WO2022137893A1 - Sheet set for pressure measurement and pressure measurement method - Google Patents

Sheet set for pressure measurement and pressure measurement method Download PDF

Info

Publication number
WO2022137893A1
WO2022137893A1 PCT/JP2021/042071 JP2021042071W WO2022137893A1 WO 2022137893 A1 WO2022137893 A1 WO 2022137893A1 JP 2021042071 W JP2021042071 W JP 2021042071W WO 2022137893 A1 WO2022137893 A1 WO 2022137893A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
pressure measurement
layer
pressure
support
Prior art date
Application number
PCT/JP2021/042071
Other languages
French (fr)
Japanese (ja)
Inventor
政宏 八田
宏和 鬼頭
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180086925.0A priority Critical patent/CN116670479A/en
Priority to KR1020237020764A priority patent/KR20230106693A/en
Priority to JP2022571961A priority patent/JPWO2022137893A1/ja
Publication of WO2022137893A1 publication Critical patent/WO2022137893A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a pressure measuring sheet set and a pressure measuring method.
  • the pressure measuring sheet (that is, the sheet used for pressure measurement) is used for applications such as a bonding process of liquid crystal glass, solder printing on a printed circuit board, and pressure adjustment between rollers.
  • Patent Document 1 discloses a pressure measuring sheet that utilizes a color-developing reaction between a color-developing agent and a color-developing agent, and describes that measurement can be performed in a pressure range of about 0.1 to 20 MPa.
  • Patent Document 2 discloses an invention relating to a method for producing a polyolefin film, and measures the area of a pressured region on a sheet using a pressure measuring sheet when the sheet is compressed by a pressure roll. What was done (page 65, line 16 to page 66, line 9) is described.
  • the present inventors may cause the above-mentioned problems by melting or deforming the support provided for supporting the layer containing microcapsules and / or the layer containing a color developer by heat. And tried to solve the above problem by providing a protective sheet. However, depending on the type of protective sheet and the type of pressure measurement sheet, the problem may not be solved. Further, when the protective sheet is provided, the resolvability of the pressure distribution may be lowered depending on the mode.
  • the present invention has deformation of the support, reduction of the resolution of the pressure distribution image (hereinafter, also simply referred to as resolution), and contamination of the object to be measured when the pressure measurement is performed under high temperature conditions. It is an object of the present invention to provide a sheet set for pressure measurement that can suppress the above. Another object of the present invention is to provide a pressure measuring method.
  • a pressure measuring sheet set comprising a second sheet having a second layer containing a developer and a protective sheet, wherein the protective sheet is a resin film or paper, and the resin film is provided.
  • the glass transition temperature is 100 ° C. or higher, or the glass transition temperature is not indicated, and the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet are A sheet set for pressure measurement that satisfies all of the formulas (a) to (d) described later.
  • a pressure measuring sheet set including a laminate having a first support, a second layer containing a color developer, and a first layer containing microcapsules containing a color former, and a protective sheet.
  • the protective sheet is a resin film or paper, and the resin film has a glass transition temperature of 100 ° C. or higher, or does not show a glass transition temperature, and has a thickness T1 of the first support and the above.
  • the pressure measurement sheet set according to [10] wherein the protective sheet is a polyethylene naphthalate film, a polyimide film, or paper.
  • [16] The pressure measurement sheet set according to any one of [10] to [15], wherein the arithmetic mean roughness Ra of the surface of the protective sheet is 0.1 ⁇ m or less.
  • It has a step A2 for manufacturing and a step B for pressurizing the pressure measuring sheet by two members arranged on both sides of the pressure measuring sheet, and in the step B, at least of the two members.
  • a pressure measurement sheet set capable of suppressing deformation of a support, deterioration of the resolution of a pressure distribution image, and contamination of a measurement object even when pressure measurement is performed under high temperature conditions. And a pressure measuring method can be provided.
  • the numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. good.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • Each component described later may be used alone or in combination of two or more.
  • the polyisocyanate described later may be used alone or in combination of two or more.
  • the content of the component means the total content of two or more kinds of substances unless otherwise specified.
  • the pressure measuring sheet set according to the present invention is a sheet having a support, a first layer containing a microcapsule containing a coloring agent and / or a second layer containing a developing agent, and a sheet including a protective sheet.
  • the protective sheet is a resin film (hereinafter, also referred to as "specific resin film”) or paper having a glass transition temperature of 100 ° C. or higher or not showing a glass transition temperature, and is used for pressure measurement. It is characterized in that the thickness of the support and the thickness of the protective sheet of the sheet set satisfy a specific relational expression.
  • the present inventors use the above-mentioned protective sheet made of a specific resin film or paper, and use it as a pressure measurement sheet so as to satisfy all the specific relational expressions.
  • the present invention has been completed by finding that various pressure measurements can be performed.
  • the detailed mechanism that enables more accurate pressure measurement by the present invention is unknown, the provision of a specific protective sheet makes it difficult for heat to be transferred to the layer containing the microcapsules, resulting in leakage of the color former layer.
  • a protective sheet that is suppressed and has a specific hardness appropriate pressure is transmitted to the layer containing the microcapsules even through the protective sheet, enabling accurate pressure measurement.
  • the present inventors speculate.
  • FIG. 1 is a schematic diagram showing a configuration of an embodiment of a pressure measurement sheet set according to the present invention.
  • the sheet set 10 which is a pressure measurement sheet set according to the first embodiment, includes a first sheet 16, a second sheet 22, and a protective sheet 40.
  • the first sheet 16 has a first support 12 and a first layer 14 containing microcapsules 13 arranged on the first support 12.
  • the second sheet 22 has a second support 18 and a second layer 20 containing a color developer arranged on the second support 18.
  • the protective sheet 40 included in the sheet set 10 is a specific resin film or paper.
  • the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet all satisfy the following formulas (a) to (d).
  • the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet are not limited as long as all of the above formulas (a) to (d) are satisfied.
  • the thickness T1 preferably satisfies the following formula (a0), and more preferably satisfies the following formula (a1).
  • the thickness T2 preferably satisfies the following formula (b0), and more preferably satisfies the following formula (b1).
  • a combination in which the thickness T1 satisfies the above formula (a0) and the thickness T2 satisfies the above formula (b0) is preferable, and the deformation resistance and the resolution under high temperature conditions are improved.
  • a combination in which the thickness T1 satisfies the above formula (a1) and the thickness T2 satisfies the above formula (b1) is more preferable.
  • the thicknesses T1, T2 and T3 preferably satisfy the following formula (c1) and more preferably the following formula (c2) in that the deformation resistance under high temperature conditions is more excellent.
  • the upper limit of the value obtained by substituting the thicknesses T1, T2 and T3 into the formula of "T3- (T1 + T2) x 0.2" is not particularly limited, but the following formula ( It is preferable to satisfy c3).
  • the thicknesses T1, T2 and T3 preferably satisfy the following formula (d1) and more preferably the following formula (d2) in that they are more excellent in deformation resistance and resolution under high temperature conditions.
  • (D1) 100 ⁇ m ⁇ T1 + T2 + T3 ⁇ 275 ⁇ m
  • (D2) 135 ⁇ m ⁇ T1 + T2 + T3 ⁇ 275 ⁇ m
  • the first sheet 16, the second sheet 22 and the protective sheet 40 are used, and the first layer 14 and the second sheet of the first sheet 16 are used.
  • a pressure measurement sheet 100 is produced by laminating the 22 second layer 20 so as to face each other, and pressure measurement is performed by applying pressure to the obtained pressure measurement sheet 100.
  • a method of producing a pressure measuring sheet using the pressure measuring sheet set according to the present embodiment and measuring the pressure will be described later.
  • the pressure measurement sheet set according to the present embodiment is not limited to the mode shown in FIG.
  • the first support 12 and the first layer 14 are directly laminated, but another layer (for example, between the first support 12 and the first layer 14) is directly laminated.
  • Adhesion layer may be arranged.
  • the second support 18 and the second layer 20 are directly laminated, but another layer (for example, close contact) is between the second support 18 and the second layer 20. Layers) may be arranged.
  • the first sheet has a first support and a first layer, which is arranged on the first support and contains microcapsules containing a coloring agent.
  • the first sheet may be a single leaf (single sheet) or a long sheet.
  • the first support is a member for supporting the first layer.
  • the first support may have any of a sheet shape, a film shape, and a plate shape.
  • Examples of the first support include paper, resin film, and synthetic paper. Papers include high-quality paper, medium-quality paper, shaving paper, neutral paper, acidic paper, recycled paper, coated paper, machine-coated paper, art paper, cast-coated paper, finely coated paper, tracing paper, and recycled paper. Paper is mentioned.
  • Examples of the resin film include polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polyamide (PA) film, polyimide (PI) film, polysulfon (PSF), polyether sulfone (PES) film, cellulose derivative film, and the like. Examples thereof include polyolefin films such as polypropylene and polyethylene, and polystyrene films.
  • Synthetic paper includes polypropylene or polyethylene terephthalate stretched biaxially to form a large number of microvoids (Yupo, etc.), polyethylene, polypropylene, polyethylene terephthalate, synthetic fibers such as polyamide, and synthetic paper. Examples thereof include those obtained by laminating these on a part of paper, one side or both sides. Among them, a resin film or synthetic paper is preferable, and a resin film is more preferable, from the viewpoint of further increasing the color development density generated by pressurization.
  • the thickness T1 of the first support is as described above.
  • the first support preferably has a thermal resistance value of 0.0001 m 2 ⁇ K / W or more, preferably 0.0003 m 2 ⁇ K / W, in that it is more excellent in deformation resistance and antifouling property under high temperature conditions. It is more preferably W or more.
  • the upper limit is not particularly limited, but is preferably 0.1 m 2 ⁇ K / W or less.
  • Thermal conductivity (W / (m ⁇ K)) of the material constituting the first support is known, it is calculated from the thermal conductivity and the thickness T1 ( ⁇ m) of the first support based on the following formula. can.
  • Thermal resistance value (m 2 ⁇ K / W) thickness T1 ( ⁇ m) ⁇ 10-6 / thermal conductivity (W / (m ⁇ K))
  • the first layer contains microcapsules containing a color former.
  • the microcapsule usually has a core portion and a capsule wall for encapsulating a core material (encapsulated material (also referred to as an encapsulating component)) forming the core portion. Since the color-developing agent is encapsulated in microcapsules as a core material (encapsulating component), the color-developing agent can exist stably until the microcapsules are destroyed by pressure.
  • encapsulated material also referred to as an encapsulating component
  • Examples of the material (wall material) for the capsule wall include known resins used as wall materials for microcapsules for pressure-sensitive copying paper or heat-sensitive recording paper containing a coloring agent.
  • Examples of the resin include polyurethane, polyurea, polyurethane urea, melamine-formaldehyde resin, and gelatin.
  • the capsule wall is substantially made of resin.
  • Substantially composed of resin means that the content of the resin is 90% by mass or more with respect to the total mass of the capsule wall, and 100% by mass is preferable. That is, the capsule wall of the microcapsule is preferably made of resin.
  • the polyurethane is a polymer having a plurality of urethane bonds, and is preferably a reaction product formed from a raw material containing a polyol and a polyisocyanate.
  • the polyurea is a polymer having a plurality of urea bonds, and is preferably a reaction product formed from a raw material containing a polyamine and a polyisocyanate.
  • the polyurethane urea is a polymer having a urethane bond and a urea bond, and is preferably a reaction product formed from a raw material containing a polyol, a polyamine, and a polyisocyanate.
  • a part of the polyisocyanate reacts with water to form a polyamine, and as a result, polyurethane urea may be obtained.
  • the melamine-formaldehyde resin is preferably a reaction product formed from polycondensation of melamine and formaldehyde.
  • the polyisocyanate is a compound having two or more isocyanate groups, and examples thereof include aromatic polyisocyanates and aliphatic polyisocyanates.
  • examples of the polyisocyanate include aromatic diisocyanates, such as m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and diphenylmethane-.
  • aliphatic polyisocyanate examples include aliphatic diisocyanates, such as trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanis, butylene-1,2-diisocyanis, cyclohexylene-1,2-diisocyanis, and cyclohex.
  • aliphatic diisocyanates such as trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanis, butylene-1,2-diisocyanis, cyclohexylene-1,2-diisocyanis, and cyclohex.
  • examples thereof include diisocyanate, lysine diisocyanate, and hydride xylylene diisocyanate.
  • trifunctional or higher functional polyisocyanates may also be used as polyisocyanates.
  • the polyisocyanate is an adduct (addition) of a polyol such as a burette or isocyanurate, which is a trimer of the above bifunctional polyisocyanate, or a polyol such as trimethylolpropane, and a bifunctional polyisocyanate.
  • a trifunctional or higher functional polyisocyanate is preferable.
  • the trifunctional or higher functional polyisocyanate include a trifunctional or higher functional aromatic polyisocyanate and a trifunctional or higher functional aliphatic polyisocyanate.
  • the trifunctional or higher functional polyisocyanate is an adduct of an aromatic or alicyclic diisocyanate and a compound having three or more active hydrogen groups in one molecule (for example, a trifunctional or higher functional polyol, polyamine, polythiol, etc.).
  • a trifunctional or higher polyisocyanate (adduct type trifunctional or higher polyisocyanate) which is a body (additive) and a trimer of an aromatic or alicyclic diisocyanate (biuret type or isocyanurate type) are also preferable.
  • a trifunctional or higher polyisocyanate, which is the adduct body (additive) is more preferable.
  • a trifunctional or higher polyisocyanate which is the adduct body a trifunctional or higher functional polyisocyanate which is an adduct body of an aromatic or alicyclic diisocyanate and a polyol having three or more hydroxyl groups in one molecule is preferable.
  • the adduct body it is preferable to use an adduct body obtained by using an aromatic diisocyanate because the pressure distribution can be measured better under high temperature conditions.
  • a small molecule polyol having trifunctionality or higher which will be described later, is preferable, and trimethylolpropane is more preferable.
  • Examples of the adduct-type trifunctional or higher-functional polyisocyanate include Takenate (registered trademark) D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, and D-.
  • adduct-type trifunctional or higher polyisocyanate Takenate (registered trademark) D-110N, D-120N, D-140N, D-160N (manufactured by Mitsui Chemicals, Inc.) or DIC Corporation Barnock® D-750 is preferred.
  • isocyanurate-type trifunctional or higher functional isocyanate include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N, and D-204 (manufactured by Mitsui Chemicals, Inc.).
  • Biuret-type trifunctional or higher functional isocyanates include, for example, Takenate (registered trademark) D-165N, NP1100 (manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) N3200 (Sumitomo Bayer Urethane), and Duranate (registered trademark). ) 24A-100 (manufactured by Asahi Kasei Corporation).
  • polymethylene polyphenyl polyisocyanate is also preferable. That is, the resin is preferably polyurethane or polyurethane urea having a polymethylenepolyphenyl structure as a partial structure.
  • the polymethylene polyphenyl structure is a structure derived from polymethylene polyphenyl polyisocyanate.
  • Polymethylenepolyphenylpolyisocyanate is, for example, a compound represented by the formula (X).
  • n represents the number of repeating units.
  • the number of repeating units represents an integer of 1 or more, and n is preferably an integer of 1 to 10 and more preferably an integer of 1 to 5 in that the pressure distribution can be measured better under high temperature conditions.
  • Examples of the polyisocyanate containing polymethylene polyphenyl polyisocyanate include Millionate MR-100, Millionate MR-200, Millionate MR-400 (manufactured by Tosoh Co., Ltd.), WANNAME PM-200, and WANNAME PM-400 (Manhua Japan Co., Ltd.).
  • Cosmonate M-50, Cosmonate M-100, Cosmonate M-200, Cosmonate M-300 (manufactured by Mitsui Chemicals Co., Ltd.), and Boranate M-595 (manufactured by Dow Chemicals Co., Ltd.). Will be.
  • the polyol is a compound having two or more hydroxyl groups, and for example, a low molecular weight polyol (eg, an aliphatic polyol or an aromatic polyol.
  • the “low molecular weight polyol” is intended to be a polyol having a molecular weight of 400 or less.
  • the low molecular weight polyol means a polyol having a molecular weight of 400 or less, for example, bifunctional low molecular weight polyols such as ethylene glycol, diethylene glycol, and propylene glycol, as well as glycerin, trimethylolpropane, hexanetriol, and penta. Examples thereof include trifunctional or higher low molecular weight polyols such as erythritol and sorbitol.
  • Examples of the hydroxyl group-containing amine compound include amino alcohols as oxyalkylated derivatives of amino compounds.
  • the amino alcohol include N, N, N', N'-tetrakis [2-hydroxypropyl] ethylenediamine, which are propylene oxides or adducts of ethylene oxide of amino compounds such as ethylenediamine, and N, N, N'. , N'-Tetrakis [2-hydroxyethyl] ethylenediamine and the like.
  • a polyamine is a compound having two or more amino groups (primary amino group or secondary amino group), and is a fat such as diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, and hexamethylenediamine.
  • Group polyvalent amines Epoxy compound adducts of aliphatic polyvalent amines; Alicyclic polyvalent amines such as piperazine; 3,9-bis-aminopropyl-2,4,8,10-tetraoxaspiro- (5, 5) Examples thereof include heterocyclic diamines such as undecane.
  • a preferred embodiment of the resin contained in the capsule wall of the microcapsule is to have a structure A or a structure B.
  • the structure A includes an aromatic or alicyclic diisocyanate, a compound having three or more active hydrogen groups in one molecule, and a polymethylene polyphenyl polyisocyanate (preferably a compound represented by the formula (X)).
  • I a reaction structure.
  • Structure B is a structure formed by reacting melamine and formaldehyde.
  • the resin contained in the capsule wall of the microcapsule is a trifunctional adduct of an aromatic or alicyclic diisocyanate and a compound having three or more active hydrogen groups in one molecule.
  • Polyisocyanate A hereinafter, also simply referred to as “polyisocyanate A”
  • polyisocyanate B selected from the group consisting of aromatic diisocyanates and polymethylene polyphenyl polyisocyanates (hereinafter, simply “polyisocyanate B”). Also referred to as)). That is, it is preferable that the capsule wall of the microcapsules contains a resin formed by using the polyisocyanate A and the polyisocyanate B from the viewpoint of excellent effects of the present invention.
  • aromatic diisocyanate may be used alone, polymethylene polyphenyl polyisocyanate may be used alone, or both may be used in combination.
  • polyisocyanate B a mixture of aromatic diisocyanate and polymethylene polyphenyl polyisocyanate is preferable.
  • the mass ratio of polymethylene polyphenyl polyisocyanate to aromatic diisocyanate is not particularly limited, but is preferably 0.1 to 10 and 0. .5-2 is more preferable, and 0.75 to 1.5 is even more preferable.
  • the mass ratio of polyisocyanate A to polyisocyanate B is not particularly limited, but is 98/2 to 20/80. Is preferable, 80/20 to 20/80 is more preferable, and 80/20 to 45/55 is even more preferable.
  • the mass ratio is within the above range, the pressure distribution can be better measured under high temperature conditions. In addition, the temperature dependence of color development is small.
  • the thermal decomposition temperature of the capsule wall of the microcapsules is preferably 250 ° C. or higher, more preferably 255 ° C. or higher, and even more preferably 260 ° C. or higher.
  • the upper limit is often 500 ° C. or lower.
  • the method for measuring the thermal decomposition temperature of the capsule wall is as follows. 50 sheets of the first layer (microcapsule layer) having a length of 1 cm and a width of 1 cm are prepared, and all of them are immersed in 10 mL of water and allowed to stand for 24 hours to obtain an aqueous dispersion of microcapsules. When the first sheet includes the first support, 50 sheets of 1 cm in length ⁇ 1 cm in width may be prepared and immersed.
  • the obtained aqueous dispersion of microcapsules is centrifuged at 15,000 rpm for 30 minutes, and the microcapsules are separated. Ethyl acetate is added to the separated microcapsules, and the mixture is further stirred at 25 ° C. for 24 hours. Then, the obtained solution is filtered and the obtained residue is vacuum dried at 60 ° C. for 48 hours to obtain microcapsules containing nothing inside (hereinafter, also simply referred to as “measurement material”). Be done. That is, a capsule wall material of microcapsules, which is an object for measuring the thermal decomposition temperature, can be obtained.
  • thermogravimetric differential thermal analyzer TG-DTA device name: DTG-60, manufactured by Shimadzu Corporation.
  • TGA thermogravimetric differential thermal analyzer
  • the thermal decomposition temperature is the temperature of the measurement material raised from room temperature at a constant temperature rise rate (10 ° C./min) with respect to the mass of the measurement material before heating.
  • the thermogravimetric temperature (° C.) is defined as the temperature at which the weight is reduced by 5% by mass.
  • the average particle size of the microcapsules is not particularly limited, but is preferably 1 to 80 ⁇ m, more preferably 5 to 70 ⁇ m, still more preferably 10 to 50 ⁇ m.
  • the average particle size of the microcapsules can be controlled by adjusting the manufacturing conditions of the microcapsules and the like.
  • the average particle size of the above-mentioned microcapsules is a value obtained by the following method. Images taken from the surface of the first layer are analyzed with an optical microscope (OLYMPUS BX60, field size: 320 ⁇ m ⁇ 450 ⁇ m), and the major axis (particle size) of 30 microcapsules is measured in order from the largest microcapsule. Then, these are arithmetically averaged to obtain the average value. This operation is performed at any 5 locations (5 fields of view) of the first layer, the average of the average values obtained at each location is obtained, and the obtained value is used as the average particle size of the microcapsules.
  • the major axis means the longest diameter when observing the microcapsules.
  • the number average wall thickness of the capsule walls of the microcapsules is not particularly limited, but is preferably 0.01 to 2.0 ⁇ m, more preferably 0.02 to 1.0 ⁇ m in terms of excellent pressure responsiveness.
  • the wall thickness of the microcapsules refers to the thickness ( ⁇ m) of the capsule wall forming the capsule particles of the microcapsules, and the number average wall thickness is the thickness ( ⁇ m) of the individual capsule walls of the 20 microcapsules. Is obtained by a scanning electron microscope (SEM) and averaged. More specifically, a cross-sectional section of the first sheet having the first layer containing microcapsules was prepared, and the cross-section was observed by SEM at 15,000 times (value of average particle size of microcapsules) ⁇ 0. Select any 20 microcapsules having a diameter in the range of 9 to (average diameter of microcapsules) ⁇ 1.1, and observe the cross section of each selected microcapsule to observe the cross section of the capsule wall. Obtain the thickness and calculate the average value.
  • the ratio ( ⁇ / Dm) of the number average wall thickness ⁇ of the microcapsules to the average particle size of the microcapsules is not particularly limited, and is often 0.001 or more. Above all, it is preferable to satisfy the relationship of the formula (1) in that it is excellent in setting the color development density according to the pressure. Equation (1) ⁇ / Dm> 0.001 That is, the ratio ( ⁇ / Dm) is preferably larger than 0.001. Further, the above ratio ( ⁇ / Dm) is more preferably 0.002 or more. The upper limit is not particularly limited, but 0.2 or less is preferable. When the microcapsules satisfy the relationship of the above formula (1), the size of the capsule and the thickness of the capsule wall are well-balanced, and there is less concern that the inclusions of the microcapsules may leak under high temperature conditions.
  • the microcapsules contain a coloring agent.
  • the "color former” is a compound that develops a color when it comes into contact with a color developer described later from a colorless state.
  • the color-developing agent an electron-donating dye precursor (precursor of a dye that develops color) is preferable. That is, as the color former, an electron-donating colorless dye is preferable.
  • the color-developing agent those known in the application of pressure-sensitive copying paper or thermal recording paper can be used.
  • Examples of the color former include triphenylmethanephthalide-based compounds, fluorene-based compounds, phenothiazine-based compounds, indolylphthalide-based compounds, azaindrillphthalide-based compounds, leukooramine-based compounds, rhodamine lactam-based compounds, and triazene.
  • Examples thereof include phenylmethane-based compounds, diphenylmethane-based compounds, triazene-based compounds, spiropyran-based compounds, and fluorene-based compounds.
  • Japanese Patent Application Laid-Open No. 5-257272 and the description of International Publication No. 2009/0087248 [0029] to [0034].
  • the molecular weight of the color former is not particularly limited and is often 300 or more.
  • the upper limit is not particularly limited, but in many cases it is 1000 or less, and 600 or less is preferable in that the effect of the present invention is more excellent.
  • Preferred examples of the color former include 3- (4-diethylamino-2-ethoxyphenyl) -3- (1-ethyl-2-methylindole-3-yl) -4-azaphthalide and 3- (4-diethylamino-2).
  • microcapsules may contain components other than the above-mentioned color former.
  • microcapsules preferably contain a solvent.
  • the solvent is not particularly limited, and for example, an alkylnaphthalene-based compound such as diisopropylnaphthalene, a diarylalkane-based compound such as 1-phenyl-1-xylylethane, an alkylbiphenyl-based compound such as isopropylbiphenyl, a triarylmethane-based compound, and an alkylbenzene-based compound.
  • Aromatic hydrocarbons such as benzylnaphthalene compounds, diarylalkylene compounds, and arylindan compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffin, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, etc. Examples thereof include natural animal and vegetable oils such as coconut oil, castor oil and fish oil, and high boiling point distillates of natural products such as mineral oil.
  • the solvent preferably has an aromatic solvent from the viewpoint of improving the solubility of the color former.
  • the solvent may be used alone or in combination of two or more.
  • the mass ratio of the solvent to the color-developing agent is preferably in the range of 98/2 to 30/70 in terms of color-developing property.
  • the range of 97/3 to 40/60 is more preferable.
  • the microcapsules may contain one or more additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor suppressant, if necessary.
  • an ultraviolet absorber a compound having a benzotriazole structure is preferable.
  • the method for producing microcapsules is not particularly limited, and examples thereof include known methods such as an interfacial polymerization method, an internal polymerization method, a phase separation method, an external polymerization method, and a core selvation method. Of these, the interfacial polymerization method is preferable.
  • the interfacial polymerization method is a raw material containing a color former and a capsule wall material (for example, a polyisocyanate and at least one selected from the group consisting of a polyol and a polyamine. A polyisocyanate is reacted with water to form a polyamine.
  • an oil phase containing a polyol and a polyamine may not be used) is dispersed in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step), and a capsule wall material is used.
  • An interface polymerization method including a step of forming a capsule wall by polymerizing at the interface between the oil phase and the aqueous phase to form microcapsules containing a color former (encapsulation step) is preferable.
  • the mass ratio of the total amount of the polyol and the polyamine to the amount of the polyisocyanate (total amount of the polyol and the polyamine / the amount of the polyisocyanate) in the above raw materials is not particularly limited, but is 0.1 / 99.9 to. 30/70 is preferable, and 1/99 to 25/75 is more preferable.
  • the polyisocyanate A and the polyisocyanate B may be used in combination as the polyisocyanate. When both are used in combination, the preferable range of the mixing ratio of both is as described above.
  • the type of emulsifier used in the emulsification step is not particularly limited, and examples thereof include a dispersant and a surfactant.
  • examples of the dispersant include polyvinyl alcohol.
  • the first layer contains the microcapsules described above.
  • the content of the microcapsules in the first layer is not particularly limited, but 50 to 90% by mass is preferable with respect to the total mass of the first layer in that the pressure distribution can be measured better under high temperature conditions. , 55 to 85% by mass, more preferably 55 to 80% by mass.
  • the content of the color former in the first layer is not particularly limited, but 0.1 to 10 g / m 2 is preferable, and 0.1 is preferable because the pressure distribution can be measured better under high temperature conditions. ⁇ 4 g / m 2 is more preferable.
  • the first layer may contain components other than the above-mentioned microcapsules.
  • Other components include, for example, polymer binders, inorganic fillers (eg colloidal silica), optical brighteners, defoamers, penetrants, UV absorbers, surfactants, and preservatives.
  • the mass (solid content coating amount) (g / m 2 ) per unit area of the first layer is not particularly limited, but is, for example, 0.5 to 20.0 g / m 2 and 0.5 to 10.0 g / m 2. m 2 is preferred.
  • polymer binder examples include styrene-butadiene copolymer, polyvinyl acetate, polyacrylic acid ester, polyvinyl alcohol, polyacrylic acid, maleic anhydride-styrene copolymer, starch, casein, gum arabic, gelatin, and carboxy.
  • examples thereof include synthetic polymers such as methyl cellulose or salts thereof, methyl cellulose, polyolefins, and modified acrylic acid ester copolymers, or natural polymers.
  • the viscosity of the composition for forming the first layer can also be adjusted by adding a polymer binder.
  • the polymer binder may be used alone or in combination of two or more.
  • the content of the polymer binder is not particularly limited, but is preferably 0 to 50% by mass with respect to the total mass of the first layer. In terms of being suitable for a low pressure region of 20 MPa or less, 0.1 to 20% by mass is preferable, and 0.2 to 10% by mass is more preferable.
  • the surfactant include anionic surfactants, nonionic surfactants, cationic surfactants, etc., but in terms of maintaining the dispersibility of the microcapsules, anionic surfactants or Nonionic surfactants are preferred.
  • the surfactant examples include a fluorine-based surfactant, a silicone-based surfactant, a hydrocarbon-based surfactant, and the like, but the hydrocarbon-based interface is used in terms of maintaining coatability and dispersibility of microcapsules. Activators are preferred.
  • the content of the surfactant is not particularly limited, but is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the total mass of the first layer. It is preferable to introduce the inorganic filler after the first sheet and the second sheet are overlapped with each other and the heating pressure is measured, so that both of them can be easily peeled off.
  • Silica particles or alumina particles are preferable as the inorganic filler in that the first sheet and the second sheet can be easily peeled off.
