方法が好ましく、前記反応物(I)及び前記反応物(II)をそれぞれ得たのち、前記反応物(I)と前記反応物(II)とを反応させて製造する方法がより好ましい。 Among these production methods, an active energy ray-curable resin composition having excellent alkali developability and capable of forming a cured product having excellent elongation, elasticity and substrate adhesion can be obtained. Therefore, the reaction can be obtained. A method of sequentially reacting the raw materials is preferable, and a method of obtaining the reaction product (I) and the reaction product (II) and then reacting the reaction product (I) with the reaction product (II) to produce the reaction product (I) is preferable. More preferred.
 また、前記エポキシ樹脂(b1)と前記不飽和一塩基酸(b2)と前記水酸基を有する(メタ)アクリレート化合物(b3)と前記イソシアネート基を有する化合物(b4)との反応、前記エポキシ樹脂(b1)と前記不飽和一塩基酸(a2)との反応、前記水酸基を有する(メタ)アクリレート化合物(b3)と前記イソシアネート基を有する化合物(b4)との反応、並びに前記反応物(I)と前記反応物(II)との反応は、必要に応じて有機溶剤中で行うこともできる。 Further, a reaction between the epoxy resin (b1), the unsaturated monobasic acid (b2), the (meth) acrylate compound (b3) having a hydroxyl group, and the compound (b4) having an isocyanate group, the epoxy resin (b1). ) And the unsaturated monobasic acid (a2), the reaction of the (meth) acrylate compound (b3) having a hydroxyl group and the compound (b4) having the isocyanate group, and the reaction product (I) and the above. The reaction with the reaction product (II) can also be carried out in an organic solvent, if necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same catalysts as those exemplified as the above-mentioned basic catalyst can be used, and the basic catalyst may be used alone or in combination of two or more.
 前記塩基性触媒の使用量は、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、例えば、前記エポキシ樹脂(b1)と前記不飽和一塩基酸(b2)と前記水酸基を有する(メタ)アクリレート化合物(b3)と前記イソシアネート基を有する化合物(b4)との反応においては、前記エポキシ樹脂(b1)、前記不飽和一塩基酸(b2)、前記水酸基を有する(メタ)アクリレート化合物(b3)及び前記イソシアネート基を有する化合物(b4)の合計100質量部に対して、0.001~1.0質量部の範囲が好ましく、0.01~0.8の範囲がより好ましい。 The amount of the basic catalyst used is, for example, an active energy ray-curable resin composition having excellent alkali developability and excellent elongation, elasticity and substrate adhesion in the cured product. In the reaction between the epoxy resin (b1), the unsaturated monobasic acid (b2), the (meth) acrylate compound (b3) having a hydroxyl group, and the compound (b4) having an isocyanate group, the epoxy resin (b1) ), The unsaturated monobasic acid (b2), the (meth) acrylate compound (b3) having a hydroxyl group, and the compound (b4) having an isocyanate group, 0.001 to 1.0 with respect to a total of 100 parts by mass. The range of parts by mass is preferable, and the range of 0.01 to 0.8 is more preferable.
 前記樹脂(A)と、前記樹脂(B)との固形分の質量割合[(A)/(B)]は、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、95/5~50/50の範囲であるの範囲が好ましく、95/5~60/40の範囲がより好ましく、95/5~70/30の範囲がより好ましい。 The mass ratio of the solid content between the resin (A) and the resin (B) [(A) / (B)] has excellent alkali developability, and has excellent elongation, elasticity, and group in the cured product. Since an active energy ray-curable resin composition having material adhesion can be obtained, the range of 95/5 to 50/50 is preferable, the range of 95/5 to 60/40 is more preferable, and 95 / The range of 5 to 70/30 is more preferable.
 本発明の活性エネルギー線硬化性樹脂組成物の製造方法としては、特に制限されず、どのような方法にて製造してもよい。例えば、各配合成分を混合して製造する方法等が挙げらる。混合方法は特に限定されず、ペイントシェイカー、ディスパー、ロールミル、ビーズミル、ボールミル、アトライター、サンドミル、ビーズミル等を用いてもよい。 The method for producing the active energy ray-curable resin composition of the present invention is not particularly limited, and any method may be used for production. For example, a method of mixing and producing each compounding component can be mentioned. The mixing method is not particularly limited, and a paint shaker, a disper, a roll mill, a bead mill, a ball mill, an attritor, a sand mill, a bead mill and the like may be used.
 また、本発明の活性エネルギー線硬化性樹脂組成物は、用いる活性エネルギー線の種類によっては、光重合開始剤を用いることが好ましい。 Further, in the active energy ray-curable resin composition of the present invention, it is preferable to use a photopolymerization initiator depending on the type of active energy ray used.
 前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2’-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等の光ラジカル重合開始剤などが挙げられる。 Examples of the photopolymerization initiator include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-. Hydroxy-2-methyl-1-propane-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl (2,4,6-trimethoxybenzoyl) phosphenyl Oxide, 2,4,6-trimethylbenzoyldiphenylphosphenyl oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphenyl oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1- Examples thereof include photoradical polymerization initiators such as on, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone.
 前記その他の光重合開始剤の市販品としては、例えば、「Omnirad 1173」、「Omnirad 184」、「Omnirad 127」、「Omnirad 2959」、「Omnirad 369」、「Omnirad 379」、「Omnirad 907」、「Omnirad 4265」、「Omnirad 1000」、「Omnirad 651」、「Omnirad TPO」、「Omnirad 819」、「Omnirad 2022」、「Omnirad 2100」、「Omnirad 754」、「Omnirad 784」、「Omnirad 500」、「Omnirad 81」(IGM Resins社製);「KAYACURE DETX」、「KAYACURE MBP」、「KAYACURE DMBI」、「KAYACURE EPA」、「KAYACURE OA」(日本化薬株式会社製);「Vicure 10」、「Vicure 55」(Stoffa Chemical社製);「Trigonal P1」(Akzo Nobel社製)、「SANDORAY 1000」(SANDOZ社製);「DEAP」(Upjohn Chemical社製)、「Quantacure PDO」、「Quantacure ITX」、「Quantacure EPD」(Ward Blenkinsop社製);「Runtecure 1104」(Runtec社製)等が挙げられる。これらの光重合開始剤は、単独で用いることも、2種以上を併用することもできる。 Examples of commercially available products of the other photopolymerization initiators include "Omnirad 1173", "Omnirad 184", "Omnirad 127", "Omnirad 2959", "Omnirad 369", "Omnirad 379", "Omnirad 90". "Omnirad 4265", "Omnirad 1000", "Omnirad 651", "Omnirad TPO", "Omnirad 819", "Omnirad 2022", "Omnirad 2100", "Omnirad 2100", "Omnirad", "Omnirad", "Omnirad" "Omnirad 81" (manufactured by IGM Resins); "KAYACURE DETX", "KAYACURE MBP", "KAYACURE DMBI", "KAYACURE EPA", "KAYACURE OA" (manufactured by Nippon Kayaku Co., Ltd.); "Vicure" Visual 55 ”(Stoffa Chemical);“ Trigonal P1 ”(Akzo Nobel),“ SANDORAY 1000 ”(SANDOZ); , "Chemistry EPD" (manufactured by Ward Brenkinsop); "Runtecure 1104" (manufactured by Runtec) and the like. These photopolymerization initiators may be used alone or in combination of two or more.
 前記光重合開始剤の添加量は、例えば、活性エネルギー線硬化性樹脂組成物の溶剤以外の成分の合計中に0.05~15質量%の範囲であることが好ましく、0.1~10質量%の範囲であることがより好ましい。 The amount of the photopolymerization initiator added is preferably in the range of 0.05 to 15% by mass, preferably 0.1 to 10% by mass, in the total of the components other than the solvent of the active energy ray-curable resin composition, for example. More preferably, it is in the range of%.
 本発明の活性エネルギー線硬化性樹脂組成物は、前記樹脂(A)と前記樹脂(B)以外のその他の樹脂成分を含有しても良い。前記その他の樹脂成分としては、各種の(メタ)アクリレートモノマー等が挙げられる。なお、前記樹脂(A)及び前記樹脂(B)の合計の含有量は、優れたアルカリ現像性を有し、硬化物における優れた伸度、弾性及び基材密着性を有する活性エネルギー線硬化性樹脂組成物が得られることから、活性エネルギー線硬化性樹脂組成物の溶剤以外の成分の合計中10質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましく、50質量%以上が特に好ましい。 The active energy ray-curable resin composition of the present invention may contain other resin components other than the resin (A) and the resin (B). Examples of the other resin components include various (meth) acrylate monomers. The total content of the resin (A) and the resin (B) has excellent alkali developability, and has excellent elongation, elasticity, and substrate adhesion in the cured product, and has active energy ray curability. Since a resin composition can be obtained, 10% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, and 50% by mass, based on the total components other than the solvent of the active energy ray-curable resin composition. % Or more is particularly preferable.
 前記各種の(メタ)アクリレートモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した4官能以上の(ポリ)オキシアルキレン変性ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物などが挙げられる。 Examples of the various (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and hexyl (meth) acrylate, 2 -Alipid mono (meth) acrylate compounds such as ethylhexyl (meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate. Acrylate compounds; heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylbenzyl (meth) acrylate, phenoxy (meth) acrylate, Aromatic mono (meth) such as phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, and phenylphenoxyethyl (meth) acrylate. Mono (meth) acrylate compounds such as acrylate compounds: Polyoxy such as (poly) oxyethylene chain, (poly) oxypropylene chain, and (poly) oxytetramethylene chain in the molecular structure of the various mono (meth) acrylate monomers. A (poly) oxyalkylene-modified mono (meth) acrylate compound having an alkylene chain introduced; a lactone-modified mono (meth) acrylate compound having a (poly) lactone structure introduced into the molecular structure of the various mono (meth) acrylate compounds; ethylene. An aliphatic di (meth) acrylate compound such as glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, and neopentyl glycol di (meth) acrylate; 1,4-Cyclohexanedimethanol di (meth) acrylate, norbornandi (meth) acrylate, norbornan dimethanol di (meth) acrylate, dicyclopentanyldi (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, etc. Aroma of alicyclic di (meth) acrylate compound; biphenol di (meth) acrylate, bisphenol di (meth) acrylate, etc. Group di (meth) acrylate compounds; (poly) oxyalkylenes such as (poly) oxyethylene chains, (poly) oxypropylene chains, and (poly) oxytetramethylene chains in the molecular structure of the various di (meth) acrylate compounds. Polyoxyalkylene-modified di (meth) acrylate compound having a chain introduced; lactone-modified di (meth) acrylate compound having a (poly) lactone structure introduced into the molecular structure of the various di (meth) acrylate compounds; trimethylolpropane tri An aliphatic tri (meth) acrylate compound such as (meth) acrylate and glycerin tri (meth) acrylate; a (poly) oxyethylene chain, a (poly) oxypropylene chain, etc. in the molecular structure of the aliphatic tri (meth) acrylate compound. A (poly) oxyalkylene-modified tri (meth) acrylate compound introduced with a (poly) oxyalkylene chain such as a (poly) oxytetramethylene chain; a (poly) lactone structure in the molecular structure of the aliphatic tri (meth) acrylate compound. A lactone-modified tri (meth) acrylate compound in which Compound: A tetrafunctional chain in which a (poly) oxyalkylene chain such as a (poly) oxyethylene chain, a (poly) oxypropylene chain, or a (poly) oxytetramethylene chain is introduced into the molecular structure of the aliphatic poly (meth) acrylate compound. The above (poly) oxyalkylene-modified poly (meth) acrylate compound; a tetrafunctional or higher functional lactone-modified poly (meth) acrylate compound having a (poly) lactone structure introduced into the molecular structure of the aliphatic poly (meth) acrylate compound, or the like. Can be mentioned.
 また、前記その他の(メタ)アクリレートモノマーとしては、上述したものの他に、フェノール化合物と、環状カーボネート化合物又は環状エーテル化合物と、不飽和モノカルボン酸とを必須の反応原料とする(メタ)アクリレートモノマーを用いることができる。 Further, as the other (meth) acrylate monomer, in addition to the above-mentioned one, a (meth) acrylate monomer containing a phenol compound, a cyclic carbonate compound or a cyclic ether compound, and an unsaturated monocarboxylic acid as essential reaction raw materials. Can be used.
