WO2023248488A1 - Method for producing (meth)acrylate resin - Google Patents

Method for producing (meth)acrylate resin Download PDF

Info

Publication number
WO2023248488A1
WO2023248488A1 PCT/JP2022/034508 JP2022034508W WO2023248488A1 WO 2023248488 A1 WO2023248488 A1 WO 2023248488A1 JP 2022034508 W JP2022034508 W JP 2022034508W WO 2023248488 A1 WO2023248488 A1 WO 2023248488A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
meth
parts
resin
acrylate
Prior art date
Application number
PCT/JP2022/034508
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 山田
雅樹 迫
裕史 亀山
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023514766A priority Critical patent/JP7380949B1/en
Publication of WO2023248488A1 publication Critical patent/WO2023248488A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment

Definitions

  • the present invention relates to a method for producing a (meth)acrylate resin that has excellent alkali developability and high photosensitivity, and has excellent elasticity, heat resistance, and adhesion to a substrate in a cured product, and a curable resin composition containing the same.
  • the present invention relates to a method for manufacturing a product, a method for manufacturing a cured product made of the curable resin composition, and a method for manufacturing an insulating material and a resist member.
  • resin materials for solder resists include active energy ray-curable resin materials obtained by reacting a reaction product of a novolac type epoxy resin with an unsaturated monocarboxylic acid and a saturated or unsaturated polybasic acid anhydride.
  • resins are known (for example, see Patent Document 1 below), although they have excellent heat resistance in the cured product, they do not satisfy the increasingly required characteristics in terms of adhesion to substrates, and are not suitable for the current market. It was not sufficient for the request.
  • the problem to be solved by the present invention is a method for producing a (meth)acrylate resin that has excellent alkali developability and high photosensitivity, as well as excellent heat resistance, substrate adhesion, and insulation reliability in a cured product.
  • An object of the present invention is to provide a method for producing a curable resin composition containing the same, a method for producing a cured product made of the curable resin composition, and a method for producing an insulating material and a resist member.
  • the present inventors used an epoxy resin having specific physical properties as a raw material, and added a raw material containing the epoxy resin and an unsaturated monobasic acid to a basic catalyst.
  • the above problem can be solved by carrying out the reaction in the presence of a specific gas, with stirring so that the oxygen concentration in the reaction system is within a specific range, and the stirring power per unit volume is within a specific range.
  • the present invention was completed based on the discovery that the problem can be solved.
  • the present invention is a method for producing a (meth)acrylate resin using an epoxy resin (A1) and an unsaturated monobasic acid (A2) as essential raw materials, the method comprising:
  • the chlorine concentration is 2400 ppm or less
  • the amount of ⁇ -glycol contained in the epoxy resin (A1) is 0.20 meq/g or less
  • the combination of the epoxy resin (A1) and the unsaturated monobasic acid (A2) is
  • the reaction is carried out in the presence of a basic catalyst with stirring in an atmosphere of an oxygen-containing gas (b1) and an inert gas (b2), and the oxygen concentration in the reaction system is adjusted to 2 to 12% by mass.
  • a method for producing a (meth)acrylate resin characterized in that the stirring power per unit volume is in the range of 0.2 to 8 kW/ m3 , a method for producing a curable resin composition containing the same,
  • the present invention relates to a method for producing a cured product made of a curable resin composition, a method for producing an insulating material, and a method for producing a resist member.
  • aspect 1 of the present invention is a method for producing a (meth)acrylate resin using an epoxy resin (A1) and an unsaturated monobasic acid (A2) as essential raw materials, the method comprising:
  • the total chlorine concentration contained in A1) is 2400 ppm or less, the amount of ⁇ -glycol contained in the epoxy resin (A1) is 0.20 meq/g or less, and the epoxy resin (A1) and the unsaturated monomer
  • the reaction with a basic acid (A2) is carried out in the presence of a basic catalyst with stirring in an atmosphere of an oxygen-containing gas (b1) and an inert gas (b2), and the oxygen concentration in the reaction system is
  • the present invention relates to a method for producing a (meth)acrylate resin, characterized in that the stirring power is in the range of 2 to 12% by mass and the stirring power per unit volume is in the range of 0.2 to 8kW/m 3 .
  • Aspect 2 of the present invention is described in Aspect 1, wherein the gas (b1) is introduced from below the liquid level in the reaction system, and the inert gas (b2) is introduced from above the liquid level.
  • the present invention relates to a method for producing (meth)acrylate resin.
  • Aspect 3 of the present invention relates to the method for producing a (meth)acrylate resin according to aspect 1 or aspect 2, wherein the epoxy resin (A1) has a softening point of 70° C. or higher.
  • Aspect 4 of the present invention is any one of Aspects 1 to 3, in which the epoxy resin (A1) and the unsaturated monobasic acid (A2) are reacted, and then the polybasic acid anhydride (A3) is further reacted.
  • the present invention relates to a method for producing a (meth)acrylate resin described in .
  • Aspect 5 of the present invention is the aspect 4, wherein the amount of the polybasic acid anhydride (A3) used is in the range of 0.25 to 1 mol per mol of the epoxy group possessed by the epoxy resin (A1).
  • the present invention relates to a method for producing the (meth)acrylate resin described above.
  • Aspect 6 of the present invention provides a curable resin composition obtained by mixing a (meth)acrylate resin obtained by the method for producing a (meth)acrylate resin according to any one of Aspects 1 to 5 and a photopolymerization initiator. Concerning methods of manufacturing things.
  • Aspect 7 of the present invention relates to a method for producing a cured product obtained by curing the curable resin composition obtained by the method for producing a curable resin composition according to Aspect 6.
  • Aspect 8 of the present invention relates to a method for producing an insulating material, characterized in that a cured product obtained by the method for producing a cured product according to Aspect 7 is used.
  • Aspect 9 of the present invention relates to a method for producing a resist member, characterized in that a cured product obtained by the method for producing a cured product according to Aspect 7 is used.
  • the (meth)acrylate resin obtained by the production method of the present invention has excellent alkali developability and high photosensitivity, and has excellent substrate adhesion and insulation reliability in the cured product, so it can be used as an insulating material. and can be suitably used for resist members.
  • the method for producing a (meth)acrylate resin of the present invention uses an epoxy resin (A1) having specific physical properties as a raw material, and a raw material containing the epoxy resin (A1) and an unsaturated monobasic acid (A2). It is characterized in that the reaction is carried out in the presence of a basic catalyst in an atmosphere of an oxygen-containing gas (b1) and an inert gas (b2) with stirring.
  • (meth)acrylate means acrylate and/or methacrylate.
  • (meth)acryloyl means acryloyl and/or methacryloyl.
  • (meth)acrylic means acrylic and/or methacrylic.
  • the method for producing a (meth)acrylate resin of the present invention is characterized in that an epoxy resin (A1) having specific physical properties is used as an essential raw material.
  • an epoxy resin (A1) having specific physical properties is used as an essential raw material.
  • the epoxy resin used in the present invention has a total chlorine concentration of 2400 ppm or less as an impurity in the epoxy resin, It is preferably 2200 ppm or less, more preferably 2000 ppm or less, even more preferably 1800 ppm or less.
  • Examples of the chlorine contained in the epoxy resin include inorganic chlorine and hydrolyzable chlorine, and the total amount of these chlorine is referred to as the total chlorine amount.
  • the total amount of chlorine in the epoxy resin can be calculated based on the rules of JIS K7246, for example.
  • a method for removing or reducing the chlorine content from the epoxy resin there is a method in which the epoxy resin is added to purified water and dissolved in the aqueous solution as chlorine ions to be removed.
  • bisphenol type epoxy resin examples include bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin. Examples include resin.
  • Examples of the hydrogenated bisphenol epoxy resin include hydrogenated bisphenol A epoxy resin, hydrogenated bisphenol B epoxy resin, hydrogenated bisphenol E epoxy resin, hydrogenated bisphenol F epoxy resin, and hydrogenated bisphenol S epoxy. Examples include resin.
  • biphenol epoxy resin examples include 4,4'-biphenol epoxy resin, 2,2'-biphenol epoxy resin, tetramethyl-4,4'-biphenol epoxy resin, and tetramethyl-2,2' -Biphenol type epoxy resins, etc.
  • hydrogenated biphenol epoxy resin examples include hydrogenated 4,4'-biphenol epoxy resin, hydrogenated 2,2'-biphenol epoxy resin, and hydrogenated tetramethyl-4,4'-biphenol epoxy resin. , hydrogenated tetramethyl-2,2'-biphenol type epoxy resin, and the like.
  • the phenolic resin is obtained by a reaction between a compound having a phenolic hydroxyl group and a compound containing a ketone group.
  • compounds having a phenolic hydroxyl group include phenol, orthocresol, metacresol, para-cresol, 2,6-dimethylphenol, 2,5-dimethylphenol, 2,4-dimethylphenol, 3,5- Dimethylphenol, 4-isopropylphenol, 4-tert-butylphenol, 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 2-methoxy-4-methylphenol, 2-tert-butyl-4-methoxyphenol, 2 , 6-dimethoxyphenol, 3,5-dimethoxyphenol, 2-ethoxyphenol, 3-ethoxyphenol, 4-ethoxyphenol, 2-phenylphenol, 3-phenylphenol, 4-phenylphenol, 4-benzylphenol, 1, 2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxy
  • the phenolic resin is obtained by reacting a phenolic hydroxyl group-containing compound with a ketone group-containing compound.
  • R is a hydrocarbon group
  • R' is a hydrocarbon group or a hydrogen atom
  • a skeleton for example, -C(-R)(-R')-
  • the obtained cured product has excellent heat resistance and the like, which is useful.
  • the ketone group-containing compound it is preferable to use an aromatic ketone, an aliphatic ketone, or a formyl group-containing aromatic compound, and these compounds may be used alone or in combination of a plurality of compounds.
  • aliphatic ketones examples include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone (2-heptanone), cyclopentanone, cyclohexanone, isophorone, cycloheptanone, and cyclooctanone.
  • acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like are preferred from the viewpoint of reactivity during the synthesis of the phenol resin or epoxy resin, and from the viewpoint of easy availability.
  • the aliphatic ketone may be used alone or in combination with a plurality of compounds.
  • Examples of the formyl group-containing compound include formaldehyde, acetaldehyde, propionaldehyde, glyoxal, succinaldehyde, benzaldehyde, 4-methylbenzaldehyde, 3,4-dimethylbenzaldehyde, 4-biphenylaldehyde, naphthylaldehyde, and 4-methoxybenzaldehyde.
  • formaldehyde is more preferred from the viewpoint of reactivity during epoxy resin synthesis and handling properties.
  • the ketone group-containing compound it is preferable to use a formyl group-containing compound, and among them, as mentioned above, it is preferable to use formaldehyde.
  • the formaldehyde may be used in the form of formalin or paraformaldehyde.
  • the phenolic resin used in the present invention is obtained by the reaction of a phenolic hydroxyl group-containing compound and a ketone group-containing compound.
  • the reaction ratio between the two is preferably 0.5 to 1.0 mol of the ketone group-containing compound, more specifically formaldehyde, per 1 mol of the phenolic hydroxyl group-containing compound. It is preferable to use formaldehyde in an amount of 0.6 to 1.0 mol per mol, and it is preferable to use formaldehyde in an amount of 0.65 to 0.98 mol per mol of the phenolic hydroxyl group-containing compound.
  • a phenol resin when producing a phenol resin, formaldehyde is used as a ketone group-containing compound, and a phenolic hydroxyl group-containing compound and formaldehyde are used in the above ratio, thereby producing an epoxy resin using the obtained phenol resin.
  • This is preferable because it can provide both the curability and substrate adhesion of a curable resin composition using a (meth)acrylate resin using a resin as a raw material.
  • the phenol resin of the present invention has a hydroxyl equivalent of 50 to 50, since the phenol resin of the present invention has excellent curability of a curable resin composition using a (meth)acrylate resin using the epoxy resin produced using the obtained phenol resin as a raw material.
  • the hydroxyl equivalent is preferably in the range of 150 g/equivalent, the hydroxyl equivalent is preferably in the range of 60 to 140 g/equivalent, and the hydroxyl equivalent is preferably in the range of 70 to 130 g/equivalent.
  • the softening point is preferably in the range of 60 to 150°C, preferably in the range of 65 to 145°C, and preferably in the range of 70 to 140°C.
  • a curable resin composition using a (meth)acrylate resin made from an epoxy resin manufactured using a phenol resin having a hydroxyl equivalent and/or softening point within the above range as a raw material can have both curability and substrate adhesion. Therefore, it is preferable.
  • the reaction may be carried out in an organic solvent if necessary.
  • organic solvent used here include methyl cellosolve, isopropyl alcohol, ethyl cellosolve, toluene, xylene, and methyl isobutyl ketone.
  • the proportion of the organic solvent in the range of 50 to 200 parts by mass with respect to the total of 100 parts by mass of the phenolic hydroxyl group-containing compound and the ketone group-containing compound is recommended, since the reaction efficiency is improved. It is preferable to use
  • organic solvents are not particularly limited, but include, for example, hydrocarbon solvents such as toluene, xylene, heptane, hexane, and mineral spirits, and ketone solvents such as methyl ethyl ketone, acetone, dimethyl formamide, methyl isobutyl ketone, cyclohexanone, and dimethyl acetamide.
  • hydrocarbon solvents such as toluene, xylene, heptane, hexane, and mineral spirits
  • ketone solvents such as methyl ethyl ketone, acetone, dimethyl formamide, methyl isobutyl ketone, cyclohexanone, and dimethyl acetamide.
  • the organic solvent and water may be used together.
  • the proportion of water used in the mixed solvent is preferably in the range of 5 to 60 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the mixed solvent.
  • the basic catalyst used during the epoxidation reaction is an aqueous solution
  • the content of water contained in the aqueous solution is not included in what is defined as water in the mixed solvent.
  • the method for producing a (meth)acrylate resin of the present invention is characterized by using an unsaturated monobasic acid (A2) as an essential raw material.
  • the unsaturated monobasic acid (A2) refers to a compound having an acid group and a polymerizable unsaturated bond in one molecule.
  • the term "polymerizable unsaturated bond” means an unsaturated bond that can undergo radical polymerization.
  • Examples of the acid group include a carboxyl group, a sulfonic acid group, a phosphoric acid group, and the like.
  • R 2 is an alkylene group having 1 to 10 carbon atoms, and n is an integer of 1 to 5.
  • the molecular weight of the compound represented by the structural formula (1) is preferably in the range of 100 to 500, more preferably in the range of 150 to 400.
  • the amount of the basic catalyst used is determined because a (meth)acrylate resin can be obtained that has excellent alkali developability and high photosensitivity, and can form a cured product having excellent elasticity, heat resistance, and substrate adhesion.
  • the inert gas (b2) may be any gas as long as it is inert in the reaction system, and examples thereof include nitrogen, carbon dioxide, carbon monoxide, helium, neon, argon, and the like. These inert gases can be used alone or as a mixed gas of two or more.
  • polybasic acid anhydride (A3) examples include aliphatic polybasic acid anhydrides, alicyclic polybasic acid anhydrides, aromatic polybasic acid anhydrides, and the like.
  • Examples of the aliphatic polybasic acid anhydrides include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid, and itaconic acid.
  • Examples include acid anhydrides of acids, glutaconic acid, and 1,2,3,4-butanetetracarboxylic acid.
  • the aliphatic hydrocarbon group of the aliphatic polybasic acid anhydride may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
  • an alicyclic polybasic acid anhydride is one in which an acid anhydride group is bonded to an alicyclic structure
  • an alicyclic polybasic acid anhydride is one in which an acid anhydride group is bonded to an alicyclic structure
  • an alicyclic polybasic acid anhydride in which an acid anhydride group is bonded to an alicyclic structure is used. It does not matter whether or not it exists.
  • polybasic acid anhydrides (A3) can be used alone or in combination of two or more.
  • (meth)acrylate resins can be obtained that have excellent alkali developability and high photosensitivity, and can form cured products with excellent heat resistance, substrate adhesion, and insulation reliability.
  • tetrahydrophthalic anhydride, cyclohexane-1,2-dicarboxylic anhydride, and succinic anhydride are preferred.
  • reaction between the reaction product obtained by reacting the epoxy resin (A1) and the unsaturated monobasic acid (A2) with the polybasic acid anhydride (A3) is carried out under a basic catalyst.
  • the reaction temperature is preferably in the range of 70 to 160°C, and the reaction time is preferably in the range of 1 to 20 hours.
  • photopolymerization initiator examples include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl(2,4,6-trimethoxybenzoyl)phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1- Examples include photoradical polymerization initiators such as 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone and the like.
  • the photopolymerization initiator may be used in combination with a photosensitizer such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, or a nitrile compound, if necessary.
  • a photosensitizer such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, or a nitrile compound, if necessary.
  • each R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 each independently represents either an alkyl group having 1 to 4 carbon atoms, or a bonding point connected to the structural moiety represented by Structural Formula (5) via a methylene group marked with *.
  • l is 0 or an integer from 1 to 3
  • m is an integer from 1 to 15.
  • organic solvent examples include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide, and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; toluene, xylene, and solvents.
  • ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide, and methyl isobutyl ketone
  • cyclic ether solvents such as tetrahydrofuran and dioxolane
  • ester solvents such as methyl acetate, ethyl acetate, and butyl acetate
  • toluene, xylene, and solvents examples of the organic solvent.
  • the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
  • Modified products lactone modified products in which a (poly)lactone structure is introduced into the molecular structure of the various polyol compounds mentioned above, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolvaleric acid etc.
  • the polyol compounds can be used alone or in combination of two or more.
  • polybasic acid anhydride those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. They can also be used together.
  • organic solvent the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
  • Acrylic acid alkyl ester alicyclic structure-containing (meth)acrylates such as cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate; phenyl (meth)acrylate, benzyl (meth)acrylate, Examples include aromatic ring-containing (meth)acrylates such as phenoxyethyl acrylate; (meth)acrylates having a silyl group such as 3-methacryloxypropyltrimethoxysilane; and styrene derivatives such as styrene, ⁇ -methylstyrene, and chlorostyrene. These can be used alone or in combination of two or more.
  • the (meth)acrylate compound ( ⁇ ) is not particularly limited as long as it can react with the reactive functional group possessed by the (meth)acrylate compound ( ⁇ ), but from the viewpoint of reactivity it should be the following combination: is preferred. That is, when water (meth)acrylate is used as the (meth)acrylate compound ( ⁇ ), it is preferable to use a (meth)acrylate having an isocyanate group as the (meth)acrylate compound ( ⁇ ). When a (meth)acrylate having a carboxyl group is used as the (meth)acrylate compound ( ⁇ ), it is preferable to use a (meth)acrylate having a glycidyl group as the (meth)acrylate compound ( ⁇ ).
  • the (meth)acrylate compound ( ⁇ ) When a (meth)acrylate having an isocyanate group is used as the (meth)acrylate compound ( ⁇ ), it is preferable to use water (meth)acrylate as the (meth)acrylate compound ( ⁇ ). When a (meth)acrylate having a glycidyl group is used as the (meth)acrylate compound ( ⁇ ), it is preferable to use a (meth)acrylate having a carboxyl group as the (meth)acrylate compound ( ⁇ ).
  • the (meth)acrylate compound ( ⁇ ) can be used alone or in combination of two or more.
  • polybasic acid anhydride those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. You can also.
  • the method for producing the acrylic resin having a polymerizable unsaturated group is not particularly limited, and any method may be used.
  • the production of the acrylic resin having a polymerizable unsaturated group may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
  • organic solvent the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
  • the amide-imide resin having a polymerizable unsaturated group examples include an amide-imide resin having an acid group and/or an acid anhydride group, a (meth)acrylate compound having a hydroxyl group, and/or a (meth)acrylate compound having an epoxy group. and, if necessary, those obtained by reacting a compound having one or more reactive functional groups selected from the group consisting of a hydroxyl group, a carboxyl group, an isocyanate group, a glycidyl group, and an acid anhydride group. .
  • the compound having a reactive functional group may or may not have a (meth)acryloyl group.
  • the amide-imide resin may have only either an acid group or an acid anhydride group, or may have both. From the viewpoint of reactivity and reaction control with a (meth)acrylate compound having a hydroxyl group or an epoxy compound having a (meth)acryloyl group, it is preferable that the compound has an acid anhydride group. It is more preferable that it has both.
  • the solid content acid value of the amide-imide resin is preferably in the range of 60 to 350 mgKOH/g as measured under neutral conditions, ie, under conditions where the acid anhydride group is not ring-opened. On the other hand, it is preferable that the value measured under conditions where the acid anhydride group is ring-opened, such as in the presence of water, is in the range of 61 to 360 mgKOH/g.
  • Examples of the amide-imide resin include those obtained by using a polyisocyanate compound and a polybasic acid anhydride as reaction raw materials.
  • polyisocyanate compound those similar to those exemplified as the above-mentioned polyisocyanate compound can be used, and the polyisocyanate compound can be used alone or in combination of two or more types.
  • the amide-imide resin in addition to the polyisocyanate compound and the polybasic acid anhydride, can also contain a polybasic acid as a reaction raw material, if necessary.
  • any compound having two or more carboxyl groups in one molecule can be used.
  • oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydro Phthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane- 2,3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxote)
  • polybasic acid for example, a copolymer of a conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used.
  • polybasic acids can be used alone or in combination of two or more.
  • the (meth)acrylate compound having a hydroxyl group those similar to those exemplified as the above-mentioned (meth)acrylate compound having a hydroxyl group can be used, and the (meth)acrylate compound having a hydroxyl group can be used alone. It is also possible to use two or more types together.
  • Examples of the (meth)acrylate compound having an epoxy group include (meth)acrylates having a glycidyl group such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and epoxycyclohexylmethyl (meth)acrylate.
  • Monomers include mono(meth)acrylates of diglycidyl ether compounds such as dihydroxybenzene diglycidyl ether, dihydroxynaphthalene diglycidyl ether, biphenol diglycidyl ether, and bisphenol diglycidyl ether. These (meth)acrylate compounds having an epoxy group can be used alone or in combination of two or more.
  • the method for producing the amide-imide resin having a polymerizable unsaturated group is not particularly limited, and any method may be used.
  • the production of the amide-imide resin having a polymerizable unsaturated group may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
  • organic solvent the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
  • the acrylamide resin having a polymerizable unsaturated group includes, for example, a compound having a phenolic hydroxyl group, an alkylene oxide or an alkylene carbonate, an N-alkoxyalkyl (meth)acrylamide compound, and, if necessary, a polybasic acid anhydride. , and those obtained by reacting with unsaturated monobasic acids.
  • R 1 is any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group, or a halogen atom.
  • R 2 are each independently a hydrogen atom or a methyl group.
  • p is 0 or an integer of 1 or more, preferably 0 or an integer of 1 to 3, more preferably 0 or 1, and even more preferably 0.
  • q is an integer of 1 or more, preferably 2 or 3.
  • the position of the substituent on the aromatic ring in the above structural formula is arbitrary; for example, in the naphthalene ring of structural formula (4-2), it may be substituted on any ring; In 4-3), it may be substituted on any of the benzene rings present in one molecule, and in structural formula (4-4), it may be substituted on any of the benzene rings present in one molecule. In structural formula (4-5), substitution may be made on any of the benzene rings present in one molecule, and the number of substituents in one molecule is p and q. It shows that.
  • examples of the compound having a phenolic hydroxyl group include a compound having at least one phenolic hydroxyl group in the molecule and a compound represented by any of the following structural formulas (5-1) to (5-5). It is also possible to use reaction products in which the reaction material is an essential reaction raw material. Further, a novolac type phenol resin, etc., which uses one or more kinds of compounds having at least one phenolic hydroxyl group in the molecule as a reaction raw material can also be used.
  • Specific examples of the compounds represented by the above general formulas (5-1) to (5-5) and the reaction products include phenol, cresol, xylenol; dialkylphenols such as dimethylphenol and diethylphenol; trimethylphenol, Trialkylphenols such as triethylphenol; diphenylphenol, triphenylphenol, catechol, resorcinol, hydroquinone, 3-methylcatechol, 4-methylcatechol, 4-allylpyrocatechol, tetramethylbisphenol A, 1,2,3-trihydroxybenzene , 1,2,4-trihydroxybenzene, 1-naphthol, 2-naphthol, 1,3-naphthalene diol, 1,5-naphthalene diol, 2,6-naphthalene diol, 2,7-naphthalene diol, polyphenylene ether type Examples include diol, polynaphthylene ether type diol, phenol novolak resin, cresol novolak resin, bis
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide, pentylene oxide, and the like.
  • ethylene oxide or propylene oxide is preferable because a cured resin composition having excellent alkali developability and high photosensitivity, as well as excellent heat resistance, substrate adhesion, and insulation reliability can be obtained.
  • the alkylene oxides can be used alone or in combination of two or more.
  • alkylene carbonate examples include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, and the like.
  • ethylene carbonate or propylene carbonate is preferable because a cured resin composition having excellent alkali developability and high photosensitivity, as well as excellent heat-resistant substrate adhesion and insulation reliability can be obtained.
  • the alkylene carbonates can be used alone or in combination of two or more.
  • N-alkoxyalkyl (meth)acrylamide compounds examples include N-methoxymethyl (meth)acrylamide, N-ethoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, and N-methoxyethyl (meth)acrylamide. , N-ethoxyethyl (meth)acrylamide, N-butoxyethyl (meth)acrylamide, and the like.
  • the N-alkoxyalkyl (meth)acrylamide compounds can be used alone or in combination of two or more.
  • polybasic acid anhydride those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. They can also be used together.
  • unsaturated monobasic acid the same as those exemplified as the above-mentioned unsaturated monobasic acid (A2) can be used, and the unsaturated monobasic acid may be used alone or in combination of two or more types. You can also do that.
  • the method for producing the acrylamide resin having a polymerizable unsaturated group is not particularly limited, and any method may be used. In the production of the acrylamide resin having a polymerizable unsaturated group, it may be carried out in an organic solvent as necessary, and a basic catalyst and an acidic catalyst may be used as necessary.
  • organic solvent the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid; and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Examples include. Furthermore, a solid acid catalyst having a strong acid such as a sulfonyl group can also be used. These acidic catalysts can be used alone or in combination of two or more.
  • the same compounds as those exemplified above as the compound having a phenolic hydroxyl group can be used, and the compound having a phenolic hydroxyl group may be used alone or in combination of two or more. They can also be used together.
  • alkylene oxide those similar to those exemplified above as the alkylene oxide can be used.
  • ethylene oxide or propylene oxide is preferable because a cured resin composition having excellent alkali developability and high photosensitivity, as well as excellent elasticity, heat resistance, and substrate adhesion can be obtained.
  • the alkylene oxides can be used alone or in combination of two or more.
  • polybasic acid anhydride those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. They can also be used together.
  • the method for producing the ester resin having a polymerizable unsaturated group is not particularly limited, and any method may be used. In the production of the ester resin having a polymerizable unsaturated group, it may be carried out in an organic solvent as necessary, and a basic catalyst and an acidic catalyst may be used as necessary.
  • organic solvent the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the amount of the resin having a polymerizable unsaturated group used is preferably in the range of 10 to 900 parts by mass based on 100 parts by mass of the (meth)acrylate resin of the present invention.
  • alicyclic di(meth)acrylate compounds aromatic di(meth)acrylate compounds such as biphenol di(meth)acrylate and bisphenol di(meth)acrylate; Polyoxyalkylene-modified di(meth)acrylate compounds into which (poly)oxyalkylene chains such as poly)oxyethylene chains, (poly)oxypropylene chains, and (poly)oxytetramethylene chains are introduced; the various di(meth)acrylates mentioned above.
  • phenolic compound examples include cresol, xylenol, catechol, resorcinol, hydroquinone, 3-methylcatechol, 4-methylcatechol, 4-allylpyrocatechol, 1,2,3-trihydroxybenzene, 1,2,4- Trihydroxybenzene, 1-naphthol, 2-naphthol, 1,3-naphthalene diol, 1,5-naphthalene diol, 2,6-naphthalene diol, 2,7-naphthalene diol, hydrogenated bisphenol, hydrogenated biphenol, polyphenylene ether Type diols, polynaphthylene ether type diols, phenol novolak resins, cresol novolac resins, bisphenol novolak type resins, naphthol novolak type resins, phenol aralkyl type resins, naphthol aralkyl type resins, phenol resins having a cyclo ring structure, and the like.
  • cyclic carbonate compound examples include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, and the like. These cyclic carbonate compounds can be used alone or in combination of two or more.
  • cyclic ether compound examples include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds can be used alone or in combination of two or more.
  • unsaturated monocarboxylic acid those similar to those exemplified as the above-mentioned unsaturated monobasic acid (A2) can be used.
  • the content of the other (meth)acrylate monomers in the curable resin composition of the present invention is preferably 90% by mass or less.
  • the curable resin composition of the present invention may contain a curing agent, a curing accelerator, an ultraviolet absorber, a polymerization inhibitor, an antioxidant, an organic solvent, an inorganic filler, fine polymer particles, a pigment, an eraser, etc., as necessary.
  • a curing agent such as foaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers can also be contained.
  • curing agent examples include epoxy resins, polybasic acids, unsaturated monobasic acids, amine compounds, amide compounds, azo compounds, organic peroxides, polyol compounds, and epoxy resins.
  • epoxy resin those similar to those exemplified as the above-mentioned epoxy resin (A1) can be used, and the epoxy resins can be used alone or in combination of two or more types.
  • polybasic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, and terephthalic acid.
  • tetrahydrophthalic acid hexahydrophthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2 .2.1] heptane-2,3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxotetrahydrofuran-3-yl)-1, 2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, bipheny
  • polybasic acid for example, a copolymer of a conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used.
  • polybasic acids can be used alone or in combination of two or more.
  • unsaturated monobasic acid those similar to those exemplified as the above-mentioned unsaturated monobasic acid (A2) can be used, and the unsaturated monobasic acid may be used alone or in combination of two or more. They can also be used together.
  • amine compound examples include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF3-amine complex, and guanidine derivatives. These amine compounds can be used alone or in combination of two or more.
  • amide compound examples include dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid, and ethylenediamine, and the like. These amide compounds can be used alone or in combination of two or more.
  • azo compound examples include azobisisobutyronitrile and the like.
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxy ester, peroxydicarbonate, alkyl peroxycarbonate, and the like. These organic peroxides can be used alone or in combination of two or more.
  • polyol compound examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1, 5-pentanediol, neopentyl glycol, 1,6-hexanediol, glycerin, glycerin mono(meth)acrylate, trimethylolethane, trimethylolmethane mono(meth)acrylate, trimethylolpropane, trimethylolpropane mono(meth)acrylate , pentaerythritol mono(meth)acrylate, pentaerythritol di(meth)acrylate, etc.; the polyol monomers and the above polyol monomers, succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic
  • polyester polyols obtained by polycondensation reaction with various lactones; the above polyol monomers and ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl Examples include polyether polyols obtained by ring-opening polymerization with cyclic ether compounds such as ethers. These polyol compounds can be used alone or in combination of two or more.
  • epoxy resin those similar to those exemplified as the above-mentioned epoxy resin (A1) can be used, and the epoxy resins can be used alone or in combination of two or more types.
  • the curing accelerator is one that accelerates the curing reaction, and includes, for example, phosphorus compounds, amine compounds, imidazole, organic acid metal salts, Lewis acids, amine complex salts, and the like. These curing accelerators can be used alone or in combination of two or more. Further, the amount of the curing accelerator added is preferably in the range of 0.01 to 10% by mass based on the solid content of the curable resin composition.
  • Examples of the ultraviolet absorber include 2-[4- ⁇ (2-hydroxy-3-dodecyloxypropyl)oxy ⁇ -2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1 , 3,5-triazine, 2-[4- ⁇ (2-hydroxy-3-tridecyloxypropyl)oxy ⁇ -2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1, Triazine derivatives such as 3,5-triazine, 2-(2'-xanthenecarboxy-5'-methylphenyl)benzotriazole, 2-(2'-o-nitrobenzyloxy-5'-methylphenyl)benzotriazole, 2 -xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone, and the like. These ultraviolet absorbers can be used alone or in combination of two or more.
  • polymerization inhibitor examples include p-methoxyphenol, p-methoxycresol, 4-methoxy-1-naphthol, 4,4'-dialkoxy-2,2'-bi-1-naphthol, 3-(N -Salicyloyl)amino-1,2,4-triazole, N'1,N'12-bis(2-hydroxybenzoyl)dodecane dihydrazide, styrenated phenol, N-isopropyl-N'-phenylbenzene-1,4-diamine , phenolic compounds such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, hydroquinone, methylhydroquinone, p-benzoquinone, methyl-p-benzoquinone, 2,5-diphenylbenzoquinone, 2-hydroxy- Quinone compounds such as 1,4-naphthoquinone, anthraquinone, and diphenoquino
  • N'-diphenyl-p-phenylenediamine N-i-propyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, diphenylamine, 4 , 4'-dicumyl-diphenylamine, 4,4'-dioctyl-diphenylamine, poly(2,2,4-trimethyl-1,2-dihydroquinoline), styrenated diphenylamine, styrenated diphenylamine and 2,4,4-trimethyl Amine compounds such as reaction products of pentene, reaction products of diphenylamine and 2,4,4-trimethylpentene, phenothiazine, distearylthiodipropionate, 2,2-bis( ⁇ [3-(dodecylthio)propionyl]oxy) ⁇ Thioether compounds such as methyl)-1,3-propane
  • nickel compounds such as bis(N,N-dibutylcarbamodithioato-S,S')nickel, 1,3-dihydro-2H-benzimidazole-2-thione, 4,6-bis(octylthiomethyl)- Sulfur compounds such as o-cresol, 2-methyl-4,6-bis[(octan-1-ylsulfanyl)methyl]phenol, dilaurylthiodipropionate, distearyl 3,3'-thiodipropionate, etc. can be mentioned.
  • These polymerization inhibitors can be used alone or in combination of two or more.
  • antioxidant compounds similar to those exemplified as the polymerization inhibitor can be used, and the antioxidants can be used alone or in combination of two or more.
  • commercially available products of the polymerization inhibitor and the antioxidant include, for example, "Q-1300” and “Q-1301” manufactured by Wako Pure Chemical Industries, Ltd., and “Sumilizer BBM-S” manufactured by Sumitomo Chemical Co., Ltd. , “Sumilizer GA-80 ga”, etc.
  • organic solvent the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
  • Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
  • pigment known and commonly used inorganic pigments and organic pigments can be used.
  • inorganic pigments examples include white pigments, antimony red, red red, cadmium red, cadmium yellow, cobalt blue, deep blue, ultramarine, carbon black, and graphite. These inorganic pigments can be used alone or in combination of two or more.
  • white pigment examples include titanium oxide, zinc oxide, magnesium oxide, zirconium oxide, aluminum oxide, barium sulfate, silica, talc, mica, aluminum hydroxide, calcium silicate, aluminum silicate, hollow resin particles, and zinc sulfide. etc.
  • organic pigments examples include quinacridone pigments, quinacridonequinone pigments, dioxazine pigments, phthalocyanine pigments, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone pigments, perylene pigments, diketopyrrolopyrrole pigments, perinone pigments, Examples include quinophthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments, and azo pigments. These organic pigments can be used alone or in combination of two or more.
  • the flame retardant examples include red phosphorus, ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; inorganic phosphorus compounds such as phosphoric acid amide; phosphate ester compounds, and phosphones.
  • the cured product of the present invention can be obtained by irradiating the curable resin composition with active energy rays.
  • the active energy ray include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the irradiation may be performed in an inert gas atmosphere such as nitrogen gas, or in an air atmosphere.
  • an ultraviolet lamp As a source of ultraviolet light, an ultraviolet lamp is generally used from the standpoint of practicality and economy. Specifically, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, sunlight, LEDs, etc. can be mentioned.
  • the cumulative amount of active energy rays is not particularly limited, but is preferably 0.1 to 50 kJ/m 2 , more preferably 0.5 to 10 kJ/m 2 . It is preferable that the cumulative light amount is within the above range because it is possible to prevent or suppress the occurrence of uncured portions.
  • the irradiation with the active energy rays may be performed in one step, or may be performed in two or more steps.
  • the cured product of the present invention has excellent alkali developability and high photosensitivity, as well as excellent elasticity, heat resistance, and substrate adhesion, so it can be used, for example, in solder resists and interlayer insulation in semiconductor device applications. It can be suitably used as a material, a package material, an underfill material, a package adhesive layer for circuit elements, etc., or an adhesive layer between an integrated circuit element and a circuit board. Further, it can be suitably used for thin film transistor protective films, liquid crystal color filter protective films, pigment resists for color filters, black matrix resists, spacers, etc. in thin display applications such as LCDs and OELDs. Among these, it can be particularly suitably used for solder resist applications.
  • the resist member of the present invention can be prepared, for example, by coating the solder resist resin material on a base material, drying it by evaporating the organic solvent in a temperature range of about 60 to 100°C, and then forming a photomask on which a desired pattern is formed. It can be obtained by exposing the film to active energy rays through the film, developing the unexposed areas with an alkaline aqueous solution, and further heating and curing in a temperature range of about 140 to 200°C.
  • the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 169 parts by mass of the target epoxy resin (2).
  • the epoxy equivalent of the epoxy resin (2) was 211 g/equivalent, and the softening point was 87°C.
  • the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 167 parts by mass of the desired epoxy resin (3).
  • the epoxy equivalent of the epoxy resin (3) was 215 g/equivalent, and the softening point was 96°C.
  • the epoxy equivalent of the epoxy resin (5) was 220 g/equivalent, and the softening point was 91°C.
  • the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 169 parts by mass of the desired epoxy resin (6).
  • the epoxy equivalent of the epoxy resin (6) was 206 g/equivalent, and the softening point was 82°C.
  • Example 4 Preparation of acrylate resin (4)
  • the esterification reaction was carried out at 120° C.
  • Example 5 Preparation of acrylate resin (5)
  • 73 parts by mass of diethylene glycol monoethyl ether acetate was put into a flask equipped with a thermometer, a stirrer, and a reflux condenser, and 220 parts by mass of epoxy resin (5) was dissolved therein.
  • 72 parts by mass of acrylic acid and 1.5 parts by mass of triphenylphosphine were added, and air was blown in from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm.
  • Example 6 Preparation of acrylate resin (6)
  • the esterification reaction was carried out at 120° C.
  • Example 7 Preparation of acrylate resin (7)
  • the esterification reaction was carried out at 120° C.
  • Example 13 Preparation of acrylate resin (13)
  • the esterification reaction was carried out at 120° C.
  • Example 14 Preparation of acrylate resin (14)
  • the esterification reaction was carried out at 120° C.
  • Example 15 Preparation of acrylate resin (15)
  • the esterification reaction was carried out at 120° C.
  • Example 16 Preparation of acrylate resin (16)
  • the esterification reaction was carried out at 120° C.
  • Example 17 Preparation of acrylate resin (17)
  • the esterification reaction was carried out at 120° C.
  • Example 18 Preparation of acrylate resin (18)
  • the esterification reaction was carried out at 120° C.
  • Example 19 Preparation of acrylate resin (19)
  • the esterification reaction was carried out at 120° C.
  • Example 20 Preparation of acrylate resin (20)
  • the esterification reaction was carried out at 120° C.
  • Example 21 Preparation of acrylate resin (21)
  • Example 23 Preparation of acrylate resin (23)
  • the esterification reaction was carried out at 120° C.
  • Example 25 Preparation of acrylate resin (25)
  • the esterification reaction was carried out at 120° C.
  • methacrylate resin (1) was obtained by 16 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta.
  • 130.2 parts by mass of diethylene glycol monoethyl ether acetate and 80.6 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain methacrylate resin (1).
  • the nonvolatile content of this methacrylate resin (1) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
  • Curable resin compositions (R1) to (R3) were obtained using the compositions and formulations shown in Table 4 in the same manner as in Example 28.
  • Curable resin compositions (R4) to (R6) were obtained using the compositions and formulations shown in Table 7 in the same manner as in Example 55.
  • Base material adhesion was evaluated by measuring peel strength.
  • ⁇ Preparation of test piece 2> The active energy ray-curable resin compositions obtained in the Examples and Comparative Examples were applied onto a copper foil (manufactured by Furukawa Sangyo Co., Ltd., electrolytic copper foil "F2-WS" 18 ⁇ m) using a 50 ⁇ m applicator, and a metal halide lamp was used. After irradiating the sample with ultraviolet rays of 10 kJ/m 2 , the sample was heated at 160° C. for 1 hour to obtain a test piece 2.
  • the test piece 2 was cut out to a size of 1 cm in width and 12 cm in length, and the 90° peel strength was measured using a peel tester (“A&D Tensilon” manufactured by A&D Co., Ltd., peeling speed 50 mm/min).
  • a cured product of the curable resin composition obtained in each Example and Comparative Example was prepared on a comb-shaped electrode substrate (line and space: 100 ⁇ m/100 ⁇ m) under the following conditions.
  • a curable resin composition was applied and dried at 80°C for 30 minutes. It was irradiated with ultraviolet rays at 10 kJ/m 2 using a metal halide lamp, and then cured at 160° C. for 1 hour to produce a cured film.
  • the cured film was placed in a constant temperature and humidity chamber set at a temperature of 120° C. and a humidity of 85%, a bias voltage of DC 100 V was applied, and the presence or absence of migration after 100 hours was visually evaluated using the following evaluation criteria.
  • Table 5 shows the compositions and evaluation results of the curable resin compositions (28) to (54) produced in Examples 55 to 81 and the curable resin compositions (R4) to (R6) produced in Comparative Examples 9 to 11. ⁇ Shown in Table 7.
  • “Curing agent” in Tables 2 to 7 indicates an orthocresol novolac type epoxy resin ("EPICLON N-680" manufactured by DIC Corporation).
  • Organic solvent in Tables 2 to 7 indicates diethylene glycol monoethyl ether acetate.
  • Photopolymerization initiator in Tables 2 to 7 refers to "Omnirad-907" manufactured by IGM Resins.
  • Examples 28 to 54 shown in Tables 2 to 4 are examples of curable resin compositions using (meth)acrylate resins produced by the method for producing (meth)acrylate resins of the present invention. It was confirmed that these curable resin compositions had high photosensitivity and excellent alkali developability.
  • Comparative Example 6 is an example of a curable resin composition using an acrylate resin using an epoxy resin having a total chlorine content outside the range of the present invention as a raw material. It was confirmed that the light sensitivity was inferior. Furthermore, it was confirmed that the cured product of the curable resin composition using this acrylate resin (Comparative Example 9) was insufficient in substrate adhesion and insulation reliability.
  • Comparative Example 7 is an example of a curable resin composition using an acrylate resin using an epoxy resin having an ⁇ -glycol content outside the range of the present invention as a raw material. It was confirmed that the sensitivity was inferior. Furthermore, it was confirmed that the cured product of the curable resin composition using this acrylate resin (Comparative Example 10) had insufficient adhesion to the substrate.
  • Comparative Example 4 is an example of an acrylate resin in which the stirring power per unit volume was outside the range of the stirring power specified in the present invention (8.5 kW/m 3 ), but it was confirmed that it could not be manufactured due to gelation. did it.