  • the median diameter of the inorganic filler is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.1 ⁇ m, still more preferably 0.005 to 0.05 ⁇ m.
  • the content of the inorganic filler is preferably 1 to 50% by mass, more preferably 3 to 30% by mass, still more preferably 5 to 20% by mass, based on the total mass of the first layer.
  • the thickness of the first layer is not particularly limited, but is preferably 0.01 to 5 ⁇ m, more preferably 0.02 to 3 ⁇ m.
  • the thickness of the first layer means the thickness excluding the microcapsules exposed from the layer surface when the average particle size of the microcapsules is larger than the layer thickness.
  • the thickness of the first layer is preferably 50% or less, more preferably 25% or less, based on the average particle size of the microcapsules. The thinner the thickness of the first layer is with respect to the microcapsules, the more easily the microcapsules are broken, so that the thickness can be adjusted according to the pressure band to be measured.
  • the arithmetic mean roughness Ra of the surface of the first layer opposite to the first support is preferably 2 ⁇ m or more, more preferably 4.1 ⁇ m or more, in that it is suitable for pressure measurement under a low pressure region.
  • the upper limit is not particularly limited, but is preferably 10 ⁇ m or less.
  • the arithmetic mean roughness Ra of the first layer in the present embodiment is the arithmetic mean roughness Ra of the surface of the surface of the first layer facing the second sheet (contacting side) when the pressure measuring sheet set is used. Is.
  • the arithmetic mean roughness Ra of the first layer in the present specification means the arithmetic mean roughness Ra defined in JIS B 0681-6: 2014.
  • a scanning white interferometer using an optical interferometry (specifically, NewView5020 manufactured by Zygo: Stich mode; objective lens ⁇ 50 times; intermediate lens ⁇ 0.5 times). Is used.
  • the arithmetic mean roughness Ra of the first layer is at least the above lower limit value, a sufficient amount of the color-developing agent is often sufficient, so that a higher color-developing density is likely to occur.
  • the second layer of the second sheet when the arithmetic mean roughness Ra of the first layer is not more than the above upper limit value, the second layer of the second sheet appropriately absorbs the solvent flowing out together with the color former due to the disintegration of the microcapsules in the pressurized region. Since it can be done, good image quality with less bleeding can be obtained.
  • the arithmetic mean roughness Ra of the first layer can be controlled by adjusting the amount of solid content applied to the composition for forming the first layer and adjusting the amount of microcapsules in the first layer.
  • the method for forming the first layer is not particularly limited, and known methods can be mentioned. For example, a method of applying a composition for forming a first layer containing microcapsules on a first support and, if necessary, drying a coating film can be mentioned.
  • the composition for forming the first layer preferably contains at least microcapsules and a solvent.
  • the microcapsule dispersion obtained by the above-mentioned interfacial polymerization method may be used as the composition for forming the first layer.
  • the composition for forming the first layer may contain other components that may be contained in the first layer described above.
  • the method of applying the composition for forming the first layer is not particularly limited.
  • the coating machine used for applying the composition for forming the first layer include an air knife coater, a rod coater, a bar coater, a curtain coater, a gravure coater, an extrusion coater, a die coater, a slide bead coater, and a blade coater. Can be mentioned.
  • the coating film After applying the composition for forming the first layer on the first support, the coating film may be subjected to a drying treatment, if necessary.
  • a drying treatment include heat treatment.
  • the first sheet may have members other than the first support and the first layer described above.
  • the first sheet may have an adhesion layer between the first support and the first layer for enhancing the adhesion between the two.
  • the first support may be subjected to surface treatment such as corona discharge treatment.
  • the adhesion layer preferably contains a resin from the viewpoint of adhesion.
  • the resin may be, for example, a layer containing a resin formed from a urethane polymer or a blocked isocyanate.
  • the layer may contain at least one selected from the group consisting of gelatin, styrene / butadiene rubber, cellulose analogs, and polystyrene.
  • the adhesion layer preferably has a polymer having an aromatic group.
  • the thickness of the adhesion layer is not particularly limited, and is preferably 0.005 to 5 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • the second sheet has a second support and a second layer containing a color developer placed on the second support.
  • the second sheet may be a single leaf (single sheet) or a long sheet.
  • the second support is a member for supporting the second layer. Since the shape of the second support and the materials constituting the second support are the same as those of the first support described above, the description thereof will be omitted. Further, the thickness T2 of the second support is as described above.
  • the second support preferably has a thermal resistance value of 0.0001 m 2 ⁇ K / W or more, and is 0.0003 m 2 ⁇ K / W or more in that it has better deformation resistance under high temperature conditions. Is more preferable.
  • the upper limit is not particularly limited, but is preferably 0.1 m 2 ⁇ K / W or less.
  • the second layer is a layer containing a color developer.
  • the color developer is a compound that does not have a color-developing function by itself, but has a property of developing a color by contacting with the color-developing agent.
  • an electron-accepting compound is preferable.
  • Examples of the color developer include inorganic compounds and organic compounds.
  • the inorganic compound examples include clay substances such as acid clay, activated clay, attapargite, zeolite, bentonite, and kaolin.
  • a dispersant for dispersing the inorganic compound in combination.
  • the dispersant is appropriately selected depending on the surface physical characteristics of the inorganic compound. For example, anionic hexametaphosphate or a salt thereof is used for acid-treated active clay.
  • the organic compound include a metal salt of an aromatic carboxylic acid, a phenol formaldehyde resin, a metal salt of a carboxylated terpene phenol resin, and the like.
  • aromatic carboxylic acid examples include 3,5-di-t-butylsalicylic acid, 3,5-di-t-octylsalicylic acid, 3,5-di-t-nonylsalicylic acid, and 3,5-di-t-dodecylsalicylic acid.
  • the metal salt of the aromatic carboxylic acid the zinc salt, nickel salt, aluminum salt, or calcium salt of the above aromatic carboxylic acid is preferable.
  • the color developer the inorganic compounds and organic compounds described in International Publication No. 2009/008248 [0055] to [0056] can also be used, and this description is incorporated in the present specification.
  • a clay substance, a metal salt of an aromatic carboxylic acid, or a metal salt of a carboxylated terpenephenol resin is preferable, and a clay substance or a metal salt of an aromatic carboxylic acid is more preferable, and clay.
  • the substance is more preferable, and acidic clay, active clay, or kaolin is particularly preferable.
  • the clay substance is less likely to discolor when measuring pressure under high temperature conditions, so that the display quality of the pressure distribution in the pressure measurement sheet set is excellent.
  • the content of the color developer in the second layer is not particularly limited, but 20 to 95% by mass with respect to the total mass of the second layer is that the pressure distribution can be measured better under high temperature conditions. It is preferably 30 to 90% by mass, more preferably 30 to 90% by mass.
  • the color developer may be used alone or in combination of two or more.
  • the content of the color developer in the second layer is preferably 0.1 to 30 g / m 2 .
  • the content of the developer is preferably 3 to 20 g / m 2 and more preferably 5 to 15 g / m 2 .
  • the content of the developer is preferably 0.1 to 5 g / m 2 , more preferably 0.2 to 3 g / m 2 .
  • the second layer may contain components other than the above-mentioned developer.
  • other components include polymer binders, pigments, fluorescent whitening agents, antifoaming agents, penetrants, ultraviolet absorbers, surfactants, and preservatives.
  • the polymer binder include styrene-butadiene copolymer, polyvinyl acetate, polyacrylic acid ester, polyvinyl alcohol, polyacrylic acid, maleic anhydride-styrene copolymer, starch, casein, gum arabic, gelatin, and carboxy. Examples thereof include methyl cellulose, polyolefins, modified acrylic acid ester copolymers or salts thereof, and synthetic polymers such as methyl cellulose and natural polymers.
  • the polymer binder may be used alone or in combination of two or more.
  • the content of the polymer binder is not particularly limited, but is preferably 0.1 to 80% by mass, more preferably 1 to 50% by mass, based on the total mass of the second layer.
  • the pigment include heavy calcium carbonate, light calcium carbonate, talc, and titanium dioxide.
  • the surfactant include the same embodiments as those of the surfactant contained in the first layer described above, and the preferred embodiments are also the same.
  • the thickness of the second layer is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 2 to 30 ⁇ m, in that the pressure distribution can be measured better under high temperature conditions.
  • the mass (solid content coating amount) (g / m 2 ) per unit area of the second layer is not particularly limited, but may be, for example, 0.5 to 30.0 g / m 2 and 3.5 to 3 30.0 g / m 2 is preferable.
  • the method for forming the second layer is not particularly limited, and known methods can be mentioned. For example, a method of applying a composition for forming a second layer containing a color developer on a second support and, if necessary, performing a drying treatment can be mentioned.
  • the composition for forming the second layer may be a dispersion liquid in which a color developer is dispersed in water or the like.
  • the dispersion liquid in which the developer is dispersed can be prepared by mechanically dispersing the inorganic compound in water.
  • the color developer is an organic compound, it can be prepared by mechanically dispersing the organic compound in water or dissolving it in an organic solvent.
  • the composition for forming the second layer may contain other components that may be contained in the second layer described above.
  • the method for applying the composition for forming the second layer is not particularly limited, and examples thereof include a method using a coating machine used for applying the composition for forming the first layer described above.
  • the coating film may be subjected to a drying treatment, if necessary. Examples of the drying treatment include heat treatment.
  • the second sheet may have a member other than the above-mentioned second support and the second layer.
  • the second sheet may have an adhesion layer between the second support and the second layer for enhancing the adhesion between the two. Since the aspect of the adhesion layer is the same as the aspect of the adhesion layer that the first sheet may have, the description thereof will be omitted.
  • the pressure measurement sheet set according to the present embodiment is made of a specific resin film or paper having a glass transition temperature of 100 ° C. or higher or does not show a glass transition temperature, and is made of the above formulas (c) and (d). ) Is provided with a protective sheet having a thickness T3 (hereinafter, also referred to as “protective sheet P” in the present specification).
  • the protective sheet P may be a single sheet (single sheet) or a long sheet. Further, the protective sheet P may have any of a sheet shape, a film shape, and a plate shape.
  • paper examples include high-quality paper, medium-quality paper, shaving paper, neutral paper, acidic paper, recycled paper, coated paper, machine-coated paper, art paper, cast-coated paper, finely coated paper, tracing paper, and the like.
  • Recycled paper can be mentioned.
  • the resin constituting the specific resin film is not particularly limited as long as the film satisfies the above conditions.
  • the resin constituting the specific resin film include polyethylene naphthalate, polyethylene terephthalate, and a copolymer of polyethylene naphthalate, polyamide, polyimide, polyamideimide, polysulfone, polyethersulfone, polycarbonate, polyphenylsulfone, and polyetherimide. , And the polyether ether ketone and the like.
  • a polyethylene naphthalate film or a polyimide film is preferable because it is more excellent in antifouling property under high temperature conditions.
  • the polyethylene naphthalate film represents a film containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the film
  • the polyimide film refers to a polyimide film containing 70% by mass with respect to the total mass of the film. Represents a film containing the above ratio.
  • Examples of commercially available polyethylene naphthalate films include Theonex (registered trademark) Q51, Q53, Q81 and Q83 (manufactured by Teijin Film Solutions Co., Ltd.).
  • polyimide films examples include Kapton (registered trademark) H, V, and EN (manufactured by Toray Industries, Inc.), and Apical AH, NPI, and AF (manufactured by Kaneka Corporation).
  • Kapton registered trademark
  • H, V, and EN manufactured by Toray Industries, Inc.
  • Apical AH, NPI, and AF manufactured by Kaneka Corporation.
  • a polyethylene naphthalate film, a polyimide film or paper is preferable, and a polyimide film or paper is more preferable in that the effect of the present invention can be further improved.
  • the glass transition temperature of the resin film can be measured using a differential scanning calorimeter (DSC, device name: DSC-60aPlus, manufactured by Shimadzu Corporation). Specifically, a sample obtained by cutting a resin film is placed in a closed pan of a differential scanning calorimeter and measured at a heating rate of 5 ° C./min in the range of 25 ° C. to 250 ° C. As the glass transition temperature of the resin film, the value at the time of raising the temperature in the second cycle is used. As used herein, the fact that the resin film does not exhibit a glass transition temperature means that the resin constituting the resin film does not exhibit a glass transition temperature in the temperature range of 25 ° C to 250 ° C. When a commercially available resin film is used, the catalog value of the glass transition temperature may be adopted.
  • DSC differential scanning calorimeter
  • the specific resin film is preferably a resin film having a glass transition temperature of 110 ° C. or higher or showing no glass transition temperature, and a glass transition temperature of 150 ° C. or higher, because it is more excellent in antifouling property under high temperature conditions. Or, a resin film that does not show a glass transition temperature is more preferable.
  • the thickness T3 of the protective sheet P is as described above.
  • the protective sheet P may be composed of a single layer made of a specific resin film or paper, or may be made of a layer made of a plurality of specific resin films or paper.
  • the arithmetic mean roughness Ra of the surface of the protective sheet P is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less.
  • the lower limit is not particularly limited, but 0.001 ⁇ m or more is preferable.
  • the arithmetic mean roughness Ra on the surface of the protective sheet P can be measured according to the above-mentioned method for measuring the arithmetic mean roughness Ra of the first layer.
  • the protective sheet P preferably has a thermal resistance value of 0.0001 m 2 ⁇ K / W or more, and is 0.0003 m 2 ⁇ K / W or more in that it has better deformation resistance under high temperature conditions. Is more preferable.
  • the upper limit is not particularly limited, but is preferably 0.1 m 2 ⁇ K / W or less.
  • the thermal resistance value of the protective sheet P can be measured by a thermal resistance measuring instrument. If the thermal conductivity (W / (m ⁇ K)) of the material constituting the protective sheet P is known, it may be calculated from the thermal conductivity and the thickness T3 ( ⁇ m) of the protective sheet P.
  • the protective sheet P may have a gap.
  • Examples of the protective sheet P having voids include a porous film Siporus SEF (manufactured by Chukoh Chemical Industries, Ltd.).
  • the first sheet, the second sheet, and the protective sheet P included in the pressure measuring sheet set are combined with the first layer in the first sheet and the second layer in the second sheet. It has a step A1 for producing a pressure measuring sheet by laminating so as to face each other, and a step B for pressurizing the pressure measuring sheet by two members arranged on both sides of the pressure measuring sheet. Further, at least one of the two members used in step B is heated by a heat source, and the protective sheet P is arranged at least on the surface side of the pressure measuring sheet in contact with the heated member.
  • FIG. 2 is a diagram for explaining a usage mode of the pressure measurement sheet set according to the present embodiment, and shows an example of the configuration of a pressure measurement sheet manufactured by using the sheet set 10 shown in FIG.
  • step A1 the first sheet 16, the second sheet 22, and the protective sheet 40, which is the protective sheet P, included in the sheet set 10 are laminated.
  • the stacking order is not particularly limited. For example, after laminating the first sheet 16 and the second sheet 22 so that the first layer 14 and the second layer 20 face each other to prepare a laminated body, two protective sheets are protected on both sides of the obtained laminated body. By laminating the sheets 40, the pressure measuring sheet 100 shown in FIG. 2 can be obtained.
  • the pressure measuring sheet produced by using the pressure measuring sheet set according to the present embodiment is not limited to the one having the configuration shown in FIG.
  • two protective sheets 40 are arranged on the outermost layer so as to sandwich the first sheet 16 and the second sheet 22, but the measurement for measuring the pressure in the step B is performed.
  • the protective sheet P may be provided only on the surface in contact with the heated member.
  • the other surface may be provided with a protective sheet other than the protective sheet P, or may not be provided with the protective sheet.
  • a pressure measuring sheet in which the two protective sheets P are arranged on the outermost layer may be used.
  • step B the pressure measuring sheet is pressurized by two members (not shown) which are measurement objects arranged on both sides of the pressure measuring sheet 100 produced in step A1.
  • step B when the pressure measuring sheet 100 is pressurized by the two members, the microcapsules 13 are broken in the pressurized region of the first layer 14 facing the second layer 20, and the microcapsules 13 are broken.
  • the color-developing agent contained in the microcapsules comes out of the microcapsules 13, and the color-developing reaction proceeds with the color-developing agent in the second layer 20.
  • an image pressure image
  • the pressure measuring sheet pressurized in step B is separated from the first sheet and the second sheet after peeling the protective sheet from the pressure measuring sheet as necessary, and appears in the second layer of the second sheet.
  • the pressure image color development according to the pressure
  • the magnitude and pressure distribution of the pressure applied to the pressure measuring sheet in step B can be analyzed.
  • the above pressure image may be confirmed visually or by using a pressure image analysis system (FPD-8010, manufactured by FUJIFILM Corporation).
  • FPD-8010 manufactured by FUJIFILM Corporation
  • the protective sheet P is arranged on the surface side of the pressure measuring sheet in contact with the heated member to measure the pressure under high temperature conditions. It is possible to suppress deformation of the support, decrease in resolution, and contamination of the object to be measured, and perform more accurate pressure measurement. That is, even under high temperature conditions, the pressure distribution can be measured with little difference from the measurement result at room temperature (23 ° C.) in terms of the resolution of the pressure distribution.
  • the temperature condition in step B is, for example, 180 to 220 ° C.
  • the pressure measurement sheet set according to the present invention can also be preferably used for pressure measurement under temperature conditions other than high temperature conditions (for example, room temperature).
  • the above temperature condition is the temperature of the surface of the member heated by the heat source in contact with the pressure measuring sheet.
  • the pressure measurement sheet set according to the present invention can be used for pressure measurement in a wide pressure range.
  • the range of 0.05 to 20 MPa is preferable, and the range of 0.5 to 10 MPa is more preferable.
  • Examples of the member heated by the heat source which is the target of the pressure measuring method according to the present embodiment, include a high temperature press machine used for a crimping operation under various high temperature conditions such as a thermocompression bonding step at the time of manufacturing a printed circuit board. ..
  • FIG. 3 is a schematic view showing the configuration of the pressure measurement sheet set according to the second embodiment of the present invention.
  • the sheet set 30, which is a pressure measuring sheet set according to the present embodiment, includes a laminated body 34 and a protective sheet 40.
  • the laminate 34 has a first support 32, a second layer 20 containing a color developer, and a first layer 14 containing microcapsules 13 in this order.
  • the protective sheet 40 included in the sheet set 30 is made of a specific resin film or paper.
  • the thickness T1 of the first support and the thickness T4 of the protective sheet satisfy all of the following formulas (a), (e) and (f).
  • the thickness T1 of the first support and the thickness T4 of the protective sheet are not limited as long as the above formulas (a), (e) and (f) are all satisfied.
  • the thickness T1 preferably satisfies the following formula (a0), and more preferably satisfies the following formula (a1).
  • the thicknesses T1 and T4 preferably satisfy the following formula (e1) in that the deformation resistance under high temperature conditions is more excellent.
  • the upper limit of the value obtained by substituting the thicknesses T1 and T4 into the equation of "T4-T1 ⁇ 0.4" is not particularly limited, but the following equation (e2) is satisfied in that the resolution under high temperature conditions is better. Is preferable.
  • the thicknesses T1 and T4 are more preferably satisfied with the following formula (f1) and more preferably with the following formula (f2) in that they are more excellent in deformation resistance and resolution under high temperature conditions.
  • (F1) 100 ⁇ m ⁇ T1 + T4 ⁇ 250 ⁇ m
  • (F2) 100 ⁇ m ⁇ T1 + T4 ⁇ 225 ⁇ m
  • pressure measurement is performed by laminating the laminated body 34 and the protective sheet 40 to prepare a pressure measurement sheet and applying pressure to the obtained pressure measurement sheet. To carry out.
  • the pressure measurement sheet set according to the present embodiment is not limited to the mode shown in FIG.
  • the first support 32 and the second layer 20 are directly laminated, but another layer (for example, close contact) is formed between the first support and the second layer. Layers) may be arranged.
  • the laminated body 34 shown in FIG. 3 has only the first support 32 as a support, but the laminated body has two supports sandwiching the first layer and the second layer. It may have a laminated structure including a support / two layers / a first layer / a support.
  • the laminate has a first support, a second layer containing a color developer, and a first layer containing microcapsules containing a color former in this order.
  • the laminated body may be a single leaf (single sheet) or may be long.
  • the first support body of the laminated body according to the present embodiment is a member for supporting the second layer and the first layer. Since the shape of the first support and the material constituting the first support in the present embodiment are the same as those in the first support described above, the description thereof will be omitted. Further, the thickness T1 of the first support is as described above.
  • the first layer and the second layer of the laminate according to the present embodiment are the same as the first layer and the second layer described in the first embodiment described above, including the preferred embodiments thereof. Is omitted.
  • the laminated body may have members other than the first support, the first layer, and the second layer.
  • other members include the above-mentioned adhesion layer and a second support arranged so as to sandwich the first layer and the second layer so as to face the first support. Since the adhesion layer that the laminated body may have in this embodiment is the same as the adhesion layer described in the first embodiment described above, the description thereof will be omitted. Further, the second support that the laminated body may have in the present embodiment is the same as the first support described above, including its preferred embodiment, and thus the description thereof will be omitted.
  • the method for producing the laminate is not particularly limited, and examples thereof include known methods.
  • a method for producing the laminate for example, a composition for forming a second layer containing a color developer is applied onto the first support, and if necessary, the coating film is subjected to a drying treatment, and the first After forming the second layer on the support, a composition for forming the first layer containing microcapsules is further applied onto the second layer, and if necessary, the coating film is dried.
  • a method of producing a laminate having the first support, the second layer, and the first layer in this order by forming the first layer on the second layer can be mentioned.
  • the composition for forming the second layer, the method for forming the second layer, the composition for forming the first layer, and the method for forming the first layer are all as described in the first embodiment.
  • the pressure measurement sheet set according to the present embodiment is made of a specific resin film or paper having a glass transition temperature of 100 ° C. or higher or does not show a glass transition temperature, and is made of the above formulas (e) and (f). ) Is provided with a protective sheet having a thickness T4 (hereinafter, also referred to as “protective sheet Q” in the present specification). Since the protective sheet Q is the same as the protective sheet P described in the first embodiment except for the thickness T4, the description thereof will be omitted. Further, the thickness T4 of the protective sheet Q is as described above.
  • a step A2 for laminating a laminated body and a protective sheet Q to produce a pressure measurement sheet and two members arranged on both sides of the pressure measurement sheet are used for pressure. It has a step B of pressurizing a measuring sheet. Further, at least one of the two members used in step B is heated by a heat source, and the protective sheet Q is arranged on at least the surface side of the pressure measuring sheet in contact with the heated member.
  • a pressure measurement sheet is produced using the pressure measurement sheet set according to the present embodiment. More specifically, the protective sheet Q is laminated on at least one of the two surfaces of the laminated body in contact with the member heated in the step B to prepare a pressure measurement sheet.
  • the protective sheet Q is laminated on both sides of the laminated body.
  • the protective sheet Q is laminated on the surface side of the laminated body in contact with the heated member.
  • the protective sheet Q may be laminated on the surface in contact with the member not heated by the heat source, the protective sheet other than the protective sheet Q may be laminated, or the protective sheet may not be laminated.
  • step B the pressure measuring sheet is pressurized by two members which are measurement objects arranged on both sides of the pressure measuring sheet produced in step A2. Since the process B is the same as the process B described in the first embodiment, the description thereof will be omitted.
  • step B For the pressure measuring sheet pressurized in step B, after peeling the protective sheet from the pressure measuring sheet as necessary, the pressure image (color development according to the pressure) appearing on the second layer is confirmed.
  • step B the magnitude and pressure distribution of the pressure applied to the pressure measuring sheet can be analyzed. The method for confirming the above pressure image is as described above.
  • the pressure measuring sheet set of the present invention can be used for various purposes, for example, for verification or control of various manufacturing processes including a high temperature press in a process. More specifically, pressure distribution confirmation in the laminating process in the battery (lithium ion battery, fuel cell) field, pressure distribution confirmation in the laminating process in the printed wiring board (FPC, BWB) field, ACF bonding and laminating of the wiring take-out part, etc.
  • the pressure distribution confirmation in the heat crimping process and the pressure distribution confirmation of the mold tightening portion can be mentioned.
  • the obtained composition for forming the first layer was applied to a polyethylene terephthalate (PET) sheet (manufactured by Toyobo Co., Ltd., Cosmoshine A4300) having a thickness T1 of 75 ⁇ m and having both sides easily bonded, and having a mass of 6 after drying.
  • PET polyethylene terephthalate
  • the first sheet was prepared by applying and drying with a bar coater so as to be 0.0 g / m 2 .
  • the arithmetic mean roughness Ra of the surface of the prepared first layer opposite to the PET sheet side was 5.0 ⁇ m.
  • NIPPOL LX814 manufactured by Nippon Kogyo Co., Ltd., solid content concentration 46% by mass
  • 35 parts 35 parts
  • a composition for forming a second layer containing a coloring agent was prepared.
  • the composition for forming the second layer containing the color developer was applied onto a PET sheet having a thickness T2 of 75 ⁇ m and a solid content coating amount of 7.0 g / m 2 . Then, the obtained coating film was dried to form a second layer, and a second sheet was obtained.
  • Example 1 As a protective sheet, a polyethylene naphthalate sheet having a thickness T3 of 75 ⁇ m (Teijin Film Solution Co., Ltd., Theonex (registered trademark) Q51) was used, and the first sheet produced in Production Example 1 and the production example 2 were produced. A pressure measurement sheet set according to the first embodiment was prepared, which comprises the second sheet and the protective sheet.
  • Examples 2 to 14 and Reference Examples 1 to 8 A pressure measurement sheet set was prepared in the same manner as in Example 1 except that the configuration of each layer shown in Table 1 was changed.
  • Example 15 A polyethylene terephthalate (PET) sheet (Cosmo Shine A4360, manufactured by Toyobo Co., Ltd.) with a thickness T1 of 75 ⁇ m and easy-adhesion treatment on both sides has a discharge power of 0.7 kW and a discharge electrode length of 0.66 m on one side. , Corona discharge treatment was performed under the condition of a transport speed of 12 m / min to obtain PET film A. The first support used in Production Example 1 was changed from a polyethylene terephthalate (PET) sheet (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) to the PET film A obtained above, and the surface of the PET film A treated with corona discharge.
  • PET polyethylene terephthalate
  • the first sheet 15 was prepared in the same manner as in Preparation Example 1 except that the first layer forming composition was applied to the mixture.
  • the arithmetic mean roughness Ra of the surface of the prepared first sheet 15 on the side opposite to the PET sheet side of the first layer was 5.0 ⁇ m.
  • a polyethylene naphthalate sheet having a thickness T3 of 75 ⁇ m Teijin Film Solution Co., Ltd., Theonex (registered trademark) Q51
  • the pressure measurement sheet set according to the first embodiment was prepared.
  • the first sheet, the second sheet and the protective sheet included in the pressure measurement sheet set prepared in each example and each reference example were cut into a size of 5 cm in length ⁇ 5 cm in length, respectively.
  • the protective sheet, the first sheet, the second sheet, and the protective sheet are laminated in this order so that the surface of the first layer of the first sheet and the surface of the second layer of the second sheet are in contact with each other for pressure measurement.
  • a sample for evaluation test of the sheet was prepared.
  • a hot press with two heatable stages was prepared and heated until the surface temperature of each stage reached 220 ° C.
  • the sample was sandwiched between the two stages and the sample was pressurized at a pressure of 5.0 MPa over 2 minutes.
  • the surface of each stage in contact with the sample was sufficiently wide and flat with respect to the sample.
  • the sample is taken out from the hot press machine, the first sheet and the second sheet are peeled off, each sheet is placed on a flat table, the shape is observed, and the deformation resistance is according to the following criteria. Was evaluated.
  • a sample for evaluation test of the pressure measurement sheet was prepared using the pressure measurement sheet set prepared in each Example and each reference example. Then, in the same manner as in the above-mentioned deformation resistance evaluation test, the stage was heated to 220 ° C. using a hot press machine. The sample was sandwiched between the two stages and the sample was pressurized at a pressure of 5.0 MPa over 2 minutes. After the pressurization was completed, the sample was removed from the stage, and the surface of the stage was observed to confirm the presence or absence of deposits derived from the sample and the state of adhesion. Based on the observation results, the antifouling property of the pressure measurement sheet was evaluated when the pressure was measured under high temperature conditions according to the following criteria.
  • a sample for evaluation test of the pressure measurement sheet was prepared using the pressure measurement sheet set prepared in each Example and each reference example.
  • the sample and the 1-cent coin were sandwiched between two stages heated so that the surface temperature of each stage was 220 ° C. using a hot press machine for 2 minutes.
  • the sample was pressurized over a pressure of 5.0 MPa. After the pressurization was completed, the sample was removed from the stage and the color development state of the sample was observed.
  • the antifouling property of the pressure measurement sheet was evaluated when the pressure was measured under high temperature conditions according to the following criteria.
  • the resolution of the pressure distribution displayed on the pressure measurement sheet when the pressure was measured under high temperature conditions was evaluated according to the following criteria.
  • Table 1 shows the configurations of the pressure measurement sheet sets of Examples 1 to 15 and Reference Examples 1 to 8 and the evaluation results.
  • the "material” column indicates the materials constituting the first support, the second support, or the protective sheet, respectively.
  • “PEN” is polyethylene terephthalate
  • PET is polyethylene terephthalate
  • PET / PEN is polyethylene terephthalate / polyethylene naphthalate copolymer
  • PI is polyimide
  • Al Means aluminum respectively.
  • the “T1 (a)” column indicates the thickness T1 (unit: ⁇ m) of the first support.
  • the “T2 (b)” column indicates the thickness T2 (unit: ⁇ m) of the second support.