 前記フェノール化合物としては、例えば、クレゾール、キシレノール、カテコール、レゾルシノール、ヒドロキノン、3-メチルカテコール、4-メチルカテコール、4-アリルピロカテコール、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1-ナフトール、2-ナフトール、1,3-ナフタレンジオール、1,5-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、水添ビスフェノール、水添ビフェノール、ポリフェニレンエーテル型ジオール、ポリナフチレンエーテル型ジオール、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック型樹脂、ナフトールノボラック型樹脂、フェノールアラルキル型樹脂、ナフトールアラルキル型樹脂、シクロ環構造を有するフェノール樹脂等が挙げられる。 Examples of the phenol compound include cresol, xylenol, catechol, resorcinol, hydroquinone, 3-methylcatechol, 4-methylcatechol, 4-allylpyrocatechol, 1,2,3-trihydroxybenzene, 1,2,4-. Trihydroxybenzene, 1-naphthol, 2-naphthol, 1,3-naphthalenediol, 1,5-naphthalenediol, 2,6-naphthalenediol, 2,7-naphthalenediol, hydrogenated bisphenol, hydrogenated biphenol, polyphenylene ether Examples thereof include type diols, polynaphthylene ether type diols, phenol novolac resins, cresol novolak resins, bisphenol novolak type resins, naphthol novolak type resins, phenol aralkyl type resins, naphthol aralkyl type resins, phenol resins having a cycloring structure and the like.
 前記環状カーボネート化合物としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネート等が挙げられる。これらの環状カーボネート化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the cyclic carbonate compound include ethylene carbonate, propylene carbonate, butylene carbonate, and pentylene carbonate. These cyclic carbonate compounds may be used alone or in combination of two or more.
 前記環状エーテル化合物としては、例えば、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等が挙げられる。これらの環状エーテル化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the cyclic ether compound include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds may be used alone or in combination of two or more.
 前記不飽和モノカルボン酸としては、上述の不飽和一塩基酸(B)として例示したものと同様のものを用いることができる。 As the unsaturated monocarboxylic acid, the same one as exemplified as the unsaturated monocarboxylic acid (B) described above can be used.
 前記その他の(メタ)アクリレートモノマーの含有量は、本発明の活性エネルギー線硬化性樹脂組成物の不揮発分中に90質量%以下が好ましい。 The content of the other (meth) acrylate monomer is preferably 90% by mass or less in the non-volatile content of the active energy ray-curable resin composition of the present invention.
 また、本発明の活性エネルギー線硬化性樹脂組成物には、必要に応じて、硬化剤、硬化促進剤、紫外線吸収剤、重合禁止剤、酸化防止剤、有機溶剤、無機質充填材やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤を含有することもできる。 Further, the active energy ray-curable resin composition of the present invention may contain, if necessary, a curing agent, a curing accelerator, an ultraviolet absorber, a polymerization inhibitor, an antioxidant, an organic solvent, an inorganic filler or polymer fine particles. It can also contain various additives such as pigments, defoaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers.
 前記硬化剤としては、例えば、エポキシ樹脂、多塩基酸、不飽和一塩基酸、アミン化合物、アミド化合物、アゾ化合物、有機過酸化物、ポリオール化合物、エポキシ樹脂等が挙げられる。 Examples of the curing agent include epoxy resins, polybasic acids, unsaturated monobasic acids, amine compounds, amide compounds, azo compounds, organic peroxides, polyol compounds, and epoxy resins.
 前記エポキシ樹脂としては、上述のエポキシ樹脂として例示したものと同様のものを用いることができ、前記エポキシ樹脂は、単独で用いることも2種以上を併用することもできる。 As the epoxy resin, the same ones as those exemplified as the above-mentioned epoxy resin can be used, and the epoxy resin can be used alone or in combination of two or more.
 前記多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。また、前記多塩基酸としては、例えば、共役ジエン系ビニルモノマーとアクリロニトリルとの共重合体であって、その分子中にカルボキシル基を有する重合体も用いることができる。これらの多塩基酸は、単独で用いることも2種以上を併用することもできる。 Examples of the polybasic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, and terephthalic acid. , Tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2 .2.1] Heptane-2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetraxoxy-3-yl) -1, 2,3,4-Tetrahydronaphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, biphenyltetracarboxylic acid, Examples thereof include benzophenone tetracarboxylic acid. Further, as the polybasic acid, for example, a copolymer of a conjugated diene-based vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used. These polybasic acids can be used alone or in combination of two or more.
 前記不飽和一塩基酸としては、上述の不飽和一塩基酸として例示したものと同様のものを用いることができ、前記不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 As the unsaturated monobasic acid, the same ones as those exemplified as the above-mentioned unsaturated monobasic acid can be used, and the unsaturated monobasic acid may be used alone or in combination of two or more. You can also.
 前記アミン化合物としては、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体等が挙げられる。これらのアミン化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF3-amine complex, guanidine derivative and the like. These amine compounds may be used alone or in combination of two or more.
 前記アミド系化合物としては、例えば、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。これらのアミド化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the amide compound include a polyamide resin synthesized from a dimer of dicyandiamide and linolenic acid and ethylenediamine. These amide compounds may be used alone or in combination of two or more.
 前記アゾ化合物としては、例えば、アゾビスイソブチロニトリル等が挙げられる。 Examples of the azo compound include azobisisobutyronitrile.
 前記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート、アルキルパーオキシカーボネート等が挙げられる。これらの有機過酸化物は、単独で用いることも2種以上を併用することもできる。 Examples of the organic peroxide include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates, alkyl peroxycarbonates and the like. These organic peroxides can be used alone or in combination of two or more.
 前記ポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、グリセリン、グリセリンモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールメタンモノ(メタ)アクリレート、トリメチロールプロパン、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等のポリオールモノマー;前記ポリオールモノマーと、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、オルソフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,4-シクロヘキサンジカルボン酸等のジカルボン酸との共縮合によって得られるポリエステルポリオール;前記ポリオールモノマーと、ε-カプロラクトン、δ-バレロラクトン、3-メチル-δ-バレロラクトン等の種々のラクトンとの重縮合反応によって得られるラクトン型ポリエステルポリオール;前記ポリオールモノマーと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル等の環状エーテル化合物との開環重合によって得られるポリエーテルポリオールなどが挙げられる。これらのポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyol compound include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1, 5-Pentanediol, Neopentylglycol, 1,6-hexanediol, Glycerin, Glycerin mono (meth) acrylate, Trimethylol ethane, Trimethylol methanemono (meth) acrylate, Trimethylol propane, Trimethylol propane mono (meth) acrylate , Pentaerythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate and other polyol monomers; , Hexahydrophthalic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, polyester polyol obtained by cocondensation with dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid; , Δ-Valerolactone, 3-methyl-δ-Valerolactone and other lactone-type polyester polyols obtained by polycondensation reaction with various lactones; Examples thereof include a polyether polyol obtained by ring-opening polymerization with a cyclic ether compound such as ether. These polyol compounds may be used alone or in combination of two or more.
 前記エポキシ樹脂としては、上述のエポキシ樹脂として例示したものと同様のものを用いることができ、前記エポキシ樹脂は、単独で用いることも2種以上を併用することもできる。 As the epoxy resin, the same ones as those exemplified as the above-mentioned epoxy resin can be used, and the epoxy resin can be used alone or in combination of two or more.
 前記硬化促進剤としては、硬化反応を促進するものであり、例えば、リン系化合物、アミン系化合物、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらの硬化促進剤は、単独で用いることも2種以上を併用することもできる。また、前記硬化促進剤の添加量は、例えば、前記活性エネルギー線硬化性樹脂組成物の固形分中に0.01~10質量%の範囲で用いることが好ましい。 Examples of the curing accelerator include phosphorus-based compounds, amine-based compounds, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like, which promote the curing reaction. These curing accelerators can be used alone or in combination of two or more. The amount of the curing accelerator added is preferably in the range of 0.01 to 10% by mass in the solid content of the active energy ray-curable resin composition, for example.
 前記紫外線吸収剤としては、例えば、2-[4-{(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-{(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等のトリアジン誘導体、2-(2’-キサンテンカルボキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-o-ニトロベンジロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-キサンテンカルボキシ-4-ドデシロキシベンゾフェノン、2-o-ニトロベンジロキシ-4-ドデシロキシベンゾフェノン等が挙げられる。これらの紫外線吸収剤は、単独で用いることも2種以上を併用することもできる。 Examples of the ultraviolet absorber include 2- [4-{(2-hydroxy-3-dodecyloxypropyl) oxy} -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1. , 3,5-Triazine, 2- [4-{(2-Hydroxy-3-tridecyloxypropyl) oxy} -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, Triazine derivatives such as 3,5-triazine, 2- (2'-xanthencarboxy-5'-methylphenyl) benzotriazole, 2- (2'-o-nitrobenzyloxy-5'-methylphenyl) benzotriazole, 2 -Xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone and the like can be mentioned. These UV absorbers can be used alone or in combination of two or more.
 前記重合禁止剤としては、例えば、p-メトキシフェノール、p-メトキシクレゾール、4-メトキシ-1-ナフトール、4,4’-ジアルコキシ-2,2’-ビ-1-ナフトール、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、N’1,N’12-ビス(2-ヒドロキシベンゾイル)ドデカンジヒドラジド、スチレン化フェノール、N-イソプロピル-N’-フェニルベンゼン-1,4-ジアミン、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン等のフェノール化合物、ヒドロキノン、メチルヒドロキノン、p-ベンゾキノン、メチル-p-ベンゾキノン、2,5-ジフェニルベンゾキノン、2-ヒドロキシ-1,4-ナフトキノン、アントラキノン、ジフェノキノン等のキノン化合物、メラミン、p-フェニレンジアミン、4-アミノジフェニルアミン、N.N’-ジフェニル-p-フェニレンジアミン、N-i-プロピル-N’-フェニル-p-フェニレンジアミン、N-(1.3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、ジフェニルアミン、4,4’-ジクミル-ジフェニルアミン、4,4’-ジオクチル-ジフェニルアミン、ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)、スチレン化ジフェニルアミン、スチレン化ジフェニルアミンと2,4,4-トリメチルペンテンの反応生成物、ジフェニルアミンと2,4,4-トリメチルペンテンの反応生成物等のアミン化合物、フェノチアジン、ジステアリルチオジプロピオネート、2,2-ビス({[3-(ドデシルチオ)プロピオニル]オキシ}メチル)-1,3-プロパンジイル=ビス[3-(ドデシルチオ)プロピオナート]、ジトリデカン-1-イル=3,3’-スルファンジイルジプロパノアート等のチオエーテル化合物、N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、p-ニトロソフェノール、ニトロソベンゼン、p-ニトロソジフェニルアミン、α-ニトロソ-β-ナフトール等、N、N-ジメチルp-ニトロソアニリン、p-ニトロソジフェニルアミン、p-ニトロンジメチルアミン、p-ニトロン-N、N-ジエチルアミン、N-ニトロソエタノールアミン、N-ニトロソジ-n-ブチルアミン、N-ニトロソ-N-n-ブチル-4-ブタノールアミン、N-ニトロソ-ジイソプロパノールアミン、N-ニトロソ-N-エチル-4-ブタノールアミン、5-ニトロソ-8-ヒドロキシキノリン、N-ニトロソモルホリン、N-二トロソーN-フェニルヒドロキシルアミンアンモニウム塩、二トロソベンゼン、N-ニトロソ-N-メチル-p-トルエンスルホンアミド、N-ニトロソ-N-エチルウレタン、N-ニトロソ-N-n-プロピルウレタン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、1-ニトロソ-2-ナフトール-3,6-スルホン酸ナトリウム、2-ニトロソ-1-ナフトール-4-スルホン酸ナトリウム、2-ニトロソ-5-メチルアミノフェノール塩酸塩、2-ニトロソ-5-メチルアミノフェノール塩酸塩等のニトロソ化合物、リン酸とオクタデカン-1-オールのエステル、トリフェニルホスファイト、3,9-ジオクタデカン-1-イル-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、トリスノニルフェニルホスフィト、亜リン酸-(1-メチルエチリデン)-ジ-4,1-フェニレンテトラ-C12-15-アルキルエステル、2-エチルヘキシル=ジフェニル=ホスフィット、ジフェニルイソデシルフォスファイト、トリイソデシル=ホスフィット、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等のホスファイト化合物、ビス(ジメチルジチオカルバマト-κ(2)S,S’)亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチル・ジチオカルバミン酸亜鉛等の亜鉛化合物、ビス(N,N-ジブチルカルバモジチオアト-S,S’)ニッケル等のニッケル化合物、1,3-ジヒドロ-2H-ベンゾイミダゾール-2-チオン、4,6-ビス(オクチルチオメチル)-o-クレゾール、2-メチル-4,6-ビス[(オクタン-1-イルスルファニル)メチル]フェノール、ジラウリルチオジプロピオン酸エステル、3,3’-チオジプロピオン酸ジステアリル等の硫黄化合物などが挙げられる。これらの重合禁止剤は、単独で用いることも2種以上を併用することもできる。 Examples of the polymerization inhibitor include p-methoxyphenol, p-methoxycresol, 4-methoxy-1-naphthol, 4,4'-dialkoxy-2,2'-bi-1-naphthol, 3- (N). -Salicyloyl) amino-1,2,4-triazole, N'1, N'12-bis (2-hydroxybenzoyl) dodecanedihydrazide, styrenated phenol, N-isopropyl-N'-phenylbenzene-1,4-diamine , 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinone and other phenolic compounds, hydroquinone, methylhydroquinone, p-benzoquinone, methyl-p-benzoquinone, 2,5-diphenylbenzoquinone, 2-hydroxy- Quinone compounds such as 1,4-naphthoquinone, anthraquinone and diphenoquinone, melamine, p-phenylenediamine, 4-aminodiphenylamine, N.I. N'-diphenyl-p-phenylenediamine, N-i-propyl-N'-phenyl-p-phenylenediamine, N- (1.3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, diphenylamine, 4 , 4'-dicumyl-diphenylamine, 4,4'-dioctyl-diphenylamine, poly (2,2,4-trimethyl-1,2-dihydroquinoline), sylated diphenylamine, sylated diphenylamine and 2,4,4-trimethyl Penten reaction products, amine compounds such as diphenylamine and 2,4,4-trimethylpenten reaction products, phenothiazine, distearylthiodipropionate, 2,2-bis ({[3- (dodecylthio) propionyl] oxy } Methyl) -1,3-propanediyl = bis [3- (dodecylthio) propionate], ditridecane-1-yl = 3,3'-thioether compounds such as sulfandyl dipropanoate, N-nitrosodiphenylamine, N- Nitrosophenylnaphthylamine, p-nitrosophenol, nitrosobenzene, p-nitrosodiphenylamine, α-nitroso-β-naphthol, etc., N, N-dimethylp-nitrosoaniline, p-nitrosodiphenylamine, p-nitrosodimethylamine, p-nitron -N, N-diethylamine, N-nitrosoethanolamine, N-nitrosodi-n-butylamine, N-nitroso-Nn-butyl-4-butanolamine, N-nitroso-diisopropanolamine, N-nitroso-N- Ethyl-4-butanolamine, 5-nitroso-8-hydroxyquinoline, N-nitrosomorpholin, N-nitroso N-phenylhydroxylamine ammonium salt, ditrosobenzene, N-nitroso-N-methyl-p-toluenesulfonamide , N-nitroso-N-ethylurethane, N-nitroso-Nn-propyl urethane, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 1-nitroso-2-naphthol-3,6-sulfone Nitroso compounds such as sodium acid, 2-nitroso-1-naphthol-4-sulfonate sodium, 2-nitroso-5-methylaminophenol hydrochloride, 2-nitroso-5-methylaminophenol hydrochloride, phosphoric acid and octadecane- 1-ol ester, triphenylphosphite, 3,9-dioctadecane-1-yl-2,4,8,10-tetraoxa-3,9-diphosph Aspiro [5.5] undecane, trisnonylphenylphosphite, phosphite- (1-methylethylidene) -di-4,1-phenylenetetra-C12-15-alkyl ester, 2-ethylhexyl = diphenyl = phosfit, Phosphite compounds such as diphenylisodecylphosphite, triisodecyl-phosfit, tris (2,4-di-tert-butylphenyl) phosphite, bis (dimethyldithiocarbamato-κ (2) S, S') zinc, Zinc compounds such as zinc diethyldithiocarbamate, zinc dibutyl / dithiocarbamate, nickel compounds such as bis (N, N-dibutylcarbamodithioato-S, S') nickel, 1,3-dihydro-2H-benzoimidazole-2 -Thion, 4,6-bis (octylthiomethyl) -o-cresol, 2-methyl-4,6-bis [(octane-1-ylsulfanyl) methyl] phenol, dilaurylthiodipropionic acid ester, 3, Examples thereof include sulfur compounds such as distearyl thiodipropionate. These polymerization inhibitors may be used alone or in combination of two or more.