Abstract

The present invention provides: a method for producing a (meth)acrylate resin having excellent alkali developability and high optical sensitivity and ensuring not only excellent heat resistance but also excellent base material adhesiveness and insulation reliability in a cured product thereof; a method for producing a curable resin composition containing the (meth)acrylate resin; a method for producing a cured product formed from the curable resin composition; and a method for producing an insulation material and a resist member. A (meth)acrylate resin obtained by this method for producing a (meth)acrylate resin, in which an epoxy resin having a certain physical property value is used as a raw material, raw materials including the epoxy resin and an unsaturated monobasic acid are reacted, while being stirred, in the presence of a basic catalyst in an atmosphere of a certain gas so that the oxygen concentration in the reaction system falls within a certain range and that the stirring power per unit volume falls within a certain range, has excellent alkali developability and high optical sensitivity and ensures both excellent base material adhesiveness and insulation reliability in a cured product thereof. Therefore, said (meth)acrylate resin can be suitably used for an insulation material and a resist member.

Description

(メタ)アクリレート樹脂の製造方法Method for producing (meth)acrylate resin
 本発明は、優れたアルカリ現像性及び高い光感度を有し、硬化物における優れた弾性、耐熱性及び基材密着性を有する(メタ)アクリレート樹脂の製造方法、これを含有する硬化性樹脂組成物の製造方法、前記硬化性樹脂組成物からなる硬化物の製造方法、絶縁材料及びレジスト部材の製造方法に関する。 The present invention relates to a method for producing a (meth)acrylate resin that has excellent alkali developability and high photosensitivity, and has excellent elasticity, heat resistance, and adhesion to a substrate in a cured product, and a curable resin composition containing the same. The present invention relates to a method for manufacturing a product, a method for manufacturing a cured product made of the curable resin composition, and a method for manufacturing an insulating material and a resist member.
 近年、プリント配線基板用のソルダーレジスト用樹脂材料には、エポキシ樹脂をアクリル酸でアクリレート化した後、酸無水物を反応させて得られる酸基含有エポキシアクリレート樹脂が広く用いられている。ソルダーレジスト用樹脂材料に対する要求性能は、少ない露光量で硬化すること、アルカリ現像性に優れること、硬化物における耐熱性や強度、柔軟性、伸び、誘電特性、基材密着性、及び絶縁信頼性等に優れることなど様々なものが挙げられる。 In recent years, acid group-containing epoxy acrylate resins obtained by acrylating epoxy resins with acrylic acid and then reacting with acid anhydrides have been widely used as resin materials for solder resists for printed wiring boards. The performance requirements for resin materials for solder resists include curing with a small amount of light exposure, excellent alkali developability, heat resistance, strength, flexibility, elongation, dielectric properties, substrate adhesion, and insulation reliability of the cured product. There are various things that can be mentioned, such as being excellent at
 従来知られているソルダーレジスト用樹脂材料としては、ノボラック型エポキシ樹脂と不飽和モノカルボン酸との反応物と、飽和または不飽和多塩基酸無水物とを反応させて得られる活性エネルギー線硬化性樹脂が知られているが(例えば、下記特許文献1参照。)、硬化物における耐熱性には優れるものの、基材密着性においては今後ますます高まる要求特性を満足するものではなく、昨今の市場要求に対し十分なものではなかった。 Conventionally known resin materials for solder resists include active energy ray-curable resin materials obtained by reacting a reaction product of a novolac type epoxy resin with an unsaturated monocarboxylic acid and a saturated or unsaturated polybasic acid anhydride. Although resins are known (for example, see Patent Document 1 below), although they have excellent heat resistance in the cured product, they do not satisfy the increasingly required characteristics in terms of adhesion to substrates, and are not suitable for the current market. It was not sufficient for the request.
 そこで、優れたアルカリ現像性及び高い光感度を有し、硬化物における耐熱性、基材密着性及び絶縁信頼性を兼備する一層優れた特性を有する材料が求められていた。 Therefore, there has been a need for a material that has even more excellent properties, including excellent alkali developability and high photosensitivity, as well as heat resistance, substrate adhesion, and insulation reliability in the cured product.
特開昭61-243869号公報Japanese Unexamined Patent Publication No. 61-243869
 本発明が解決しようとする課題は、優れたアルカリ現像性及び高い光感度を有し、硬化物における優れた耐熱性、基材密着性及び絶縁信頼性を兼備する(メタ)アクリレート樹脂の製造方法、これを含有する硬化性樹脂組成物の製造方法、前記硬化性樹脂組成物からなる硬化物の製造方法、絶縁材料及びレジスト部材の製造方法を提供することである。 The problem to be solved by the present invention is a method for producing a (meth)acrylate resin that has excellent alkali developability and high photosensitivity, as well as excellent heat resistance, substrate adhesion, and insulation reliability in a cured product. An object of the present invention is to provide a method for producing a curable resin composition containing the same, a method for producing a cured product made of the curable resin composition, and a method for producing an insulating material and a resist member.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の物性値を有するエポキシ樹脂を原料として用い、当該エポキシ樹脂と、不飽和一塩基酸とを含む原料を、塩基性触媒の存在下、特定の気体の雰囲気下、反応系内の酸素濃度が特定の範囲となるよう、また、単位体積当たりの撹拌動力が特定の範囲となるように撹拌しながら反応させることによって、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors used an epoxy resin having specific physical properties as a raw material, and added a raw material containing the epoxy resin and an unsaturated monobasic acid to a basic catalyst. The above problem can be solved by carrying out the reaction in the presence of a specific gas, with stirring so that the oxygen concentration in the reaction system is within a specific range, and the stirring power per unit volume is within a specific range. The present invention was completed based on the discovery that the problem can be solved.
 すなわち、本発明は、エポキシ樹脂(A1)と、不飽和一塩基酸(A2)とを必須原料とする(メタ)アクリレート樹脂の製造方法であって、前記エポキシ樹脂(A1)中に含まれる全塩素濃度が2400ppm以下であり、前記エポキシ樹脂(A1)中に含まれるα―グリコール量が0.20meq/g以下であり、前記エポキシ樹脂(A1)と前記不飽和一塩基酸(A2)との反応を、塩基性触媒の存在下、酸素を含有する気体(b1)及び不活性ガス(b2)の雰囲気下で撹拌しながら行うものであり、反応系内の酸素濃度を2~12質量%の範囲とし、単位体積当たりの撹拌動力を0.2~8kW/mの範囲とすることを特徴とする(メタ)アクリレート樹脂の製造方法、これを含有する硬化性樹脂組成物の製造方法、前記硬化性樹脂組成物からなる硬化物の製造方法、絶縁材料の製造方法、及びレジスト部材の製造方法に関するものである。 That is, the present invention is a method for producing a (meth)acrylate resin using an epoxy resin (A1) and an unsaturated monobasic acid (A2) as essential raw materials, the method comprising: The chlorine concentration is 2400 ppm or less, the amount of α-glycol contained in the epoxy resin (A1) is 0.20 meq/g or less, and the combination of the epoxy resin (A1) and the unsaturated monobasic acid (A2) is The reaction is carried out in the presence of a basic catalyst with stirring in an atmosphere of an oxygen-containing gas (b1) and an inert gas (b2), and the oxygen concentration in the reaction system is adjusted to 2 to 12% by mass. A method for producing a (meth)acrylate resin, characterized in that the stirring power per unit volume is in the range of 0.2 to 8 kW/ m3 , a method for producing a curable resin composition containing the same, The present invention relates to a method for producing a cured product made of a curable resin composition, a method for producing an insulating material, and a method for producing a resist member.
 より具体的には、本発明の態様1は、エポキシ樹脂(A1)と、不飽和一塩基酸(A2)とを必須原料とする(メタ)アクリレート樹脂の製造方法であって、前記エポキシ樹脂(A1)中に含まれる全塩素濃度が2400ppm以下であり、前記エポキシ樹脂(A1)中に含まれるα―グリコール量が0.20meq/g以下であり、前記エポキシ樹脂(A1)と前記不飽和一塩基酸(A2)との反応を、塩基性触媒の存在下、酸素を含有する気体(b1)及び不活性ガス(b2)の雰囲気下で撹拌しながら行うものであり、反応系内の酸素濃度を2~12質量%の範囲とし、単位体積当たりの撹拌動力を0.2~8kW/mの範囲とすることを特徴とする(メタ)アクリレート樹脂の製造方法に関する。 More specifically, aspect 1 of the present invention is a method for producing a (meth)acrylate resin using an epoxy resin (A1) and an unsaturated monobasic acid (A2) as essential raw materials, the method comprising: The total chlorine concentration contained in A1) is 2400 ppm or less, the amount of α-glycol contained in the epoxy resin (A1) is 0.20 meq/g or less, and the epoxy resin (A1) and the unsaturated monomer The reaction with a basic acid (A2) is carried out in the presence of a basic catalyst with stirring in an atmosphere of an oxygen-containing gas (b1) and an inert gas (b2), and the oxygen concentration in the reaction system is The present invention relates to a method for producing a (meth)acrylate resin, characterized in that the stirring power is in the range of 2 to 12% by mass and the stirring power per unit volume is in the range of 0.2 to 8kW/m 3 .
 本発明の態様2は、前記気体(b1)を反応系内の液面より下部から導入するものであり、前記不活性ガス(b2)を液面より上部から導入するものである態様1に記載の(メタ)アクリレート樹脂の製造方法に関する。 Aspect 2 of the present invention is described in Aspect 1, wherein the gas (b1) is introduced from below the liquid level in the reaction system, and the inert gas (b2) is introduced from above the liquid level. The present invention relates to a method for producing (meth)acrylate resin.
 本発明の態様3は、前記エポキシ樹脂(A1)の軟化点が70℃以上である、態様1又は態様2に記載の(メタ)アクリレート樹脂の製造方法に関する。 Aspect 3 of the present invention relates to the method for producing a (meth)acrylate resin according to aspect 1 or aspect 2, wherein the epoxy resin (A1) has a softening point of 70° C. or higher.
 本発明の態様4は、前記エポキシ樹脂(A1)と、前記不飽和一塩基酸(A2)とを反応した後、さらに多塩基酸無水物(A3)を反応する態様1~態様3のいずれかに記載の(メタ)アクリレート樹脂の製造方法に関する。 Aspect 4 of the present invention is any one of Aspects 1 to 3, in which the epoxy resin (A1) and the unsaturated monobasic acid (A2) are reacted, and then the polybasic acid anhydride (A3) is further reacted. The present invention relates to a method for producing a (meth)acrylate resin described in .
 本発明の態様5は、前記多塩基酸無水物(A3)の使用量が、前記エポキシ樹脂(A1)が有するエポキシ基1モルに対して、0.25~1モルの範囲である態様4に記載の(メタ)アクリレート樹脂の製造方法に関する。 Aspect 5 of the present invention is the aspect 4, wherein the amount of the polybasic acid anhydride (A3) used is in the range of 0.25 to 1 mol per mol of the epoxy group possessed by the epoxy resin (A1). The present invention relates to a method for producing the (meth)acrylate resin described above.
 本発明の態様6は、態様1~態様5のいずれかに記載の(メタ)アクリレート樹脂の製造方法で得た(メタ)アクリレート樹脂と、光重合開始剤とを混合して得る硬化性樹脂組成物の製造方法に関する。 Aspect 6 of the present invention provides a curable resin composition obtained by mixing a (meth)acrylate resin obtained by the method for producing a (meth)acrylate resin according to any one of Aspects 1 to 5 and a photopolymerization initiator. Concerning methods of manufacturing things.
 本発明の態様7は、態様6に記載の硬化性樹脂組成物の製造方法で得た硬化性樹脂組成物を硬化して得る硬化物の製造方法に関する。 Aspect 7 of the present invention relates to a method for producing a cured product obtained by curing the curable resin composition obtained by the method for producing a curable resin composition according to Aspect 6.
 本発明の態様8は、態様7に記載の硬化物の製造方法で得られた硬化物を用いることを特徴とする絶縁材料の製造方法に関する。 Aspect 8 of the present invention relates to a method for producing an insulating material, characterized in that a cured product obtained by the method for producing a cured product according to Aspect 7 is used.
 本発明の態様9は、態様7に記載の硬化物の製造方法で得られた硬化物を用いることを特徴とするレジスト部材の製造方法に関する。 Aspect 9 of the present invention relates to a method for producing a resist member, characterized in that a cured product obtained by the method for producing a cured product according to Aspect 7 is used.
 本発明の製造方法によって得られた(メタ)アクリレート樹脂は、優れたアルカリ現像性及び高い光感度を有し、硬化物における優れた基材密着性及び絶縁信頼性を兼備することから、絶縁材料及びレジスト部材に好適に用いることができる。 The (meth)acrylate resin obtained by the production method of the present invention has excellent alkali developability and high photosensitivity, and has excellent substrate adhesion and insulation reliability in the cured product, so it can be used as an insulating material. and can be suitably used for resist members.
 本発明の(メタ)アクリレート樹脂の製造方法は、特定の物性値を有するエポキシ樹脂(A1)を原料として用い、当該エポキシ樹脂(A1)と不飽和一塩基酸(A2)とを含む原料を、塩基性触媒の存在下、酸素を含有する気体(b1)及び不活性ガス(b2)の雰囲気下で、撹拌しながら反応させることを特徴とする。 The method for producing a (meth)acrylate resin of the present invention uses an epoxy resin (A1) having specific physical properties as a raw material, and a raw material containing the epoxy resin (A1) and an unsaturated monobasic acid (A2). It is characterized in that the reaction is carried out in the presence of a basic catalyst in an atmosphere of an oxygen-containing gas (b1) and an inert gas (b2) with stirring.
 なお、本発明において、「(メタ)アクリレート」とは、アクリレート及び/またはメタクリレートを意味する。また、「(メタ)アクリロイル」とは、アクリロイル及び/またはメタクリロイルを意味する。さらに、「(メタ)アクリル」とは、アクリル及び/またはメタクリルを意味する。 In the present invention, "(meth)acrylate" means acrylate and/or methacrylate. Moreover, "(meth)acryloyl" means acryloyl and/or methacryloyl. Furthermore, "(meth)acrylic" means acrylic and/or methacrylic.
<エポキシ樹脂(A1)>
 本発明の(メタ)アクリレート樹脂の製造方法は、必須原料として特定の物性値を有するエポキシ樹脂(A1)を用いることを特徴とする。
 具体的には、本発明においては下記の通常用いられるエポキシ樹脂を使用することができるが、本発明に使用するエポキシ樹脂は、エポキシ樹脂中に不純物として含まれる全塩素濃度が2400ppm以下であり、2200ppm以下であることが好ましく、2000ppm以下であることがより好ましく、1800ppm以下であることがさらに好ましい。このように全塩素濃度が低減されたエポキシ樹脂を原料として使用することにより、本発明において得られる(メタ)アクリレート樹脂を使用した硬化性樹脂組成物の基材密着性及び絶縁信頼性を高めることができる。エポキシ樹脂中に含まれる塩素分としては、例えば無機塩素や加水分解性塩素などが挙げられ、これらの塩素分の全量を全塩素量と称する。エポキシ樹脂中の全塩素量は例えばJIS K7246の規則に基づき算出することができる。なお、エポキシ樹脂から塩素分を除去、低減する方法としてはエポキシ樹脂を精製水に投入し塩素イオンとして水溶液に溶解させて除去する方法等が挙げられる。
<Epoxy resin (A1)>
The method for producing a (meth)acrylate resin of the present invention is characterized in that an epoxy resin (A1) having specific physical properties is used as an essential raw material.
Specifically, the following commonly used epoxy resins can be used in the present invention, but the epoxy resin used in the present invention has a total chlorine concentration of 2400 ppm or less as an impurity in the epoxy resin, It is preferably 2200 ppm or less, more preferably 2000 ppm or less, even more preferably 1800 ppm or less. By using an epoxy resin with a reduced total chlorine concentration as a raw material, it is possible to improve the substrate adhesion and insulation reliability of the curable resin composition using the (meth)acrylate resin obtained in the present invention. Can be done. Examples of the chlorine contained in the epoxy resin include inorganic chlorine and hydrolyzable chlorine, and the total amount of these chlorine is referred to as the total chlorine amount. The total amount of chlorine in the epoxy resin can be calculated based on the rules of JIS K7246, for example. In addition, as a method for removing or reducing the chlorine content from the epoxy resin, there is a method in which the epoxy resin is added to purified water and dissolved in the aqueous solution as chlorine ions to be removed.
 また、前述のとおり、本発明においては通常用いられるエポキシ樹脂を原料として使用することができるが、本発明に使用するエポキシ樹脂は、エポキシ樹脂中に含まれるα-グリコール量が0.20meq/g以下であり、0.01meq/g以上0.20meq/g以下が好ましく、0.02meq/g以上0.15meq/g以下がより好ましい。α-グリコール量が0.20meq/gを超えるエポキシ樹脂を使用する場合、本発明において得られる(メタ)アクリレート樹脂を使用した硬化性樹脂組成物の基材密着性を著しく低下させるものである。一方、α-グリコール量が0.01meq/g未満のエポキシ樹脂を使用する場合、本発明において得られる(メタ)アクリレート樹脂を使用した硬化性樹脂組成物の硬化性が低下し硬化物の耐熱性が低下する。通常、α-グリコールが有する水酸基は基材への密着性を高める官能基として導入されるが、エポキシ樹脂中にα-グリコールを多く含有する場合、意外にも基材密着性が低下する結果となった。一方、エポキシ樹脂中のα-グリコール量を前記一定の範囲に制御することにより、当該エポキシ樹脂を原料として用いた(メタ)アクリレート樹脂を使用した硬化性樹脂組成物は硬化性、耐熱性及び基材密着性を兼備することが確認された。なお、エポキシ樹脂中のα-グリコール量は例えばJIS K7146の規則に基づき算出することができる。具体的にはJIS K 7146の規則に基づき市販のオートタイトレータを用いる方法に改良された、齋藤らによるアナリティカルレポート「エポキシ樹脂に含有されるα-グリコールの電位差滴定法による定量とその信頼性」BUNSEKI KAGAKU vol.57、No.6、pp.499-503(2008)に記載されている方法に準拠して測定し、α-グリコールが過ヨウ素酸と定量的に反応、開裂しカルボニル化合物に酸化されることを利用し、余剰の過ヨウ素酸にヨウ化カリウムを加え発生したヨウ素をチオ硫酸ナトリウム溶液で滴定することで算出することができるものである。また、エポキシ樹脂からα-グリコール量を除去、低減する方法としてはエポキシ樹脂を合成する際に反応系内の水分量を低減コントロールしながら反応を行うことにより、生成したエポキシ基の加水分解を防止することによりα-グリコール量を前記範囲に調整することができる。 Furthermore, as mentioned above, in the present invention, a commonly used epoxy resin can be used as a raw material, but the epoxy resin used in the present invention has an α-glycol content of 0.20 meq/g. It is preferably 0.01 meq/g or more and 0.20 meq/g or less, and more preferably 0.02 meq/g or more and 0.15 meq/g or less. When using an epoxy resin in which the amount of α-glycol exceeds 0.20 meq/g, the adhesion to the substrate of the curable resin composition using the (meth)acrylate resin obtained in the present invention is significantly reduced. On the other hand, when using an epoxy resin with an α-glycol content of less than 0.01 meq/g, the curability of the curable resin composition using the (meth)acrylate resin obtained in the present invention decreases, and the heat resistance of the cured product decreases. decreases. Normally, the hydroxyl group of α-glycol is introduced as a functional group to improve adhesion to the substrate, but when an epoxy resin contains a large amount of α-glycol, the adhesion to the substrate surprisingly decreases. became. On the other hand, by controlling the amount of α-glycol in the epoxy resin within the above-mentioned certain range, a curable resin composition using a (meth)acrylate resin using the epoxy resin as a raw material has good curability, heat resistance, and It was confirmed that it has good adhesion to materials. Note that the amount of α-glycol in the epoxy resin can be calculated based on, for example, the rules of JIS K7146. Specifically, the analytical report by Saito et al. ``Quantitative determination of α-glycol contained in epoxy resin by potentiometric titration method and its reliability, which has been improved to a method using a commercially available autotitrator based on the rules of JIS K 7146. "BUNSEKI KAGAKU vol. 57, No. 6, pp. 499-503 (2008), and utilizing the fact that α-glycol quantitatively reacts and cleaves with periodic acid and is oxidized to a carbonyl compound, excess periodic acid is It can be calculated by adding potassium iodide to the solution and titrating the generated iodine with a sodium thiosulfate solution. In addition, as a method to remove or reduce the amount of α-glycol from epoxy resin, when synthesizing epoxy resin, the reaction is carried out while controlling the amount of water in the reaction system to prevent hydrolysis of the generated epoxy group. By doing so, the amount of α-glycol can be adjusted within the above range.
 本発明においては、通常用いられるエポキシ樹脂を原料として使用することができるが、上述のとおりエポキシ樹脂中の全塩素量を前記範囲に調整し、かつ、エポキシ樹脂中のα-グリコール量を前記範囲に調整したものを原料として使用することにより、当該エポキシ樹脂を原料として用いた(メタ)アクリレート樹脂を使用した硬化性樹脂組成物は硬化性、耐熱性、基材密着性及び絶縁信頼性を兼備するものとすることができる。 In the present invention, a commonly used epoxy resin can be used as a raw material, but as described above, the total amount of chlorine in the epoxy resin is adjusted to the above range, and the amount of α-glycol in the epoxy resin is adjusted to the above range. By using the epoxy resin as a raw material, a curable resin composition using (meth)acrylate resin that uses the epoxy resin as a raw material has curability, heat resistance, substrate adhesion, and insulation reliability. It is possible to do so.
 本発明においては、通常用いられるエポキシ樹脂を原料として使用することができるが、上述のエポキシ樹脂中の全塩素量を前記範囲に調整し、かつ、エポキシ樹脂中のα-グリコール量を前記範囲に調整することに加え、用いるエポキシ樹脂の軟化点が70℃以上のものを使用することが優れた光感度を有する(メタ)アクリレート樹脂を得られ、更に当該(メタ)アクリレート樹脂を使用した硬化性樹脂組成物は硬化性、耐熱性、基材密着性及び絶縁信頼性を兼備できることから好ましい。さらに、用いるエポキシ樹脂の軟化点が72℃以上のものを使用することがより好ましい。 In the present invention, a commonly used epoxy resin can be used as a raw material, but the total amount of chlorine in the above-mentioned epoxy resin is adjusted to the above range, and the amount of α-glycol in the epoxy resin is adjusted to the above range. In addition to adjustment, it is possible to obtain a (meth)acrylate resin with excellent photosensitivity by using an epoxy resin with a softening point of 70°C or higher, and also to improve curability using the (meth)acrylate resin. The resin composition is preferable because it has curability, heat resistance, adhesion to a substrate, and insulation reliability. Furthermore, it is more preferable to use an epoxy resin having a softening point of 72° C. or higher.
 前記通常用いられるエポキシ樹脂(A1)としては、例えば、ビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、水添ビフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂(A1)は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂が好ましい。 Examples of the commonly used epoxy resin (A1) include bisphenol type epoxy resin, hydrogenated bisphenol type epoxy resin, biphenol type epoxy resin, hydrogenated biphenol type epoxy resin, phenylene ether type epoxy resin, naphthalene type epoxy resin, and naphthalene type epoxy resin. Renether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol condensed novolac type epoxy Resin, naphthol-cresol cocondensation novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, biphenylaralkyl type epoxy resin, fluorene type epoxy resin, xanthene type epoxy resin , dihydroxybenzene type epoxy resin, trihydroxybenzene type epoxy resin, etc. These epoxy resins (A1) can be used alone or in combination of two or more. Among these, novolak is a (meth)acrylate resin that has excellent alkali developability and high photosensitivity, and can form a cured product with excellent elasticity, heat resistance, and substrate adhesion. Preferred are type epoxy resins and naphthalene type epoxy resins.
 前記ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールBP型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等が挙げられる。 Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol AP type epoxy resin, bisphenol B type epoxy resin, bisphenol BP type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin. Examples include resin.
 前記水添ビスフェノール型エポキシ樹脂としては、例えば、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールB型エポキシ樹脂、水添ビスフェノールE型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、水添ビスフェノールS型エポキシ樹脂等が挙げられる。 Examples of the hydrogenated bisphenol epoxy resin include hydrogenated bisphenol A epoxy resin, hydrogenated bisphenol B epoxy resin, hydrogenated bisphenol E epoxy resin, hydrogenated bisphenol F epoxy resin, and hydrogenated bisphenol S epoxy. Examples include resin.
 前記ビフェノール型エポキシ樹脂としては、例えば、4,4’-ビフェノール型エポキシ樹脂、2,2’-ビフェノール型エポキシ樹脂、テトラメチル-4,4’-ビフェノール型エポキシ樹脂、テトラメチル-2,2’-ビフェノール型エポキシ樹脂等が挙げられる。 Examples of the biphenol epoxy resin include 4,4'-biphenol epoxy resin, 2,2'-biphenol epoxy resin, tetramethyl-4,4'-biphenol epoxy resin, and tetramethyl-2,2' -Biphenol type epoxy resins, etc.
 前記水添ビフェノール型エポキシ樹脂としては、例えば、水添4,4’-ビフェノール型エポキシ樹脂、水添2,2’-ビフェノール型エポキシ樹脂、水添テトラメチル-4,4’-ビフェノール型エポキシ樹脂、水添テトラメチル-2,2’-ビフェノール型エポキシ樹脂等が挙げられる。 Examples of the hydrogenated biphenol epoxy resin include hydrogenated 4,4'-biphenol epoxy resin, hydrogenated 2,2'-biphenol epoxy resin, and hydrogenated tetramethyl-4,4'-biphenol epoxy resin. , hydrogenated tetramethyl-2,2'-biphenol type epoxy resin, and the like.
 本発明において用いられるエポキシ樹脂(A1)は、フェノール樹脂を用い、該フェノール樹脂が含有するフェノール性水酸基とエピハロヒドリンとの反応によるグリシジルエーテル基を有する反応物として合成することができる。すなわち、エポキシ樹脂(A1)は、前記フェノール樹脂のフェノール性水酸基と、エピハロヒドリンとを反応させる(エポキシ化反応)ことにより、グリシジルエーテル基が導入されたエポキシ樹脂である。前記エポキシ化反応工程は40℃~150℃の温度範囲で反応させることが好ましい。また本発明において用いられるエポキシ樹脂のエポキシ当量は、当該エポキシ樹脂を原料として用いた(メタ)アクリレート樹脂を使用した硬化性樹脂組成物の基材密着性を向上させる観点から240g/当量未満が好ましく、220g/当量未満がより好ましく、218g/当量未満が特に好ましい。前記エピハロヒドリンとしては、例えば、エピクロロヒドリンやエピブロモヒドリン、β-メチルエピクロルヒドリン等が挙げられる。これらはそれぞれ単独で用いても混合して用いてもよい。なかでも工業的入手が容易なことからエピクロロヒドリンが好ましい。 The epoxy resin (A1) used in the present invention can be synthesized using a phenol resin as a reaction product having a glycidyl ether group by reacting the phenolic hydroxyl group contained in the phenol resin with epihalohydrin. That is, the epoxy resin (A1) is an epoxy resin into which a glycidyl ether group is introduced by reacting the phenolic hydroxyl group of the phenol resin with epihalohydrin (epoxidation reaction). The epoxidation reaction step is preferably carried out at a temperature range of 40°C to 150°C. Further, the epoxy equivalent of the epoxy resin used in the present invention is preferably less than 240 g/equivalent from the viewpoint of improving the adhesion to the substrate of the curable resin composition using the (meth)acrylate resin using the epoxy resin as a raw material. , less than 220 g/equivalent is more preferred, and less than 218 g/equivalent is particularly preferred. Examples of the epihalohydrin include epichlorohydrin, epibromohydrin, and β-methylepichlorohydrin. These may be used alone or in combination. Among them, epichlorohydrin is preferred because it is easily available industrially.
<フェノール樹脂>
 本発明において用いられるエポキシ樹脂(A1)に用いられるフェノール樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、α-ナフトールアラルキル樹脂、β-ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、アミノトリアジン変性フェノール樹脂等が挙げられる。また、前記アミノトリアジン変性フェノール樹脂は、具体的には、メラミンやベンゾグアナミン等のアミノ基含有トリアジン化合物と、フェノール、クレゾール等のフェノール類と、ホルムアルデヒドとの共重合体が挙げられる。
<Phenol resin>
Examples of the phenolic resin used in the epoxy resin (A1) used in the present invention include phenol novolak resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, α- Naphthol aralkyl resin, β-naphthol aralkyl resin, biphenylaralkyl resin, trimethylolmethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, aminotriazine modified phenolic resin etc. Further, specific examples of the aminotriazine-modified phenol resin include copolymers of amino group-containing triazine compounds such as melamine and benzoguanamine, phenols such as phenol and cresol, and formaldehyde.
 また、前記フェノール樹脂は、フェノール性水酸基含有化合物とケトン基含有化合物との反応により得られる。 Further, the phenolic resin is obtained by a reaction between a phenolic hydroxyl group-containing compound and a ketone group-containing compound.
 [フェノール性水酸基含有化合物]
 前記フェノール樹脂は、フェノール性水酸基を有する化合物とケトン基含有化合物との反応により得られる。フェノール性水酸基を有する化合物としては、具体的には、フェノール、オルソクレゾール、メタクレゾール、パラクレゾール、2,6-ジメチルフェノール、2,5-ジメチルフェノール、2,4-ジメチルフェノール、3,5-ジメチルフェノール、4-イソプロピルフェノール、4-tert-ブチルフェノール、2-メトキシフェノール、3-メトキシフェノール、4-メトキシフェノール、2‐メトキシ-4-メチルフェノール、2-tert-ブチル-4-メトキシフェノール、2,6-ジメトキシフェノール、3,5-ジメトキシフェノール、2-エトキシフェノール、3-エトキシフェノール、4-エトキシフェノール、2-フェニルフェノール、3-フェニルフェノール、4-フェニルフェノール、4-ベンジルフェノール、1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、1,4-ジヒドロキシベンゼン、3-メチルカテコール、4-メチルカテコール、4-アリルピロカテコール、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1-ナフトール、2-ナフトール、1,3-ナフタレンジオール、1,5-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、水添ビスフェノール、水添ビフェノール、ポリフェニレンエーテル型ジオール、ポリナフチレンエーテル型ジオール等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
[Phenolic hydroxyl group-containing compound]
The phenolic resin is obtained by a reaction between a compound having a phenolic hydroxyl group and a compound containing a ketone group. Specific examples of compounds having a phenolic hydroxyl group include phenol, orthocresol, metacresol, para-cresol, 2,6-dimethylphenol, 2,5-dimethylphenol, 2,4-dimethylphenol, 3,5- Dimethylphenol, 4-isopropylphenol, 4-tert-butylphenol, 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 2-methoxy-4-methylphenol, 2-tert-butyl-4-methoxyphenol, 2 , 6-dimethoxyphenol, 3,5-dimethoxyphenol, 2-ethoxyphenol, 3-ethoxyphenol, 4-ethoxyphenol, 2-phenylphenol, 3-phenylphenol, 4-phenylphenol, 4-benzylphenol, 1, 2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 3-methylcatechol, 4-methylcatechol, 4-allylpyrocatechol, 1,2,3-trihydroxybenzene, 1,2,4 -Trihydroxybenzene, 1-naphthol, 2-naphthol, 1,3-naphthalene diol, 1,5-naphthalene diol, 2,6-naphthalene diol, 2,7-naphthalene diol, hydrogenated bisphenol, hydrogenated biphenol, polyphenylene Examples include ether type diols and polynaphthylene ether type diols. Each of these may be used alone, or two or more types may be used in combination.
 中でも、最終的に得られる(メタ)アクリレート樹脂において、硬化物における耐熱性が高く、現像性にも優れることから、フェノール性水酸基含有化合物としてフェノール、又はフェノールの芳香核上の水素原子がアルキル基やアルコキシ基、ハロゲン原子等で置換された誘導体を用いることが好ましい。 Among these, in the final (meth)acrylate resin obtained, the cured product has high heat resistance and excellent developability. It is preferable to use a derivative substituted with an alkoxy group, a halogen atom, or the like.
 [ケトン基含有化合物]
 前記フェノール樹脂は、前述のとおり、フェノール性水酸基含有化合物とケトン基含有化合物との反応により得られる。前記フェノール性水酸基含有化合物と前記ケトン基含有化合物(例えば、R-C(=O)-R’で表される。なお、Rは炭化水素基であり、R’は炭化水素基又は水素原子である。)との反応に基づく骨格(例えば、-C(-R)(-R’)-)を導入することにより、分子間相互作用が適度に弱まることととなり、低溶融粘度でハンドリング性に優れたフェノール樹脂となり好ましい。また、得られる硬化物が、耐熱性等に優れることになり有用である。前記ケトン基含有化合物としては、芳香族ケトン、脂肪族ケトンやホルミル基含有芳香族化合物を用いることが好ましく、これらの化合物は、単独で用いてもよく、複数の化合物を併用してもよい。
[Ketone group-containing compound]
As described above, the phenolic resin is obtained by reacting a phenolic hydroxyl group-containing compound with a ketone group-containing compound. The phenolic hydroxyl group-containing compound and the ketone group-containing compound (for example, represented by RC(=O)-R', where R is a hydrocarbon group, and R' is a hydrocarbon group or a hydrogen atom) By introducing a skeleton (for example, -C(-R)(-R')-) based on a reaction with It is preferable as it is an excellent phenolic resin. Moreover, the obtained cured product has excellent heat resistance and the like, which is useful. As the ketone group-containing compound, it is preferable to use an aromatic ketone, an aliphatic ketone, or a formyl group-containing aromatic compound, and these compounds may be used alone or in combination of a plurality of compounds.
 前記芳香族ケトンとしては、例えば、ベンゾフェノン、フルオレノン、インダノンなどが挙げられる。前記芳香族ケトンは、単独で用いてもよく、複数の化合物を併用してもよい。 Examples of the aromatic ketones include benzophenone, fluorenone, and indanone. The aromatic ketone may be used alone or in combination with a plurality of compounds.
 前記脂肪族ケトンとしては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン(2-ヘプタノン)、シクロペンタノン、シクロヘキサノン、イソホロン、シクロヘプタノン、シクロオクタノンなどが挙げられる。中でも、前記フェノール樹脂の合成時やエポキシ樹脂の合成時おける反応性の観点や、入手容易性の観点から、アセトンやメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどが好ましい。
 前記脂肪族ケトンは、単独で用いてもよく、複数の化合物を併用してもよい。
Examples of the aliphatic ketones include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone (2-heptanone), cyclopentanone, cyclohexanone, isophorone, cycloheptanone, and cyclooctanone. Can be mentioned. Among these, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like are preferred from the viewpoint of reactivity during the synthesis of the phenol resin or epoxy resin, and from the viewpoint of easy availability.
The aliphatic ketone may be used alone or in combination with a plurality of compounds.
 前記ホルミル基含有化合物としては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、グリオキザール、スクシンアルデヒド、ベンズアルデヒド、4-メチルベンズアルデヒド、3、4-ジメチルベンズアルデヒド、4-ビフェニルアルデヒド、ナフチルアルデヒド、4-メトキシベンズアルデヒドが挙げられる。中でも、エポキシ樹脂合成時の反応性や、ハンドリング性の観点から、ホルムアルデヒドがより好ましい。 Examples of the formyl group-containing compound include formaldehyde, acetaldehyde, propionaldehyde, glyoxal, succinaldehyde, benzaldehyde, 4-methylbenzaldehyde, 3,4-dimethylbenzaldehyde, 4-biphenylaldehyde, naphthylaldehyde, and 4-methoxybenzaldehyde. Can be mentioned. Among these, formaldehyde is more preferred from the viewpoint of reactivity during epoxy resin synthesis and handling properties.
 ケトン基含有化合物としては、ホルミル基含有化合物を用いることが好ましく、中でも前述のとおり、ホルムアルデヒドを用いることが好ましい。なお、前記ホルムアルデヒドはホルマリンやパラホルムアルデヒドの状態で用いても良い。 As the ketone group-containing compound, it is preferable to use a formyl group-containing compound, and among them, as mentioned above, it is preferable to use formaldehyde. Note that the formaldehyde may be used in the form of formalin or paraformaldehyde.
 本発明に使用するフェノール樹脂は、前述のとおり、フェノール性水酸基含有化合物とケトン基含有化合物との反応により得られる。両者の反応割合は、フェノール性水酸基含有化合物1モルに対し、ケトン基含有化合物、より具体的にはホルムアルデヒドを0.5~1.0モルの範囲で用いることが好ましく、フェノール性水酸基含有化合物1モルに対し、ホルムアルデヒドを0.6~1.0モルの範囲で用いることが好ましく、フェノール性水酸基含有化合物1モルに対し、ホルムアルデヒドを0.65~0.98モルの範囲で用いることが好ましい。本発明においては、フェノール樹脂を製造する際に、ケトン基含有化合物としてホルムアルデヒドを用い、且つ、フェノール性水酸基含有化合物とホルムアルデヒドを上記割合で用いることにより、得られたフェノール樹脂を用いて製造するエポキシ樹脂を原料として用いた(メタ)アクリレート樹脂を使用した硬化性樹脂組成物の硬化性及び基材密着性を兼備させられることから好ましい。
 本発明のフェノール樹脂は、得られたフェノール樹脂を用いて製造するエポキシ樹脂を原料として用いた(メタ)アクリレート樹脂を使用した硬化性樹脂組成物の硬化性に優れることからその水酸基当量が50~150g/当量の範囲であることが好ましく、水酸基当量が60~140g/当量の範囲であることが好ましく、水酸基当量が70~130g/当量の範囲であることが好ましい。また、軟化点が60~150℃の範囲であることが好ましく、65~145℃の範囲であることが好ましく、70~140℃の範囲であることが好ましい。水酸基当量及び/又は軟化点が上記範囲のフェノール樹脂を用いて製造するエポキシ樹脂を原料として用いた(メタ)アクリレート樹脂を使用した硬化性樹脂組成物の硬化性及び基材密着性を兼備させられることから好ましい。
As described above, the phenolic resin used in the present invention is obtained by the reaction of a phenolic hydroxyl group-containing compound and a ketone group-containing compound. The reaction ratio between the two is preferably 0.5 to 1.0 mol of the ketone group-containing compound, more specifically formaldehyde, per 1 mol of the phenolic hydroxyl group-containing compound. It is preferable to use formaldehyde in an amount of 0.6 to 1.0 mol per mol, and it is preferable to use formaldehyde in an amount of 0.65 to 0.98 mol per mol of the phenolic hydroxyl group-containing compound. In the present invention, when producing a phenol resin, formaldehyde is used as a ketone group-containing compound, and a phenolic hydroxyl group-containing compound and formaldehyde are used in the above ratio, thereby producing an epoxy resin using the obtained phenol resin. This is preferable because it can provide both the curability and substrate adhesion of a curable resin composition using a (meth)acrylate resin using a resin as a raw material.
The phenol resin of the present invention has a hydroxyl equivalent of 50 to 50, since the phenol resin of the present invention has excellent curability of a curable resin composition using a (meth)acrylate resin using the epoxy resin produced using the obtained phenol resin as a raw material. The hydroxyl equivalent is preferably in the range of 150 g/equivalent, the hydroxyl equivalent is preferably in the range of 60 to 140 g/equivalent, and the hydroxyl equivalent is preferably in the range of 70 to 130 g/equivalent. Further, the softening point is preferably in the range of 60 to 150°C, preferably in the range of 65 to 145°C, and preferably in the range of 70 to 140°C. A curable resin composition using a (meth)acrylate resin made from an epoxy resin manufactured using a phenol resin having a hydroxyl equivalent and/or softening point within the above range as a raw material can have both curability and substrate adhesion. Therefore, it is preferable.
 前記フェノール性水酸基含有化合物とケトン基含有化合物との反応は、反応性が高いことから無触媒条件下でも進行するが、適宜酸触媒を用いて行っても良い。ここで用いる酸触媒は例えば、塩酸、硫酸、リン酸、などの無機酸や、メタンスルホン酸、p-トルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸等が挙げられる。これら酸触媒を用いる場合は、前記フェノール性水酸基含有化合物とケトン基含有化合物との合計質量に対し、10質量%以下の量で用いることが好ましい。 Although the reaction between the phenolic hydroxyl group-containing compound and the ketone group-containing compound has high reactivity, it proceeds even under non-catalytic conditions, but it may be carried out using an acid catalyst as appropriate. Examples of acid catalysts used here include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid, boron trifluoride, anhydrous aluminum chloride, zinc chloride, etc. Lewis acids and the like. When these acid catalysts are used, they are preferably used in an amount of 10% by mass or less based on the total mass of the phenolic hydroxyl group-containing compound and the ketone group-containing compound.
 また、該反応は無溶剤条件下で行うことが好ましいが、必要に応じ有機溶媒中で行っても良い。ここで用いる有機溶媒は例えば、メチルセロソルブ、イソプロピルアルコール、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトンなどが挙げられる。これら有機溶剤を用いる場合は、反応効率が向上することから、前記フェノール性水酸基含有化合物とケトン基含有化合物との合計100質量部に対し、有機溶剤が50~200質量部の範囲となる割合で用いることが好ましい。 Further, although it is preferable to carry out the reaction under solvent-free conditions, it may be carried out in an organic solvent if necessary. Examples of the organic solvent used here include methyl cellosolve, isopropyl alcohol, ethyl cellosolve, toluene, xylene, and methyl isobutyl ketone. When using these organic solvents, the proportion of the organic solvent in the range of 50 to 200 parts by mass with respect to the total of 100 parts by mass of the phenolic hydroxyl group-containing compound and the ketone group-containing compound is recommended, since the reaction efficiency is improved. It is preferable to use
 前記フェノール性水酸基含有化合物とケトン基含有化合物との反応終了後は、減圧乾燥するなどして目的のフェノール樹脂を得ることが出来る。 After the reaction between the phenolic hydroxyl group-containing compound and the ketone group-containing compound is completed, the desired phenol resin can be obtained by drying under reduced pressure.
 本発明において用いられるエポキシ樹脂(A1)は、前述のとおり、フェノール樹脂を用い、該フェノール樹脂が含有するフェノール性水酸基とエピハロヒドリンとの反応によるグリシジルエーテル基を有する反応物として合成するが、用いるエピハロヒドリンの割合は、フェノール樹脂が有するフェノール性水酸基1モルに対しエピハロヒドリンを1~10モルの範囲で用いることが好ましく、1.5~8モルの範囲で用いることが好ましく、2~6モルの範囲で用いることが好ましい。本発明においては、エポキシ樹脂(A1)を上記割合で用いることにより、得られるエポキシ樹脂を原料として用いた(メタ)アクリレート樹脂を使用した硬化性樹脂組成物の硬化性及び基材密着性を兼備させられることから好ましい。 As mentioned above, the epoxy resin (A1) used in the present invention is synthesized using a phenol resin as a reaction product having a glycidyl ether group by reacting the phenolic hydroxyl group contained in the phenol resin with epihalohydrin. It is preferable to use epihalohydrin in the range of 1 to 10 mol, preferably in the range of 1.5 to 8 mol, and preferably in the range of 2 to 6 mol, per 1 mol of the phenolic hydroxyl group possessed by the phenolic resin. It is preferable to use In the present invention, by using the epoxy resin (A1) in the above ratio, the curable resin composition using the (meth)acrylate resin using the obtained epoxy resin as a raw material has both the curability and the adhesion to the substrate. This is preferable because it allows you to do so.