  • the “T3” column indicates the thickness T3 (unit: ⁇ m) of the protective sheet.
  • the “Tg” column indicates the glass transition temperature Tg (unit: ° C.) of the material constituting the protective sheet.
  • “* 1" in the "Tg” column means that the glass transition temperature Tg of the material constituting the protective sheet was not shown in the measurement range of 250 ° C. or lower.
  • the "thermal resistance value” column shows the thermal resistance value (unit: m2 ⁇ K / W) material of the first support, the second support or the protective sheet calculated by the above method, respectively.
  • the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet are expressed by the formula (c) ("T3- (T1 + T2) x 0.2"). The value obtained by substituting into is shown.
  • the “(d)” column shows the total of the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet.
  • the arithmetic mean roughness Ra of the surface of the protective sheet used in Examples 1 to 15 was 0.02 to 0.03 ⁇ m.
  • Example 15 is different from Example 1 in that the first sheet 15 produced by using PET film A whose surface facing the first layer is subjected to corona discharge treatment is used as the first support. Is different. Further, as a result of performing pressure measurement under the above high temperature conditions using the pressure measurement sheet set prepared in Reference Example 8, the pressure sheet set melted and adhered to the stage, so that the evaluation of the resolution of the pressure distribution was performed. Can not be implemented.
  • the composition for forming the first layer prepared in Preparation Example 1 was applied onto the second layer so that the mass after drying was 6.0 g / m 2 , and the obtained coating film was dried.
  • the first layer a laminated body having the first support, the second layer, and the first layer in this order was produced.
  • Example 101 As the protective sheet, a polyethylene naphthalate sheet having a thickness T4 of 75 ⁇ m (Teijin Film Solution Co., Ltd., Theonex (registered trademark) Q51) is used, and the laminate is composed of the laminate produced in Production Example 101 and the protective sheet. , A sheet set for pressure measurement according to the first embodiment was prepared.
  • Example 102 to 117 and Reference Examples 101 to 107 A pressure measurement sheet set was prepared in the same manner as in Example 101 except that the configuration of each layer shown in Table 2 was changed.
  • Example 117 a paper sheet (manufactured by KOKUYO Co., Ltd., printer paper super fine grade, thick type) was used as the protective sheet.
  • Table 2 shows the configurations of the pressure measurement sheet sets of Examples 101 to 117 and Reference Examples 101 to 107, and the evaluation results.
  • the "material” column, "T1 (a)” column, “Tg” column, and “thermal resistance value” column in Table 2 are the same as those in Table 1.
  • the "T4" column indicates the thickness T4 (unit: ⁇ m) of the protective sheet.
  • the “(e)” column shows a value obtained by substituting the thickness T1 of the first support and the thickness T4 of the protective sheet into the equation (e) (“T4-T1 ⁇ 0.4”).
  • the “(f)” column shows the total of the thickness T1 of the first support and the thickness T4 of the protective sheet.
  • the arithmetic mean roughness Ra of the surface of the protective sheet used in Examples 101 to 117 was 0.02 to 0.03 ⁇ m.

Abstract

The present invention addresses the problem of providing a sheet set for pressure measurement that, when carrying out pressure measurement under high-temperature conditions, is capable of suppressing deformation of a support body, reduction of the resolution of a pressure distribution image, and contamination of an object to be measured. The present invention also addresses the problem of providing a pressure measurement method. This sheet set for pressure measurement includes: a first sheet including a first support body, and a first layer that is disposed on the first support body and that includes microcapsules that contain a color former; a second sheet including a second support body, and a second layer that is disposed on the second support body and that includes a developer; and a protective sheet. The protective sheet is a resin film or paper. The resin film has a glass transition temperature of 100°C or higher, or does not exhibit a glass transition temperature; The thickness T1 of the first support body, the thickness T2 of the second support body, and the thickness T3 of the protective sheet satisfy all of the predetermined formulae (a) to (d).

Description

圧力測定用シートセット、圧力測定方法Pressure measurement sheet set, pressure measurement method
 本発明は、圧力測定用シートセット、及び、圧力測定方法に関する。 The present invention relates to a pressure measuring sheet set and a pressure measuring method.
 圧力測定用シート(すなわち、圧力の測定に用いられるシート)は、液晶ガラスの貼合せ工程、プリント基板へのハンダ印刷、ローラ間の圧力調整等の用途に使用されている。
 例えば、特許文献1には、発色剤と顕色剤との発色反応を利用した圧力測定用シートが開示されており、0.1~20MPa程度の圧力範囲で測定できることが記載されている。また、特許文献2には、ポリオレフィンフィルムの製造方法に関する発明が開示されており、加圧ロールでシートを圧縮する際に、シートにおいて圧力がかかった領域の面積を圧力測定用シートを用いて測定したこと(第65頁第16行目~第66頁第9行目)が記載されている。
The pressure measuring sheet (that is, the sheet used for pressure measurement) is used for applications such as a bonding process of liquid crystal glass, solder printing on a printed circuit board, and pressure adjustment between rollers.
For example, Patent Document 1 discloses a pressure measuring sheet that utilizes a color-developing reaction between a color-developing agent and a color-developing agent, and describes that measurement can be performed in a pressure range of about 0.1 to 20 MPa. Further, Patent Document 2 discloses an invention relating to a method for producing a polyolefin film, and measures the area of a pressured region on a sheet using a pressure measuring sheet when the sheet is compressed by a pressure roll. What was done (page 65, line 16 to page 66, line 9) is described.
特公昭57-024852号公報Special Publication No. 57-024852 国際公開第2004/024809号International Publication No. 2004/024809
 近年、実際の製造条件での圧力測定が重要になっており、特に、電子部品製造工程における加熱圧着や、タッチパネル製造工程におけるボンディング工程、電池製造工程における加熱プレス、及び、食品分野におけるヒートシール工程等の種々の高温条件での圧着操作に関して、より正確な圧力測定の実施が望まれている。
 本発明者らは、特許文献1及び2を参考にして圧力測定用シートを作製又は入手し、得られた圧力測定用シートを用いて高温条件(特に180℃以上)で圧力測定を実施したところ、圧力測定シートが変形するために正確な圧力測定ができず、更には、圧力測定用シートに由来する付着物により測定対象物が汚染されるという問題が生じる場合があることを知見した。これらの問題は、室温(23℃)付近の温度条件で圧力測定を実施した場合には起こらないものであった。そして、これらの問題が生じる場合は、正確な圧力測定を実施するため、温度を下げて、実際の実施態様とは異なる温度条件で圧力測定を実施せざるを得なかった。しかしながら、高温状態では、金型など測定対象物が熱で膨張するため、低温状態での圧力分布とは厳密には異なる。つまり、温度を下げて圧力測定したデータは、高温状態での圧力分布を反映してないことがあり、180℃以上の高温環境下において正確に圧力測定ができる圧力測定用シートセット等が要求されていた。
In recent years, pressure measurement under actual manufacturing conditions has become important, especially in the heat crimping process in the electronic component manufacturing process, the bonding process in the touch panel manufacturing process, the heating press in the battery manufacturing process, and the heat sealing process in the food field. It is desired to carry out more accurate pressure measurement for the crimping operation under various high temperature conditions such as.
The present inventors prepared or obtained a pressure measurement sheet with reference to Patent Documents 1 and 2, and performed pressure measurement under high temperature conditions (particularly 180 ° C. or higher) using the obtained pressure measurement sheet. It was found that accurate pressure measurement cannot be performed because the pressure measurement sheet is deformed, and further, there may be a problem that the object to be measured is contaminated by the deposits derived from the pressure measurement sheet. These problems did not occur when the pressure measurement was performed under the temperature condition near room temperature (23 ° C.). When these problems occur, in order to carry out accurate pressure measurement, the temperature must be lowered and the pressure measurement must be carried out under temperature conditions different from the actual embodiment. However, in a high temperature state, the object to be measured such as a mold expands due to heat, so that the pressure distribution is strictly different from that in the low temperature state. That is, the data measured by lowering the temperature may not reflect the pressure distribution in a high temperature state, and a pressure measurement sheet set or the like capable of accurately measuring the pressure in a high temperature environment of 180 ° C or higher is required. Was there.
 本発明者らは、マイクロカプセルを含む層及び/又は顕色剤を含む層を支持するために設けられた支持体が、熱によって溶融又は変形することにより上記の問題が起こる可能性があることを推測し、保護シートを設けることで上記課題の解決を試みた。しかしながら、保護シートの種類や圧力測定シートの種類によっては、課題が解決できないことがあった。また、保護シートを設けた場合、態様によっては、圧力分布の解像性が低下してしまうことがあった。 The present inventors may cause the above-mentioned problems by melting or deforming the support provided for supporting the layer containing microcapsules and / or the layer containing a color developer by heat. And tried to solve the above problem by providing a protective sheet. However, depending on the type of protective sheet and the type of pressure measurement sheet, the problem may not be solved. Further, when the protective sheet is provided, the resolvability of the pressure distribution may be lowered depending on the mode.
 本発明は、上記実情に鑑みて、高温条件下で圧力測定を実施する場合に、支持体の変形、圧力分布画像の解像度(以下、単に解像度ともいう)の低下、及び、測定対象物の汚染を抑制できる圧力測定用シートセットを提供することを課題とする。また、本発明は、圧力測定方法を提供することを課題とする。 In view of the above circumstances, the present invention has deformation of the support, reduction of the resolution of the pressure distribution image (hereinafter, also simply referred to as resolution), and contamination of the object to be measured when the pressure measurement is performed under high temperature conditions. It is an object of the present invention to provide a sheet set for pressure measurement that can suppress the above. Another object of the present invention is to provide a pressure measuring method.
 本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the above problems, the present inventors have found that the above problems can be solved by the following configuration.
〔1〕
 第1支持体、及び、上記第1支持体上に配置された、発色剤を内包するマイクロカプセルを含む第1層を有する第1シートと、第2支持体、及び、上記第2支持体上に配置された、顕色剤を含む第2層を有する第2シートと、保護シートと、を備える圧力測定用シートセットであって、上記保護シートが、樹脂フィルム又は紙であり、上記樹脂フィルムは、ガラス転移温度が100℃以上であるか、又は、ガラス転移温度を示さず、上記第1支持体の厚みT1、上記第2支持体の厚みT2、及び、上記保護シートの厚みT3が、後述する式(a)~(d)をすべて満たす、圧力測定用シートセット。
〔2〕
 上記保護シートが、ポリエチレンナフタレートフィルム、ポリイミドフィルム又は紙である、〔1〕に記載の圧力測定用シートセット。
〔3〕
 上記T1、上記T2、及び、上記T3が、後述する式(d1)を満たす、〔1〕又は〔2〕に記載の圧力測定用シートセット。
〔4〕
 上記T1、上記T2、及び、上記T3が、後述する式(c1)を満たす、〔1〕~〔3〕のいずれかに記載の圧力測定用シートセット。
〔5〕
 上記T1が後述する式(a1)を満たし、かつ、上記T2が後述する式(b1)を満たす、〔1〕~〔4〕のいずれかに記載の圧力測定用シートセット。
〔6〕
 上記樹脂フィルムのガラス転移温度が150℃以上であるか、又は、上記樹脂フィルムがガラス転移温度を示さない、〔1〕~〔5〕のいずれかに記載の圧力測定用シートセット。
〔7〕
 上記保護シートの表面の算術平均粗さRaが、0.1μm以下である、〔1〕~〔6〕のいずれかに記載の圧力測定用シートセット。
〔8〕
 上記第1層の上記第1支持体とは反対側の表面の算術平均粗さRaが、4.1μm以上である、〔1〕~〔7〕のいずれかに記載の圧力測定用シートセット。
〔9〕
 〔1〕~〔8〕のいずれかに記載の圧力測定用シートセットを用いて圧力を測定する圧力測定方法であって、上記第1シート、上記第2シート、及び、上記保護シートを、上記第1層と上記第2層とが対向するように積層して、圧力測定用シートを作製する工程A1と、上記圧力測定用シートの両面側に配置された2つの部材により、上記圧力測定用シートを加圧する工程Bと、を有し、上記工程Bにおいて、上記2つの部材の少なくとも一方が熱源により加熱されており、上記保護シートは、少なくとも上記圧力測定用シートの上記加熱された部材と接する表面側に配置されている、方法。
〔10〕
 第1支持体と、顕色剤を含む第2層と、発色剤を内包するマイクロカプセルを含む第1層と、を有する積層体と、保護シートと、を備える圧力測定用シートセットであって、上記保護シートが、樹脂フィルム又は紙であり、上記樹脂フィルムは、ガラス転移温度が100℃以上であるか、又は、ガラス転移温度を示さず、上記第1支持体の厚みT1、及び、上記保護シートの厚みT4が、後述する式(a)、(e)及び(f)をすべて満たす、圧力測定用シートセット。
〔11〕
 上記保護シートが、ポリエチレンナフタレートフィルム、ポリイミドフィルム又は紙である、〔10〕に記載の圧力測定用シートセット。
〔12〕
 上記T1、及び、上記T4が、後述する式(f1)を満たす、〔10〕又は〔11〕に記載の圧力測定用シートセット。
〔13〕
 上記T1、及び、上記T4が、後述する式(e1)を満たす、〔10〕~〔12〕のいずれかに記載の圧力測定用シートセット。
〔14〕
 上記T1が後述する式(a1)を満たす、〔10〕~〔13〕のいずれかに記載の圧力測定用シートセット。
〔15〕
 上記樹脂フィルムのガラス転移温度が150℃以上であるか、又は、上記樹脂フィルムがガラス転移温度を示さない、〔10〕~〔14〕のいずれかに記載の圧力測定用シートセット。
〔16〕
 上記保護シートの表面の算術平均粗さRaが、0.1μm以下である、〔10〕~〔15〕のいずれかに記載の圧力測定用シートセット。
〔17〕
 上記第1層の上記第2層とは反対側の表面の算術平均粗さRaが、4.1μm以上である、〔10〕~〔16〕のいずれかに記載の圧力測定用シートセット。
〔18〕
 〔10〕~〔17〕のいずれかに記載の圧力測定用シートセットを用いて圧力を測定する圧力測定方法であって、上記積層体と上記保護シートとを積層して、圧力測定用シートを作製する工程A2と、上記圧力測定用シートの両面側に配置された2つの部材により、上記圧力測定用シートを加圧する工程Bと、を有し、上記工程Bにおいて、上記2つの部材の少なくとも一方が熱源により加熱されており、上記保護シートは、少なくとも上記圧力測定用シートの上記加熱された部材と接する表面側に配置されている、方法。
[1]
On the first support, the first sheet having the first layer containing the microcapsules containing the color-developing agent and placed on the first support, the second support, and the second support. A pressure measuring sheet set comprising a second sheet having a second layer containing a developer and a protective sheet, wherein the protective sheet is a resin film or paper, and the resin film is provided. The glass transition temperature is 100 ° C. or higher, or the glass transition temperature is not indicated, and the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet are A sheet set for pressure measurement that satisfies all of the formulas (a) to (d) described later.
[2]
The pressure measurement sheet set according to [1], wherein the protective sheet is a polyethylene naphthalate film, a polyimide film, or paper.
[3]
The pressure measurement sheet set according to [1] or [2], wherein the T1, T2, and T3 satisfy the formula (d1) described later.
[4]
The pressure measurement sheet set according to any one of [1] to [3], wherein the T1, T2, and T3 satisfy the formula (c1) described later.
[5]
The pressure measurement sheet set according to any one of [1] to [4], wherein the T1 satisfies the formula (a1) described later and the T2 satisfies the formula (b1) described later.
[6]
The pressure measurement sheet set according to any one of [1] to [5], wherein the glass transition temperature of the resin film is 150 ° C. or higher, or the resin film does not show the glass transition temperature.
[7]
The pressure measurement sheet set according to any one of [1] to [6], wherein the arithmetic mean roughness Ra of the surface of the protective sheet is 0.1 μm or less.
[8]
The sheet set for pressure measurement according to any one of [1] to [7], wherein the arithmetic mean roughness Ra of the surface of the first layer opposite to the first support is 4.1 μm or more.
[9]
A pressure measuring method for measuring pressure using the pressure measuring sheet set according to any one of [1] to [8], wherein the first sheet, the second sheet, and the protective sheet are used. A step A1 for producing a pressure measurement sheet by laminating the first layer and the second layer so as to face each other, and two members arranged on both sides of the pressure measurement sheet for pressure measurement. It has a step B of pressurizing a sheet, and in the step B, at least one of the two members is heated by a heat source, and the protective sheet is at least the heated member of the pressure measuring sheet. A method that is located on the side of the surface that comes into contact.
[10]
A pressure measuring sheet set including a laminate having a first support, a second layer containing a color developer, and a first layer containing microcapsules containing a color former, and a protective sheet. The protective sheet is a resin film or paper, and the resin film has a glass transition temperature of 100 ° C. or higher, or does not show a glass transition temperature, and has a thickness T1 of the first support and the above. A pressure measuring sheet set in which the thickness T4 of the protective sheet satisfies all of the formulas (a), (e) and (f) described later.
[11]
The pressure measurement sheet set according to [10], wherein the protective sheet is a polyethylene naphthalate film, a polyimide film, or paper.
[12]
The pressure measurement sheet set according to [10] or [11], wherein the T1 and the T4 satisfy the formula (f1) described later.
[13]
The pressure measurement sheet set according to any one of [10] to [12], wherein the T1 and the T4 satisfy the formula (e1) described later.
[14]
The pressure measurement sheet set according to any one of [10] to [13], wherein the T1 satisfies the formula (a1) described later.
[15]
The pressure measurement sheet set according to any one of [10] to [14], wherein the glass transition temperature of the resin film is 150 ° C. or higher, or the resin film does not show the glass transition temperature.
[16]
The pressure measurement sheet set according to any one of [10] to [15], wherein the arithmetic mean roughness Ra of the surface of the protective sheet is 0.1 μm or less.
[17]
The sheet set for pressure measurement according to any one of [10] to [16], wherein the arithmetic mean roughness Ra of the surface of the first layer opposite to the second layer is 4.1 μm or more.
[18]
A pressure measuring method for measuring pressure using the pressure measuring sheet set according to any one of [10] to [17], wherein the laminated body and the protective sheet are laminated to form a pressure measuring sheet. It has a step A2 for manufacturing and a step B for pressurizing the pressure measuring sheet by two members arranged on both sides of the pressure measuring sheet, and in the step B, at least of the two members. A method in which one is heated by a heat source and the protective sheet is arranged at least on the surface side of the pressure measuring sheet in contact with the heated member.
 本発明によれば、高温条件下において圧力測定を実施する場合であっても、支持体の変形、圧力分布画像の解像度の低下、及び、測定対象物の汚染を抑制できる圧力測定用シートセット、及び、圧力測定方法を提供できる。 According to the present invention, a pressure measurement sheet set capable of suppressing deformation of a support, deterioration of the resolution of a pressure distribution image, and contamination of a measurement object even when pressure measurement is performed under high temperature conditions. And a pressure measuring method can be provided.
本発明の圧力測定用シートセットの一実施形態の構成を示す模式図である。It is a schematic diagram which shows the structure of one Embodiment of the sheet set for pressure measurement of this invention. 本発明の圧力測定用シートセットの使用形態を説明するための図である。It is a figure for demonstrating the usage form of the sheet set for pressure measurement of this invention. 本発明の圧力測定用シートセットの他の実施形態の構成を示す模式図である。It is a schematic diagram which shows the structure of the other embodiment of the sheet set for pressure measurement of this invention.
 以下、本発明について詳細に説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 後述する各成分は、1種単独で又は2種以上を混合して用いてもよい。例えば、後述するポリイソシアネートは、1種単独で又は2種以上を混合して用いてもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特に言及しない限り、2種以上の物質の合計含有量を意味する。
Hereinafter, the present invention will be described in detail.
The numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
Further, in the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
Each component described later may be used alone or in combination of two or more. For example, the polyisocyanate described later may be used alone or in combination of two or more. Here, when two or more kinds of substances are used in combination for each component, the content of the component means the total content of two or more kinds of substances unless otherwise specified.
 本発明に係る圧力測定用シートセットは、支持体と、発色剤を内包するマイクロカプセルを含む第1層及び/又は顕色剤を含む第2層とを有するシート、並びに、保護シートを備えるシートセットであって、保護シートが、ガラス転移温度が100℃以上であるか、若しくは、ガラス転移温度を示さない樹脂フィルム(以下、「特定樹脂フィルム」ともいう。)又は紙であり、圧力測定用シートセットが有する支持体の厚み及び保護シートの厚みが特定の関係式を満たすことを特徴とする。 The pressure measuring sheet set according to the present invention is a sheet having a support, a first layer containing a microcapsule containing a coloring agent and / or a second layer containing a developing agent, and a sheet including a protective sheet. A set, the protective sheet is a resin film (hereinafter, also referred to as "specific resin film") or paper having a glass transition temperature of 100 ° C. or higher or not showing a glass transition temperature, and is used for pressure measurement. It is characterized in that the thickness of the support and the thickness of the protective sheet of the sheet set satisfy a specific relational expression.
 本発明者らは、上記課題を解決する方法について鋭意検討した結果、上記の特定樹脂フィルム又は紙からなる保護シートを用い、かつ、特定の関係式をすべて満たすように、圧力測定用シートに用いる支持体及び保護シートの厚みを規定することにより、高温条件下において圧力測定を実施する場合であっても、支持体の変形、解像度の低下、及び、測定対象物の汚染を抑制し、より正確な圧力測定が実施可能になることを見出し、本発明を完成させた。
 本発明によって、より正確な圧力測定が実施可能になる詳細な機構については不明であるが、特定の保護シートを設けることによりマイクロカプセルを含む層に熱が伝わりにくくなり、発色剤層の漏れが抑制されたこと、及び、特定の硬さを備える保護シートを使用することにより、保護シートを介していても適切な圧力がマイクロカプセルを含む層に伝わり、正確な圧力測定が可能になったものと本発明者らは推測している。
As a result of diligent studies on a method for solving the above problems, the present inventors use the above-mentioned protective sheet made of a specific resin film or paper, and use it as a pressure measurement sheet so as to satisfy all the specific relational expressions. By defining the thickness of the support and protective sheet, even when pressure measurement is performed under high temperature conditions, deformation of the support, deterioration of resolution, and contamination of the object to be measured are suppressed and more accurate. The present invention has been completed by finding that various pressure measurements can be performed.
Although the detailed mechanism that enables more accurate pressure measurement by the present invention is unknown, the provision of a specific protective sheet makes it difficult for heat to be transferred to the layer containing the microcapsules, resulting in leakage of the color former layer. By using a protective sheet that is suppressed and has a specific hardness, appropriate pressure is transmitted to the layer containing the microcapsules even through the protective sheet, enabling accurate pressure measurement. The present inventors speculate.
 以下、本発明に係る圧力測定用シートセットの構成について、図面を参照しながら詳述する。 Hereinafter, the configuration of the pressure measurement sheet set according to the present invention will be described in detail with reference to the drawings.
[第1実施形態]
 図1は、本発明に係る圧力測定用シートセットの一実施形態の構成を示す模式図である。
 第1実施形態に係る圧力測定用シートセットであるシートセット10は、第1シート16と、第2シート22と、保護シート40とを備える。第1シート16は、第1支持体12と、第1支持体12上に配置された、マイクロカプセル13を含む第1層14と、を有する。第2シート22は、第2支持体18と、第2支持体18上に配置された顕色剤を含む第2層20と、を有する。
 シートセット10が備える保護シート40は、特定樹脂フィルム、又は、紙である。
 また、シートセット10では、第1支持体の厚みT1、第2支持体の厚みT2、及び、保護シートの厚みT3が、下記式(a)~(d)をすべて満たす。
 (a) 15μm≦T1≦200μm
 (b) 15μm≦T2≦200μm
 (c) T3-(T1+T2)×0.2≧0μm
 (d) 80μm≦T1+T2+T3≦300μm
[First Embodiment]
FIG. 1 is a schematic diagram showing a configuration of an embodiment of a pressure measurement sheet set according to the present invention.
The sheet set 10, which is a pressure measurement sheet set according to the first embodiment, includes a first sheet 16, a second sheet 22, and a protective sheet 40. The first sheet 16 has a first support 12 and a first layer 14 containing microcapsules 13 arranged on the first support 12. The second sheet 22 has a second support 18 and a second layer 20 containing a color developer arranged on the second support 18.
The protective sheet 40 included in the sheet set 10 is a specific resin film or paper.
Further, in the sheet set 10, the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet all satisfy the following formulas (a) to (d).
(A) 15 μm ≤ T1 ≤ 200 μm
(B) 15 μm ≤ T2 ≤ 200 μm
(C) T3- (T1 + T2) × 0.2 ≧ 0 μm
(D) 80 μm ≤ T1 + T2 + T3 ≤ 300 μm
 第1支持体の厚みT1、第2支持体の厚みT2、及び、保護シートの厚みT3は、上記式(a)~(d)をすべて満たす限り、それぞれ制限されない。
 厚みT1は、下記式(a0)を満たすことが好ましく、下記式(a1)を満たすことがより好ましい。
 (a0) 16μm≦T1≦150μm
 (a1) 50μm≦T1≦150μm
 また、厚みT2は、下記式(b0)を満たすことが好ましく、下記式(b1)を満たすことがより好ましい。
 (b0) 16μm≦T1≦150μm
 (b1) 50μm≦T2≦150μm
 更に、厚みT1及びT2の組合せとしては、厚みT1が上記式(a0)を満たし、かつ、厚みT2が上記式(b0)を満たす組合せが好ましく、高温条件下での耐変形性及び解像度がより優れる点で、厚みT1が上記式(a1)を満たし、かつ、厚みT2が上記式(b1)を満たす組合せがより好ましい。
The thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet are not limited as long as all of the above formulas (a) to (d) are satisfied.
The thickness T1 preferably satisfies the following formula (a0), and more preferably satisfies the following formula (a1).
(A0) 16 μm ≤ T1 ≤ 150 μm
(A1) 50 μm ≤ T1 ≤ 150 μm
Further, the thickness T2 preferably satisfies the following formula (b0), and more preferably satisfies the following formula (b1).
(B0) 16 μm ≤ T1 ≤ 150 μm
(B1) 50 μm ≤ T2 ≤ 150 μm
Further, as a combination of the thicknesses T1 and T2, a combination in which the thickness T1 satisfies the above formula (a0) and the thickness T2 satisfies the above formula (b0) is preferable, and the deformation resistance and the resolution under high temperature conditions are improved. In terms of excellence, a combination in which the thickness T1 satisfies the above formula (a1) and the thickness T2 satisfies the above formula (b1) is more preferable.
 厚みT1、T2及びT3は、高温条件下での耐変形性がより優れる点で、下記式(c1)を満たすことが好ましく、下記式(c2)を満たすことがより好ましい。
 (c1) T3-(T1+T2)×0.2≧15μm
 (c2) T3-(T1+T2)×0.2≧16μm
 厚みT1、T2及びT3を「T3-(T1+T2)×0.2」の式に代入して得られる値の上限は特に制限されないが、高温条件下での解像度がより優れる点で、下記式(c3)を満たすことが好ましい。
 (c3) T3-(T1+T2)×0.2≦100μm
The thicknesses T1, T2 and T3 preferably satisfy the following formula (c1) and more preferably the following formula (c2) in that the deformation resistance under high temperature conditions is more excellent.
(C1) T3- (T1 + T2) × 0.2 ≧ 15 μm
(C2) T3- (T1 + T2) × 0.2 ≧ 16 μm
The upper limit of the value obtained by substituting the thicknesses T1, T2 and T3 into the formula of "T3- (T1 + T2) x 0.2" is not particularly limited, but the following formula ( It is preferable to satisfy c3).
(C3) T3- (T1 + T2) × 0.2 ≦ 100 μm
 厚みT1、T2及びT3は、高温条件下での耐変形性及び解像度がより優れる点で、下記式(d1)を満たすことが好ましく、下記式(d2)を満たすことがより好ましい。
 (d1) 100μm≦T1+T2+T3≦275μm
 (d2) 135μm≦T1+T2+T3≦275μm
The thicknesses T1, T2 and T3 preferably satisfy the following formula (d1) and more preferably the following formula (d2) in that they are more excellent in deformation resistance and resolution under high temperature conditions.
(D1) 100 μm ≤ T1 + T2 + T3 ≤ 275 μm
(D2) 135 μm ≤ T1 + T2 + T3 ≤ 275 μm
 シートセット10を使用して圧力測定を実施する際は、図2に示すように、第1シート16、第2シート22及び保護シート40を、第1シート16の第1層14と第2シート22の第2層20とが対向するように積層して、圧力測定用シート100を作製し、得られた圧力測定用シート100に圧力をかけることにより、圧力測定を実施する。
 本実施形態に係る圧力測定用シートセットを用いて圧力測定用シートを作製し、圧力を測定する方法については、後述する。
When performing pressure measurement using the sheet set 10, as shown in FIG. 2, the first sheet 16, the second sheet 22 and the protective sheet 40 are used, and the first layer 14 and the second sheet of the first sheet 16 are used. A pressure measurement sheet 100 is produced by laminating the 22 second layer 20 so as to face each other, and pressure measurement is performed by applying pressure to the obtained pressure measurement sheet 100.
A method of producing a pressure measuring sheet using the pressure measuring sheet set according to the present embodiment and measuring the pressure will be described later.
 なお、本実施形態に係る圧力測定用シートセットは、図1に示す態様に制限されない。
 例えば、図1に示すシートセット10では、第1支持体12と第1層14とが直接積層しているが、第1支持体12と第1層14との間には他の層(例えば、密着層)が配置されていてもよい。
 図1に示すシートセット10では、第2支持体18と第2層20とが直接積層しているが、第2支持体18と第2層20との間には他の層(例えば、密着層)が配置されていてもよい。
The pressure measurement sheet set according to the present embodiment is not limited to the mode shown in FIG.
