WO2022138050A1 - Radiation detection sensor and radiation image detector - Google Patents

Radiation detection sensor and radiation image detector Download PDF

Info

Publication number
WO2022138050A1
WO2022138050A1 PCT/JP2021/044286 JP2021044286W WO2022138050A1 WO 2022138050 A1 WO2022138050 A1 WO 2022138050A1 JP 2021044286 W JP2021044286 W JP 2021044286W WO 2022138050 A1 WO2022138050 A1 WO 2022138050A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
pillar
detection sensor
radiation detection
electrode
Prior art date
Application number
PCT/JP2021/044286
Other languages
French (fr)
Japanese (ja)
Inventor
亮治 小杉
徹一 岸下
Original Assignee
国立研究開発法人産業技術総合研究所
大学共同利用機関法人高エネルギー加速器研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 大学共同利用機関法人高エネルギー加速器研究機構 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2022572048A priority Critical patent/JPWO2022138050A1/ja
Publication of WO2022138050A1 publication Critical patent/WO2022138050A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information

Definitions

  • the present invention relates to a radiation detection sensor and a radiation image detector, for example, a semiconductor sensor for radiation detection and a radiation detector using the same.
  • a radiation detection sensor for detecting radiation
  • a semiconductor sensor semiconductor detector
  • Radiation can be detected by generating an electric charge when radiation passes through the semiconductor sensor and converting it into an electrical signal.
  • Non-Patent Document 1 describes a technique for separately manufacturing a sensor for radiation detection and a reading chip and joining them by using a bump technique.
  • Patent Document 1 describes a technique related to a photodiode of a CMOS image sensor.
  • Patent Document 2 describes a technique relating to a Schottky barrier diode.
  • Patent Document 3 describes a technique relating to a neutron detector.
  • the present inventor is studying a semiconductor sensor for radiation detection.
  • the semiconductor sensor has a PN junction or a Schottky junction. Radiation can be detected by enlarging the depletion layer in the semiconductor sensor by applying a voltage, generating an electric charge by passing the radiation through the depletion layer, and detecting the electric charge.
  • a high voltage power supply for applying a high voltage is required. This is not desirable as it increases the overall cost.
  • the detection sensitivity of the radiation passing through the semiconductor sensor will decrease. Therefore, in order to improve the performance of the semiconductor sensor, a technique capable of efficiently depleting the semiconductor sensor even at a low voltage is desired.
  • the radiation detection sensor is provided in a first conductive type semiconductor substrate, a plurality of pillars provided on the semiconductor substrate, each having an upper flat surface and a side surface, and each of the plurality of pillars. It includes a PN junction or a Schottky junction provided on the upper flat surface and the side surface.
  • the radiation detection sensor is a plurality of first electrodes each formed on the upper flat surface of the plurality of pillars, the plurality of first electrodes separated from each other, and the plurality of the semiconductor substrate.
  • a second electrode provided on the main surface opposite to the side on which the pillar is formed is provided.
  • the performance of the radiation detection sensor can be improved.
  • FIG. 1 is a plan view of a main part of the semiconductor sensor 1 according to the embodiment of the present invention
  • FIGS. 2 and 3 are cross-sectional views of the main part of the semiconductor sensor 1.
  • the cross-sectional view at the position of line A1-A1 in FIG. 1 substantially corresponds to FIG. 2, and the cross-sectional view at the position of line A2-A2 in FIG. 1 substantially corresponds to FIG. Since the cross-sectional view at the position of line A3-A3 in FIG. 1 is the same as that of FIG.
  • FIG. 1 is a plan view of the semiconductor sensor 1 as viewed from above, through which the insulating film 9 is seen through, and the electrode 7 is shown by a dotted line.
  • the semiconductor sensor 1 of the present embodiment is a semiconductor sensor (semiconductor detector) for radiation detection, and is therefore a radiation detection sensor.
  • the semiconductor sensor 1 of the present embodiment which is a radiation detection sensor, has a semiconductor substrate 2 and a semiconductor layer 3 formed on the semiconductor substrate 2.
  • the semiconductor substrate 2 is an n-type semiconductor substrate into which n-type impurities have been introduced.
  • the semiconductor layer 3 is an epitaxial semiconductor layer formed by epitaxial growth on the main surface (upper surface) 2a of the semiconductor substrate 2, and is an n-type semiconductor layer into which n-type impurities are introduced.
  • the semiconductor layer 3 is made of the same material as the semiconductor substrate 2, and when a SiC substrate is used as the semiconductor substrate 2, the semiconductor layer 3 is a SiC layer made of single crystal SiC (silicon carbide).
  • the impurity concentration (n-type impurity concentration) of the semiconductor layer 3 is preferably lower than the impurity concentration (n-type impurity concentration) of the semiconductor substrate 2.
  • a combination of the semiconductor substrate 2 and the semiconductor layer 3 on the semiconductor substrate 2 can also be regarded as a semiconductor substrate.
  • the impurity concentration of the SiC semiconductor substrate 2 is about 1X10 ⁇ 17 to 1X10 ⁇ 20 (cm ⁇ -3), and the impurity concentration of the SiC semiconductor layer 3 is 1X10 ⁇ 13 to 1X10 ⁇ 16 (cm ⁇ -3). ) Degree is assumed.
  • a groove (trench) 4 is formed in the semiconductor layer 3. Since the groove 4 is formed in the semiconductor layer 3, a plurality of pillars (columnar portions, convex portions) 5 are formed in the semiconductor layer 3.
  • the groove 4 is a groove for partitioning a plurality of pillars 5. That is, the semiconductor layer 3 is divided into a plurality of pillars 5 by the grooves 4, and the grooves 4 exist between the adjacent pillars 5.
  • the pillar 5 is a columnar convex portion and projects in a direction substantially perpendicular to the main surface 2a of the semiconductor substrate 2.
  • the grooves 4 are formed in a grid pattern extending in the X direction and the Y direction in a plan view.
  • the X direction and the Y direction are directions substantially parallel to the main surface 2a or the back surface 2b of the semiconductor substrate 2, and the X direction and the Y direction intersect each other (more specifically, orthogonal to each other).
  • the plan view corresponds to the case where the semiconductor substrate 2 is viewed in a plane substantially parallel to the main surface 2a or the back surface 2b.
  • the pillars 5 are not particularly limited, but are arranged in the X direction and the Y direction with the same repetition period (same pitch), and are isotropic with respect to the X direction and the Y direction. Of course, the period for arranging the pillars 5 may be slightly different between the X direction and the Y direction.
  • the planar shape of the pillar 5 is a square shape (more specifically, a rectangular shape or a square shape).
  • the three-dimensional shape of the pillar 5 is a square columnar shape.
  • the planar shape of the pillar 5 may be other than a square shape, and may be, for example, a circular shape.
  • the planar shape of the pillar 5 is circular
  • the three-dimensional shape of the pillar 5 is cylindrical.
  • the three-dimensional shape of the pillar 5 may have a tapered shape (tapered shape).
  • the planar shape corresponds to the shape in a planar view.
  • Each pillar 5 is a part of the semiconductor layer 3, and the pillars 5 are separated (separated) by a groove 4.
  • the bottom surface of the groove 4 is located in the middle of the thickness of the semiconductor layer 3. Therefore, the semiconductor layer 3 also exists under the bottom surface of the groove 4, and the plurality of pillars 5 are connected by the lower layer portion of the semiconductor layer 3.
  • the groove 4 may reach the semiconductor substrate 2, but in that case, a plurality of pillars 5 are directly arranged on the main surface of the semiconductor substrate 2.
  • Each pillar 5 has an upper surface (upper flat surface) and a side surface.
  • the upper surface of the pillar 5 corresponds to the upper flat surface (tip surface) of the pillar 5.
  • a p-type semiconductor region (p-type semiconductor layer) 6 is formed on the upper surface and the side surface of each pillar 5. That is, in each pillar 5, the p-type semiconductor region 6 is formed over the upper surface and the side surface. That is, the p-type semiconductor region 6 is formed on the surface layer portions on the upper surface and the side surface of each pillar 5.
  • a portion of the p-type semiconductor region 6 formed on the upper surface (surface layer portion) of each pillar 5 is referred to as a p-type semiconductor region 6a, and the side surface of each pillar 5 in the p-type semiconductor region 6 is referred to as a p-type semiconductor region 6a.
  • the portion formed in (the surface layer portion of) is referred to as a p-type semiconductor region 6b.
  • the p-type semiconductor region 6a and the p-type semiconductor region 6b are connected as a p-type region semiconductor region and are electrically connected.
  • the p-type semiconductor region 6a and the p-type semiconductor region 6b may have the same or different impurity concentrations (p-type impurity concentrations).
  • the p-type semiconductor region 6a and the p-type semiconductor region 6b may be formed in the same step or may be formed in different steps. Further, the side surface of each pillar may be completely covered by the p-type semiconductor region 6b, or a part thereof may be covered. Further, when the p-type semiconductor region 6a has a higher impurity concentration than the p-type semiconductor region 6b, it is easy to reduce the contact resistance between the electrode 7 and the p-type semiconductor region 6a.
  • the region that is not the p-type semiconductor region 6 (the region that maintains the n-type) is referred to as the n-type semiconductor region 3a.
  • the surface layer portions on the upper surface and the side surface are composed of the p-type semiconductor region 6, and the other pillars 5 are configured by the n-type semiconductor region 3a. Therefore, in each pillar 5, the p-type semiconductor region 6 is adjacent to the n-type semiconductor region 3a, and a PN junction is formed between the p-type semiconductor region 6 and the n-type semiconductor region 3a (interface). ..
  • the p-type semiconductor region 6 is thin and the pillar 5 is mainly formed by the n-type semiconductor region 3a, the p-type semiconductor region 6 is formed on the upper surface and the side surface of the n-type semiconductor region 3a constituting the pillar 5. It can also be considered to be.
  • the p-type semiconductor region 6 is not formed in the semiconductor layer 3 between the adjacent pillars 5, that is, at the bottom of the groove 4. Therefore, the p-type semiconductor region 6 formed on the upper surface and the side surface (surface layer portion) of a certain pillar 5 and the p-type semiconductor region 6 formed on the upper surface and the side surface (surface layer portion) of the pillar 5 adjacent to the pillar 5 are formed.
  • the type semiconductor region 6 is not connected to each other, but is separated from each other via the n-type semiconductor region 3a. That is, the p-type semiconductor region 6 formed in each pillar 5 is not connected to the p-type semiconductor region 6 formed in the other pillars 5, and is separated via the n-type semiconductor region 3a. ..
  • Electrodes 7 are formed on the upper surface of each pillar 5. Therefore, the electrode 7 is formed on the p-type semiconductor region 6 (more specifically, on the p-type semiconductor region 6a), and is in contact with the p-type semiconductor region 6 and electrically connected to the p-type semiconductor region 6. Has been done.
  • the electrode 7 is preferably ohmic-connected to the p-type semiconductor region 6.
  • the electrode 7 is made of a metal material, for example, a laminated film of a titanium (Ti) layer and an aluminum (Al) layer on the titanium layer.
  • the electrode 7 formed on the upper surface of each pillar 5 and the electrode 7 formed on the upper surface of the other pillar 5 are not connected and are separated from each other. That is, independent electrodes 7 are provided for each pillar 5, and the electrodes 7 are separated from each other.
  • a back surface electrode 8 is formed as an electrode on the back surface (main surface) 2b of the semiconductor substrate 2.
  • the back surface electrode 8 is formed over almost the entire back surface 2b of the semiconductor substrate 2.
  • the back surface electrode 8 is electrically connected to the semiconductor substrate 2.
  • the back surface electrode 8 is ohmic contacted with the semiconductor substrate 2.
  • the back surface electrode 8 and the semiconductor substrate 2 may be shotki-connected.
  • the back surface electrode 8 is made of a metal material, for example, a laminated film of a nickel (Ni) layer and a titanium (Ti) layer on the nickel layer.
  • the back surface 2b of the semiconductor substrate 2 corresponds to the main surface on the side opposite to the main surface 2a on the side where the semiconductor layer 3 is formed, out of the two main surfaces located on opposite sides of the semiconductor substrate 2. is doing.
  • the semiconductor layer 3 is formed on the main surface 2a of the semiconductor substrate 2, which is one of the two main surfaces of the semiconductor substrate 2.
  • the main surface 2a and the back surface 2b of the semiconductor substrate 2 are located on opposite sides of each other.
  • the semiconductor sensor 1 of the present embodiment further has an insulating film 9 that fills the space between the plurality of pillars 5.
  • the groove 4 is embedded by the insulating film 9. That is, the insulating film 9 is formed on the semiconductor substrate 2 (semiconductor layer 3) so as to fill the groove 4.
  • the insulating film 9 is made of, for example, a resin film (such as a polyimide resin film).
  • the insulating film 9 may be a single-layer insulating film or a laminated insulating film in which a plurality of insulating films are laminated.
  • the insulating film 9 may be a laminated film of a thin silicon oxide film and a thick resin film on the thin silicon oxide film.
  • the electrode 7 is not covered with the insulating film 9, but is exposed from the opening of the insulating film 9.
  • the insulating film 9 can function as a protective film.
  • the insulating film 9 is not electrically essential, but by providing the insulating film 9, a plurality of pillars 5 can be stabilized, and the semiconductor sensor 1 can be easily handled. Further, by providing the insulating film 9, the reliability of the semiconductor sensor 1 can be improved.
  • a predetermined voltage is applied between the back surface electrode 8 and the plurality of electrodes 7 in the semiconductor sensor 1.
  • a predetermined high potential is applied to the back surface electrode 8, and a predetermined low potential is applied to the plurality of electrodes 7.
  • the depletion layer expands from the PN junction surface between the p-type semiconductor region 6 and the n-type semiconductor region 3a, and each pillar 5 is depleted. That is, the n-type semiconductor region 3a constituting each pillar 5 is depleted.
  • the depletion layer (depleted pillar 5) of the semiconductor sensor 1 electrons and holes are generated by ionization. The generated electrons move to the back surface electrode 8, and the generated holes move to the electrode 7.
  • a current flows between the electrode 7 of the semiconductor sensor 1 and the back electrode 8, so that the radiation incident on the semiconductor sensor 1 can be detected by detecting this current.
  • FIG. 4 is a cross-sectional view of a main part of the radiation detector 11 of the present embodiment.
  • the cross section of the semiconductor sensor 1 shown in FIG. 4 substantially corresponds to the cross section of the semiconductor sensor 1 shown in FIG.
  • the radiation detector 11 of the present embodiment includes the above-mentioned semiconductor sensor 1 and a semiconductor chip (semiconductor chip for reading) 12.
  • the semiconductor chip 12 is mounted (arranged) on the semiconductor sensor 1.
  • the semiconductor chip 12 has a semiconductor substrate 12a and a multilayer wiring structure 12b formed on the semiconductor substrate 12a.
  • a semiconductor element (not shown) such as a MISFET (Metal Insulator Semiconductor Field Effect Transistor) is formed on the semiconductor substrate 12a.
  • the multilayer wiring structure 12b has a plurality of insulating films and a plurality of wiring layers. Various circuits can be formed by the semiconductor element formed on the semiconductor substrate 12a and the wiring included in the multilayer wiring structure 12b.
  • the semiconductor chip 12 is a semiconductor chip in which various circuits are formed, but includes a circuit for reading out a current generated by the incident of radiation by the semiconductor sensor 1.
  • the semiconductor sensor 1 corresponds to a semiconductor chip for radiation detection
  • the semiconductor chip 12 corresponds to a semiconductor chip for reading.
  • the semiconductor chip 12 has a plurality of electrodes (pad electrodes) 13 on its main surface.
  • the plurality of electrodes 13 are electrically connected to a circuit formed in the semiconductor chip 12 through internal wiring (wiring included in the multilayer wiring structure 12b) of the semiconductor chip 12.
  • the plurality of electrodes 13 of the semiconductor chip 12 and the plurality of electrodes 7 of the semiconductor sensor 1 are bonded and electrically connected via bumps (bump electrodes) 14, respectively. That is, the plurality of electrodes 13 of the semiconductor chip 12 and the plurality of electrodes 7 of the semiconductor sensor 1 are bump-connected.
  • the bump 14 is, for example, a solder bump or a gold bump.
  • the radiation detector 11 can be mounted on, for example, a wiring board (not shown), in which case the back electrode 8 of the semiconductor sensor 1 is electrically connected to the electrode of the wiring board or the like.
  • the radiation detector 11 can be regarded as a radiation image detector.
  • Each pillar 5 constitutes a pixel.
  • FIGS. 5 to 10 are cross-sectional views of the semiconductor sensor 1 of the present embodiment during the manufacturing process, and the cross-sectional views corresponding to FIG. 2 are shown.
  • a semiconductor substrate 2 having a main surface (upper surface) 2a and a back surface (lower surface) 2b is prepared.
  • the semiconductor substrate 2 is not fragmented into chips and is in the state of a semiconductor wafer.
  • the semiconductor substrate 2 is an n-type SiC (silicon carbide) substrate into which an n-type impurity such as nitrogen (N) has been introduced.
  • an n-type semiconductor layer 3 made of SiC (silicon carbide) is formed on the main surface 2a of the semiconductor substrate 2 by an epitaxial growth method.
  • the impurity concentration of the semiconductor layer 3 can be lower than the impurity concentration of the semiconductor substrate 2.
  • a SiC epitaxial substrate in which the semiconductor layer 3 is formed on the n-type semiconductor substrate 2 may be purchased in advance.
  • a groove 4 is formed in the semiconductor layer 3.
  • the groove 4 can be formed by using, for example, a photolithography technique and an etching technique.
  • a plurality of pillars 5 are formed in the semiconductor layer 3.
  • the back surface electrode 8 is formed on the back surface 2b of the semiconductor substrate 2.
  • the back surface electrode 8 can be formed by using, for example, a sputtering method.
  • the timing for forming the back surface electrode 8 is arbitrary and can be changed as needed.
  • a p-type semiconductor region 6 is formed by introducing (injecting) a p-type impurity such as aluminum (Al) into the upper surface and the side surface of the pillar 5.
  • the method for forming the p-type semiconductor region 6 is arbitrary, but for example, an ion implantation method can be used. For example, if oblique ion implantation is used, p-type impurities can be implanted not only on the upper surface of the pillar 5 but also on the side surface of the pillar 5. Further, when the pillar 5 has a tapered shape, p-type impurities can be implanted into the upper surface and the side surface of the pillar 5 even when vertical ion implantation is used.
  • oblique ion implantation by appropriately adjusting the implantation angle, it is possible to form a separation region in which p-type impurities are not implanted at the bottom of the groove 4 (especially effective in the strip shape shown in FIG. 14).
  • the removal of p-type impurities at the bottom of the groove 4 can be dealt with by providing a mask at the bottom of the groove 4 before ion implantation or selectively etching the p-type impurity region at the bottom of 4 after ion implantation.
  • an insulating film 9 is formed on the semiconductor layer 3 so as to fill the groove 4. After the insulating film 9 is formed, the insulating film 9 can be flattened if necessary.
  • a plurality of openings 10 are formed in the insulating film 9.
  • the opening 10 can be formed using, for example, photolithography and etching techniques. Since the opening 10 is formed at a position consistent with the pillar 5, the upper surface of the pillar 5 is exposed from each opening 10.
  • an electrode 7 is formed on the upper surface of the pillar 5 exposed from the opening 10.
  • the method for forming the electrode 7 is arbitrary, but for example, a plating method or a sputtering method can be used. Further, the electrode 7 may be formed by locally forming a metal film on the upper surface of the pillar 5 exposed from the opening 10, or the electrode 7 may be formed on the upper surface of the pillar 5 exposed from the opening 10.
  • the electrode 7 can also be formed by forming a metal film for the electrode 7 on the insulating film 9 including the above and then patterning the metal film. In any case, the electrode 7 is locally formed on the upper surface of the pillar 5, and the electrode 7 formed on the upper surface of each pillar 5 is an electrode 7 formed on the upper surface of the other pillar 5. It is not connected to and is separated.
  • the semiconductor substrate 2 and the structure on it are diced (cut) to be individualized into chips (semiconductor chips).
  • the individualized chip becomes the semiconductor sensor 1.
  • the semiconductor sensor 1 can be manufactured. Although an example of the manufacturing process of the semiconductor sensor 1 has been described here, the semiconductor sensor 1 can be manufactured by using various methods without limitation.
  • the semiconductor chip 12 When the semiconductor chip 12 is mounted on the semiconductor sensor 1, as shown in FIG. 4, the main surface on the side where the electrode 7 of the semiconductor sensor 1 is formed and the electrode 13 of the semiconductor chip 12 are formed.
  • the semiconductor chip 12 is mounted on the semiconductor sensor 1 so as to face the main surface on the side, and the plurality of electrodes 13 of the semiconductor chip 12 and the plurality of electrodes 7 of the semiconductor sensor 1 are respectively via the bump 14. Join.
  • the present inventor has a semiconductor sensor chip for detecting radiation (corresponding to the semiconductor sensor 1) and a reading chip for reading the electric charge (current) generated in the semiconductor sensor chip by radiation (corresponding to the semiconductor chip 12). ) Is electrically connected to form a radiation detector.
  • the semiconductor sensor chip and the reading chip are electrically connected via bumps (corresponding to the bump 14).