 また、エポキシ化反応時に、有機溶剤を併用することにより、エポキシ樹脂の合成における反応速度を高めることができる。このような有機溶剤としては特に限定されないが、例えば、トルエン、キシレン、ヘプタン、ヘキサン、ミネラルスピリット等の炭化水素系溶剤、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、シクロヘキサノン、ジメチルアセトアミド等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、シクロヘキサノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;プロピルエーテル、メチルセロソルブ、セロソルブ、ブチルセロソルブ、メチルカルビトール等のエーテル系溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤;大豆油、亜麻仁油、菜種油、サフラワー油等の植物油脂;メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。 Furthermore, by using an organic solvent in combination during the epoxidation reaction, the reaction rate in the synthesis of the epoxy resin can be increased. Such organic solvents are not particularly limited, but include, for example, hydrocarbon solvents such as toluene, xylene, heptane, hexane, and mineral spirits, and ketone solvents such as methyl ethyl ketone, acetone, dimethyl formamide, methyl isobutyl ketone, cyclohexanone, and dimethyl acetamide. Cyclic ether solvents such as tetrahydrofuran and dioxolane; Ester solvents such as methyl acetate, ethyl acetate and butyl acetate; Aromatic solvents such as toluene, xylene and solvent naphtha; Alicyclic solvents such as cyclohexane and methylcyclohexane; Carbitol and cellosolve Alcohol solvents such as , methanol, ethanol, propanol, isopropanol, butanol, cyclohexanol, propylene glycol monomethyl ether; Ether solvents such as propyl ether, methyl cellosolve, cellosolve, butyl cellosolve, methyl carbitol; alkylene glycol monoalkyl ether, dialkylene Glycol ether solvents such as glycol monoalkyl ether and dialkylene glycol monoalkyl ether acetate; Vegetable oils and fats such as soybean oil, linseed oil, rapeseed oil, and safflower oil; Methoxypropanol, cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, propylene glycol Examples include monomethyl ether acetate. These organic solvents can be used alone or in combination of two or more.
 また、上記有機溶剤としては、市販品を用いることもでき、当該市販品としては、例えば、ENEOS株式会社製「1号スピンドル油」、「3号ソルベント」、「4号ソルベント」、「5号ソルベント」、「6号ソルベント」、「ナフテゾールH」、「アルケン56NT」、「AFソルベント4号」、「AFソルベント5号」「AFソルベント6号」「AFソルベント7号」、三菱ケミカル株式会社製「ダイヤドール13」、「ダイヤレン168」;日産化学株式会社製「Fオキソコール」、「Fオキソコール180」;出光興産株式会社「スーパーゾルLA35」、「スーパーゾルLA38」;ExxonMobil Chemical社製「エクソールD80」、「エクソールD110」、「エクソールD120」、「エクソールD130」、「エクソールD160」、「エクソールD100K」、「エクソールD120K」、「エクソールD130K」、「エクソールD280」、「エクソールD300」、「エクソールD320」;等が挙げられる。
 上記有機溶剤は、単独で用いることも、2種以上を併用することもできる。また、本実施形態において、有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計質量に対し0.1~5倍量程度の範囲で用いることが好ましい。
Furthermore, as the above-mentioned organic solvent, commercially available products can also be used, and examples of the commercially available products include "No. 1 Spindle Oil", "No. 3 Solvent", "No. 4 Solvent", and "No. 5 Solvent" manufactured by ENEOS Corporation. "Solvent", "Solvent No. 6", "Naftesol H", "Alkene 56NT", "AF Solvent No. 4", "AF Solvent No. 5", "AF Solvent No. 6", "AF Solvent No. 7", manufactured by Mitsubishi Chemical Corporation "Diadol 13", "Diyaren 168";"FOxocol","F Oxocol 180" manufactured by Nissan Chemical Co., Ltd.; "Supersol LA35", "Supersol LA38" manufactured by Idemitsu Kosan Co., Ltd.; "Exsol D80" manufactured by ExxonMobil Chemical Co., Ltd. ”, “Exor D110”, “Exor D120”, “Exor D130”, “Exor D160”, “Exor D100K”, “Exor D120K”, “Exor D130K”, “Exor D280”, “Exor D300”, “Exor D320” ”; etc.
The above organic solvents can be used alone or in combination of two or more. Further, in the present embodiment, the amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is improved.
 また、前記有機溶剤と水とを併用してもよい。この時、混合溶剤中における水に使用比率は、混合溶剤100質量部に対して5~60質量部の範囲が好ましく、10~50質量部がより好ましい。 Additionally, the organic solvent and water may be used together. At this time, the proportion of water used in the mixed solvent is preferably in the range of 5 to 60 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the mixed solvent.
 なお、エポキシ化反応時に使用する塩基性触媒が水溶液である場合には、当該水溶液に含まれる水の含有量は、前記混合溶剤中の水として規定するものには含めないものとする。 Note that when the basic catalyst used during the epoxidation reaction is an aqueous solution, the content of water contained in the aqueous solution is not included in what is defined as water in the mixed solvent.
<不飽和一塩基酸(A2)>
 本発明の(メタ)アクリレート樹脂の製造方法は、必須原料として不飽和一塩基酸(A2)を用いることを特徴とする。
 前記不飽和一塩基酸(A2)とは、一分子中に酸基及び重合性不飽和結合を有する化合物をいう。なお、本発明において、「重合性不飽和結合」とは、ラジカル重合し得る不飽和結合を意味する。
<Unsaturated monobasic acid (A2)>
The method for producing a (meth)acrylate resin of the present invention is characterized by using an unsaturated monobasic acid (A2) as an essential raw material.
The unsaturated monobasic acid (A2) refers to a compound having an acid group and a polymerizable unsaturated bond in one molecule. In the present invention, the term "polymerizable unsaturated bond" means an unsaturated bond that can undergo radical polymerization.
 前記酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。 Examples of the acid group include a carboxyl group, a sulfonic acid group, a phosphoric acid group, and the like.
 前記不飽和一塩基酸(A2)としては、例えば、アクリル酸、メタクリル酸、クロトン酸、桂皮酸、α-シアノ桂皮酸、β-スチリルアクリル酸、β-フルフリルアクリル酸等が挙げられる。また、前記不飽和一塩基酸のエステル化物、酸ハロゲン化物、酸無水物等も用いることができる。さらに、下記構造式(1)で表される化合物等も用いることができる。 Examples of the unsaturated monobasic acid (A2) include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, α-cyanocinnamic acid, β-styrylacrylic acid, β-furfurylacrylic acid, and the like. Furthermore, esters, acid halides, acid anhydrides, and the like of the unsaturated monobasic acids can also be used. Furthermore, a compound represented by the following structural formula (1), etc. can also be used.
[一般式(1)中、Xは、炭素数1~10のアルキレン鎖、ポリオキシアルキレン鎖、(ポリ)エステル鎖、芳香族炭化水素鎖、または(ポリ)カーボネート鎖を表し、構造中にハロゲン原子やアルコキシ基等を有していても良い。Yは、水素原子またはメチル基である。] [In general formula (1), X represents an alkylene chain, polyoxyalkylene chain, (poly)ester chain, aromatic hydrocarbon chain, or (poly)carbonate chain having 1 to 10 carbon atoms, and halogen in the structure It may contain atoms, alkoxy groups, etc. Y is a hydrogen atom or a methyl group. ]
 前記ポリオキシアルキレン鎖としては、例えば、ポリオキシエチレン鎖、ポリオキシプロピレン鎖等が挙げられる。 Examples of the polyoxyalkylene chain include a polyoxyethylene chain and a polyoxypropylene chain.
 前記(ポリ)エステル鎖としては、例えば、下記構造式(X-1)で表される(ポリ)エステル鎖が挙げられる。 Examples of the (poly)ester chain include a (poly)ester chain represented by the following structural formula (X-1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[一般式(X-1)中、Rは、炭素原子数1~10のアルキレン基であり、nは1~5の整数である。] [In general formula (X-1), R 1 is an alkylene group having 1 to 10 carbon atoms, and n is an integer of 1 to 5. ]
 前記芳香族炭化水素鎖としては、例えば、フェニレン鎖、ナフチレン鎖、ビフェニレン鎖、フェニルナフチレン鎖、ビナフチレン鎖等が挙げられる。また、部分構造として、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環等の芳香環を有する炭化水素鎖も用いることができる。 Examples of the aromatic hydrocarbon chain include a phenylene chain, a naphthylene chain, a biphenylene chain, a phenylnaphthylene chain, a binaphthylene chain, and the like. Further, as a partial structure, a hydrocarbon chain having an aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, or a phenanthrene ring can also be used.
 前記(ポリ)カーボネート鎖としては、例えば、下記構造式(X-2)で表される(ポリ)カーボネート鎖が挙げられる。 Examples of the (poly)carbonate chain include a (poly)carbonate chain represented by the following structural formula (X-2).
[一般式(X-2)中、Rは、炭素原子数1~10のアルキレン基であり、nは1~5の整数である。] [In general formula (X-2), R 2 is an alkylene group having 1 to 10 carbon atoms, and n is an integer of 1 to 5. ]
 前記構造式(1)で表される化合物の分子量は、100~500の範囲が好ましく、150~400の範囲がより好ましい。 The molecular weight of the compound represented by the structural formula (1) is preferably in the range of 100 to 500, more preferably in the range of 150 to 400.
 これらの不飽和一塩基酸(A2)は、単独で用いることも2種以上を併用することもできる。 These unsaturated monobasic acids (A2) can be used alone or in combination of two or more.
 なお、本発明の(メタ)アクリレート樹脂の原料固形分100質量部中のエポキシ樹脂(A1)及び不飽和一塩基酸(A2)の合計質量は、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、50~95質量%の範囲が好ましく、60~90質量%がより好ましい。 In addition, the total mass of the epoxy resin (A1) and the unsaturated monobasic acid (A2) in 100 parts by mass of the raw material solid content of the (meth)acrylate resin of the present invention has excellent alkali developability and high photosensitivity. The amount is preferably in the range of 50 to 95% by mass, more preferably 60 to 90% by mass, since a (meth)acrylate resin capable of forming a cured product having excellent elasticity, heat resistance, and substrate adhesion is obtained.
 前記塩基性触媒としては、例えば、N-メチルモルフォリン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミンもしくはジメチルベンジルアミン、ブチルアミン、オクチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イミダゾール、1-メチルイミダゾール、2,4-ジメチルイミダゾール、1,4-ジエチルイミダゾール、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、テトラメチルアンモニウムヒドロキシド等のアミン化合物;トリオクチルメチルアンモニウムクロライド、トリオクチルメチルアンモニウムアセテート等の四級アンモニウム塩;トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のホスフィン化合物;テトラメチルホスホニウムクロライド、テトラエチルホスホニウムクロライド、テトラプロピルホスホニウムクロライド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、トリメチル(2-ヒドロキシルプロピル)ホスホニウムクロライド、トリフェニルホスホニウムクロライド、ベンジルホスホニウムクロライド等のホスホニウム塩;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジオクチル錫ジアセテート、ジオクチル錫ジネオデカノエート、ジブチル錫ジアセテート、オクチル酸錫、1,1,3,3-テトラブチル-1,3-ドデカノイルジスタノキサン等の有機錫化合物;オクチル酸亜鉛、オクチル酸ビスマス等の有機金属化合物;オクタン酸錫等の無機錫化合物;無機金属化合物などが挙げられる。これらの塩基性触媒は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、ホスフィン化合物が好ましい。 Examples of the basic catalyst include N-methylmorpholine, pyridine, 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), and 1,5-diazabicyclo[4.3.0]nonene- 5 (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), tri-n-butylamine or dimethylbenzylamine, butylamine, octylamine, monoethanolamine, diethanolamine, triethanolamine, imidazole, 1 -Methylimidazole, 2,4-dimethylimidazole, 1,4-diethylimidazole, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(N-phenyl)aminopropyltrimethoxysilane, 3-( Amine compounds such as 2-aminoethyl)aminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropylmethyldimethoxysilane, and tetramethylammonium hydroxide; Quaternary compounds such as trioctylmethylammonium chloride and trioctylmethylammonium acetate Ammonium salts; phosphine compounds such as trimethylphosphine, tributylphosphine, triphenylphosphine; tetramethylphosphonium chloride, tetraethylphosphonium chloride, tetrapropylphosphonium chloride, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, trimethyl(2-hydroxylpropyl)phosphonium chloride , triphenylphosphonium chloride, benzylphosphonium chloride and other phosphonium salts; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dioctyltin diacetate, dioctyltin dineodecanoate, dibutyltin diacetate, tin octylate, 1 , 1,3,3-tetrabutyl-1,3-dodecanoyl distanoxane; organometallic compounds such as zinc octylate, bismuth octylate; inorganic tin compounds such as tin octoate; inorganic metal compounds, etc. can be mentioned. These basic catalysts can be used alone or in combination of two or more. Among these, phosphine is a (meth)acrylate resin that has excellent alkali developability and high photosensitivity, and can form a cured product with excellent elasticity, heat resistance, and substrate adhesion. Compounds are preferred.
 前記塩基性触媒の使用量は優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、前記エポキシ樹脂(A1)、及び前記不飽和一塩基酸(A2)の合計100質量部に対して、0.01~1.0質量部の範囲が好ましく、0.05~0.8の範囲がより好ましい。 The amount of the basic catalyst used is determined because a (meth)acrylate resin can be obtained that has excellent alkali developability and high photosensitivity, and can form a cured product having excellent elasticity, heat resistance, and substrate adhesion. , the epoxy resin (A1), and the unsaturated monobasic acid (A2) in a total amount of 100 parts by mass, preferably in the range of 0.01 to 1.0 parts by mass, and in the range of 0.05 to 0.8. is more preferable.
 前記気体(b1)としては、例えば、酸素ガス、空気等が挙げられる。 Examples of the gas (b1) include oxygen gas, air, and the like.
 前記不活性ガス(b2)としては、反応系において不活性であれば何れでもよく、例えば、窒素、二酸化炭素、一酸化炭素、ヘリウム、ネオン、アルゴン等が挙げられる。これらの不活性ガスは、単独で用いることも2種以上の混合ガスとして用いることもできる。 The inert gas (b2) may be any gas as long as it is inert in the reaction system, and examples thereof include nitrogen, carbon dioxide, carbon monoxide, helium, neon, argon, and the like. These inert gases can be used alone or as a mixed gas of two or more.
 また、前記気体(b1)及び前記不活性ガス(b2)は、予め混合気体として調整されたものを反応装置内に導入してもよいし、前記気体(b1)と前記不活性ガス(b2)とを別々に反応装置内に導入し、反応系内で混合してもよい。 Further, the gas (b1) and the inert gas (b2) may be introduced into the reaction apparatus as a mixture of gases prepared in advance, or the gas (b1) and the inert gas (b2) may be mixed in advance. and may be separately introduced into the reaction apparatus and mixed within the reaction system.
 前記気体(b1)と前記不活性ガス(b2)とを別々に反応装置内に導入する場合は、前記気体(b1)と前記不活性ガス(b2)の導入ノズルは、別々になっていても、1つになっていても良く、前記導入ノズルが反応装置内に存在していればよいが、別々になっていることが好ましい。また、このときの前記導入ノズルの位置としては、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、前記気体(b1)を反応系の液面下部より導入し、前記不活性ガス(b2)を反応系の液面上部より導入する位置に導入ノズルがあることが好ましい。 When the gas (b1) and the inert gas (b2) are introduced into the reaction apparatus separately, the introduction nozzles for the gas (b1) and the inert gas (b2) may be separate. , may be one, as long as the introduction nozzle is present in the reactor, but it is preferable that they are separate. In addition, as for the position of the introduction nozzle at this time, the (meth)acrylate resin has excellent alkali developability and high photosensitivity, and is capable of forming a cured product having excellent elasticity, heat resistance, and substrate adhesion. Therefore, it is preferable that an introduction nozzle be provided at a position where the gas (b1) is introduced from below the liquid level of the reaction system and the inert gas (b2) is introduced from above the liquid level of the reaction system.
 また、反応装置内の酸素濃度、すなわち、反応系内の酸素濃度は、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、2~12質量%の範囲であり、4~10質量%の範囲が好ましく、5~9質量%の範囲がより好ましく、6~8質量%の範囲が特に好ましい。 In addition, the oxygen concentration in the reaction device, that is, the oxygen concentration in the reaction system, has excellent alkaline developability and high photosensitivity, and can form a cured product with excellent elasticity, heat resistance, and substrate adhesion. (meth)acrylate resin is obtained, the range is from 2 to 12% by mass, preferably from 4 to 10% by mass, more preferably from 5 to 9% by mass, and from 6 to 8% by mass. is particularly preferred.
 前記反応系内の酸素濃度を2~12質量%とする方法としては、特に限定されないが、例えば、反応系内の液面より上部から吹き込む方法や、気体導入ノズルを液面下に設定してバブリングする方法等が挙げられる。これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、反応系内の液面より上部から前記気体(b1)と前記不活性ガス(b2)をそれぞれ吹き込む方法が好ましく、反応系の液面より上部から前記不活性ガス(b2)を吹き込み、前記気体(b1)を液面下に設定した気体導入ノズルよりバブリングする方法がより好ましい。 The method of adjusting the oxygen concentration in the reaction system to 2 to 12% by mass is not particularly limited, but examples include a method of blowing from above the liquid level in the reaction system, or a method of setting the gas introduction nozzle below the liquid level. Examples include a bubbling method. Among these, (meth)acrylate resins have excellent alkali developability and high photosensitivity, and can form cured products with excellent elasticity, heat resistance, and substrate adhesion. It is preferable to blow in the gas (b1) and the inert gas (b2) from above the liquid level of the reaction system. A bubbling method using a gas introduction nozzle set below the liquid level is more preferable.
 前記気体(b1)及び前記不活性ガス(b2)の合計導入量は、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、エポキシ樹脂(A1)と不飽和一塩基酸(A2)との総量1kgあたり、1×10-12~1×10-3/minの範囲が好ましく、1×10-11~1×10-3/minがより好ましい。また、前記気体(b1)及び前記不活性ガス(b2)は、連続的に導入しても、間歇して導入してもよく、導入量の平均がこの範囲内であればよい。 The total amount of the gas (b1) and the inert gas (b2) introduced can form a cured product that has excellent alkali developability and high photosensitivity, and has excellent elasticity, heat resistance, and substrate adhesion. Since a (meth)acrylate resin can be obtained, it is preferably in the range of 1 × 10 -12 to 1 × 10 -3 /min per 1 kg of the total amount of epoxy resin (A1) and unsaturated monobasic acid (A2), More preferably 1×10 −11 to 1×10 −3 /min. Further, the gas (b1) and the inert gas (b2) may be introduced continuously or intermittently, as long as the average amount of introduction is within this range.
 本発明の(メタ)アクリレート樹脂の製造方法としては、エポキシ樹脂(A1)と不飽和一塩基酸(A2)とを、塩基性触媒の存在下、酸素を含有する気体(b1)及び不活性ガス(b2)を含む酸素濃度が2~12質量%の範囲の混合気体(B)の雰囲気下で、単位体積当たりの撹拌動力が、0.2~8kW/mの範囲で撹拌しながら行うものであれば、特に制限されず、どのような方法で製造してもよい。なお、本発明における「単位体積当たりの撹拌動力」とは、下記式(1)より算出した値である。 The method for producing the (meth)acrylate resin of the present invention involves mixing an epoxy resin (A1) and an unsaturated monobasic acid (A2) with an oxygen-containing gas (b1) and an inert gas in the presence of a basic catalyst. (b2) in an atmosphere of mixed gas (B) with an oxygen concentration in the range of 2 to 12% by mass, with stirring at a stirring power per unit volume of 0.2 to 8 kW/ m3 . If so, there are no particular limitations, and any method may be used to manufacture it. Note that the "stirring power per unit volume" in the present invention is a value calculated from the following formula (1).
[式(1)中、Pvは単位体積当たりの撹拌動力(kW/m)、Npは撹拌動力数(-)、ρは樹脂の密度(kg/m)、nは撹拌翼の回転数(sec-1)、dは撹拌翼の径(m)、Vは反応液体積(m)をそれぞれ示す。] [In formula (1), Pv is the stirring power per unit volume (kW/m 3 ), Np is the stirring power number (-), ρ is the density of the resin (kg/m 3 ), and n is the rotation speed of the stirring blade. (sec −1 ), d indicates the diameter of the stirring blade (m), and V indicates the volume of the reaction liquid (m 3 ), respectively. ]
 また、前記攪拌動力としては、優れたアルカリ現像性及び高い光感度を有し、優れた耐熱性、基材密着性及び絶縁信頼性を有する硬化物を形成可能なことから、1~7kW/mの範囲が好ましく、1~6kW/mがより好ましく、1~5kW/mがさらに好ましい。 In addition, the stirring power is 1 to 7 kW/m since it is possible to form a cured product that has excellent alkali developability and high photosensitivity, and has excellent heat resistance, substrate adhesion, and insulation reliability. 3 is preferable, 1 to 6 kW/m 3 is more preferable, and 1 to 5 kW/m 3 is even more preferable.
 前記エポキシ樹脂(A1)と前記不飽和一塩基酸(A2)との反応における反応温度としては、例えば、80~160℃の範囲が好ましく、反応時間としては、1~20時間の範囲が好ましい。 The reaction temperature in the reaction between the epoxy resin (A1) and the unsaturated monobasic acid (A2) is preferably in the range of 80 to 160°C, and the reaction time is preferably in the range of 1 to 20 hours.
 本発明の(メタ)アクリレート樹脂としては、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化物を形成可能なことから、前記エポキシ樹脂(A1)と、前記不飽和一塩基酸(A2)とを反応させた後、さらに多塩基酸無水物(A3)を反応させて得られるものであることが好ましい。 The (meth)acrylate resin of the present invention has excellent alkali developability and high photosensitivity, and can form a cured product having excellent elasticity, heat resistance, and substrate adhesion. It is preferable that A1) be obtained by reacting the unsaturated monobasic acid (A2) and then further reacting the polybasic acid anhydride (A3).
 前記多塩基酸無水物(A3)としては、例えば、脂肪族多塩基酸無水物、脂環式多塩基酸無水物、芳香族多塩基酸無水物等が挙げられる。 Examples of the polybasic acid anhydride (A3) include aliphatic polybasic acid anhydrides, alicyclic polybasic acid anhydrides, aromatic polybasic acid anhydrides, and the like.
 前記脂肪族多塩基酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸の酸無水物等が挙げられる。また、前記脂肪族多塩基酸無水物としては、脂肪族炭化水素基は直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。 Examples of the aliphatic polybasic acid anhydrides include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid, and itaconic acid. Examples include acid anhydrides of acids, glutaconic acid, and 1,2,3,4-butanetetracarboxylic acid. Moreover, the aliphatic hydrocarbon group of the aliphatic polybasic acid anhydride may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
 前記脂環式多塩基酸無水物としては、本発明では、酸無水物基が脂環構造に結合しているものを脂環式多塩基酸無水物とし、それ以外の構造部位における芳香環の有無は問わないものとする。前記脂環式多塩基酸無水物としては、例えば、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸の酸無水物等が挙げられる。 In the present invention, as the alicyclic polybasic acid anhydride, an alicyclic polybasic acid anhydride is one in which an acid anhydride group is bonded to an alicyclic structure, and an alicyclic polybasic acid anhydride is one in which an acid anhydride group is bonded to an alicyclic structure, and an alicyclic polybasic acid anhydride in which an acid anhydride group is bonded to an alicyclic structure is used. It does not matter whether or not it exists. Examples of the alicyclic polybasic acid anhydride include tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane-2, 3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene- Examples include acid anhydrides of 1,2-dicarboxylic acids.
 前記芳香族多塩基酸無水物としては、例えば、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸の酸無水物等が挙げられる。 Examples of the aromatic polybasic acid anhydrides include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, biphenyltetracarboxylic acid, Examples include acid anhydride of benzophenone tetracarboxylic acid.
 これらの多塩基酸無水物(A3)は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた耐熱性、基材密着性及び絶縁信頼性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、テトラヒドロ無水フタル酸、シクロヘキサン-1,2-ジカルボン酸無水物、無水コハク酸が好ましい。 These polybasic acid anhydrides (A3) can be used alone or in combination of two or more. Among these, (meth)acrylate resins can be obtained that have excellent alkali developability and high photosensitivity, and can form cured products with excellent heat resistance, substrate adhesion, and insulation reliability. , tetrahydrophthalic anhydride, cyclohexane-1,2-dicarboxylic anhydride, and succinic anhydride are preferred.
 前記多塩基酸無水物(A3)の使用量は、優れたアルカリ現像性及び高い光感度を有し、優れた耐熱性、基材密着性及び絶縁信頼性を有する硬化物を形成可能な(メタ)アクリレート樹脂が得られることから、前記エポキシ樹脂(A1)1モルに対して、0.25~1モルの範囲の範囲が好ましく、0.25~0.95モルの範囲がより好ましい。 The amount of the polybasic acid anhydride (A3) to be used is such that it is possible to form a cured product that has excellent alkaline developability and high photosensitivity, and has excellent heat resistance, substrate adhesion, and insulation reliability (metallic acid anhydride). ) Since an acrylate resin can be obtained, the amount is preferably in the range of 0.25 to 1 mol, more preferably 0.25 to 0.95 mol, per 1 mol of the epoxy resin (A1).
 また、前記エポキシ樹脂(A1)と、前記不飽和一塩基酸(A2)とを反応させて得られてた反応物と、前記多塩基酸無水物(A3)との反応は、塩基性触媒下で70~160℃の範囲が好ましく、反応時間としては、1~20時間の範囲が好ましい。 Further, the reaction between the reaction product obtained by reacting the epoxy resin (A1) and the unsaturated monobasic acid (A2) with the polybasic acid anhydride (A3) is carried out under a basic catalyst. The reaction temperature is preferably in the range of 70 to 160°C, and the reaction time is preferably in the range of 1 to 20 hours.
 本発明は、(メタ)アクリレート樹脂の製造方法であり、上述のとおり特定の全塩素濃度及び特定のα-グリコール量を有するエポキシ樹脂(A1)を原料として用い、当該エポキシ樹脂(A1)と、不飽和一塩基酸(A2)とを含む原料を、塩基性触媒の存在下、酸素を含有する気体(b1)及び不活性ガス(b2)の雰囲気下で撹拌しながら、反応系内の酸素濃度を2~12質量%の範囲とし、また単位体積当たりの撹拌動力を0.2~8kW/mの範囲として反応させる工程(工程1)と、その後に、必要に応じて、さらに多塩基酸無水物(A3)を反応する工程(工程2)を有するが、これらの工程の前に、フェノール樹脂を用い、該フェノール樹脂が含有するフェノール性水酸基と特定割合のエピハロヒドリンとの反応によるグリシジルエーテル基を有する反応物として、前述の特定の全塩素濃度及び特定のα-グリコール量、特定の特定のエポキシ当量、及び/又は特定の軟化点を有するエポキシ樹脂(A1)を合成する工程(工程1B)を経ることが好ましい。さらに、当該エポキシ樹脂(A1)を合成する工程の前に、エポキシ樹脂(A1)の原料となるフェノール性水酸基含有化合物と特定割合のホルムアルデヒド等のケトン基含有化合物との反応により得られる、特定の水酸基量及び/又は特定の軟化点を有するフェノール樹脂の合成工程(工程1A)を経ることが好ましい。これらの工程1Aや工程1Bも含めた工程にて(メタ)アクリレート樹脂を製造することにより、優れたアルカリ現像性及び高い光感度を有し、硬化物における優れた基材密着性及び絶縁信頼性を兼備する絶縁材料及びレジスト部材を得ることができる。 The present invention is a method for producing (meth)acrylate resin, in which an epoxy resin (A1) having a specific total chlorine concentration and a specific amount of α-glycol as described above is used as a raw material, and the epoxy resin (A1) and While stirring a raw material containing an unsaturated monobasic acid (A2) in the presence of a basic catalyst in an atmosphere of an oxygen-containing gas (b1) and an inert gas (b2), the oxygen concentration in the reaction system is adjusted. is in the range of 2 to 12% by mass, and the stirring power per unit volume is in the range of 0.2 to 8 kW/ m3 (step 1), and then, if necessary, a polybasic acid is further added. Although there is a step (step 2) of reacting the anhydride (A3), before these steps, using a phenol resin, a glycidyl ether group is formed by reacting the phenolic hydroxyl group contained in the phenol resin with a specific proportion of epihalohydrin. A step of synthesizing an epoxy resin (A1) having the aforementioned specific total chlorine concentration, specific amount of α-glycol, specific specific epoxy equivalent, and/or specific softening point as a reactant having (Step 1B) It is preferable to go through. Furthermore, before the step of synthesizing the epoxy resin (A1), a specific compound obtained by reacting a phenolic hydroxyl group-containing compound, which is a raw material for the epoxy resin (A1), with a specific proportion of a ketone group-containing compound such as formaldehyde, It is preferable to go through a step (step 1A) of synthesizing a phenol resin having an amount of hydroxyl groups and/or a specific softening point. By manufacturing (meth)acrylate resin through processes including these steps 1A and 1B, it has excellent alkali developability and high photosensitivity, and the cured product has excellent substrate adhesion and insulation reliability. It is possible to obtain an insulating material and a resist member that have the following properties.
 本発明の(メタ)アクリレート樹脂は、分子構造中に重合性の(メタ)アクリロイル基を有することから、例えば、光重合開始剤を添加することにより硬化性樹脂組成物として利用することができる。 Since the (meth)acrylate resin of the present invention has a polymerizable (meth)acryloyl group in its molecular structure, it can be used as a curable resin composition, for example, by adding a photopolymerization initiator.
 前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2’-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等の光ラジカル重合開始剤などが挙げられる。 Examples of the photopolymerization initiator include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl(2,4,6-trimethoxybenzoyl)phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1- Examples include photoradical polymerization initiators such as 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone and the like.
 前記その他の光重合開始剤の市販品としては、例えば、「Omnirad 1173」、「Omnirad 184」、「Omnirad 127」、「Omnirad 2959」、「Omnirad 369」、「Omnirad 379」、「Omnirad 907」、「Omnirad 4265」、「Omnirad 1000」、「Omnirad 651」、「Omnirad TPO」、「Omnirad 819」、「Omnirad 2022」、「Omnirad 2100」、「Omnirad 754」、「Omnirad 784」、「Omnirad 500」、「Omnirad 81」(IGM Resins社製);「KAYACURE DETX」、「KAYACURE MBP」、「KAYACURE DMBI」、「KAYACURE EPA」、「KAYACURE OA」(日本化薬株式会社製);「Vicure 10」、「Vicure 55」(Stoffa Chemical社製);「Trigonal P1」(Akzo Nobel社製)、「SANDORAY 1000」(SANDOZ社製);「DEAP」(Upjohn Chemical社製)、「Quantacure PDO」、「Quantacure ITX」、「Quantacure EPD」(Ward Blenkinsop社製);「Runtecure 1104」(Runtec社製)等が挙げられる。これらの光重合開始剤は、単独で用いることも、2種以上を併用することもできる。 Examples of commercially available photopolymerization initiators include "Omnirad 1173", "Omnirad 184", "Omnirad 127", "Omnirad 2959", "Omnirad 369", "Omnirad 379", "Omnirad 907'', “Omnirad 4265”, “Omnirad 1000”, “Omnirad 651”, “Omnirad TPO”, “Omnirad 819”, “Omnirad 2022”, “Omnirad 2100”, “Omnirad 754”, “Omnirad 784”, “Omnirad 500”, “Omnirad 81” (manufactured by IGM Resins); “KAYACURE DETX”, “KAYACURE MBP”, “KAYACURE DMBI”, “KAYACURE EPA”, “KAYACURE OA” (manufactured by Nippon Kayaku Co., Ltd.); "Vicure 10", " "Vicure 55" (manufactured by Stoffa Chemical); "Trigonal P1" (manufactured by Akzo Nobel); "SANDORAY 1000" (manufactured by SANDOZ); "DEAP" (Upjohn Chemical) (Manufactured by Company L), "Quantacure PDO", "Quantacure ITX" , "Quantacure EPD" (manufactured by Ward Blenkinsop); "Runtecure 1104" (manufactured by Runtec), and the like. These photopolymerization initiators can be used alone or in combination of two or more.
 前記光重合開始剤の添加量は、例えば、硬化性樹脂組成物の溶剤以外の成分の合計中に0.05~15質量%の範囲であることが好ましく、0.1~10質量%の範囲であることがより好ましい。 The amount of the photopolymerization initiator added is preferably in the range of 0.05 to 15% by mass, and preferably in the range of 0.1 to 10% by mass, based on the total of components other than the solvent of the curable resin composition. It is more preferable that
 また、前記光重合開始剤は、必要に応じて、アミン化合物、尿素化合物、含硫黄化合物、含燐化合物、含塩素化合物、ニトリル化合物等の光増感剤を併用することもできる。 Furthermore, the photopolymerization initiator may be used in combination with a photosensitizer such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, or a nitrile compound, if necessary.
 本発明の硬化性樹脂組成物は、前述した(メタ)アクリレート樹脂以外のその他の樹脂成分を含有しても良い。前記その他の樹脂成分としては、重合性不飽和基を有する樹脂、各種の(メタ)アクリレートモノマー等が挙げられる。 The curable resin composition of the present invention may contain resin components other than the above-mentioned (meth)acrylate resin. Examples of the other resin components include resins having polymerizable unsaturated groups, various (meth)acrylate monomers, and the like.
 前記重合性不飽和基を有する樹脂としては、樹脂中に重合性不飽和基を有するものであれば何れでもよく、例えば、重合性不飽和基を有するエポキシ樹脂、重合性不飽和基を有するウレタン樹脂、重合性不飽和基を有するアクリル樹脂、重合性不飽和基を有するアミドイミド樹脂、重合性不飽和基を有するアクリルアミド樹脂、重合性不飽和基を有するエステル樹脂等が挙げられる。 The resin having a polymerizable unsaturated group may be any resin as long as it has a polymerizable unsaturated group in the resin, for example, an epoxy resin having a polymerizable unsaturated group, a urethane resin having a polymerizable unsaturated group, etc. Examples include resins, acrylic resins having polymerizable unsaturated groups, amide-imide resins having polymerizable unsaturated groups, acrylamide resins having polymerizable unsaturated groups, and ester resins having polymerizable unsaturated groups.
 前記重合性不飽和基を有するエポキシ樹脂としては、例えば、エポキシ樹脂と不飽和一塩基酸、及び必要に応じて多塩基酸無水物とを反応させて得られたエポキシ(メタ)アクリレート樹脂や、エポキシ樹脂、不飽和一塩基酸、ポリイソシアネート化合物、及び水酸基を有する(メタ)アクリレート化合物、及び必要に応じて多塩基酸無水物とを反応させて得られたウレタン基を有するエポキシ(メタ)アクリレート樹脂などが挙げられる。 Examples of the epoxy resin having a polymerizable unsaturated group include an epoxy (meth)acrylate resin obtained by reacting an epoxy resin with an unsaturated monobasic acid and, if necessary, a polybasic acid anhydride; Epoxy (meth)acrylate having a urethane group obtained by reacting an epoxy resin, an unsaturated monobasic acid, a polyisocyanate compound, a (meth)acrylate compound having a hydroxyl group, and, if necessary, a polybasic acid anhydride. Examples include resin.
 前記エポキシ樹脂としては、上述のエポキシ樹脂(A1)として例示したものと同様のものを用いることができ、前記エポキシ樹脂は、単独で用いることも2種以上を併用することもできる。 As the epoxy resin, those similar to those exemplified as the above-mentioned epoxy resin (A1) can be used, and the epoxy resins can be used alone or in combination of two or more types.
 前記不飽和一塩基酸としては、上述の不飽和一塩基酸(A2)として例示したものと同様のものを用いることができ、前記不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 As the unsaturated monobasic acid, those similar to those exemplified as the above-mentioned unsaturated monobasic acid (A2) can be used, and the unsaturated monobasic acid may be used alone or in combination of two or more. They can also be used together.
 前記多塩基酸無水物としては、上述の多塩基酸無水物(A3)として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. They can also be used together.
 前記ポリイソシアネート化合物としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、o-トリジンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(5)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。また、これらのポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyisocyanate compound include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, Alicyclic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diisocyanate-3 , 3'-dimethylbiphenyl, o-tolidine diisocyanate and other aromatic diisocyanate compounds; polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (5); isocyanurate modified products, biuret modified products thereof, Examples include modified allophanate. Moreover, these polyisocyanate compounds can be used alone or in combination of two or more types.
Figure JPOXMLDOC01-appb-C000005
[式中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基、又は構造式(5)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。lは0又は1~3の整数であり、mは1~15の整数である。]
Figure JPOXMLDOC01-appb-C000005
[In the formula, each R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 2 each independently represents either an alkyl group having 1 to 4 carbon atoms, or a bonding point connected to the structural moiety represented by Structural Formula (5) via a methylene group marked with *. l is 0 or an integer from 1 to 3, and m is an integer from 1 to 15. ]
 前記水酸基を有する(メタ)アクリレート化合物としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトール(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパン(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等が挙げられる。また、前記各種の水酸基を有する(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体や、前記各種の水酸基を有する(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等も用いることができる。これらの水酸基を有する(メタ)アクリレート化合物は、単独で用いることも、2種以上を併用することもできる。 Examples of the (meth)acrylate compound having a hydroxyl group include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, trimethylolpropane (meth)acrylate, trimethylolpropane di(meth)acrylate, and pentaerythritol (meth)acrylate. acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol(meth)acrylate, dipentaerythritol di(meth)acrylate, dipentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate ) acrylate, dipentaerythritol penta(meth)acrylate, ditrimethylolpropane(meth)acrylate, ditrimethylolpropane di(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, and the like. In addition, (poly)oxyalkylene chains such as (poly)oxyethylene chains, (poly)oxypropylene chains, (poly)oxytetramethylene chains, etc. are introduced into the molecular structures of the (meth)acrylate compounds having various hydroxyl groups. (Poly)oxyalkylene modified products and lactone modified products in which a (poly)lactone structure is introduced into the molecular structure of the (meth)acrylate compounds having various hydroxyl groups can also be used. These (meth)acrylate compounds having a hydroxyl group can be used alone or in combination of two or more.
 前記重合性不飽和基を有するエポキシ樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記重合性不飽和基を有するエポキシ樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the epoxy resin having a polymerizable unsaturated group is not particularly limited, and any method may be used. In the production of the epoxy resin having a polymerizable unsaturated group, it may be carried out in an organic solvent as necessary, and a basic catalyst may be used as necessary.
 前記有機溶剤としては、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤;メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。また、前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計質量に対し0.1~5倍量程度の範囲で用いることが好ましい。 Examples of the organic solvent include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide, and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; toluene, xylene, and solvents. Aromatic solvents such as naphtha; alicyclic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether , glycol ether solvents such as dialkylene glycol monoalkyl ether acetate; methoxypropanol, cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and the like. These organic solvents can be used alone or in combination of two or more. Further, the amount of the organic solvent to be used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials, since the reaction efficiency is improved.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
 前記重合性不飽和基を有するウレタン樹脂としては、例えば、ポリイソシアネート化合物、水酸基を有する(メタ)アクリレート化合物、及び必要に応じてポリオール化合物、多塩基酸無水物とを反応させて得られたもの等が挙げられる。 Examples of the urethane resin having a polymerizable unsaturated group include those obtained by reacting a polyisocyanate compound, a (meth)acrylate compound having a hydroxyl group, and optionally a polyol compound and a polybasic acid anhydride. etc.
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物として例示したものと同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 As the polyisocyanate compound, those similar to those exemplified as the above-mentioned polyisocyanate compound can be used, and the polyisocyanate compound can be used alone or in combination of two or more types.
 前記水酸基を有する(メタ)アクリレート化合物としては、上述の水酸基を有する(メタ)アクリレート化合物として例示したものと同様のものを用いることができ、前記水酸基を有する(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 As the (meth)acrylate compound having a hydroxyl group, those similar to those exemplified as the above-mentioned (meth)acrylate compound having a hydroxyl group can be used, and the (meth)acrylate compound having a hydroxyl group can be used alone. It is also possible to use two or more types together.
 前記ポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の脂肪族ポリオール化合物;ビフェノール、ビスフェノール等の芳香族ポリオール化合物;前記各種のポリオール化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のポリオール化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール吉草酸等が挙げられる。前記ポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyol compounds include aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol; aromatic polyols such as biphenol and bisphenol; Polyol compound; (poly)oxyalkylene in which a (poly)oxyalkylene chain such as a (poly)oxyethylene chain, (poly)oxypropylene chain, or (poly)oxytetramethylene chain is introduced into the molecular structure of the various polyol compounds mentioned above. Modified products; lactone modified products in which a (poly)lactone structure is introduced into the molecular structure of the various polyol compounds mentioned above, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolvaleric acid etc. The polyol compounds can be used alone or in combination of two or more.
 前記多塩基酸無水物としては、上述の多塩基酸無水物(A3)として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. They can also be used together.