For example, in the sheet set 10 shown in FIG. 1, the first support 12 and the first layer 14 are directly laminated, but another layer (for example, between the first support 12 and the first layer 14) is directly laminated. , Adhesion layer) may be arranged.
In the sheet set 10 shown in FIG. 1, the second support 18 and the second layer 20 are directly laminated, but another layer (for example, close contact) is between the second support 18 and the second layer 20. Layers) may be arranged.
 以下、本実施形態に係る圧力測定用シートセットを構成する各部材について詳述する。 Hereinafter, each member constituting the pressure measurement sheet set according to the present embodiment will be described in detail.
〔第1シート〕
 第1シートは、第1支持体と、第1支持体上に配置された、発色剤を内包するマイクロカプセルを含む第1層とを有する。
 第1シートは、枚葉(単票)であってもよいし、長尺状であってもよい。
[First sheet]
The first sheet has a first support and a first layer, which is arranged on the first support and contains microcapsules containing a coloring agent.
The first sheet may be a single leaf (single sheet) or a long sheet.
<第1支持体>
 第1支持体は、第1層を支持するための部材である。
 第1支持体は、シート状、フィルム状、及び、板状のいずれの形状であってもよい。
<First support>
The first support is a member for supporting the first layer.
The first support may have any of a sheet shape, a film shape, and a plate shape.
 第1支持体としては、紙、樹脂フィルム、及び、合成紙が挙げられる。
 紙としては、上質紙、中質紙、更紙、中性紙、酸性紙、再生紙、コート紙、マシンコート紙、アート紙、キャストコート紙、微塗工紙、トレーシングペーパー、及び、再生紙が挙げられる。
 樹脂フィルムとしては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリアミド(PA)フィルム、ポリイミド(PI)フィルム、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)フィルム、セルロース誘導体フィルム、ポリプロピレン及びポリエチレン等のポリオレフィンフィルム、並びに、ポリスチレンフィルムが挙げられる。
 合成紙としては、ポリプロピレン又はポリエチレンテレフタレート等を2軸延伸してミクロボイドを多数形成したもの(ユポ等)、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、及び、ポリアミド等の合成繊維を用いて作製したもの、並びに、これらを紙の一部、片面又は両面に積層したものが挙げられる。
 なかでも、加圧により生じる発色濃度をより高める点から、樹脂フィルム、又は、合成紙が好ましく、樹脂フィルムがより好ましい。
Examples of the first support include paper, resin film, and synthetic paper.
Papers include high-quality paper, medium-quality paper, shaving paper, neutral paper, acidic paper, recycled paper, coated paper, machine-coated paper, art paper, cast-coated paper, finely coated paper, tracing paper, and recycled paper. Paper is mentioned.
Examples of the resin film include polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polyamide (PA) film, polyimide (PI) film, polysulfon (PSF), polyether sulfone (PES) film, cellulose derivative film, and the like. Examples thereof include polyolefin films such as polypropylene and polyethylene, and polystyrene films.
Synthetic paper includes polypropylene or polyethylene terephthalate stretched biaxially to form a large number of microvoids (Yupo, etc.), polyethylene, polypropylene, polyethylene terephthalate, synthetic fibers such as polyamide, and synthetic paper. Examples thereof include those obtained by laminating these on a part of paper, one side or both sides.
Among them, a resin film or synthetic paper is preferable, and a resin film is more preferable, from the viewpoint of further increasing the color development density generated by pressurization.
 第1支持体の厚みT1については、既に説明した通りである。 The thickness T1 of the first support is as described above.
 第1支持体は、高温条件下での耐変形性及び防汚性がより優れる点で、熱抵抗値が0.0001m・K/W以上であることが好ましく、0.0003m・K/W以上であることがより好ましい。上限値は特に制限されないが、0.1m・K/W以下が好ましい。
 第1支持体を構成する材料の熱伝導率(W/(m・K))が既知である場合、その熱伝導率と第1支持体の厚みT1(μm)から、下記式に基づいて算出できる。
 熱抵抗値(m・K/W)=厚みT1(μm)×10-6/熱伝導率(W/(m・K))
The first support preferably has a thermal resistance value of 0.0001 m 2 · K / W or more, preferably 0.0003 m 2 · K / W, in that it is more excellent in deformation resistance and antifouling property under high temperature conditions. It is more preferably W or more. The upper limit is not particularly limited, but is preferably 0.1 m 2 · K / W or less.
When the thermal conductivity (W / (m · K)) of the material constituting the first support is known, it is calculated from the thermal conductivity and the thickness T1 (μm) of the first support based on the following formula. can.
Thermal resistance value (m 2 · K / W) = thickness T1 (μm) × 10-6 / thermal conductivity (W / (m · K))
<第1層>
(マイクロカプセル)
 第1層は、発色剤を内包するマイクロカプセルを含む。
 以下、マイクロカプセルを構成する材料について詳述する。
 マイクロカプセルは、通常、コア部と、コア部をなすコア材(内包されるもの(内包成分ともいう。))を内包するためのカプセル壁と、を有する。発色剤は、コア材(内包成分)として、マイクロカプセルに内包されているため、加圧されてマイクロカプセルが破壊されるまで、発色剤は安定的に存在できる。
<First layer>
(Microcapsules)
The first layer contains microcapsules containing a color former.
Hereinafter, the materials constituting the microcapsules will be described in detail.
The microcapsule usually has a core portion and a capsule wall for encapsulating a core material (encapsulated material (also referred to as an encapsulating component)) forming the core portion. Since the color-developing agent is encapsulated in microcapsules as a core material (encapsulating component), the color-developing agent can exist stably until the microcapsules are destroyed by pressure.
 カプセル壁の材料(壁材)としては、発色剤を内包する感圧複写紙又は感熱記録紙用のマイクロカプセルの壁材として使用されている公知の樹脂が挙げられる。上記樹脂としては、例えば、ポリウレタン、ポリウレア、ポリウレタンウレア、メラミン-ホルムアルデヒド樹脂、及び、ゼラチンが挙げられる。 Examples of the material (wall material) for the capsule wall include known resins used as wall materials for microcapsules for pressure-sensitive copying paper or heat-sensitive recording paper containing a coloring agent. Examples of the resin include polyurethane, polyurea, polyurethane urea, melamine-formaldehyde resin, and gelatin.
 カプセル壁は、実質的に樹脂で構成されることが好ましい。実質的に樹脂で構成されるとは、カプセル壁全質量に対する、樹脂の含有量が90質量%以上であることを意味し、100質量%が好ましい。つまり、マイクロカプセルのカプセル壁は、樹脂で構成されることが好ましい。
 なお、ポリウレタンとはウレタン結合を複数有するポリマーであり、ポリオールとポリイソシアネートとを含む原料から形成される反応生成物であることが好ましい。
 また、ポリウレアとはウレア結合を複数有するポリマーであり、ポリアミンとポリイソシアネートとを含む原料から形成される反応生成物であることが好ましい。なお、ポリイソシアネートの一部が水と反応してポリアミンとなることを利用して、ポリイソシアネートを用いて、ポリアミンを使用せずに、ポリウレアを合成することもできる。
 また、ポリウレタンウレアとはウレタン結合及びウレア結合を有するポリマーであり、ポリオールと、ポリアミンと、ポリイソシアネートとを含む原料から形成される反応生成物であることが好ましい。なお、ポリオールとポリイソシアネートとを反応させる際に、ポリイソシアネートの一部が水と反応してポリアミンとなり、結果的にポリウレタンウレアが得られることがある。
 また、メラミン-ホルムアルデヒド樹脂とは、メラミンとホルムアルデヒドの重縮合から形成される反応生成物であることが好ましい。
It is preferable that the capsule wall is substantially made of resin. Substantially composed of resin means that the content of the resin is 90% by mass or more with respect to the total mass of the capsule wall, and 100% by mass is preferable. That is, the capsule wall of the microcapsule is preferably made of resin.
The polyurethane is a polymer having a plurality of urethane bonds, and is preferably a reaction product formed from a raw material containing a polyol and a polyisocyanate.
Further, the polyurea is a polymer having a plurality of urea bonds, and is preferably a reaction product formed from a raw material containing a polyamine and a polyisocyanate. It is also possible to synthesize polyurea using polyisocyanate without using polyamine by utilizing the fact that a part of polyisocyanate reacts with water to form polyamine.
Further, the polyurethane urea is a polymer having a urethane bond and a urea bond, and is preferably a reaction product formed from a raw material containing a polyol, a polyamine, and a polyisocyanate. When the polyol and the polyisocyanate are reacted, a part of the polyisocyanate reacts with water to form a polyamine, and as a result, polyurethane urea may be obtained.
The melamine-formaldehyde resin is preferably a reaction product formed from polycondensation of melamine and formaldehyde.
 ポリイソシアネートとは、2つ以上のイソシアネート基を有する化合物であり、芳香族ポリイソシアネート、及び、脂肪族ポリイソシアネートが挙げられる。
 ポリイソシアネートとしては、芳香族ジイソシアネートが挙げられ、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、及び、4,4’-ジフェニルヘキサフルオロプロパンジイソシアネートが挙げられる。
The polyisocyanate is a compound having two or more isocyanate groups, and examples thereof include aromatic polyisocyanates and aliphatic polyisocyanates.
Examples of the polyisocyanate include aromatic diisocyanates, such as m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and diphenylmethane-. 4,4'-diisocyanate, 3,3'-dimethoxy-biphenyldiisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4- Examples thereof include chloroxylylene-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate, and 4,4'-diphenylhexafluoropropanediisocyanate.
 脂肪族ポリイソシアネートとしては、脂肪族ジイソシアネートが挙げられ、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、リジンジイソシアネート、及び、水素化キシリレンジイソシアネートが挙げられる。 Examples of the aliphatic polyisocyanate include aliphatic diisocyanates, such as trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanis, butylene-1,2-diisocyanis, cyclohexylene-1,2-diisocyanis, and cyclohex. Silen-1,3-diisethylene, cyclohexamethylene-1,4-diisocyanis, dicyclohexamethylene-4,4'-diisocyanis, 1,4-bis (isocyanismethyl) cyclohexane, 1,3-bis (isocyanismethyl) cyclohexane, isophoron Examples thereof include diisocyanate, lysine diisocyanate, and hydride xylylene diisocyanate.
 なお、上記では2官能の芳香族ポリイソシアネート及び脂肪族ポリイソシアネートを例示したが、ポリイソシアネートとしては、3官能以上のポリイソシアネート(例えば、3官能のトリイソシアネート、及び、4官能のテトライソシアネート)も挙げられる。
 より具体的には、ポリイソシアネートとしては、上記の2官能のポリイソシアネートの3量体であるビューレット体もしくはイソシアヌレート体、トリメチロールプロパン等のポリオールと2官能のポリイソシアネートとのアダクト体(付加体)、ベンゼンイソシアネートのホルマリン縮合物、メタクリロイルオキシエチルイソシアネート等の重合性基を有するポリイソシアネート、及び、リジントリイソシアネートも挙げられる。
 ポリイソシアネートについては「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))に記載されている。
Although bifunctional aromatic polyisocyanates and aliphatic polyisocyanates have been exemplified above, trifunctional or higher functional polyisocyanates (for example, trifunctional triisocyanates and tetrafunctional tetraisocyanates) may also be used as polyisocyanates. Can be mentioned.
More specifically, the polyisocyanate is an adduct (addition) of a polyol such as a burette or isocyanurate, which is a trimer of the above bifunctional polyisocyanate, or a polyol such as trimethylolpropane, and a bifunctional polyisocyanate. (Body), formalin condensate of benzene isocyanate, polyisocyanate having a polymerizable group such as methacryloyloxyethyl isocyanate, and lysine triisocyanate can also be mentioned.
Polyisocyanates are described in the "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
 なかでも、ポリイソシアネートの好適態様の一つとしては、3官能以上のポリイソシアネートが好ましい。
 3官能以上のポリイソシアネートとしては、例えば、3官能以上の芳香族ポリイソシアネート、及び、3官能以上の脂肪族ポリイソシアネートが挙げられる。
 3官能以上のポリイソシアネートとしては、芳香族又は脂環族ジイソシアネートと1分子中に3つ以上の活性水素基を有する化合物(例えば、3官能以上の、ポリオール、ポリアミン、又はポリチオール等)とのアダクト体(付加物)である3官能以上のポリイソシアネート(アダクト型である3官能以上のポリイソシアネート)、及び、芳香族又は脂環族ジイソシアネートの3量体(ビウレット型又はイソシアヌレート型)も好ましく、上記アダクト体(付加物)である3官能以上のポリイソシアネートがより好ましい。
Among them, as one of the preferred embodiments of the polyisocyanate, a trifunctional or higher functional polyisocyanate is preferable.
Examples of the trifunctional or higher functional polyisocyanate include a trifunctional or higher functional aromatic polyisocyanate and a trifunctional or higher functional aliphatic polyisocyanate.
The trifunctional or higher functional polyisocyanate is an adduct of an aromatic or alicyclic diisocyanate and a compound having three or more active hydrogen groups in one molecule (for example, a trifunctional or higher functional polyol, polyamine, polythiol, etc.). A trifunctional or higher polyisocyanate (adduct type trifunctional or higher polyisocyanate) which is a body (additive) and a trimer of an aromatic or alicyclic diisocyanate (biuret type or isocyanurate type) are also preferable. A trifunctional or higher polyisocyanate, which is the adduct body (additive), is more preferable.
 上記アダクト体である3官能以上のポリイソシアネートとしては、芳香族又は脂環族ジイソシアネートと1分子中に3つ以上の水酸基を有するポリオールとのアダクト体である3官能以上のポリイソシアネートが好ましく、芳香族又は脂環族ジイソシアネートと1分子中に3つの水酸基を有するポリオールとのアダクト体である3官能のポリイソシアネートがより好ましい。
 上記アダクト体としては、高温条件下での圧力分布の測定がより良好に実施できる点で、芳香族ジイソシアネートを用いて得られるアダクト体を用いることが好ましい。
 上記ポリオールとしては、例えば、後述する3官能以上の低分子ポリオールが好ましく、トリメチロールプロパンがより好ましい。
As the trifunctional or higher polyisocyanate which is the adduct body, a trifunctional or higher functional polyisocyanate which is an adduct body of an aromatic or alicyclic diisocyanate and a polyol having three or more hydroxyl groups in one molecule is preferable. A trifunctional polyisocyanate, which is an adduct of a group or alicyclic diisocyanate and a polyol having three hydroxyl groups in one molecule, is more preferable.
As the adduct body, it is preferable to use an adduct body obtained by using an aromatic diisocyanate because the pressure distribution can be measured better under high temperature conditions.
As the above-mentioned polyol, for example, a small molecule polyol having trifunctionality or higher, which will be described later, is preferable, and trimethylolpropane is more preferable.
 アダクト型である3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、P49-75S、D-110N、D-120N、D-140N、D-160N(三井化学株式会社製)、デスモジュール(登録商標)L75、UL57SP(住化バイエルウレタン株式会社製)、コロネート(登録商標)HL、HX、L(日本ポリウレタン株式会社製)、P301-75E(旭化成株式会社製)、バーノック(登録商標)D-750(DIC株式会社製)が挙げられる。
 なかでも、アダクト型の3官能以上のポリイソシアネートとしては、タケネート(登録商標)D-110N、D-120N、D-140N、D-160N(三井化学株式会社製)、又は、DIC株式会社製のバーノック(登録商標)D-750が好ましい。
 イソシアヌレート型の3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N、D-204(三井化学株式会社製)、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(住化バイエルウレタン)、コロネート(登録商標)HX、HK(日本ポリウレタン株式会社製)、デュラネート(登録商標)TPA-100、TKA-100、TSA-100、TSS-100、TLA-100、TSE-100(旭化成株式会社製)が挙げられる。
 ビウレット型の3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-165N、NP1100(三井化学株式会社製)、デスモジュール(登録商標)N3200(住化バイエルウレタン)、デュラネート(登録商標)24A-100(旭化成株式会社製)が挙げられる。
Examples of the adduct-type trifunctional or higher-functional polyisocyanate include Takenate (registered trademark) D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, and D-. 140N, D-160N (manufactured by Mitsui Chemicals Co., Ltd.), Death Module (registered trademark) L75, UL57SP (manufactured by Sumika Bayer Urethane Co., Ltd.), Coronate (registered trademark) HL, HX, L (manufactured by Nippon Polyurethane Co., Ltd.), Examples thereof include P301-75E (manufactured by Asahi Kasei Co., Ltd.) and Barnock (registered trademark) D-750 (manufactured by DIC Co., Ltd.).
Among them, as the adduct-type trifunctional or higher polyisocyanate, Takenate (registered trademark) D-110N, D-120N, D-140N, D-160N (manufactured by Mitsui Chemicals, Inc.) or DIC Corporation Barnock® D-750 is preferred.
Examples of the isocyanurate-type trifunctional or higher functional isocyanate include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N, and D-204 (manufactured by Mitsui Chemicals, Inc.). , Sumijour N3300, Death Module (registered trademark) N3600, N3900, Z4470BA (Suika Bayer Urethane), Coronate (registered trademark) HX, HK (manufactured by Nippon Polyurethane Co., Ltd.), Duranate (registered trademark) TPA-100, TKA- 100, TSA-100, TSS-100, TLA-100, TSE-100 (manufactured by Asahi Kasei Co., Ltd.) can be mentioned.
Biuret-type trifunctional or higher functional isocyanates include, for example, Takenate (registered trademark) D-165N, NP1100 (manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) N3200 (Sumitomo Bayer Urethane), and Duranate (registered trademark). ) 24A-100 (manufactured by Asahi Kasei Corporation).
 また、ポリイソシアネートとしては、ポリメチレンポリフェニルポリイソシアネートも好ましい。
 即ち、上記樹脂は、部分構造として、ポリメチレンポリフェニル構造を有するポリウレタン又はポリウレタンウレアであることが好ましい。
 上記ポリメチレンポリフェニル構造は、ポリメチレンポリフェニルポリイソシアネート由来の構造である。ポリメチレンポリフェニルポリイソシアネートは、例えば、式(X)で表される化合物である。
Further, as the polyisocyanate, polymethylene polyphenyl polyisocyanate is also preferable.
That is, the resin is preferably polyurethane or polyurethane urea having a polymethylenepolyphenyl structure as a partial structure.
The polymethylene polyphenyl structure is a structure derived from polymethylene polyphenyl polyisocyanate. Polymethylenepolyphenylpolyisocyanate is, for example, a compound represented by the formula (X).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、nは繰り返し単位数を表す。繰り返し単位数としては、1以上の整数を表し、高温条件下での圧力分布の測定がより良好に実施できる点で、nは1~10の整数が好ましく、1~5の整数がより好ましい。 In the formula, n represents the number of repeating units. The number of repeating units represents an integer of 1 or more, and n is preferably an integer of 1 to 10 and more preferably an integer of 1 to 5 in that the pressure distribution can be measured better under high temperature conditions.
 ポリメチレンポリフェニルポリイソシアネートを含むポリイソシアネートとしては、例えば、ミリオネート MR-100、ミリオネート MR-200、ミリオネート MR-400(東ソー株式会社製)、WANNATE PM-200、WANNATE PM-400(万華ジャパン株式会社製)、コスモネート M-50、コスモネート M-100、コスモネートM-200、コスモネート M-300(三井化学株式会社製)、及び、ボラネートM-595(ダウケミカル株式会社製)が挙げられる。 Examples of the polyisocyanate containing polymethylene polyphenyl polyisocyanate include Millionate MR-100, Millionate MR-200, Millionate MR-400 (manufactured by Tosoh Co., Ltd.), WANNAME PM-200, and WANNAME PM-400 (Manhua Japan Co., Ltd.). Cosmonate M-50, Cosmonate M-100, Cosmonate M-200, Cosmonate M-300 (manufactured by Mitsui Chemicals Co., Ltd.), and Boranate M-595 (manufactured by Dow Chemicals Co., Ltd.). Will be.
 ポリオールとは、2つ以上のヒドロキシル基を有する化合物であり、例えば、低分子ポリオール(例:脂肪族ポリオール、芳香族ポリオール。なお、「低分子ポリオール」とは、分子量が400以下のポリオールを意図する。)、ポリビニルアルコール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリラクトン系ポリオール、ヒマシ油系ポリオール、ポリオレフィン系ポリオール、及び、水酸基含有アミン系化合物が挙げられる。
 なお、低分子ポリオールとは、分子量が400以下のポリオールを意味し、例えば、エチレングリコール、ジエチレングリコール、及び、プロピレングリコール等の2官能の低分子ポリオール、並びに、グリセリン、トリメチロールプロパン、ヘキサントリオール、ペンタエリスリトール、及び、ソルビトール等の3官能以上の低分子ポリオールが挙げられる。
The polyol is a compound having two or more hydroxyl groups, and for example, a low molecular weight polyol (eg, an aliphatic polyol or an aromatic polyol. The “low molecular weight polyol” is intended to be a polyol having a molecular weight of 400 or less. ), Polyvinyl alcohols, polyether polyols, polyester polyols, polylactone-based polyols, castor oil-based polyols, polyolefin-based polyols, and hydroxyl group-containing amine-based compounds.
The low molecular weight polyol means a polyol having a molecular weight of 400 or less, for example, bifunctional low molecular weight polyols such as ethylene glycol, diethylene glycol, and propylene glycol, as well as glycerin, trimethylolpropane, hexanetriol, and penta. Examples thereof include trifunctional or higher low molecular weight polyols such as erythritol and sorbitol.
 なお、水酸基含有アミン系化合物としては、例えば、アミノ化合物のオキシアルキル化誘導体等として、アミノアルコールが挙げられる。アミノアルコールとしては、例えば、エチレンジアミン等のアミノ化合物のプロピレンオキサイド又はエチレンオキサイド付加物である、N,N,N’,N’-テトラキス[2-ヒドロキシプロピル]エチレンジアミン、及び、N,N,N’,N’-テトラキス[2-ヒドロキシエチル]エチレンジアミン等が挙げられる。 Examples of the hydroxyl group-containing amine compound include amino alcohols as oxyalkylated derivatives of amino compounds. Examples of the amino alcohol include N, N, N', N'-tetrakis [2-hydroxypropyl] ethylenediamine, which are propylene oxides or adducts of ethylene oxide of amino compounds such as ethylenediamine, and N, N, N'. , N'-Tetrakis [2-hydroxyethyl] ethylenediamine and the like.
 ポリアミンとは、2つ以上のアミノ基(第1級アミノ基又は第2級アミノ基)を有する化合物であり、ジエチレントリアミン、トリエチレンテトラミン、1,3-プロピレンジアミン、及び、ヘキサメチレンジアミン等の脂肪族多価アミン;脂肪族多価アミンのエポキシ化合物付加物;ピペラジン等の脂環式多価アミン;3,9-ビス-アミノプロピル-2,4,8,10-テトラオキサスピロ-(5,5)ウンデカン等の複素環式ジアミンが挙げられる。 A polyamine is a compound having two or more amino groups (primary amino group or secondary amino group), and is a fat such as diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, and hexamethylenediamine. Group polyvalent amines; Epoxy compound adducts of aliphatic polyvalent amines; Alicyclic polyvalent amines such as piperazine; 3,9-bis-aminopropyl-2,4,8,10-tetraoxaspiro- (5, 5) Examples thereof include heterocyclic diamines such as undecane.
 マイクロカプセルのカプセル壁に含まれる樹脂の好適態様としては、構造A又は構造Bを有することが挙げられる。構造A又は構造Bであると、高い架橋密度を維持したまま剛直性も向上できるので、内包した発色剤がカプセル外へ移動するのを抑制できる。
 構造Aは、芳香族又は脂環族ジイソシアネートと、1分子中に3つ以上の活性水素基を有する化合物と、ポリメチレンポリフェニルポリイソシアネート(好ましくは、式(X)で表される化合物)と、を反応させてなる構造である。
 構造Bは、メラミンと、ホルムアルデヒドと、を反応させてなる構造である。
A preferred embodiment of the resin contained in the capsule wall of the microcapsule is to have a structure A or a structure B. When the structure A or the structure B is used, the rigidity can be improved while maintaining a high crosslink density, so that the contained color former can be suppressed from moving out of the capsule.
The structure A includes an aromatic or alicyclic diisocyanate, a compound having three or more active hydrogen groups in one molecule, and a polymethylene polyphenyl polyisocyanate (preferably a compound represented by the formula (X)). , Is a reaction structure.
Structure B is a structure formed by reacting melamine and formaldehyde.
 また、マイクロカプセルのカプセル壁に含まれる樹脂の別の好適態様としては、芳香族又は脂環族ジイソシアネートと、1分子中に3つ以上の活性水素基を有する化合物とのアダクト体である3官能以上のポリイソシアネートA(以下、単に「ポリイソシアネートA」ともいう。)、並びに、芳香族ジイソシアネート及びポリメチレンポリフェニルポリイソシアネートからなる群から選択されるポリイソシアネートB(以下、単に「ポリイソシアネートB」ともいう。)を用いて形成されることが挙げられる。
 つまり、マイクロカプセルのカプセル壁は、本発明の効果が優れる点から、上記ポリイソシアネートA及びポリイソシアネートBを用いて形成される樹脂を含むことが好ましい。
 ポリイソシアネートBとしては、芳香族ジイソシアネートを単独で用いてもよいし、ポリメチレンポリフェニルポリイソシアネートを単独で用いてもよいし、両者を混合して用いてもよい。なかでも、ポリイソシアネートBとしては、芳香族ジイソシアネート及びポリメチレンポリフェニルポリイソシアネートの混合物が好ましい。
 上記混合物においては、芳香族ジイソシアネートに対する、ポリメチレンポリフェニルポリイソシアネートの質量比(ポリメチレンポリフェニルポリイソシアネートの質量/芳香族ジイソシアネートの質量)は特に制限されないが、0.1~10が好ましく、0.5~2がより好ましく、0.75~1.5が更に好ましい。
Another preferred embodiment of the resin contained in the capsule wall of the microcapsule is a trifunctional adduct of an aromatic or alicyclic diisocyanate and a compound having three or more active hydrogen groups in one molecule. Polyisocyanate A (hereinafter, also simply referred to as “polyisocyanate A”) and polyisocyanate B selected from the group consisting of aromatic diisocyanates and polymethylene polyphenyl polyisocyanates (hereinafter, simply “polyisocyanate B”). Also referred to as)).
That is, it is preferable that the capsule wall of the microcapsules contains a resin formed by using the polyisocyanate A and the polyisocyanate B from the viewpoint of excellent effects of the present invention.
As the polyisocyanate B, aromatic diisocyanate may be used alone, polymethylene polyphenyl polyisocyanate may be used alone, or both may be used in combination. Among them, as the polyisocyanate B, a mixture of aromatic diisocyanate and polymethylene polyphenyl polyisocyanate is preferable.
In the above mixture, the mass ratio of polymethylene polyphenyl polyisocyanate to aromatic diisocyanate (mass of polymethylene polyphenyl polyisocyanate / mass of aromatic diisocyanate) is not particularly limited, but is preferably 0.1 to 10 and 0. .5-2 is more preferable, and 0.75 to 1.5 is even more preferable.
 ポリイソシアネートA及びポリイソシアネートBを併用する場合、ポリイソシアネートBに対する、上記ポリイソシアネートAの質量比(ポリイソシアネートAの質量/ポリイソシアネートBの質量)は特に制限されないが、98/2~20/80が好ましく、80/20~20/80がより好ましく、80/20~45/55が更に好ましい。
 上記質量比が上記範囲内である場合、高温条件下での圧力分布の測定がより良好に実施できる。また、発色の温度依存性が小さい。
When polyisocyanate A and polyisocyanate B are used in combination, the mass ratio of polyisocyanate A to polyisocyanate B (mass of polyisocyanate A / mass of polyisocyanate B) is not particularly limited, but is 98/2 to 20/80. Is preferable, 80/20 to 20/80 is more preferable, and 80/20 to 45/55 is even more preferable.
When the mass ratio is within the above range, the pressure distribution can be better measured under high temperature conditions. In addition, the temperature dependence of color development is small.
 マイクロカプセルのカプセル壁の熱分解温度は、250℃以上が好ましく、255℃以上がより好ましく、260℃以上が更に好ましい。上限は、500℃以下であることが多い。
 上記カプセル壁の熱分解温度の測定方法としては、以下のとおりである。
 縦1cm×横1cmの第1層(マイクロカプセル層)を50枚用意し、10mLの水に全て浸漬して24時間静置し、マイクロカプセルの水分散液を得る。なお、第1シートが第1支持体を含む場合、第1シートを50枚の縦1cm×横1cmを用意して浸漬してもよい。
 得られたマイクロカプセルの水分散液を15000rpmにて30分間遠心分離し、マイクロカプセルを分取する。分取されたマイクロカプセルに酢酸エチルを入れて、更に、25℃で24時間撹拌する。その後、得られた溶液をろ過し、得られた残渣を60℃で48時間真空乾燥することで、内部に何も内包されていないマイクロカプセル(以下、単に「測定材料」ともいう。)が得られる。つまり、熱分解温度の測定対象である、マイクロカプセルのカプセル壁材料が得られる。
 次に、熱重量示差熱分析装置TG-DTA(装置名:DTG-60、株式会社島津製作所製)を用いて、得られた測定材料の熱分解温度を測定する。なお、熱分解温度とは、大気雰囲気の熱重量分析(TGA)において、測定材料を一定の昇温速度(10℃/min)で室温から昇温し、加熱前の測定材料の質量に対し、5質量%減量した時の温度をもって熱分解温度(℃)とする。
The thermal decomposition temperature of the capsule wall of the microcapsules is preferably 250 ° C. or higher, more preferably 255 ° C. or higher, and even more preferably 260 ° C. or higher. The upper limit is often 500 ° C. or lower.