  • FIG. 11 is a cross-sectional view of a main part of the semiconductor sensor 101 of the study example examined by the present inventor, and corresponds to FIG. 2 above.
  • the semiconductor sensor 101 of the study example shown in FIG. 11 has an n-type semiconductor substrate 102 and an n-type semiconductor layer 103 formed on the semiconductor substrate 102.
  • a plurality of p-type semiconductor regions 106 are formed on the surface (surface layer portion) of the semiconductor layer 103 so as to be separated from each other, and an electrode 107 is formed on each p-type semiconductor region 106.
  • a PN junction is formed between each p-type semiconductor region 106 and the n-type semiconductor layer 103 (interface).
  • a back surface electrode 108 is formed on the back surface of the semiconductor substrate 102.
  • a predetermined voltage is applied between the back surface electrode 108 and the plurality of electrodes 107 in the semiconductor sensor 101.
  • a predetermined high potential is applied to the back surface electrode 108
  • a predetermined low potential is applied to the plurality of electrodes 107.
  • the depletion layer expands downward (in the direction approaching the back surface electrode 108) from the PN junction surface between the p-type semiconductor region 106 and the n-type semiconductor layer 103. In this state, when radiation is incident on the depletion layer of the semiconductor sensor 101, electrons and holes are generated by ionization.
  • the generated electrons move to the back surface electrode 108, and the generated holes move to the electrode 107.
  • a reading chip corresponding to the semiconductor chip 12
  • radiation incident on the semiconductor sensor 101 can be detected.
  • the intensity of radiation can be determined. This makes it possible to detect the two-dimensional distribution of the position and intensity of the radiation incident on the semiconductor sensor 101.
  • the depletion layer spreads downward. That is, under each p-type semiconductor region 106, the depletion layer extends in the thickness direction of the semiconductor layer 103.
  • the applied voltage the higher the applied voltage, the wider the depletion layer, but in order to increase the length of the formed depletion layer (corresponding to the dimension of the depletion layer in the thickness direction of the semiconductor layer 103) to some extent, the applied voltage is considerably high. There is a need to.
  • the radiation incident on the depletion layer causes the depletion layer to be exposed to radiation. Since electrons and holes are generated, it is possible to accurately detect the presence or absence of radiation incident.
  • the voltage applied between the back surface electrode 108 and the plurality of electrodes 107 is high, a high voltage power supply for applying the high voltage is required, which increases the overall cost. , Not desirable.
  • the voltage applied between the back surface electrode 108 and the plurality of electrodes 107 is lowered, the length of the depletion layer formed on the semiconductor layer 103 (the dimension of the depletion layer in the thickness direction of the semiconductor layer 103) becomes large. Due to the shortage, the radiation detection sensitivity of the semiconductor sensor 101 is lowered.
  • SiC silicon carbide
  • One of the main features of the present embodiment is that in the semiconductor sensor 1, a plurality of pillars 5 are provided on the semiconductor layer 3 on the semiconductor substrate 2, and the upper surfaces (upper flat surface) of the plurality of pillars 5 are respectively provided.
  • the plurality of electrodes 7 are formed, and the back surface electrode 8 is formed on the back surface 2b of the semiconductor substrate 2.
  • the plurality of electrodes 7 are separated from each other.
  • PN junctions are provided on the upper surface and the side surface of each of the plurality of pillars 5 of the semiconductor sensor 1.
  • PN junctions are provided not only on the upper surface side but also on the side surface side.
  • the p-type semiconductor region 6 is formed not only on the upper surface side of each pillar 5 but also on the side surface side of each pillar 5. Therefore, in the case of the semiconductor sensor 1 of the present embodiment, when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, the pillar 5 is located downward from the PN junction on the upper surface side (toward the root of the pillar 5).
  • the depletion layer expand toward the inside of the pillar 5, but the depletion layer also expands from the PN junction on the side surface side of each pillar 5 toward the inside of the pillar 5. Since the depletion layer can be efficiently depleted by the amount that the depletion layer can be expanded from the PN junction on the side surface side of each pillar 5 toward the inside of the pillar 5, the entire pillar 5 is depleted. The applied voltage required for the above (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) can be reduced.
  • each pillar 5 can be efficiently depleted without increasing the voltage applied between the back surface electrode 8 and the plurality of electrodes 7, the entire pillar 5 can be depleted easily and accurately.
  • the radiation detection sensitivity of the semiconductor sensor 1 can be improved. Therefore, the performance of the semiconductor sensor 1 and the radiation detector 11 using the semiconductor sensor 1 can be improved.
  • each pillar 5 can be efficiently depleted, so that the applied voltage required to deplete each pillar 5 as a whole (the back electrode 8 and a plurality of applied voltages).
  • the voltage applied between the electrode 7 and the electrode 7) can be reduced. Therefore, even when SiC is used as the material constituting the semiconductor substrate 2 and the semiconductor layer 3, the applied voltage required for depleting the entire pillar 5 can be suppressed. Therefore, if the present embodiment is applied when the semiconductor substrate 2 and the semiconductor layer 3 are made of SiC, the effect is extremely large.
  • the semiconductor substrate 12a constituting the semiconductor chip 12 a silicon substrate made of single crystal silicon can be used. In this case, it becomes easy to form a desired circuit in the semiconductor chip 12, and the semiconductor chip 12 having the desired circuit can be easily and accurately manufactured.
  • the width W1 of each pillar 5 corresponds to the dimension in the X direction or the Y direction, and is shown in FIG.
  • the impurity concentration (n-type impurity concentration) of the semiconductor layer 3 is lowered, the applied voltage required for depleting the entire pillar 5 (voltage applied between the back surface electrode 8 and the plurality of electrodes 7). Can be lowered.
  • the width W1 of each pillar 5 is such that the applied voltage (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) required to deplete the entire pillar 5 is 300 V or less.
  • the impurity concentration of the semiconductor layer 3 can be set.
  • the width W1 of each pillar 5 is made too small, the planar dimension (flat area) of the electrode 7 formed on the pillar 5 also becomes small, so that it becomes difficult to bump-connect the semiconductor sensor 1 and the semiconductor chip 12 and also. Since the plane dimension (flat area) of each pillar 5 becomes smaller, the effective detectable area of radiation in the semiconductor sensor 1 becomes narrower. Therefore, it is more preferable that the width W1 of each pillar 5 is within the range of 5 ⁇ m to 100 ⁇ m. Further, the height H1 of each pillar 5 (see FIG. 2) can be, for example, about 50 ⁇ m to 1000 ⁇ m.
  • the distance S1 between adjacent pillars 5 can be preferably about 1 ⁇ m to 300 ⁇ m.
  • a PN junction (p-type semiconductor region 6) is formed on the upper surface of each pillar 5, but a PN junction (p-type semiconductor region 6) is formed on the side surface of each pillar 5.
  • a voltage is applied to the back surface electrode 8 from the PN junction on the upper surface of the pillar 5 so that the depletion layer can be expanded by the height H1 of the pillar 5. It is necessary to apply it between the plurality of electrodes 7.
  • a PN junction is formed not only on the upper surface of each pillar 5 but also on the side surface of each pillar 5.
  • the depletion layer in order to deplete the entire pillar 5, the depletion layer can be expanded from the PN junction on the side surface of the pillar 5 by a distance of half the width W1 of the pillar 5 (that is, W1 ⁇ 1/2).
  • a voltage may be applied between the back surface electrode 8 and the plurality of electrodes 7.
  • the depletion layers extending inward of the pillars 5 are connected to each other from the PN junctions on both side surfaces of the pillars 5, so that the entire pillars 5 can be depleted. Therefore, the applied voltage required to deplete each pillar 5 as a whole can be reduced.
  • the distance of half the width W1 of the pillar 5 (ie W1 ⁇ 1/2) is preferably smaller than the height H1 of the pillar 5, that is, W1 ⁇ 1/2 ⁇ H1 holds, and thus W1.
  • / H1 ⁇ 2 holds, and this accurately reduces the applied voltage (applied voltage required to deplete each pillar 5 as a whole) by providing a PN junction on the side surface of each pillar 5.
  • W1 / H1 ⁇ 1/2 is satisfied, and it is further preferable that W1 / H1 ⁇ 1/5 is satisfied, and the applied voltage required to deplete each pillar 5 as a whole is more preferable. Can be further effectively reduced.
  • FIG. 12 is a cross-sectional view of a main part showing a first modification of the semiconductor sensor 1 of the present embodiment, and corresponds to FIG. 2 above.
  • the semiconductor sensor 1 of the first modification shown in FIG. 12 will be referred to as a semiconductor sensor 1a below.
  • the semiconductor sensor 1a of the first modification shown in FIG. 12 differs from the semiconductor sensor 1 shown in FIGS. 1 to 3 between adjacent pillars 5 (that is, at the bottom of the groove 4).
  • the p-type semiconductor region 6 is formed on the surface (surface layer portion) of the semiconductor layer 3.
  • the surface (surface layer portion) of the semiconductor layer 3 is located between the adjacent pillars 5 (that is, at the bottom of the groove 4) in the p-type semiconductor region 6.
  • the p-type semiconductor region 6 of the portion formed in the above is referred to as a p-type semiconductor region 6c.
  • the p-type semiconductor region 6 (6a, 6b) formed on the upper surface and the side surface (surface layer portion) of the pillar 5 adjacent to the pillar 5 is formed on the surface (surface layer portion) of the semiconductor layer 3 between the adjacent pillars 5. It is in a state of being connected to each other via the p-type semiconductor region 6 (6c).
  • the p-type semiconductor region 6 (6a, 6b) formed in each pillar 5 is between the p-type semiconductor region 6 (6a, 6b) formed in the other pillars 5 and the adjacent pillars 5. It is connected via a p-type semiconductor region 6c formed on the semiconductor layer 3.
  • the semiconductor sensor 1a of the first modification shown in FIG. 12 when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, the p-type semiconductor region 6c is formed between the adjacent pillars 5.
  • the depletion layer expands downward (in the direction toward the semiconductor substrate 2) from the PN junction with the n-type semiconductor region 3a. Therefore, in the case of the semiconductor sensor 1a of the first modification shown in FIG. 12, a depletion layer is also formed in the semiconductor layer 3 between the adjacent pillars 5.
  • the depletion layer is formed below the p-type semiconductor region 6c, electrons and holes may be generated by the incident radiation in the depletion layer below the p-type semiconductor region 6c.
  • the electrodes 7 are provided for each pillar 5 and the electrodes 7 are separated from each other, the electric charge generated by the radiation incident on the depletion layer below the p-type semiconductor region 6c is the largest from there. It can be detected from the electrode 7 located at a close position. Therefore, the electric signal between the pixels can be separated.
  • the depletion layer is unlikely to be formed in the semiconductor layer 3 between the adjacent pillars 5. Therefore, the electric charge generated by the radiation incident on the depleted pillar 5 may be detected from the electrode 7 provided for the pillar 5, and the electric signal generated in each pillar 5 is generated in the other pillar 5. Easy to separate from the electrical signal. This makes it easier to separate the electrical signals between the pixels more clearly, which makes it easier to improve the resolution of the semiconductor sensor.
  • FIG. 13 is a cross-sectional view of a main part showing a second modification of the semiconductor sensor 1 of the present embodiment, and corresponds to FIG. 2 above.
  • the semiconductor sensor 1 of the second modification shown in FIG. 13 will be referred to as a semiconductor sensor 1b below.
  • the semiconductor sensor 1b of the second modification shown in FIG. 13 differs from the semiconductor sensor 1 shown in FIGS. 1 to 3 in that the semiconductor substrate 2 and the semiconductor layer 3 are combined as a whole. Is the semiconductor substrate 2. That is, in the case of the semiconductor sensor 1b of the second modification shown in FIG. 13, the semiconductor layer 3 is not formed on the semiconductor substrate 2, and the plurality of pillars 5 are provided on the semiconductor substrate 2. ..
  • the back surface electrode 8 is formed on the back surface 2b, which is the main surface of the semiconductor substrate 2 opposite to the side on which the plurality of pillars 5 are formed. In the step before forming the back surface electrode 8, for example, a high-concentration n-type impurity semiconductor layer may be formed by ion implantation of the n-type impurity to form an ohmic connection.
  • the semiconductor substrate 2 used in the second modification is, for example, a substrate that can be depleted with an applied voltage similar to that of the semiconductor layer 3 (preferably a semi-insulating SiC substrate or an impurity concentration of 1X10 ⁇ 13 to 1X10 ⁇ 16 (preferably a semi-insulating SiC substrate).
  • cm ⁇ -3) n-type SiC substrate can be used.
  • the optimum impurity concentration can be set for each of the semiconductor substrate 2 and the semiconductor layer 3.
  • the semiconductor layer 3 can be set with an impurity concentration in consideration of the depletion of the pillar 5, and the semiconductor substrate 2 can be set with an impurity concentration in consideration of contact with the back surface electrode 8. .. Therefore, it is easy to improve the overall performance of the semiconductor sensor.
  • the second modification includes the semiconductor sensor 1 of FIGS. 1 to 3, the semiconductor sensor 1a of the first modification, the semiconductor sensor 1c of the third modification described later, and the semiconductor sensor 1d of the second embodiment described later. , And the semiconductor sensor 1e of the fourth modification described later can be applied.
  • FIG. 14 corresponds to FIG. 1 above.
  • FIG. 14 is a one-dimensional line sensor.
  • FIG. 15 corresponds to the cross-sectional view at the position of line B2-B2 in FIG. Since the cross-sectional view at the position of line B1-B1 in FIG. 14 is the same as that of FIG. 2, the illustration is omitted here, and the cross-sectional view at the position of line B3-B3 in FIG. 14 is described above. Since it is the same as FIG. 3, the illustration is omitted here.
  • each pillar 5 extends in the Y direction, and a plurality of pillars 5 extending in the Y direction are arranged side by side in the X direction. ..
  • An electrode 7 is provided for each pillar 5, and the electrode 7 extending in the Y direction is arranged on the pillar 5 extending in the Y direction in a plan view.
  • each pillar 5 has an upper surface shape with the Y direction as the longitudinal direction (major axis direction), and the pillar 5 may have a strip shape.
  • the shape of the pillar 5 can be changed in various ways, and the shape of the electrode 7 formed on the pillar 5 can be changed accordingly. Therefore, the pillar 5 can be regarded as a convex portion protruding in the thickness direction of the semiconductor substrate 2. Further, the back surface electrode 8 can be divided into a plurality of parts.
  • each pillar 5 can be efficiently depleted, so that the applied voltage (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) required for depleting the entire pillar 5 is reduced. can do. Therefore, it is possible to achieve both suppression of the voltage applied between the back surface electrode 8 and the plurality of electrodes 7 and depletion of each pillar 5.
  • the third modification is the semiconductor sensor 1 of FIGS. 1 to 3, the semiconductor sensors of the first and second modifications, the semiconductor sensor 1d of the second embodiment described later, and the fourth modification described later. It can be applied to any of the semiconductor sensors 1e.
  • FIG. 16 is a cross-sectional view of a main part showing the semiconductor sensor 1 of the second embodiment, and corresponds to FIG. 2 above.
  • the semiconductor sensor 1 of the second embodiment shown in FIG. 16 will be referred to as a semiconductor sensor 1d below.
  • the p-type semiconductor region 6 is not formed. Instead, Schottky electrodes 21 are formed on the upper surface and side surfaces of each pillar 5. That is, in each pillar 5, the Schottky electrode 21 is formed on the upper surface and the side surface.
  • the Schottky electrode 21 is made of a metal material, for example, a nickel (Ni) film or a titanium (Ti) film.
  • a silicide (a compound layer of a metal constituting the Schottky electrode 21 and a semiconductor constituting the semiconductor layer 3) may be formed in a region between the Schottky electrode 21 and the pillar 5 (semiconductor layer 3).
  • the Schottky electrode 21 can be formed by a material and a forming method such that a Schottky bond is formed between the Schottky electrode 21 and the pillar 5 (semiconductor layer 3).
  • the Schottky electrode 21 is formed on the upper surface and the side surface of the pillar 5 composed of the n-type semiconductor region.
  • a Schottky bond is formed between the Schottky electrode 21 and the pillar 5 (interface). Therefore, in the semiconductor sensor 1d of the second embodiment, the Schottky joint is formed on the upper surface and the side surface of each pillar 5.
  • the Schottky electrode 21 is not formed on the surface of the semiconductor layer 3 between the adjacent pillars 5, that is, at the bottom of the groove 4. Therefore, the Schottky electrode 21 formed on the upper surface and the side surface of a certain pillar 5 and the Schottky electrode 21 formed on the upper surface and the side surface of the pillar 5 adjacent to the pillar 5 are not connected to each other. , Separated from each other. That is, the Schottky electrodes 21 formed for each pillar 5 are not connected to the Schottky electrodes 21 formed for the other pillars 5, and are separated from each other.
  • An electrode 7 is formed on the upper surface of each pillar 5, but in the case of the semiconductor sensor 1d of the second embodiment, the electrode 7 is on the Schottky electrode 21 (more specifically, on the upper surface of the pillar 5). It is formed on the Schottky electrode 21) of the portion located in. Therefore, the electrode 7 is in contact with the Schottky electrode 21 and is electrically connected to the Schottky electrode 21.
  • the electrode 7 is preferably ohmic connected to the Schottky electrode 21.
  • the Schottky junction is formed between the Schottky electrode 21 and the pillar 5 composed of the n-type semiconductor region, the Schottky junction is formed on the upper surface and the side surface of each pillar 5. It will be formed. Therefore, in the case of the semiconductor sensor 1d of the second embodiment, when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, the pillar 5 is located downward from the Schottky junction on the upper surface side (the root direction of the pillar 5). ), The depletion layer not only expands toward the inside of the pillar 5 from the Schottky joint on the side surface side of each pillar 5.
  • each pillar 5 can be efficiently depleted, so that the entire pillar 5 is depleted.
  • the applied voltage required for the above (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) can be reduced. Also in the case of the semiconductor sensor 1d of the second embodiment, it is possible to achieve both suppression of the voltage applied between the back surface electrode 8 of the semiconductor sensor 1c and the plurality of electrodes 7 and depletion of each pillar 5. ..
  • FIG. 17 is a cross-sectional view of a main part showing a modified example (hereinafter referred to as a fourth modified example) of the semiconductor sensor 1 (1d) of the second embodiment, and corresponds to FIG. 16 above.
  • the semiconductor sensor 1 of the fourth modification shown in FIG. 17 will be referred to as a semiconductor sensor 1e below.
  • the semiconductor sensor 1e of the fourth modification shown in FIG. 17 differs from the semiconductor sensor 1d shown in FIG. 16 between the adjacent pillars 5 (that is, at the bottom of the groove 4) in the semiconductor layer.
  • the Schottky electrode 21 is formed on the surface of 3.
  • the Schottky electrodes 21 formed on the upper surface and the side surface of a certain pillar 5 are formed on the upper surface and the side surface of the pillar 5 adjacent to the pillar 5.
  • the Schottky electrodes 21 are connected to each other via the Schottky electrodes 21 formed on the surface of the semiconductor layer 3 between the adjacent pillars 5. That is, the Schottky electrode 21 formed for each pillar 5 is a Schottky formed on the surface of the semiconductor layer 3 between the Schottky electrode 21 formed for the other pillars 5 and the adjacent pillars 5. They are connected via electrodes 21.
  • each pillar 5 not only the depletion layer expands downward from the Schottky junction on the upper surface side, but also the depletion layer expands from the Schottky junction on the side surface side of each pillar 5 toward the inside of the pillar 5. Since the depletion layer can be efficiently expanded from the Schottky joint on the side surface side of each pillar 5 toward the inside of the pillar 5, each pillar 5 can be efficiently depleted, so that the entire pillar 5 is depleted.
  • the applied voltage required for the above (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) can be reduced. Therefore, also in the case of the semiconductor sensor 1e of the fourth modification shown in FIG. 17, the suppression of the voltage applied between the back surface electrode 8 of the semiconductor sensor 1a and the plurality of electrodes 7 and the depletion of each pillar 5 are performed. , Can be compatible.
  • the semiconductor layer 3 and the Schottky electrode are placed between the adjacent pillars 5.
  • the depletion layer expands downward (in the direction toward the semiconductor substrate 2) from the Schottky junction with 21. Therefore, in the case of the semiconductor sensor 1e of the fourth modification shown in FIG. 17, a depletion layer is also formed in the semiconductor layer 3 between the adjacent pillars 5, and the radiation incident on the depletion layer is formed. Can generate electrons and holes.
  • the electrodes 7 are provided for each pillar 5 and the electrodes 7 are separated from each other, the electric charge generated by radiation in the depletion layer formed in the semiconductor layer 3 between the adjacent pillars 5 is generated. , Can be detected from the electrode 7 closest to it. Therefore, the electric signal between the pixels can be separated.
  • the semiconductor layer 3 between the adjacent pillars 5 is formed.
  • the depletion layer is difficult to form. Therefore, it becomes easier to separate the electric signals between the pixels more clearly, and it is easy to improve the resolution of the semiconductor sensor.