 前記重合性不飽和基を有するウレタン樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記重合性不飽和基を有するウレタン樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the urethane resin having a polymerizable unsaturated group is not particularly limited, and any method may be used. The production of the urethane resin having a polymerizable unsaturated group may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
 前記重合性不飽和基を有するアクリル樹脂としては、例えば、水酸基やカルボキシル基、イソシアネート基、グリシジル基等の反応性官能基を有する(メタ)アクリレート化合物(α)を必須の成分として重合させて得られるアクリル樹脂中間体に、これらの官能基と反応し得る反応性官能基を有する(メタ)アクリレート化合物(β)をさらに反応させることにより(メタ)アクリロイル基を導入して得られる反応生成物や、必要に応じて前記反応生成物中の水酸基に多塩基酸無水物を反応させて得られるもの等が挙げられる。 The acrylic resin having a polymerizable unsaturated group is, for example, one obtained by polymerizing a (meth)acrylate compound (α) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, or a glycidyl group as an essential component. A reaction product obtained by introducing a (meth)acryloyl group by further reacting the acrylic resin intermediate with a (meth)acrylate compound (β) having a reactive functional group that can react with these functional groups, , and those obtained by reacting a polybasic acid anhydride with a hydroxyl group in the reaction product as necessary.
 前記アクリル樹脂中間体は、前記(メタ)アクリレート化合物(α)の他、必要に応じてその他の重合性不飽和基を有する化合物を共重合させたものであってもよい。前記その他の重合性不飽和基を有する化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基を有する(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。 In addition to the (meth)acrylate compound (α), the acrylic resin intermediate may be one obtained by copolymerizing other compounds having polymerizable unsaturated groups as necessary. Examples of the other compounds having polymerizable unsaturated groups include (meth)acrylate, such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. ) Acrylic acid alkyl ester; alicyclic structure-containing (meth)acrylates such as cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate; phenyl (meth)acrylate, benzyl (meth)acrylate, Examples include aromatic ring-containing (meth)acrylates such as phenoxyethyl acrylate; (meth)acrylates having a silyl group such as 3-methacryloxypropyltrimethoxysilane; and styrene derivatives such as styrene, α-methylstyrene, and chlorostyrene. These can be used alone or in combination of two or more.
 前記(メタ)アクリレート化合物(β)は、前記(メタ)アクリレート化合物(α)が有する反応性官能基と反応し得るものであれば特に限定されないが、反応性の観点から以下の組み合わせであることが好ましい。即ち、前記(メタ)アクリレート化合物(α)として水(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてイソシアネート基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてカルボキシル基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてグリシジル基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてイソシアネート基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)として水(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてグリシジル基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてカルボキシル基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(β)は、単独で用いることも2種以上を併用することもできる。 The (meth)acrylate compound (β) is not particularly limited as long as it can react with the reactive functional group possessed by the (meth)acrylate compound (α), but from the viewpoint of reactivity it should be the following combination: is preferred. That is, when water (meth)acrylate is used as the (meth)acrylate compound (α), it is preferable to use a (meth)acrylate having an isocyanate group as the (meth)acrylate compound (β). When a (meth)acrylate having a carboxyl group is used as the (meth)acrylate compound (α), it is preferable to use a (meth)acrylate having a glycidyl group as the (meth)acrylate compound (β). When a (meth)acrylate having an isocyanate group is used as the (meth)acrylate compound (α), it is preferable to use water (meth)acrylate as the (meth)acrylate compound (β). When a (meth)acrylate having a glycidyl group is used as the (meth)acrylate compound (α), it is preferable to use a (meth)acrylate having a carboxyl group as the (meth)acrylate compound (β). The (meth)acrylate compound (β) can be used alone or in combination of two or more.
 前記多塩基酸無水物は、上述の多塩基酸無水物(A3)として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. You can also.
 前記重合性不飽和基を有するアクリル樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記重合性不飽和基を有するアクリル樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the acrylic resin having a polymerizable unsaturated group is not particularly limited, and any method may be used. The production of the acrylic resin having a polymerizable unsaturated group may be carried out in an organic solvent if necessary, or a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
 前記重合性不飽和基を有するアミドイミド樹脂としては、例えば、酸基及び/又は酸無水物基を有するアミドイミド樹脂と、水酸基を有する(メタ)アクリレート化合物及び/又はエポキシ基を有する(メタ)アクリレート化合物と、必要に応じて、水酸基、カルボキシル基、イソシアネート基、グリシジル基、及び酸無水物基からなる群より選ばれる1種以上の反応性官能基を有する化合物を反応させて得られるものが挙げられる。なお、前記反応性官能基を有する化合物は、(メタ)アクリロイル基を有していてもよいし、有していなくてもよい。 Examples of the amide-imide resin having a polymerizable unsaturated group include an amide-imide resin having an acid group and/or an acid anhydride group, a (meth)acrylate compound having a hydroxyl group, and/or a (meth)acrylate compound having an epoxy group. and, if necessary, those obtained by reacting a compound having one or more reactive functional groups selected from the group consisting of a hydroxyl group, a carboxyl group, an isocyanate group, a glycidyl group, and an acid anhydride group. . Note that the compound having a reactive functional group may or may not have a (meth)acryloyl group.
 前記アミドイミド樹脂としては、酸基又は酸無水物基のどちらか一方のみを有するものであってもよいし、両方を有するものであってもよい。水酸基を有する(メタ)アクリレート化合物や(メタ)アクリロイル基を有するエポキシ化合物との反応性や反応制御の観点から、酸無水物基を有するものであることが好ましく、酸基と酸無水物基との両方を有するものであることがより好ましい。前記アミドイミド樹脂の固形分酸価は、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~350mgKOH/gの範囲であることが好ましい。他方、水の存在下等、酸無水物基を開環させた条件での測定値が61~360mgKOH/gの範囲であることが好ましい。 The amide-imide resin may have only either an acid group or an acid anhydride group, or may have both. From the viewpoint of reactivity and reaction control with a (meth)acrylate compound having a hydroxyl group or an epoxy compound having a (meth)acryloyl group, it is preferable that the compound has an acid anhydride group. It is more preferable that it has both. The solid content acid value of the amide-imide resin is preferably in the range of 60 to 350 mgKOH/g as measured under neutral conditions, ie, under conditions where the acid anhydride group is not ring-opened. On the other hand, it is preferable that the value measured under conditions where the acid anhydride group is ring-opened, such as in the presence of water, is in the range of 61 to 360 mgKOH/g.
 前記アミドイミド樹脂としては、例えば、ポリイソシアネート化合物と、多塩基酸無水物とを反応原料として得られるものが挙げられる。 Examples of the amide-imide resin include those obtained by using a polyisocyanate compound and a polybasic acid anhydride as reaction raw materials.
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物として例示したものと同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。 As the polyisocyanate compound, those similar to those exemplified as the above-mentioned polyisocyanate compound can be used, and the polyisocyanate compound can be used alone or in combination of two or more types.
 前記多塩基酸無水物としては、上述の多塩基酸無水物(A3)として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. They can also be used together.
 また、前記アミドイミド樹脂は、必要に応じて、前記ポリイソシアネート化合物及び多塩基酸無水物以外に、多塩基酸を反応原料として併用することもできる。 In addition, in addition to the polyisocyanate compound and the polybasic acid anhydride, the amide-imide resin can also contain a polybasic acid as a reaction raw material, if necessary.
 前記多塩基酸としては、一分子中にカルボキシル基を2つ以上有する化合物であれば何れのものも用いることができる。例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。また、前記多塩基酸としては、例えば、共役ジエン系ビニルモノマーとアクリロニトリルとの共重合体であって、その分子中にカルボキシル基を有する重合体も用いることができる。これらの多塩基酸は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid, any compound having two or more carboxyl groups in one molecule can be used. For example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydro Phthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2.2.1]heptane- 2,3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydro Examples include naphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, biphenyltetracarboxylic acid, benzophenonetetracarboxylic acid, etc. It will be done. Further, as the polybasic acid, for example, a copolymer of a conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used. These polybasic acids can be used alone or in combination of two or more.
 前記水酸基を有する(メタ)アクリレート化合物としては、上述の水酸基を有する(メタ)アクリレート化合物として例示したものと同様のものを用いることができ、前記水酸基を有する(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。 As the (meth)acrylate compound having a hydroxyl group, those similar to those exemplified as the above-mentioned (meth)acrylate compound having a hydroxyl group can be used, and the (meth)acrylate compound having a hydroxyl group can be used alone. It is also possible to use two or more types together.
 前記エポキシ基を有する(メタ)アクリレート化合物としては、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、エポキシシクロへキシルメチル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレートモノマー;ジヒドロキシベンゼンジグリシジルエーテル、ジヒドロキシナフタレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、ビスフェノールジグリシジルエーテル等のジグリシジルエーテル化合物のモノ(メタ)アクリレート化物等が挙げられる。これらのエポキシ基を有する(メタ)アクリレート化合物は、単独で用いることも、2種以上を併用することもできる。 Examples of the (meth)acrylate compound having an epoxy group include (meth)acrylates having a glycidyl group such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and epoxycyclohexylmethyl (meth)acrylate. Monomers include mono(meth)acrylates of diglycidyl ether compounds such as dihydroxybenzene diglycidyl ether, dihydroxynaphthalene diglycidyl ether, biphenol diglycidyl ether, and bisphenol diglycidyl ether. These (meth)acrylate compounds having an epoxy group can be used alone or in combination of two or more.
 前記重合性不飽和基を有するアミドイミド樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記重合性不飽和基を有するアミドイミド樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。 The method for producing the amide-imide resin having a polymerizable unsaturated group is not particularly limited, and any method may be used. The production of the amide-imide resin having a polymerizable unsaturated group may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
 前記重合性不飽和基を有するアクリルアミド樹脂としては、例えば、フェノール性水酸基を有する化合物と、アルキレンオキサイド又はアルキレンカーボネートと、N-アルコキシアルキル(メタ)アクリルアミド化合物と、必要に応じて多塩基酸無水物、不飽和一塩基酸とを反応させて得られたものが挙げられる。 The acrylamide resin having a polymerizable unsaturated group includes, for example, a compound having a phenolic hydroxyl group, an alkylene oxide or an alkylene carbonate, an N-alkoxyalkyl (meth)acrylamide compound, and, if necessary, a polybasic acid anhydride. , and those obtained by reacting with unsaturated monobasic acids.
 前記フェノール性水酸基を有する化合物としては、分子内にフェノール性水酸基を少なくとも1つ有する化合物をいう。前記分子内にフェノール性水酸基を少なくとも1つ有する化合物としては、例えば、下記構造式(4-1)~(4-5)で表される化合物が挙げられる。 The compound having a phenolic hydroxyl group refers to a compound having at least one phenolic hydroxyl group in the molecule. Examples of the compound having at least one phenolic hydroxyl group in the molecule include compounds represented by the following structural formulas (4-1) to (4-5).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
  上記構造式(4-1)~(4-5)において、Rは、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、アリール基、ハロゲン原子の何れかであり、Rは、それぞれ独立して、水素原子またはメチル基である。また、pは、0または1以上の整数であり、好ましくは0または1~3の整数であり、より好ましくは0または1であり、さらに好ましくは0である。qは、1以上の整数であり、好ましくは、2または3である。なお、上記構造式における芳香環上の置換基の位置については、任意であり、例えば、構造式(4-2)のナフタレン環においてはいずれの環上に置換していてもよく、構造式(4-3)では、1分子中に存在するベンゼン環のいずれの環上に置換していてもよく、構造式(4-4)では、1分子中に存在するベンゼン環のいずれかの環上に置換していてもよく、構造式(4-5)では、1分子中に存在するベンゼン環のいずれの環上に置換していてもよく、1分子中における置換基の個数がp及びqであることを示している。 In the above structural formulas (4-1) to (4-5), R 1 is any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group, or a halogen atom. , R 2 are each independently a hydrogen atom or a methyl group. Further, p is 0 or an integer of 1 or more, preferably 0 or an integer of 1 to 3, more preferably 0 or 1, and even more preferably 0. q is an integer of 1 or more, preferably 2 or 3. Note that the position of the substituent on the aromatic ring in the above structural formula is arbitrary; for example, in the naphthalene ring of structural formula (4-2), it may be substituted on any ring; In 4-3), it may be substituted on any of the benzene rings present in one molecule, and in structural formula (4-4), it may be substituted on any of the benzene rings present in one molecule. In structural formula (4-5), substitution may be made on any of the benzene rings present in one molecule, and the number of substituents in one molecule is p and q. It shows that.
 また、前記フェノール性水酸基を有する化合物としては、例えば、分子内にフェノール性水酸基を少なくとも1つ有する化合物と下記構造式(5-1)~(5-5)の何れかで表される化合物とを必須の反応原料とする反応生成物なども用いることができる。また、分子内にフェノール性水酸基を少なくとも1つ有する化合物の1種又は2種以上を反応原料とするノボラック型フェノール樹脂なども用いることができる。 In addition, examples of the compound having a phenolic hydroxyl group include a compound having at least one phenolic hydroxyl group in the molecule and a compound represented by any of the following structural formulas (5-1) to (5-5). It is also possible to use reaction products in which the reaction material is an essential reaction raw material. Further, a novolac type phenol resin, etc., which uses one or more kinds of compounds having at least one phenolic hydroxyl group in the molecule as a reaction raw material can also be used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 [構造式(5-1)中、hは0又は1である。構造式(5-2)~(5-5)中、Rは、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、アリール基、ハロゲン原子の何れかであり、iは、0又は1~4の整数である。構造式(5-2)、(5-3)及び(5-5)中、Wは、それぞれ独立してビニル基、ハロメチル基、ヒドロキシメチル基、アルキルオキシメチル基の何れかである。式(5-5)中、Vは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかであり、jは1~4の整数である。] [In structural formula (5-1), h is 0 or 1. In structural formulas (5-2) to (5-5), R 1 is any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group, or a halogen atom, i is 0 or an integer from 1 to 4. In structural formulas (5-2), (5-3), and (5-5), W is each independently a vinyl group, a halomethyl group, a hydroxymethyl group, or an alkyloxymethyl group. In formula (5-5), V is any one of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, or a carbonyl group, and j is an integer of 1 to 4. ]
 上記一般式(5-1)~(5-5)で表される化合物、及び前記反応生成物の具体例としては、フェノール、クレゾール、キシレノール;ジメチルフェノール、ジエチルフェノール等のジアルキルフェノール;トリメチルフェノール、トリエチルフェノール等のトリアルキルフェノール;ジフェニルフェノール、トリフェニルフェノール、カテコール、レゾルシノール、ヒドロキノン、3-メチルカテコール、4-メチルカテコール、4-アリルピロカテコール、テトラメチルビスフェノールA、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1-ナフトール、2-ナフトール、1,3-ナフタレンジオール、1,5-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、ポリフェニレンエーテル型ジオール、ポリナフチレンエーテル型ジオール、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック型樹脂、ナフトールノボラック型樹脂、フェノールアラルキル型樹脂、ナフトールアラルキル型樹脂、シクロ環構造を有するフェノール樹脂などが挙げられる。 Specific examples of the compounds represented by the above general formulas (5-1) to (5-5) and the reaction products include phenol, cresol, xylenol; dialkylphenols such as dimethylphenol and diethylphenol; trimethylphenol, Trialkylphenols such as triethylphenol; diphenylphenol, triphenylphenol, catechol, resorcinol, hydroquinone, 3-methylcatechol, 4-methylcatechol, 4-allylpyrocatechol, tetramethylbisphenol A, 1,2,3-trihydroxybenzene , 1,2,4-trihydroxybenzene, 1-naphthol, 2-naphthol, 1,3-naphthalene diol, 1,5-naphthalene diol, 2,6-naphthalene diol, 2,7-naphthalene diol, polyphenylene ether type Examples include diol, polynaphthylene ether type diol, phenol novolak resin, cresol novolak resin, bisphenol novolak type resin, naphthol novolak type resin, phenol aralkyl type resin, naphthol aralkyl type resin, and phenol resin having a cyclo ring structure.
 これらのフェノール性水酸基を有する化合物は、単独で用いることも2種以上を併用することもできる。 These compounds having a phenolic hydroxyl group can be used alone or in combination of two or more.
 前記アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、ペンチレンオキサイド等が挙げられる。これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた耐熱性及び基材密着性及び絶縁信頼性を有する硬化樹脂組成物が得られることから、エチレンオキサイド又はプロピレンオキサイドが好ましい。前記アルキレンオキサイドは、単独で用いることも2種以上を併用することもできる。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, pentylene oxide, and the like. Among these, ethylene oxide or propylene oxide is preferable because a cured resin composition having excellent alkali developability and high photosensitivity, as well as excellent heat resistance, substrate adhesion, and insulation reliability can be obtained. The alkylene oxides can be used alone or in combination of two or more.
 前記アルキレンカーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネート等が挙げられる。これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた耐熱性基材密着性及び絶縁信頼性を有する硬化樹脂組成物が得られることから、エチレンカーボネート又はプロピレンカーボネートが好ましい。前記アルキレンカーボネートは、単独で用いることも2種以上を併用することもできる。 Examples of the alkylene carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, and the like. Among these, ethylene carbonate or propylene carbonate is preferable because a cured resin composition having excellent alkali developability and high photosensitivity, as well as excellent heat-resistant substrate adhesion and insulation reliability can be obtained. The alkylene carbonates can be used alone or in combination of two or more.
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物としては、例えば、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-ブトキシエチル(メタ)アクリルアミド等が挙げられる。前記N-アルコキシアルキル(メタ)アクリルアミド化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the N-alkoxyalkyl (meth)acrylamide compounds include N-methoxymethyl (meth)acrylamide, N-ethoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, and N-methoxyethyl (meth)acrylamide. , N-ethoxyethyl (meth)acrylamide, N-butoxyethyl (meth)acrylamide, and the like. The N-alkoxyalkyl (meth)acrylamide compounds can be used alone or in combination of two or more.
 前記多塩基酸無水物としては、上述の多塩基酸無水物(A3)として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. They can also be used together.
 前記不飽和一塩基酸としては、上述の不飽和一塩基酸(A2)として例示したものと同様を用いることができ、前記不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 As the unsaturated monobasic acid, the same as those exemplified as the above-mentioned unsaturated monobasic acid (A2) can be used, and the unsaturated monobasic acid may be used alone or in combination of two or more types. You can also do that.
 前記重合性不飽和基を有するアクリルアミド樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記重合性不飽和基を有するアクリルアミド樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒及び酸性触媒を用いてもよい。 The method for producing the acrylamide resin having a polymerizable unsaturated group is not particularly limited, and any method may be used. In the production of the acrylamide resin having a polymerizable unsaturated group, it may be carried out in an organic solvent as necessary, and a basic catalyst and an acidic catalyst may be used as necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。また、スルホニル基等の強酸を有する固体酸触媒等も用いることができる。これらの酸性触媒は、単独で用いることも2種以上を併用することもできる。 Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid; and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Examples include. Furthermore, a solid acid catalyst having a strong acid such as a sulfonyl group can also be used. These acidic catalysts can be used alone or in combination of two or more.
 前記重合性不飽和基を有するエステル樹脂としては、例えば、フェノール性水酸基を有する化合物と、アルキレンオキサイド又はアルキレンカーボネートと、不飽和一塩基酸と、必要に応じて多塩基酸無水物を反応させて得られたものが挙げられる。 As the ester resin having a polymerizable unsaturated group, for example, a compound having a phenolic hydroxyl group, an alkylene oxide or an alkylene carbonate, an unsaturated monobasic acid, and, if necessary, a polybasic acid anhydride is reacted. Here are the results obtained.
 前記フェノール性水酸基を有する化合物としては、上述のフェノール性水酸基を有する化合物として例示したものと同様のものを用いることができ、前記フェノール性水酸基を有する化合物は、単独で用いることも2種以上を併用することもできる。 As the compound having a phenolic hydroxyl group, the same compounds as those exemplified above as the compound having a phenolic hydroxyl group can be used, and the compound having a phenolic hydroxyl group may be used alone or in combination of two or more. They can also be used together.
 前記アルキレンオキサイドとしては、上述のアルキレンオキサイドとして例示したものと同様のものを用いることができる。これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化樹脂組成物が得られることから、エチレンオキサイド又はプロピレンオキサイドが好ましい。前記アルキレンオキサイドは、単独で用いることも2種以上を併用することもできる。 As the alkylene oxide, those similar to those exemplified above as the alkylene oxide can be used. Among these, ethylene oxide or propylene oxide is preferable because a cured resin composition having excellent alkali developability and high photosensitivity, as well as excellent elasticity, heat resistance, and substrate adhesion can be obtained. The alkylene oxides can be used alone or in combination of two or more.
 前記アルキレンカーボネートとしては、上述のアルキレンカーボネートとして例示したものと同様のものを用いることができる。これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有する硬化樹脂組成物が得られることから、エチレンカーボネート又はプロピレンカーボネートが好ましい。前記アルキレンカーボネートは、単独で用いることも2種以上を併用することもできる。 As the alkylene carbonate, those similar to those exemplified above as the alkylene carbonate can be used. Among these, ethylene carbonate or propylene carbonate is preferable because a cured resin composition having excellent alkali developability and high photosensitivity, as well as excellent elasticity, heat resistance, and substrate adhesion can be obtained. The alkylene carbonates can be used alone or in combination of two or more.
 前記不飽和一塩基酸としては、上述の不飽和一塩基酸(A2)として例示したものと同様を用いることができ、前記不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 As the unsaturated monobasic acid, the same as those exemplified as the above-mentioned unsaturated monobasic acid (A2) can be used, and the unsaturated monobasic acid may be used alone or in combination of two or more types. You can also do that.
 前記多塩基酸無水物としては、上述の多塩基酸無水物(A3)として例示したものと同様のものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。 As the polybasic acid anhydride, those similar to those exemplified as the above-mentioned polybasic acid anhydride (A3) can be used, and the polybasic acid anhydride may be used alone or in combination of two or more types. They can also be used together.
 前記重合性不飽和基を有するエステル樹脂の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記重合性不飽和基を有するエステル樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒及び酸性触媒を用いてもよい。 The method for producing the ester resin having a polymerizable unsaturated group is not particularly limited, and any method may be used. In the production of the ester resin having a polymerizable unsaturated group, it may be carried out in an organic solvent as necessary, and a basic catalyst and an acidic catalyst may be used as necessary.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記塩基性触媒としては、上述の塩基性触媒として例示したものと同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。 As the basic catalyst, the same ones as those exemplified above can be used, and the basic catalysts can be used alone or in combination of two or more types.
 前記酸性触媒としては、上述の酸性触媒として例示したものと同様のものを用いることができ、前記酸性触媒は、単独で用いることも2種以上を併用することもできる。 As the acidic catalyst, the same ones as those exemplified above can be used, and the acidic catalysts can be used alone or in combination of two or more types.
 前記重合性不飽和基を有する樹脂の使用量は、本発明の(メタ)アクリレート樹脂100質量部に対して、10~900質量部の範囲が好ましい。 The amount of the resin having a polymerizable unsaturated group used is preferably in the range of 10 to 900 parts by mass based on 100 parts by mass of the (meth)acrylate resin of the present invention.
 前記各種の(メタ)アクリレートモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した4官能以上の(ポリ)オキシアルキレン変性ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物などが挙げられる。 Examples of the various (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, 2 - Aliphatic mono(meth)acrylate compounds such as ethylhexyl(meth)acrylate and octyl(meth)acrylate; alicyclic mono(meth)acrylates such as cyclohexyl(meth)acrylate, isobornyl(meth)acrylate, and adamantyl mono(meth)acrylate Acrylate compounds; heterocyclic mono(meth)acrylate compounds such as glycidyl (meth)acrylate and tetrahydrofurfuryl acrylate; benzyl (meth)acrylate, phenyl (meth)acrylate, phenylbenzyl (meth)acrylate, phenoxy (meth)acrylate, Aromatic mono(meth)acrylate such as phenoxyethyl(meth)acrylate, phenoxyethoxyethyl(meth)acrylate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, phenoxybenzyl(meth)acrylate, phenylphenoxyethyl(meth)acrylate Mono(meth)acrylate compounds such as acrylate compounds: The molecular structures of the various mono(meth)acrylate monomers include polyoxy(poly)oxyethylene chains, (poly)oxypropylene chains, (poly)oxytetramethylene chains, etc. A (poly)oxyalkylene-modified mono(meth)acrylate compound with an alkylene chain introduced; a lactone-modified mono(meth)acrylate compound with a (poly)lactone structure introduced into the molecular structure of the various mono(meth)acrylate compounds mentioned above; ethylene Aliphatic di(meth)acrylate compounds such as glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate; 1,4-Cyclohexane dimethanol di(meth)acrylate, norbornane di(meth)acrylate, norbornane dimethanol di(meth)acrylate, dicyclopentanyl di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, etc. alicyclic di(meth)acrylate compounds; aromatic di(meth)acrylate compounds such as biphenol di(meth)acrylate and bisphenol di(meth)acrylate; Polyoxyalkylene-modified di(meth)acrylate compounds into which (poly)oxyalkylene chains such as poly)oxyethylene chains, (poly)oxypropylene chains, and (poly)oxytetramethylene chains are introduced; the various di(meth)acrylates mentioned above. Lactone-modified di(meth)acrylate compounds with a (poly)lactone structure introduced into the molecular structure of the compound; aliphatic tri(meth)acrylate compounds such as trimethylolpropane tri(meth)acrylate and glycerin tri(meth)acrylate; (Poly)oxyalkylene in which a (poly)oxyalkylene chain such as a (poly)oxyethylene chain, (poly)oxypropylene chain, or (poly)oxytetramethylene chain is introduced into the molecular structure of an aliphatic tri(meth)acrylate compound. Modified tri(meth)acrylate compound; lactone-modified tri(meth)acrylate compound in which a (poly)lactone structure is introduced into the molecular structure of the aliphatic tri(meth)acrylate compound; pentaerythritol tetra(meth)acrylate, ditrimethylolpropane Tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate and other tetrafunctional or higher functional aliphatic poly(meth)acrylate compounds; the molecular structure of the aliphatic poly(meth)acrylate compound includes (poly)oxyethylene chains, Tetrafunctional or higher (poly)oxyalkylene-modified poly(meth)acrylate compound into which a (poly)oxyalkylene chain such as a (poly)oxypropylene chain or a (poly)oxytetramethylene chain is introduced; the aliphatic poly(meth)acrylate Examples include lactone-modified poly(meth)acrylate compounds having four or more functional groups in which a (poly)lactone structure is introduced into the molecular structure of the compound.
 また、前記その他の(メタ)アクリレートモノマーとしては、上述したものの他に、フェノール化合物と、環状カーボネート化合物又は環状エーテル化合物と、不飽和モノカルボン酸とを必須の反応原料とする(メタ)アクリレートモノマーを用いることができる。 In addition to those mentioned above, the other (meth)acrylate monomers include (meth)acrylate monomers that use a phenol compound, a cyclic carbonate compound or a cyclic ether compound, and an unsaturated monocarboxylic acid as essential reaction raw materials. can be used.
 前記フェノール化合物としては、例えば、クレゾール、キシレノール、カテコール、レゾルシノール、ヒドロキノン、3-メチルカテコール、4-メチルカテコール、4-アリルピロカテコール、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1-ナフトール、2-ナフトール、1,3-ナフタレンジオール、1,5-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、水添ビスフェノール、水添ビフェノール、ポリフェニレンエーテル型ジオール、ポリナフチレンエーテル型ジオール、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック型樹脂、ナフトールノボラック型樹脂、フェノールアラルキル型樹脂、ナフトールアラルキル型樹脂、シクロ環構造を有するフェノール樹脂等が挙げられる。 Examples of the phenolic compound include cresol, xylenol, catechol, resorcinol, hydroquinone, 3-methylcatechol, 4-methylcatechol, 4-allylpyrocatechol, 1,2,3-trihydroxybenzene, 1,2,4- Trihydroxybenzene, 1-naphthol, 2-naphthol, 1,3-naphthalene diol, 1,5-naphthalene diol, 2,6-naphthalene diol, 2,7-naphthalene diol, hydrogenated bisphenol, hydrogenated biphenol, polyphenylene ether Type diols, polynaphthylene ether type diols, phenol novolak resins, cresol novolac resins, bisphenol novolak type resins, naphthol novolak type resins, phenol aralkyl type resins, naphthol aralkyl type resins, phenol resins having a cyclo ring structure, and the like.
 前記環状カーボネート化合物としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネート等が挙げられる。これらの環状カーボネート化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the cyclic carbonate compound include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, and the like. These cyclic carbonate compounds can be used alone or in combination of two or more.
 前記環状エーテル化合物としては、例えば、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等が挙げられる。これらの環状エーテル化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the cyclic ether compound include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds can be used alone or in combination of two or more.
 前記不飽和モノカルボン酸としては、上述の不飽和一塩基酸(A2)として例示したものと同様のものを用いることができる。 As the unsaturated monocarboxylic acid, those similar to those exemplified as the above-mentioned unsaturated monobasic acid (A2) can be used.
 前記その他の(メタ)アクリレートモノマーの含有量は、本発明の硬化性樹脂組成物中に90質量%以下が好ましい。 The content of the other (meth)acrylate monomers in the curable resin composition of the present invention is preferably 90% by mass or less.
 また、本発明の硬化性樹脂組成物には、必要に応じて、硬化剤、硬化促進剤、紫外線吸収剤、重合禁止剤、酸化防止剤、有機溶剤、無機質充填材やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤を含有することもできる。 In addition, the curable resin composition of the present invention may contain a curing agent, a curing accelerator, an ultraviolet absorber, a polymerization inhibitor, an antioxidant, an organic solvent, an inorganic filler, fine polymer particles, a pigment, an eraser, etc., as necessary. Various additives such as foaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers can also be contained.
 前記硬化剤としては、例えば、エポキシ樹脂、多塩基酸、不飽和一塩基酸、アミン化合物、アミド化合物、アゾ化合物、有機過酸化物、ポリオール化合物、エポキシ樹脂等が挙げられる。 Examples of the curing agent include epoxy resins, polybasic acids, unsaturated monobasic acids, amine compounds, amide compounds, azo compounds, organic peroxides, polyol compounds, and epoxy resins.
 前記エポキシ樹脂としては、上述のエポキシ樹脂(A1)として例示したものと同様のものを用いることができ、前記エポキシ樹脂は、単独で用いることも2種以上を併用することもできる。 As the epoxy resin, those similar to those exemplified as the above-mentioned epoxy resin (A1) can be used, and the epoxy resins can be used alone or in combination of two or more types.
 前記多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。また、前記多塩基酸としては、例えば、共役ジエン系ビニルモノマーとアクリロニトリルとの共重合体であって、その分子中にカルボキシル基を有する重合体も用いることができる。これらの多塩基酸は、単独で用いることも2種以上を併用することもできる。 Examples of the polybasic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, and terephthalic acid. , tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo[2 .2.1] heptane-2,3-dicarboxylic acid, methylbicyclo[2.2.1]heptane-2,3-dicarboxylic acid, 4-(2,5-dioxotetrahydrofuran-3-yl)-1, 2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, biphenyltetracarboxylic acid, Examples include benzophenone tetracarboxylic acid. Further, as the polybasic acid, for example, a copolymer of a conjugated diene vinyl monomer and acrylonitrile, which has a carboxyl group in its molecule, can also be used. These polybasic acids can be used alone or in combination of two or more.
 前記不飽和一塩基酸としては、上述の不飽和一塩基酸(A2)として例示したものと同様のものを用いることができ、前記不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。 As the unsaturated monobasic acid, those similar to those exemplified as the above-mentioned unsaturated monobasic acid (A2) can be used, and the unsaturated monobasic acid may be used alone or in combination of two or more. They can also be used together.
 前記アミン化合物としては、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体等が挙げられる。これらのアミン化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF3-amine complex, and guanidine derivatives. These amine compounds can be used alone or in combination of two or more.
 前記アミド系化合物としては、例えば、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。これらのアミド化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the amide compound include dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid, and ethylenediamine, and the like. These amide compounds can be used alone or in combination of two or more.
 前記アゾ化合物としては、例えば、アゾビスイソブチロニトリル等が挙げられる。 Examples of the azo compound include azobisisobutyronitrile and the like.
 前記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート、アルキルパーオキシカーボネート等が挙げられる。これらの有機過酸化物は、単独で用いることも2種以上を併用することもできる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxy ester, peroxydicarbonate, alkyl peroxycarbonate, and the like. These organic peroxides can be used alone or in combination of two or more.
 前記ポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、グリセリン、グリセリンモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールメタンモノ(メタ)アクリレート、トリメチロールプロパン、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等のポリオールモノマー;前記ポリオールモノマーと、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、オルソフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,4-シクロヘキサンジカルボン酸等のジカルボン酸との共縮合によって得られるポリエステルポリオール;前記ポリオールモノマーと、ε-カプロラクトン、δ-バレロラクトン、3-メチル-δ-バレロラクトン等の種々のラクトンとの重縮合反応によって得られるラクトン型ポリエステルポリオール;前記ポリオールモノマーと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル等の環状エーテル化合物との開環重合によって得られるポリエーテルポリオールなどが挙げられる。これらのポリオール化合物は、単独で用いることも2種以上を併用することもできる。 Examples of the polyol compound include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1, 5-pentanediol, neopentyl glycol, 1,6-hexanediol, glycerin, glycerin mono(meth)acrylate, trimethylolethane, trimethylolmethane mono(meth)acrylate, trimethylolpropane, trimethylolpropane mono(meth)acrylate , pentaerythritol mono(meth)acrylate, pentaerythritol di(meth)acrylate, etc.; the polyol monomers and the above polyol monomers, succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, orthophthalic acid, tetrahydrophthalic acid , hexahydrophthalic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, 1,4-cyclohexanedicarboxylic acid, etc., a polyester polyol obtained by cocondensation with a dicarboxylic acid such as; the polyol monomer and ε-caprolactone. , δ-valerolactone, 3-methyl-δ-valerolactone, and other lactone-type polyester polyols obtained by polycondensation reaction with various lactones; the above polyol monomers and ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl Examples include polyether polyols obtained by ring-opening polymerization with cyclic ether compounds such as ethers. These polyol compounds can be used alone or in combination of two or more.
 前記エポキシ樹脂としては、上述のエポキシ樹脂(A1)として例示したものと同様のものを用いることができ、前記エポキシ樹脂は、単独で用いることも2種以上を併用することもできる。 As the epoxy resin, those similar to those exemplified as the above-mentioned epoxy resin (A1) can be used, and the epoxy resins can be used alone or in combination of two or more types.
 前記硬化促進剤としては、硬化反応を促進するものであり、例えば、リン系化合物、アミン系化合物、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらの硬化促進剤は、単独で用いることも2種以上を併用することもできる。また、前記硬化促進剤の添加量は、例えば、前記硬化性樹脂組成物の固形分中に0.01~10質量%の範囲で用いることが好ましい。 The curing accelerator is one that accelerates the curing reaction, and includes, for example, phosphorus compounds, amine compounds, imidazole, organic acid metal salts, Lewis acids, amine complex salts, and the like. These curing accelerators can be used alone or in combination of two or more. Further, the amount of the curing accelerator added is preferably in the range of 0.01 to 10% by mass based on the solid content of the curable resin composition.
 前記紫外線吸収剤としては、例えば、2-[4-{(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-{(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等のトリアジン誘導体、2-(2’-キサンテンカルボキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-o-ニトロベンジロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-キサンテンカルボキシ-4-ドデシロキシベンゾフェノン、2-o-ニトロベンジロキシ-4-ドデシロキシベンゾフェノン等が挙げられる。これらの紫外線吸収剤は、単独で用いることも2種以上を併用することもできる。 Examples of the ultraviolet absorber include 2-[4-{(2-hydroxy-3-dodecyloxypropyl)oxy}-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1 , 3,5-triazine, 2-[4-{(2-hydroxy-3-tridecyloxypropyl)oxy}-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1, Triazine derivatives such as 3,5-triazine, 2-(2'-xanthenecarboxy-5'-methylphenyl)benzotriazole, 2-(2'-o-nitrobenzyloxy-5'-methylphenyl)benzotriazole, 2 -xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone, and the like. These ultraviolet absorbers can be used alone or in combination of two or more.