 前記酸化防止剤としては、前記重合禁止剤で例示した化合物と同様のものを用いることができ、前記酸化防止剤は、単独で用いることも2種以上を併用することもできる。 As the antioxidant, the same compounds as those exemplified for the polymerization inhibitor can be used, and the antioxidant may be used alone or in combination of two or more.
 また、前記重合禁止剤、及び前記酸化防止剤の市販品としては、例えば、和光純薬工業株式会社製「Q-1300」、「Q-1301」、住友化学株式会社製「スミライザーBBM-S」、「スミライザーGA-80が」等が挙げられる。 Examples of commercially available products of the polymerization inhibitor and the antioxidant include "Q-1300" and "Q-1301" manufactured by Wako Pure Chemical Industries, Ltd. and "Smilizer BBM-S" manufactured by Sumitomo Chemical Industries, Ltd. , "Smilizer GA-80 is" and the like.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same ones as those exemplified as the above-mentioned organic solvent can be used, and the organic solvent can be used alone or in combination of two or more.
 前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。 Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide and the like.
 前記顔料としては、公知慣用の無機顔料や有機顔料を使用することができる。 As the pigment, a known and commonly used inorganic pigment or organic pigment can be used.
 前記無機顔料としては、例えば、白色顔料、アンチモンレッド、ベンガラ、カドミウムレッド、カドミウムイエロー、コバルトブルー、紺青、群青、カーボンブラック、黒鉛等が挙げられる。これらの無機顔料は、単独で用いることも2種以上を併用することもできる。 Examples of the inorganic pigment include white pigment, antimony red, red iron oxide, cadmium red, cadmium yellow, cobalt blue, navy blue, ultramarine blue, carbon black, graphite and the like. These inorganic pigments can be used alone or in combination of two or more.
 前記白色顔料としては、例えば、酸化チタン,酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、硫酸バリウム、シリカ、タルク、マイカ、水酸化アルミニウム、ケイ酸カルシウム、ケイ酸アルミニウム、中空樹脂粒子、硫化亜鉛等が挙げられる。 Examples of the white pigment include titanium oxide, zinc oxide, magnesium oxide, zirconium oxide, aluminum oxide, barium sulfate, silica, talc, mica, aluminum hydroxide, calcium silicate, aluminum silicate, hollow resin particles, and zinc sulfide. And so on.
 前記有機顔料としては、例えば、キナクリドン顔料、キナクリドンキノン顔料、ジオキサジン顔料、フタロシアニン顔料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ペリレン顔料、ジケトピロロピロール顔料、ペリノン顔料、キノフタロン顔料、アントラキノン顔料、チオインジゴ顔料、ベンツイミダゾロン顔料、アゾ顔料等が挙げられる。これらの有機顔料は、単独で用いることも2種以上を併用することもできる。 Examples of the organic pigment include quinacridone pigment, quinacridone quinone pigment, dioxazine pigment, phthalocyanine pigment, anthrapyrimidine pigment, anthanthrone pigment, indanslon pigment, flavanthron pigment, perylene pigment, diketopyrrolopyrrole pigment, perinone pigment, and the like. Examples thereof include quinophthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments, and azo pigments. These organic pigments can be used alone or in combination of two or more.
 前記難燃剤としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム、リン酸アミド等の無機リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物;トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等の窒素系難燃剤;シリコーンオイル、シリコーンゴム、シリコーン樹脂等のシリコーン系難燃剤;金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等の無機難燃剤などが挙げられる。これらの難燃剤は、単独でも用いることも2種以上を併用することもできる。また、これら難燃剤を用いる場合は、全樹脂組成物中0.1~20質量%の範囲であることが好ましい。 Examples of the flame retardant include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphate such as ammonium polyphosphate, and inorganic phosphorus compounds such as phosphate amide; phosphoric acid ester compounds and phosphoruses. Acid compound, phosphinic acid compound, phosphin oxide compound, phosphoran compound, organonitrous-containing phosphorus compound, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxy) Cyclic organics such as phenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthren-10-oxide Organophosphorus compounds such as phosphorus compounds and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins; nitrogen-based flame retardants such as triazine compounds, cyanuric acid compounds, isocyanuric acid compounds and phenothiazine; silicone oils, silicone rubbers, Silicone-based flame retardants such as silicone resins; examples thereof include metal hydroxides, metal oxides, metal carbonate compounds, metal powders, boron compounds, and inorganic flame retardants such as low melting point glass. These flame retardants may be used alone or in combination of two or more. When these flame retardants are used, it is preferably in the range of 0.1 to 20% by mass in the total resin composition.
 本発明の硬化物は、前記活性エネルギー線硬化性樹脂組成物に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。 The cured product of the present invention can be obtained by irradiating the active energy ray-curable resin composition with active energy rays. Examples of the active energy ray include ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When ultraviolet rays are used as the active energy rays, they may be irradiated in an atmosphere of an inert gas such as nitrogen gas or in an air atmosphere in order to efficiently carry out the curing reaction by the ultraviolet rays.
 紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。 As a source of ultraviolet rays, an ultraviolet lamp is generally used from the viewpoint of practicality and economy. Specific examples thereof include low pressure mercury lamps, high pressure mercury lamps, ultrahigh pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, sunlight, LEDs and the like.
 前記活性エネルギー線の積算光量は、特に制限されないが、0.1~50kJ/mであることが好ましく、0.5~10kJ/mであることがより好ましい。積算光量が上記範囲であると、未硬化部分の発生の防止又は抑制ができることから好ましい。 The integrated light amount of the active energy rays is not particularly limited, but is preferably 0.1 to 50 kJ / m 2 , and more preferably 0.5 to 10 kJ / m 2 . When the integrated light amount is in the above range, it is preferable because the generation of the uncured portion can be prevented or suppressed.
 なお、前記活性エネルギー線の照射は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。 The irradiation of the active energy beam may be performed in one step or may be divided into two or more steps.
 また、本発明の硬化物は、優れたアルカリ現像性を有し、伸度、弾性及び基材密着性に優れることから、例えば、半導体デバイス用途における、ソルダーレジスト、層間絶縁材料、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や、集積回路素子と回路基板の接着層として好適に用いることができる。また、LCD、OELDに代表される薄型ディスプレイ用途における、薄膜トランジスタ保護膜、液晶カラーフィルタ保護膜、カラーフィルタ用顔料レジスト、ブラックマトリックス用レジスト、スペーサー等に好適に用いることができる。これらの中でも、特にソルダーレジスト用途に好適に用いることができる。 Further, since the cured product of the present invention has excellent alkali developability and is excellent in elongation, elasticity and substrate adhesion, for example, solder resist, interlayer insulating material, packaging material and undercoat in semiconductor device applications. It can be suitably used as a package adhesive layer for a fill material, a circuit element, or the like, or as an adhesive layer between an integrated circuit element and a circuit board. Further, it can be suitably used for a thin film transistor protective film, a liquid crystal color filter protective film, a pigment resist for a color filter, a resist for a black matrix, a spacer and the like in a thin display application typified by LCD and OELD. Among these, it can be particularly preferably used for solder resist applications.
 本発明のレジスト部材は、例えば、前記ソルダーレジスト用樹脂材料を基材上に塗布し、60~100℃程度の温度範囲で有機溶媒を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して活性エネルギー線にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140~200℃程度の温度範囲で加熱硬化させて得ることができる。 The resist member of the present invention is, for example, a photomask in which the resin material for solder resist is applied onto a substrate, an organic solvent is volatilized and dried in a temperature range of about 60 to 100 ° C., and then a desired pattern is formed. It can be obtained by exposing the unexposed portion with an alkaline aqueous solution, developing the unexposed portion with an alkaline aqueous solution, and further heating and curing the unexposed portion in a temperature range of about 140 to 200 ° C.
 前記基材としては、例えば、銅、アルミニウム等の金属張積層板などが挙げられる。 Examples of the base material include metal-clad laminates such as copper and aluminum.
 以下、実施例と比較例とにより、本発明を具体的に説明する。なお、本発明は、以下に挙げた実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the examples listed below.