The method for measuring the thermal decomposition temperature of the capsule wall is as follows.
50 sheets of the first layer (microcapsule layer) having a length of 1 cm and a width of 1 cm are prepared, and all of them are immersed in 10 mL of water and allowed to stand for 24 hours to obtain an aqueous dispersion of microcapsules. When the first sheet includes the first support, 50 sheets of 1 cm in length × 1 cm in width may be prepared and immersed.
The obtained aqueous dispersion of microcapsules is centrifuged at 15,000 rpm for 30 minutes, and the microcapsules are separated. Ethyl acetate is added to the separated microcapsules, and the mixture is further stirred at 25 ° C. for 24 hours. Then, the obtained solution is filtered and the obtained residue is vacuum dried at 60 ° C. for 48 hours to obtain microcapsules containing nothing inside (hereinafter, also simply referred to as “measurement material”). Be done. That is, a capsule wall material of microcapsules, which is an object for measuring the thermal decomposition temperature, can be obtained.
Next, the thermal decomposition temperature of the obtained measurement material is measured using a thermogravimetric differential thermal analyzer TG-DTA (device name: DTG-60, manufactured by Shimadzu Corporation). In the thermogravimetric analysis (TGA) of the atmospheric atmosphere, the thermal decomposition temperature is the temperature of the measurement material raised from room temperature at a constant temperature rise rate (10 ° C./min) with respect to the mass of the measurement material before heating. The thermogravimetric temperature (° C.) is defined as the temperature at which the weight is reduced by 5% by mass.
 マイクロカプセルの平均粒径は、特に制限されないが、1~80μmが好ましく、5~70μmがより好ましく、10~50μmが更に好ましい。
 マイクロカプセルの平均粒径は、マイクロカプセルの製造条件等を調整することにより制御できる。
The average particle size of the microcapsules is not particularly limited, but is preferably 1 to 80 μm, more preferably 5 to 70 μm, still more preferably 10 to 50 μm.
The average particle size of the microcapsules can be controlled by adjusting the manufacturing conditions of the microcapsules and the like.
 上述のマイクロカプセルの平均粒径は、以下の方法により求められる値である。
 光学顕微鏡(OLYMPUS BX60、視野の大きさ:320μm×450μm)で第1層の表面から撮影した画像を画像解析し、最も大きいマイクロカプセルから順番に30個のマイクロカプセルの長径(粒径)を計測し、これらを算術平均して平均値を求める。この操作を、第1層の任意の5か所(5視野)で実施して、各箇所で得られた平均値の平均を求めて、得られた値をマイクロカプセルの平均粒径とする。なお、長径とは、マイクロカプセルを観察した際に、最も長い径を意味する。
The average particle size of the above-mentioned microcapsules is a value obtained by the following method.
Images taken from the surface of the first layer are analyzed with an optical microscope (OLYMPUS BX60, field size: 320 μm × 450 μm), and the major axis (particle size) of 30 microcapsules is measured in order from the largest microcapsule. Then, these are arithmetically averaged to obtain the average value. This operation is performed at any 5 locations (5 fields of view) of the first layer, the average of the average values obtained at each location is obtained, and the obtained value is used as the average particle size of the microcapsules. The major axis means the longest diameter when observing the microcapsules.
 マイクロカプセルのカプセル壁の数平均壁厚は特に制限されないが、圧力応答性が優れる点で、0.01~2.0μmが好ましく、0.02~1.0μmがより好ましい。
 なお、マイクロカプセルの壁厚とは、マイクロカプセルのカプセル粒子を形成するカプセル壁の厚み(μm)を指し、数平均壁厚とは、20個のマイクロカプセルの個々のカプセル壁の厚み(μm)を走査型電子顕微鏡(SEM)により求めて平均した平均値をいう。より具体的には、マイクロカプセルを含む第1層を有する第1シートの断面切片を作製し、その断面をSEMにより15000倍にて観察し、(マイクロカプセルの平均粒径の値)×0.9~(マイクロカプセルの平均粒径の値)×1.1の範囲の粒径を有する任意の20個のマイクロカプセルを選択の上、選択した個々のマイクロカプセルの断面を観察してカプセル壁の厚みを求めて平均値を算出する。
The number average wall thickness of the capsule walls of the microcapsules is not particularly limited, but is preferably 0.01 to 2.0 μm, more preferably 0.02 to 1.0 μm in terms of excellent pressure responsiveness.
The wall thickness of the microcapsules refers to the thickness (μm) of the capsule wall forming the capsule particles of the microcapsules, and the number average wall thickness is the thickness (μm) of the individual capsule walls of the 20 microcapsules. Is obtained by a scanning electron microscope (SEM) and averaged. More specifically, a cross-sectional section of the first sheet having the first layer containing microcapsules was prepared, and the cross-section was observed by SEM at 15,000 times (value of average particle size of microcapsules) × 0. Select any 20 microcapsules having a diameter in the range of 9 to (average diameter of microcapsules) × 1.1, and observe the cross section of each selected microcapsule to observe the cross section of the capsule wall. Obtain the thickness and calculate the average value.
 マイクロカプセルの平均粒径に対する、マイクロカプセルの数平均壁厚δの比(δ/Dm)は特に制限されず、0.001以上の場合が多い。なかでも、圧力に応じた発色濃度とすることに優れる点で、式(1)の関係を満たすことが好ましい。
 式(1)  δ/Dm>0.001
 つまり、上記比(δ/Dm)は、0.001より大きいことが好ましい。また、上記比(δ/Dm)は、0.002以上であることがより好ましい。上限は特に制限されないが、0.2以下が好ましい。
 マイクロカプセルが上記式(1)の関係を満たす場合、カプセルの大きさとカプセル壁の厚みとのバランスが良く、高温条件下においてマイクロカプセルの内包物が漏れる等の懸念がより少ない。
The ratio (δ / Dm) of the number average wall thickness δ of the microcapsules to the average particle size of the microcapsules is not particularly limited, and is often 0.001 or more. Above all, it is preferable to satisfy the relationship of the formula (1) in that it is excellent in setting the color development density according to the pressure.
Equation (1) δ / Dm> 0.001
That is, the ratio (δ / Dm) is preferably larger than 0.001. Further, the above ratio (δ / Dm) is more preferably 0.002 or more. The upper limit is not particularly limited, but 0.2 or less is preferable.
When the microcapsules satisfy the relationship of the above formula (1), the size of the capsule and the thickness of the capsule wall are well-balanced, and there is less concern that the inclusions of the microcapsules may leak under high temperature conditions.
≪発色剤≫
 マイクロカプセルは、発色剤を内包する。
 ここで、「発色剤」とは、無色の状態から、後述する顕色剤と接することにより、発色する化合物である。発色剤としては、電子供与性の色素前駆体(発色する色素の前駆体)が好ましい。つまり、発色剤としては、電子供与性無色染料が好ましい。
 発色剤は、感圧複写紙又は感熱記録紙の用途において公知のものを使用できる。発色剤としては、例えば、トリフェニルメタンフタリド系化合物、フルオラン系化合物、フェノチアジン系化合物、インドリルフタリド系化合物、アザインドリルフタリド系化合物、ロイコオーラミン系化合物、ローダミンラクタム系化合物、トリフェニルメタン系化合物、ジフェニルメタン系化合物、トリアゼン系化合物、スピロピラン系化合物、及び、フルオレン系化合物が挙げられる。
 上記の化合物の詳細については、特開平5-257272号公報、及び、国際公開第2009/008248号明細書[0029]~[0034]の記載を参照できる。
≪Coloring agent≫
The microcapsules contain a coloring agent.
Here, the "color former" is a compound that develops a color when it comes into contact with a color developer described later from a colorless state. As the color-developing agent, an electron-donating dye precursor (precursor of a dye that develops color) is preferable. That is, as the color former, an electron-donating colorless dye is preferable.
As the color-developing agent, those known in the application of pressure-sensitive copying paper or thermal recording paper can be used. Examples of the color former include triphenylmethanephthalide-based compounds, fluorene-based compounds, phenothiazine-based compounds, indolylphthalide-based compounds, azaindrillphthalide-based compounds, leukooramine-based compounds, rhodamine lactam-based compounds, and triazene. Examples thereof include phenylmethane-based compounds, diphenylmethane-based compounds, triazene-based compounds, spiropyran-based compounds, and fluorene-based compounds.
For details of the above compounds, refer to Japanese Patent Application Laid-Open No. 5-257272 and the description of International Publication No. 2009/0087248 [0029] to [0034].
 発色剤の分子量は特に制限されず、300以上の場合が多い。上限は特に制限されないが、1000以下の場合が多く、本発明の効果がより優れる点で、600以下が好ましい。 The molecular weight of the color former is not particularly limited and is often 300 or more. The upper limit is not particularly limited, but in many cases it is 1000 or less, and 600 or less is preferable in that the effect of the present invention is more excellent.
 発色剤の好ましい例としては、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-n-オクチル-2-メチルインドール-3-イル)フタリド、3-[2,2-ビス(1-エチル-2-メチルインドール-3-イル)ビニル]-3-(4-ジエチルアミノフェニル)-フタリド、9-[エチル(3-メチルブチル)アミノ]スピロ[12H-ベンゾ[a]キサンテン-12,1’(3’H)イソベンゾフラン]-3’-オン、2-アニリノ-6-ジブチルアミノ-3-メチルフルオラン、6-ジエチルアミノ-3-メチル-2-(2,6-キシリジノ)-フルオラン、2-(2-クロロアニリノ)-6-ジブチルアミノフルオラン、3,3-ビス(4-ジメチルアミノフェニル)-6-ジメチルアミノフタリド、及び、2-アニリノ-6-ジエチルアミノ-3-メチルフルオラン、3’,6’-ビス(ジエチルアミノ)-2-(4-ニトロフェニル)スピロ[イソインドール-1,9’-キサンテン]-3-オン、6’-(ジエチルアミノ)-1’,3’-ジメチルフルオラン、3,3-ビス(2-メチル-1-オクチル-3-インドリル)フタリド、9-(N-エチル-N-イソペンチルアミノ)スピロ[ベンゾ[a]キサンテン-12,3’-フタリド]、2’-メチル-6’-(N-p-トリル-N-エチルアミノ)スピロ[イソベンゾフラン-1(3H),9’-[9H]キサンテン]-3-オン、及び、6’-(ジブチルアミノ)-2’-ブロモ-3’-メチルスピロ[フタリド-3,9’-キサンテン]等が挙げられる。 Preferred examples of the color former include 3- (4-diethylamino-2-ethoxyphenyl) -3- (1-ethyl-2-methylindole-3-yl) -4-azaphthalide and 3- (4-diethylamino-2). -Ethoxyphenyl) -3- (1-n-octyl-2-methylindol-3-yl) phthalide, 3- [2,2-bis (1-ethyl-2-methylindol-3-yl) vinyl]- 3- (4-Diethylaminophenyl) -phthalide, 9- [ethyl (3-methylbutyl) amino] spiro [12H-benzo [a] xanthene-12,1'(3'H) isobenzofuran] -3'-on, 2-Anilino-6-dibutylamino-3-methylfluorane, 6-diethylamino-3-methyl-2- (2,6-xylidino) -fluorane, 2- (2-chloroanilino) -6-dibutylaminofluorane, 3,3-bis (4-dimethylaminophenyl) -6-dimethylaminophthalide and 2-anilino-6-diethylamino-3-methylfluorane, 3', 6'-bis (diethylamino) -2-( 4-Nitrophenyl) Spiro [isoindole-1,9'-xanthene] -3-one, 6'-(diethylamino) -1', 3'-dimethylfluorane, 3,3-bis (2-methyl-1) -Octyl-3-indrill) Phenylide, 9- (N-ethyl-N-Isopentylamino) Spiro [Benzo [a] Xanthene-12,3'-Phenylide], 2'-Methyl-6'-(N-p) -Trill-N-ethylamino) spiro [isobenzofuran-1 (3H), 9'-[9H] xanthene] -3-one, and 6'-(dibutylamino) -2'-bromo-3'-methylspiro [Phenylide-3,9'-xanthene] and the like can be mentioned.
≪その他の成分≫
 マイクロカプセルは、上述した発色剤以外の他の成分を内包していてもよい。
 例えば、マイクロカプセルは、溶媒を内包することが好ましい。
 溶媒は特に制限されず、例えば、ジイソプロピルナフタレン等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン等のジアリールアルカン系化合物、イソプロピルビフェニル等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、及び、アリールインダン系化合物等の芳香族炭化水素;フタル酸ジブチル、及び、イソパラフィン等の脂肪族炭化水素、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、及び、魚油等の天然動植物油等、並びに、鉱物油等の天然物高沸点留分等が挙げられる。
 溶媒は、発色剤の溶解性を向上する観点で、芳香族溶媒を有することが好ましい。
 溶媒は、1種単独で又は2種以上を混合して使用してもよい。
≪Other ingredients≫
The microcapsules may contain components other than the above-mentioned color former.
For example, microcapsules preferably contain a solvent.
The solvent is not particularly limited, and for example, an alkylnaphthalene-based compound such as diisopropylnaphthalene, a diarylalkane-based compound such as 1-phenyl-1-xylylethane, an alkylbiphenyl-based compound such as isopropylbiphenyl, a triarylmethane-based compound, and an alkylbenzene-based compound. , Aromatic hydrocarbons such as benzylnaphthalene compounds, diarylalkylene compounds, and arylindan compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffin, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, etc. Examples thereof include natural animal and vegetable oils such as coconut oil, castor oil and fish oil, and high boiling point distillates of natural products such as mineral oil.
The solvent preferably has an aromatic solvent from the viewpoint of improving the solubility of the color former.
The solvent may be used alone or in combination of two or more.
 マイクロカプセル内に溶媒が内包される場合、溶媒と発色剤との質量比(溶媒の質量/発色剤の質量)としては、発色性の点で、98/2~30/70の範囲が好ましく、97/3~40/60の範囲がより好ましい。 When the solvent is encapsulated in the microcapsules, the mass ratio of the solvent to the color-developing agent (mass of the solvent / mass of the color-developing agent) is preferably in the range of 98/2 to 30/70 in terms of color-developing property. The range of 97/3 to 40/60 is more preferable.
 マイクロカプセルは、上述した成分以外に、必要に応じて、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、及び、臭気抑制剤等の添加剤を1種以上内包していてもよい。
 紫外線吸収剤としては、ベンゾトリアゾール構造を有する化合物が好ましい。
In addition to the above-mentioned components, the microcapsules may contain one or more additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor suppressant, if necessary.
As the ultraviolet absorber, a compound having a benzotriazole structure is preferable.
≪マイクロカプセルの製造方法≫
 マイクロカプセルの製造方法は特に制限されず、例えば、界面重合法、内部重合法、相分離法、外部重合法、及び、コアセルベーション法等の公知の方法が挙げられる。なかでも、界面重合法が好ましい。
 界面重合法としては、発色剤とカプセル壁材(例えば、ポリイソシアネートと、ポリオール及びポリアミンからなる群から選択される少なくとも1種とを含む原料。なお、ポリイソシアネートと水を反応させてポリアミンを系中で製造する場合、ポリオール及びポリアミンは使用しなくてもよい。)とを含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)と、カプセル壁材を油相と水相との界面で重合させてカプセル壁を形成し、発色剤を内包するマイクロカプセルを形成する工程(カプセル化工程)と、を含む界面重合法が好ましい。
 なお、上記原料中における、ポリオール及びポリアミンの合計量と、ポリイソシアネートの量との質量比(ポリオール及びポリアミンの合計量/ポリイソシアネートの量)は特に制限されないが、0.1/99.9~30/70が好ましく、1/99~25/75がより好ましい。
 なお、上述したように、ポリイソシアネートとしては、上記ポリイソシアネートA、及び、ポリイソシアネートBを併用して用いてもよい。両者を併用する場合、両者の混合比の好適範囲は上述した通りである。
≪Manufacturing method of microcapsules≫
The method for producing microcapsules is not particularly limited, and examples thereof include known methods such as an interfacial polymerization method, an internal polymerization method, a phase separation method, an external polymerization method, and a core selvation method. Of these, the interfacial polymerization method is preferable.
The interfacial polymerization method is a raw material containing a color former and a capsule wall material (for example, a polyisocyanate and at least one selected from the group consisting of a polyol and a polyamine. A polyisocyanate is reacted with water to form a polyamine. In the case of producing in, an oil phase containing a polyol and a polyamine may not be used) is dispersed in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step), and a capsule wall material is used. An interface polymerization method including a step of forming a capsule wall by polymerizing at the interface between the oil phase and the aqueous phase to form microcapsules containing a color former (encapsulation step) is preferable.
The mass ratio of the total amount of the polyol and the polyamine to the amount of the polyisocyanate (total amount of the polyol and the polyamine / the amount of the polyisocyanate) in the above raw materials is not particularly limited, but is 0.1 / 99.9 to. 30/70 is preferable, and 1/99 to 25/75 is more preferable.
As described above, the polyisocyanate A and the polyisocyanate B may be used in combination as the polyisocyanate. When both are used in combination, the preferable range of the mixing ratio of both is as described above.
 また、上記乳化工程で使用される乳化剤の種類は特に制限されず、例えば、分散剤、及び、界面活性剤が挙げられる。
 分散剤としては、例えば、ポリビニルアルコールが挙げられる。
The type of emulsifier used in the emulsification step is not particularly limited, and examples thereof include a dispersant and a surfactant.
Examples of the dispersant include polyvinyl alcohol.
 第1層は、上述したマイクロカプセルを含む。
 第1層中におけるマイクロカプセルの含有量は特に制限されないが、高温条件下での圧力分布の測定がより良好に実施できる点で、第1層全質量に対して、50~90質量%が好ましく、55~85質量%がより好ましく、55~80質量%が更に好ましい。
 また、第1層中における発色剤の含有量は特に制限されないが、高温条件下での圧力分布の測定がより良好に実施できる点で、0.1~10g/mが好ましく、0.1~4g/mがより好ましい。
The first layer contains the microcapsules described above.
The content of the microcapsules in the first layer is not particularly limited, but 50 to 90% by mass is preferable with respect to the total mass of the first layer in that the pressure distribution can be measured better under high temperature conditions. , 55 to 85% by mass, more preferably 55 to 80% by mass.
Further, the content of the color former in the first layer is not particularly limited, but 0.1 to 10 g / m 2 is preferable, and 0.1 is preferable because the pressure distribution can be measured better under high temperature conditions. ~ 4 g / m 2 is more preferable.
 第1層は、上述したマイクロカプセル以外の他の成分を含んでいてもよい。
 他の成分としては、例えば、高分子バインダー、無機フィラー(例えば、コロイダルシリカ)、蛍光増白剤、消泡剤、浸透剤、紫外線吸収剤、界面活性剤、及び、防腐剤が挙げられる。
 第1層の単位面積当たりの質量(固形分塗布量)(g/m)は特に制限されないが、例えば、0.5~20.0g/mであり、0.5~10.0g/mが好ましい。
The first layer may contain components other than the above-mentioned microcapsules.
Other components include, for example, polymer binders, inorganic fillers (eg colloidal silica), optical brighteners, defoamers, penetrants, UV absorbers, surfactants, and preservatives.
The mass (solid content coating amount) (g / m 2 ) per unit area of the first layer is not particularly limited, but is, for example, 0.5 to 20.0 g / m 2 and 0.5 to 10.0 g / m 2. m 2 is preferred.
 高分子バインダーとしては、例えば、スチレン-ブタジエン共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、ポリビニルアルコール、ポリアクリル酸、無水マレイン酸-スチレン共重合体、デンプン、カゼイン、アラビアゴム、ゼラチン、カルボキシメチルセルロース若しくはその塩、メチルセルロース、ポリオレフィン、変性アクリル酸エステル共重合体等の合成高分子又は天然高分子が挙げられる。高分子バインダーを添加することで第1層形成用組成物の粘度を調節することもできる。高分子バインダーは1種単独で用いてもよいし、2種以上併用してもよい。
 高分子バインダーの含有量は特に制限されないが、第1層全質量に対して、0~50質量%が好ましい。20MPa以下の低圧領域に適する点では、0.1~20質量%が好ましく、0.2~10質量%がより好ましい。
 界面活性剤としては、例えば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤などが挙げられるが、マイクロカプセルの分散性を維持する点で、アニオン性界面活性剤、又は、ノニオン性界面活性剤が好ましい。
 また、界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤、炭化水素系界面活性剤などが挙げられるが、塗布性やマイクロカプセルの分散性を維持する点で、炭化水素系界面活性剤が好ましい。
 界面活性剤の含有量は特に制限されないが、第1層全質量に対して、0.01~10質量%が好ましく、0.1~5質量%がより好ましい。
 無機フィラーは、第1シートと第2シートとを重ねて加熱圧力測定した後に、両者をはがしやすくするために導入することが好ましい。第1シートと第2シートとを剥がしやすくする点で、無機フィラーとしては、シリカ粒子又はアルミナ粒子が好ましい。無機フィラーのメジアン径は0.001~1μmが好ましく、0.005~0.1μmがより好ましく、0.005~0.05μmが更に好ましい。無機フィラーの含有量は、第1層全質量に対して、1~50質量%が好ましく、3~30質量%がより好ましく、5~20質量%が更に好ましい。
Examples of the polymer binder include styrene-butadiene copolymer, polyvinyl acetate, polyacrylic acid ester, polyvinyl alcohol, polyacrylic acid, maleic anhydride-styrene copolymer, starch, casein, gum arabic, gelatin, and carboxy. Examples thereof include synthetic polymers such as methyl cellulose or salts thereof, methyl cellulose, polyolefins, and modified acrylic acid ester copolymers, or natural polymers. The viscosity of the composition for forming the first layer can also be adjusted by adding a polymer binder. The polymer binder may be used alone or in combination of two or more.
The content of the polymer binder is not particularly limited, but is preferably 0 to 50% by mass with respect to the total mass of the first layer. In terms of being suitable for a low pressure region of 20 MPa or less, 0.1 to 20% by mass is preferable, and 0.2 to 10% by mass is more preferable.
Examples of the surfactant include anionic surfactants, nonionic surfactants, cationic surfactants, etc., but in terms of maintaining the dispersibility of the microcapsules, anionic surfactants or Nonionic surfactants are preferred.
Examples of the surfactant include a fluorine-based surfactant, a silicone-based surfactant, a hydrocarbon-based surfactant, and the like, but the hydrocarbon-based interface is used in terms of maintaining coatability and dispersibility of microcapsules. Activators are preferred.
The content of the surfactant is not particularly limited, but is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the total mass of the first layer.
It is preferable to introduce the inorganic filler after the first sheet and the second sheet are overlapped with each other and the heating pressure is measured, so that both of them can be easily peeled off. Silica particles or alumina particles are preferable as the inorganic filler in that the first sheet and the second sheet can be easily peeled off. The median diameter of the inorganic filler is preferably 0.001 to 1 μm, more preferably 0.005 to 0.1 μm, still more preferably 0.005 to 0.05 μm. The content of the inorganic filler is preferably 1 to 50% by mass, more preferably 3 to 30% by mass, still more preferably 5 to 20% by mass, based on the total mass of the first layer.
(第1層の物性)
 第1層の厚みは特に制限されないが、0.01~5μmが好ましく、0.02~3μmがより好ましい。ここで、第1層の厚みとは、マイクロカプセルの平均粒径が層厚より大きい場合は層表面から露出したマイクロカプセルを除く厚みを意味する。第1層の厚みが上記範囲にあると、マイクロカプセルを含有する第1層形成用組成物を塗布した後に乾燥する際に、マイクロカプセルの凝集を抑制することができ、所望の圧力でカプセルが壊れるように調節できる。第1層の厚みは、マイクロカプセルの平均粒径に対して、50%以下であることが好ましく、25%以下であることがより好ましい。第1層の厚みがマイクロカプセルに対して薄いほどマイクロカプセルが壊れやすいため、測定する圧力帯に応じて調節できる。
(Physical characteristics of the first layer)
The thickness of the first layer is not particularly limited, but is preferably 0.01 to 5 μm, more preferably 0.02 to 3 μm. Here, the thickness of the first layer means the thickness excluding the microcapsules exposed from the layer surface when the average particle size of the microcapsules is larger than the layer thickness. When the thickness of the first layer is within the above range, aggregation of the microcapsules can be suppressed when the composition for forming the first layer containing the microcapsules is applied and then dried, and the capsules can be formed at a desired pressure. Can be adjusted to break. The thickness of the first layer is preferably 50% or less, more preferably 25% or less, based on the average particle size of the microcapsules. The thinner the thickness of the first layer is with respect to the microcapsules, the more easily the microcapsules are broken, so that the thickness can be adjusted according to the pressure band to be measured.
 第1層の第1支持体とは反対側の表面の算術平均粗さRaは、低圧領域下での圧力測定に適する点で、2μm以上が好ましく、4.1μm以上がより好ましい。上限値は特に制限されないが、10μm以下が好ましい。
 本実施形態における第1層の算術平均粗さRaは、圧力測定用シートセットを使用する際に、第1層の第2シートと対向する側(接触する側)の表面の算術平均粗さRaである。
 本明細書における第1層の算術平均粗さRaは、JIS B 0681-6:2014で規定される算術平均粗さRaを意味する。算術平均粗さRaの測定装置としては、光干渉方式を用いた走査型白色干渉計(詳細には、Zygo社製のNewView5020:Stichモード;対物レンズ×50倍;中間レンズ×0.5倍)を用いる。
The arithmetic mean roughness Ra of the surface of the first layer opposite to the first support is preferably 2 μm or more, more preferably 4.1 μm or more, in that it is suitable for pressure measurement under a low pressure region. The upper limit is not particularly limited, but is preferably 10 μm or less.
The arithmetic mean roughness Ra of the first layer in the present embodiment is the arithmetic mean roughness Ra of the surface of the surface of the first layer facing the second sheet (contacting side) when the pressure measuring sheet set is used. Is.
The arithmetic mean roughness Ra of the first layer in the present specification means the arithmetic mean roughness Ra defined in JIS B 0681-6: 2014. As a measuring device for the arithmetic mean roughness Ra, a scanning white interferometer using an optical interferometry (specifically, NewView5020 manufactured by Zygo: Stich mode; objective lens × 50 times; intermediate lens × 0.5 times). Is used.
 第1層の算術平均粗さRaが上記下限値以上である場合、発色剤が十分な量であることが多いため、より高い発色濃度が出やすい。一方、第1層の算術平均粗さRaが上記上限値以下である場合、加圧された領域において、マイクロカプセルの崩壊により発色剤とともに流出する溶媒を第2シートの第2層が適切に吸収できることから、滲みが少ない良好な画質が得られる。
 第1層の算術平均粗さRaは、第1層形成用組成物の固形分塗布量を調製して、第1層中のマイクロカプセルの量を調整することにより、制御し得る。
When the arithmetic mean roughness Ra of the first layer is at least the above lower limit value, a sufficient amount of the color-developing agent is often sufficient, so that a higher color-developing density is likely to occur. On the other hand, when the arithmetic mean roughness Ra of the first layer is not more than the above upper limit value, the second layer of the second sheet appropriately absorbs the solvent flowing out together with the color former due to the disintegration of the microcapsules in the pressurized region. Since it can be done, good image quality with less bleeding can be obtained.
The arithmetic mean roughness Ra of the first layer can be controlled by adjusting the amount of solid content applied to the composition for forming the first layer and adjusting the amount of microcapsules in the first layer.
(第1層の形成方法)
 上記第1層の形成方法は特に制限されず、公知の方法が挙げられる。
 例えば、マイクロカプセルを含む第1層形成用組成物を第1支持体上に塗布して、必要に応じて、塗膜に対して乾燥処理を施す方法が挙げられる。
 第1層形成用組成物には、少なくともマイクロカプセルと溶媒とが含まれることが好ましい。なお、上述した界面重合法によって得られるマイクロカプセル分散液を、第1層形成用組成物として用いてもよい。
 第1層形成用組成物には、上述した第1層に含まれていてもよい他の成分が含まれていてもよい。
(Method of forming the first layer)
The method for forming the first layer is not particularly limited, and known methods can be mentioned.
For example, a method of applying a composition for forming a first layer containing microcapsules on a first support and, if necessary, drying a coating film can be mentioned.
The composition for forming the first layer preferably contains at least microcapsules and a solvent. The microcapsule dispersion obtained by the above-mentioned interfacial polymerization method may be used as the composition for forming the first layer.
The composition for forming the first layer may contain other components that may be contained in the first layer described above.
 第1層形成用組成物を塗布する方法は特に制限されない。第1層形成用組成物の塗布に用いる塗工機としては、例えば、エアーナイフコーター、ロッドコーター、バーコーター、カーテンコーター、グラビアコーター、エクストルージョンコーター、ダイコーター、スライドビードコーター、及び、ブレードコーターが挙げられる。 The method of applying the composition for forming the first layer is not particularly limited. Examples of the coating machine used for applying the composition for forming the first layer include an air knife coater, a rod coater, a bar coater, a curtain coater, a gravure coater, an extrusion coater, a die coater, a slide bead coater, and a blade coater. Can be mentioned.
 第1層形成用組成物を第1支持体上に塗布後、必要に応じて、塗膜に対して乾燥処理を施してもよい。乾燥処理としては、加熱処理が挙げられる。 After applying the composition for forming the first layer on the first support, the coating film may be subjected to a drying treatment, if necessary. Examples of the drying treatment include heat treatment.