 前記重合禁止剤としては、例えば、p-メトキシフェノール、p-メトキシクレゾール、4-メトキシ-1-ナフトール、4,4’-ジアルコキシ-2,2’-ビ-1-ナフトール、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、N’1,N’12-ビス(2-ヒドロキシベンゾイル)ドデカンジヒドラジド、スチレン化フェノール、N-イソプロピル-N’-フェニルベンゼン-1,4-ジアミン、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン等のフェノール化合物、ヒドロキノン、メチルヒドロキノン、p-ベンゾキノン、メチル-p-ベンゾキノン、2,5-ジフェニルベンゾキノン、2-ヒドロキシ-1,4-ナフトキノン、アントラキノン、ジフェノキノン等のキノン化合物、メラミン、p-フェニレンジアミン、4-アミノジフェニルアミン、N.N’-ジフェニル-p-フェニレンジアミン、N-i-プロピル-N’-フェニル-p-フェニレンジアミン、N-(1.3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、ジフェニルアミン、4,4’-ジクミル-ジフェニルアミン、4,4’-ジオクチル-ジフェニルアミン、ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)、スチレン化ジフェニルアミン、スチレン化ジフェニルアミンと2,4,4-トリメチルペンテンの反応生成物、ジフェニルアミンと2,4,4-トリメチルペンテンの反応生成物等のアミン化合物、フェノチアジン、ジステアリルチオジプロピオネート、2,2-ビス({[3-(ドデシルチオ)プロピオニル]オキシ}メチル)-1,3-プロパンジイル=ビス[3-(ドデシルチオ)プロピオナート]、ジトリデカン-1-イル=3,3’-スルファンジイルジプロパノアート等のチオエーテル化合物、N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、p-ニトロソフェノール、ニトロソベンゼン、p-ニトロソジフェニルアミン、α-ニトロソ-β-ナフトール等、N、N-ジメチルp-ニトロソアニリン、p-ニトロソジフェニルアミン、p-ニトロンジメチルアミン、p-ニトロン-N、N-ジエチルアミン、N-ニトロソエタノールアミン、N-ニトロソジ-n-ブチルアミン、N-ニトロソ-N-n-ブチル-4-ブタノールアミン、N-ニトロソ-ジイソプロパノールアミン、N-ニトロソ-N-エチル-4-ブタノールアミン、5-ニトロソ-8-ヒドロキシキノリン、N-ニトロソモルホリン、N-二トロソーN-フェニルヒドロキシルアミンアンモニウム塩、二トロソベンゼン、N-ニトロソ-N-メチル-p-トルエンスルホンアミド、N-ニトロソ-N-エチルウレタン、N-ニトロソ-N-n-プロピルウレタン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、1-ニトロソ-2-ナフトール-3,6-スルホン酸ナトリウム、2-ニトロソ-1-ナフトール-4-スルホン酸ナトリウム、2-ニトロソ-5-メチルアミノフェノール塩酸塩、2-ニトロソ-5-メチルアミノフェノール塩酸塩等のニトロソ化合物、リン酸とオクタデカン-1-オールのエステル、トリフェニルホスファイト、3,9-ジオクタデカン-1-イル-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、トリスノニルフェニルホスフィト、亜リン酸-(1-メチルエチリデン)-ジ-4,1-フェニレンテトラ-C12-15-アルキルエステル、2-エチルヘキシル=ジフェニル=ホスフィット、ジフェニルイソデシルフォスファイト、トリイソデシル=ホスフィット、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等のホスファイト化合物、ビス(ジメチルジチオカルバマト-κ(2)S,S’)亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチル・ジチオカルバミン酸亜鉛等の亜鉛化合物、ビス(N,N-ジブチルカルバモジチオアト-S,S’)ニッケル等のニッケル化合物、1,3-ジヒドロ-2H-ベンゾイミダゾール-2-チオン、4,6-ビス(オクチルチオメチル)-o-クレゾール、2-メチル-4,6-ビス[(オクタン-1-イルスルファニル)メチル]フェノール、ジラウリルチオジプロピオン酸エステル、3,3’-チオジプロピオン酸ジステアリル等の硫黄化合物などが挙げられる。これらの重合禁止剤は、単独で用いることも2種以上を併用することもできる。 Examples of the polymerization inhibitor include p-methoxyphenol, p-methoxycresol, 4-methoxy-1-naphthol, 4,4'-dialkoxy-2,2'-bi-1-naphthol, 3-(N -Salicyloyl)amino-1,2,4-triazole, N'1,N'12-bis(2-hydroxybenzoyl)dodecane dihydrazide, styrenated phenol, N-isopropyl-N'-phenylbenzene-1,4-diamine , phenolic compounds such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, hydroquinone, methylhydroquinone, p-benzoquinone, methyl-p-benzoquinone, 2,5-diphenylbenzoquinone, 2-hydroxy- Quinone compounds such as 1,4-naphthoquinone, anthraquinone, and diphenoquinone, melamine, p-phenylenediamine, 4-aminodiphenylamine, N. N'-diphenyl-p-phenylenediamine, N-i-propyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, diphenylamine, 4 , 4'-dicumyl-diphenylamine, 4,4'-dioctyl-diphenylamine, poly(2,2,4-trimethyl-1,2-dihydroquinoline), styrenated diphenylamine, styrenated diphenylamine and 2,4,4-trimethyl Amine compounds such as reaction products of pentene, reaction products of diphenylamine and 2,4,4-trimethylpentene, phenothiazine, distearylthiodipropionate, 2,2-bis({[3-(dodecylthio)propionyl]oxy) }Thioether compounds such as methyl)-1,3-propanediyl bis[3-(dodecylthio)propionate], ditridecane-1-yl 3,3'-sulfanediyl dipropanoate, N-nitrosodiphenylamine, N- Nitrosophenylnaphthylamine, p-nitrosophenol, nitrosobenzene, p-nitrosodiphenylamine, α-nitroso-β-naphthol, etc., N,N-dimethyl p-nitrosoaniline, p-nitrosodiphenylamine, p-nitrone dimethylamine, p-nitrone -N,N-diethylamine, N-nitrosoethanolamine, N-nitrosodi-n-butylamine, N-nitroso-Nn-butyl-4-butanolamine, N-nitroso-diisopropanolamine, N-nitroso-N- Ethyl-4-butanolamine, 5-nitroso-8-hydroxyquinoline, N-nitrosomorpholine, N-nitroso-N-phenylhydroxylamine ammonium salt, nitrosobenzene, N-nitroso-N-methyl-p-toluenesulfonamide , N-nitroso-N-ethylurethane, N-nitroso-Nn-propylurethane, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 1-nitroso-2-naphthol-3,6-sulfone Nitroso compounds such as sodium acid, sodium 2-nitroso-1-naphthol-4-sulfonate, 2-nitroso-5-methylaminophenol hydrochloride, 2-nitroso-5-methylaminophenol hydrochloride, phosphoric acid and octadecane- 1-ol ester, triphenylphosphite, 3,9-dioctadecan-1-yl-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, trisnonylphenylphosphite, Phosphite-(1-methylethylidene)-di-4,1-phenylenetetra-C12-15-alkyl ester, 2-ethylhexyl diphenyl phosphite, diphenylisodecyl phosphite, triisodecyl phosphite, tris(2 , 4-di-tert-butylphenyl) phosphite, zinc compounds such as bis(dimethyldithiocarbamato-κ(2)S,S')zinc, zinc diethyldithiocarbamate, zinc dibutyl dithiocarbamate, etc. , nickel compounds such as bis(N,N-dibutylcarbamodithioato-S,S')nickel, 1,3-dihydro-2H-benzimidazole-2-thione, 4,6-bis(octylthiomethyl)- Sulfur compounds such as o-cresol, 2-methyl-4,6-bis[(octan-1-ylsulfanyl)methyl]phenol, dilaurylthiodipropionate, distearyl 3,3'-thiodipropionate, etc. can be mentioned. These polymerization inhibitors can be used alone or in combination of two or more.
 前記酸化防止剤としては、前記重合禁止剤で例示した化合物と同様のものを用いることができ、前記酸化防止剤は、単独で用いることも2種以上を併用することもできる。 As the antioxidant, compounds similar to those exemplified as the polymerization inhibitor can be used, and the antioxidants can be used alone or in combination of two or more.
 また、前記重合禁止剤、及び前記酸化防止剤の市販品としては、例えば、和光純薬工業株式会社製「Q-1300」、「Q-1301」、住友化学株式会社製「スミライザーBBM-S」、「スミライザーGA-80が」等が挙げられる。 In addition, commercially available products of the polymerization inhibitor and the antioxidant include, for example, "Q-1300" and "Q-1301" manufactured by Wako Pure Chemical Industries, Ltd., and "Sumilizer BBM-S" manufactured by Sumitomo Chemical Co., Ltd. , "Sumilizer GA-80 ga", etc.
 前記有機溶剤としては、上述の有機溶剤として例示したものと同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。 As the organic solvent, the same organic solvents as those exemplified above can be used, and the organic solvents can be used alone or in combination of two or more.
 前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。 Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
 前記顔料としては、公知慣用の無機顔料や有機顔料を使用することができる。 As the pigment, known and commonly used inorganic pigments and organic pigments can be used.
 前記無機顔料としては、例えば、白色顔料、アンチモンレッド、ベンガラ、カドミウムレッド、カドミウムイエロー、コバルトブルー、紺青、群青、カーボンブラック、黒鉛等が挙げられる。これらの無機顔料は、単独で用いることも2種以上を併用することもできる。 Examples of the inorganic pigments include white pigments, antimony red, red red, cadmium red, cadmium yellow, cobalt blue, deep blue, ultramarine, carbon black, and graphite. These inorganic pigments can be used alone or in combination of two or more.
 前記白色顔料としては、例えば、酸化チタン,酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、硫酸バリウム、シリカ、タルク、マイカ、水酸化アルミニウム、ケイ酸カルシウム、ケイ酸アルミニウム、中空樹脂粒子、硫化亜鉛等が挙げられる。 Examples of the white pigment include titanium oxide, zinc oxide, magnesium oxide, zirconium oxide, aluminum oxide, barium sulfate, silica, talc, mica, aluminum hydroxide, calcium silicate, aluminum silicate, hollow resin particles, and zinc sulfide. etc.
 前記有機顔料としては、例えば、キナクリドン顔料、キナクリドンキノン顔料、ジオキサジン顔料、フタロシアニン顔料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ペリレン顔料、ジケトピロロピロール顔料、ペリノン顔料、キノフタロン顔料、アントラキノン顔料、チオインジゴ顔料、ベンツイミダゾロン顔料、アゾ顔料等が挙げられる。これらの有機顔料は、単独で用いることも2種以上を併用することもできる。 Examples of the organic pigments include quinacridone pigments, quinacridonequinone pigments, dioxazine pigments, phthalocyanine pigments, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone pigments, perylene pigments, diketopyrrolopyrrole pigments, perinone pigments, Examples include quinophthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments, and azo pigments. These organic pigments can be used alone or in combination of two or more.
 前記難燃剤としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム、リン酸アミド等の無機リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物;トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等の窒素系難燃剤;シリコーンオイル、シリコーンゴム、シリコーン樹脂等のシリコーン系難燃剤;金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等の無機難燃剤などが挙げられる。これらの難燃剤は、単独でも用いることも2種以上を併用することもできる。また、これら難燃剤を用いる場合は、全樹脂組成物中0.1~20質量%の範囲であることが好ましい。 Examples of the flame retardant include red phosphorus, ammonium phosphates such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; inorganic phosphorus compounds such as phosphoric acid amide; phosphate ester compounds, and phosphones. acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2,5-dihydroxy Cyclic organic compounds such as phenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10-(2,7-dihydroxynaphthyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, etc. Organic phosphorus compounds such as phosphorus compounds and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins; nitrogen-based flame retardants such as triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines; silicone oils, silicone rubber, Examples include silicone flame retardants such as silicone resins; inorganic flame retardants such as metal hydroxides, metal oxides, metal carbonate compounds, metal powders, boron compounds, and low-melting glass. These flame retardants can be used alone or in combination of two or more. Furthermore, when these flame retardants are used, they are preferably in the range of 0.1 to 20% by mass based on the total resin composition.
 本発明の硬化物は、前記硬化性樹脂組成物に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。 The cured product of the present invention can be obtained by irradiating the curable resin composition with active energy rays. Examples of the active energy ray include ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. Further, when ultraviolet rays are used as the active energy rays, in order to efficiently perform the curing reaction by ultraviolet rays, the irradiation may be performed in an inert gas atmosphere such as nitrogen gas, or in an air atmosphere.
 紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。 As a source of ultraviolet light, an ultraviolet lamp is generally used from the standpoint of practicality and economy. Specifically, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, sunlight, LEDs, etc. can be mentioned.
 前記活性エネルギー線の積算光量は、特に制限されないが、0.1~50kJ/mであることが好ましく、0.5~10kJ/mであることがより好ましい。積算光量が上記範囲であると、未硬化部分の発生の防止又は抑制ができることから好ましい。 The cumulative amount of active energy rays is not particularly limited, but is preferably 0.1 to 50 kJ/m 2 , more preferably 0.5 to 10 kJ/m 2 . It is preferable that the cumulative light amount is within the above range because it is possible to prevent or suppress the occurrence of uncured portions.
 なお、前記活性エネルギー線の照射は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。 Note that the irradiation with the active energy rays may be performed in one step, or may be performed in two or more steps.
 また、本発明の硬化物は、優れたアルカリ現像性及び高い光感度を有し、優れた弾性、耐熱性及び基材密着性を有することから、例えば、半導体デバイス用途における、ソルダーレジスト、層間絶縁材料、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や、集積回路素子と回路基板の接着層として好適に用いることができる。また、LCD、OELDに代表される薄型ディスプレイ用途における、薄膜トランジスタ保護膜、液晶カラーフィルタ保護膜、カラーフィルタ用顔料レジスト、ブラックマトリックス用レジスト、スペーサー等に好適に用いることができる。これらの中でも、特にソルダーレジスト用途に好適に用いることができる。 In addition, the cured product of the present invention has excellent alkali developability and high photosensitivity, as well as excellent elasticity, heat resistance, and substrate adhesion, so it can be used, for example, in solder resists and interlayer insulation in semiconductor device applications. It can be suitably used as a material, a package material, an underfill material, a package adhesive layer for circuit elements, etc., or an adhesive layer between an integrated circuit element and a circuit board. Further, it can be suitably used for thin film transistor protective films, liquid crystal color filter protective films, pigment resists for color filters, black matrix resists, spacers, etc. in thin display applications such as LCDs and OELDs. Among these, it can be particularly suitably used for solder resist applications.
 本発明のソルダーレジスト用樹脂材料は、前記硬化性樹脂組成物からなるものである。 The resin material for solder resist of the present invention is made of the above-mentioned curable resin composition.
 本発明のレジスト部材は、例えば、前記ソルダーレジスト用樹脂材料を基材上に塗布し、60~100℃程度の温度範囲で有機溶媒を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して活性エネルギー線にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140~200℃程度の温度範囲で加熱硬化させて得ることができる。 The resist member of the present invention can be prepared, for example, by coating the solder resist resin material on a base material, drying it by evaporating the organic solvent in a temperature range of about 60 to 100°C, and then forming a photomask on which a desired pattern is formed. It can be obtained by exposing the film to active energy rays through the film, developing the unexposed areas with an alkaline aqueous solution, and further heating and curing in a temperature range of about 140 to 200°C.
 前記基材としては、例えば、銅、アルミニウム等の金属張積層板などが挙げられる。 Examples of the base material include metal-clad laminates made of copper, aluminum, and the like.
 以下、実施例と比較例とにより、本発明を具体的に説明する。なお、本発明は、以下に挙げた実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples. Note that the present invention is not limited to the examples listed below.
(合成例1:フェノール樹脂(1)の調製)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、オルソクレゾール1081質量部(10モル)、蓚酸22質量部を仕込み、室温から100℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液543質量部(7.6モル)を3時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分を加熱減圧下に除去し、フェノール樹脂(1)943質量部を得た。得られたフェノール樹脂(1)の水酸基当量は117g/当量、軟化点は81℃であった。
(Synthesis Example 1: Preparation of phenolic resin (1))
1081 parts by mass (10 moles) of orthocresol and 22 parts by mass of oxalic acid were placed in a flask equipped with a thermometer, dropping funnel, cooling tube, fractionator tube, and stirrer, and the temperature was raised from room temperature to 100°C in 45 minutes. Stirred. Subsequently, 543 parts by mass (7.6 mol) of a 42% by mass aqueous formalin solution was added dropwise over a period of 3 hours. After the dropwise addition was completed, the mixture was further stirred at 100°C for 1 hour, and then the temperature was raised to 180°C over 3 hours. After the reaction was completed, the water remaining in the reaction system was removed under reduced pressure under heating to obtain 943 parts by mass of phenol resin (1). The hydroxyl equivalent of the obtained phenol resin (1) was 117 g/equivalent, and the softening point was 81°C.
(合成例2:フェノール樹脂(2)の調製)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、オルソクレゾール1081質量部(10モル)、蓚酸22質量部を仕込み、室温から100℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液644質量部(9.0モル)を3時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分を加熱減圧下に除去し、フェノール樹脂(2)950質量部を得た。得られたフェノール樹脂(2)の水酸基当量は117g/当量、軟化点は109℃であった。
(Synthesis Example 2: Preparation of phenolic resin (2))
1081 parts by mass (10 moles) of orthocresol and 22 parts by mass of oxalic acid were placed in a flask equipped with a thermometer, dropping funnel, cooling tube, fractionator tube, and stirrer, and the temperature was raised from room temperature to 100°C in 45 minutes. Stirred. Subsequently, 644 parts by mass (9.0 mol) of a 42% by mass aqueous formalin solution was added dropwise over a period of 3 hours. After the dropwise addition was completed, the mixture was further stirred at 100°C for 1 hour, and then the temperature was raised to 180°C over 3 hours. After the reaction was completed, water remaining in the reaction system was removed under reduced pressure under heating to obtain 950 parts by mass of phenol resin (2). The hydroxyl equivalent of the obtained phenol resin (2) was 117 g/equivalent, and the softening point was 109°C.
(合成例3:フェノール樹脂(3)の調製)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、オルソクレゾール1081質量部(10モル)、蓚酸22質量部を仕込み、室温から100℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液679質量部(9.5モル)を3時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分を加熱減圧下に除去し、フェノール樹脂(3)953質量部を得た。得られたフェノール樹脂(3)の水酸基当量は118g/当量、軟化点は131℃であった。
(Synthesis Example 3: Preparation of phenolic resin (3))
1081 parts by mass (10 moles) of orthocresol and 22 parts by mass of oxalic acid were placed in a flask equipped with a thermometer, dropping funnel, cooling tube, fractionator tube, and stirrer, and the temperature was raised from room temperature to 100°C in 45 minutes. Stirred. Subsequently, 679 parts by mass (9.5 mol) of a 42% by mass aqueous formalin solution was added dropwise over a period of 3 hours. After the dropwise addition was completed, the mixture was further stirred at 100°C for 1 hour, and then the temperature was raised to 180°C over 3 hours. After the reaction was completed, the water remaining in the reaction system was removed under reduced pressure under heating to obtain 953 parts by mass of phenol resin (3). The hydroxyl equivalent of the obtained phenol resin (3) was 118 g/equivalent, and the softening point was 131°C.
(合成例4:フェノール樹脂(4)の調製)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、フェノール941質量部(10モル)、蓚酸4.7質量部を仕込み、室温から100℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液543質量部(7.6モル)を3時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分を加熱減圧下に除去し、フェノール樹脂(4)953質量部を得た。得られたフェノール樹脂(4)の水酸基当量は108g/当量、軟化点は105℃であった。
(Synthesis Example 4: Preparation of phenolic resin (4))
941 parts by mass (10 moles) of phenol and 4.7 parts by mass of oxalic acid were placed in a flask equipped with a thermometer, dropping funnel, cooling tube, fractionator tube, and stirrer, and the temperature was raised from room temperature to 100°C in 45 minutes. while stirring. Subsequently, 543 parts by mass (7.6 mol) of a 42% by mass aqueous formalin solution was added dropwise over a period of 3 hours. After the dropwise addition was completed, the mixture was further stirred at 100°C for 1 hour, and then the temperature was raised to 180°C over 3 hours. After the reaction was completed, the water remaining in the reaction system was removed under heating and reduced pressure to obtain 953 parts by mass of phenol resin (4). The hydroxyl equivalent of the obtained phenol resin (4) was 108 g/equivalent, and the softening point was 105°C.
(合成例5:エポキシ樹脂(1)の調製)
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール樹脂(1)117質量部(水酸基1.0当量)、エピクロルヒドリン278質量部(3.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(1)170質量部を得た。エポキシ樹脂(1)のエポキシ当量は206g/当量、軟化点は65℃であった。
(Synthesis Example 5: Preparation of epoxy resin (1))
117 parts by mass (1.0 equivalents of hydroxyl group) of the phenol resin (1) obtained by the above reaction while purging with nitrogen gas in a flask equipped with a thermometer, cooling tube, and stirrer, and 278 parts by mass (3.0 moles) of epichlorohydrin. , 53 parts by mass of n-butanol were charged and dissolved with stirring. After the temperature was raised to 50°C, 220 parts by mass (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and the reaction was then further carried out at 50°C for 1 hour. After the reaction was completed, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was restarted, and unreacted epichlorohydrin was distilled off under reduced pressure at 150°C. 300 parts by mass of methyl isobutyl ketone and 50 parts by mass of n-butanol were added to and dissolved in the crude epoxy resin obtained. Further, 15 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to this solution and reacted at 80° C. for 2 hours, followed by washing with 100 parts by mass of water three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 170 parts by mass of the target epoxy resin (1). The epoxy equivalent of the epoxy resin (1) was 206 g/equivalent, and the softening point was 65°C.
(合成例6:エポキシ樹脂(2)の調製)
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール樹脂(2)117質量部(水酸基1.0当量)、エピクロルヒドリン278質量部(3.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(2)169質量部を得た。エポキシ樹脂(2)のエポキシ当量は211g/当量、軟化点は87℃であった。
(Synthesis Example 6: Preparation of epoxy resin (2))
117 parts by mass (1.0 equivalents of hydroxyl groups) of the phenol resin (2) obtained by the above reaction while purging with nitrogen gas in a flask equipped with a thermometer, cooling tube, and stirrer, and 278 parts by mass (3.0 moles) of epichlorohydrin. , 53 parts by mass of n-butanol were charged and dissolved with stirring. After the temperature was raised to 50°C, 220 parts by mass (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and the reaction was then further carried out at 50°C for 1 hour. After the reaction was completed, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was restarted, and unreacted epichlorohydrin was distilled off under reduced pressure at 150°C. 300 parts by mass of methyl isobutyl ketone and 50 parts by mass of n-butanol were added to and dissolved in the crude epoxy resin obtained. Further, 15 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to this solution and reacted at 80° C. for 2 hours, followed by washing with 100 parts by mass of water three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 169 parts by mass of the target epoxy resin (2). The epoxy equivalent of the epoxy resin (2) was 211 g/equivalent, and the softening point was 87°C.
(合成例7:エポキシ樹脂(3)の調製)
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール樹脂(3)118質量部(水酸基1.0当量)、エピクロルヒドリン278質量部(3.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(3)167質量部を得た。エポキシ樹脂(3)のエポキシ当量は215g/当量、軟化点は96℃であった。
(Synthesis Example 7: Preparation of epoxy resin (3))
A flask equipped with a thermometer, a cooling tube, and a stirrer was purged with nitrogen gas while 118 parts by mass of the phenol resin (3) (1.0 equivalents of hydroxyl group) obtained in the above reaction and 278 parts by mass (3.0 moles) of epichlorohydrin were added. , 53 parts by mass of n-butanol were charged and dissolved with stirring. After the temperature was raised to 50°C, 220 parts by mass (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and the reaction was then further carried out at 50°C for 1 hour. After the reaction was completed, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was restarted, and unreacted epichlorohydrin was distilled off under reduced pressure at 150°C. 300 parts by mass of methyl isobutyl ketone and 50 parts by mass of n-butanol were added to and dissolved in the crude epoxy resin obtained. Further, 15 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to this solution and reacted at 80° C. for 2 hours, followed by washing with 100 parts by mass of water three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 167 parts by mass of the desired epoxy resin (3). The epoxy equivalent of the epoxy resin (3) was 215 g/equivalent, and the softening point was 96°C.
(合成例8:エポキシ樹脂(4)の調製)
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール樹脂(4)108質量部(水酸基1.0当量)、エピクロルヒドリン278質量部(3.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にトルエン300質量部とn-ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(4)160質量部を得た。エポキシ樹脂(4)のエポキシ当量は190g/当量、軟化点は75℃であった。
(Synthesis Example 8: Preparation of epoxy resin (4))
108 parts by mass (1.0 equivalents of hydroxyl groups) of the phenol resin (4) obtained by the above reaction while purging with nitrogen gas in a flask equipped with a thermometer, cooling tube, and stirrer, and 278 parts by mass (3.0 moles) of epichlorohydrin. , 53 parts by mass of n-butanol were charged and dissolved with stirring. After the temperature was raised to 50°C, 220 parts by mass (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and the reaction was then further carried out at 50°C for 1 hour. After the reaction was completed, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was restarted, and unreacted epichlorohydrin was distilled off under reduced pressure at 150°C. 300 parts by mass of toluene and 50 parts by mass of n-butanol were added to and dissolved in the crude epoxy resin obtained. Further, 15 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to this solution and reacted at 80° C. for 2 hours, followed by washing with 100 parts by mass of water three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 160 parts by mass of the desired epoxy resin (4). The epoxy equivalent of the epoxy resin (4) was 190 g/equivalent, and the softening point was 75°C.
(合成例9:エポキシ樹脂(5)の調製)
 次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール樹脂(2)117質量部(水酸基1.0当量)、エピクロルヒドリン213質量部(2.3モル)、n-ブタノール41質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(5)169質量部を得た。エポキシ樹脂(5)のエポキシ当量は220g/当量、軟化点は91℃であった。
(Synthesis Example 9: Preparation of epoxy resin (5))
Next, 117 parts by mass (1.0 equivalents of hydroxyl groups) of the phenol resin (2) obtained in the above reaction and 213 parts by mass (2.3 parts of epichlorohydrin) of the phenol resin (2) obtained in the above reaction were added to a flask equipped with a thermometer, a cooling tube, and a stirrer while purging with nitrogen gas. mol) and 41 parts by mass of n-butanol were charged and dissolved with stirring. After the temperature was raised to 50°C, 220 parts by mass (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and the reaction was then further carried out at 50°C for 1 hour. After the reaction was completed, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was restarted, and unreacted epichlorohydrin was distilled off under reduced pressure at 150°C. 300 parts by mass of methyl isobutyl ketone and 50 parts by mass of n-butanol were added to and dissolved in the crude epoxy resin obtained. Further, 15 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to this solution and reacted at 80° C. for 2 hours, followed by washing with 100 parts by mass of water three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 169 parts by mass of the desired epoxy resin (5). The epoxy equivalent of the epoxy resin (5) was 220 g/equivalent, and the softening point was 91°C.
(合成例10:エポキシ樹脂(6)の調製)
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール樹脂(2)117質量部(水酸基1.0当量)、エピクロルヒドリン370質量部(4.0モル)、n-ブタノール71質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(6)169質量部を得た。エポキシ樹脂(6)のエポキシ当量は206g/当量、軟化点は82℃であった。
(Synthesis Example 10: Preparation of epoxy resin (6))
A flask equipped with a thermometer, a cooling tube, and a stirrer was purged with nitrogen gas while 117 parts by mass of the phenolic resin (2) (1.0 equivalents of hydroxyl groups) obtained in the above reaction and 370 parts by mass (4.0 moles) of epichlorohydrin were added. , 71 parts by mass of n-butanol were charged and dissolved with stirring. After the temperature was raised to 50°C, 220 parts by mass (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and the reaction was then further carried out at 50°C for 1 hour. After the reaction was completed, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was restarted, and unreacted epichlorohydrin was distilled off under reduced pressure at 150°C. 300 parts by mass of methyl isobutyl ketone and 50 parts by mass of n-butanol were added to and dissolved in the crude epoxy resin obtained. Further, 15 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to this solution and reacted at 80° C. for 2 hours, followed by washing with 100 parts by mass of water three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 169 parts by mass of the desired epoxy resin (6). The epoxy equivalent of the epoxy resin (6) was 206 g/equivalent, and the softening point was 82°C.
(合成例11:エポキシ樹脂(7)の調製)
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール樹脂(2)117質量部(水酸基1.0当量)、エピクロルヒドリン278質量部(3.0モル)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解したのち、水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(7)169質量部を得た。エポキシ樹脂(7)のエポキシ当量は213g/当量、軟化点は86℃であった。
(Synthesis Example 11: Preparation of epoxy resin (7))
117 parts by mass (1.0 equivalents of hydroxyl groups) of the phenol resin (2) obtained by the above reaction while purging with nitrogen gas in a flask equipped with a thermometer, cooling tube, and stirrer, and 278 parts by mass (3.0 moles) of epichlorohydrin. , 53 parts by mass of n-butanol were charged and dissolved with stirring. After the temperature was raised to 50°C, 220 parts by mass (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and the reaction was then further carried out at 50°C for 1 hour. After the reaction was completed, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was restarted, and unreacted epichlorohydrin was distilled off under reduced pressure at 150°C. After adding and dissolving 300 parts by mass of methyl isobutyl ketone and 50 parts by mass of n-butanol to the crude epoxy resin thus obtained, washing with 100 parts by mass of water was repeated three times. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 169 parts by mass of the target epoxy resin (7). The epoxy equivalent of the epoxy resin (7) was 213 g/equivalent, and the softening point was 86°C.
(合成例12:エポキシ樹脂(8)の調製)
 温度計、冷却管及びディーンスタークトラップ装置、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたフェノール樹脂(2)117質量部(水酸基1.0当量)、エピクロルヒドリン278質量部(3.0モル)、PEG#400(日油株式会社製)28質量部を仕込み攪拌しながら溶解させた。55℃に昇温したのち、内圧を13,000Paに保持しながら、48重量%水酸化カリウム水溶液117質量部を5時間かけて滴下して、次いで同条件下で0.5時間撹拌を続けた。その後、その減圧条件を維持しながら150℃まで加熱して、150℃で133Paまで真空度を上げて、エピクロルヒドリンを留去させた。次いで、得られた粗樹脂にメチルイソブチルケトン264重量部を加えて、90重量部の水を用いて5回水洗して、系内からポリエチレングリコールと塩を除去した。n-ブタノール50重量部と10%水酸化ナトリウム水溶液12重量部を加えて、80℃で2時間撹拌して分液した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(8)165質量部を得た。エポキシ樹脂(8)のエポキシ当量は198g/当量、軟化点は86℃であった。
(Synthesis Example 12: Preparation of epoxy resin (8))
A flask equipped with a thermometer, a cooling tube, a Dean-Stark trap device, and a stirrer was purged with nitrogen gas while 117 parts by mass of the phenolic resin (2) (1.0 equivalents of hydroxyl groups) obtained in the above reaction, and 278 parts by mass of epichlorohydrin ( 3.0 mol) and 28 parts by mass of PEG #400 (manufactured by NOF Corporation) were added and dissolved with stirring. After raising the temperature to 55°C, while maintaining the internal pressure at 13,000 Pa, 117 parts by mass of a 48% by weight aqueous potassium hydroxide solution was added dropwise over 5 hours, and then stirring was continued for 0.5 hour under the same conditions. . Thereafter, while maintaining the reduced pressure conditions, it was heated to 150° C., and the degree of vacuum was increased to 133 Pa at 150° C. to distill off epichlorohydrin. Next, 264 parts by weight of methyl isobutyl ketone was added to the obtained crude resin, and the mixture was washed five times with 90 parts by weight of water to remove polyethylene glycol and salt from the system. 50 parts by weight of n-butanol and 12 parts by weight of 10% aqueous sodium hydroxide solution were added, and the mixture was stirred at 80°C for 2 hours to separate the layers. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 165 parts by mass of the target epoxy resin (8). The epoxy equivalent of the epoxy resin (8) was 198 g/equivalent, and the softening point was 86°C.
(合成例13:エポキシ樹脂(9)の調製)
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら、エピクロルヒドリン278質量部(3.0モル)、3%水酸化ナトリウム水溶液83gを仕込み、90℃で4時間撹拌した。水層を分離除去したのち、上記反応で得られたフェノール樹脂(2)117質量部(水酸基1.0当量)、n-ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn-ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(9)169質量部を得た。エポキシ樹脂(9)のエポキシ当量は220g/当量、軟化点は87℃であった。
(Synthesis Example 13: Preparation of epoxy resin (9))
While purging with nitrogen gas, 278 parts by mass (3.0 mol) of epichlorohydrin and 83 g of a 3% aqueous sodium hydroxide solution were charged into a flask equipped with a thermometer, a cooling tube, and a stirrer, and the mixture was stirred at 90° C. for 4 hours. After separating and removing the aqueous layer, 117 parts by mass (1.0 equivalents of hydroxyl group) of the phenolic resin (2) obtained in the above reaction and 53 parts by mass of n-butanol were charged and dissolved with stirring. After the temperature was raised to 50°C, 220 parts by mass (1.10 mol) of a 20% aqueous sodium hydroxide solution was added over 3 hours, and the reaction was then further carried out at 50°C for 1 hour. After the reaction was completed, stirring was stopped, the aqueous layer accumulated in the lower layer was removed, stirring was restarted, and unreacted epichlorohydrin was distilled off under reduced pressure at 150°C. 300 parts by mass of methyl isobutyl ketone and 50 parts by mass of n-butanol were added to and dissolved in the crude epoxy resin obtained. Further, 15 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added to this solution and reacted at 80° C. for 2 hours, followed by washing with 100 parts by mass of water three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropy, and after passing through precision filtration, the solvent was distilled off under reduced pressure to obtain 169 parts by mass of the desired epoxy resin (9). The epoxy equivalent of the epoxy resin (9) was 220 g/equivalent, and the softening point was 87°C.
 合成例5~合成例13で得られたエポキシ樹脂(1)~エポキシ樹脂(9)のそれぞれの全塩素量及びα-グリコール量を以下の表1に示す。 The total chlorine content and α-glycol content of each of the epoxy resins (1) to (9) obtained in Synthesis Examples 5 to 13 are shown in Table 1 below.
(全塩素量)
 JIS K7246に従って算出した。具体的には、エポキシ樹脂をジエチレングリコールモノブチルエーテルに溶解し、1規定の水酸化カリウム-プロピレングリコール溶液を加え、20分間煮沸した後に、硝酸銀で電位差滴定を行った。
(Total chlorine amount)
Calculated according to JIS K7246. Specifically, an epoxy resin was dissolved in diethylene glycol monobutyl ether, a 1N potassium hydroxide-propylene glycol solution was added, and the mixture was boiled for 20 minutes, followed by potentiometric titration with silver nitrate.
(α-グリコール量)
 JIS K7146に従って算出した。具体的には、エポキシ樹脂中のα-グリコールが過ヨウ素酸と定量的に反応、開裂しカルボニル化合物に酸化されることを利用し、余剰の過ヨウ素酸にヨウ化カリウムを加え発生したヨウ素をチオ硫酸ナトリウム溶液で滴定することで算出した。
(α-glycol amount)
Calculated according to JIS K7146. Specifically, by utilizing the fact that α-glycol in epoxy resin quantitatively reacts with periodic acid and is cleaved and oxidized to a carbonyl compound, potassium iodide is added to excess periodic acid to remove the generated iodine. Calculated by titration with sodium thiosulfate solution.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例1:アクリレート樹脂(1)の調製)
温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート69.5質量部を入れ、エポキシ樹脂(1)206質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート120.3質量部、テトラヒドロ無水フタル酸74.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(1)を得た。このアクリレート樹脂(1)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。なお、前記酸価は、JIS K 0070(1992)の中和滴定法にて測定した値であった(以下、同様。)。
(Example 1: Preparation of acrylate resin (1))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 69.5 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 206 parts by mass of epoxy resin (1), and dissolve 0.8 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 120.3 parts by mass of diethylene glycol monoethyl ether acetate and 74.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain acrylate resin (1). The nonvolatile content of this acrylate resin (1) was 65% by mass, and the solid content acid value was 80 mgKOH/g. The acid value was a value measured by the neutralization titration method of JIS K 0070 (1992) (the same applies hereinafter).
(実施例2:アクリレート樹脂(2)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート70.8質量部を入れ、エポキシ樹脂(2)211質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート122.6質量部、テトラヒドロ無水フタル酸76質量部を加え110℃で2.5時間反応させてアクリレート樹脂(2)を得た。このアクリレート樹脂(2)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Example 2: Preparation of acrylate resin (2))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 70.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 211 parts by mass of epoxy resin (2), and dissolve 0.8 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 122.6 parts by mass of diethylene glycol monoethyl ether acetate and 76 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain acrylate resin (2). The nonvolatile content of this acrylate resin (2) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(実施例3:アクリレート樹脂(3)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(3)を得た。このアクリレート樹脂(3)の不揮発分は、65質量%、固形分酸価は、82mgKOH/gであった。
(Example 3: Preparation of acrylate resin (3))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain acrylate resin (3). The nonvolatile content of this acrylate resin (3) was 65% by mass, and the solid content acid value was 82 mgKOH/g.
(実施例4:アクリレート樹脂(4)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート65.5質量部を入れ、エポキシ樹脂(4)190質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.3質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で13時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート113.2質量部、テトラヒドロ無水フタル酸69.9質量部を加え110℃で2.5時間反応させてアクリレート樹脂(4)を得た。このアクリレート樹脂(4)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Example 4: Preparation of acrylate resin (4))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 65.5 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 190 parts by mass of epoxy resin (4), and dissolve 0.8 parts by mass of dibutylhydroxytoluene. After adding 0.1 parts by mass of methoquinone, 72 parts by mass of acrylic acid and 1.3 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 13 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 113.2 parts by mass of diethylene glycol monoethyl ether acetate and 69.9 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain acrylate resin (4). The nonvolatile content of this acrylate resin (4) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(実施例5:アクリレート樹脂(5)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート73質量部を入れ、エポキシ樹脂(5)220質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.5質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で11時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート126質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(5)を得た。このアクリレート樹脂(5)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Example 5: Preparation of acrylate resin (5))