(合成例1:酸基及び重合性不飽和基を有する樹脂(1)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート392質量部、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)(以下、「T-1890」と略記する。)244質量部、無水トリメリット酸192質量部、ジブチルヒドロキシトルエン1.0質量部を加えて溶解させた。窒素雰囲気下、160℃で5時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。酸無水物基非開環条件で測定した固形分酸価は160mgKOH/gであった。メトキノン0.3質量部、ペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックスM-306」、ペンタエリスリトールトリアクリレート含有量約67%、水酸基価159.7mgKOH/g)172質量部及びトリフェニルホスフィン3.6質量部を添加し、空気を吹き込みながら110℃で5時間反応させた。次いで、グリシジルメタクリレート163質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸112質量部、ジエチレングリコールモノメチルエーテルアセテート122質量部を加えて110℃で5時間反応させ、不揮発分が62質量%の酸基及び重合性不飽和基を有する樹脂(1)を得た。この酸基及び重合性不飽和基を有する樹脂(1)の固形分酸価は79mgKOH/gであった。なお、酸価は、JIS K 0070(1992)の中和滴定法に基づいて測定した値である。
(Synthesis Example 1: Preparation of resin (1) having an acid group and a polymerizable unsaturated group)
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 392 parts by mass of diethylene glycol monomethyl ether acetate, an isocyanurate-modified product of isophorone diisocyanate (“VESTANAT T-1890 / 100” manufactured by EVONIK Co., Ltd., isocyanate group content 17. 2% by mass) (hereinafter abbreviated as "T-1890") 244 parts by mass, 192 parts by mass of trimellitic anhydride and 1.0 part by mass of dibutylhydroxytoluene were added and dissolved. The reaction was carried out at 160 ° C. for 5 hours in a nitrogen atmosphere, and it was confirmed that the isocyanate group content was 0.1% by mass or less. The solid content acid value measured under the acid anhydride group non-ring-opening condition was 160 mgKOH / g. 0.3 parts by mass of methquinone, pentaerythritol polyacrylate mixture (“Aronix M-306” manufactured by Toagosei Co., Ltd., pentaerythritol triacrylate content of about 67%, hydroxyl value 159.7 mgKOH / g) 172 parts by mass and triphenylphosphine 3.6 parts by mass was added, and the mixture was reacted at 110 ° C. for 5 hours while blowing air. Then, 163 parts by mass of glycidyl methacrylate was added and reacted at 110 ° C. for 5 hours. Further, 112 parts by mass of succinic anhydride and 122 parts by mass of diethylene glycol monomethyl ether acetate were added and reacted at 110 ° C. for 5 hours to obtain a resin (1) having an acid group having a non-volatile content of 62% by mass and a polymerizable unsaturated group. rice field. The solid acid value of the resin (1) having the acid group and the polymerizable unsaturated group was 79 mgKOH / g. The acid value is a value measured based on the neutralization titration method of JIS K 0070 (1992).
(合成例2:酸基及び重合性不飽和基を有する樹脂(2)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート123質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂「EPICLON N-680」(DIC株式会社製、軟化点86℃、エポキシ当量:214g/eq、)(以下、「エポキシ樹脂(1)」と略記する)214質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.2質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら120℃で10時間反応を行なった。次いで、ジエチレングリコールモノメチルエーテルアセテート72質量部、テトラヒドロ無水フタル酸76質量部を加え110℃で3時間反応し、酸基及び重合性不飽和基を有する樹脂(2)を得た。この酸基及び重合性不飽和基を有する樹脂(2)の不揮発分は65質量%で、固形分酸価は80mgKOH/gであった。
(Synthesis Example 2: Preparation of Resin (2) Having Acid Group and Polymerizable Unsaturated Group)
Put 123 parts by mass of diethylene glycol monomethyl ether acetate in a flask equipped with a thermometer, a stirrer, and a reflux cooler, and orthocresol novolac type epoxy resin "EPICLON N-680" (manufactured by DIC Co., Ltd., softening point 86 ° C., epoxy). Equivalent amount: 214 g / eq,) (hereinafter abbreviated as "epoxy resin (1)") 214 parts by mass is dissolved, 0.9 parts by mass of dibutylhydroxytoluene and 0.2 parts by mass of methquinone are added, and then acrylic acid 72. A mass part and 1.4 parts by mass of triphenylphosphine were added, and the reaction was carried out at 120 ° C. for 10 hours while blowing air. Next, 72 parts by mass of diethylene glycol monomethyl ether acetate and 76 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 3 hours to obtain a resin (2) having an acid group and a polymerizable unsaturated group. The non-volatile content of the resin (2) having an acid group and a polymerizable unsaturated group was 65% by mass, and the solid content acid value was 80 mgKOH / g.
(合成例3:ウレタン含有アクリレート樹脂(1)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックス M-305」、水酸基価115mgKOH/g)(以下、「ペンタエリスリトールポリアクリレート混合物(1)」と略記する)486質量部、ジブチルヒドロキシトルエン0.2質量部、メトキノン0.2質量部、ジオクチル錫ジネオデカノエート(日東化成株式会社製「ネオスタン U-830」)(以下、「ジオクチル錫ジネオデカノエート(1)」と略記する))0.07質量部を仕込み、空気を吹き込みながら、70℃に昇温した。次いでイソホロンジイソシアネート222質量部を分割で添加し、70℃で4時間反応を行い、NCO%が5.9%のウレタン含有アクリレート樹脂(1)を得た。イソホロンジイソシアネートが有するイソシアネート基1モルに対して、ペンタエリスリトールポリアクリレート混合物の有する水酸基のモル数は0.5であった。
(Synthesis Example 3: Preparation of Urethane-Containing Acrylate Resin (1))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, a pentaerythritol polyacrylate mixture (“Aronix M-305” manufactured by Toa Synthetic Co., Ltd., hydroxyl value 115 mgKOH / g) (hereinafter, “pentaerythritol polyacrylate mixture” (hereinafter, “pentaerythritol polyacrylate mixture”) 1) ”) 486 parts by mass, dibutyl hydroxytoluene 0.2 parts by mass, methquinone 0.2 parts by mass, dioctyl tin dineodecanoate (“Neostan U-830” manufactured by Nitto Kasei Co., Ltd.) (hereinafter, (Abbreviated as "Dioctyl tin dineodecanoate (1)")) 0.07 parts by mass was charged, and the temperature was raised to 70 ° C. while blowing air. Next, 222 parts by mass of isophorone diisocyanate was added in portions and reacted at 70 ° C. for 4 hours to obtain a urethane-containing acrylate resin (1) having an NCO% of 5.9%. The number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.5 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
(合成例4:ウレタン含有アクリレート樹脂(2)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ペンタエリスリトールポリアクリレート混合物(1)292質量部、ジブチルヒドロキシトルエン0.2質量部、メトキノン0.2質量部、ジオクチル錫ジネオデカノエート(1)0.05質量部を仕込み、空気を吹き込みながら、70℃に昇温した。次いで、イソホロンジイソシアネート222質量部を分割で添加し、70℃で4時間反応を行い、NCO%が11.4%のウレタン含有アクリレート樹脂(2)を得た。イソホロンジイソシアネートが有するイソシアネート基1モルに対して、ペンタエリスリトールポリアクリレート混合物の有する水酸基のモル数は0.3であった。
(Synthesis Example 4: Preparation of Urethane-Containing Acrylate Resin (2))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, pentaerythritol polyacrylate mixture (1) 292 parts by mass, dibutyl hydroxytoluene 0.2 parts by mass, methquinone 0.2 parts by mass, dioctyl tin dineodecano Ate (1) 0.05 parts by mass was charged, and the temperature was raised to 70 ° C. while blowing air. Next, 222 parts by mass of isophorone diisocyanate was added in portions and reacted at 70 ° C. for 4 hours to obtain a urethane-containing acrylate resin (2) having an NCO% of 11.4%. The number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.3 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
(合成例5:ウレタン含有アクリレート樹脂(3)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ペンタエリスリトールポリアクリレート混合物(1)243質量部、ジブチルヒドロキシトルエン0.1質量部、メトキノン0.1質量部、ジオクチル錫ジネオデカノエート(1)0.05質量部を仕込み、空気を吹き込みながら、70℃に昇温した。次いで、イソホロンジイソシアネート222質量部を分割で添加し、70℃で3時間反応を行い、NCO%が13.5%のウレタン含有アクリレート樹脂(3)を得た。イソホロンジイソシアネートが有するイソシアネート基1モルに対して、ペンタエリスリトールポリアクリレート混合物の有する水酸基のモル数は0.25であった。
(Synthesis Example 5: Preparation of Urethane-Containing Acrylate Resin (3))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, pentaerythritol polyacrylate mixture (1) 243 parts by mass, dibutyl hydroxytoluene 0.1 parts by mass, methquinone 0.1 parts by mass, dioctyl tin dineodecano Ate (1) 0.05 parts by mass was charged, and the temperature was raised to 70 ° C. while blowing air. Next, 222 parts by mass of isophorone diisocyanate was added in portions and reacted at 70 ° C. for 3 hours to obtain a urethane-containing acrylate resin (3) having an NCO% of 13.5%. The number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.25 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
(合成例6:ウレタン含有アクリレート樹脂(4)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ペンタエリスリトールポリアクリレート混合物(1)681質量部、ジブチルヒドロキシトルエン0.3質量部、メトキノン0.3質量部、ジオクチル錫ジネオデカノエート(1)0.09質量部を仕込み、空気を吹き込みながら、70℃に昇温した。次いで、イソホロンジイソシアネート222質量部を分割で添加し、70℃で4時間反応を行い、NCO%が2.8%のウレタン含有アクリレート樹脂(4)を得た。イソホロンジイソシアネートが有するイソシアネート基1モルに対して、ペンタエリスリトールポリアクリレート混合物の有する水酸基のモル数は0.7であった。
(Synthesis Example 6: Preparation of Urethane-Containing Acrylate Resin (4))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, pentaerythritol polyacrylate mixture (1) 681 parts by mass, dibutylhydroxytoluene 0.3 parts by mass, methquinone 0.3 parts by mass, dioctyl tin dineodecano Ate (1) 0.09 part by mass was charged, and the temperature was raised to 70 ° C. while blowing air. Next, 222 parts by mass of isophorone diisocyanate was added in portions and reacted at 70 ° C. for 4 hours to obtain a urethane-containing acrylate resin (4) having an NCO% of 2.8%. The number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.7 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
(合成例7:ウレタン含有アクリレート樹脂(5)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ペンタエリスリトールポリアクリレート混合物(1)729質量部、ジブチルヒドロキシトルエン0.3質量部、メトキノン0.3質量部、ジオクチル錫ジネオデカノエート(1)0.1質量部を仕込み、空気を吹き込みながら、70℃に昇温した。次いで、イソホロンジイソシアネート222質量部を分割で添加し、70℃で4時間反応を行い、NCO%が2.2%のウレタン含有アクリレート樹脂(5)を得た。イソホロンジイソシアネートが有するイソシアネート基1モルに対して、ペンタエリスリトールポリアクリレート混合物の有する水酸基のモル数は0.75であった。
(Synthesis Example 7: Preparation of Urethane-Containing Acrylate Resin (5))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, pentaerythritol polyacrylate mixture (1) 729 parts by mass, dibutyl hydroxytoluene 0.3 parts by mass, methquinone 0.3 parts by mass, dioctyl tin dineodecano Ate (1) 0.1 part by mass was charged, and the temperature was raised to 70 ° C. while blowing air. Next, 222 parts by mass of isophorone diisocyanate was added in portions and reacted at 70 ° C. for 4 hours to obtain a urethane-containing acrylate resin (5) having an NCO% of 2.2%. The number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.75 with respect to 1 mole of the isocyanate group of isophorone diisocyanate.
(合成例8:ウレタン含有アクリレート樹脂(6)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ヒドロキシエチルアクリレート116質量部、ジブチルヒドロキシトルエン0.1質量部、メトキノン0.1質量部、ジオクチル錫ジネオデカノエート(1)0.03質量部を仕込み、空気を吹き込みながら、70℃に昇温した。次いで、イソホロンジイソシアネート222質量部を分割で添加し、70℃で4時間反応を行い、NCO%が21.9%のウレタン含有アクリレート樹脂(6)を得た。イソホロンジイソシアネートが有するイソシアネート基1モルに対して、ヒドロキシエチルアクリレートの有する水酸基のモル数は0.5であった。
(Synthesis Example 8: Preparation of Urethane-Containing Acrylate Resin (6))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 116 parts by mass of hydroxyethyl acrylate, 0.1 part by mass of dibutyl hydroxytoluene, 0.1 part by mass of methquinone, and dioctyl tin dineodecanoate (1) 0. A 03 part by mass was charged and the temperature was raised to 70 ° C. while blowing air. Next, 222 parts by mass of isophorone diisocyanate was added in portions and reacted at 70 ° C. for 4 hours to obtain a urethane-containing acrylate resin (6) having an NCO% of 21.9%. The number of moles of hydroxyl groups of hydroxyethyl acrylate was 0.5 with respect to 1 mole of isocyanate groups of isophorone diisocyanate.
(合成例9:ウレタン含有アクリレート樹脂(7)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ペンタエリスリトールポリアクリレート混合物(1)486質量部、ジブチルヒドロキシトルエン0.2質量部、メトキノン0.2質量部、ジオクチル錫ジネオデカノエート(1)0.07質量部を仕込み、空気を吹き込みながら、70℃に昇温した。次いで、m-キシリレンジイソシアナート(三井化学株式会社製「タケネート 500」)188質量部を分割で添加し、70℃で3時間反応を行い、NCO%が6.2%のウレタン含有アクリレート樹脂(7)を得た。m-キシリレンジイソシアナートが有するイソシアネート基1モルに対して、ペンタエリスリトールポリアクリレート混合物の有する水酸基のモル数は0.5であった。
(Synthesis Example 9: Preparation of Urethane-Containing Acrylate Resin (7))
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, pentaerythritol polyacrylate mixture (1) 486 parts by mass, dibutyl hydroxytoluene 0.2 parts by mass, methquinone 0.2 parts by mass, dioctyl tin dineodecano Ate (1) 0.07 parts by mass was charged, and the temperature was raised to 70 ° C. while blowing air. Next, 188 parts by mass of m-xylylene diisocyanate (“Takenate 500” manufactured by Mitsui Chemicals, Inc.) was added in portions, and the reaction was carried out at 70 ° C. for 3 hours to obtain a urethane-containing acrylate resin having an NCO% of 6.2%. 7) was obtained. The number of moles of hydroxyl groups of the pentaerythritol polyacrylate mixture was 0.5 with respect to 1 mol of isocyanate groups contained in m-xylylene diisocyanate.