Abstract

In this invention, a semiconductor sensor 1 comprises an n-type semiconductor substrate 2 and an n-type semiconductor layer 3 that is formed on the semiconductor substrate 2, and a plurality of pillars 5 are formed on the semiconductor layer 3. Electrodes 7 are formed on the upper surfaces of each pillar 5, and a rear surface electrode 8 is formed on the rear surface of the semiconductor substrate 2. The electrodes 7 are separated from each other. Each pillar 5 has a p-n junction or Schottky junction on the upper and lateral surfaces thereof.

Description

放射線検出センサおよび放射線イメージ検出器Radiation detection sensor and radiation image detector
 本発明は、放射線検出センサおよび放射線イメージ検出器に関し、例えば、放射線検出用の半導体センサおよびそれを用いた放射線検出器に関する。 The present invention relates to a radiation detection sensor and a radiation image detector, for example, a semiconductor sensor for radiation detection and a radiation detector using the same.
 放射線を検出するための放射線検出センサとして、半導体を利用した半導体センサ(半導体検出器)が知られている。半導体センサに放射線が通過することにより電荷を発生させ、これを電気信号に変換することにより、放射線を検出することができる。 As a radiation detection sensor for detecting radiation, a semiconductor sensor (semiconductor detector) using a semiconductor is known. Radiation can be detected by generating an electric charge when radiation passes through the semiconductor sensor and converting it into an electrical signal.
 本技術分野の背景技術として、例えば非特許文献1がある。非特許文献1には、放射線検出用のセンサと読み出し用チップとを別々に作製し、それらをバンプ技術を用いて接合する技術が記載されている。 As a background technique in this technical field, for example, there is Non-Patent Document 1. Non-Patent Document 1 describes a technique for separately manufacturing a sensor for radiation detection and a reading chip and joining them by using a bump technique.
 特許文献1には、CMOSイメージセンサのフォトダイオードに関する技術が記載されている。特許文献2には、ショットキバリアダイオードに関する技術が記載されている。特許文献3には、中性子検出器に関する技術が記載されている。 Patent Document 1 describes a technique related to a photodiode of a CMOS image sensor. Patent Document 2 describes a technique relating to a Schottky barrier diode. Patent Document 3 describes a technique relating to a neutron detector.
特開2000-31455号公報Japanese Unexamined Patent Publication No. 2000-31455 特開2017-201724号公報JP-A-2017-201724 米国特許第8778715号明細書US Pat. No. 8,787,715
 本発明者は、放射線検出用の半導体センサについて検討している。半導体センサは、PN接合またはショットキ接合を有している。電圧印加により半導体センサにおける空乏層を拡大し、その空乏層を放射線が通過することによって電荷を発生させ、その電荷を検知することにより、放射線を検出することができる。半導体センサを空乏化するための電圧が高いと、高電圧を印加するための高電圧電源が必要となる。これは、総合的なコストの増大要因となるため、望ましくない。一方、半導体センサの空乏化が不足すると、半導体センサを通過する放射線の検出感度が低下してしまう。このため、半導体センサの性能を向上させるためには、低い電圧でも半導体センサを効率よく空乏化させることができる技術が望まれる。 The present inventor is studying a semiconductor sensor for radiation detection. The semiconductor sensor has a PN junction or a Schottky junction. Radiation can be detected by enlarging the depletion layer in the semiconductor sensor by applying a voltage, generating an electric charge by passing the radiation through the depletion layer, and detecting the electric charge. When the voltage for depleting a semiconductor sensor is high, a high voltage power supply for applying a high voltage is required. This is not desirable as it increases the overall cost. On the other hand, if the depletion of the semiconductor sensor is insufficient, the detection sensitivity of the radiation passing through the semiconductor sensor will decrease. Therefore, in order to improve the performance of the semiconductor sensor, a technique capable of efficiently depleting the semiconductor sensor even at a low voltage is desired.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and new features will become apparent from the description and accompanying drawings herein.
 一実施の形態によれば、放射線検出センサは、第1導電型の半導体基板と、前記半導体基板に設けられ、それぞれ上部平坦面および側面を有する複数のピラーと、前記複数のピラーのそれぞれにおいて、前記上部平坦面および側面に設けられたPN接合またはショットキ接合と、を備える。放射線検出センサは、更に、前記複数のピラーの前記上部平坦面上にそれぞれ形成された複数の第1電極であって、互いに分離された前記複数の第1電極と、前記半導体基板の前記複数のピラーが形成された側とは反対側の主面上に設けられた第2電極と、を備える。 According to one embodiment, the radiation detection sensor is provided in a first conductive type semiconductor substrate, a plurality of pillars provided on the semiconductor substrate, each having an upper flat surface and a side surface, and each of the plurality of pillars. It includes a PN junction or a Schottky junction provided on the upper flat surface and the side surface. The radiation detection sensor is a plurality of first electrodes each formed on the upper flat surface of the plurality of pillars, the plurality of first electrodes separated from each other, and the plurality of the semiconductor substrate. A second electrode provided on the main surface opposite to the side on which the pillar is formed is provided.
 一実施の形態によれば、放射線検出センサの性能を向上させることができる。 According to one embodiment, the performance of the radiation detection sensor can be improved.
一実施の形態の半導体センサの要部平面図である。It is a main part plan view of the semiconductor sensor of one Embodiment. 一実施の形態の半導体センサの要部断面図である。It is sectional drawing of the main part of the semiconductor sensor of one Embodiment. 一実施の形態の半導体センサの要部断面図である。It is sectional drawing of the main part of the semiconductor sensor of one Embodiment. 一実施の形態の放射線検出器の要部断面図である。It is sectional drawing of the main part of the radiation detector of one Embodiment. 一実施の形態の半導体センサの製造工程中の断面図である。It is sectional drawing in the manufacturing process of the semiconductor sensor of one Embodiment. 図5に続く半導体センサの製造工程中の断面図である。It is sectional drawing in the manufacturing process of the semiconductor sensor following FIG. 図6に続く半導体センサの製造工程中の断面図である。It is sectional drawing in the manufacturing process of the semiconductor sensor following FIG. 図7に続く半導体センサの製造工程中の断面図である。It is sectional drawing in the manufacturing process of the semiconductor sensor following FIG. 図8に続く半導体センサの製造工程中の断面図である。It is sectional drawing in the manufacturing process of the semiconductor sensor following FIG. 図9に続く半導体センサの製造工程中の断面図である。It is sectional drawing in the manufacturing process of the semiconductor sensor following FIG. 検討例の半導体センサの要部断面図である。It is sectional drawing of the main part of the semiconductor sensor of the study example. 第1変形例の半導体センサの要部断面図である。It is sectional drawing of the main part of the semiconductor sensor of the 1st modification. 第2変形例の半導体センサの要部断面図である。It is sectional drawing of the main part of the semiconductor sensor of the 2nd modification. 第3変形例の半導体センサの要部平面図である。It is a main part plan view of the semiconductor sensor of the 3rd modification. 第3変形例の半導体センサの要部断面図である。It is sectional drawing of the main part of the semiconductor sensor of the 3rd modification. 他の実施の形態の半導体センサの要部断面図である。It is sectional drawing of the main part of the semiconductor sensor of another embodiment. 第4変形例の半導体センサの要部断面図である。It is sectional drawing of the main part of the semiconductor sensor of the 4th modification.
 以下、実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 Hereinafter, embodiments will be described in detail based on the drawings. In all the drawings for explaining the embodiment, the members having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted. Further, in the following embodiments, the same or similar parts will not be repeated in principle unless it is particularly necessary.
 (実施の形態1)
 <半導体センサについて>
 本発明の一実施の形態の半導体センサを図面を参照して説明する。図1は、本発明の一実施の形態である半導体センサ1の要部平面図であり、図2および図3は、半導体センサ1の要部断面図である。図1のA1-A1線の位置での断面図が、図2にほぼ対応し、図1のA2-A2線の位置での断面図が、図3にほぼ対応している。図1のA3-A3線の位置での断面図は、図2と同様であるので、ここではその図示は省略し、また、図1のA4-A4線の位置での断面図は、図3と同様であるので、ここではその図示は省略する。図1は、半導体センサ1を上方から見た平面図であり、絶縁膜9を透視し、電極7については点線で示してある。
(Embodiment 1)
<About semiconductor sensors>
A semiconductor sensor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a main part of the semiconductor sensor 1 according to the embodiment of the present invention, and FIGS. 2 and 3 are cross-sectional views of the main part of the semiconductor sensor 1. The cross-sectional view at the position of line A1-A1 in FIG. 1 substantially corresponds to FIG. 2, and the cross-sectional view at the position of line A2-A2 in FIG. 1 substantially corresponds to FIG. Since the cross-sectional view at the position of line A3-A3 in FIG. 1 is the same as that of FIG. 2, the illustration is omitted here, and the cross-sectional view at the position of line A4-A4 in FIG. 1 is shown in FIG. Since it is the same as the above, the illustration is omitted here. FIG. 1 is a plan view of the semiconductor sensor 1 as viewed from above, through which the insulating film 9 is seen through, and the electrode 7 is shown by a dotted line.
 本実施の形態の半導体センサ1は、放射線検出用の半導体センサ(半導体検出器)であり、従って、放射線検出センサである。 The semiconductor sensor 1 of the present embodiment is a semiconductor sensor (semiconductor detector) for radiation detection, and is therefore a radiation detection sensor.
 図1~図3に示されるように、放射線検出センサである本実施の形態の半導体センサ1は、半導体基板2と、半導体基板2上に形成された半導体層3と、を有している。半導体基板2は、n型不純物が導入されたn型の半導体基板である。半導体基板2としては、単結晶のSiC(炭化ケイ素)からなるSiC基板を用いれば、より好ましい。半導体層3は、半導体基板2の主面(上面)2a上にエピタキシャル成長により形成されたエピタキシャル半導体層であり、n型不純物が導入されたn型の半導体層である。半導体層3は、半導体基板2と同種の材料からなり、半導体基板2としてSiC基板を用いた場合は、半導体層3は、単結晶のSiC(炭化ケイ素)からなるSiC層である。半導体層3の不純物濃度(n型不純物濃度)は、半導体基板2の不純物濃度(n型不純物濃度)よりも、低いことが好ましい。半導体基板2と半導体基板2上の半導体層3とを合わせたものを、半導体基板とみなすこともできる。特に制限されないが、SiCの半導体基板2の不純物濃度は1X10^17~1X10^20(cm^-3)程度、SiCの半導体層3の不純物濃度は1X10^13~1X10^16(cm^-3)程度、が想定される。 As shown in FIGS. 1 to 3, the semiconductor sensor 1 of the present embodiment, which is a radiation detection sensor, has a semiconductor substrate 2 and a semiconductor layer 3 formed on the semiconductor substrate 2. The semiconductor substrate 2 is an n-type semiconductor substrate into which n-type impurities have been introduced. As the semiconductor substrate 2, it is more preferable to use a SiC substrate made of single crystal SiC (silicon carbide). The semiconductor layer 3 is an epitaxial semiconductor layer formed by epitaxial growth on the main surface (upper surface) 2a of the semiconductor substrate 2, and is an n-type semiconductor layer into which n-type impurities are introduced. The semiconductor layer 3 is made of the same material as the semiconductor substrate 2, and when a SiC substrate is used as the semiconductor substrate 2, the semiconductor layer 3 is a SiC layer made of single crystal SiC (silicon carbide). The impurity concentration (n-type impurity concentration) of the semiconductor layer 3 is preferably lower than the impurity concentration (n-type impurity concentration) of the semiconductor substrate 2. A combination of the semiconductor substrate 2 and the semiconductor layer 3 on the semiconductor substrate 2 can also be regarded as a semiconductor substrate. Although not particularly limited, the impurity concentration of the SiC semiconductor substrate 2 is about 1X10 ^ 17 to 1X10 ^ 20 (cm ^ -3), and the impurity concentration of the SiC semiconductor layer 3 is 1X10 ^ 13 to 1X10 ^ 16 (cm ^ -3). ) Degree is assumed.
 半導体層3には、溝(トレンチ)4が形成されている。半導体層3に溝4が形成されていることにより、半導体層3に複数のピラー(柱状部、凸部)5が形成されている。溝4は、複数のピラー5を区画する溝である。すなわち、半導体層3は、溝4によって複数のピラー5に区画されており、隣り合うピラー5の間に溝4が存在している。ピラー5は、柱状の凸部であり、半導体基板2の主面2aに略垂直な方向に突出している。 A groove (trench) 4 is formed in the semiconductor layer 3. Since the groove 4 is formed in the semiconductor layer 3, a plurality of pillars (columnar portions, convex portions) 5 are formed in the semiconductor layer 3. The groove 4 is a groove for partitioning a plurality of pillars 5. That is, the semiconductor layer 3 is divided into a plurality of pillars 5 by the grooves 4, and the grooves 4 exist between the adjacent pillars 5. The pillar 5 is a columnar convex portion and projects in a direction substantially perpendicular to the main surface 2a of the semiconductor substrate 2.
 図1の場合は、溝4は、平面視においてX方向およびY方向に延在する格子状に形成されている。ここで、X方向およびY方向は、半導体基板2の主面2aまたは裏面2bに略平行な方向であり、また、X方向とY方向とは互いに交差する方向(より特定的には互いに直交する方向)である。また、平面視とは、半導体基板2の主面2aまたは裏面2bに略平行な平面で見た場合に対応している。図1では、ピラー5は、特に限定されないがX方向とY方向とに同じ繰返し周期(同じピッチ)で配置され、X方向およびY方向に対して等方的である。もちろんX方向とY方向とでピラー5を配置する周期を少し違ったものとしても良い。 In the case of FIG. 1, the grooves 4 are formed in a grid pattern extending in the X direction and the Y direction in a plan view. Here, the X direction and the Y direction are directions substantially parallel to the main surface 2a or the back surface 2b of the semiconductor substrate 2, and the X direction and the Y direction intersect each other (more specifically, orthogonal to each other). Direction). Further, the plan view corresponds to the case where the semiconductor substrate 2 is viewed in a plane substantially parallel to the main surface 2a or the back surface 2b. In FIG. 1, the pillars 5 are not particularly limited, but are arranged in the X direction and the Y direction with the same repetition period (same pitch), and are isotropic with respect to the X direction and the Y direction. Of course, the period for arranging the pillars 5 may be slightly different between the X direction and the Y direction.
 図1の場合は、ピラー5の平面形状は、四角形状(より特定的には長方形状または正方形状)である。ピラー5の平面形状が四角形状の場合は、ピラー5の立体形状は、四角柱状となる。ピラー5の平面形状は、四角形状以外でもよく、例えば円形状であってもよい。ピラー5の平面形状が円形状の場合は、ピラー5の立体形状は、円柱状となる。また、ピラー5の立体形状が、テーパ形状(先細り形状)を有する場合もあり得る。ここで、平面形状とは、平面視における形状に対応している。 In the case of FIG. 1, the planar shape of the pillar 5 is a square shape (more specifically, a rectangular shape or a square shape). When the planar shape of the pillar 5 is a square shape, the three-dimensional shape of the pillar 5 is a square columnar shape. The planar shape of the pillar 5 may be other than a square shape, and may be, for example, a circular shape. When the planar shape of the pillar 5 is circular, the three-dimensional shape of the pillar 5 is cylindrical. Further, the three-dimensional shape of the pillar 5 may have a tapered shape (tapered shape). Here, the planar shape corresponds to the shape in a planar view.
 各ピラー5は、半導体層3の一部であり、ピラー5同士は、溝4によって離間(分離)されている。溝4の底面は、半導体層3の厚みの途中に位置している。このため、溝4の底面の下にも、半導体層3が存在しており、複数のピラー5は、半導体層3の下層部分によって繋がっている。他の形態として、溝4が半導体基板2に到達している場合もあり得るが、その場合は、半導体基板2の主面上に、複数のピラー5が直接的に配置された状態になる。 Each pillar 5 is a part of the semiconductor layer 3, and the pillars 5 are separated (separated) by a groove 4. The bottom surface of the groove 4 is located in the middle of the thickness of the semiconductor layer 3. Therefore, the semiconductor layer 3 also exists under the bottom surface of the groove 4, and the plurality of pillars 5 are connected by the lower layer portion of the semiconductor layer 3. As another form, the groove 4 may reach the semiconductor substrate 2, but in that case, a plurality of pillars 5 are directly arranged on the main surface of the semiconductor substrate 2.
 各ピラー5は、上面(上部平坦面)と側面とを有している。ピラー5の上面は、ピラー5の上部平坦面(先端面)に対応している。 Each pillar 5 has an upper surface (upper flat surface) and a side surface. The upper surface of the pillar 5 corresponds to the upper flat surface (tip surface) of the pillar 5.
 各ピラー5の上面および側面には、p型半導体領域(p型半導体層)6が形成されている。すなわち、各ピラー5において、上面と側面とにわたってp型半導体領域6が形成されている。つまり、各ピラー5の上面および側面の表層部分には、p型半導体領域6が形成されている。 A p-type semiconductor region (p-type semiconductor layer) 6 is formed on the upper surface and the side surface of each pillar 5. That is, in each pillar 5, the p-type semiconductor region 6 is formed over the upper surface and the side surface. That is, the p-type semiconductor region 6 is formed on the surface layer portions on the upper surface and the side surface of each pillar 5.
 ここで、p型半導体領域6のうち、各ピラー5の上面(の表層部)に形成されている部分を、p型半導体領域6aと称し、p型半導体領域6のうち、各ピラー5の側面(の表層部)に形成されている部分を、p型半導体領域6bと称することとする。p型半導体領域6aとp型半導体領域6bとは、p型領域半導体領域として繋がっており、電気的に接続されている。p型半導体領域6aとp型半導体領域6bとは、不純物濃度(p型不純物濃度)が同じであっても、異なっていてもよい。また、p型半導体領域6aとp型半導体領域6bとは、同じ工程で形成しても、異なる工程で形成してもよい。また、各ピラーの側面はp型半導体領域6bによって全てが覆われていても、その一部が覆われていても良い。また、p型半導体領域6aがp型半導体領域6bよりも高不純物濃度の場合は、電極7とp型半導体領域6aとのコンタクト抵抗を低減させやすい。 Here, a portion of the p-type semiconductor region 6 formed on the upper surface (surface layer portion) of each pillar 5 is referred to as a p-type semiconductor region 6a, and the side surface of each pillar 5 in the p-type semiconductor region 6 is referred to as a p-type semiconductor region 6a. The portion formed in (the surface layer portion of) is referred to as a p-type semiconductor region 6b. The p-type semiconductor region 6a and the p-type semiconductor region 6b are connected as a p-type region semiconductor region and are electrically connected. The p-type semiconductor region 6a and the p-type semiconductor region 6b may have the same or different impurity concentrations (p-type impurity concentrations). Further, the p-type semiconductor region 6a and the p-type semiconductor region 6b may be formed in the same step or may be formed in different steps. Further, the side surface of each pillar may be completely covered by the p-type semiconductor region 6b, or a part thereof may be covered. Further, when the p-type semiconductor region 6a has a higher impurity concentration than the p-type semiconductor region 6b, it is easy to reduce the contact resistance between the electrode 7 and the p-type semiconductor region 6a.
 また、半導体層3のうち、p型半導体領域6となっていない領域(n型を維持している領域)を、n型半導体領域3aと称することとする。各ピラー5は、上面および側面の表層部がp型半導体領域6により構成され、それ以外がn型半導体領域3aにより構成された状態となっている。このため、各ピラー5において、p型半導体領域6はn型半導体領域3aと隣接しており、p型半導体領域6とn型半導体領域3aとの間(界面)にPN接合が形成されている。p型半導体領域6の厚みは薄く、ピラー5は主としてn型半導体領域3aにより形成されているため、ピラー5を構成するn型半導体領域3aの上面および側面上にp型半導体領域6が形成されているとみなすこともできる。 Further, in the semiconductor layer 3, the region that is not the p-type semiconductor region 6 (the region that maintains the n-type) is referred to as the n-type semiconductor region 3a. In each pillar 5, the surface layer portions on the upper surface and the side surface are composed of the p-type semiconductor region 6, and the other pillars 5 are configured by the n-type semiconductor region 3a. Therefore, in each pillar 5, the p-type semiconductor region 6 is adjacent to the n-type semiconductor region 3a, and a PN junction is formed between the p-type semiconductor region 6 and the n-type semiconductor region 3a (interface). .. Since the p-type semiconductor region 6 is thin and the pillar 5 is mainly formed by the n-type semiconductor region 3a, the p-type semiconductor region 6 is formed on the upper surface and the side surface of the n-type semiconductor region 3a constituting the pillar 5. It can also be considered to be.
 本実施の形態においては、隣り合うピラー5の間においては、すなわち溝4の底部においては、半導体層3にp型半導体領域6は形成されていない。このため、あるピラー5の上面および側面(の表層部分)に形成されているp型半導体領域6と、そのピラー5の隣のピラー5の上面および側面(の表層部分)に形成されているp型半導体領域6とは、互いに繋がってはおらず、n型半導体領域3aを介して互いに分離されている。すなわち、各ピラー5に形成されているp型半導体領域6は、他のピラー5に形成されているp型半導体領域6とは繋がっておらず、n型半導体領域3aを介して分離されている。 In the present embodiment, the p-type semiconductor region 6 is not formed in the semiconductor layer 3 between the adjacent pillars 5, that is, at the bottom of the groove 4. Therefore, the p-type semiconductor region 6 formed on the upper surface and the side surface (surface layer portion) of a certain pillar 5 and the p-type semiconductor region 6 formed on the upper surface and the side surface (surface layer portion) of the pillar 5 adjacent to the pillar 5 are formed. The type semiconductor region 6 is not connected to each other, but is separated from each other via the n-type semiconductor region 3a. That is, the p-type semiconductor region 6 formed in each pillar 5 is not connected to the p-type semiconductor region 6 formed in the other pillars 5, and is separated via the n-type semiconductor region 3a. ..
 各ピラー5の上面上には、電極7が形成されている。このため、電極7は、p型半導体領域6上(より特定的にはp型半導体領域6a上)に形成されており、p型半導体領域6と接してp型半導体領域6と電気的に接続されている。電極7は、p型半導体領域6とオーミック接続されていることが好ましい。 Electrodes 7 are formed on the upper surface of each pillar 5. Therefore, the electrode 7 is formed on the p-type semiconductor region 6 (more specifically, on the p-type semiconductor region 6a), and is in contact with the p-type semiconductor region 6 and electrically connected to the p-type semiconductor region 6. Has been done. The electrode 7 is preferably ohmic-connected to the p-type semiconductor region 6.
 電極7は、金属材料からなり、例えば、チタン(Ti)層とそのチタン層上のアルミニウム(Al)層との積層膜からなる。各ピラー5の上面上に形成された電極7と、他のピラー5の上面上に形成された電極7とは、繋がっておらず、互いに分離されている。すなわち、ピラー5毎に、独立した電極7が設けられており、電極7同士は、互いに分離されている。 The electrode 7 is made of a metal material, for example, a laminated film of a titanium (Ti) layer and an aluminum (Al) layer on the titanium layer. The electrode 7 formed on the upper surface of each pillar 5 and the electrode 7 formed on the upper surface of the other pillar 5 are not connected and are separated from each other. That is, independent electrodes 7 are provided for each pillar 5, and the electrodes 7 are separated from each other.
 半導体基板2の裏面(主面)2b上には、電極として裏面電極8が形成されている。裏面電極8は、半導体基板2の裏面2bのほぼ全体にわたって形成されている。裏面電極8は、半導体基板2と電気的に接続されている。裏面電極8は、半導体基板2とオーミック接続されている。他の形態として、裏面電極8と半導体基板2とがショットキ接続されている場合もあり得る。裏面電極8は、金属材料からなり、例えば、ニッケル(Ni)層と、そのニッケル層上のチタン(Ti)層との積層膜からなる。 A back surface electrode 8 is formed as an electrode on the back surface (main surface) 2b of the semiconductor substrate 2. The back surface electrode 8 is formed over almost the entire back surface 2b of the semiconductor substrate 2. The back surface electrode 8 is electrically connected to the semiconductor substrate 2. The back surface electrode 8 is ohmic contacted with the semiconductor substrate 2. As another form, the back surface electrode 8 and the semiconductor substrate 2 may be shotki-connected. The back surface electrode 8 is made of a metal material, for example, a laminated film of a nickel (Ni) layer and a titanium (Ti) layer on the nickel layer.