73 parts by mass of diethylene glycol monoethyl ether acetate was put into a flask equipped with a thermometer, a stirrer, and a reflux condenser, and 220 parts by mass of epoxy resin (5) was dissolved therein. After adding .1 part by mass, 72 parts by mass of acrylic acid and 1.5 parts by mass of triphenylphosphine were added, and air was blown in from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. An inert gas was blown in from above the liquid surface at a rate of 0.54 l/min to give an oxygen concentration of 7% by mass, and the esterification reaction was carried out at 120° C. for 11 hours while stirring at a stirring power of 3 kW/m 3 per unit volume. Next, 126 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain acrylate resin (5). The nonvolatile content of this acrylate resin (5) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(実施例6:アクリレート樹脂(6)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート69.5質量部を入れ、エポキシ樹脂(6)206質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で11時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート120.3質量部、テトラヒドロ無水フタル酸74.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(6)を得た。このアクリレート樹脂(6)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Example 6: Preparation of acrylate resin (6))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 69.5 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 206 parts by mass of epoxy resin (6), and dissolve 0.8 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 11 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 120.3 parts by mass of diethylene glycol monoethyl ether acetate and 74.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain acrylate resin (6). The nonvolatile content of this acrylate resin (6) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(実施例7:アクリレート樹脂(7)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート67.5質量部を入れ、エポキシ樹脂(8)198質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で13時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート117.2質量部、テトラヒドロ無水フタル酸73量部を加え110℃で2.5時間反応させてアクリレート樹脂(7)を得た。このアクリレート樹脂(7)の不揮発分は、65質量%、固形分酸価は、82mgKOH/gであった。
(Example 7: Preparation of acrylate resin (7))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 67.5 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 198 parts by mass of epoxy resin (8), and dissolve 0.8 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 13 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 117.2 parts by mass of diethylene glycol monoethyl ether acetate and 73 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain acrylate resin (7). The nonvolatile content of this acrylate resin (7) was 65% by mass, and the solid content acid value was 82 mgKOH/g.
(実施例8:アクリレート樹脂(8)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を0.27l/min、不活性ガスを0.54l/min液面上から吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(8)を得た。このアクリレート樹脂(8)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Example 8: Preparation of acrylate resin (8))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown at 0.27 l/min and inert gas at 0.54 l/min from above the liquid surface. The esterification reaction was carried out at 120° C. for 12 hours while stirring at an oxygen concentration of 7% by mass and a stirring power of 3 kW/m 3 per unit volume. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain acrylate resin (8). The nonvolatile content of this acrylate resin (8) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(実施例9:アクリレート樹脂(9)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力0.2kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(9)を得た。このアクリレート樹脂(9)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Example 9: Preparation of acrylate resin (9))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 0.2 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. I did this. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (9). The nonvolatile content of this acrylate resin (9) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(実施例10:アクリレート樹脂(10)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、窒素を液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力8kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(10)を得た。このアクリレート樹脂(10)の不揮発分は、65質量%、固形分酸価は、78mgKOH/gであった。
(Example 10: Preparation of acrylate resin (10))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 8 kW/m 3 per unit volume by blowing nitrogen at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (10). The nonvolatile content of this acrylate resin (10) was 65% by mass, and the solid content acid value was 78 mgKOH/g.
(実施例11:アクリレート樹脂(11)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力0.5kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(11)を得た。このアクリレート樹脂(11)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Example 11: Preparation of acrylate resin (11))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 0.5 kW/m 3 per unit volume with an oxygen concentration of 7% by mass by blowing inert gas at 0.54 l/min from above the liquid surface. I did this. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110° C. for 2.5 hours to obtain an acrylate resin (11). The nonvolatile content of this acrylate resin (11) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(実施例12:アクリレート樹脂(12)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力5kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(12)を得た。このアクリレート樹脂(12)の不揮発分は、65質量%、固形分酸価は、79mgKOH/gであった。
(Example 12: Preparation of acrylate resin (12))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 5 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (12). The nonvolatile content of this acrylate resin (12) was 65% by mass, and the solid content acid value was 79 mgKOH/g.
(実施例13:アクリレート樹脂(13)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.09l/min液面下より吹込みかつ、不活性ガスを液面上から0.72l/min吹き込み、酸素濃度2.3質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(13)を得た。このアクリレート樹脂(13)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Example 13: Preparation of acrylate resin (13))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 parts by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.09 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.72 l/min from above the liquid surface to make the oxygen concentration 2.3% by mass. I did this. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (13). The nonvolatile content of this acrylate resin (13) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(実施例14:アクリレート樹脂(14)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.19l/min液面下より吹込みかつ、不活性ガスを液面上から0.62l/min吹き込み、酸素濃度4.9質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(14)を得た。このアクリレート樹脂(14)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Example 14: Preparation of acrylate resin (14))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.19 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.62 l/min from above the liquid surface to make the oxygen concentration 4.9% by mass. I did this. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (14). The nonvolatile content of this acrylate resin (14) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(実施例15:アクリレート樹脂(15)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.39l/min液面下より吹込みかつ、不活性ガスを液面上から0.42l/min吹き込み、酸素濃度10.1質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(15)を得た。このアクリレート樹脂(15)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Example 15: Preparation of acrylate resin (15))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.39 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.42 l/min from above the liquid surface to make the oxygen concentration 10.1% by mass. I did this. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (15). The nonvolatile content of this acrylate resin (15) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(実施例16:アクリレート樹脂(16)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.45l/min液面下より吹込みかつ、不活性ガスを液面上から0.36l/min吹き込み、酸素濃度11.7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(16)を得た。このアクリレート樹脂(16)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Example 16: Preparation of acrylate resin (16))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.45 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.36 l/min from above the liquid surface to make the oxygen concentration 11.7% by mass. I did this. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (16). The nonvolatile content of this acrylate resin (16) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(実施例17:アクリレート樹脂(17)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、窒素を液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(17)を得た。このアクリレート樹脂(17)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Example 17: Preparation of acrylate resin (17))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (17). The nonvolatile content of this acrylate resin (17) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(実施例18:アクリレート樹脂(18)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート125.1質量部、シクロヘキサン-1,2-ジカルボン酸無水物78.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(18)を得た。このアクリレート樹脂(18)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Example 18: Preparation of acrylate resin (18))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 125.1 parts by mass of diethylene glycol monoethyl ether acetate and 78.5 parts by mass of cyclohexane-1,2-dicarboxylic anhydride were added and reacted at 110° C. for 2.5 hours to obtain an acrylate resin (18). The nonvolatile content of this acrylate resin (18) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(実施例19:アクリレート樹脂(19)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート101.6質量部、無水コハク酸35質量部を加え110℃で2.5時間反応させてアクリレート樹脂(19)を得た。このアクリレート樹脂(19)の不揮発分は、65質量%、固形分酸価は、63mgKOH/gであった。
(Example 19: Preparation of acrylate resin (19))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 101.6 parts by mass of diethylene glycol monoethyl ether acetate and 35 parts by mass of succinic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (19). The nonvolatile content of this acrylate resin (19) was 65% by mass, and the solid content acid value was 63 mgKOH/g.
(実施例20:アクリレート樹脂(20)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、テトラフェニルホスホニウムブロマイド1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(20)を得た。このアクリレート樹脂(20)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Example 20: Preparation of acrylate resin (20))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of tetraphenylphosphonium bromide were added, and air was introduced from below the liquid surface at 0.27 l/min using a stainless steel tube with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume with an oxygen concentration of 7% by mass by blowing inert gas at 0.54 l/min from above the liquid surface. I did it. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (20). The nonvolatile content of this acrylate resin (20) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(実施例21:アクリレート樹脂(21)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリエチルアミン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(21)を得た。このアクリレート樹脂(21)の不揮発分は、65質量%、固形分酸価は、82mgKOH/gであった。
(Example 21: Preparation of acrylate resin (21))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triethylamine were added, and air was blown in from below the liquid surface at 0.27 l/min using a stainless steel tube with an inner diameter of 0.5 mm. An inert gas was blown in from above the liquid surface at a rate of 0.54 l/min to give an oxygen concentration of 7% by mass, and the esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110° C. for 2.5 hours to obtain an acrylate resin (21). The nonvolatile content of this acrylate resin (21) was 65% by mass, and the solid content acid value was 82 mgKOH/g.
(実施例22:アクリレート樹脂(22)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート214.1質量部、テトラヒドロ無水フタル酸136.8質量部を加え110℃で2.5時間反応させた。次いで、グリシジルメタクリレート42.6質量部を加え、110℃で4時間反応させてアクリレート樹脂(22)を得た。このアクリレート樹脂(22)の不揮発分は、62質量%、固形分酸価は、80mgKOH/gであった。
(Example 22: Preparation of acrylate resin (22))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 214.1 parts by mass of diethylene glycol monoethyl ether acetate and 136.8 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours. Next, 42.6 parts by mass of glycidyl methacrylate was added and reacted at 110° C. for 4 hours to obtain acrylate resin (22). The nonvolatile content of this acrylate resin (22) was 62% by mass, and the solid content acid value was 80 mgKOH/g.
(実施例23:アクリレート樹脂(23)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.2質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸69.8質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で9時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.7質量部、テトラヒドロ無水フタル酸79質量部を加え110℃で2.5時間反応させてアクリレート樹脂(23)を得た。このアクリレート樹脂(23)の不揮発分は、65質量%、固形分酸価は、79mgKOH/gであった。
(Example 23: Preparation of acrylate resin (23))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.2 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 parts by mass of methoquinone, 69.8 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was pumped under the liquid level at 0.27 l/min using a stainless steel tube with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 9 hours while stirring at a stirring power of 3 kW/m 3 per unit volume with an oxygen concentration of 7% by mass by blowing an inert gas at 0.54 l/min from above the liquid surface. I did this. Next, 124.7 parts by mass of diethylene glycol monoethyl ether acetate and 79 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (23). The nonvolatile content of this acrylate resin (23) was 65% by mass, and the solid content acid value was 79 mgKOH/g.
(実施例24:アクリレート樹脂(24)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート72.3質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸74.2質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で10時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.3質量部、テトラヒドロ無水フタル酸76質量部を加え110℃で2.5時間反応させてアクリレート樹脂(24)を得た。このアクリレート樹脂(24)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Example 24: Preparation of acrylate resin (24))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 72.3 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 parts by mass of methoquinone, 74.2 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was pumped under the liquid level at 0.27 l/min using a stainless steel tube with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 10 hours while stirring at a stirring power of 3 kW/m 3 per unit volume with an oxygen concentration of 7% by mass by blowing inert gas at 0.54 l/min from above the liquid surface. I did this. Next, 124.3 parts by mass of diethylene glycol monoethyl ether acetate and 76 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (24). The nonvolatile content of this acrylate resin (24) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(実施例25:アクリレート樹脂(25)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート69.5質量部を入れ、エポキシ樹脂(6)206質量部を溶解し、ジブチルヒドロキシトルエン0.8質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で11時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート110.5質量部、テトラヒドロ無水フタル酸56.2質量部を加え110℃で2.5時間反応させてアクリレート樹脂(25)を得た。このアクリレート樹脂(25)の不揮発分は、65質量%、固形分酸価は、64mgKOH/gであった。
(Example 25: Preparation of acrylate resin (25))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 69.5 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 206 parts by mass of epoxy resin (6), and dissolve 0.8 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 11 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 110.5 parts by mass of diethylene glycol monoethyl ether acetate and 56.2 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (25). The nonvolatile content of this acrylate resin (25) was 65% by mass, and the solid content acid value was 64 mgKOH/g.
(実施例26:アクリレート樹脂(26)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート188質量部、テトラヒドロ無水フタル酸136.8質量部を加え110℃で2.5時間反応させてアクリレート樹脂(26)を得た。このアクリレート樹脂(26)の不揮発分は、62質量%、固形分酸価は、122mgKOH/gであった。
(Example 26: Preparation of acrylate resin (26))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 188 parts by mass of diethylene glycol monoethyl ether acetate and 136.8 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (26). The nonvolatile content of this acrylate resin (26) was 62% by mass, and the solid content acid value was 122 mgKOH/g.
(実施例27:メタクリレート樹脂(1)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート75.3質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.2質量部加えた後、メタクリル酸86質量部、トリフェニルホスフィン1.5質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で16時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート130.2質量部、テトラヒドロ無水フタル酸80.6質量部を加え110℃で2.5時間反応させてメタクリレート樹脂(1)を得た。このメタクリレート樹脂(1)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Example 27: Preparation of methacrylate resin (1))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 75.3 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.2 parts by mass of methoquinone, 86 parts by mass of methacrylic acid and 1.5 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel tube with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 16 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 130.2 parts by mass of diethylene glycol monoethyl ether acetate and 80.6 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain methacrylate resin (1). The nonvolatile content of this methacrylate resin (1) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(比較例1:アクリレート樹脂(C1)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.3質量部を入れ、エポキシ樹脂(7)213質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート123.1質量部、テトラヒドロ無水フタル酸76質量部を加え110℃で2.5時間反応させてアクリレート樹脂(C1)を得た。このアクリレート樹脂(C1)の不揮発分は、65質量%、固形分酸価は、80mgKOH/gであった。
(Comparative Example 1: Preparation of acrylate resin (C1))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.3 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 213 parts by mass of epoxy resin (7), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 123.1 parts by mass of diethylene glycol monoethyl ether acetate and 76 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (C1). The nonvolatile content of this acrylate resin (C1) was 65% by mass, and the solid content acid value was 80 mgKOH/g.
(比較例2:アクリレート樹脂(C2)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート73質量部を入れ、エポキシ樹脂(9)220質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で13時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート126質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で2.5時間反応させてアクリレート樹脂(C2)を得た。このアクリレート樹脂(C2)の不揮発分は、65質量%、固形分酸価は、81mgKOH/gであった。
(Comparative Example 2: Preparation of acrylate resin (C2))
73 parts by mass of diethylene glycol monoethyl ether acetate was put into a flask equipped with a thermometer, a stirrer, and a reflux condenser, and 220 parts by mass of epoxy resin (9) was dissolved therein. After adding .1 part by mass, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown in from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. An inert gas was blown in from above the liquid surface at a rate of 0.54 l/min to give an oxygen concentration of 7% by mass, and the esterification reaction was carried out at 120° C. for 13 hours while stirring at a stirring power of 3 kW/m 3 per unit volume. Next, 126 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (C2). The nonvolatile content of this acrylate resin (C2) was 65% by mass, and the solid content acid value was 81 mgKOH/g.
(比較例3:アクリレート樹脂(C3)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.07l/min液面下より吹込みかつ、不活性ガスを液面上から0.74l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力3kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で反応させたところ、途中でゲル化する結果であった。
(Comparative Example 3: Preparation of acrylate resin (C3))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.07 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 3 kW/m 3 per unit volume by blowing inert gas at 0.74 l/min from above the liquid surface to make the oxygen concentration 7% by mass. Ta. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C, resulting in gelation during the course of the reaction.
(比較例4:アクリレート樹脂(C4)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.8質量部を入れ、エポキシ樹脂(3)215質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力0.15kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート124.5質量部、テトラヒドロ無水フタル酸77.5質量部を加え110℃で反応させたところ、途中でゲル化する結果であった。
(Comparative Example 4: Preparation of acrylate resin (C4))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.8 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 215 parts by mass of epoxy resin (3), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 0.15 kW/m 3 per unit volume with an oxygen concentration of 7% by mass by blowing inert gas at 0.54 l/min from above the liquid surface. I did this. Next, 124.5 parts by mass of diethylene glycol monoethyl ether acetate and 77.5 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C, resulting in gelation during the course of the reaction.
(比較例5:アクリレート樹脂(C5)の調製)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート71.3質量部を入れ、エポキシ樹脂(7)213質量部を溶解し、ジブチルヒドロキシトルエン0.9質量部、メトキノン0.1質量部加えた後、アクリル酸72質量部、トリフェニルホスフィン1.4質量部を添加し、空気を内径0.5mmのステンレス管を用いて0.27l/min液面下より吹込みかつ、不活性ガスを液面上から0.54l/min吹き込み、酸素濃度7質量%とし、単位体積当たりの撹拌動力8.2kW/mで撹拌しながら、120℃で12時間エステル化反応を行なった。次いで、ジエチレングリコールモノエチルエーテルアセテート123.1質量部、テトラヒドロ無水フタル酸76質量部を加え110℃で2.5時間反応させてアクリレート樹脂(C5)を得た。このアクリレート樹脂(C5)の不揮発分は、65質量%、固形分酸価は、77mgKOH/gであった。
(Comparative Example 5: Preparation of acrylate resin (C5))
Into a flask equipped with a thermometer, a stirrer, and a reflux condenser, put 71.3 parts by mass of diethylene glycol monoethyl ether acetate, dissolve 213 parts by mass of epoxy resin (7), and dissolve 0.9 parts by mass of dibutylhydroxytoluene. After adding 0.1 part by mass of methoquinone, 72 parts by mass of acrylic acid and 1.4 parts by mass of triphenylphosphine were added, and air was blown from below the liquid surface at 0.27 l/min using a stainless steel pipe with an inner diameter of 0.5 mm. The esterification reaction was carried out at 120° C. for 12 hours while stirring at a stirring power of 8.2 kW/m 3 per unit volume by blowing inert gas at 0.54 l/min from above the liquid surface to make the oxygen concentration 7% by mass. I did this. Next, 123.1 parts by mass of diethylene glycol monoethyl ether acetate and 76 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110°C for 2.5 hours to obtain an acrylate resin (C5). The nonvolatile content of this acrylate resin (C5) was 65% by mass, and the solid content acid value was 77 mgKOH/g.
(実施例28:硬化性樹脂組成物(1)の調製)
 実施例1で得たアクリレート樹脂(1)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)と、有機溶剤としてジペンタエリスリトールヘキサアクリレートと、ジエチレングリコールモノエチルエーテルアセテートと、光重合開始剤(IGM社製「Omnirad 907」)と、2-エチル-4-メチルイミダゾールと、フタロシアニングリーンとを表2に示す質量部で配合し、ロールミルにより混錬して硬化性樹脂組成物(1)を得た。
(Example 28: Preparation of curable resin composition (1))
Acrylate resin (1) obtained in Example 1, orthocresol novolac type epoxy resin (DIC Corporation "EPICLON N-680") as a curing agent, dipentaerythritol hexaacrylate as an organic solvent, and diethylene glycol monoethyl ether. Acetate, a photopolymerization initiator ("Omnirad 907" manufactured by IGM), 2-ethyl-4-methylimidazole, and phthalocyanine green were blended in the parts by mass shown in Table 2, and kneaded with a roll mill to obtain curable material. A resin composition (1) was obtained.
(実施例29~54:硬化性樹脂組成物(2)~(27)の調製)
 表2~表4に示す組成及び配合で実施例28と同様の方法にて、硬化性樹脂組成物(2)~(27)を得た。
(Examples 29 to 54: Preparation of curable resin compositions (2) to (27))
Curable resin compositions (2) to (27) were obtained in the same manner as in Example 28 using the compositions and formulations shown in Tables 2 to 4.
(比較例6~8:硬化性樹脂組成物(R1)~(R3)の調製)
 表4に示す組成及び配合で実施例28と同様の方法にて、硬化性樹脂組成物(R1)~(R3)を得た。
(Comparative Examples 6 to 8: Preparation of curable resin compositions (R1) to (R3))
Curable resin compositions (R1) to (R3) were obtained using the compositions and formulations shown in Table 4 in the same manner as in Example 28.
 上記の実施例及び比較例で得られた硬化性樹脂組成物(1)~(27)、及び(R1)~(R3)を用いて、下記の評価を行った。 The following evaluations were performed using the curable resin compositions (1) to (27) and (R1) to (R3) obtained in the above Examples and Comparative Examples.
[光感度の評価方法]
 各実施例及び比較例で得られた硬化性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布した後、80℃でそれぞれ30分間乾燥させた。次いで、コダック社製のステップタブレットNo.2を介し、メタルハライドランプを用いて10kJ/mの紫外線を照射した。これを1質量%の炭酸ナトリウム水溶液で180秒現像し、残存した段数に従い評価した。なお、残存段数が多いほど光感度が高い。
[Evaluation method of photosensitivity]
The curable resin compositions obtained in each example and comparative example were applied onto a glass substrate using an applicator to a film thickness of 50 μm, and then dried at 80° C. for 30 minutes. Next, Step Tablet No. manufactured by Kodak Company was used. 2, 10 kJ/m 2 of ultraviolet light was irradiated using a metal halide lamp. This was developed with a 1% by mass aqueous sodium carbonate solution for 180 seconds, and evaluated according to the number of remaining stages. Note that the greater the number of remaining stages, the higher the photosensitivity.
[アルカリ現像性の評価方法]
 各実施例及び比較例で得られた硬化性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布した後、80℃でそれぞれ40分間、50分間、60分間、70分間、80分間乾燥させ、乾燥時間が異なるサンプルを作成した。これらを1%炭酸ナトリウム水溶液で30℃180秒間現像し、基板上に残渣が残らなかったサンプルの80℃での乾燥時間を乾燥管理幅として評価した。なお、乾燥管理幅が長いほどアルカリ現像性が優れていることを示す。
[Evaluation method of alkaline developability]
The curable resin compositions obtained in each example and comparative example were applied onto a glass substrate using an applicator to a film thickness of 50 μm, and then heated at 80° C. for 40 minutes, 50 minutes, and 60 minutes, respectively. Samples with different drying times were created by drying for 70 minutes and 80 minutes. These were developed with a 1% sodium carbonate aqueous solution at 30° C. for 180 seconds, and the drying time at 80° C. of the sample that left no residue on the substrate was evaluated as the drying control width. Note that the longer the drying control range, the better the alkali developability.
 上記の実施例及び比較例で得られた硬化性樹脂組成物(1)~(27)、及び(R1)~(R3)の組成及び評価結果を表2~表4に示す。 The compositions and evaluation results of the curable resin compositions (1) to (27) and (R1) to (R3) obtained in the above Examples and Comparative Examples are shown in Tables 2 to 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例55:硬化性樹脂組成物(28)の調製)
 実施例1で得たアクリレート樹脂(1)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)、光重合開始剤として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IGM Resins社製「Omnirad 907」)、有機溶剤としてジエチレングリコールモノエチルエーテルアセテートを表5に示す質量部で配合して、硬化性樹脂組成物(28)を得た。
(Example 55: Preparation of curable resin composition (28))
Acrylate resin (1) obtained in Example 1, orthocresol novolac type epoxy resin ("EPICLON N-680" manufactured by DIC Corporation) as a curing agent, and 2-methyl-1-(4-methylthio) as a photopolymerization initiator. Phenyl)-2-morpholinopropan-1-one ("Omnirad 907" manufactured by IGM Resins) and diethylene glycol monoethyl ether acetate as an organic solvent were blended in the mass parts shown in Table 5 to form a curable resin composition (28 ) was obtained.
(実施例56~81:硬化性樹脂組成物(28)~(54)の調製)
 表5~表7に示す組成及び配合で実施例55と同様の方法にて、硬化性樹脂組成物(28)~(54)を得た。
(Examples 56 to 81: Preparation of curable resin compositions (28) to (54))
Curable resin compositions (28) to (54) were obtained in the same manner as in Example 55 using the compositions and formulations shown in Tables 5 to 7.
(比較例9~11:硬化性樹脂組成物(R4)~(R6)の調製)
 表7に示す組成及び配合で実施例55と同様の方法にて、硬化性樹脂組成物(R4)~(R6)を得た。
(Comparative Examples 9 to 11: Preparation of curable resin compositions (R4) to (R6))
Curable resin compositions (R4) to (R6) were obtained using the compositions and formulations shown in Table 7 in the same manner as in Example 55.
 上記の実施例及び比較例で得られた硬化性樹脂組成物(28)~(54)及び(R4)~(R6)を用いて、下記の評価を行った。 The following evaluations were performed using the curable resin compositions (28) to (54) and (R4) to (R6) obtained in the above Examples and Comparative Examples.
[弾性率の測定方法]
 弾性率の測定は、引張試験に基づいて行った。
<試験片1の作製>
 銅箔(古河産業株式会社製、電解銅箔「F2-WS」18μm)上に実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物を50μmのアプリケーターで塗布し、メタルハライドランプを用いて10kJ/mの紫外線を照射した後、160℃で1時間加熱した。銅箔から硬化物を剥離し、試験片1(硬化物)を得た。
[Method of measuring elastic modulus]
The elastic modulus was measured based on a tensile test.
<Preparation of test piece 1>
The active energy ray-curable resin compositions obtained in the Examples and Comparative Examples were applied onto a copper foil (manufactured by Furukawa Sangyo Co., Ltd., electrolytic copper foil "F2-WS" 18 μm) using a 50 μm applicator, and a metal halide lamp was used. After irradiating with ultraviolet rays of 10 kJ/m 2 , it was heated at 160° C. for 1 hour. The cured product was peeled off from the copper foil to obtain test piece 1 (cured product).
<引張試験>
 前記試験片1を10mm×80mmの大きさに切り出し、株式会社島津製作所製精密万能試験機オートグラフ「AG-IS」を用いて、下記の測定条件で試験片1の引張試験を行った。試験片が破断するまでの弾性率(MPa)を測定した。
<Tensile test>
The test piece 1 was cut into a size of 10 mm x 80 mm, and a tensile test was conducted on the test piece 1 under the following measurement conditions using a precision universal testing machine "AG-IS" manufactured by Shimadzu Corporation. The elastic modulus (MPa) until the test piece broke was measured.
 測定条件:温度23℃、湿度50%、標線間距離20mm、支点間距離20mm、引張速度10mm/分 Measurement conditions: temperature 23°C, humidity 50%, distance between gauge lines 20mm, distance between fulcrums 20mm, tensile speed 10mm/min
[耐熱性の評価方法]
 各実施例及び比較例で得られた硬化性樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、メタルハライドランプを用いて1000mJ/cmの紫外線を照射した後、160℃で1時間加熱して、硬化塗膜を得た。次いで、前記硬化塗膜をガラス基材から剥離し、硬化物を得た。前記硬化物から6mm×35mmの試験片を切り出し、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、引張り法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる温度をガラス転移温度として評価した。なお、ガラス転移温度が高いほど耐熱性に優れていることを示す。
[Heat resistance evaluation method]
The curable resin compositions obtained in each Example and Comparative Example were applied onto a glass substrate using an applicator to a film thickness of 50 μm, and dried at 80° C. for 30 minutes. Next, the film was irradiated with ultraviolet rays of 1000 mJ/cm 2 using a metal halide lamp, and then heated at 160° C. for 1 hour to obtain a cured coating film. Next, the cured coating film was peeled off from the glass substrate to obtain a cured product. A 6 mm x 35 mm test piece was cut out from the cured product, and measured using a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device "RSAII" manufactured by Rheometric Co., Ltd., tensile method: frequency 1 Hz, heating rate 3 ° C./min). The temperature at which the change in elastic modulus was maximum was evaluated as the glass transition temperature. Note that the higher the glass transition temperature, the better the heat resistance.
[基材密着性の評価方法]
 基材密着性の評価は、ピール強度の測定により行った。
<試験片2の作製>
 銅箔(古河産業株式会社製、電解銅箔「F2-WS」18μm)上に実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物を50μmのアプリケーターで塗布し、メタルハライドランプを用いて10kJ/mの紫外線を照射した後、160℃で1時間加熱し、試験片2を得た。
[Evaluation method of base material adhesion]
Base material adhesion was evaluated by measuring peel strength.
<Preparation of test piece 2>
The active energy ray-curable resin compositions obtained in the Examples and Comparative Examples were applied onto a copper foil (manufactured by Furukawa Sangyo Co., Ltd., electrolytic copper foil "F2-WS" 18 μm) using a 50 μm applicator, and a metal halide lamp was used. After irradiating the sample with ultraviolet rays of 10 kJ/m 2 , the sample was heated at 160° C. for 1 hour to obtain a test piece 2.
<ピール強度の測定方法>
 前記試験片2を幅1cm、長さ12cmの大きさに切り出し、剥離試験機(株式会社A&D製「A&Dテンシロン」、剥離速度50mm/分)を用いて90°ピール強度を測定した。
<Method for measuring peel strength>
The test piece 2 was cut out to a size of 1 cm in width and 12 cm in length, and the 90° peel strength was measured using a peel tester (“A&D Tensilon” manufactured by A&D Co., Ltd., peeling speed 50 mm/min).
[絶縁信頼性の評価方法]
 各実施例及び比較例で得られた硬化性樹脂組成物を、クシ型電極基板(ラインアンドスペースは100μm/100μm)上に以下の条件にて、硬化物を作製した。硬化性樹脂組成物を塗布し、80℃で30分乾燥させた。メタルハライドランプを用いて10kJ/mの紫外線を照射し、160℃で1時間後硬化し、硬化膜を作製した。前記硬化膜を温度120℃、湿度85%に設定した恒温恒湿槽器内に入れ、DC100Vのバイアス電圧を印加し、100時間後のマイグレーションの有無を目視にて下記の評価基準で評価した。
[Evaluation method of insulation reliability]
A cured product of the curable resin composition obtained in each Example and Comparative Example was prepared on a comb-shaped electrode substrate (line and space: 100 μm/100 μm) under the following conditions. A curable resin composition was applied and dried at 80°C for 30 minutes. It was irradiated with ultraviolet rays at 10 kJ/m 2 using a metal halide lamp, and then cured at 160° C. for 1 hour to produce a cured film. The cured film was placed in a constant temperature and humidity chamber set at a temperature of 120° C. and a humidity of 85%, a bias voltage of DC 100 V was applied, and the presence or absence of migration after 100 hours was visually evaluated using the following evaluation criteria.
 ○:全く変化なし。
 △:わずかな変化が観察される
 ×:マイグレーションが発生する。
○: No change at all.
Δ: A slight change is observed. ×: Migration occurs.
 実施例55~81で作製した硬化性樹脂組成物(28)~(54)、及び比較例9~11で作製した硬化性樹脂組成物(R4)~(R6)の組成及び評価結果を表5~表7に示す。 Table 5 shows the compositions and evaluation results of the curable resin compositions (28) to (54) produced in Examples 55 to 81 and the curable resin compositions (R4) to (R6) produced in Comparative Examples 9 to 11. ~ Shown in Table 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 なお、表2~7におけるアクリレート樹脂、及びメタクリレート樹脂の質量部の記載は、固形分値である。 Note that the parts by mass of acrylate resins and methacrylate resins in Tables 2 to 7 are solid content values.
 表2~7中の「硬化剤」は、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)を示す。 "Curing agent" in Tables 2 to 7 indicates an orthocresol novolac type epoxy resin ("EPICLON N-680" manufactured by DIC Corporation).
 表2~7中の「有機溶剤」は、ジエチレングリコールモノエチルエーテルアセテートを示す。 "Organic solvent" in Tables 2 to 7 indicates diethylene glycol monoethyl ether acetate.
 表2~7中の「光重合開始剤」は、IGM Resins社製「Omnirad-907」を示す。 "Photopolymerization initiator" in Tables 2 to 7 refers to "Omnirad-907" manufactured by IGM Resins.
 表2~表4に示した実施例28~54は、本発明の(メタ)アクリレート樹脂の製造方法で製造した(メタ)アクリレート樹脂を用いた硬化性樹脂組成物の例である。これらの硬化性樹脂組成物は、高い光感度及び優れたアルカリ現像性を有することが確認できた。 Examples 28 to 54 shown in Tables 2 to 4 are examples of curable resin compositions using (meth)acrylate resins produced by the method for producing (meth)acrylate resins of the present invention. It was confirmed that these curable resin compositions had high photosensitivity and excellent alkali developability.
 また、表5~表7に示した実施例55~81は、本発明の(メタ)アクリレート樹脂の製造方法で製造した(メタ)アクリレート樹脂を用いた硬化性樹脂組成物の例である。これらの硬化性樹脂組成物の硬化物は、優れた耐熱性、基材密着性及び絶縁信頼性を有することが確認できた。 Further, Examples 55 to 81 shown in Tables 5 to 7 are examples of curable resin compositions using (meth)acrylate resins produced by the method for producing (meth)acrylate resins of the present invention. It was confirmed that the cured products of these curable resin compositions had excellent heat resistance, substrate adhesion, and insulation reliability.
 一方、比較例6は、本発明の範囲外の全塩素量を有するエポキシ樹脂を原料として用いたアクリレート樹脂を用いた硬化性樹脂組成物の例であるが、これらの硬化性樹脂組成物は、光感度に劣ることが確認できた。また、このアクリレート樹脂を用いた硬化性樹脂組成物の硬化物(比較例9)は、基材密着性及び絶縁信頼性において不十分であることが確認できた。 On the other hand, Comparative Example 6 is an example of a curable resin composition using an acrylate resin using an epoxy resin having a total chlorine content outside the range of the present invention as a raw material. It was confirmed that the light sensitivity was inferior. Furthermore, it was confirmed that the cured product of the curable resin composition using this acrylate resin (Comparative Example 9) was insufficient in substrate adhesion and insulation reliability.
 比較例7は、本発明の範囲外のα-グリコール量を有するエポキシ樹脂を原料として用いたアクリレート樹脂を用いた硬化性樹脂組成物の例であるが、これらの硬化性樹脂組成物は、光感度に劣ることが確認できた。また、このアクリレート樹脂を用いた硬化性樹脂組成物の硬化物(比較例10)は、基材密着性において不十分であることが確認できた。 Comparative Example 7 is an example of a curable resin composition using an acrylate resin using an epoxy resin having an α-glycol content outside the range of the present invention as a raw material. It was confirmed that the sensitivity was inferior. Furthermore, it was confirmed that the cured product of the curable resin composition using this acrylate resin (Comparative Example 10) had insufficient adhesion to the substrate.
 比較例8は、単位体積当たりの撹拌動力が本発明で規定する撹拌動力の範囲外(8.2kW/m)としたアクリレート樹脂を用いた硬化性樹脂組成物の例であるが、アクリレート樹脂を用いた硬化性樹脂組成物の例であるが、これらの硬化性樹脂組成物は、光感度及びアルカリ現像性が著しく不十分であることが確認できた。 Comparative Example 8 is an example of a curable resin composition using an acrylate resin whose stirring power per unit volume is outside the range of the stirring power specified in the present invention (8.2 kW/m 3 ). It was confirmed that these curable resin compositions had extremely insufficient photosensitivity and alkali developability.
 比較例4は、単位体積当たりの撹拌動力が本発明で規定する撹拌動力の範囲外(8.5kW/m)としたアクリレート樹脂の例であるが、ゲル化により製造不可であることが確認できた。 Comparative Example 4 is an example of an acrylate resin in which the stirring power per unit volume was outside the range of the stirring power specified in the present invention (8.5 kW/m 3 ), but it was confirmed that it could not be manufactured due to gelation. did it.