(合成例10:重合性不飽和基及びウレタン結合を有する樹脂(1)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート123質量部を入れ、エポキシ樹脂(1)214質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.2質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート227質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(1)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(1)の不揮発分は62質量%であった。また、エポキシ樹脂(1)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 10: Preparation of resin (1) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 123 parts by mass of diethylene glycol monomethyl ether acetate was placed, 214 parts by mass of the epoxy resin (1) was dissolved, and 0.9 parts by mass of dibutylhydroxytoluene and 0. After adding 2 parts by mass, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Next, 227 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (1) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (1) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (1), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例11:重合性不飽和基及びウレタン結合を有する樹脂(2)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート121質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-673」、軟化点78℃、エポキシ当量:210g/eq、)210質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.2質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート227質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(2)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(2)の不揮発分は62質量%であった。また、オルソクレゾールノボラック型エポキシ樹脂が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 11: Preparation of resin (2) having a polymerizable unsaturated group and a urethane bond)
Put 121 parts by mass of diethylene glycol monomethyl ether acetate in a flask equipped with a thermometer, a stirrer, and a reflux cooler, and orthocresol novolac type epoxy resin (“EPICLON N-673” manufactured by DIC Co., Ltd., softening point 78 ° C., epoxy. Equivalent: 210 g / eq,) 210 parts by mass was dissolved, 0.8 parts by mass of dibutylhydroxytoluene and 0.2 parts by mass of methquinone were added, and then 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added. , The esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Next, 227 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (2) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (2) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of epoxy group contained in the orthocresol novolak type epoxy resin, and the number of moles of isocyanate group contained in the urethane-containing acrylate resin (1) is 0.4. Met.
(合成例12:重合性不飽和基及びウレタン結合を有する樹脂(3)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート120質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-665」、エポキシ当量:207g/eq、軟化点69℃)(以下、「エポキシ樹脂(2)」と略記する)207質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.2質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行い、エポキシアクリレート樹脂(X1)を得た。次いで、ジエチレングリコールモノメチルエーテルアセテート226質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(3)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(3)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 12: Preparation of Resin (3) Having Polymerizable Unsaturated Group and Urethane Bond)
120 parts by mass of diethylene glycol monomethyl ether acetate was placed in a flask equipped with a thermometer, a stirrer, and a reflux cooler, and an orthocresol novolac type epoxy resin (“EPICLON N-665” manufactured by DIC Co., Ltd., epoxy equivalent: 207 g / eq). , Softening point 69 ° C.) (hereinafter abbreviated as "epoxy resin (2)") 207 parts by mass is dissolved, 0.8 parts by mass of dibutylhydroxytoluene and 0.2 parts by mass of methquinone are added, and then 72 parts by mass of acrylic acid. A part, 1.4 parts by mass of triphenylphosphine was added, and an esterification reaction was carried out at 120 ° C. for 10 hours while blowing air to obtain an epoxy acrylate resin (X1). Next, 226 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (3) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (3) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例13:重合性不飽和基及びウレタン結合を有する樹脂(4)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート120質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-660」、エポキシ当量:207g/eq、軟化点65℃)207質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.2質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート226質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(4)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(4)の不揮発分は62質量%であった。また、オルソクレゾールノボラック型エポキシ樹脂が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 13: Preparation of resin (4) having a polymerizable unsaturated group and a urethane bond)
Put 120 parts by mass of diethylene glycol monomethyl ether acetate in a flask equipped with a thermometer, a stirrer, and a reflux cooler, and orthocresol novolac type epoxy resin (“EPICLON N-660” manufactured by DIC Co., Ltd., epoxy equivalent: 207 g / eq. , Softening point 65 ° C.) 207 parts by mass was dissolved, 0.8 parts by mass of dibutylhydroxytoluene and 0.2 parts by mass of methquinone were added, and then 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added. The esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Next, 226 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (4) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (4) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of epoxy groups contained in the orthocresol novolak type epoxy resin, and the number of moles of isocyanate groups contained in the urethane-containing acrylate resin (1) is 0.4. Met.
(合成例14:重合性不飽和基及びウレタン結合を有する樹脂(5)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート118質量部を入れ、エポキシ樹脂(2)207質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.2質量部加えた後、アクリル酸69質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら110℃で10時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート225質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(5)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(5)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、0.96であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 14: Preparation of resin (5) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 118 parts by mass of diethylene glycol monomethyl ether acetate was placed, 207 parts by mass of the epoxy resin (2) was dissolved, 0.8 parts by mass of dibutylhydroxytoluene, and 0. After adding 2 parts by mass, 69 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and the esterification reaction was carried out at 110 ° C. for 10 hours while blowing air. Next, 225 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (5) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (5) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 0.96 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例15:重合性不飽和基及びウレタン結合を有する樹脂(6)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート117質量部を入れ、エポキシ樹脂(2)207質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.2質量部加えた後、アクリル酸69質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら110℃で10時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート225質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(6)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(6)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、0.93であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 15: Preparation of resin (6) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 117 parts by mass of diethylene glycol monomethyl ether acetate was placed, 207 parts by mass of the epoxy resin (2) was dissolved, and 0.8 parts by mass of dibutylhydroxytoluene and 0. After adding 2 parts by mass, 69 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and the esterification reaction was carried out at 110 ° C. for 10 hours while blowing air. Next, 225 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (6) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (6) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 0.93 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例16:重合性不飽和基及びウレタン結合を有する樹脂(7)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート121質量部を入れ、エポキシ樹脂(2)207質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.2質量部加えた後、アクリル酸75質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら120℃で12時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート227質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(7)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(7)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.04であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 16: Preparation of Resin (7) Having Polymerizable Unsaturated Group and Urethane Bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 121 parts by mass of diethylene glycol monomethyl ether acetate was placed, 207 parts by mass of the epoxy resin (2) was dissolved, 0.8 parts by mass of dibutylhydroxytoluene, and 0. After adding 2 parts by mass, 75 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and the esterification reaction was carried out at 120 ° C. for 12 hours while blowing air. Next, 227 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (7) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (7) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.04 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例17:重合性不飽和基及びウレタン結合を有する樹脂(8)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート122質量部を入れ、エポキシ樹脂(2)207質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.2質量部加えた後、アクリル酸78.5質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら120℃で13時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート227質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(8)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(8)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.09であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 17: Preparation of Resin (8) Having Polymerizable Unsaturated Group and Urethane Bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 122 parts by mass of diethylene glycol monomethyl ether acetate was placed, 207 parts by mass of the epoxy resin (2) was dissolved, and 0.9 parts by mass of dibutylhydroxytoluene and 0. After adding 2 parts by mass, 78.5 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and an esterification reaction was carried out at 120 ° C. for 13 hours while blowing air. Next, 227 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (8) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (8) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.09 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例18:重合性不飽和基及びウレタン結合を有する樹脂(9)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート123質量部を入れ、エポキシ樹脂(2)207質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.2質量部加えた後、アクリル酸80.6質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら120℃で14時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート228質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(9)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(9)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.12であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 18: Preparation of Resin (9) Having Polymerizable Unsaturated Group and Urethane Bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 123 parts by mass of diethylene glycol monomethyl ether acetate was placed, 207 parts by mass of the epoxy resin (2) was dissolved, and 0.9 parts by mass of dibutylhydroxytoluene and 0. After adding 2 parts by mass, 80.6 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and an esterification reaction was carried out at 120 ° C. for 14 hours while blowing air. Next, 228 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (9) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (9) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.12 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例19:重合性不飽和基及びウレタン結合を有する樹脂(10)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート111質量部を入れ、フェノールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-770」、エポキシ当量:188g/eq、軟化点70℃)188質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.2質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.3質量部を添加し、空気を吹き込みながら120℃で9時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート222質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.05質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(10)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(10)の不揮発分は62質量%であった。また、フェノールノボラック型エポキシ樹脂が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 19: Preparation of resin (10) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 111 parts by mass of diethylene glycol monomethyl ether acetate was placed, and a phenol novolac type epoxy resin (“EPICLON N-770” manufactured by DIC Co., Ltd., epoxy equivalent: 188 g / eq, (Softening point 70 ° C.) 188 parts by mass was dissolved, 0.8 parts by mass of dibutylhydroxytoluene and 0.2 parts by mass of methquinone were added, then 72 parts by mass of acrylic acid and 1.3 parts by mass of triphenylphosphine were added, and air was added. The esterification reaction was carried out at 120 ° C. for 9 hours while blowing. Next, 222 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.05 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (10) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (10) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of epoxy group contained in the phenol novolac type epoxy resin, and the number of moles of isocyanate group contained in the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例20:重合性不飽和基及びウレタン結合を有する樹脂(11)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート119質量部を入れ、ナフタレン型エポキシ樹脂(DIC株式会社製「EPICLON HP-4770」、エポキシ当量:205g/eq、軟化点73℃)205質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.2質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を吹き込みながら110℃で12時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート226質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(11)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(11)の不揮発分は62質量%であった。また、ナフタレン型エポキシ樹脂が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 20: Preparation of Resin (11) Having Polymerizable Unsaturated Group and Urethane Bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 119 parts by mass of diethylene glycol monomethyl ether acetate was placed, and a naphthalene-type epoxy resin (“EPICLON HP-4770” manufactured by DIC Co., Ltd., epoxy equivalent: 205 g / eq, softened. (Point 73 ° C.) 205 parts by mass was dissolved, 0.8 parts by mass of dibutylhydroxytoluene and 0.2 parts by mass of methquinone were added, and then 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added to add air. The esterification reaction was carried out at 110 ° C. for 12 hours while blowing. Next, 226 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added, and air was blown into the mixture. The reaction was carried out at 80 ° C. for 8 hours to obtain a resin (11) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (11) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the naphthalene type epoxy resin, and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. rice field.
(合成例21:重合性不飽和基及びウレタン結合を有する樹脂(12)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート104質量部、合成例3で得たウレタン含有アクリレート樹脂(1)85.4質量部、ジオクチル錫ジネオデカノエート(1)0.04質量部を添加し、空気を吹き込みながら80℃で6時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(12)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(12)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.12であった。
(Synthesis Example 21: Preparation of resin (12) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 401 parts by mass of epoxy acrylate resin (X1), 104 parts by mass of diethylene glycol monomethyl ether acetate, and urethane-containing acrylate resin (1) 85.4 obtained in Synthesis Example 3. By mass, 0.04 part by mass of dioctyl tin dineodecanoate (1) was added, and the reaction was carried out at 80 ° C. for 6 hours while blowing air, and the resin having the desired polymerizable unsaturated group and urethane bond (12). ) Was obtained. The non-volatile content of the resin (12) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.12. there were.
(合成例22:重合性不飽和基及びウレタン結合を有する樹脂(13)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート86質量部、合成例3で得たウレタン含有アクリレート樹脂(1)57質量部、ジオクチル錫ジネオデカノエート(1)0.03質量部を添加し、空気を吹き込みながら80℃で5時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(13)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(13)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.08であった。
(Synthesis Example 22: Preparation of resin (13) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 401 parts by mass of epoxy acrylate resin (X1), 86 parts by mass of diethylene glycol monomethyl ether acetate, and 57 parts by mass of urethane-containing acrylate resin (1) obtained in Synthesis Example 3. , Dioctyl tin dineodecanoate (1) 0.03 part by mass was added, and the reaction was carried out at 80 ° C. for 5 hours while blowing air to obtain the resin (13) having the desired polymerizable unsaturated group and urethane bond. Obtained. The non-volatile content of the resin (13) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.08. there were.
(合成例23:重合性不飽和基及びウレタン結合を有する樹脂(14)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート389質量部、合成例3で得たウレタン含有アクリレート樹脂(1)484質量部、ジオクチル錫ジネオデカノエート(1)0.08質量部を添加し、空気を吹き込みながら80℃で10時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(14)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(14)の不揮発分は60質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.68であった。
(Synthesis Example 23: Preparation of resin (14) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 401 parts by mass of epoxy acrylate resin (X1), 389 parts by mass of diethylene glycol monomethyl ether acetate, and 484 parts by mass of urethane-containing acrylate resin (1) obtained in Synthesis Example 3. , Dioctyl tin dineodecanoate (1) 0.08 part by mass was added, and the reaction was carried out at 80 ° C. for 10 hours while blowing air to obtain the resin (14) having the desired polymerizable unsaturated group and urethane bond. Obtained. The non-volatile content of the resin (14) having a polymerizable unsaturated group and a urethane bond was 60% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.68. there were.