 ここで、半導体基板2の裏面2bとは、半導体基板2の互いに反対側に位置する2つの主面のうち、半導体層3が形成された側の主面2aとは反対側の主面に対応している。半導体層3は、半導体基板2の2つの主面のうちの一方である半導体基板2の主面2a上に形成されている。半導体基板2の主面2aと裏面2bとは、互いに反対側に位置している。 Here, the back surface 2b of the semiconductor substrate 2 corresponds to the main surface on the side opposite to the main surface 2a on the side where the semiconductor layer 3 is formed, out of the two main surfaces located on opposite sides of the semiconductor substrate 2. is doing. The semiconductor layer 3 is formed on the main surface 2a of the semiconductor substrate 2, which is one of the two main surfaces of the semiconductor substrate 2. The main surface 2a and the back surface 2b of the semiconductor substrate 2 are located on opposite sides of each other.
 本実施の形態の半導体センサ1は、複数のピラー5の間を埋める絶縁膜9を、更に有している。溝4は、絶縁膜9により埋め込まれている。すなわち、半導体基板2(半導体層3)上に、溝4を埋めるように、絶縁膜9が形成されている。絶縁膜9は、例えば樹脂膜(ポリイミド樹脂膜など)からなる。絶縁膜9は、単層の絶縁膜であっても、あるいは、複数の絶縁膜が積層された積層絶縁膜であってもよい。例えば、絶縁膜9を、薄い酸化シリコン膜とその上の厚い樹脂膜との積層膜とすることもできる。電極7は、絶縁膜9で覆われずに、絶縁膜9の開口部から露出されている。絶縁膜9は、保護膜として機能することができる。絶縁膜9は、電気的には必須ではないが、絶縁膜9を設けることにより、複数のピラー5を安定させることができ、また、半導体センサ1を取り扱いやすくなる。また、絶縁膜9を設けることにより、半導体センサ1の信頼性を向上させることもできる。 The semiconductor sensor 1 of the present embodiment further has an insulating film 9 that fills the space between the plurality of pillars 5. The groove 4 is embedded by the insulating film 9. That is, the insulating film 9 is formed on the semiconductor substrate 2 (semiconductor layer 3) so as to fill the groove 4. The insulating film 9 is made of, for example, a resin film (such as a polyimide resin film). The insulating film 9 may be a single-layer insulating film or a laminated insulating film in which a plurality of insulating films are laminated. For example, the insulating film 9 may be a laminated film of a thin silicon oxide film and a thick resin film on the thin silicon oxide film. The electrode 7 is not covered with the insulating film 9, but is exposed from the opening of the insulating film 9. The insulating film 9 can function as a protective film. The insulating film 9 is not electrically essential, but by providing the insulating film 9, a plurality of pillars 5 can be stabilized, and the semiconductor sensor 1 can be easily handled. Further, by providing the insulating film 9, the reliability of the semiconductor sensor 1 can be improved.
 半導体センサ1を用いて放射線を検出する際には、半導体センサ1においては、裏面電極8と複数の電極7との間に、所定の電圧が印加される。例えば、裏面電極8に所定の高電位が印加され、複数の電極7に所定の低電位が印加される。これにより、各ピラー5において、p型半導体領域6とn型半導体領域3aとのPN接合面から空乏層が拡がって、各ピラー5が空乏化される。すなわち、各ピラー5を構成するn型半導体領域3aが空乏化される。この状態で、半導体センサ1の空乏層(空乏化されたピラー5)に放射線が入射すると、電離により電子とホールが生成される。生成された電子は裏面電極8に移動し、生成されたホールは電極7に移動する。これにより、半導体センサ1の電極7と裏面電極8との間に電流が流れることになるため、この電流を検知することにより、半導体センサ1に入射した放射線を検出することができる。 When detecting radiation using the semiconductor sensor 1, a predetermined voltage is applied between the back surface electrode 8 and the plurality of electrodes 7 in the semiconductor sensor 1. For example, a predetermined high potential is applied to the back surface electrode 8, and a predetermined low potential is applied to the plurality of electrodes 7. As a result, in each pillar 5, the depletion layer expands from the PN junction surface between the p-type semiconductor region 6 and the n-type semiconductor region 3a, and each pillar 5 is depleted. That is, the n-type semiconductor region 3a constituting each pillar 5 is depleted. In this state, when radiation is incident on the depletion layer (depleted pillar 5) of the semiconductor sensor 1, electrons and holes are generated by ionization. The generated electrons move to the back surface electrode 8, and the generated holes move to the electrode 7. As a result, a current flows between the electrode 7 of the semiconductor sensor 1 and the back electrode 8, so that the radiation incident on the semiconductor sensor 1 can be detected by detecting this current.
 <放射線検出装置について>
 次に、半導体センサ1を用いた放射線検出器(放射線イメージ検出器、半導体検出器、放射線検出装置)11について、図面を参照して説明する。図4は、本実施の形態の放射線検出器11の要部断面図である。図4に示される半導体センサ1の断面は、上記図2に示される半導体センサ1の断面にほぼ対応している。
<About radiation detection device>
Next, a radiation detector (radiation image detector, semiconductor detector, radiation detector) 11 using the semiconductor sensor 1 will be described with reference to the drawings. FIG. 4 is a cross-sectional view of a main part of the radiation detector 11 of the present embodiment. The cross section of the semiconductor sensor 1 shown in FIG. 4 substantially corresponds to the cross section of the semiconductor sensor 1 shown in FIG.
 本実施の形態の放射線検出器11は、上述した半導体センサ1と、半導体チップ(読み出し用半導体チップ)12とを備えている。半導体チップ12は、半導体センサ1上に搭載(配置)されている。 The radiation detector 11 of the present embodiment includes the above-mentioned semiconductor sensor 1 and a semiconductor chip (semiconductor chip for reading) 12. The semiconductor chip 12 is mounted (arranged) on the semiconductor sensor 1.
 半導体チップ12は、半導体基板12aと半導体基板12a上に形成された多層配線構造12bとを有している。半導体基板12aには、MISFET(Metal Insulator Semiconductor Field Effect Transistor)などの半導体素子(図示せず)が形成されてる。多層配線構造12bは、複数の絶縁膜と複数の配線層とを有している。半導体基板12aに形成された半導体素子と、多層配線構造12bに含まれる配線などにより、種々の回路が形成され得る。 The semiconductor chip 12 has a semiconductor substrate 12a and a multilayer wiring structure 12b formed on the semiconductor substrate 12a. A semiconductor element (not shown) such as a MISFET (Metal Insulator Semiconductor Field Effect Transistor) is formed on the semiconductor substrate 12a. The multilayer wiring structure 12b has a plurality of insulating films and a plurality of wiring layers. Various circuits can be formed by the semiconductor element formed on the semiconductor substrate 12a and the wiring included in the multilayer wiring structure 12b.
 半導体チップ12は、種々の回路が形成された半導体チップであるが、半導体センサ1で放射線の入射により生成された電流を読み出すための回路を含んでいる。半導体センサ1は、放射線検出用の半導体チップに対応し、半導体チップ12は、読み出し用の半導体チップに対応している。 The semiconductor chip 12 is a semiconductor chip in which various circuits are formed, but includes a circuit for reading out a current generated by the incident of radiation by the semiconductor sensor 1. The semiconductor sensor 1 corresponds to a semiconductor chip for radiation detection, and the semiconductor chip 12 corresponds to a semiconductor chip for reading.
 半導体チップ12は、その主面に、複数の電極(パッド電極)13を有している。複数の電極13は、半導体チップ12内に形成された回路に、半導体チップ12の内部配線(多層配線構造12bに含まれる配線)などを通じて電気的に接続されている。 The semiconductor chip 12 has a plurality of electrodes (pad electrodes) 13 on its main surface. The plurality of electrodes 13 are electrically connected to a circuit formed in the semiconductor chip 12 through internal wiring (wiring included in the multilayer wiring structure 12b) of the semiconductor chip 12.
 半導体チップ12の複数の電極13と、半導体センサ1の複数の電極7とが、それぞれバンプ(バンプ電極)14を介して接合されて電気的に接続されている。すなわち、 半導体チップ12の複数の電極13と、半導体センサ1の複数の電極7とは、バンプ接続されている。バンプ14は、例えば半田バンプまたは金バンプである。 The plurality of electrodes 13 of the semiconductor chip 12 and the plurality of electrodes 7 of the semiconductor sensor 1 are bonded and electrically connected via bumps (bump electrodes) 14, respectively. That is, the plurality of electrodes 13 of the semiconductor chip 12 and the plurality of electrodes 7 of the semiconductor sensor 1 are bump-connected. The bump 14 is, for example, a solder bump or a gold bump.
 放射線検出器11は、例えば、配線基板(図示せず)などに搭載することができ、その場合は、半導体センサ1の裏面電極8が、その配線基板の電極などに電気的に接続される。 The radiation detector 11 can be mounted on, for example, a wiring board (not shown), in which case the back electrode 8 of the semiconductor sensor 1 is electrically connected to the electrode of the wiring board or the like.
 上述のように、放射線検出器11を構成する半導体センサ1の空乏層(空乏化されたピラー5)に放射線が入射すると、電離により電子とホールが生成される。生成された電子は裏面電極8に移動し、生成されたホールは電極7に移動する。これにより、半導体センサ1の電極7と裏面電極8との間に電流が流れることになる。電極7に移動した電子は、その電極7に接続されたバンプ14および電極13を介して、半導体チップ12内の回路に伝導させることができる。これにより、半導体センサ1に入射した放射線により発生した電流(電荷)を、半導体チップ12内の回路により、読み出す(検出する)ことができる。半導体チップ12内の回路によって、半導体センサ1が有する複数の電極7のうちのどの電極7に電流が流れたかを検知することにより、半導体センサ1が有する複数のピラー5のうちのどのピラー5に放射線が入射したかを検出することができ、また、電流の大きさにより、放射線の強度を判別することができる。これにより、半導体センサ1に入射する放射線の位置と強度の2次元的な分布(2次元像)を検出(解析)することができる。このため、放射線検出器11は、放射線イメージ検出器とみなすことができる。各ピラー5が、画素(ピクセル)を構成する。 As described above, when radiation is incident on the depletion layer (depleted pillar 5) of the semiconductor sensor 1 constituting the radiation detector 11, electrons and holes are generated by ionization. The generated electrons move to the back surface electrode 8, and the generated holes move to the electrode 7. As a result, a current flows between the electrode 7 of the semiconductor sensor 1 and the back electrode 8. The electrons transferred to the electrode 7 can be conducted to the circuit in the semiconductor chip 12 via the bump 14 and the electrode 13 connected to the electrode 7. As a result, the current (charge) generated by the radiation incident on the semiconductor sensor 1 can be read out (detected) by the circuit in the semiconductor chip 12. By detecting which of the plurality of electrodes 7 of the semiconductor sensor 1 the current has flowed through the circuit in the semiconductor chip 12, which pillar 5 of the plurality of pillars 5 of the semiconductor sensor 1 has the current flowed. It is possible to detect whether or not radiation is incident, and it is possible to determine the intensity of radiation from the magnitude of the current. This makes it possible to detect (analyze) a two-dimensional distribution (two-dimensional image) of the position and intensity of the radiation incident on the semiconductor sensor 1. Therefore, the radiation detector 11 can be regarded as a radiation image detector. Each pillar 5 constitutes a pixel.
 <半導体センサの製造方法>
 次に、本実施の形態の半導体センサ1の製造方法の一例について、図5~図10を参照して説明する。図5~図10は、本実施の形態の半導体センサ1の製造工程中の断面図であり、上記図2に対応する断面が示されている。
<Manufacturing method of semiconductor sensor>
Next, an example of the manufacturing method of the semiconductor sensor 1 of the present embodiment will be described with reference to FIGS. 5 to 10. 5 to 10 are cross-sectional views of the semiconductor sensor 1 of the present embodiment during the manufacturing process, and the cross-sectional views corresponding to FIG. 2 are shown.
 まず、図5に示されるように、主面(上面)2aおよび裏面(下面)2bを有する半導体基板2を用意する。この段階では、半導体基板2は、チップに個片化されてはおらず、半導体ウエハの状態である。半導体基板2は、例えば窒素(N)のようなn型不純物が導入されたn型のSiC(炭化ケイ素)基板である。 First, as shown in FIG. 5, a semiconductor substrate 2 having a main surface (upper surface) 2a and a back surface (lower surface) 2b is prepared. At this stage, the semiconductor substrate 2 is not fragmented into chips and is in the state of a semiconductor wafer. The semiconductor substrate 2 is an n-type SiC (silicon carbide) substrate into which an n-type impurity such as nitrogen (N) has been introduced.
 次に、図5に示されるように、半導体基板2の主面2a上に、エピタキシャル成長法により、SiC(炭化珪素)からなるn型の半導体層3を形成する。半導体層3の不純物濃度は、半導体基板2の不純物濃度よりも低くすることができる。なお、予め、n型の半導体基板2上に半導体層3が形成されたSiCエピタキシャル基板を購入してもよい。 Next, as shown in FIG. 5, an n-type semiconductor layer 3 made of SiC (silicon carbide) is formed on the main surface 2a of the semiconductor substrate 2 by an epitaxial growth method. The impurity concentration of the semiconductor layer 3 can be lower than the impurity concentration of the semiconductor substrate 2. A SiC epitaxial substrate in which the semiconductor layer 3 is formed on the n-type semiconductor substrate 2 may be purchased in advance.
 次に、図6に示されるように、半導体層3に溝4を形成する。溝4は、例えば、フォトリソグラフィ技術およびエッチング技術を用いて形成することができる。半導体層3に溝4を形成することにより、半導体層3に複数のピラー5が形成される。 Next, as shown in FIG. 6, a groove 4 is formed in the semiconductor layer 3. The groove 4 can be formed by using, for example, a photolithography technique and an etching technique. By forming the groove 4 in the semiconductor layer 3, a plurality of pillars 5 are formed in the semiconductor layer 3.
 次に、図7に示されるように、半導体基板2の裏面2b上に、裏面電極8を形成する。裏面電極8は、例えばスパッタリング法などを用いて形成することができる。裏面電極8を形成するタイミングは任意であり、必要に応じて変更することができる。 Next, as shown in FIG. 7, the back surface electrode 8 is formed on the back surface 2b of the semiconductor substrate 2. The back surface electrode 8 can be formed by using, for example, a sputtering method. The timing for forming the back surface electrode 8 is arbitrary and can be changed as needed.
 次に、図8に示されるように、ピラー5の上面および側面に例えばアルミニウム(Al)のようなp型不純物を導入(注入)することにより、p型半導体領域6を形成する。p型半導体領域6の形成法は任意であるが、例えばイオン注入法を用いることができる。例えば、斜めイオン注入を用いれば、ピラー5の上面だけでなく、ピラー5の側面にもp型不純物を注入することができる。また、ピラー5がテーパ形状を有している場合は、垂直イオン注入を用いた場合でも、ピラー5の上面と側面とにp型不純物を注入することができる。斜めイオン注入では注入角度を適切に調整することで、溝4の底部にp型不純物が注入されない分離領域を形成することができる(特に図14に示すストリップ形状において有効)。なお、溝4の底部のp型不純物の排除は、イオン注入前に溝4の底部にマスクを設けたり、イオン注入後に4の底部のp型不純物領域を選択的にエッチングする等で対応できる。 Next, as shown in FIG. 8, a p-type semiconductor region 6 is formed by introducing (injecting) a p-type impurity such as aluminum (Al) into the upper surface and the side surface of the pillar 5. The method for forming the p-type semiconductor region 6 is arbitrary, but for example, an ion implantation method can be used. For example, if oblique ion implantation is used, p-type impurities can be implanted not only on the upper surface of the pillar 5 but also on the side surface of the pillar 5. Further, when the pillar 5 has a tapered shape, p-type impurities can be implanted into the upper surface and the side surface of the pillar 5 even when vertical ion implantation is used. In oblique ion implantation, by appropriately adjusting the implantation angle, it is possible to form a separation region in which p-type impurities are not implanted at the bottom of the groove 4 (especially effective in the strip shape shown in FIG. 14). The removal of p-type impurities at the bottom of the groove 4 can be dealt with by providing a mask at the bottom of the groove 4 before ion implantation or selectively etching the p-type impurity region at the bottom of 4 after ion implantation.
 次に、図9に示されるように、半導体層3上に、溝4内を埋めるように、絶縁膜9を形成する。絶縁膜9の形成後、必要に応じて絶縁膜9の平坦化処理を行うこともできる。 Next, as shown in FIG. 9, an insulating film 9 is formed on the semiconductor layer 3 so as to fill the groove 4. After the insulating film 9 is formed, the insulating film 9 can be flattened if necessary.
 次に、図10に示されるように、絶縁膜9に複数の開口部10を形成する。開口部10は、例えば、フォトリソグラフィ技術およびエッチング技術を用いて形成することができる。開口部10は、ピラー5と整合する位置に形成されるため、各開口部10からは、ピラー5の上面が露出される。 Next, as shown in FIG. 10, a plurality of openings 10 are formed in the insulating film 9. The opening 10 can be formed using, for example, photolithography and etching techniques. Since the opening 10 is formed at a position consistent with the pillar 5, the upper surface of the pillar 5 is exposed from each opening 10.
 次に、図10に示されるように、開口部10から露出されるピラー5の上面上に、電極7を形成する。電極7の形成法は任意であるが、例えば、めっき法またはスパッタリング法などを用いることができる。また、開口部10から露出されるピラー5の上面上に局所的に金属膜を形成することにより、電極7を形成してもよいし、あるいは、開口部10から露出されるピラー5の上面上を含む絶縁膜9上に電極7用の金属膜を形成した後で、その金属膜をパターニングすることにより、電極7を形成することもできる。いずれにしても、電極7は、ピラー5の上面上に局所的に形成されており、各ピラー5の上面上に形成された電極7は、他のピラー5の上面上に形成された電極7とは繋がっておらず、分離されている。 Next, as shown in FIG. 10, an electrode 7 is formed on the upper surface of the pillar 5 exposed from the opening 10. The method for forming the electrode 7 is arbitrary, but for example, a plating method or a sputtering method can be used. Further, the electrode 7 may be formed by locally forming a metal film on the upper surface of the pillar 5 exposed from the opening 10, or the electrode 7 may be formed on the upper surface of the pillar 5 exposed from the opening 10. The electrode 7 can also be formed by forming a metal film for the electrode 7 on the insulating film 9 including the above and then patterning the metal film. In any case, the electrode 7 is locally formed on the upper surface of the pillar 5, and the electrode 7 formed on the upper surface of each pillar 5 is an electrode 7 formed on the upper surface of the other pillar 5. It is not connected to and is separated.
 次に、半導体基板2とその上の構造体(半導体層3および絶縁膜9)とを、ダイシング(切断)することにより、チップ(半導体チップ)に個片化する。個片化されたチップが、上記半導体センサ1となる。 Next, the semiconductor substrate 2 and the structure on it (semiconductor layer 3 and insulating film 9) are diced (cut) to be individualized into chips (semiconductor chips). The individualized chip becomes the semiconductor sensor 1.
 このようにして、半導体センサ1を製造することができる。なお、ここでは、半導体センサ1の製造工程の一例について説明したが、これに限定されず、種々の手法を用いて半導体センサ1を製造することができる。 In this way, the semiconductor sensor 1 can be manufactured. Although an example of the manufacturing process of the semiconductor sensor 1 has been described here, the semiconductor sensor 1 can be manufactured by using various methods without limitation.
 半導体センサ1上に半導体チップ12を搭載する場合は、上記図4に示されるように、半導体センサ1の電極7が形成されている側の主面と半導体チップ12の電極13が形成されている側の主面とが対向するように、半導体センサ1上に半導体チップ12を搭載し、半導体チップ12の複数の電極13と、半導体センサ1の複数の電極7とを、それぞれバンプ14を介して接合させる。 When the semiconductor chip 12 is mounted on the semiconductor sensor 1, as shown in FIG. 4, the main surface on the side where the electrode 7 of the semiconductor sensor 1 is formed and the electrode 13 of the semiconductor chip 12 are formed. The semiconductor chip 12 is mounted on the semiconductor sensor 1 so as to face the main surface on the side, and the plurality of electrodes 13 of the semiconductor chip 12 and the plurality of electrodes 7 of the semiconductor sensor 1 are respectively via the bump 14. Join.
 <検討の経緯について>
 本発明者は、放射線を検出するための半導体センサチップ(上記半導体センサ1に相当)と、放射線によって半導体センサチップで生じた電荷(電流)を読み出すための読み出し用チップ(上記半導体チップ12に相当)とを電気的に接続して、放射線検出器を構成することを検討している。半導体センサチップと読み出し用チップとは、バンプ(上記バンプ14に相当)を介して電気的に接続される。
<Background of examination>
The present inventor has a semiconductor sensor chip for detecting radiation (corresponding to the semiconductor sensor 1) and a reading chip for reading the electric charge (current) generated in the semiconductor sensor chip by radiation (corresponding to the semiconductor chip 12). ) Is electrically connected to form a radiation detector. The semiconductor sensor chip and the reading chip are electrically connected via bumps (corresponding to the bump 14).
 図11は、本発明者が検討した検討例の半導体センサ101の要部断面図であり、上記図2に対応するものである。 FIG. 11 is a cross-sectional view of a main part of the semiconductor sensor 101 of the study example examined by the present inventor, and corresponds to FIG. 2 above.
 図11に示される検討例の半導体センサ101は、n型の半導体基板102と、半導体基板102上に形成されたn型の半導体層103と、を有している。半導体層103の表面(表層部)には、複数のp型半導体領域106が互いに離間して形成され、各p型半導体領域106上に電極107が形成されている。各p型半導体領域106とn型の半導体層103との間(界面)にはPN接合が形成されている。半導体基板102の裏面上には、裏面電極108が形成されている。 The semiconductor sensor 101 of the study example shown in FIG. 11 has an n-type semiconductor substrate 102 and an n-type semiconductor layer 103 formed on the semiconductor substrate 102. A plurality of p-type semiconductor regions 106 are formed on the surface (surface layer portion) of the semiconductor layer 103 so as to be separated from each other, and an electrode 107 is formed on each p-type semiconductor region 106. A PN junction is formed between each p-type semiconductor region 106 and the n-type semiconductor layer 103 (interface). A back surface electrode 108 is formed on the back surface of the semiconductor substrate 102.
 図11に示される検討例の半導体センサ101を用いて放射線を検出する際には、半導体センサ101においては、裏面電極108と複数の電極107との間に、所定の電圧が印加される。例えば、裏面電極108に所定の高電位が印加され、複数の電極107に所定の低電位が印加される。これにより、半導体層103において、p型半導体領域106とn型の半導体層103との間のPN接合面から下方(裏面電極108に近づく方向)に空乏層が拡がる。この状態で、半導体センサ101の空乏層に放射線が入射すると、電離により電子とホールが生成される。生成された電子は裏面電極108に移動し、生成されたホールは電極107に移動する。これを、電流として、読み出し用チップ(上記半導体チップ12に相当)で読み出すことにより、半導体センサ101に入射した放射線を検出することができる。半導体センサ101が有する複数の電極107のうちのどの電極107に電流が流れたかを検知することにより、半導体センサ101のどの位置に放射線が入射したかを検出することができ、また、電流の大きさにより、放射線の強度を判別することができる。これにより、半導体センサ101に入射する放射線の位置と強度の2次元的な分布を検出することができる。 When detecting radiation using the semiconductor sensor 101 of the study example shown in FIG. 11, a predetermined voltage is applied between the back surface electrode 108 and the plurality of electrodes 107 in the semiconductor sensor 101. For example, a predetermined high potential is applied to the back surface electrode 108, and a predetermined low potential is applied to the plurality of electrodes 107. As a result, in the semiconductor layer 103, the depletion layer expands downward (in the direction approaching the back surface electrode 108) from the PN junction surface between the p-type semiconductor region 106 and the n-type semiconductor layer 103. In this state, when radiation is incident on the depletion layer of the semiconductor sensor 101, electrons and holes are generated by ionization. The generated electrons move to the back surface electrode 108, and the generated holes move to the electrode 107. By reading this as a current with a reading chip (corresponding to the semiconductor chip 12), radiation incident on the semiconductor sensor 101 can be detected. By detecting which electrode 107 of the plurality of electrodes 107 of the semiconductor sensor 101 the current has flowed, it is possible to detect at which position of the semiconductor sensor 101 the radiation is incident, and the magnitude of the current is large. Thereby, the intensity of radiation can be determined. This makes it possible to detect the two-dimensional distribution of the position and intensity of the radiation incident on the semiconductor sensor 101.
 しなしながら、図11に示される検討例の半導体センサ101においては、次のような課題が生じることが、本発明者の検討により分かった。 However, it was found by the study of the present inventor that the following problems arise in the semiconductor sensor 101 of the study example shown in FIG.