Claims (9)

  1.  エポキシ樹脂(A1)と、
    不飽和一塩基酸(A2)とを必須原料とする(メタ)アクリレート樹脂の製造方法であって、
    前記エポキシ樹脂(A1)中に含まれる全塩素濃度が2400ppm以下であり、
    前記エポキシ樹脂(A1)中に含まれるα―グリコール量が0.20meq/g以下であり、
    前記エポキシ樹脂(A1)と前記不飽和一塩基酸(A2)との反応を、塩基性触媒の存在下、酸素を含有する気体(b1)及び不活性ガス(b2)の雰囲気下で撹拌しながら行うものであり、
    反応系内の酸素濃度を2~12質量%の範囲とし、
    単位体積当たりの撹拌動力を0.2~8kW/mの範囲とすることを特徴とする(メタ)アクリレート樹脂の製造方法。
    Epoxy resin (A1),
    A method for producing a (meth)acrylate resin using an unsaturated monobasic acid (A2) as an essential raw material, the method comprising:
    The total chlorine concentration contained in the epoxy resin (A1) is 2400 ppm or less,
    The amount of α-glycol contained in the epoxy resin (A1) is 0.20 meq/g or less,
    The reaction between the epoxy resin (A1) and the unsaturated monobasic acid (A2) is carried out in the presence of a basic catalyst while stirring in an atmosphere of an oxygen-containing gas (b1) and an inert gas (b2). It is something that is done;
    The oxygen concentration in the reaction system is in the range of 2 to 12% by mass,
    A method for producing (meth)acrylate resin, characterized in that the stirring power per unit volume is in the range of 0.2 to 8 kW/m 3 .
  2.  前記気体(b1)を反応系内の液面より下部から導入するものであり、前記不活性ガス(b2)を液面より上部から導入するものである請求項1記載の(メタ)アクリレート樹脂の製造方法。 The (meth)acrylate resin according to claim 1, wherein the gas (b1) is introduced from below the liquid level in the reaction system, and the inert gas (b2) is introduced from above the liquid level. Production method.
  3.  前記エポキシ樹脂(A1)の軟化点が70℃以上である、請求項1又は請求項2記載の(メタ)アクリレート樹脂の製造方法。 The method for producing a (meth)acrylate resin according to claim 1 or 2, wherein the epoxy resin (A1) has a softening point of 70°C or higher.
  4.  前記エポキシ樹脂(A1)と、前記不飽和一塩基酸(A2)とを反応した後、さらに多塩基酸無水物(A3)を反応する請求項1又は請求項2記載の(メタ)アクリレート樹脂の製造方法。 The (meth)acrylate resin according to claim 1 or 2, wherein after the epoxy resin (A1) and the unsaturated monobasic acid (A2) are reacted, a polybasic acid anhydride (A3) is further reacted. Production method.
  5.  前記多塩基酸無水物(A3)の使用量が、前記エポキシ樹脂(A1)が有するエポキシ基1モルに対して、0.25~1モルの範囲である請求項4記載の(メタ)アクリレート樹脂の製造方法。 The (meth)acrylate resin according to claim 4, wherein the amount of the polybasic acid anhydride (A3) used is in the range of 0.25 to 1 mol per 1 mol of epoxy groups possessed by the epoxy resin (A1). manufacturing method.
  6.  請求項1又は請求項2記載の(メタ)アクリレート樹脂の製造方法で得た(メタ)アクリレート樹脂と、光重合開始剤とを混合して得る硬化性樹脂組成物の製造方法。 A method for producing a curable resin composition obtained by mixing a (meth)acrylate resin obtained by the method for producing a (meth)acrylate resin according to claim 1 or 2 with a photopolymerization initiator.
  7.  請求項6記載の硬化性樹脂組成物の製造方法で得た硬化性樹脂組成物を硬化して得る硬化物の製造方法。 A method for producing a cured product obtained by curing the curable resin composition obtained by the method for producing a curable resin composition according to claim 6.
  8.  請求項7記載の硬化物を用いることを特徴とする絶縁材料の製造方法。 A method for producing an insulating material, characterized by using the cured product according to claim 7.
  9.  請求項7記載の硬化物を用いることを特徴とするレジスト部材の製造方法。 A method for manufacturing a resist member, comprising using the cured product according to claim 7.
PCT/JP2022/034508 2022-06-23 2022-09-15 Method for producing (meth)acrylate resin WO2023248488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514766A JP7380949B1 (en) 2022-06-23 2022-09-15 Method for producing (meth)acrylate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100967 2022-06-23
JP2022100967 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023248488A1 true WO2023248488A1 (en) 2023-12-28