(合成例24:重合性不飽和基及びウレタン結合を有する樹脂(15)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート408質量部、合成例3で得たウレタン含有アクリレート樹脂(1)512.5質量部、ジオクチル錫ジネオデカノエート(1)0.08質量部を添加し、空気を吹き込みながら80℃で12時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(15)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(15)の不揮発分は60質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.72であった。
(Synthesis Example 24: Preparation of Resin (15) Having Polymerizable Unsaturated Group and Urethane Bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 401 parts by mass of epoxy acrylate resin (X1), 408 parts by mass of diethylene glycol monomethyl ether acetate, and urethane-containing acrylate resin (1) 512.5 obtained in Synthesis Example 3 By mass, 0.08 part by mass of dioctyl tin dineodecanoate (1) was added, and the reaction was carried out at 80 ° C. for 12 hours while blowing air, and the resin having the desired polymerizable unsaturated group and urethane bond (15). ) Was obtained. The non-volatile content of the resin (15) having a polymerizable unsaturated group and a urethane bond was 60% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.72. there were.
(合成例25:重合性不飽和基及びウレタン結合を有する樹脂(16)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート142質量部、合成例4で得たウレタン含有アクリレート樹脂(2)147.4質量部、ジオクチル錫ジネオデカノエート(1)0.04質量部を添加し、空気を吹き込みながら80℃で10時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(16)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(16)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(2)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 25: Preparation of Resin (16) Having Polymerizable Unsaturated Group and Urethane Bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 401 parts by mass of epoxy acrylate resin (X1), 142 parts by mass of diethylene glycol monomethyl ether acetate, and urethane-containing acrylate resin (2) 147.4 obtained in Synthesis Example 4. By mass, 0.04 part by mass of dioctyl tin dineodecanoate (1) was added, and the reaction was carried out at 80 ° C. for 10 hours while blowing air, and the resin having the desired polymerizable unsaturated group and urethane bond (16). ) Was obtained. The non-volatile content of the resin (16) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (2) is 0.4. there were.
(合成例26:重合性不飽和基及びウレタン結合を有する樹脂(17)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート128質量部、合成例5で得たウレタン含有アクリレート樹脂(3)124.4質量部、ジオクチル錫ジネオデカノエート(1)0.04質量部を添加し、空気を吹き込みながら80℃で11時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(17)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(17)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(3)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 26: Preparation of Resin (17) Having Polymerizable Unsaturated Group and Urethane Bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 401 parts by mass of epoxy acrylate resin (X1), 128 parts by mass of diethylene glycol monomethyl ether acetate, and urethane-containing acrylate resin (3) 124.4 obtained in Synthesis Example 5. By mass, 0.04 part by mass of dioctyl tin dineodecanoate (1) was added, and the reaction was carried out at 80 ° C. for 11 hours while blowing air, and the resin having the desired polymerizable unsaturated group and urethane bond (17). ) Was obtained. The non-volatile content of the resin (17) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (3) is 0.4. there were.
(合成例27:重合性不飽和基及びウレタン結合を有する樹脂(18)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート419質量部、合成例6で得たウレタン含有アクリレート樹脂(4)600質量部、ジオクチル錫ジネオデカノエート(1)0.09質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(18)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(18)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(4)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis 27: Preparation of resin (18) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 401 parts by mass of epoxy acrylate resin (X1), 419 parts by mass of diethylene glycol monomethyl ether acetate, and 600 parts by mass of urethane-containing acrylate resin (4) obtained in Synthesis Example 6. , Dioctyl tin dineodecanoate (1) 0.09 part by mass was added, and the reaction was carried out at 80 ° C. for 8 hours while blowing air to obtain the resin (18) having the desired polymerizable unsaturated group and urethane bond. Obtained. The non-volatile content of the resin (18) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (4) is 0.4. there were.
(合成例28:重合性不飽和基及びウレタン結合を有する樹脂(19)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート519.5質量部、合成例7で得たウレタン含有アクリレート樹脂(5)763.6質量部、ジオクチル錫ジネオデカノエート(1)0.1質量部を添加し、空気を吹き込みながら80℃で7時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(19)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(19)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(5)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 28: Preparation of Resin (19) Having Polymerizable Unsaturated Group and Urethane Bond)
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 401 parts by mass of epoxy acrylate resin (X1), 519.5 parts by mass of diethylene glycol monomethyl ether acetate, and urethane-containing acrylate resin (5) 763 obtained in Synthesis Example 7. .6 parts by mass, dioctyl tin dineodecanoate (1) 0.1 part by mass was added, and the reaction was carried out at 80 ° C. for 7 hours while blowing air, and the resin having the desired polymerizable unsaturated group and urethane bond. (19) was obtained. The non-volatile content of the resin (19) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (5) is 0.4. there were.
(合成例29:重合性不飽和基及びウレタン結合を有する樹脂(20)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート98.4質量部、合成例8で得たウレタン含有アクリレート樹脂(6)76.7質量部、ジオクチル錫ジネオデカノエート(1)0.1質量部を添加し、空気を吹き込みながら80℃で10時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(20)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(20)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(6)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 29: Preparation of resin (20) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 401 parts by mass of epoxy acrylate resin (X1), 98.4 parts by mass of diethylene glycol monomethyl ether acetate, and urethane-containing acrylate resin (6) 76 obtained in Synthesis Example 8. .7 parts by mass, dioctyl tin dineodecanoate (1) 0.1 part by mass was added, and the reaction was carried out at 80 ° C. for 10 hours while blowing air, and the resin having the desired polymerizable unsaturated group and urethane bond. (20) was obtained. The non-volatile content of the resin (20) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (6) is 0.4. there were.
(合成例30:重合性不飽和基及びウレタン結合を有する樹脂(21)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート217.5質量部、ジオクチル錫ジネオデカノエート(1)0.1質量部を添加し、空気を吹き込みながら80℃に昇温した。次いで、合成例9で得たウレタン含有アクリレート樹脂(7)271質量部を分割で添加し、80℃で5時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(21)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(21)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、アクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(7)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 30: Preparation of resin (21) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 401 parts by mass of epoxy acrylate resin (X1), 217.5 parts by mass of diethylene glycol monomethyl ether acetate, and 0.1 parts by mass of dioctyltin dineodecanoate (1). The temperature was raised to 80 ° C. while blowing air. Next, 271 parts by mass of the urethane-containing acrylate resin (7) obtained in Synthesis Example 9 was added in portions, and the reaction was carried out at 80 ° C. for 5 hours to obtain the resin (21) having the desired polymerizable unsaturated group and urethane bond. Obtained. The non-volatile content of the resin (21) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of acrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (7) is 0.4. there were.
(合成例31:重合性不飽和基及びウレタン結合を有する樹脂(22)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート125.6質量部を入れ、エポキシ樹脂(2)207質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.2質量部加えた後、メタクリル酸86質量部、トリフェニルホスフィン1.5質量部を添加し、空気を吹き込みながら120℃で9時間エステル化反応を行った。次いで、ジエチレングリコールモノメチルエーテルアセテート228.5質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行い、目的の重合性不飽和基及びウレタン結合を有する樹脂(22)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(22)の不揮発分は62質量%であった。また、エポキシ樹脂(2)が有するエポキシ基1モルに対して、メタクリル酸のモル数は、1.0であり、ウレタン含有アクリレート樹脂(1)が有するイソシアネート基のモル数は、0.4であった。
(Synthesis Example 31: Preparation of resin (22) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux cooler, 125.6 parts by mass of diethylene glycol monomethyl ether acetate was placed, 207 parts by mass of the epoxy resin (2) was dissolved, and 0.9 parts by mass of dibutylhydroxytoluene and methquinone were dissolved. After adding 0.2 parts by mass, 86 parts by mass of methacrylic acid and 1.5 parts by mass of triphenylphosphine were added, and an esterification reaction was carried out at 120 ° C. for 9 hours while blowing air. Next, 228.5 parts by mass of diethylene glycol monomethyl ether acetate, 285 parts by mass of the urethane-containing acrylate resin (1) obtained in Synthesis Example 3, and 0.06 parts by mass of dioctyltin dineodecanoate (1) were added to add air. The reaction was carried out at 80 ° C. for 8 hours while blowing to obtain a resin (22) having the desired polymerizable unsaturated group and urethane bond. The non-volatile content of the resin (22) having a polymerizable unsaturated group and a urethane bond was 62% by mass. Further, the number of moles of methacrylic acid is 1.0 with respect to 1 mol of the epoxy group of the epoxy resin (2), and the number of moles of the isocyanate group of the urethane-containing acrylate resin (1) is 0.4. there were.
(合成例32:重合性不飽和基及びウレタン結合を有する樹脂(23)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、エポキシアクリレート樹脂(X1)401質量部、ジエチレングリコールモノメチルエーテルアセテート273質量部、合成例3で得たウレタン含有アクリレート樹脂(1)285質量部、ジオクチル錫ジネオデカノエート(1)0.06質量部を添加し、空気を吹き込みながら80℃で8時間反応を行った。次いで、テトラヒドロ無水フタル酸76質量部を添加し、110℃で3時間反応させ、重合性不飽和基及びウレタン結合を有する樹脂(23)を得た。この重合性不飽和基及びウレタン結合を有する樹脂(23)の不揮発分は62質量%であり、固形分酸価は46mgKOH/gであった。
(Synthesis 32: Preparation of resin (23) having a polymerizable unsaturated group and a urethane bond)
In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 401 parts by mass of epoxy acrylate resin (X1), 273 parts by mass of diethylene glycol monomethyl ether acetate, and 285 parts by mass of urethane-containing acrylate resin (1) obtained in Synthesis Example 3. , 0.06 part by mass of dioctyl tin dineodecanoate (1) was added, and the reaction was carried out at 80 ° C. for 8 hours while blowing air. Then, 76 parts by mass of tetrahydrophthalic anhydride was added and reacted at 110 ° C. for 3 hours to obtain a resin (23) having a polymerizable unsaturated group and a urethane bond. The non-volatile content of the resin (23) having a polymerizable unsaturated group and a urethane bond was 62% by mass, and the solid content acid value was 46 mgKOH / g.
(実施例1:活性エネルギー線硬化性樹脂組成物(1)の調製)
 合成例1で得た酸基及び重合性不飽和基を有する樹脂(1)と、合成例11で得た重合性不飽和基及びウレタン結合を有する樹脂(3)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)と、ジペンタエリスリトールヘキサアクリレートと、ジエチレングリコールモノエチルエーテルアセテートと、光重合開始剤(IGM社製「Omnirad 907」)と、2-エチル-4-メチルイミダゾールと、フタロシアニングリーンとを表1~3に示す質量部で配合し、ロールミルにより混錬して活性エネルギー線硬化性樹脂組成物(1)を得た。
(Example 1: Preparation of active energy ray-curable resin composition (1))
The resin (1) having an acid group and a polymerizable unsaturated group obtained in Synthesis Example 1, the resin (3) having a polymerizable unsaturated group and a urethane bond obtained in Synthesis Example 11, and orthocresol novolac as a curing agent. Type epoxy resin (“EPICLON N-680” manufactured by DIC Co., Ltd.), dipentaerythritol hexaacrylate, diethylene glycol monoethyl ether acetate, photopolymerization initiator (“Omnirad 907” manufactured by IGM Co., Ltd.), and 2-ethyl- 4-Methylimidazole and phthalocyanine green were blended in parts by mass shown in Tables 1 to 3 and kneaded with a roll mill to obtain an active energy ray-curable resin composition (1).
(実施例2~28:活性エネルギー線硬化性樹脂組成物(2)~(28)の調製)
 表1~3に示す組成及び配合で実施例1と同様の方法にて、硬化性樹脂組成物(2)~(28)を得た。
(Examples 2-28: Preparation of active energy ray-curable resin compositions (2)-(28))
Curable resin compositions (2) to (28) were obtained in the same manner as in Example 1 with the compositions and formulations shown in Tables 1 to 3.