 すなわち、図11に示される検討例の半導体センサ101においては、裏面電極108と複数の電極107との間に印加する電圧を、かなり高くする必要がある。裏面電極108と複数の電極107との間に電圧を印加すると、半導体層103の表層部に形成されているp型半導体領域106とその下に存在するn型の半導体層103との間のPN接合から、下方側に空乏層が拡がる。すなわち、各p型半導体領域106の下において、空乏層が半導体層103の厚さ方向に延びる。印加電圧を高くするほど、空乏層は拡がっていくが、形成される空乏層の長さ(半導体層103の厚み方向における空乏層の寸法に対応)をある程度大きくするには、印加電圧をかなり高くする必要がある。 That is, in the semiconductor sensor 101 of the study example shown in FIG. 11, it is necessary to considerably increase the voltage applied between the back surface electrode 108 and the plurality of electrodes 107. When a voltage is applied between the back surface electrode 108 and the plurality of electrodes 107, the PN between the p-type semiconductor region 106 formed on the surface layer portion of the semiconductor layer 103 and the n-type semiconductor layer 103 existing below the p-type semiconductor region 106. From the junction, the depletion layer spreads downward. That is, under each p-type semiconductor region 106, the depletion layer extends in the thickness direction of the semiconductor layer 103. The higher the applied voltage, the wider the depletion layer, but in order to increase the length of the formed depletion layer (corresponding to the dimension of the depletion layer in the thickness direction of the semiconductor layer 103) to some extent, the applied voltage is considerably high. There is a need to.
 半導体層103においてp型半導体領域106の下に形成された空乏層の長さをある程度大きくした状態で、半導体センサ101に放射線が入射すれば、空乏層に入射された放射線により、その空乏層で電子とホールが発生するため、放射線の入射の有無を的確に検出することができる。 If radiation is incident on the semiconductor sensor 101 in a state where the length of the depletion layer formed under the p-type semiconductor region 106 in the semiconductor layer 103 is increased to some extent, the radiation incident on the depletion layer causes the depletion layer to be exposed to radiation. Since electrons and holes are generated, it is possible to accurately detect the presence or absence of radiation incident.
 しかしながら、裏面電極108と複数の電極107との間に印加する電圧が高いと、高電圧を印加するための高電圧電源が必要となるが、これは、総合的なコストの増大要因となるため、望ましくない。一方、裏面電極108と複数の電極107との間に印加する電圧を低くした場合には、半導体層103に形成される空乏層の長さ(半導体層103の厚み方向における空乏層の寸法)が不足するため、半導体センサ101の放射線の検出感度が低下してしまう。 However, if the voltage applied between the back surface electrode 108 and the plurality of electrodes 107 is high, a high voltage power supply for applying the high voltage is required, which increases the overall cost. , Not desirable. On the other hand, when the voltage applied between the back surface electrode 108 and the plurality of electrodes 107 is lowered, the length of the depletion layer formed on the semiconductor layer 103 (the dimension of the depletion layer in the thickness direction of the semiconductor layer 103) becomes large. Due to the shortage, the radiation detection sensitivity of the semiconductor sensor 101 is lowered.
 また、半導体センサ101にSiC(炭化ケイ素)基板を用いた場合には、SiCは放射線に対する耐久性が高いことから、半導体センサ101の信頼性を向上させることができるという利点を得られる。しかしながら、その反面、半導体センサ101にSiC基板を用いた場合には、空乏化のために必要な印加電圧(裏面電極108と複数の電極107との間に印加する電圧)が更に高くなってしまう。 Further, when a SiC (silicon carbide) substrate is used for the semiconductor sensor 101, since SiC has high radiation durability, there is an advantage that the reliability of the semiconductor sensor 101 can be improved. However, on the other hand, when the SiC substrate is used for the semiconductor sensor 101, the applied voltage (voltage applied between the back surface electrode 108 and the plurality of electrodes 107) required for depletion becomes higher. ..
 このため、半導体センサに印加する電圧を高くしなくとも、効率的に空乏化できるようにすることが望まれる。 Therefore, it is desired to be able to efficiently deplete without increasing the voltage applied to the semiconductor sensor.
 <主要な特徴と効果について>
 本実施の形態の主要な特徴のうちの一つは、半導体センサ1において、半導体基板2上の半導体層3に複数のピラー5が設けられ、複数のピラー5の上面(上部平坦面)にそれぞれ複数の電極7が形成され、半導体基板2の裏面2bに裏面電極8が形成されていることである。複数の電極7は、互いに分離されている。
<Main features and effects>
One of the main features of the present embodiment is that in the semiconductor sensor 1, a plurality of pillars 5 are provided on the semiconductor layer 3 on the semiconductor substrate 2, and the upper surfaces (upper flat surface) of the plurality of pillars 5 are respectively provided. The plurality of electrodes 7 are formed, and the back surface electrode 8 is formed on the back surface 2b of the semiconductor substrate 2. The plurality of electrodes 7 are separated from each other.
 本実施の形態では、半導体センサ1が有する複数のピラー5のそれぞれにおいて、上面および側面にPN接合が設けられている。これにより、半導体センサ1の裏面電極8と複数の電極7との間に電圧を印加して複数のピラー5を空乏化する際に、各ピラー5を効率よく空乏化することができる。 In the present embodiment, PN junctions are provided on the upper surface and the side surface of each of the plurality of pillars 5 of the semiconductor sensor 1. As a result, when a voltage is applied between the back surface electrode 8 of the semiconductor sensor 1 and the plurality of electrodes 7 to deplete the plurality of pillars 5, each pillar 5 can be efficiently depleted.
 すなわち、本実施の形態では、半導体センサ1が有する複数のピラー5のそれぞれにおいて、上面側だけでなく、側面側にもPN接合が設けられている。具体的には、本実施の形態の半導体センサ1の場合は、各ピラー5の上面側だけでなく、各ピラー5の側面側にもp型半導体領域6が形成されている。このため、本実施の形態の半導体センサ1の場合は、裏面電極8と複数の電極7との間に電圧を印加すると、各ピラー5の上面側のPN接合から下方(ピラー5の根元方向)に向かって空乏層が拡がるだけでなく、各ピラー5の側面側のPN接合からピラー5の内側に向かって空乏層が拡がることになる。各ピラー5の側面側のPN接合からピラー5の内側に向かって空乏層が拡がることができる分だけ、各ピラー5を効率よく空乏化することができるため、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)を低減することができる。 That is, in the present embodiment, in each of the plurality of pillars 5 included in the semiconductor sensor 1, PN junctions are provided not only on the upper surface side but also on the side surface side. Specifically, in the case of the semiconductor sensor 1 of the present embodiment, the p-type semiconductor region 6 is formed not only on the upper surface side of each pillar 5 but also on the side surface side of each pillar 5. Therefore, in the case of the semiconductor sensor 1 of the present embodiment, when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, the pillar 5 is located downward from the PN junction on the upper surface side (toward the root of the pillar 5). Not only does the depletion layer expand toward the inside of the pillar 5, but the depletion layer also expands from the PN junction on the side surface side of each pillar 5 toward the inside of the pillar 5. Since the depletion layer can be efficiently depleted by the amount that the depletion layer can be expanded from the PN junction on the side surface side of each pillar 5 toward the inside of the pillar 5, the entire pillar 5 is depleted. The applied voltage required for the above (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) can be reduced.
 このように、本実施の形態では、半導体センサ1の裏面電極8と複数の電極7との間に印加する電圧の抑制と、各ピラー5の空乏化とを、両立させることができる。半導体センサ1の裏面電極8と複数の電極7との間に印加する電圧を抑制できることで、高電圧を印加するための高電圧電源が不要となり、半導体センサを含む装置の総合的なコストを抑制することができる。また、裏面電極8と複数の電極7との間に印加する電圧をそれほど高くしなくとも、各ピラー5を効率的に空乏化することができるため、各ピラー5全体を容易かつ的確に空乏化することができ、半導体センサ1の放射線の検出感度を向上させることができる。従って、半導体センサ1およびそれを用いた放射線検出器11の性能を向上させることができる。 As described above, in the present embodiment, it is possible to achieve both suppression of the voltage applied between the back electrode 8 of the semiconductor sensor 1 and the plurality of electrodes 7 and depletion of each pillar 5. By suppressing the voltage applied between the back electrode 8 of the semiconductor sensor 1 and the plurality of electrodes 7, a high voltage power supply for applying a high voltage becomes unnecessary, and the overall cost of the device including the semiconductor sensor is suppressed. can do. Further, since each pillar 5 can be efficiently depleted without increasing the voltage applied between the back surface electrode 8 and the plurality of electrodes 7, the entire pillar 5 can be depleted easily and accurately. The radiation detection sensitivity of the semiconductor sensor 1 can be improved. Therefore, the performance of the semiconductor sensor 1 and the radiation detector 11 using the semiconductor sensor 1 can be improved.
 また、半導体基板2および半導体層3を構成する材料(半導体材料)としてSiC(炭化ケイ素)を用いた場合には、SiCは放射線に対する耐久性が高いことから、半導体センサ1の信頼性を向上させることができる。しかしながら、半導体基板2および半導体層3を構成する材料としてSiCを用いた場合には、Siを用いた場合に比べて、各ピラー5を空乏化するために必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)が高くなってしまう。それに対して、本実施の形態では、上述のように、各ピラー5を効率よく空乏化することができるため、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)を低減することができる。このため、半導体基板2および半導体層3を構成する材料としてSiCを用いた場合であっても、各ピラー5全体を空乏化するのに必要な印加電圧を抑制することができる。このため、半導体基板2および半導体層3がSiCからなる場合に本実施の形態を適用すれば、その効果は極めて大きい。 Further, when SiC (silicon carbide) is used as the material (semiconductor material) constituting the semiconductor substrate 2 and the semiconductor layer 3, since SiC has high radiation durability, the reliability of the semiconductor sensor 1 is improved. be able to. However, when SiC is used as the material constituting the semiconductor substrate 2 and the semiconductor layer 3, the applied voltage required for depleting each pillar 5 (a plurality of back electrodes 8 and a plurality) is compared with the case where Si is used. The voltage applied between the electrode 7 and the electrode 7) becomes high. On the other hand, in the present embodiment, as described above, each pillar 5 can be efficiently depleted, so that the applied voltage required to deplete each pillar 5 as a whole (the back electrode 8 and a plurality of applied voltages). The voltage applied between the electrode 7 and the electrode 7) can be reduced. Therefore, even when SiC is used as the material constituting the semiconductor substrate 2 and the semiconductor layer 3, the applied voltage required for depleting the entire pillar 5 can be suppressed. Therefore, if the present embodiment is applied when the semiconductor substrate 2 and the semiconductor layer 3 are made of SiC, the effect is extremely large.
 また、半導体チップ12を構成する半導体基板12aとして、単結晶シリコンからなるシリコン基板を用いることができる。この場合、半導体チップ12内に所望の回路を形成しやすくなり、所望の回路を有する半導体チップ12を容易かつ的確に製造することできる。 Further, as the semiconductor substrate 12a constituting the semiconductor chip 12, a silicon substrate made of single crystal silicon can be used. In this case, it becomes easy to form a desired circuit in the semiconductor chip 12, and the semiconductor chip 12 having the desired circuit can be easily and accurately manufactured.
 また、各ピラー5の幅W1を小さくすれば、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)を低くすることができる。ここで、ピラー5の幅W1は、X方向またはY方向の寸法に対応しており、図1に示されている。また、半導体層3の不純物濃度(n型不純物濃度)を低くすれば、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)を低くすることができる。このため、例えば、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)が300V以下となるように、各ピラー5の幅W1と半導体層3の不純物濃度を設定することができる。 Further, if the width W1 of each pillar 5 is reduced, the applied voltage (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) required for depleting the entire pillar 5 can be reduced. .. Here, the width W1 of the pillar 5 corresponds to the dimension in the X direction or the Y direction, and is shown in FIG. Further, if the impurity concentration (n-type impurity concentration) of the semiconductor layer 3 is lowered, the applied voltage required for depleting the entire pillar 5 (voltage applied between the back surface electrode 8 and the plurality of electrodes 7). Can be lowered. Therefore, for example, the width W1 of each pillar 5 is such that the applied voltage (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) required to deplete the entire pillar 5 is 300 V or less. And the impurity concentration of the semiconductor layer 3 can be set.
 しかしながら、各ピラー5の幅W1を小さくし過ぎると、ピラー5上に形成する電極7の平面寸法(平面積)も小さくなるため、半導体センサ1と半導体チップ12とをバンプ接続しにくくなり、また、各ピラー5の平面寸法(平面積)が小さくなることから、半導体センサ1における放射線の実効的な検出可能エリアが狭くなる。このため、各ピラー5の幅W1は、5μm~100μmの範囲内とすれば、より好ましい。また、各ピラー5の高さH1(図2参照)は、例えば50μm~1000μm程度とすることができる。 However, if the width W1 of each pillar 5 is made too small, the planar dimension (flat area) of the electrode 7 formed on the pillar 5 also becomes small, so that it becomes difficult to bump-connect the semiconductor sensor 1 and the semiconductor chip 12 and also. Since the plane dimension (flat area) of each pillar 5 becomes smaller, the effective detectable area of radiation in the semiconductor sensor 1 becomes narrower. Therefore, it is more preferable that the width W1 of each pillar 5 is within the range of 5 μm to 100 μm. Further, the height H1 of each pillar 5 (see FIG. 2) can be, for example, about 50 μm to 1000 μm.
 また、隣り合うピラー5の間隔S1(図1参照)は、狭すぎると、ピラー5を形成しにくくなり、広すぎると、半導体センサ1が有するピラー5の数(画素数に対応)が少なくなる。このため、隣り合うピラー5の間隔S1は、好ましくは、1μm~300μm程度とすることができる。 Further, if the distance S1 (see FIG. 1) between adjacent pillars 5 is too narrow, it becomes difficult to form the pillars 5, and if it is too wide, the number of pillars 5 (corresponding to the number of pixels) of the semiconductor sensor 1 decreases. .. Therefore, the distance S1 between the adjacent pillars 5 can be preferably about 1 μm to 300 μm.
 また、本実施の形態とは異なり、各ピラー5の上面にはPN接合(p型半導体領域6)が形成されているが、各ピラー5の側面にはPN接合(p型半導体領域6)が形成されていない場合を仮定する。この場合は、各ピラー5全体を空乏化させるためには、ピラー5の上面のPN接合から、ピラー5の高さH1の分だけ空乏層が拡がることができるような電圧を、裏面電極8と複数の電極7との間に印加する必要がある。それに対して、本実施の形態では、各ピラー5の上面だけでなく、各ピラー5の側面にもPN接合が形成されている。このため、各ピラー5全体を空乏化させるためには、ピラー5の側面のPN接合から、ピラー5の幅W1の半分の距離(すなわちW1×1/2)だけ空乏層が拡がることができるような電圧を、裏面電極8と複数の電極7との間に印加すればよい。これにより、各ピラー5の両側面のPN接合からピラー5の内側に拡がった空乏層同士がつながるため、各ピラー5全体を空乏化させることができる。従って、各ピラー5全体を空乏化するのに必要な印加電圧を低減することができる。 Further, unlike the present embodiment, a PN junction (p-type semiconductor region 6) is formed on the upper surface of each pillar 5, but a PN junction (p-type semiconductor region 6) is formed on the side surface of each pillar 5. Suppose it is not formed. In this case, in order to deplete the entire pillar 5, a voltage is applied to the back surface electrode 8 from the PN junction on the upper surface of the pillar 5 so that the depletion layer can be expanded by the height H1 of the pillar 5. It is necessary to apply it between the plurality of electrodes 7. On the other hand, in the present embodiment, a PN junction is formed not only on the upper surface of each pillar 5 but also on the side surface of each pillar 5. Therefore, in order to deplete the entire pillar 5, the depletion layer can be expanded from the PN junction on the side surface of the pillar 5 by a distance of half the width W1 of the pillar 5 (that is, W1 × 1/2). A voltage may be applied between the back surface electrode 8 and the plurality of electrodes 7. As a result, the depletion layers extending inward of the pillars 5 are connected to each other from the PN junctions on both side surfaces of the pillars 5, so that the entire pillars 5 can be depleted. Therefore, the applied voltage required to deplete each pillar 5 as a whole can be reduced.
 この観点で、ピラー5の幅W1の半分の距離(すなわちW1×1/2)は、ピラー5の高さH1よりも小さいことが好ましく、すなわち、W1×1/2<H1が成り立ち、従ってW1/H1<2が成り立つことが好ましく、これにより、各ピラー5の側面にPN接合を設けたことによる印加電圧(各ピラー5全体を空乏化させるのに必要な印加電圧)の低減効果を、的確に得ることができる。また、W1/H1<1/2が成り立つようにすれば、より好ましく、W1/H1<1/5が成り立つようにすれば、更に好ましく、各ピラー5全体を空乏化させるのに必要な印加電圧を、更に効果的に低減することができる。 From this point of view, the distance of half the width W1 of the pillar 5 (ie W1 × 1/2) is preferably smaller than the height H1 of the pillar 5, that is, W1 × 1/2 <H1 holds, and thus W1. It is preferable that / H1 <2 holds, and this accurately reduces the applied voltage (applied voltage required to deplete each pillar 5 as a whole) by providing a PN junction on the side surface of each pillar 5. Can be obtained. Further, it is more preferable that W1 / H1 <1/2 is satisfied, and it is further preferable that W1 / H1 <1/5 is satisfied, and the applied voltage required to deplete each pillar 5 as a whole is more preferable. Can be further effectively reduced.
 <第1変形例について>
 図12は、本実施の形態の半導体センサ1の第1変形例を示す要部断面図であり、上記図2に対応するものである。ここで、図12に示される第1変形例の半導体センサ1を、以下では半導体センサ1aと称することとする。
<About the first modification>
FIG. 12 is a cross-sectional view of a main part showing a first modification of the semiconductor sensor 1 of the present embodiment, and corresponds to FIG. 2 above. Here, the semiconductor sensor 1 of the first modification shown in FIG. 12 will be referred to as a semiconductor sensor 1a below.
 図12に示される第1変形例の半導体センサ1aが、上記図1~図3に示される半導体センサ1と相違しているのは、隣り合うピラー5の間において(すなわち溝4の底部において)、半導体層3の表面(表層部)にp型半導体領域6が形成されていることである。 The semiconductor sensor 1a of the first modification shown in FIG. 12 differs from the semiconductor sensor 1 shown in FIGS. 1 to 3 between adjacent pillars 5 (that is, at the bottom of the groove 4). The p-type semiconductor region 6 is formed on the surface (surface layer portion) of the semiconductor layer 3.
 ここで、図12に示される第1変形例の半導体センサ1aにおいて、p型半導体領域6のうち、隣り合うピラー5の間において(すなわち溝4の底部において)半導体層3の表面(表層部)に形成されている部分のp型半導体領域6を、p型半導体領域6cと称することとする。 Here, in the semiconductor sensor 1a of the first modification shown in FIG. 12, the surface (surface layer portion) of the semiconductor layer 3 is located between the adjacent pillars 5 (that is, at the bottom of the groove 4) in the p-type semiconductor region 6. The p-type semiconductor region 6 of the portion formed in the above is referred to as a p-type semiconductor region 6c.
 このため、図12に示される第1変形例の半導体センサ1aでは、あるピラー5の上面および側面(の表層部分)に形成されているp型半導体領域6(6a,6b)と、そのピラー5の隣のピラー5の上面および側面(の表層部分)に形成されているp型半導体領域6(6a,6b)とは、隣り合うピラー5の間における半導体層3の表面(表層部)に形成されたp型半導体領域6(6c)を介して互いに繋がった状態になっている。すなわち、各ピラー5に形成されているp型半導体領域6(6a,6b)は、他のピラー5に形成されているp型半導体領域6(6a,6b)と、隣り合うピラー5の間の半導体層3に形成されたp型半導体領域6cを介して繋がっている。 Therefore, in the semiconductor sensor 1a of the first modification shown in FIG. 12, the p-type semiconductor regions 6 (6a, 6b) formed on the upper surface and the side surface (surface layer portion) of a pillar 5 and the pillar 5 thereof. The p-type semiconductor region 6 (6a, 6b) formed on the upper surface and the side surface (surface layer portion) of the pillar 5 adjacent to the pillar 5 is formed on the surface (surface layer portion) of the semiconductor layer 3 between the adjacent pillars 5. It is in a state of being connected to each other via the p-type semiconductor region 6 (6c). That is, the p-type semiconductor region 6 (6a, 6b) formed in each pillar 5 is between the p-type semiconductor region 6 (6a, 6b) formed in the other pillars 5 and the adjacent pillars 5. It is connected via a p-type semiconductor region 6c formed on the semiconductor layer 3.
 図12に示される第1変形例の半導体センサ1aの他の構成は、上記図1~図3に示される半導体センサ1とほぼ同様であるので、ここではその繰り返しの説明は省略する。 Since the other configurations of the semiconductor sensor 1a of the first modification shown in FIG. 12 are substantially the same as those of the semiconductor sensor 1 shown in FIGS. 1 to 3, the repeated description thereof will be omitted here.
 上記図1~図3に示される半導体センサ1と同様に、図12に示される第1変形例の半導体センサ1aの場合も、複数のピラー5のそれぞれにおいて、上面側だけでなく、側面側にもPN接合が設けられている。このため、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)を低減することができる。従って、図12に示される第1変形例の半導体センサ1aの場合も、半導体センサ1aの裏面電極8と複数の電極7との間に印加する電圧の抑制と、各ピラー5の空乏化とを、両立させることができる。 Similar to the semiconductor sensor 1 shown in FIGS. 1 to 3, in the case of the semiconductor sensor 1a of the first modification shown in FIG. 12, in each of the plurality of pillars 5, not only on the upper surface side but also on the side surface side. Is also provided with a PN junction. Therefore, the applied voltage (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) required for depleting the entire pillar 5 can be reduced. Therefore, also in the case of the semiconductor sensor 1a of the first modification shown in FIG. 12, the suppression of the voltage applied between the back surface electrode 8 of the semiconductor sensor 1a and the plurality of electrodes 7 and the depletion of each pillar 5 are performed. , Can be compatible.
 また、図12に示される第1変形例の半導体センサ1aの場合は、裏面電極8と複数の電極7との間に電圧を印加すると、隣り合うピラー5の間において、p型半導体領域6cとn型半導体領域3aとの間のPN接合から、下方(半導体基板2に向かう方向)に向かって空乏層が拡がることになる。このため、図12に示される第1変形例の半導体センサ1aの場合は、隣り合うピラー5の間における半導体層3にも空乏層が形成されることになる。p型半導体領域6cの下方に空乏層が形成されると、p型半導体領域6cの下方の空乏層において、入射した放射線により電子とホールが生じ得る。しかしながら、各ピラー5に対してそれぞれ電極7が設けられており、電極7同士は分離されているため、p型半導体領域6cの下方の空乏層に入射した放射線により発生した電荷は、そこから最も近い位置にある電極7から検出することができる。このため、画素間の電気信号を分離することができる。 Further, in the case of the semiconductor sensor 1a of the first modification shown in FIG. 12, when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, the p-type semiconductor region 6c is formed between the adjacent pillars 5. The depletion layer expands downward (in the direction toward the semiconductor substrate 2) from the PN junction with the n-type semiconductor region 3a. Therefore, in the case of the semiconductor sensor 1a of the first modification shown in FIG. 12, a depletion layer is also formed in the semiconductor layer 3 between the adjacent pillars 5. When the depletion layer is formed below the p-type semiconductor region 6c, electrons and holes may be generated by the incident radiation in the depletion layer below the p-type semiconductor region 6c. However, since the electrodes 7 are provided for each pillar 5 and the electrodes 7 are separated from each other, the electric charge generated by the radiation incident on the depletion layer below the p-type semiconductor region 6c is the largest from there. It can be detected from the electrode 7 located at a close position. Therefore, the electric signal between the pixels can be separated.
 一方、上記図1~図3に示される半導体センサ1の場合は、p型半導体領域6cは形成されていないため、隣り合うピラー5の間における半導体層3には、空乏層は形成されにくい。このため、空乏化されたピラー5に入射した放射線により発生した電荷を、そのピラー5に対して設けられた電極7から検出すればよく、各ピラー5で生じる電気信号を他のピラー5で発生する電気信号から分離しやすい。これにより、画素間の電気信号をより明確に分離しやすくなるため、半導体センサの分解能を高めやすくなる。 On the other hand, in the case of the semiconductor sensors 1 shown in FIGS. 1 to 3, since the p-type semiconductor region 6c is not formed, the depletion layer is unlikely to be formed in the semiconductor layer 3 between the adjacent pillars 5. Therefore, the electric charge generated by the radiation incident on the depleted pillar 5 may be detected from the electrode 7 provided for the pillar 5, and the electric signal generated in each pillar 5 is generated in the other pillar 5. Easy to separate from the electrical signal. This makes it easier to separate the electrical signals between the pixels more clearly, which makes it easier to improve the resolution of the semiconductor sensor.