Family

ID=89379331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034508 WO2023248488A1 (en) 2022-06-23 2022-09-15 Method for producing (meth)acrylate resin

Country Status (1)

Country Link
WO (1) WO2023248488A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293876A (en) * 2001-03-30 2002-10-09 Dainippon Ink & Chem Inc Production method for active-energy ray curing resin
JP2007326933A (en) * 2006-06-07 2007-12-20 Dainippon Ink & Chem Inc Epoxy vinyl ester resin and method for producing the same, photosensitive resin composition and cured product thereof, acid pendant epoxy vinyl ester resin, alkali-developing photosensitive resin composition and cured product thereof
JP2010150397A (en) * 2008-12-25 2010-07-08 Nippon Shokubai Co Ltd Unsaturated group-containing resin, manufacturing method thereof and photosensitive resin composition
WO2019188897A1 (en) * 2018-03-28 2019-10-03 日鉄ケミカル&マテリアル株式会社 Production method for polymerizable-unsaturated-group-containing alkali-soluble resin, polymerizable-unsaturated-group-containing alkali-soluble resin, photosensitive resin composition including polymerizable-unsaturated-group-containing alkali-soluble resin as essential ingredient, and cured film of photosensitive resin composition including polymerizable-unsaturated-group-containing alkali-soluble resin as essential ingredient
WO2021235299A1 (en) * 2020-05-19 2021-11-25 日鉄ケミカル&マテリアル株式会社 Polymerizable-unsaturated-group-containing alkali-soluble resin, method for producing same, photosensive resin composition, and cured product thereof
WO2022137591A1 (en) * 2020-12-24 2022-06-30 Dic株式会社 Method for producing (meth)acrylate resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293876A (en) * 2001-03-30 2002-10-09 Dainippon Ink & Chem Inc Production method for active-energy ray curing resin
JP2007326933A (en) * 2006-06-07 2007-12-20 Dainippon Ink & Chem Inc Epoxy vinyl ester resin and method for producing the same, photosensitive resin composition and cured product thereof, acid pendant epoxy vinyl ester resin, alkali-developing photosensitive resin composition and cured product thereof
JP2010150397A (en) * 2008-12-25 2010-07-08 Nippon Shokubai Co Ltd Unsaturated group-containing resin, manufacturing method thereof and photosensitive resin composition
WO2019188897A1 (en) * 2018-03-28 2019-10-03 日鉄ケミカル&マテリアル株式会社 Production method for polymerizable-unsaturated-group-containing alkali-soluble resin, polymerizable-unsaturated-group-containing alkali-soluble resin, photosensitive resin composition including polymerizable-unsaturated-group-containing alkali-soluble resin as essential ingredient, and cured film of photosensitive resin composition including polymerizable-unsaturated-group-containing alkali-soluble resin as essential ingredient
WO2021235299A1 (en) * 2020-05-19 2021-11-25 日鉄ケミカル&マテリアル株式会社 Polymerizable-unsaturated-group-containing alkali-soluble resin, method for producing same, photosensive resin composition, and cured product thereof
WO2022137591A1 (en) * 2020-12-24 2022-06-30 Dic株式会社 Method for producing (meth)acrylate resin

Similar Documents

Publication Publication Date Title
WO2022137591A1 (en) Method for producing (meth)acrylate resin
JP7380949B1 (en) Method for producing (meth)acrylate resin
WO2022107508A1 (en) (meth)acrylate resin having acid group, curable resin composition, cured product, insulating amterial and resist member
WO2023248488A1 (en) Method for producing (meth)acrylate resin
JP7136386B1 (en) Active energy ray-curable resin composition, cured product, insulating material and resist member
CN113544179A (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
CN113195574A (en) Acid group-containing (meth) acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2023183615A (en) Methacrylate resin, curable resin composition, cured product and article
CN115521435B (en) Resin, curable resin composition, cured product, insulating material, and resist member
JP2022067270A (en) (meth)acrylate resin having acid group, curable resin composition, cured product, insulating material, and resist member
JP2023127138A (en) Resin having acid group and polymerizable unsaturated group, curable resin composition, cured product, insulation material and resist member
JP2023156041A (en) Resin having acid group and polymerizable unsaturated group, curable resin composition, cured product, insulation material and resist member
JP2023183712A (en) Methacrylate resin, curable resin composition, cured product and article
JP2023156042A (en) Resin having polymerizable unsaturated group, curable resin composition, cured product and article
JP2022098702A (en) Active energy ray-curable resin composition, cured product, insulating material, and resist member
JP2023127139A (en) Resin having polymerizable unsaturated group, curable resin composition, cured product, and article
JP2023183616A (en) Curable resin composition, cured product, insulating material, and resist member
JP2022167020A (en) Resin, curable resin composition, cured product, insulating material and resist member
JP2023183709A (en) Acid radical- and polymerizable unsaturated group-containing resin, curable resin composition, insulating material, resin material for solder resist and resist member
JP2023028337A (en) Resin having acid radical and polymerizable unsaturated group, curable resin composition, cured product, insulating material and resist member
JP2023028338A (en) Epoxy (meth)acrylate resin, curable resin composition, cured product and article
JP2023183711A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP2022052982A (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulation material and resist member
JP2022067271A (en) (meth)acrylate resin, curable resin composition, cured product, and article
JP2022124653A (en) Resin, curable resin composition, cured product, insulation material and resist member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948047

Country of ref document: EP

Kind code of ref document: A1