(比較例1:活性エネルギー線硬化性樹脂組成物(R1)の調製)
 合成例2で得た酸基及び重合性不飽和基を有する樹脂(2)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)と、ジペンタエリスリトールヘキサアクリレートと、ジエチレングリコールモノエチルエーテルアセテートと、光重合開始剤(IGM社製「Omnirad 907」)と、2-エチル-4-メチルイミダゾールと、フタロシアニングリーンとを表3に示す質量部で配合し、ロールミルにより混錬して活性エネルギー線硬化性樹脂組成物(R1)を得た。
(Comparative Example 1: Preparation of active energy ray-curable resin composition (R1))
The resin (2) having an acid group and a polymerizable unsaturated group obtained in Synthesis Example 2, an orthocresol novolak type epoxy resin (“EPICLON N-680” manufactured by DIC Co., Ltd.) as a curing agent, and dipentaerythritol hexaacrylate. , Diethylene glycol monoethyl ether acetate, a photopolymerization initiator (“Omnirad 907” manufactured by IGM), 2-ethyl-4-methylimidazole, and phthalocyanine green in parts by mass shown in Table 3, and then a roll mill is used. The mixture was kneaded to obtain an active energy ray-curable resin composition (R1).
(比較例2:活性エネルギー線硬化性樹脂組成物(R2)の調製)
 合成例30で得た重合性不飽和基及びウレタン結合を有する樹脂(21)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)と、ジペンタエリスリトールヘキサアクリレートと、ジエチレングリコールモノエチルエーテルアセテートと、光重合開始剤(IGM社製「Omnirad 907」)と、2-エチル-4-メチルイミダゾールと、フタロシアニングリーンとを表3に示す質量部で配合し、ロールミルにより混錬して活性エネルギー線硬化性樹脂組成物(R2)を得た。
(Comparative Example 2: Preparation of active energy ray-curable resin composition (R2))
The resin (21) having a polymerizable unsaturated group and a urethane bond obtained in Synthesis Example 30, an orthocresol novolak type epoxy resin (“EPICLON N-680” manufactured by DIC Co., Ltd.) as a curing agent, and a dipentaerythritol hexaacrylate. , Diethylene glycol monoethyl ether acetate, a photopolymerization initiator (“Omnirad 907” manufactured by IGM), 2-ethyl-4-methylimidazole, and phthalocyanine green in parts by mass shown in Table 3, and then a roll mill is used. The mixture was kneaded to obtain an active energy ray-curable resin composition (R2).
 上記の実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物(1)~(28)、(R1)及び(R2)を用いて、下記の評価を行った。 The following evaluations were performed using the active energy ray-curable resin compositions (1) to (28), (R1) and (R2) obtained in the above Examples and Comparative Examples.
[アルカリ現像性の評価方法]
 各実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布した後、80℃でそれぞれ70分間、80分間、90分間、100分間、110分、120分、130分、140分間乾燥させ、乾燥時間が異なるサンプルを作成した。これらを1%炭酸ナトリウム水溶液で30℃180秒間現像し、基板上に残渣が残らなかったサンプルの80℃での乾燥時間を乾燥管理幅として、以下の基準に従い評価した。なお、乾燥管理幅が長いほどアルカリ現像性が優れていることを示す。
[Evaluation method of alkaline developability]
The active energy ray-curable resin composition obtained in each Example and Comparative Example was applied onto a glass substrate using an applicator so as to have a film thickness of 50 μm, and then at 80 ° C. for 70 minutes and 80 minutes, respectively. The samples were dried for 90 minutes, 100 minutes, 110 minutes, 120 minutes, 130 minutes, and 140 minutes to prepare samples having different drying times. These were developed with a 1% aqueous sodium carbonate solution at 30 ° C. for 180 seconds, and the drying time at 80 ° C. of the sample in which no residue remained on the substrate was used as the drying control range and evaluated according to the following criteria. It should be noted that the longer the drying control range, the better the alkaline developability.
 A:乾燥管理幅が140分超であった。
 B:乾燥管理幅が120分超140分以下であった。
 C:乾燥管理幅が100分超120分以下であった。
 D:乾燥管理幅が80分超100分以下であった。
 E:乾燥管理幅が80分以下であった。
A: The drying control width was over 140 minutes.
B: The drying control width was more than 120 minutes and 140 minutes or less.
C: The drying control width was more than 100 minutes and 120 minutes or less.
D: The drying control width was more than 80 minutes and 100 minutes or less.
E: The drying control width was 80 minutes or less.
 実施例1~28で作製した活性エネルギー線硬化性樹脂組成物(1)~(28)、及び比較例1及び2で作製した活性エネルギー線硬化性樹脂組成物(R1)及び(R2)の組成及び評価結果を表1~3に示す。 Compositions of the active energy ray-curable resin compositions (1) to (28) prepared in Examples 1 to 28, and the active energy ray-curable resin compositions (R1) and (R2) prepared in Comparative Examples 1 and 2. The evaluation results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、表3中の「-」は、現像不可を示す。 Note that "-" in Table 3 indicates that development is not possible.
(実施例29:活性エネルギー線硬化性樹脂組成物(29)の調製)
 合成例1で得た酸基及び重合性不飽和基を有する樹脂(1)と、合成例11で得た重合性不飽和基及びウレタン結合を有する樹脂(3)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)、光重合開始剤として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IGM Resins社製「Omnirad 907」)、有機溶剤としてジエチレングリコールモノメチルエーテルアセテートを表4に示す質量部で配合して、活性エネルギー線硬化性樹脂組成物(29)を得た。
(Example 29: Preparation of active energy ray-curable resin composition (29))
The resin (1) having an acid group and a polymerizable unsaturated group obtained in Synthesis Example 1, the resin (3) having a polymerizable unsaturated group and a urethane bond obtained in Synthesis Example 11, and orthocresol novolac as a curing agent. Type epoxy resin (“EPICLON N-680” manufactured by DIC Co., Ltd.), 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one (IMnirad manufactured by IGM Resins) as a photopolymerization initiator 907 ”) and diethylene glycol monomethyl ether acetate as an organic solvent were blended in parts by mass shown in Table 4 to obtain an active energy ray-curable resin composition (29).
(実施例30~56:活性エネルギー線硬化性樹脂組成物(30)~(56)の調製)
 表4~6に示す組成及び配合で実施例29と同様の方法にて、活性エネルギー線硬化性樹脂組成物(30)~(56)を得た。
(Examples 30 to 56: Preparation of active energy ray-curable resin compositions (30) to (56))
The active energy ray-curable resin compositions (30) to (56) were obtained in the same manner as in Example 29 with the compositions and formulations shown in Tables 4 to 6.
(比較例3及び4:活性エネルギー線硬化性樹脂組成物(R3)及び(R4)の調製)
 表6に示す組成及び配合で実施例29と同様の方法にて、硬化性樹脂組成物(R3)及び(R4)を得た。
(Comparative Examples 3 and 4: Preparation of active energy ray-curable resin compositions (R3) and (R4))
Curable resin compositions (R3) and (R4) were obtained in the same manner as in Example 29 with the compositions and formulations shown in Table 6.
 上記の実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物(29)~(56)、(R3)及び(R4)を用いて、下記の評価を行った。 The following evaluations were performed using the active energy ray-curable resin compositions (29) to (56), (R3) and (R4) obtained in the above Examples and Comparative Examples.
[伸度及び弾性率の測定方法]
 伸度の測定及び弾性率の測定は、引張試験に基づいて行った。
<試験片1の作製>
 銅箔(古河産業株式会社製、電解銅箔「F2-WS」18μm)上に実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物を50μmのアプリケーターで塗布し、メタルハライドランプを用いて10kJ/mの紫外線を照射した後、160℃で1時間加熱した。銅箔から硬化物を剥離し、試験片1(硬化物)を得た。
[Measurement method of elongation and elastic modulus]
The measurement of elongation and the measurement of elastic modulus were performed based on the tensile test.
<Preparation of test piece 1>
The active energy ray-curable resin composition obtained in Examples and Comparative Examples was applied onto a copper foil (manufactured by Furukawa Sangyo Co., Ltd., electrolytic copper foil "F2-WS" 18 μm) with a 50 μm applicator, and a metal halide lamp was used. After irradiating with ultraviolet rays of 10 kJ / m 2 , it was heated at 160 ° C. for 1 hour. The cured product was peeled off from the copper foil to obtain a test piece 1 (cured product).
<引張試験>
 前記試験片1を10mm×80mmの大きさに切り出し、株式会社島津製作所製精密万能試験機オートグラフ「AG-IS」を用いて、下記の測定条件で試験片1の引張試験を行った。試験片が破断するまでの伸度(%)及び弾性率(MPa)を測定し、以下の基準に従い評価した。
<Tensile test>
The test piece 1 was cut into a size of 10 mm × 80 mm, and a tensile test was performed on the test piece 1 under the following measurement conditions using a precision universal testing machine Autograph “AG-IS” manufactured by Shimadzu Corporation. The elongation (%) and elastic modulus (MPa) until the test piece broke were measured and evaluated according to the following criteria.
 測定条件:温度23℃、湿度50%、標線間距離20mm、支点間距離20mm、引張速度10mm/分 Measurement conditions: temperature 23 ° C, humidity 50%, distance between marked lines 20 mm, distance between fulcrums 20 mm, tensile speed 10 mm / min
 A:伸度が2.9%超であった。
 B:伸度が2.6%超2.9%以下であった。
 C:伸度が2.3%超2.6%以下であった。
 D:伸度が2.0%超2.3%以下であった。
 E:伸度が2.0%以下であった。
A: The elongation was over 2.9%.
B: The elongation was more than 2.6% and 2.9% or less.
C: The elongation was more than 2.3% and 2.6% or less.
D: The elongation was more than 2.0% and 2.3% or less.
E: The elongation was 2.0% or less.
 A:弾性率が2080MPa未満であった。
 B:弾性率が2080MPa以上2160MPa未満であった。
 C:弾性率が2160MPa以上2250MPa未満であった。
 D:弾性率が2250MPa以上2330MPa未満であった。
 E:弾性率が2330MPa以上であった。
A: The elastic modulus was less than 2080 MPa.
B: The elastic modulus was 2080 MPa or more and less than 2160 MPa.
C: The elastic modulus was 2160 MPa or more and less than 2250 MPa.
D: The elastic modulus was 2250 MPa or more and less than 2330 MPa.
E: The elastic modulus was 2330 MPa or more.
[基材密着性の評価方法]
 基材密着性の評価は、ピール強度の測定により行った。
<試験片2の作製>
 銅箔(古河産業株式会社製、電解銅箔「F2-WS」18μm)上に実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物を50μmのアプリケーターで塗布し、メタルハライドランプを用いて10kJ/mの紫外線を照射した後、160℃で1時間加熱し、試験片2を得た。
[Evaluation method of substrate adhesion]
The substrate adhesion was evaluated by measuring the peel strength.
<Preparation of test piece 2>
The active energy ray-curable resin composition obtained in Examples and Comparative Examples was applied onto a copper foil (manufactured by Furukawa Sangyo Co., Ltd., electrolytic copper foil "F2-WS" 18 μm) with a 50 μm applicator, and a metal halide lamp was used. After irradiating with ultraviolet rays of 10 kJ / m 2 , the test piece 2 was obtained by heating at 160 ° C. for 1 hour.
<ピール強度の測定方法>
 前記試験片2を幅1cm、長さ12cmの大きさに切り出し、剥離試験機(株式会社A&D製「A&Dテンシロン」、剥離速度50mm/分)を用いて90°ピール強度を測定し、以下の基準に従い評価した。
<Measuring method of peel strength>
The test piece 2 was cut into a size of 1 cm in width and 12 cm in length, and the 90 ° peel strength was measured using a peeling tester (“A & D Tensilon” manufactured by A & D Co., Ltd., peeling speed 50 mm / min). Evaluated according to.
 A:密着性が0.95N/cm以上であった。
 B:密着性が0.90N/cm以上0.95N/cm未満であった。
 C:密着性が0.85N/cm以上0.90N/cm未満であった。
 D:密着性が0.80N/cm以上0.85N/cm未満であった。
 E:密着性が0.80N/cm未満であった。
A: The adhesion was 0.95 N / cm or more.
B: Adhesion was 0.90 N / cm or more and less than 0.95 N / cm.
C: Adhesion was 0.85 N / cm or more and less than 0.90 N / cm.
D: Adhesion was 0.80 N / cm or more and less than 0.85 N / cm.
E: Adhesion was less than 0.80 N / cm.
 実施例29~56で作製した活性エネルギー線硬化性樹脂組成物(29)~(56)、及び比較例3及び4で作製した活性エネルギー線硬化性樹脂組成物(R3)及び(R4))の組成及び評価結果を表4~6に示す。 Of the active energy ray-curable resin compositions (29) to (56) prepared in Examples 29 to 56, and the active energy ray-curable resin compositions (R3) and (R4) prepared in Comparative Examples 3 and 4. The composition and evaluation results are shown in Tables 4-6.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 なお、表1~6における酸基及び重合性不飽和基を有する樹脂、重合性不飽和基及びウレタン結合を有する樹脂の質量部の記載は、固形分値である。 The description of the mass part of the resin having an acid group and a polymerizable unsaturated group, the polymerizable unsaturated group and the resin having a urethane bond in Tables 1 to 6 is a solid content value.