 <第2変形例について>
 図13は、本実施の形態の半導体センサ1の第2変形例を示す要部断面図であり、上記図2に対応するものである。ここで、図13に示される第2変形例の半導体センサ1を、以下では半導体センサ1bと称することとする。
<About the second modification>
FIG. 13 is a cross-sectional view of a main part showing a second modification of the semiconductor sensor 1 of the present embodiment, and corresponds to FIG. 2 above. Here, the semiconductor sensor 1 of the second modification shown in FIG. 13 will be referred to as a semiconductor sensor 1b below.
 図13に示される第2変形例の半導体センサ1bが、上記図1~図3に示される半導体センサ1と相違しているのは、上記半導体基板2と上記半導体層3とを合わせたもの全体を、半導体基板2としていることである。すなわち、図13に示される第2変形例の半導体センサ1bの場合は、半導体基板2上に上記半導体層3は形成されておらず、上記複数のピラー5は、半導体基板2に設けられている。裏面電極8は、半導体基板2の複数のピラー5が形成された側とは反対側の主面である裏面2b上に形成されている。裏面電極8を形成する前の工程において、n型不純物のイオン注入により、例えば高濃度のn型不純物半導体層を形成してオーミック接続としても良い。 The semiconductor sensor 1b of the second modification shown in FIG. 13 differs from the semiconductor sensor 1 shown in FIGS. 1 to 3 in that the semiconductor substrate 2 and the semiconductor layer 3 are combined as a whole. Is the semiconductor substrate 2. That is, in the case of the semiconductor sensor 1b of the second modification shown in FIG. 13, the semiconductor layer 3 is not formed on the semiconductor substrate 2, and the plurality of pillars 5 are provided on the semiconductor substrate 2. .. The back surface electrode 8 is formed on the back surface 2b, which is the main surface of the semiconductor substrate 2 opposite to the side on which the plurality of pillars 5 are formed. In the step before forming the back surface electrode 8, for example, a high-concentration n-type impurity semiconductor layer may be formed by ion implantation of the n-type impurity to form an ohmic connection.
 図13に示される第2変形例の半導体センサ1bの他の構成は、上記図1~図3に示される半導体センサ1とほぼ同様であるので、ここではその繰り返しの説明は省略する。 Since the other configurations of the semiconductor sensor 1b of the second modification shown in FIG. 13 are substantially the same as those of the semiconductor sensor 1 shown in FIGS. 1 to 3, the repeated description thereof will be omitted here.
 図13に示される第2変形例の場合は、厚い半導体層を形成しなくて良いので半導体センサの製造コストを抑制することができる。第2変形例で用いる半導体基板2としては、例えば、上記半導体層3と同程度の印加電圧で空乏化が可能な基板(好ましくは半絶縁SiC基板や、不純物濃度1X10^13~1X10^16(cm^-3)のn型SiC基板)を用いることができる。 In the case of the second modification shown in FIG. 13, since it is not necessary to form a thick semiconductor layer, the manufacturing cost of the semiconductor sensor can be suppressed. The semiconductor substrate 2 used in the second modification is, for example, a substrate that can be depleted with an applied voltage similar to that of the semiconductor layer 3 (preferably a semi-insulating SiC substrate or an impurity concentration of 1X10 ^ 13 to 1X10 ^ 16 (preferably a semi-insulating SiC substrate). cm ^ -3) n-type SiC substrate) can be used.
 一方、上記図1~図3に示される半導体センサ1の場合は、半導体基板2と半導体層3とに、それぞれ最適な不純物濃度を設定することができる。例えば、半導体層3には、ピラー5の空乏化を考慮した不純物濃度を設定するができ、また、半導体基板2には、裏面電極8とのコンタクトなどを考慮した不純物濃度を設定することができる。このため、半導体センサの総合的な性能を高めやすい。 On the other hand, in the case of the semiconductor sensor 1 shown in FIGS. 1 to 3, the optimum impurity concentration can be set for each of the semiconductor substrate 2 and the semiconductor layer 3. For example, the semiconductor layer 3 can be set with an impurity concentration in consideration of the depletion of the pillar 5, and the semiconductor substrate 2 can be set with an impurity concentration in consideration of contact with the back surface electrode 8. .. Therefore, it is easy to improve the overall performance of the semiconductor sensor.
 なお、第2変形例は、上記図1~図3の半導体センサ1、上記第1変形例の半導体センサ1a、後述の第3変形例の半導体センサ1c、後述の実施の形態2の半導体センサ1d、および後述の第4変形例の半導体センサ1eのいずれに対しても適用することができる。 The second modification includes the semiconductor sensor 1 of FIGS. 1 to 3, the semiconductor sensor 1a of the first modification, the semiconductor sensor 1c of the third modification described later, and the semiconductor sensor 1d of the second embodiment described later. , And the semiconductor sensor 1e of the fourth modification described later can be applied.
 <第3変形例について>
 図14および図15は、本実施の形態の半導体センサ1の第3変形例を示す要部平面図(図14)および要部断面図(図15)である。図14は、上記図1に対応するものである。図1が2次元センサであったのに対して、図14では1次元のラインセンサになっている。図15は、図14のB2-B2線の位置での断面図に対応している。図14のB1-B1線の位置での断面図は、上記図2と同様であるので、ここではその図示は省略し、また、図14のB3-B3線の位置での断面図は、上記図3と同様であるので、ここではその図示は省略する。
<About the third modification>
14 and 15 are a main part plan view (FIG. 14) and a main part cross-sectional view (FIG. 15) showing a third modification of the semiconductor sensor 1 of the present embodiment. FIG. 14 corresponds to FIG. 1 above. Whereas FIG. 1 is a two-dimensional sensor, FIG. 14 is a one-dimensional line sensor. FIG. 15 corresponds to the cross-sectional view at the position of line B2-B2 in FIG. Since the cross-sectional view at the position of line B1-B1 in FIG. 14 is the same as that of FIG. 2, the illustration is omitted here, and the cross-sectional view at the position of line B3-B3 in FIG. 14 is described above. Since it is the same as FIG. 3, the illustration is omitted here.
 図14および図15の第3変形例の場合は、平面視において、各ピラー5はY方向に延在し、そのY方向に延在するピラー5が、X方向に複数並んで配置されている。そして、各ピラー5に対して電極7が設けられており、平面視において、Y方向に延在するピラー5上にY方向に延在する電極7が配置されている。この場合、各ピラー5は、Y方向を長手方向(長軸方向)とする上面形状を有しており、ピラー5は、ストリップ形状であってもよい。ピラー5の形状は、種々変更可能であり、それに伴い、ピラー5上に形成された電極7の形状も、種々変更可能である。このため、ピラー5は、半導体基板2の厚さ方向に突出する凸部とみなすことができる。また、裏面電極8を複数に分割することもできる。 In the case of the third modification of FIGS. 14 and 15, in the plan view, each pillar 5 extends in the Y direction, and a plurality of pillars 5 extending in the Y direction are arranged side by side in the X direction. .. An electrode 7 is provided for each pillar 5, and the electrode 7 extending in the Y direction is arranged on the pillar 5 extending in the Y direction in a plan view. In this case, each pillar 5 has an upper surface shape with the Y direction as the longitudinal direction (major axis direction), and the pillar 5 may have a strip shape. The shape of the pillar 5 can be changed in various ways, and the shape of the electrode 7 formed on the pillar 5 can be changed accordingly. Therefore, the pillar 5 can be regarded as a convex portion protruding in the thickness direction of the semiconductor substrate 2. Further, the back surface electrode 8 can be divided into a plurality of parts.
 図14および図15の第3変形例の場合も、裏面電極8と複数の電極7との間に電圧を印加すると、各ピラー5の上面側のPN接合から下方に向かって空乏層が拡がるだけでなく、各ピラー5の両側面(X方向において互いに反対側に位置する両側面)に形成されているPN接合から、ピラー5の内側に向かって空乏層が拡がる。これにより、各ピラー5を効率よく空乏化することができるため、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)を低減することができる。従って、裏面電極8と複数の電極7との間に印加する電圧の抑制と、各ピラー5の空乏化とを、両立させることができる。 Also in the case of the third modification of FIGS. 14 and 15, when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, the depletion layer only expands downward from the PN junction on the upper surface side of each pillar 5. Instead, the depletion layer spreads toward the inside of the pillar 5 from the PN junction formed on both side surfaces of each pillar 5 (both side surfaces located on opposite sides in the X direction). As a result, each pillar 5 can be efficiently depleted, so that the applied voltage (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) required for depleting the entire pillar 5 is reduced. can do. Therefore, it is possible to achieve both suppression of the voltage applied between the back surface electrode 8 and the plurality of electrodes 7 and depletion of each pillar 5.
 なお、第3変形例は、上記図1~図3の半導体センサ1、上記第1および第2変形例の半導体センサ、後述の実施の形態2の半導体センサ1d、および後述の第4変形例の半導体センサ1eのいずれに対しても適用することができる。 The third modification is the semiconductor sensor 1 of FIGS. 1 to 3, the semiconductor sensors of the first and second modifications, the semiconductor sensor 1d of the second embodiment described later, and the fourth modification described later. It can be applied to any of the semiconductor sensors 1e.
 (実施の形態2)
 本実施の形態2の半導体センサ1を図面を参照して説明する。図16は、本実施の形態2の半導体センサ1を示す要部断面図であり、上記図2に対応するものである。ここで、図16に示される本実施の形態2の半導体センサ1を、以下では半導体センサ1dと称することとする。
(Embodiment 2)
The semiconductor sensor 1 of the second embodiment will be described with reference to the drawings. FIG. 16 is a cross-sectional view of a main part showing the semiconductor sensor 1 of the second embodiment, and corresponds to FIG. 2 above. Here, the semiconductor sensor 1 of the second embodiment shown in FIG. 16 will be referred to as a semiconductor sensor 1d below.
 本実施の形態2の半導体センサ1dにおいては、p型半導体領域6は形成されていない。その代わりに、各ピラー5の上面および側面には、ショットキ電極21が形成されている。すなわち、各ピラー5において、上面上と側面上とにわたってショットキ電極21が形成されている。ショットキ電極21は、金属材料からなり、例えば、ニッケル(Ni)膜またはチタン(Ti)膜などからなる。ショットキ電極21とピラー5(半導体層3)との間領域に、シリサイド(ショットキ電極21を構成する金属と半導体層3を構成する半導体との化合物層)が形成されていてもよい。ショットキ電極21は、ショットキ電極21とピラー5(半導体層3)との間にショットキ接合が形成されるような材料および形成法により、形成することができる。 In the semiconductor sensor 1d of the second embodiment, the p-type semiconductor region 6 is not formed. Instead, Schottky electrodes 21 are formed on the upper surface and side surfaces of each pillar 5. That is, in each pillar 5, the Schottky electrode 21 is formed on the upper surface and the side surface. The Schottky electrode 21 is made of a metal material, for example, a nickel (Ni) film or a titanium (Ti) film. A silicide (a compound layer of a metal constituting the Schottky electrode 21 and a semiconductor constituting the semiconductor layer 3) may be formed in a region between the Schottky electrode 21 and the pillar 5 (semiconductor layer 3). The Schottky electrode 21 can be formed by a material and a forming method such that a Schottky bond is formed between the Schottky electrode 21 and the pillar 5 (semiconductor layer 3).
 本実施の形態2の半導体センサ1dにおいては、p型半導体領域6が形成されていないため、各ピラー5は、ほぼ全体がn型半導体領域となっている。このため、n型半導体領域からなるピラー5の上面および側面上にショットキ電極21が形成された状態となっている。ショットキ電極21とピラー5との間(界面)には、ショットキ接合が形成されている。このため、本実施の形態2の半導体センサ1dにおいては、各ピラー5の上面および側面に、ショットキ接合が形成されていることになる。 In the semiconductor sensor 1d of the second embodiment, since the p-type semiconductor region 6 is not formed, almost the entire pillar 5 is an n-type semiconductor region. Therefore, the Schottky electrode 21 is formed on the upper surface and the side surface of the pillar 5 composed of the n-type semiconductor region. A Schottky bond is formed between the Schottky electrode 21 and the pillar 5 (interface). Therefore, in the semiconductor sensor 1d of the second embodiment, the Schottky joint is formed on the upper surface and the side surface of each pillar 5.
 図16の場合は、隣り合うピラー5の間においては、すなわち溝4の底部においては、半導体層3の表面にショットキ電極21は形成されていない。このため、あるピラー5の上面および側面上に形成されているショットキ電極21と、そのピラー5の隣のピラー5の上面および側面上に形成されているショットキ電極21とは、互いに繋がってはおらず、互いに分離されている。すなわち、各ピラー5に対して形成されているショットキ電極21は、他のピラー5に対して形成されているショットキ電極21とは繋がっておらず、互いに分離されている。 In the case of FIG. 16, the Schottky electrode 21 is not formed on the surface of the semiconductor layer 3 between the adjacent pillars 5, that is, at the bottom of the groove 4. Therefore, the Schottky electrode 21 formed on the upper surface and the side surface of a certain pillar 5 and the Schottky electrode 21 formed on the upper surface and the side surface of the pillar 5 adjacent to the pillar 5 are not connected to each other. , Separated from each other. That is, the Schottky electrodes 21 formed for each pillar 5 are not connected to the Schottky electrodes 21 formed for the other pillars 5, and are separated from each other.
 各ピラー5の上面上には、電極7が形成されているが、本実施の形態2の半導体センサ1dの場合は、電極7は、ショットキ電極21上(より特定的にはピラー5の上面上に位置する部分のショットキ電極21上)に形成されている。このため、電極7は、ショットキ電極21と接してそのショットキ電極21と電気的に接続されている。電極7は、ショットキ電極21とオーミック接続されていることが好ましい。 An electrode 7 is formed on the upper surface of each pillar 5, but in the case of the semiconductor sensor 1d of the second embodiment, the electrode 7 is on the Schottky electrode 21 (more specifically, on the upper surface of the pillar 5). It is formed on the Schottky electrode 21) of the portion located in. Therefore, the electrode 7 is in contact with the Schottky electrode 21 and is electrically connected to the Schottky electrode 21. The electrode 7 is preferably ohmic connected to the Schottky electrode 21.
 図16に示される本実施の形態2の半導体センサ1dの他の構成は、上記図1~図3に示される上記実施の形態1の半導体センサ1とほぼ同様であるので、ここではその繰り返しの説明は省略する。 Since the other configurations of the semiconductor sensor 1d of the second embodiment shown in FIG. 16 are substantially the same as those of the semiconductor sensor 1 of the first embodiment shown in FIGS. 1 to 3, the repetition thereof is described here. The explanation is omitted.
 本実施の形態2の半導体センサ1dの場合は、ショットキ電極21とn型半導体領域からなるピラー5との間にショットキ接合が形成されているため、各ピラー5の上面および側面に、ショットキ接合が形成されていることになる。このため、本実施の形態2の半導体センサ1dの場合は、裏面電極8と複数の電極7との間に電圧を印加すると、各ピラー5の上面側のショットキ接合から下方(ピラー5の根元方向)に向かって空乏層が拡がるだけでなく、各ピラー5の側面側のショットキ接合からピラー5の内側に向かって空乏層が拡がることになる。各ピラー5の側面側のショット接合からピラー5の内側に向かって空乏層が拡がることができる分だけ、各ピラー5を効率よく空乏化することができるため、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)を低減することができる。本実施の形態2の半導体センサ1dの場合も、半導体センサ1cの裏面電極8と複数の電極7との間に印加する電圧の抑制と、各ピラー5の空乏化とを、両立させることができる。 In the case of the semiconductor sensor 1d of the second embodiment, since the Schottky junction is formed between the Schottky electrode 21 and the pillar 5 composed of the n-type semiconductor region, the Schottky junction is formed on the upper surface and the side surface of each pillar 5. It will be formed. Therefore, in the case of the semiconductor sensor 1d of the second embodiment, when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, the pillar 5 is located downward from the Schottky junction on the upper surface side (the root direction of the pillar 5). ), The depletion layer not only expands toward the inside of the pillar 5 from the Schottky joint on the side surface side of each pillar 5. Since the depletion layer can be efficiently expanded from the shot joint on the side surface side of each pillar 5 toward the inside of the pillar 5, each pillar 5 can be efficiently depleted, so that the entire pillar 5 is depleted. The applied voltage required for the above (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) can be reduced. Also in the case of the semiconductor sensor 1d of the second embodiment, it is possible to achieve both suppression of the voltage applied between the back surface electrode 8 of the semiconductor sensor 1c and the plurality of electrodes 7 and depletion of each pillar 5. ..
 図17は、本実施の形態2の半導体センサ1(1d)の変形例(以下第4変形例と称す)を示す要部断面図であり、上記図16に対応するものである。ここで、図17に示される第4変形例の半導体センサ1を、以下では半導体センサ1eと称することとする。 FIG. 17 is a cross-sectional view of a main part showing a modified example (hereinafter referred to as a fourth modified example) of the semiconductor sensor 1 (1d) of the second embodiment, and corresponds to FIG. 16 above. Here, the semiconductor sensor 1 of the fourth modification shown in FIG. 17 will be referred to as a semiconductor sensor 1e below.
 図17に示される第4変形例の半導体センサ1eが、上記図16に示される半導体センサ1dと相違しているのは、隣り合うピラー5の間において(すなわち溝4の底部において)、半導体層3の表面上にショットキ電極21が形成されていることである。 The semiconductor sensor 1e of the fourth modification shown in FIG. 17 differs from the semiconductor sensor 1d shown in FIG. 16 between the adjacent pillars 5 (that is, at the bottom of the groove 4) in the semiconductor layer. The Schottky electrode 21 is formed on the surface of 3.
 このため、図17に示される第4変形例の半導体センサ1eでは、あるピラー5の上面および側面に形成されているショットキ電極21と、そのピラー5の隣のピラー5の上面および側面に形成されているショットキ電極21とは、隣り合うピラー5の間における半導体層3の表面に形成されたショットキ電極21を介して互いに繋がった状態になっている。すなわち、各ピラー5に対して形成されているショットキ電極21は、他のピラー5に対して形成されているショットキ電極21と、隣り合うピラー5の間の半導体層3の表面に形成されたショットキ電極21を介して繋がっている。 Therefore, in the semiconductor sensor 1e of the fourth modification shown in FIG. 17, the Schottky electrodes 21 formed on the upper surface and the side surface of a certain pillar 5 are formed on the upper surface and the side surface of the pillar 5 adjacent to the pillar 5. The Schottky electrodes 21 are connected to each other via the Schottky electrodes 21 formed on the surface of the semiconductor layer 3 between the adjacent pillars 5. That is, the Schottky electrode 21 formed for each pillar 5 is a Schottky formed on the surface of the semiconductor layer 3 between the Schottky electrode 21 formed for the other pillars 5 and the adjacent pillars 5. They are connected via electrodes 21.
 図17に示される第4変形例の半導体センサ1eの他の構成は、上記図16に示される半導体センサ1dとほぼ同様であるので、ここではその繰り返しの説明は省略する。 Since the other configurations of the semiconductor sensor 1e of the fourth modification shown in FIG. 17 are substantially the same as those of the semiconductor sensor 1d shown in FIG. 16, the repeated description thereof will be omitted here.
 図16に示される半導体センサ1dと同様に、図17に示される第4変形例の半導体センサ1eの場合も、裏面電極8と複数の電極7との間に電圧を印加すると、各ピラー5の上面側のショットキ接合から下方に向かって空乏層が拡がるだけでなく、各ピラー5の側面側のショットキ接合からピラー5の内側に向かって空乏層が拡がることになる。各ピラー5の側面側のショットキ接合からピラー5の内側に向かって空乏層が拡がることができる分だけ、各ピラー5を効率よく空乏化することができるため、各ピラー5全体を空乏化するのに必要な印加電圧(裏面電極8と複数の電極7との間に印加する電圧)を低減することができる。従って、図17に示される第4変形例の半導体センサ1eの場合も、半導体センサ1aの裏面電極8と複数の電極7との間に印加する電圧の抑制と、各ピラー5の空乏化とを、両立させることができる。 Similar to the semiconductor sensor 1d shown in FIG. 16, in the case of the semiconductor sensor 1e of the fourth modification shown in FIG. 17, when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, each pillar 5 Not only the depletion layer expands downward from the Schottky junction on the upper surface side, but also the depletion layer expands from the Schottky junction on the side surface side of each pillar 5 toward the inside of the pillar 5. Since the depletion layer can be efficiently expanded from the Schottky joint on the side surface side of each pillar 5 toward the inside of the pillar 5, each pillar 5 can be efficiently depleted, so that the entire pillar 5 is depleted. The applied voltage required for the above (voltage applied between the back surface electrode 8 and the plurality of electrodes 7) can be reduced. Therefore, also in the case of the semiconductor sensor 1e of the fourth modification shown in FIG. 17, the suppression of the voltage applied between the back surface electrode 8 of the semiconductor sensor 1a and the plurality of electrodes 7 and the depletion of each pillar 5 are performed. , Can be compatible.
 また、図17に示される第4変形例の半導体センサ1eの場合は、裏面電極8と複数の電極7との間に電圧を印加すると、隣り合うピラー5の間において、半導体層3とショットキ電極21との間のショットキ接合から、下方(半導体基板2に向かう方向)に向かって空乏層が拡がることになる。このため、図17に示される第4変形例の半導体センサ1eの場合は、隣り合うピラー5の間における半導体層3にも空乏層が形成されることになり、その空乏層において、入射した放射線により電子とホールが生じ得る。しかしながら、各ピラー5に対してそれぞれ電極7が設けられており、電極7同士は分離されているため、隣り合うピラー5の間における半導体層3に形成された空乏層で放射線により発生した電荷は、そこから最も近い位置にある電極7から検出することができる。このため、画素間の電気信号を分離することができる。 Further, in the case of the semiconductor sensor 1e of the fourth modification shown in FIG. 17, when a voltage is applied between the back surface electrode 8 and the plurality of electrodes 7, the semiconductor layer 3 and the Schottky electrode are placed between the adjacent pillars 5. The depletion layer expands downward (in the direction toward the semiconductor substrate 2) from the Schottky junction with 21. Therefore, in the case of the semiconductor sensor 1e of the fourth modification shown in FIG. 17, a depletion layer is also formed in the semiconductor layer 3 between the adjacent pillars 5, and the radiation incident on the depletion layer is formed. Can generate electrons and holes. However, since the electrodes 7 are provided for each pillar 5 and the electrodes 7 are separated from each other, the electric charge generated by radiation in the depletion layer formed in the semiconductor layer 3 between the adjacent pillars 5 is generated. , Can be detected from the electrode 7 closest to it. Therefore, the electric signal between the pixels can be separated.
 一方、上記図16に示される半導体センサ1dの場合は、隣り合うピラー5の間においては、半導体層3上にショットキ電極21は形成されていないため、隣り合うピラー5の間における半導体層3には、空乏層は形成されにくい。このため、画素間の電気信号をより明確に分離しやすくなるため、半導体センサの分解能を高めやすい。 On the other hand, in the case of the semiconductor sensor 1d shown in FIG. 16, since the Schottky electrode 21 is not formed on the semiconductor layer 3 between the adjacent pillars 5, the semiconductor layer 3 between the adjacent pillars 5 is formed. The depletion layer is difficult to form. Therefore, it becomes easier to separate the electric signals between the pixels more clearly, and it is easy to improve the resolution of the semiconductor sensor.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Although the invention made by the present inventor has been specifically described above based on the embodiment thereof, the present invention is not limited to the embodiment and can be variously modified without departing from the gist thereof. Needless to say.
1,1a,1b,1c,1d,1e 半導体センサ
2 半導体基板
2a 主面
2b 裏面
3 半導体層
3a n型半導体領域
4 溝
5 ピラー
6,6a,6b,6c p型半導体領域
7 電極
8 裏面電極
9 絶縁膜
10 開口部
11 放射線検出器
12 半導体チップ
12a 半導体基板
12b 多層配線構造
13 電極
14 バンプ
21 ショットキ電極
101 半導体センサ
102 半導体基板
103 半導体層
106 p型半導体領域
107 電極
108 裏面電極
1,1a, 1b, 1c, 1d, 1e Semiconductor sensor 2 Semiconductor substrate 2a Main surface 2b Back surface 3 Semiconductor layer 3an type semiconductor region 4 Groove 5 Pillars 6, 6a, 6b, 6cp type semiconductor region 7 Electrode 8 Backside electrode 9 Insulation film 10 Opening 11 Radiation detector 12 Semiconductor chip 12a Semiconductor substrate 12b Multilayer wiring structure 13 Electrode 14 Bump 21 Schottky electrode 101 Semiconductor sensor 102 Semiconductor substrate 103 Semiconductor layer 106 P-type semiconductor region 107 Electrode 108 Backside electrode