<他の部材>
 第1シートは、上述した第1支持体及び第1層以外の他の部材を有していてもよい。
 例えば、第1シートは、第1支持体と第1層との間に、両者の密着性を高めるための密着層を有していてもよい。また、第1支持体と第1層との密着性を高めるために、第1支持体にコロナ放電処理等の表面処理を施してもよい。
 密着層は、密着性の観点から樹脂を含むことが好ましい。樹脂としては、例えば、ウレタンポリマー又はブロックイソシアネートから形成される樹脂等を含む層であってもよい。その他、ゼラチン、スチレン/ブタジエンゴム、セルロース類縁体、及び、ポリスチレンからなる群より選ばれる少なくとも1つを含む層であってもよい。
 密着層は、耐熱性の観点から、芳香族基を有するポリマーを有することが好ましい。
 密着層の厚みは特に制限されず、0.005~5μmが好ましく、0.01~1μmがより好ましい。
<Other members>
The first sheet may have members other than the first support and the first layer described above.
For example, the first sheet may have an adhesion layer between the first support and the first layer for enhancing the adhesion between the two. Further, in order to improve the adhesion between the first support and the first layer, the first support may be subjected to surface treatment such as corona discharge treatment.
The adhesion layer preferably contains a resin from the viewpoint of adhesion. The resin may be, for example, a layer containing a resin formed from a urethane polymer or a blocked isocyanate. In addition, the layer may contain at least one selected from the group consisting of gelatin, styrene / butadiene rubber, cellulose analogs, and polystyrene.
From the viewpoint of heat resistance, the adhesion layer preferably has a polymer having an aromatic group.
The thickness of the adhesion layer is not particularly limited, and is preferably 0.005 to 5 μm, more preferably 0.01 to 1 μm.
〔第2シート〕
 第2シートは、第2支持体と、第2支持体上に配置された、顕色剤を含む第2層とを有する。
 第2シートは、枚葉(単票)であってもよいし、長尺状であってもよい。
[Second sheet]
The second sheet has a second support and a second layer containing a color developer placed on the second support.
The second sheet may be a single leaf (single sheet) or a long sheet.
<第2支持体>
 第2支持体は、第2層を支持するための部材である。
 第2支持体の形状、及び、第2支持体を構成する材料については、上述した第1支持体と同じであるため、説明を省略する。
 また、第2支持体の厚みT2については、既に説明した通りである。
<Second support>
The second support is a member for supporting the second layer.
Since the shape of the second support and the materials constituting the second support are the same as those of the first support described above, the description thereof will be omitted.
Further, the thickness T2 of the second support is as described above.
 第2支持体は、熱抵抗値が0.0001m・K/W以上であることが好ましく、高温条件下での耐変形性がより優れる点で、0.0003m・K/W以上であることがより好ましい。上限値は特に制限されないが、0.1m・K/W以下が好ましい。 The second support preferably has a thermal resistance value of 0.0001 m 2 · K / W or more, and is 0.0003 m 2 · K / W or more in that it has better deformation resistance under high temperature conditions. Is more preferable. The upper limit is not particularly limited, but is preferably 0.1 m 2 · K / W or less.
<第2層>
 第2層は、顕色剤を含む層である。
 顕色剤とは、それ自身では発色機能はないが、発色剤と接触することにより発色剤を発色させる性質を有する化合物である。顕色剤としては、電子受容性の化合物が好ましい。
 顕色剤としては、無機化合物及び有機化合物が挙げられる。
<Second layer>
The second layer is a layer containing a color developer.
The color developer is a compound that does not have a color-developing function by itself, but has a property of developing a color by contacting with the color-developing agent. As the color developer, an electron-accepting compound is preferable.
Examples of the color developer include inorganic compounds and organic compounds.
 無機化合物としては、例えば、酸性白土、活性白土、アタパルジャイト、ゼオライト、ベントナイト、及び、カオリン等の粘土物質が挙げられる。無機化合物を第2層に導入する場合には、無機化合物を分散するための分散剤を併用することが好ましい。分散剤は、無機化合物の表面物性によって適宜選択されるが、例えば、酸性処理した活性白土に対しては、アニオン性のヘキサメタリン酸やその塩などが用いられる。
 有機化合物としては、例えば、芳香族カルボン酸の金属塩、フェノールホルムアルデヒド樹脂、及び、カルボキシル化テルペンフェノール樹脂の金属塩等が挙げられる。
Examples of the inorganic compound include clay substances such as acid clay, activated clay, attapargite, zeolite, bentonite, and kaolin. When the inorganic compound is introduced into the second layer, it is preferable to use a dispersant for dispersing the inorganic compound in combination. The dispersant is appropriately selected depending on the surface physical characteristics of the inorganic compound. For example, anionic hexametaphosphate or a salt thereof is used for acid-treated active clay.
Examples of the organic compound include a metal salt of an aromatic carboxylic acid, a phenol formaldehyde resin, a metal salt of a carboxylated terpene phenol resin, and the like.
 芳香族カルボン酸としては、3,5-ジ-t-ブチルサリチル酸、3,5-ジ-t-オクチルサリチル酸、3,5-ジ-t-ノニルサリチル酸、3,5-ジ-t-ドデシルサリチル酸、3-メチル-5-t-ドデシルサリチル酸、3-t-ドデシルサリチル酸、5-t-ドデシルサリチル酸、5-シクロヘキシルサリチル酸、3,5-ビス(α,α-ジメチルベンジル)サリチル酸、3-メチル-5-(α-メチルベンジル)サリチル酸、3-(α,α-ジメチルベンジル)-5-メチルサリチル酸、3-(α,α-ジメチルベンジル)-6-メチルサリチル酸、3-(α-メチルベンジル)-5-(α,α-ジメチルベンジル)サリチル酸、3-(α,α-ジメチルベンジル)-6-エチルサリチル酸、3-フェニル-5-(α,α-ジメチルベンジル)サリチル酸、カルボキシ変性テルペンフェノール樹脂、又は、3,5-ビス(α-メチルベンジル)サリチル酸とベンジルクロリドとの反応生成物であるサリチル酸樹脂が好ましい。
 芳香族カルボン酸の金属塩としては、上記の芳香族カルボン酸の亜鉛塩、ニッケル塩、アルミニウム塩、又は、カルシウム塩が好ましい。
 顕色剤としては、国際公開第2009/008248号明細書[0055]~[0056]に記載の無機化合物及び有機化合物も使用でき、この記載は本明細書に組み込まれる。
Examples of the aromatic carboxylic acid include 3,5-di-t-butylsalicylic acid, 3,5-di-t-octylsalicylic acid, 3,5-di-t-nonylsalicylic acid, and 3,5-di-t-dodecylsalicylic acid. , 3-Methyl-5-t-dodecyl salicylic acid, 3-t-dodecyl salicylic acid, 5-t-dodecyl salicylic acid, 5-cyclohexyl salicylic acid, 3,5-bis (α, α-dimethylbenzyl) salicylic acid, 3-methyl- 5- (α-methylbenzyl) salicylic acid, 3- (α, α-dimethylbenzyl) -5-methylsalicylic acid, 3- (α, α-dimethylbenzyl) -6-methylsalicylic acid, 3- (α-methylbenzyl) -5- (α, α-dimethylbenzyl) salicylic acid, 3- (α, α-dimethylbenzyl) -6-ethylsalicylic acid, 3-phenyl-5- (α, α-dimethylbenzyl) salicylic acid, carboxy-modified terpenephenol resin , Or a salicylic acid resin which is a reaction product of 3,5-bis (α-methylbenzyl) salicylic acid and benzyl chloride is preferable.
As the metal salt of the aromatic carboxylic acid, the zinc salt, nickel salt, aluminum salt, or calcium salt of the above aromatic carboxylic acid is preferable.
As the color developer, the inorganic compounds and organic compounds described in International Publication No. 2009/008248 [0055] to [0056] can also be used, and this description is incorporated in the present specification.
 なかでも、顕色剤としては、粘土物質、芳香族カルボン酸の金属塩、又は、カルボキシル化テルペンフェノール樹脂の金属塩が好ましく、粘土物質、又は、芳香族カルボン酸の金属塩がより好ましく、粘土物質が更に好ましく、酸性白土、活性白土、又は、カオリンが特に好ましい。
 特に、顕色剤として粘土物質を用いた場合は、高温条件下における圧力測定時において粘土物質が変色しにくいので、圧力測定用シートセットにおける圧力分布の表示品質に優れる。
Among them, as the color developer, a clay substance, a metal salt of an aromatic carboxylic acid, or a metal salt of a carboxylated terpenephenol resin is preferable, and a clay substance or a metal salt of an aromatic carboxylic acid is more preferable, and clay. The substance is more preferable, and acidic clay, active clay, or kaolin is particularly preferable.
In particular, when a clay substance is used as a color developer, the clay substance is less likely to discolor when measuring pressure under high temperature conditions, so that the display quality of the pressure distribution in the pressure measurement sheet set is excellent.
 第2層中における顕色剤の含有量は特に制限されないが、高温条件下での圧力分布の測定がより良好に実施できる点で、第2層全質量に対して、20~95質量%が好ましく、30~90質量%がより好ましい。
 顕色剤は、1種単独で又は2種以上を混合して用いてもよい。
The content of the color developer in the second layer is not particularly limited, but 20 to 95% by mass with respect to the total mass of the second layer is that the pressure distribution can be measured better under high temperature conditions. It is preferably 30 to 90% by mass, more preferably 30 to 90% by mass.
The color developer may be used alone or in combination of two or more.
 第2層中における顕色剤の含有量は、0.1~30g/mが好ましい。顕色剤が無機化合物である場合には顕色剤の含有量は、3~20g/mが好ましく、5~15g/mがより好ましい。顕色剤が有機化合物である場合には顕色剤の含有量は、0.1~5g/mが好ましく、0.2~3g/mがより好ましい。 The content of the color developer in the second layer is preferably 0.1 to 30 g / m 2 . When the developer is an inorganic compound, the content of the developer is preferably 3 to 20 g / m 2 and more preferably 5 to 15 g / m 2 . When the developer is an organic compound, the content of the developer is preferably 0.1 to 5 g / m 2 , more preferably 0.2 to 3 g / m 2 .
 第2層は、上述した顕色剤以外の他の成分を含んでいてもよい。
 他の成分としては、例えば、高分子バインダー、顔料、蛍光増白剤、消泡剤、浸透剤、紫外線吸収剤、界面活性剤、及び、防腐剤が挙げられる。
 高分子バインダーとしては、例えば、スチレン-ブタジエン共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、ポリビニルアルコール、ポリアクリル酸、無水マレイン酸-スチレン共重合体、デンプン、カゼイン、アラビアゴム、ゼラチン、カルボキシメチルセルロース、ポリオレフィン、変性アクリル酸エステル共重合体又はその塩、並びに、メチルセルロース等の合成高分子及び天然高分子が挙げられる。高分子バインダーは1種単独で用いてもよいし、2種以上併用してもよい。
 高分子バインダーの含有量は特に制限されないが、第2層全質量に対して、0.1~80質量%が好ましく、1~50質量%がより好ましい。
 顔料としては、例えば、重質炭酸カルシウム、軽質炭酸カルシウム、タルク、及び、二酸化チタンが挙げられる。
 界面活性剤としては、上述した第1層に含まれる界面活性剤と同様の態様が挙げられ、好ましい態様も同様である。
The second layer may contain components other than the above-mentioned developer.
Examples of other components include polymer binders, pigments, fluorescent whitening agents, antifoaming agents, penetrants, ultraviolet absorbers, surfactants, and preservatives.
Examples of the polymer binder include styrene-butadiene copolymer, polyvinyl acetate, polyacrylic acid ester, polyvinyl alcohol, polyacrylic acid, maleic anhydride-styrene copolymer, starch, casein, gum arabic, gelatin, and carboxy. Examples thereof include methyl cellulose, polyolefins, modified acrylic acid ester copolymers or salts thereof, and synthetic polymers such as methyl cellulose and natural polymers. The polymer binder may be used alone or in combination of two or more.
The content of the polymer binder is not particularly limited, but is preferably 0.1 to 80% by mass, more preferably 1 to 50% by mass, based on the total mass of the second layer.
Examples of the pigment include heavy calcium carbonate, light calcium carbonate, talc, and titanium dioxide.
Examples of the surfactant include the same embodiments as those of the surfactant contained in the first layer described above, and the preferred embodiments are also the same.
 第2層の厚みは特に制限されないが、高温条件下での圧力分布の測定がより良好に実施できる点で、1~50μmが好ましく、2~30μmがより好ましい。
 また、第2層の単位面積当たりの質量(固形分塗布量)(g/m)は特に制限されないが、例えば、0.5~30.0g/mであってよく、3.5~30.0g/mが好ましい。
The thickness of the second layer is not particularly limited, but is preferably 1 to 50 μm, more preferably 2 to 30 μm, in that the pressure distribution can be measured better under high temperature conditions.
The mass (solid content coating amount) (g / m 2 ) per unit area of the second layer is not particularly limited, but may be, for example, 0.5 to 30.0 g / m 2 and 3.5 to 3 30.0 g / m 2 is preferable.
(第2層の形成方法)
 上記第2層の形成方法は特に制限されず、公知の方法が挙げられる。
 例えば、顕色剤を含む第2層形成用組成物を第2支持体上に塗布して、必要に応じて、乾燥処理を施す方法が挙げられる。
 第2層形成用組成物は、顕色剤を水等に分散した分散液でもよい。顕色剤を分散した分散液は、顕色剤が無機化合物である場合は無機化合物を機械的に水に分散処理させることにより調製できる。また、顕色剤が有機化合物である場合は、有機化合物を機械的に水に分散処理するか、又は、有機溶媒に溶解することにより調製できる。
 第2層形成用組成物には、上述した第2層に含まれていてもよい他の成分が含まれていてもよい。
(Method of forming the second layer)
The method for forming the second layer is not particularly limited, and known methods can be mentioned.
For example, a method of applying a composition for forming a second layer containing a color developer on a second support and, if necessary, performing a drying treatment can be mentioned.
The composition for forming the second layer may be a dispersion liquid in which a color developer is dispersed in water or the like. When the developer is an inorganic compound, the dispersion liquid in which the developer is dispersed can be prepared by mechanically dispersing the inorganic compound in water. When the color developer is an organic compound, it can be prepared by mechanically dispersing the organic compound in water or dissolving it in an organic solvent.
The composition for forming the second layer may contain other components that may be contained in the second layer described above.
 第2層形成用組成物を塗布する方法は特に制限されず、上述した第1層形成用組成物を塗布する際に用いる塗工機を用いる方法が挙げられる。
 第2層形成用組成物を第2支持体上に塗布後、必要に応じて、塗膜に対して乾燥処理を施してもよい。乾燥処理としては、加熱処理が挙げられる。
The method for applying the composition for forming the second layer is not particularly limited, and examples thereof include a method using a coating machine used for applying the composition for forming the first layer described above.
After the composition for forming the second layer is applied on the second support, the coating film may be subjected to a drying treatment, if necessary. Examples of the drying treatment include heat treatment.
<他の部材>
 第2シートは上述した第2支持体及び第2層以外の他の部材を有していてもよい。
 例えば、第2シートは、第2支持体と第2層との間に、両者の密着性を高めるための密着層を有していてもよい。
 密着層の態様については、上述した第1シートが有していてもよい密着層の態様と同じであるため、説明を省略する。
<Other members>
The second sheet may have a member other than the above-mentioned second support and the second layer.
For example, the second sheet may have an adhesion layer between the second support and the second layer for enhancing the adhesion between the two.
Since the aspect of the adhesion layer is the same as the aspect of the adhesion layer that the first sheet may have, the description thereof will be omitted.
〔保護シート〕
 本実施形態に係る圧力測定用シートセットは、ガラス転移温度が100℃以上であるか、若しくは、ガラス転移温度を示さない特定樹脂フィルム、又は、紙からなり、上記の式(c)及び(d)を満たすような厚みT3を有する保護シート(以下、本明細書において「保護シートP」ともいう。)を有する。
 保護シートPは、枚葉(単票)であってもよいし、長尺状であってもよい。また、保護シートPは、シート状、フィルム状、及び、板状のいずれの形状であってもよい。
[Protective sheet]
The pressure measurement sheet set according to the present embodiment is made of a specific resin film or paper having a glass transition temperature of 100 ° C. or higher or does not show a glass transition temperature, and is made of the above formulas (c) and (d). ) Is provided with a protective sheet having a thickness T3 (hereinafter, also referred to as “protective sheet P” in the present specification).
The protective sheet P may be a single sheet (single sheet) or a long sheet. Further, the protective sheet P may have any of a sheet shape, a film shape, and a plate shape.
 紙としては、例えば、上質紙、中質紙、更紙、中性紙、酸性紙、再生紙、コート紙、マシンコート紙、アート紙、キャストコート紙、微塗工紙、トレーシングペーパー、及び、再生紙が挙げられる。 Examples of paper include high-quality paper, medium-quality paper, shaving paper, neutral paper, acidic paper, recycled paper, coated paper, machine-coated paper, art paper, cast-coated paper, finely coated paper, tracing paper, and the like. , Recycled paper can be mentioned.
 特定樹脂フィルムを構成する樹脂としては、フィルムが上記の条件を満たすものであれば、特に制限されない。
 特定樹脂フィルムを構成する樹脂としては、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート及びポリエチレンナフタレートの共重合体、ポリアミド、ポリイミド、ポリアミドイミド、ポリサルフォン、ポリエーテルサルフォン、ポリカーボネート、ポリフェニルスルホン、ポリエーテルイミド、及び、ポリエーテルエーテルケトン等が挙げられる。
 特定樹脂フィルムとしては、高温条件下での防汚性により優れることから、ポリエチレンナフタレートフィルム又はポリイミドフィルムが好ましい。ここで、ポリエチレンナフタレートフィルムとは、ポリエチレンナフタレートをフィルムの全質量に対して70質量%以上の割合で含むフィルムを表し、ポリイミドフィルムとは、ポリイミドをフィルムの全質量に対して70質量%以上の割合で含むフィルムを表す。
 ポリエチレンナフタレートフィルムの市販品としては、テオネックス(登録商標)Q51、Q53、Q81及びQ83(帝人フィルムソリューション株式会社製)が挙げられる。
 ポリイミドフィルムの市販品としては、カプトン(登録商標)H、V、及び、EN(東レ株式会社製)、並びに、アピカルAH、NPI、及び、AF(カネカ株式会社製)が挙げられる。
 保護シートとしては、ポリエチレンナフタレートフィルム、ポリイミドフィルム又は紙が好ましく、本発明の効果をより向上できる点で、ポリイミドフィルム又は紙がより好ましい。
The resin constituting the specific resin film is not particularly limited as long as the film satisfies the above conditions.
Examples of the resin constituting the specific resin film include polyethylene naphthalate, polyethylene terephthalate, and a copolymer of polyethylene naphthalate, polyamide, polyimide, polyamideimide, polysulfone, polyethersulfone, polycarbonate, polyphenylsulfone, and polyetherimide. , And the polyether ether ketone and the like.
As the specific resin film, a polyethylene naphthalate film or a polyimide film is preferable because it is more excellent in antifouling property under high temperature conditions. Here, the polyethylene naphthalate film represents a film containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the film, and the polyimide film refers to a polyimide film containing 70% by mass with respect to the total mass of the film. Represents a film containing the above ratio.
Examples of commercially available polyethylene naphthalate films include Theonex (registered trademark) Q51, Q53, Q81 and Q83 (manufactured by Teijin Film Solutions Co., Ltd.).
Examples of commercially available polyimide films include Kapton (registered trademark) H, V, and EN (manufactured by Toray Industries, Inc.), and Apical AH, NPI, and AF (manufactured by Kaneka Corporation).
As the protective sheet, a polyethylene naphthalate film, a polyimide film or paper is preferable, and a polyimide film or paper is more preferable in that the effect of the present invention can be further improved.
 樹脂フィルムのガラス転移温度は、示差走査熱量計(DSC、装置名:DSC-60aPlus、株式会社島津製作所製)を用いて測定できる。具体的には、樹脂フィルムを裁断して得られるサンプルを、示差走査熱量計の密閉パンに入れ、昇温速度5℃/minで25℃~250℃の範囲で測定する。樹脂フィルムのガラス転移温度としては、2サイクル目の昇温時の値を使用する。
 本明細書において、樹脂フィルムがガラス転移温度を示さないとは、25℃から250℃までの温度範囲において、樹脂フィルムを構成する樹脂がガラス転移温度を示さないことを意味する。
 なお、樹脂フィルムの市販品を使用する場合、ガラス転移温度のカタログ値を採用してもよい。
The glass transition temperature of the resin film can be measured using a differential scanning calorimeter (DSC, device name: DSC-60aPlus, manufactured by Shimadzu Corporation). Specifically, a sample obtained by cutting a resin film is placed in a closed pan of a differential scanning calorimeter and measured at a heating rate of 5 ° C./min in the range of 25 ° C. to 250 ° C. As the glass transition temperature of the resin film, the value at the time of raising the temperature in the second cycle is used.
As used herein, the fact that the resin film does not exhibit a glass transition temperature means that the resin constituting the resin film does not exhibit a glass transition temperature in the temperature range of 25 ° C to 250 ° C.
When a commercially available resin film is used, the catalog value of the glass transition temperature may be adopted.
 特定樹脂フィルムは、高温条件下での防汚性がより優れる点で、ガラス転移温度が110℃以上であるか、又は、ガラス転移温度を示さない樹脂フィルムが好ましく、ガラス転移温度が150℃以上であるか、又は、ガラス転移温度を示さない樹脂フィルムがより好ましい。 The specific resin film is preferably a resin film having a glass transition temperature of 110 ° C. or higher or showing no glass transition temperature, and a glass transition temperature of 150 ° C. or higher, because it is more excellent in antifouling property under high temperature conditions. Or, a resin film that does not show a glass transition temperature is more preferable.
 保護シートPの厚みT3については、既に説明した通りである。
 なお、保護シートPは、特定樹脂フィルム又は紙からなる単層で構成されていてもよく、複数の特定樹脂フィルム又は紙からなる層で構成されていてもよい。
The thickness T3 of the protective sheet P is as described above.
The protective sheet P may be composed of a single layer made of a specific resin film or paper, or may be made of a layer made of a plurality of specific resin films or paper.
 保護シートPの表面の算術平均粗さRaは、0.1μm以下が好ましく、0.05μm以下がより好ましい。保護シートPの表面の算術平均粗さRaが上記の範囲にあると、第1シート及び第2シートと積層して作製する圧力測定用シートにおいて、圧力測定の使用前におけるマイクロカプセルの破壊を抑制できる。下限値は特に制限されないが、0.001μm以上が好ましい。
 保護シートPの表面の算術平均粗さRaは、上記の第1層の算術平均粗さRaの測定方法に準じて測定できる。
The arithmetic mean roughness Ra of the surface of the protective sheet P is preferably 0.1 μm or less, more preferably 0.05 μm or less. When the arithmetic mean roughness Ra of the surface of the protective sheet P is within the above range, the breakage of the microcapsules before the use of the pressure measurement is suppressed in the pressure measurement sheet produced by laminating the first sheet and the second sheet. can. The lower limit is not particularly limited, but 0.001 μm or more is preferable.
The arithmetic mean roughness Ra on the surface of the protective sheet P can be measured according to the above-mentioned method for measuring the arithmetic mean roughness Ra of the first layer.
 保護シートPは、熱抵抗値が0.0001m・K/W以上であることが好ましく、高温条件下での耐変形性がより優れる点で、0.0003m・K/W以上であることがより好ましい。上限値は特に制限されないが、0.1m・K/W以下が好ましい。
 保護シートPの熱抵抗値は、熱抵抗測定器により測定できる。また、保護シートPを構成する材料の熱伝導率(W/(m・K))が既知である場合は、その熱伝導率と保護シートPの厚みT3(μm)から算出してもよい。
The protective sheet P preferably has a thermal resistance value of 0.0001 m 2 · K / W or more, and is 0.0003 m 2 · K / W or more in that it has better deformation resistance under high temperature conditions. Is more preferable. The upper limit is not particularly limited, but is preferably 0.1 m 2 · K / W or less.
The thermal resistance value of the protective sheet P can be measured by a thermal resistance measuring instrument. If the thermal conductivity (W / (m · K)) of the material constituting the protective sheet P is known, it may be calculated from the thermal conductivity and the thickness T3 (μm) of the protective sheet P.
 保護シートPは、空隙を有していてもよい。空隙を有する保護シートPとしては、例えば、多孔質フィルムシポラスSEF(中興化成工業株式会社製)等が挙げられる。 The protective sheet P may have a gap. Examples of the protective sheet P having voids include a porous film Siporus SEF (manufactured by Chukoh Chemical Industries, Ltd.).
〔圧力測定方法〕
 本実施形態に係る圧力測定用シートセットの使用方法、即ち、本実施形態に係る圧力測定用シートセットを用いて圧力を測定する圧力測定方法について、説明する。
[Pressure measurement method]
A method of using the pressure measurement sheet set according to the present embodiment, that is, a pressure measurement method for measuring pressure using the pressure measurement sheet set according to the present embodiment will be described.
 本実施形態に係る圧力測定方法は、圧力測定用シートセットが備える第1シート、第2シート、及び、保護シートPを、第1シート中の第1層と第2シート中の第2層とが対向するように積層して、圧力測定用シートを作製する工程A1と、圧力測定用シートの両面側に配置された2つの部材により、圧力測定用シートを加圧する工程Bと、を有する。
 更に、工程Bにおいて使用する2つの部材の少なくとも一方が熱源により加熱されており、保護シートPは、少なくとも圧力測定用シートの加熱された部材と接する表面側に配置されている。
In the pressure measuring method according to the present embodiment, the first sheet, the second sheet, and the protective sheet P included in the pressure measuring sheet set are combined with the first layer in the first sheet and the second layer in the second sheet. It has a step A1 for producing a pressure measuring sheet by laminating so as to face each other, and a step B for pressurizing the pressure measuring sheet by two members arranged on both sides of the pressure measuring sheet.
Further, at least one of the two members used in step B is heated by a heat source, and the protective sheet P is arranged at least on the surface side of the pressure measuring sheet in contact with the heated member.
<工程A1>
 工程A1では、本実施形態に係る圧力測定用シートセットを用いて圧力測定用シートを作製する。以下、工程A1で作製され、工程Bで使用される圧力測定用シートの構成について、図面を参照しながら説明する。
 図2は、本実施形態に係る圧力測定用シートセットの使用形態を説明するための図であり、図1に示すシートセット10を用いて作製される圧力測定用シートの構成の一例を示す。
<Process A1>
In step A1, a pressure measurement sheet is produced using the pressure measurement sheet set according to the present embodiment. Hereinafter, the configuration of the pressure measurement sheet manufactured in step A1 and used in step B will be described with reference to the drawings.
FIG. 2 is a diagram for explaining a usage mode of the pressure measurement sheet set according to the present embodiment, and shows an example of the configuration of a pressure measurement sheet manufactured by using the sheet set 10 shown in FIG.
 工程A1では、シートセット10が備える第1シート16、第2シート22、及び、保護シートPである保護シート40を積層する。積層する順序は特に制限されない。例えば、第1シート16及び第2シート22を、第1層14と第2層20とが対向するように積層して積層体を作製した後、得られた積層体の両面に2枚の保護シート40を積層することにより、図2に示す圧力測定用シート100が得られる。 In step A1, the first sheet 16, the second sheet 22, and the protective sheet 40, which is the protective sheet P, included in the sheet set 10 are laminated. The stacking order is not particularly limited. For example, after laminating the first sheet 16 and the second sheet 22 so that the first layer 14 and the second layer 20 face each other to prepare a laminated body, two protective sheets are protected on both sides of the obtained laminated body. By laminating the sheets 40, the pressure measuring sheet 100 shown in FIG. 2 can be obtained.
 本実施形態に係る圧力測定用シートセットを用いて作製される圧力測定用シートは、図2に示す構成を有するものに制限されない。
 例えば、図2に示す圧力測定用シート100は、第1シート16及び第2シート22を挟むように2枚の保護シート40が最外層に配置されているが、工程Bにおいて圧力を測定する測定対象物である2つの部材のうち、熱源により加熱されている部材が1つのみである場合、その加熱されている部材と接する表面においてのみ保護シートPを設けてもよい。圧力測定用シートが一方の表面においてのみ保護シートPを備える場合、他方の表面に、保護シートP以外の保護シートを備えていてもよく、保護シートを備えていなくてもよい。また、測定対象物である2つの部材のうち一方のみが熱源により加熱されている場合において、2枚の保護シートPが最外層に配置された圧力測定用シートを用いてもよい。
The pressure measuring sheet produced by using the pressure measuring sheet set according to the present embodiment is not limited to the one having the configuration shown in FIG.
For example, in the pressure measuring sheet 100 shown in FIG. 2, two protective sheets 40 are arranged on the outermost layer so as to sandwich the first sheet 16 and the second sheet 22, but the measurement for measuring the pressure in the step B is performed. When only one member is heated by the heat source among the two members that are the objects, the protective sheet P may be provided only on the surface in contact with the heated member. When the pressure measuring sheet is provided with the protective sheet P only on one surface, the other surface may be provided with a protective sheet other than the protective sheet P, or may not be provided with the protective sheet. Further, when only one of the two members to be measured is heated by the heat source, a pressure measuring sheet in which the two protective sheets P are arranged on the outermost layer may be used.