 表1~6中の「硬化剤」は、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)を示す。 “Curing agent” in Tables 1 to 6 indicates an orthocresol novolak type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation).
 表1~6中の「有機溶剤」は、ジエチレングリコールモノメチルエーテルアセテートを示す。 "Organic solvent" in Tables 1 to 6 indicates diethylene glycol monomethyl ether acetate.
 表1~6中の「光重合開始剤」は、IGM Resins社製「Omnirad-907」を示す。 “Photopolymerization initiator” in Tables 1 to 6 indicates “Omnirad-907” manufactured by IGM Resins.
 表1~3に示した実施例1~28は、本発明の活性エネルギー線硬化性樹脂組成物の例である。これらの活性エネルギー線硬化性樹脂組成物は、優れたアルカリ現像性を有することが確認できた。 Examples 1 to 28 shown in Tables 1 to 3 are examples of the active energy ray-curable resin composition of the present invention. It was confirmed that these active energy ray-curable resin compositions have excellent alkali developability.
 また、表4~6に示した実施例29~56は、本発明の活性エネルギー線硬化性樹脂組成物の例である。これらの活性エネルギー線硬化性樹脂組成物の硬化物は、優れた伸度、弾性及び密着性を有することが確認できた。 Further, Examples 29 to 56 shown in Tables 4 to 6 are examples of the active energy ray-curable resin composition of the present invention. It was confirmed that the cured product of these active energy ray-curable resin compositions had excellent elongation, elasticity and adhesion.
 一方、比較例1は、本発明で規定する重合性不飽和基及びウレタン結合を有する樹脂を用いない活性エネルギー線硬化性樹脂組成物の例である。この活性エネルギー線硬化性樹脂組成物は、アルカリ現像性が不十分であることが確認できた。 On the other hand, Comparative Example 1 is an example of an active energy ray-curable resin composition that does not use a resin having a polymerizable unsaturated group and a urethane bond specified in the present invention. It was confirmed that this active energy ray-curable resin composition had insufficient alkali developability.
 比較例2は、本発明で規定する酸基及び重合性不飽和基を有する樹脂を用いない活性エネルギー線硬化性樹脂組成物の例である。この活性エネルギー線硬化性樹脂組成物は、アルカリ現像性が不十分であることが確認できた。 Comparative Example 2 is an example of an active energy ray-curable resin composition that does not use a resin having an acid group and a polymerizable unsaturated group specified in the present invention. It was confirmed that this active energy ray-curable resin composition had insufficient alkali developability.
 また、比較例3は比較例1同様に本発明で規定する重合性不飽和基及びウレタン結合を有する樹脂を用いない活性エネルギー線硬化性樹脂組成物の例である。この活性エネルギー線硬化性樹脂組成物は、伸度、弾性及び基材密着性が著しく不十分であることが確認できた。 Further, Comparative Example 3 is an example of an active energy ray-curable resin composition which does not use a resin having a polymerizable unsaturated group and a urethane bond defined in the present invention as in Comparative Example 1. It was confirmed that this active energy ray-curable resin composition was remarkably insufficient in elongation, elasticity and substrate adhesion.
 比較例4は比較例2同様に本発明で規定する酸基及び重合性不飽和基を有する樹脂を用いない活性エネルギー線硬化性樹脂組成物の例である。この活性エネルギー線硬化性樹脂組成物は、伸度、弾性及び基材密着性が著しく不十分であることが確認できた。 Comparative Example 4 is an example of an active energy ray-curable resin composition that does not use a resin having an acid group and a polymerizable unsaturated group specified in the present invention as in Comparative Example 2. It was confirmed that this active energy ray-curable resin composition was remarkably insufficient in elongation, elasticity and substrate adhesion.

Claims (11)

  1.  酸基及び重合性不飽和基を有する樹脂(A)と、
    前記樹脂(A)以外の重合性不飽和基及びウレタン結合を有する樹脂(B)とを含有する活性エネルギー線硬化性樹脂組成物であって、
    前記樹脂(B)が、エポキシ樹脂(b1)、不飽和一塩基酸(b2)、水酸基を有する(メタ)アクリレート化合物(b3)、及びイソシアネート基を有する化合物(b4)とを必須原料とするものであることを特徴とする活性エネルギー線硬化性樹脂組成物。
    Resin (A) having an acid group and a polymerizable unsaturated group,
    An active energy ray-curable resin composition containing a polymerizable unsaturated group other than the resin (A) and a resin (B) having a urethane bond.
    The resin (B) contains an epoxy resin (b1), an unsaturated monobasic acid (b2), a (meth) acrylate compound (b3) having a hydroxyl group, and a compound (b4) having an isocyanate group as essential raw materials. An active energy ray-curable resin composition characterized by being.
  2.  前記樹脂(A)と前記樹脂(B)の固形分の質量割合[(A)/(B)]が、95/5~50/50の範囲である請求項1記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin according to claim 1, wherein the mass ratio [(A) / (B)] of the solid content of the resin (A) and the resin (B) is in the range of 95/5 to 50/50. Composition.
  3.  前記不飽和一塩基酸(b2)の使用量が、前記不飽和一塩基酸(b2)の有する酸基を基準として、前記エポキシ樹脂(b1)が有するエポキシ基1モルに対して、0.95~1.1モルの範囲である請求項1又は2記載の活性エネルギー線硬化性樹脂組成物。 The amount of the unsaturated monobasic acid (b2) used is 0.95 with respect to 1 mol of the epoxy group of the epoxy resin (b1) based on the acid group of the unsaturated monobasic acid (b2). The active energy ray-curable resin composition according to claim 1 or 2, which is in the range of ~ 1.1 mol.
  4.  前記化合物(b3)の使用量が、前記化合物(b3)の有する水酸基を基準として、前記化合物(b4)が有するイソシアネート基1モルに対して、0.3~0.7モルの範囲である請求項1~3の何れか1項記載の活性エネルギー線硬化性樹脂組成物。 The amount of the compound (b3) used is in the range of 0.3 to 0.7 mol with respect to 1 mol of the isocyanate group of the compound (b4) based on the hydroxyl group of the compound (b3). Item 3. The active energy ray-curable resin composition according to any one of Items 1 to 3.
  5.  前記樹脂(B)が、(メタ)アクリロイル基及びイソシアネート基、並びにウレタン結合を有するものである請求項1~4のいずれか1項記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of claims 1 to 4, wherein the resin (B) has a (meth) acryloyl group, an isocyanate group, and a urethane bond.
  6.  前記化合物(b4)の使用量が、前記化合物(b4)の有するイソシアネート基を基準として、前記エポキシ樹脂(b1)が有するエポキシ基1モルに対して、0.1~0.7モルの範囲である請求項1~3の何れか1項記載の活性エネルギー線硬化性樹脂組成物。 The amount of the compound (b4) used is in the range of 0.1 to 0.7 mol with respect to 1 mol of the epoxy group of the epoxy resin (b1) based on the isocyanate group of the compound (b4). The active energy ray-curable resin composition according to any one of claims 1 to 3.
  7.  前記エポキシ樹脂(b1)の軟化点が、78℃以下である請求項1~6の何れか1項記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of claims 1 to 6, wherein the epoxy resin (b1) has a softening point of 78 ° C. or lower.
  8.  さらに、光重合開始剤を含有するものである請求項1~7の何れか1項記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to any one of claims 1 to 7, further comprising a photopolymerization initiator.
  9.  請求項1~8の何れか1項記載の活性エネルギー線硬化性樹脂組成物の硬化物。 A cured product of the active energy ray-curable resin composition according to any one of claims 1 to 8.
  10.  請求項9記載の硬化物からなることを特徴とする絶縁材料。 An insulating material comprising the cured product according to claim 9.
  11.  請求項9記載の硬化物からなることを特徴とするレジスト部材。 A resist member made of the cured product according to claim 9.
PCT/JP2021/045258 2020-12-22 2021-12-09 Active energy ray-curable resin composition, cured product, insulation material and resist member WO2022138184A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237020029A KR20230122013A (en) 2020-12-22 2021-12-09 Active energy ray-curable resin composition, cured product, insulating material and resist member
JP2022518293A JP7136386B1 (en) 2020-12-22 2021-12-09 Active energy ray-curable resin composition, cured product, insulating material and resist member
CN202180086345.1A CN116601724A (en) 2020-12-22 2021-12-09 Active energy ray-curable resin composition, cured product, insulating material, and resist member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020212261 2020-12-22
JP2020-212261 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022138184A1 true WO2022138184A1 (en) 2022-06-30

Family

ID=82157684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045258 WO2022138184A1 (en) 2020-12-22 2021-12-09 Active energy ray-curable resin composition, cured product, insulation material and resist member

Country Status (5)

Country Link
JP (1) JP7136386B1 (en)
KR (1) KR20230122013A (en)
CN (1) CN116601724A (en)
TW (1) TW202235473A (en)
WO (1) WO2022138184A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565861A (en) * 1979-06-28 1981-01-21 Mitsubishi Electric Corp Varnish composition for insulating treatment
JPH06228252A (en) * 1993-02-03 1994-08-16 Nippon Shokubai Co Ltd Liquid photosensitive resin composition
JP2010275339A (en) * 2009-05-26 2010-12-09 Mitsubishi Rayon Co Ltd Curable composition and article
CN110563925A (en) * 2019-09-16 2019-12-13 上海昭和高分子有限公司 Anhydride modified epoxy acrylic resin, alkali development high-heat-resistance polyurethane resin and solder resist ink thereof
JP2020097704A (en) * 2018-12-19 2020-06-25 Dic株式会社 Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243869A (en) 1985-04-19 1986-10-30 Taiyo Ink Seizo Kk Resist ink composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565861A (en) * 1979-06-28 1981-01-21 Mitsubishi Electric Corp Varnish composition for insulating treatment
JPH06228252A (en) * 1993-02-03 1994-08-16 Nippon Shokubai Co Ltd Liquid photosensitive resin composition
JP2010275339A (en) * 2009-05-26 2010-12-09 Mitsubishi Rayon Co Ltd Curable composition and article
JP2020097704A (en) * 2018-12-19 2020-06-25 Dic株式会社 Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
CN110563925A (en) * 2019-09-16 2019-12-13 上海昭和高分子有限公司 Anhydride modified epoxy acrylic resin, alkali development high-heat-resistance polyurethane resin and solder resist ink thereof

Also Published As

Publication number Publication date
JPWO2022138184A1 (en) 2022-06-30
KR20230122013A (en) 2023-08-22
JP7136386B1 (en) 2022-09-13
CN116601724A (en) 2023-08-15
TW202235473A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2022137591A1 (en) Method for producing (meth)acrylate resin
WO2022107508A1 (en) (meth)acrylate resin having acid group, curable resin composition, cured product, insulating amterial and resist member
JP7136386B1 (en) Active energy ray-curable resin composition, cured product, insulating material and resist member
CN113544179A (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP6838692B1 (en) Acid group-containing (meth) acrylate resin, acid group-containing (meth) acrylate resin composition, curable resin composition, cured product, insulating material, solder resist resin material and resist member
JP7380949B1 (en) Method for producing (meth)acrylate resin
JP2022098702A (en) Active energy ray-curable resin composition, cured product, insulating material, and resist member
JP2022178422A (en) Resin, active energy ray-curable resin composition, cured product, insulating material and resist member
CN115521435B (en) Resin, curable resin composition, cured product, insulating material, and resist member
JP2023183616A (en) Curable resin composition, cured product, insulating material, and resist member
JP7197055B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, insulating material, resin material for solder resist, and resist member
JP2021091879A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist material
JP2022052982A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulation material and resist member
JP2022067270A (en) (meth)acrylate resin having acid group, curable resin composition, cured product, insulating material, and resist member
JP7419801B2 (en) Acid group-containing acid group-containing (meth)acrylate resin, curable resin composition, insulating material, resin material for solder resist, and resist member
JP2022124653A (en) Resin, curable resin composition, cured product, insulation material and resist member
JP2022098701A (en) Active energy ray-curable resin composition, cured product, and article
JP2022006901A (en) Acid group-containing meth(acrylate) resin, curable resin composition, cured product, insulation material, resin material for solder resist and resist member
JP2022067271A (en) (meth)acrylate resin, curable resin composition, cured product, and article
WO2023248488A1 (en) Method for producing (meth)acrylate resin
JP2023183617A (en) Curable resin composition, cured product, and article
JP2023183712A (en) Methacrylate resin, curable resin composition, cured product and article
WO2021065318A1 (en) Acid group-containing (meth)acrylate resin, acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2023183615A (en) Methacrylate resin, curable resin composition, cured product and article
JP2023183709A (en) Acid radical- and polymerizable unsaturated group-containing resin, curable resin composition, insulating material, resin material for solder resist and resist member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022518293

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086345.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910333

Country of ref document: EP

Kind code of ref document: A1