Claims (14)

  1.  第1導電型の半導体基板と、
     前記半導体基板に設けられ、それぞれ上部平坦面および側面を有する複数のピラーと、
     前記複数のピラーのそれぞれにおいて、前記上部平坦面および側面に設けられたPN接合またはショットキ接合と、
     前記複数のピラーの前記上部平坦面上にそれぞれ形成された複数の第1電極であって、互いに分離された前記複数の第1電極と、
     前記半導体基板の前記複数のピラーが形成された側とは反対側の主面上に設けられた第2電極と、
     を備える、放射線検出センサ。
    The first conductive type semiconductor substrate and
    A plurality of pillars provided on the semiconductor substrate, each having an upper flat surface and a side surface,
    In each of the plurality of pillars, the PN junction or the Schottky junction provided on the upper flat surface and the side surface thereof,
    A plurality of first electrodes each formed on the upper flat surface of the plurality of pillars, the plurality of first electrodes separated from each other, and the plurality of first electrodes.
    A second electrode provided on the main surface of the semiconductor substrate opposite to the side on which the plurality of pillars are formed, and
    A radiation detection sensor.
  2.  請求項1記載の放射線検出センサにおいて、
     前記複数のピラーのそれぞれにおいて、前記PN接合は、前記上部平坦面および前記側面に設けられた前記第1導電型とは反対の第2導電型の半導体領域を有する、放射線検出センサ。
    In the radiation detection sensor according to claim 1,
    A radiation detection sensor in each of the plurality of pillars, wherein the PN junction has a second conductive type semiconductor region opposite to the first conductive type provided on the upper flat surface and the side surface.
  3.  請求項2記載の放射線検出センサにおいて、
     前記複数のピラーのそれぞれにおいて、前記第2導電型の前記半導体領域上の一部に前記第1電極が形成されている、放射線検出センサ。
    In the radiation detection sensor according to claim 2,
    A radiation detection sensor in which a first electrode is formed in a part of the semiconductor region of the second conductive type in each of the plurality of pillars.
  4.  請求項2または3記載の放射線検出センサにおいて、
     隣り合う前記ピラーの間の前記半導体基板には、前記第2導電型の前記半導体領域は形成されていない、放射線検出センサ。
    In the radiation detection sensor according to claim 2 or 3.
    A radiation detection sensor in which the semiconductor region of the second conductive type is not formed on the semiconductor substrate between adjacent pillars.
  5.  請求項2または3記載の放射線検出センサにおいて、
     隣り合う前記ピラーの間の前記半導体基板にも、前記第2導電型の前記半導体領域が形成されている、放射線検出センサ。
    In the radiation detection sensor according to claim 2 or 3.
    A radiation detection sensor in which the semiconductor region of the second conductive type is also formed on the semiconductor substrate between adjacent pillars.
  6.  請求項1記載の放射線検出センサにおいて、
     前記複数のピラーのそれぞれにおいて、前記ショットキ接合は、前記上部平坦面および前記側面に設けられたショットキ電極を有する、放射線検出センサ。
    In the radiation detection sensor according to claim 1,
    In each of the plurality of pillars, the Schottky junction is a radiation detection sensor having Schottky electrodes provided on the upper flat surface and the side surfaces.
  7.  請求項6記載の放射線検出センサにおいて、
     前記複数のピラーのそれぞれにおいて、前記ショットキ電極上の一部に前記第1電極が形成されている、放射線検出センサ。
    In the radiation detection sensor according to claim 6,
    A radiation detection sensor in which the first electrode is formed on a part of the Schottky electrode in each of the plurality of pillars.
  8.  請求項6または7記載の放射線検出センサにおいて、
     隣り合う前記ピラーの間の前記半導体基板上には、前記ショットキ電極は形成されていない、放射線検出センサ。
    In the radiation detection sensor according to claim 6 or 7.
    A radiation detection sensor in which the Schottky electrode is not formed on the semiconductor substrate between adjacent pillars.
  9.  請求項6または7記載の放射線検出センサにおいて、
     隣り合う前記ピラーの間の前記半導体基板上にも、前記ショットキ電極が形成されている、放射線検出センサ。
    In the radiation detection sensor according to claim 6 or 7.
    A radiation detection sensor in which the Schottky electrode is also formed on the semiconductor substrate between adjacent pillars.
  10.  請求項1~9のいずれか1項に記載の放射線検出センサにおいて、
     前記複数のピラーの間を埋める絶縁膜を更に有する、放射線検出センサ。
    In the radiation detection sensor according to any one of claims 1 to 9.
    A radiation detection sensor further comprising an insulating film that fills the space between the plurality of pillars.
  11.  請求項1~10のいずれか1項に記載の放射線検出センサにおいて、
     前記半導体基板は、第1半導体基板と前記第1半導体基板上に形成された半導体層とを有し、
     前記複数のピラーは、前記半導体層に設けられている、放射線検出センサ。
    In the radiation detection sensor according to any one of claims 1 to 10.
    The semiconductor substrate has a first semiconductor substrate and a semiconductor layer formed on the first semiconductor substrate.
    The plurality of pillars are radiation detection sensors provided in the semiconductor layer.
  12.  請求項11記載の放射線検出センサにおいて、
     前記半導体基板および前記半導体層は、それぞれ炭化ケイ素からなる、放射線検出センサ。
    In the radiation detection sensor according to claim 11,
    A radiation detection sensor in which the semiconductor substrate and the semiconductor layer are each made of silicon carbide.
  13.  請求項1~10のいずれか1項に記載の放射線検出センサにおいて、
     前記半導体基板は、炭化ケイ素からなる、放射線検出センサ。
    In the radiation detection sensor according to any one of claims 1 to 10.
    The semiconductor substrate is a radiation detection sensor made of silicon carbide.
  14.  請求項1~13のいずれか1項に記載の放射線検出センサと、
     読み出し用半導体チップと、
     を備え、
     前記読み出し用半導体チップは、前記放射線検出センサの前記複数の第1電極に対応する位置にそれぞれ配置された複数の第3電極を有し、
     前記複数の第3電極は、前記複数の第1電極とバンプ接続されている、放射線イメージ検出器。
    The radiation detection sensor according to any one of claims 1 to 13.
    A semiconductor chip for reading and
    Equipped with
    The reading semiconductor chip has a plurality of third electrodes arranged at positions corresponding to the plurality of first electrodes of the radiation detection sensor.
    A radiation image detector in which the plurality of third electrodes are bump-connected to the plurality of first electrodes.
PCT/JP2021/044286 2020-12-24 2021-12-02 Radiation detection sensor and radiation image detector WO2022138050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572048A JPWO2022138050A1 (en) 2020-12-24 2021-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020214604 2020-12-24
JP2020-214604 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138050A1 true WO2022138050A1 (en) 2022-06-30