<工程B>
 工程Bでは、工程A1で作製された圧力測定用シート100の両面側に配置された測定対象物である2つの部材(図示しない)により、圧力測定用シートを加圧する。
 工程Bにおいて、2つの部材により圧力測定用シート100が加圧されることにより、第2層20に対向する第1層14のうち加圧された領域においてマイクロカプセル13が壊れて、マイクロカプセル13に内包されている発色剤がマイクロカプセル13から出てきて、第2層20中の顕色剤との間で発色反応が進行する。結果として、加圧された領域において、圧力の大きさに応じて発色が進行し、画像(圧力画像)が出現する。
<Process B>
In step B, the pressure measuring sheet is pressurized by two members (not shown) which are measurement objects arranged on both sides of the pressure measuring sheet 100 produced in step A1.
In step B, when the pressure measuring sheet 100 is pressurized by the two members, the microcapsules 13 are broken in the pressurized region of the first layer 14 facing the second layer 20, and the microcapsules 13 are broken. The color-developing agent contained in the microcapsules comes out of the microcapsules 13, and the color-developing reaction proceeds with the color-developing agent in the second layer 20. As a result, in the pressurized region, color development progresses according to the magnitude of pressure, and an image (pressure image) appears.
 工程Bで加圧された圧力測定用シートは、必要に応じて圧力測定用シートから保護シートを剥離した後、第1シートと第2シートとを分離し、第2シートの第2層に現れた圧力画像(圧力に応じた発色)を確認することにより、工程Bにおいて圧力測定用シートにかかった圧力の大きさ及び圧力分布を解析できる。
 上記の圧力画像の確認は、目視により行ってもよいし、圧力画像解析システム(FPD-8010、富士フイルム株式会社製)を用いて行ってもよい。
 第2支持体が透明な場合には第1シートと第2シートとを剥離せずに、第2シートの支持体越しに圧力画像を確認することもできる。
The pressure measuring sheet pressurized in step B is separated from the first sheet and the second sheet after peeling the protective sheet from the pressure measuring sheet as necessary, and appears in the second layer of the second sheet. By confirming the pressure image (color development according to the pressure), the magnitude and pressure distribution of the pressure applied to the pressure measuring sheet in step B can be analyzed.
The above pressure image may be confirmed visually or by using a pressure image analysis system (FPD-8010, manufactured by FUJIFILM Corporation).
When the second support is transparent, the pressure image can be confirmed through the support of the second sheet without peeling the first sheet and the second sheet.
 本実施形態に係る圧力測定方法では、圧力を測定する際に、圧力測定用シートの加熱された部材と接する表面側に保護シートPを配置することにより、高温条件下で圧力測定を実施する際の支持体の変形、解像度の低下、及び、測定対象物の汚染を抑制し、より正確な圧力測定を実施できる。即ち、高温条件下であっても、圧力分布の解像性については、室温(23℃)での測定結果との差異が少ない圧力測定を実施できる。 In the pressure measuring method according to the present embodiment, when the pressure is measured, the protective sheet P is arranged on the surface side of the pressure measuring sheet in contact with the heated member to measure the pressure under high temperature conditions. It is possible to suppress deformation of the support, decrease in resolution, and contamination of the object to be measured, and perform more accurate pressure measurement. That is, even under high temperature conditions, the pressure distribution can be measured with little difference from the measurement result at room temperature (23 ° C.) in terms of the resolution of the pressure distribution.
 工程Bにおける温度条件は、例えば、180~220℃である。また、本発明に係る圧力測定用シートセットは、高温条件以外の温度条件下(例えば、室温)での圧力測定においても好ましく使用できる。
 なお、上記の温度条件は、熱源により加熱されている部材の圧力測定用シートと接する表面の温度である。
The temperature condition in step B is, for example, 180 to 220 ° C. Further, the pressure measurement sheet set according to the present invention can also be preferably used for pressure measurement under temperature conditions other than high temperature conditions (for example, room temperature).
The above temperature condition is the temperature of the surface of the member heated by the heat source in contact with the pressure measuring sheet.
 本発明に係る圧力測定用シートセットは、幅広い圧力帯における圧力測定に使用できる。工程Bの具体的な圧力条件としては、0.05~20MPaの範囲が好ましく、0.5~10MPaの範囲がより好ましい。 The pressure measurement sheet set according to the present invention can be used for pressure measurement in a wide pressure range. As the specific pressure condition of the step B, the range of 0.05 to 20 MPa is preferable, and the range of 0.5 to 10 MPa is more preferable.
 本実施形態に係る圧力測定方法の対象である、熱源により加熱された部材としては、例えば、プリント基板製造時の熱圧着工程等の種々の高温条件での圧着操作に用いる高温プレス機が挙げられる。 Examples of the member heated by the heat source, which is the target of the pressure measuring method according to the present embodiment, include a high temperature press machine used for a crimping operation under various high temperature conditions such as a thermocompression bonding step at the time of manufacturing a printed circuit board. ..
[第2実施形態]
 以下、本発明に係る圧力測定用シートセットの他の実施形態(第2実施形態)について、図面を参照しなら説明する。
 図3は、本発明の第2実施形態に係る圧力測定用シートセットの構成を示す模式図である。
 本実施形態に係る圧力測定用シートセットであるシートセット30は、積層体34と、保護シート40とを備える。積層体34は、第1支持体32と、顕色剤を含む第2層20と、マイクロカプセル13を含む第1層14とをこの順に有する。
 シートセット30が備える保護シート40は、特定樹脂フィルム又は紙からなる。
 また、シートセット30では、第1支持体の厚みT1、及び、保護シートの厚みT4が、下記式(a)、(e)及び(f)をすべて満たす。
 (a) 15μm≦T1≦200μm
 (e) T4-T1×0.4≧0μm
 (f) 60μm≦T1+T4≦300μm
[Second Embodiment]
Hereinafter, another embodiment (second embodiment) of the pressure measurement sheet set according to the present invention will be described with reference to the drawings.
FIG. 3 is a schematic view showing the configuration of the pressure measurement sheet set according to the second embodiment of the present invention.
The sheet set 30, which is a pressure measuring sheet set according to the present embodiment, includes a laminated body 34 and a protective sheet 40. The laminate 34 has a first support 32, a second layer 20 containing a color developer, and a first layer 14 containing microcapsules 13 in this order.
The protective sheet 40 included in the sheet set 30 is made of a specific resin film or paper.
Further, in the sheet set 30, the thickness T1 of the first support and the thickness T4 of the protective sheet satisfy all of the following formulas (a), (e) and (f).
(A) 15 μm ≤ T1 ≤ 200 μm
(E) T4-T1 × 0.4 ≧ 0 μm
(F) 60 μm ≤ T1 + T4 ≤ 300 μm
 第1支持体の厚みT1、及び、保護シートの厚みT4は、上記式(a)、(e)及び(f)をすべて満たす限り、それぞれ制限されない。
 厚みT1は、下記式(a0)を満たすことが好ましく、下記式(a1)を満たすことがより好ましい。
 (a0) 16μm≦T1≦200μm
 (a1) 50μm≦T1≦150μm
The thickness T1 of the first support and the thickness T4 of the protective sheet are not limited as long as the above formulas (a), (e) and (f) are all satisfied.
The thickness T1 preferably satisfies the following formula (a0), and more preferably satisfies the following formula (a1).
(A0) 16 μm ≤ T1 ≤ 200 μm
(A1) 50 μm ≤ T1 ≤ 150 μm
 厚みT1及びT4は、高温条件下での耐変形性がより優れる点で、下記式(e1)を満たすことが好ましい。
 (e1) T4-T1×0.4≧10μm
 厚みT1及びT4を「T4-T1×0.4」の式に代入して得られる値の上限は特に制限されないが、高温条件下での解像度がより優れる点で、下記式(e2)を満たすことが好ましい。
 (e2) T4-T1×0.4≦160μm
The thicknesses T1 and T4 preferably satisfy the following formula (e1) in that the deformation resistance under high temperature conditions is more excellent.
(E1) T4-T1 × 0.4 ≧ 10 μm
The upper limit of the value obtained by substituting the thicknesses T1 and T4 into the equation of "T4-T1 × 0.4" is not particularly limited, but the following equation (e2) is satisfied in that the resolution under high temperature conditions is better. Is preferable.
(E2) T4-T1 × 0.4 ≦ 160 μm
 厚みT1及びT4は、高温条件下での耐変形性及び解像度がより優れる点でがより優れる点で、下記式(f1)を満たすことが好ましく、下記式(f2)を満たすことがより好ましい。
 (f1) 100μm≦T1+T4≦250μm
 (f2) 100μm≦T1+T4≦225μm
The thicknesses T1 and T4 are more preferably satisfied with the following formula (f1) and more preferably with the following formula (f2) in that they are more excellent in deformation resistance and resolution under high temperature conditions.
(F1) 100 μm ≤ T1 + T4 ≤ 250 μm
(F2) 100 μm ≤ T1 + T4 ≤ 225 μm
 シートセット30を使用して圧力測定を実施する際は、積層体34及び保護シート40を積層して圧力測定用シートを作製し、得られた圧力測定用シートに圧力をかけることにより、圧力測定を実施する。 When performing pressure measurement using the sheet set 30, pressure measurement is performed by laminating the laminated body 34 and the protective sheet 40 to prepare a pressure measurement sheet and applying pressure to the obtained pressure measurement sheet. To carry out.
 なお、本実施形態に係る圧力測定用シートセットは、図3に示す態様に制限されない。
 例えば、図3に示す積層体34においては、第1支持体32と第2層20とが直接積層されているが、第1支持体と第2層との間に他の層(例えば、密着層)が配置されていてもよい。
 また、図3に示す積層体34においては、支持体として第1支持体32のみを有しているが、積層体は、第1層及び第2層を挟む2枚の支持体を有することにより、支持体/2層/第1層/支持体からなる積層構造を有していてもよい。
The pressure measurement sheet set according to the present embodiment is not limited to the mode shown in FIG.
For example, in the laminated body 34 shown in FIG. 3, the first support 32 and the second layer 20 are directly laminated, but another layer (for example, close contact) is formed between the first support and the second layer. Layers) may be arranged.
Further, the laminated body 34 shown in FIG. 3 has only the first support 32 as a support, but the laminated body has two supports sandwiching the first layer and the second layer. It may have a laminated structure including a support / two layers / a first layer / a support.
 以下、本実施形態に係る圧力測定用シートセットを構成する各部材について詳述する。 Hereinafter, each member constituting the pressure measurement sheet set according to the present embodiment will be described in detail.
〔積層体〕
 積層体は、第1支持体と、顕色剤を含む第2層と、発色剤を内包するマイクロカプセルを含む第1層と、をこの順に有する。
 積層体は、枚葉(単票)であってもよいし、長尺状であってもよい。
[Laminate]
The laminate has a first support, a second layer containing a color developer, and a first layer containing microcapsules containing a color former in this order.
The laminated body may be a single leaf (single sheet) or may be long.
 本実施形態に係る積層体が有する第1支持体は、第2層及び第1層を支持するための部材である。
 本実施形態における第1支持体の形状、及び、第1支持体を構成する材料については、上述した第1実施形態における第1支持体と同じであるため、説明を省略する。
 また、第1支持体の厚みT1については、既に説明した通りである。
The first support body of the laminated body according to the present embodiment is a member for supporting the second layer and the first layer.
Since the shape of the first support and the material constituting the first support in the present embodiment are the same as those in the first support described above, the description thereof will be omitted.
Further, the thickness T1 of the first support is as described above.
 本実施形態に係る積層体が有する第1層及び第2層については、その好適な態様も含めて、上述した第1実施形態で説明した第1層及び第2層と同じであるため、説明を省略する。 The first layer and the second layer of the laminate according to the present embodiment are the same as the first layer and the second layer described in the first embodiment described above, including the preferred embodiments thereof. Is omitted.
<他の部材>
 積層体は、上述した通り、第1支持体、第1層及び第2層以外の他の部材を有していてもよい。
 他の部材としては、例えば、上記の密着層、及び、第1層及び第2層を挟むように第1支持体に対向して配置される第2の支持体が挙げられる。
 本実施形態において積層体が有してもよい密着層については、上述した第1実施形態で説明した密着層と同じであるため、説明を省略する。
 また、本実施形態において積層体が有してもよい第2の支持体は、その好適な態様も含めて、上述した第1支持体と同じであるため、説明を省略する。
<Other members>
As described above, the laminated body may have members other than the first support, the first layer, and the second layer.
Examples of other members include the above-mentioned adhesion layer and a second support arranged so as to sandwich the first layer and the second layer so as to face the first support.
Since the adhesion layer that the laminated body may have in this embodiment is the same as the adhesion layer described in the first embodiment described above, the description thereof will be omitted.
Further, the second support that the laminated body may have in the present embodiment is the same as the first support described above, including its preferred embodiment, and thus the description thereof will be omitted.
<積層体の製造方法>
 積層体の製造方法は特に制限されず、公知の方法が挙げられる。
 積層体の製造方法としては、例えば、顕色剤を含む第2層形成用組成物を第1支持体上に塗布して、必要に応じて塗膜に対して乾燥処理を施して、第1支持体上に第2層を形成した後、更に、マイクロカプセルを含む第1層形成用組成物を第2層上に塗布して、必要に応じて塗膜に対して乾燥処理を施して、第2層上に第1層を形成することにより、第1支持体、第2層及び第1層をこの順に有する積層体を製造する方法が挙げられる。
 上記の第2層形成用組成物、第2層の形成方法、第1層形成用組成物、及び、第1層の形成方法はいずれも、第1実施形態において説明した通りである。
<Manufacturing method of laminated body>
The method for producing the laminate is not particularly limited, and examples thereof include known methods.
As a method for producing the laminate, for example, a composition for forming a second layer containing a color developer is applied onto the first support, and if necessary, the coating film is subjected to a drying treatment, and the first After forming the second layer on the support, a composition for forming the first layer containing microcapsules is further applied onto the second layer, and if necessary, the coating film is dried. A method of producing a laminate having the first support, the second layer, and the first layer in this order by forming the first layer on the second layer can be mentioned.
The composition for forming the second layer, the method for forming the second layer, the composition for forming the first layer, and the method for forming the first layer are all as described in the first embodiment.
〔保護シート〕
 本実施形態に係る圧力測定用シートセットは、ガラス転移温度が100℃以上であるか、若しくは、ガラス転移温度を示さない特定樹脂フィルム、又は、紙からなり、上記の式(e)及び(f)を満たすような厚みT4を有する保護シート(以下、本明細書において「保護シートQ」ともいう。)を有する。
 保護シートQについては、厚みT4以外は、第1実施形態で説明した保護シートPと同じであるため、説明を省略する。
 また、保護シートQの厚みT4については、既に説明した通りである。
[Protective sheet]
The pressure measurement sheet set according to the present embodiment is made of a specific resin film or paper having a glass transition temperature of 100 ° C. or higher or does not show a glass transition temperature, and is made of the above formulas (e) and (f). ) Is provided with a protective sheet having a thickness T4 (hereinafter, also referred to as “protective sheet Q” in the present specification).
Since the protective sheet Q is the same as the protective sheet P described in the first embodiment except for the thickness T4, the description thereof will be omitted.
Further, the thickness T4 of the protective sheet Q is as described above.
〔圧力測定方法〕
 本実施形態に係る圧力測定用シートセットの使用方法、即ち、本実施形態に係る圧力測定用シートセットを用いて圧力を測定する圧力測定方法について、説明する。
[Pressure measurement method]
A method of using the pressure measurement sheet set according to the present embodiment, that is, a pressure measurement method for measuring pressure using the pressure measurement sheet set according to the present embodiment will be described.
 本実施形態に係る圧力測定方法は、積層体と保護シートQとを積層して、圧力測定用シートを作製する工程A2と、圧力測定用シートの両面側に配置された2つの部材により、圧力測定用シートを加圧する工程Bと、を有する。
 更に、工程Bにおいて使用する2つの部材の少なくとも一方が熱源により加熱されており、保護シートQは、少なくとも圧力測定用シートの加熱された部材と接する表面側に配置されている。
In the pressure measurement method according to the present embodiment, a step A2 for laminating a laminated body and a protective sheet Q to produce a pressure measurement sheet and two members arranged on both sides of the pressure measurement sheet are used for pressure. It has a step B of pressurizing a measuring sheet.
Further, at least one of the two members used in step B is heated by a heat source, and the protective sheet Q is arranged on at least the surface side of the pressure measuring sheet in contact with the heated member.
<工程A2>
 工程A2では、本実施形態に係る圧力測定用シートセットを用いて圧力測定用シートを作製する。より具体的には、積層体の2つの表面のうち、工程Bにおいて加熱された部材と接する少なくとも一方の表面に、保護シートQを積層して、圧力測定用シートを作製する。
 工程Bにおいて使用する2つの部材がいずれも熱源により加熱されている場合は、積層体の両面に保護シートQを積層する。
 また、工程Bにおいて2つの部材のうち一方のみが熱源により加熱されている場合は、積層体の加熱されている部材と接する表面側に保護シートQを積層する。この場合、熱源により加熱されていない部材と接する表面には、保護シートQを積層してもよく、保護シートQ以外の保護シートを積層してもよく、保護シートを積層しなくてもよい。
<Process A2>
In step A2, a pressure measurement sheet is produced using the pressure measurement sheet set according to the present embodiment. More specifically, the protective sheet Q is laminated on at least one of the two surfaces of the laminated body in contact with the member heated in the step B to prepare a pressure measurement sheet.
When both of the two members used in step B are heated by a heat source, the protective sheet Q is laminated on both sides of the laminated body.
Further, when only one of the two members is heated by the heat source in the step B, the protective sheet Q is laminated on the surface side of the laminated body in contact with the heated member. In this case, the protective sheet Q may be laminated on the surface in contact with the member not heated by the heat source, the protective sheet other than the protective sheet Q may be laminated, or the protective sheet may not be laminated.
<工程B>
 工程Bでは、工程A2で作製された圧力測定用シートの両面側に配置された測定対象物である2つの部材により、圧力測定用シートを加圧する。
 工程Bについては、第1実施形態で説明した工程Bと同じであるため、説明を省略する。
<Process B>
In step B, the pressure measuring sheet is pressurized by two members which are measurement objects arranged on both sides of the pressure measuring sheet produced in step A2.
Since the process B is the same as the process B described in the first embodiment, the description thereof will be omitted.
 工程Bで加圧された圧力測定用シートは、必要に応じて圧力測定用シートから保護シートを剥離した後、第2層に現れた圧力画像(圧力に応じた発色)を確認することにより、工程Bにおいて圧力測定用シートにかかった圧力の大きさ及び圧力分布を解析できる。
 上記の圧力画像の確認方法については、既に説明した通りである。
For the pressure measuring sheet pressurized in step B, after peeling the protective sheet from the pressure measuring sheet as necessary, the pressure image (color development according to the pressure) appearing on the second layer is confirmed. In step B, the magnitude and pressure distribution of the pressure applied to the pressure measuring sheet can be analyzed.
The method for confirming the above pressure image is as described above.
[用途]
 本発明の圧力測定用シートセットは、種々の用途に使用でき、例えば、高温プレスをプロセスに含む様々な製造工程の検証又は管理に使用される。より具体的には、電池(リチウムイオン電池、燃料電池)分野における積層工程における圧力分布確認、プリント配線板(FPC、BWB)分野における積層工程における圧力分布確認、配線取り出し部のACFボンディング及びラミネート等の熱圧着工程における圧力分布確認、並びに、金型締め付け部の圧力分布確認が挙げられる。
[Use]
The pressure measuring sheet set of the present invention can be used for various purposes, for example, for verification or control of various manufacturing processes including a high temperature press in a process. More specifically, pressure distribution confirmation in the laminating process in the battery (lithium ion battery, fuel cell) field, pressure distribution confirmation in the laminating process in the printed wiring board (FPC, BWB) field, ACF bonding and laminating of the wiring take-out part, etc. The pressure distribution confirmation in the heat crimping process and the pressure distribution confirmation of the mold tightening portion can be mentioned.
 以下、本発明を実施例によりさらに具体的に説明する。本発明はその主旨を超えない限り、以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples as long as the gist is not exceeded.
[実施例1~15、参考例1~8]
<発色剤内包マイクロカプセルの調製>
 1,2-ジメチル-4-(1-フェニルエチル)ベンゼン、1,3-ジメチル-4-(1-フェニルエチル)ベンゼン、1,4-ジメチル-2-(1-フェニルエチル)ベンゼン、及び1-(エチルフェニル)-1-フェニルエタンの混合物(烟台金正精細化工有限公司製、SRS-101)50部に、発色剤として3’,6’-ビス(ジエチルアミノ)-2-(4-ニトロフェニル)スピロ[イソインドール-1,9’-キサンテン]-3-オン(保土谷化学工業株式会社製、Pink-DCF)3部、6’-(ジエチルアミノ)-1’,3’-ジメチルフルオラン(保土谷化学工業株式会社製、Orange-DCF)4部、紫外線吸収剤として2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(城北化学工業株式会社製、JF-77-P)3部を溶解し、溶液Aを得た。次に、合成イソパラフィン(出光興産株式会社製、IPソルベント1620)13部、メチルエチルケトン2.5部に溶解したN,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン(株式会社アデカ製、アデカポリエーテルEDP-300)0.3部を、攪拌している溶液Aに加えて溶液Bを得た。更に、酢酸エチル6部に溶解したトリレンジイソシアナートのトリメチロールプロパン付加物(DIC株式会社製、バーノックD-750)2.5部を、攪拌している溶液Bに加えて溶液Cを得た。そして、水140部にポリビニルアルコール(PVA-217E、株式会社クラレ製)7部を溶解した溶液中に上記の溶液Cを加えて、乳化分散した。乳化分散後の乳化液に水200部を加え、攪拌しながら70℃まで加温し、1時間攪拌後、冷却した。更に、水を加えて濃度を調整し、固形分濃度20%の発色剤内包マイクロカプセル液を得た。
 得られた発色剤内包マイクロカプセルの平均粒径は、20μmであった。平均粒径は、上述した方法で測定した。
[Examples 1 to 15, reference examples 1 to 8]
<Preparation of color-developing agent-encapsulating microcapsules>
1,2-dimethyl-4- (1-phenylethyl) benzene, 1,3-dimethyl-4- (1-phenylethyl) benzene, 1,4-dimethyl-2- (1-phenylethyl) benzene, and 1 -(Ethylphenyl) -1-phenylethane mixture (manufactured by Kodai Kinsei Kako Co., Ltd., SRS-101) in 50 parts, 3', 6'-bis (diethylamino) -2- (4-nitrophenyl) as a coloring agent ) Spiro [isoindole-1,9'-xanthene] -3-one (Pink-DCF, manufactured by Hodoya Chemical Industry Co., Ltd.), 3 parts, 6'-(diethylamino) -1', 3'-dimethylfluorane ( 4 parts of Orange-DCF manufactured by Hodoya Chemical Industry Co., Ltd., 2- (2'-hydroxy-5'-methylphenyl) benzotriazole (manufactured by Johoku Chemical Industry Co., Ltd., JF-77-P) 3 as an ultraviolet absorber The part was dissolved to obtain a solution A. Next, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine dissolved in 13 parts of synthetic isoparaffin (IP solven 1620 manufactured by Idemitsu Kosan Co., Ltd.) and 2.5 parts of methyl ethyl ketone (manufactured by Adeca Co., Ltd.) , Adecapolyether EDP-300) 0.3 part was added to the stirring solution A to obtain a solution B. Further, 2.5 parts of a trimethylolpropane adduct of tolylene diisocyanate (manufactured by DIC Corporation, Barnock D-750) dissolved in 6 parts of ethyl acetate was added to the stirring solution B to obtain a solution C. .. Then, the above solution C was added to a solution in which 7 parts of polyvinyl alcohol (PVA-217E, manufactured by Kuraray Co., Ltd.) was dissolved in 140 parts of water, and the solution was emulsified and dispersed. 200 parts of water was added to the emulsified liquid after emulsification and dispersion, the mixture was heated to 70 ° C. with stirring, stirred for 1 hour, and then cooled. Further, water was added to adjust the concentration to obtain a color-developing agent-encapsulating microcapsule solution having a solid content concentration of 20%.
The average particle size of the obtained color-developing agent-encapsulating microcapsules was 20 μm. The average particle size was measured by the method described above.
[圧力測定用シートセットの作製]
(作製例1:第1シートの作製)
 得られた発色剤内包マイクロカプセル液18部、水10部、コロイダルシリカ(日産化学工業株式会社製、スノーテックス30、固形分含有量30%)1.8部、カルボキシメチルセルロースナトリウム(第一工業製薬株式会社製、セロゲン5A)の1%水溶液2部、カルボキシメチルセルロースナトリウム(第一工業製薬株式会社製、セロゲンEP)の1%水溶液4.5部、側鎖アルキルベンゼンスルホン酸アミン塩(第一工業製薬株式会社製、ネオゲンT)の15%水溶液1部、ポリオキシエチレンポリオキシプロピレンラウリルエーテル(第一工業製薬株式会社製、ノイゲンLP-70)の1%水溶液0.2部、ナトリウム-ビス(3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル)-2-スルフイナトオキシスクシナート(富士フイルム株式会社製、W-AHE)の1%水溶液0.2部を混合し、第1層形成用塗布液を得た。
[Making a sheet set for pressure measurement]
(Production Example 1: Preparation of the first sheet)
18 parts of microcapsule liquid containing color former, 10 parts of water, 1.8 parts of colloidal silica (Snowtex 30, solid content 30%), sodium carboxymethyl cellulose (Daiichi Kogyo Seiyaku Co., Ltd.) 2 parts of 1% aqueous solution of cellogen 5A manufactured by Daiichi Kogyo Seiyaku Co., Ltd., 4.5 parts of 1% aqueous solution of sodium carboxymethyl cellulose (Selogen EP manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), side chain alkylbenzene sulfonic acid amine salt (Daiichi Kogyo Seiyaku Co., Ltd.) 1 part of 15% aqueous solution of Neogen T manufactured by Neogen T Co., Ltd., 0.2 part of 1% aqueous solution of polyoxyethylene polyoxypropylene lauryl ether (Neugen LP-70 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), sodium-bis (3) , 3, 4, 4, 5, 5, 6, 6, 6-Nonafluorohexyl) -2-Sulfinatooxysuccinate (W-AHE, manufactured by Fujifilm Co., Ltd.) 0.2 part of 1% aqueous solution The mixture was mixed to obtain a coating liquid for forming the first layer.
 得られた第1層形成用組成物を、厚みT1が75μmであり、両面が易接着処理されたポリエチレンテレフタレート(PET)シート(東洋紡株式会社製、コスモシャインA4300)に、乾燥後の質量が6.0g/mとなるように、バーコーターにより塗布、乾燥して、第1シートを作製した。作製された第1層のPETシート側とは反対側の表面の算術平均粗さRaは、5.0μmであった。 The obtained composition for forming the first layer was applied to a polyethylene terephthalate (PET) sheet (manufactured by Toyobo Co., Ltd., Cosmoshine A4300) having a thickness T1 of 75 μm and having both sides easily bonded, and having a mass of 6 after drying. The first sheet was prepared by applying and drying with a bar coater so as to be 0.0 g / m 2 . The arithmetic mean roughness Ra of the surface of the prepared first layer opposite to the PET sheet side was 5.0 μm.
(作製例2:第2シートの作製)
 顕色剤である活性白土(水澤化学工業株式会社製、シルトンF-242)100部、ヘキサメタリン酸Na(日本化学工業株式会社製、ヘキサメタリン酸ソーダ)0.5部、10%水酸化ナトリウム水溶液15部、及び水240部を加え、得られた分散液に対し、オレフィン樹脂(荒川化学工業株式会社製、ポリマロン482、固形分濃度25質量%)30部、変性アクリル酸エステル共重合体(日本ゼオン株式会社製、ニッポールLX814、固形分濃度46質量%)35部、カルボキシメチルセルロースナトリウム(第一工業製薬株式会社製、セロゲンEP)の1%水溶液80部、アルキルベンゼンスルホン酸Na(第一工業製薬株式会社製、ネオゲンT)の15%水溶液18部、ポリオキシエチレンポリオキシプロピレンラウリルエ-テル(第一工業製薬株式会社製、ノイゲンLP-70)の1%水溶液20部、ナトリウム-ビス(3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル)-2-スルフイナトオキシスクシナート(富士フイルム株式会社製、W-AHE)の1%水溶液20部を混合し、顕色剤を含む第2層形成用組成物を調製した。
 顕色剤を含む第2層形成用組成物を、厚みT2が75μmであり、PETシートの上に、固形分塗布量が7.0g/mになるように塗布した。次いで、得られた塗膜を乾燥させて第2層を形成し、第2シートを得た。
(Production example 2: Preparation of the second sheet)
Active white clay (manufactured by Mizusawa Chemical Industry Co., Ltd., Shilton F-242) 100 parts, Na hexametaphosphate (manufactured by Nippon Chemical Industry Co., Ltd., sodium hexametaphosphate) 0.5 part, 10% sodium hydroxide aqueous solution 15 30 parts of olefin resin (Polymaron 482, manufactured by Arakawa Chemical Industry Co., Ltd., solid content concentration 25% by mass), modified acrylic acid ester copolymer (Nippon Zeon) to the obtained dispersion by adding 240 parts of water and 240 parts of water. NIPPOL LX814 manufactured by Nippon Kogyo Co., Ltd., solid content concentration 46% by mass) 35 parts, 1% aqueous solution of sodium carboxymethyl cellulose (Cerogen EP manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 80 parts, Na alkylbenzene sulfonate (Daiichi Kogyo Seiyaku Co., Ltd.) 18 parts of 15% aqueous solution of Neogen T), 20 parts of 1% aqueous solution of polyoxyethylene polyoxypropylene lauryl ether (Neugen LP-70 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), sodium-bis (3,3) , 4, 4, 5, 5, 6, 6, 6-Nonafluorohexyl) -2-Sulfinatooxysuccinate (W-AHE, manufactured by Fujifilm Co., Ltd.) 20 parts of a 1% aqueous solution is mixed and exposed. A composition for forming a second layer containing a coloring agent was prepared.