Family

ID=82159486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044286 WO2022138050A1 (en) 2020-12-24 2021-12-02 Radiation detection sensor and radiation image detector

Country Status (2)

Country Link
JP (1) JPWO2022138050A1 (en)
WO (1) WO2022138050A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247843A (en) * 1995-03-09 1996-09-27 Nikon Corp Pyroelectric type infrared-ray solid state imaging device and its manufacture
JP2002368231A (en) * 2001-06-08 2002-12-20 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor
WO2004019411A1 (en) * 2002-08-09 2004-03-04 Hamamatsu Photonics K.K. Photodiode array, production method therefor, and radiation detector
JP2005217188A (en) * 2004-01-29 2005-08-11 Hamamatsu Photonics Kk Semiconductor photodetector and manufacturing method therefor
US20080083963A1 (en) * 2006-10-04 2008-04-10 International Business Machines Corporation P-i-n semiconductor diodes and methods of forming the same
US20100095956A1 (en) * 2002-12-10 2010-04-22 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US20110079791A1 (en) * 2005-08-25 2011-04-07 Cornell Research Foundation, Inc. Betavoltaic cell
US20150372175A1 (en) * 2014-06-23 2015-12-24 Zena Technologies, Inc. Vertical Pillar Structured Infrared Detector and Fabrication Method for the Same
US20160356901A1 (en) * 2014-11-26 2016-12-08 Lawrence Livermore National Security, Llc Capacitance reduction for pillar structured devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247843A (en) * 1995-03-09 1996-09-27 Nikon Corp Pyroelectric type infrared-ray solid state imaging device and its manufacture
JP2002368231A (en) * 2001-06-08 2002-12-20 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor
WO2004019411A1 (en) * 2002-08-09 2004-03-04 Hamamatsu Photonics K.K. Photodiode array, production method therefor, and radiation detector
US20100095956A1 (en) * 2002-12-10 2010-04-22 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
JP2005217188A (en) * 2004-01-29 2005-08-11 Hamamatsu Photonics Kk Semiconductor photodetector and manufacturing method therefor
US20110079791A1 (en) * 2005-08-25 2011-04-07 Cornell Research Foundation, Inc. Betavoltaic cell
US20080083963A1 (en) * 2006-10-04 2008-04-10 International Business Machines Corporation P-i-n semiconductor diodes and methods of forming the same
US20150372175A1 (en) * 2014-06-23 2015-12-24 Zena Technologies, Inc. Vertical Pillar Structured Infrared Detector and Fabrication Method for the Same
US20160356901A1 (en) * 2014-11-26 2016-12-08 Lawrence Livermore National Security, Llc Capacitance reduction for pillar structured devices

Also Published As

Publication number Publication date
JPWO2022138050A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US7148464B2 (en) Photodiode array with a plurality of depressions
JP4554368B2 (en) Photodiode array and manufacturing method thereof
KR101152568B1 (en) Photodiode array method for manufacturing same and radiation detector
US7737465B2 (en) Semiconductor apparatus and manufacturing method thereof
US20060170406A1 (en) Hall element and manufacturing method thereof
JP5655705B2 (en) Semiconductor device
JP4522531B2 (en) Semiconductor energy detector
JP2002311146A (en) Device and apparatus for detecting high-energy beam
WO2022138050A1 (en) Radiation detection sensor and radiation image detector
JP7099017B2 (en) Semiconductor equipment
JP4220058B2 (en) Semiconductor position detector
JP2013145180A (en) Radiation detector, radiation detection assembly and operation method thereof
JP7029778B2 (en) Semiconductor devices and their manufacturing methods
JP2021500753A (en) Integrated sensor for ionizing radiation and ionizing particles
WO2016132616A1 (en) Infrared detection device
JP2011044594A (en) Semiconductor device, and method of manufacturing the same
US7538328B1 (en) Imaging detector
JP2000252512A5 (en)
JP5731344B2 (en) Radiation detector
WO2018042585A1 (en) Measurement method for semiconductor device
WO2022270301A1 (en) Avalanche photodiode array
EP3680940A1 (en) Semiconductor wafer manufacturing method, method of manufacturing semiconductor energy beam detecting element, and semiconductor wafer
JP6937011B2 (en) Semiconductor devices and their manufacturing methods
JPH10284748A (en) Manufacture of semiconductor radiation detector
JP2000340835A (en) High energy ray incident position detection element and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910202

Country of ref document: EP

Kind code of ref document: A1