The composition for forming the second layer containing the color developer was applied onto a PET sheet having a thickness T2 of 75 μm and a solid content coating amount of 7.0 g / m 2 . Then, the obtained coating film was dried to form a second layer, and a second sheet was obtained.
〔実施例1〕
 保護シートとして、厚みT3が75μmであるポリエチレンナフタレートシート(帝人フィルムソリューション株式会社製、テオネックス(登録商標)Q51)を使用し、作製例1で作製された第1シートと、作製例2で作製された第2シートと、上記保護シートとからなる、第1実施形態に係る圧力測定用シートセットを準備した。
[Example 1]
As a protective sheet, a polyethylene naphthalate sheet having a thickness T3 of 75 μm (Teijin Film Solution Co., Ltd., Theonex (registered trademark) Q51) was used, and the first sheet produced in Production Example 1 and the production example 2 were produced. A pressure measurement sheet set according to the first embodiment was prepared, which comprises the second sheet and the protective sheet.
〔実施例2~14及び参考例1~8〕
 表1に示した各層の構成を変更した以外は、実施例1と同様にして圧力測定用シートセットを準備した。
[Examples 2 to 14 and Reference Examples 1 to 8]
A pressure measurement sheet set was prepared in the same manner as in Example 1 except that the configuration of each layer shown in Table 1 was changed.
〔実施例15〕
 厚みT1が75μmであり、両面が易接着処理されたポリエチレンテレフタレート(PET)シート(東洋紡株式会社製、コスモシャインA4360)の片面に、大気中で、放電電力0.7kW、放電電極長0.66m、搬送速度12m/minの条件にて、コロナ放電処理し、PETフィルムAを得た。
 作製例1において使用する第1支持体を、ポリエチレンテレフタレート(PET)シート(東洋紡株式会社製、コスモシャインA4300)から上記で得られたPETフィルムAに変更し、PETフィルムAのコロナ放電処理した面に第1層形成組成物を塗布した以外は、作製例1と同様にして、第1シート15を作製した。作製された第1シート15における第1層のPETシート側とは反対側の表面の算術平均粗さRaは、5.0μmであった。
 上記で得られた第1シート15と、厚みT3が75μmであるポリエチレンナフタレートシート(帝人フィルムソリューション株式会社製、テオネックス(登録商標)Q51)と、作製例2で作製された第2シートとからなる、第1実施形態に係る圧力測定用シートセットを準備した。
[Example 15]
A polyethylene terephthalate (PET) sheet (Cosmo Shine A4360, manufactured by Toyobo Co., Ltd.) with a thickness T1 of 75 μm and easy-adhesion treatment on both sides has a discharge power of 0.7 kW and a discharge electrode length of 0.66 m on one side. , Corona discharge treatment was performed under the condition of a transport speed of 12 m / min to obtain PET film A.
The first support used in Production Example 1 was changed from a polyethylene terephthalate (PET) sheet (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) to the PET film A obtained above, and the surface of the PET film A treated with corona discharge. The first sheet 15 was prepared in the same manner as in Preparation Example 1 except that the first layer forming composition was applied to the mixture. The arithmetic mean roughness Ra of the surface of the prepared first sheet 15 on the side opposite to the PET sheet side of the first layer was 5.0 μm.
From the first sheet 15 obtained above, a polyethylene naphthalate sheet having a thickness T3 of 75 μm (Teijin Film Solution Co., Ltd., Theonex (registered trademark) Q51), and the second sheet produced in Production Example 2. The pressure measurement sheet set according to the first embodiment was prepared.
〔評価〕
<耐変形性>
 各実施例及び各参考例において準備した圧力測定用シートセットに含まれる、第1シート、第2シート及び保護シートをそれぞれ縦5cm×縦5cmのサイズに裁断した。次いで、第1シートの第1層の表面と第2シートの第2層の表面とが接触するように、保護シート、第1シート、第2シート及び保護シートの順に積層して、圧力測定用シートの評価試験用サンプルを作製した。
〔evaluation〕
<Deformation resistance>
The first sheet, the second sheet and the protective sheet included in the pressure measurement sheet set prepared in each example and each reference example were cut into a size of 5 cm in length × 5 cm in length, respectively. Next, the protective sheet, the first sheet, the second sheet, and the protective sheet are laminated in this order so that the surface of the first layer of the first sheet and the surface of the second layer of the second sheet are in contact with each other for pressure measurement. A sample for evaluation test of the sheet was prepared.
 2枚の加熱可能なステージを有するホットプレス機を用意し、各ステージの表面温度が220℃になるまで加熱した。2枚のステージ同士の間にサンプルを挟み、2分間にわたって5.0MPaの圧力でサンプルを加圧した。なお、各ステージがサンプルに接触する表面は、サンプルに対して十分広く、かつ、平坦であった。
 加圧終了後、ホットプレス機から、サンプルをとりだし、第1シートと第2シートとを剥離して、各々のシートを平坦な台に置いて形状を観察し、以下の基準に従って、耐変形性を評価した。
A hot press with two heatable stages was prepared and heated until the surface temperature of each stage reached 220 ° C. The sample was sandwiched between the two stages and the sample was pressurized at a pressure of 5.0 MPa over 2 minutes. The surface of each stage in contact with the sample was sufficiently wide and flat with respect to the sample.
After the pressurization is completed, the sample is taken out from the hot press machine, the first sheet and the second sheet are peeled off, each sheet is placed on a flat table, the shape is observed, and the deformation resistance is according to the following criteria. Was evaluated.
(評価基準)
「A」:第1シートと第2シートとの膜剥がれ、並びに、各シートの浮き及び凹凸のいずれも確認されなかった。
「B」:第1シートと第2シートとの膜剥がれ、並びに、各シートの浮き及び凹凸のいずれかが僅かに確認された。
「C」:第1シートと第2シートとの膜剥がれ、並びに、各シートの浮き及び凹凸のいずれかが明確に確認された。
(Evaluation criteria)
"A": No film peeling between the first sheet and the second sheet, and neither floating nor unevenness of each sheet was confirmed.
"B": The film peeling between the first sheet and the second sheet, and any of the floating and unevenness of each sheet were slightly confirmed.
"C": The film peeling between the first sheet and the second sheet, and any of the floating and unevenness of each sheet were clearly confirmed.
<防汚性>
 上記の耐変形性の評価試験と同様に、各実施例及び各参考例で準備した圧力測定用シートセットを用いて、圧力測定用シートの評価試験用サンプルを作製した。
 次いで、上記の耐変形性の評価試験と同様に、ホットプレス機を用いて、各ステージの表面温度が220℃になるまで加熱した。2枚のステージ同士の間でサンプルを挟み、2分間にわたって5.0MPaの圧力でサンプルを加圧した。
 加圧終了後、サンプルをステージから取り外して、ステージの表面を観察し、サンプルに由来する付着物の有無及び付着状態を確認した。観察結果に基づいて、以下の基準に従って、高温条件下で圧力測定を行ったときの圧力測定用シートの防汚性を評価した。
<Anti-fouling property>
Similar to the above-mentioned deformation resistance evaluation test, a sample for evaluation test of the pressure measurement sheet was prepared using the pressure measurement sheet set prepared in each Example and each reference example.
Then, in the same manner as in the above-mentioned deformation resistance evaluation test, the stage was heated to 220 ° C. using a hot press machine. The sample was sandwiched between the two stages and the sample was pressurized at a pressure of 5.0 MPa over 2 minutes.
After the pressurization was completed, the sample was removed from the stage, and the surface of the stage was observed to confirm the presence or absence of deposits derived from the sample and the state of adhesion. Based on the observation results, the antifouling property of the pressure measurement sheet was evaluated when the pressure was measured under high temperature conditions according to the following criteria.
(評価基準)
「A」:サンプル由来の付着物は確認されなかった。
「B」:サンプル由来の付着物が僅かに確認されたが、容易に取り除くことができた。
「C」:サンプル由来の付着物が確認され、付着物の一部はステージに固着して容易に取り除くことができなかった。
(Evaluation criteria)
"A": No deposits derived from the sample were confirmed.
"B": A small amount of deposits derived from the sample were confirmed, but they could be easily removed.
"C": Deposits derived from the sample were confirmed, and some of the deposits adhered to the stage and could not be easily removed.
<圧力分布の解像度>
 上記の耐変形性の評価試験と同様に、各実施例及び各参考例で準備した圧力測定用シートセットを用いて、圧力測定用シートの評価試験用サンプルを作製した。
 次いで、上記の耐変形性の評価試験と同様に、ホットプレス機を用いて、各ステージの表面温度が220℃になるように加熱した2枚のステージでサンプルと1セント硬貨を挟み、2分間にわたって5.0MPaの圧力でサンプルを加圧した。
 加圧終了後、サンプルをステージから取り外して、サンプルの発色状態を観察した。観察結果に基づいて、以下の基準に従って、高温条件下で圧力測定を行ったときの圧力測定用シートの防汚性を評価した。
 観察結果に基づいて、以下の基準に従って、高温条件下で圧力測定を行ったときの圧力測定用シートに表示される圧力分布の解像度を評価した。
<Resolution of pressure distribution>
Similar to the above-mentioned deformation resistance evaluation test, a sample for evaluation test of the pressure measurement sheet was prepared using the pressure measurement sheet set prepared in each Example and each reference example.
Next, as in the above-mentioned deformation resistance evaluation test, the sample and the 1-cent coin were sandwiched between two stages heated so that the surface temperature of each stage was 220 ° C. using a hot press machine for 2 minutes. The sample was pressurized over a pressure of 5.0 MPa.
After the pressurization was completed, the sample was removed from the stage and the color development state of the sample was observed. Based on the observation results, the antifouling property of the pressure measurement sheet was evaluated when the pressure was measured under high temperature conditions according to the following criteria.
Based on the observation results, the resolution of the pressure distribution displayed on the pressure measurement sheet when the pressure was measured under high temperature conditions was evaluated according to the following criteria.
(評価基準)
「A」:1セント硬貨の画像がくっきりと視認できる
「B」:1セント硬貨の画像がわずかに視認できる
「C」:1セント硬貨の画像が視認できない
(Evaluation criteria)
"A": The image of the 1-cent coin can be clearly seen. "B": The image of the 1-cent coin can be seen slightly. "C": The image of the 1-cent coin cannot be seen.
 表1に、実施例1~15及び参考例1~8の圧力測定用シートセットの構成、及び、評価結果を示す。
 表中、「材料」欄は、第1支持体、第2支持体又は保護シートを構成する材料をそれぞれ示す。「材料」欄において、「PEN」はポリエチレンナフタレートを、「PET」はポリエチレンテレフタレートを、「PET/PEN」はポリエチレンテレフタレート/ポリエチレンナフタレート共重合体を、「PI」はポリイミドを、「Al」はアルミニウムをそれぞれ意味する。
Table 1 shows the configurations of the pressure measurement sheet sets of Examples 1 to 15 and Reference Examples 1 to 8 and the evaluation results.
In the table, the "material" column indicates the materials constituting the first support, the second support, or the protective sheet, respectively. In the "Material" column, "PEN" is polyethylene terephthalate, "PET" is polyethylene terephthalate, "PET / PEN" is polyethylene terephthalate / polyethylene naphthalate copolymer, "PI" is polyimide, and "Al". Means aluminum respectively.
 「T1(a)」欄は、第1支持体の厚みT1(単位:μm)を示す。
 「T2(b)」欄は、第2支持体の厚みT2(単位:μm)を示す。
 「T3」欄は、保護シートの厚みT3(単位:μm)を示す。
 「Tg」欄は、保護シートを構成する材料のガラス転移温度Tg(単位:℃)を示す。なお、「Tg」欄の「*1」は、250℃以下の測定範囲において保護シートを構成する材料のガラス転移温度Tgが示されなかったことを意味する。
 「熱抵抗値」欄は、上述の方法で算出された、第1支持体、第2支持体又は保護シートの熱抵抗値(単位:m・K/W)材料をそれぞれ示す。
The “T1 (a)” column indicates the thickness T1 (unit: μm) of the first support.
The “T2 (b)” column indicates the thickness T2 (unit: μm) of the second support.
The "T3" column indicates the thickness T3 (unit: μm) of the protective sheet.
The “Tg” column indicates the glass transition temperature Tg (unit: ° C.) of the material constituting the protective sheet. In addition, "* 1" in the "Tg" column means that the glass transition temperature Tg of the material constituting the protective sheet was not shown in the measurement range of 250 ° C. or lower.
The "thermal resistance value" column shows the thermal resistance value (unit: m2 · K / W) material of the first support, the second support or the protective sheet calculated by the above method, respectively.
 「(c)」欄は、第1支持体の厚みT1、第2支持体の厚みT2、及び、保護シートの厚みT3を、式(c)(「T3-(T1+T2)×0.2」)に代入して得られる値を示す。
 「(d)」欄は、第1支持体の厚みT1、第2支持体の厚みT2、及び、保護シートの厚みT3の合計を示す。
 なお、実施例1~15において使用した保護シートの表面の算術平均粗さRaは、0.02~0.03μmであった。
In the "(c)" column, the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet are expressed by the formula (c) ("T3- (T1 + T2) x 0.2"). The value obtained by substituting into is shown.
The “(d)” column shows the total of the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet.
The arithmetic mean roughness Ra of the surface of the protective sheet used in Examples 1 to 15 was 0.02 to 0.03 μm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、本発明に係る圧力測定用シートセットを用いて高温条件下で圧力測定を実施した場合、本発明の課題を解決できることが確認された。
 なお、実施例15は、第1支持体として第1層に対向する面がコロナ放電処理されているPETフィルムAを用いて作製した第1シート15を使用している点で、実施例1とは異なる。
 また、参考例8で準備した圧力測定用シートセットを用いて上記の高温条件下で圧力測定を行った結果、圧力シートセットが溶融してステージに付着してしまったため、圧力分布の解像度の評価が実施できなかった。
As shown in Table 1, it was confirmed that the problem of the present invention can be solved when the pressure measurement is carried out under high temperature conditions using the pressure measurement sheet set according to the present invention.
In addition, Example 15 is different from Example 1 in that the first sheet 15 produced by using PET film A whose surface facing the first layer is subjected to corona discharge treatment is used as the first support. Is different.
Further, as a result of performing pressure measurement under the above high temperature conditions using the pressure measurement sheet set prepared in Reference Example 8, the pressure sheet set melted and adhered to the stage, so that the evaluation of the resolution of the pressure distribution was performed. Could not be implemented.
 実施例1~15の対比から、第1支持体の厚みT1、第2支持体の厚みT2、及び、保護シートの厚みT3の合計(T1+T2+T3)が、275μm以下である場合、高温条件下で圧力測定を行ったときの圧力測定用シートの圧力分布の解像度がより優れることが確認された。
 実施例1~15の対比から、第1支持体の厚みT1、第2支持体の厚みT2、及び、保護シートの厚みT3の合計(T1+T2+T3)が、100μm以上である場合、高温条件下で圧力測定を行ったときの圧力測定用シートの耐変形性がより優れることが確認された。
From the comparison of Examples 1 to 15, when the total (T1 + T2 + T3) of the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet is 275 μm or less, the pressure is applied under high temperature conditions. It was confirmed that the resolution of the pressure distribution of the pressure measurement sheet at the time of measurement was superior.
From the comparison of Examples 1 to 15, when the total (T1 + T2 + T3) of the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet is 100 μm or more, the pressure is applied under high temperature conditions. It was confirmed that the deformation resistance of the pressure measuring sheet at the time of measurement was superior.
 実施例1、5及び6の対比から、保護シートを構成する樹脂フィルムのガラス転移温度が150℃以上であるか、又は、上記樹脂フィルムがガラス転移温度を示さない場合、高温条件下で圧力測定を行ったときの圧力測定用シートの防汚性がより優れることが確認された。 From the comparison of Examples 1, 5 and 6, when the glass transition temperature of the resin film constituting the protective sheet is 150 ° C. or higher, or when the resin film does not show the glass transition temperature, the pressure is measured under high temperature conditions. It was confirmed that the antifouling property of the pressure measuring sheet was superior.
 実施例1~15の対比から、第1支持体の厚みT1、第2支持体の厚みT2、及び、保護シートの厚みT3を「T3-(T1+T2)×0.2」の式に代入して得られる値が15μm以上である場合(即ち、上記式(c1)を満たす場合)、高温条件下で圧力測定を行ったときの圧力測定用シートの耐変形性がより優れることが確認された。 From the comparison of Examples 1 to 15, the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet are substituted into the formula "T3- (T1 + T2) x 0.2". It was confirmed that when the obtained value is 15 μm or more (that is, when the above formula (c1) is satisfied), the deformation resistance of the pressure measuring sheet when the pressure is measured under high temperature conditions is more excellent.
 実施例1~15の対比から、第1支持体の厚みT1が50μm以上であり、かつ、第2支持体の厚みT2が50μm以上である場合(即ち、上記式(a1)及び(b1)をいずれも満たす場合)、高温条件下で圧力測定を行ったときの圧力測定用シートの耐変形性がより優れることが確認された。 From the comparison of Examples 1 to 15, the case where the thickness T1 of the first support is 50 μm or more and the thickness T2 of the second support is 50 μm or more (that is, the above formulas (a1) and (b1)). When all of them are satisfied), it was confirmed that the deformation resistance of the pressure measuring sheet when the pressure was measured under high temperature conditions was more excellent.
[実施例101~117、参考例101~107]
<作製例101>
(積層体の作製)
 第1支持体として、厚みT1が75μmであり、両面が易接着処理されたポリエチレンテレフタレートシート(東洋紡株式会社製、コスモシャインA4300)を準備した。
 第1支持体の表面に、作製例1で調製された第2層形成用組成物を、固形分塗布量が12.0g/mになるように塗布し、得られた塗膜を乾燥させて第2層を形成した。
 次いで、第2層上に、作製例1で作製された第1層形成用組成物を乾燥後の質量が6.0g/mとなるように塗布し、得られた塗膜を乾燥させて第1層を形成することにより、第1支持体、第2層及び第1層をこの順に有する積層体を作製した。
[Examples 101 to 117, Reference Examples 101 to 107]
<Production Example 101>
(Preparation of laminated body)
As the first support, a polyethylene terephthalate sheet (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) having a thickness T1 of 75 μm and having both sides easily bonded was prepared.
The composition for forming the second layer prepared in Production Example 1 is applied to the surface of the first support so that the solid content coating amount is 12.0 g / m 2 , and the obtained coating film is dried. The second layer was formed.
Next, the composition for forming the first layer prepared in Preparation Example 1 was applied onto the second layer so that the mass after drying was 6.0 g / m 2 , and the obtained coating film was dried. By forming the first layer, a laminated body having the first support, the second layer, and the first layer in this order was produced.
〔実施例101〕
 保護シートとして、厚みT4が75μmであるポリエチレンナフタレートシート(帝人フィルムソリューション株式会社製、テオネックス(登録商標)Q51)を使用し、作製例101で作製された積層体と、上記保護シートとからなる、第1実施形態に係る圧力測定用シートセットを準備した。
[Example 101]
As the protective sheet, a polyethylene naphthalate sheet having a thickness T4 of 75 μm (Teijin Film Solution Co., Ltd., Theonex (registered trademark) Q51) is used, and the laminate is composed of the laminate produced in Production Example 101 and the protective sheet. , A sheet set for pressure measurement according to the first embodiment was prepared.
〔実施例102~117及び参考例101~107〕
 表2に示した各層の構成を変更した以外は、実施例101と同様にして圧力測定用シートセットを準備した。実施例117では保護シートとして紙製シート(コクヨ株式会社製、プリンタ用紙スーパーファイングレード・厚みしっかりタイプ)を使用した。
[Examples 102 to 117 and Reference Examples 101 to 107]
A pressure measurement sheet set was prepared in the same manner as in Example 101 except that the configuration of each layer shown in Table 2 was changed. In Example 117, a paper sheet (manufactured by KOKUYO Co., Ltd., printer paper super fine grade, thick type) was used as the protective sheet.
〔評価〕
 実施例1~15及び参考例1~8の圧力測定用シートセットに対して行った上記の評価方法及び評価基準に従って、実施例101~117及び参考例101~107の圧力測定用シートセットに対しても、高温条件下で圧力測定を行ったときの圧力測定用シートの耐変形性、防汚性、及び、圧力分布の解像度を評価した。
〔evaluation〕
For the pressure measurement sheet sets of Examples 101 to 117 and Reference Examples 101 to 107 according to the above evaluation methods and evaluation criteria performed for the pressure measurement sheet sets of Examples 1 to 15 and Reference Examples 1 to 8. However, the deformation resistance, antifouling property, and resolution of the pressure distribution of the pressure measuring sheet when the pressure was measured under high temperature conditions were evaluated.
 表2に、実施例101~117及び参考例101~107の圧力測定用シートセットの構成、及び、評価結果を示す。
 表2中の「材料」欄、「T1(a)」欄、「Tg」欄、及び、「熱抵抗値」欄は、表1と同じである。
 「T4」欄は、保護シートの厚みT4(単位:μm)を示す。
 「(e)」欄は、第1支持体の厚みT1、及び、保護シートの厚みT4を、式(e)(「T4-T1×0.4」)に代入して得られる値を示す。
 「(f)」欄は、第1支持体の厚みT1、及び、保護シートの厚みT4の合計を示す。
 なお、実施例101~117において使用した保護シートの表面の算術平均粗さRaは、0.02~0.03μmであった。
Table 2 shows the configurations of the pressure measurement sheet sets of Examples 101 to 117 and Reference Examples 101 to 107, and the evaluation results.
The "material" column, "T1 (a)" column, "Tg" column, and "thermal resistance value" column in Table 2 are the same as those in Table 1.
The "T4" column indicates the thickness T4 (unit: μm) of the protective sheet.
The “(e)” column shows a value obtained by substituting the thickness T1 of the first support and the thickness T4 of the protective sheet into the equation (e) (“T4-T1 × 0.4”).
The “(f)” column shows the total of the thickness T1 of the first support and the thickness T4 of the protective sheet.
The arithmetic mean roughness Ra of the surface of the protective sheet used in Examples 101 to 117 was 0.02 to 0.03 μm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、本発明に係る圧力測定用シートセットを用いて高温条件下で圧力測定を実施した場合、本発明の課題を解決できることが確認された。
 なお、参考例107で準備した圧力測定用シートセットを用いて圧力分布の解像度を評価した結果、圧力シートセットが溶融してステージに付着してしまったため、評価できなかった。
As shown in Table 2, it was confirmed that the problem of the present invention can be solved when the pressure measurement is carried out under high temperature conditions using the pressure measurement sheet set according to the present invention.
As a result of evaluating the resolution of the pressure distribution using the pressure measurement sheet set prepared in Reference Example 107, the pressure sheet set melted and adhered to the stage, so that the evaluation could not be performed.
 実施例101~117の対比から、第1支持体の厚みT1、及び、保護シートの厚みT4の合計(T1+T4)が、250μm以下である場合、高温条件下で圧力測定を行ったときの圧力測定用シートの圧力分布の解像度がより優れることが確認された。
 実施例101~117の対比から、第1支持体の厚みT1、及び、保護シートの厚みT4の合計(T1+T4)が、100μm以上である場合、高温条件下で圧力測定を行ったときの圧力測定用シートの耐変形性がより優れることが確認された。
From the comparison of Examples 101 to 117, when the total (T1 + T4) of the thickness T1 of the first support and the thickness T4 of the protective sheet is 250 μm or less, the pressure measurement is performed under high temperature conditions. It was confirmed that the resolution of the pressure distribution of the sheet was better.
From the comparison of Examples 101 to 117, when the total (T1 + T4) of the thickness T1 of the first support and the thickness T4 of the protective sheet is 100 μm or more, the pressure measurement is performed under high temperature conditions. It was confirmed that the deformation resistance of the sheet was better.
 実施例101、105、106及び117の対比から、保護シートが、ガラス転移温度が150℃以上であるか、若しくは、ガラス転移温度を示さない樹脂フィルム、又は、紙である場合、高温条件下で圧力測定を行ったときの圧力測定用シートの防汚性がより優れることが確認された。 From the comparison of Examples 101, 105, 106 and 117, when the protective sheet is a resin film or paper having a glass transition temperature of 150 ° C. or higher or showing no glass transition temperature, under high temperature conditions. It was confirmed that the antifouling property of the pressure measuring sheet when the pressure was measured was better.
 実施例101~117の対比から、第1支持体の厚みT1、及び、保護シートの厚みT4を「T4-T1×0.4」の式に代入して得られる値が10μm以上である場合(即ち、上記式(e1)を満たす場合)、高温条件下で圧力測定を行ったときの圧力測定用シートの耐変形性がより優れることが確認された。 From the comparison of Examples 101 to 117, when the value obtained by substituting the thickness T1 of the first support and the thickness T4 of the protective sheet into the formula of "T4-T1 × 0.4" is 10 μm or more ( That is, it was confirmed that the deformation resistance of the pressure measuring sheet when the pressure was measured under high temperature conditions was more excellent (when the above formula (e1) was satisfied).
 実施例101~117の対比から、第1支持体の厚みT1が50μm以上である場合(即ち、上記式(a1)を満たす場合)、高温条件下で圧力測定を行ったときの圧力測定用シートの耐変形性がより優れることが確認された。 From the comparison of Examples 101 to 117, when the thickness T1 of the first support is 50 μm or more (that is, when the above formula (a1) is satisfied), the pressure measurement sheet when the pressure is measured under high temperature conditions. It was confirmed that the deformation resistance of the was superior.
 10,30  シートセット(圧力測定用シートセット)
 12,32  第1支持体
 13  マイクロカプセル
 14  第1層
 16  第1シート
 18  第2支持体
 20  第2層
 22  第2シート
 34  積層体
 40  保護シート
 100  圧力測定用シート
10,30 seat set (seat set for pressure measurement)
12, 32 1st support 13 Microcapsules 14 1st layer 16 1st sheet 18 2nd support 20 2nd layer 22 2nd sheet 34 Laminated body 40 Protective sheet 100 Pressure measurement sheet

Claims (18)

  1.  第1支持体、及び、前記第1支持体上に配置された、発色剤を内包するマイクロカプセルを含む第1層を有する第1シートと、
     第2支持体、及び、前記第2支持体上に配置された、顕色剤を含む第2層を有する第2シートと、
     保護シートと、
     を備える圧力測定用シートセットであって、
     前記保護シートが、樹脂フィルム又は紙であり、
     前記樹脂フィルムは、ガラス転移温度が100℃以上であるか、又は、ガラス転移温度を示さず、
     前記第1支持体の厚みT1、前記第2支持体の厚みT2、及び、前記保護シートの厚みT3が、下記式(a)~(d)をすべて満たす、圧力測定用シートセット。
     (a) 15μm≦T1≦200μm
     (b) 15μm≦T2≦200μm
     (c) T3-(T1+T2)×0.2≧0μm
     (d) 80μm≦T1+T2+T3≦300μm
    A first support and a first sheet having a first layer containing microcapsules containing a color-developing agent arranged on the first support.
    A second support and a second sheet having a second layer containing a color developer, which is arranged on the second support.
    With a protective sheet
    It is a sheet set for pressure measurement equipped with
    The protective sheet is a resin film or paper.
    The resin film has a glass transition temperature of 100 ° C. or higher, or does not show a glass transition temperature.
    A pressure measuring sheet set in which the thickness T1 of the first support, the thickness T2 of the second support, and the thickness T3 of the protective sheet satisfy all of the following formulas (a) to (d).
    (A) 15 μm ≤ T1 ≤ 200 μm
    (B) 15 μm ≤ T2 ≤ 200 μm
    (C) T3- (T1 + T2) × 0.2 ≧ 0 μm
    (D) 80 μm ≤ T1 + T2 + T3 ≤ 300 μm
  2.  前記保護シートが、ポリエチレンナフタレートフィルム、ポリイミドフィルム又は紙である、請求項1に記載の圧力測定用シートセット。 The pressure measurement sheet set according to claim 1, wherein the protective sheet is a polyethylene naphthalate film, a polyimide film, or paper.
  3.  前記T1、前記T2、及び、前記T3が、下記式(d1)を満たす、請求項1又は2に記載の圧力測定用シートセット。
     (d1) 100μm≦T1+T2+T3≦275μm
    The pressure measurement sheet set according to claim 1 or 2, wherein the T1, the T2, and the T3 satisfy the following formula (d1).
    (D1) 100 μm ≤ T1 + T2 + T3 ≤ 275 μm
  4.  前記T1、前記T2、及び、前記T3が、下記式(c1)を満たす、請求項1~3のいずれか1項に記載の圧力測定用シートセット。
     (c1) T3-(T1+T2)×0.2≧15μm
    The pressure measurement sheet set according to any one of claims 1 to 3, wherein the T1, the T2, and the T3 satisfy the following formula (c1).
    (C1) T3- (T1 + T2) × 0.2 ≧ 15 μm
  5.  前記T1が下記式(a1)を満たし、かつ、前記T2が下記式(b1)を満たす、請求項1~4のいずれか1項に記載の圧力測定用シートセット。
     (a1) 50μm≦T1≦150μm
     (b1) 50μm≦T2≦150μm
    The pressure measurement sheet set according to any one of claims 1 to 4, wherein the T1 satisfies the following formula (a1) and the T2 satisfies the following formula (b1).
    (A1) 50 μm ≤ T1 ≤ 150 μm
    (B1) 50 μm ≤ T2 ≤ 150 μm
  6.  前記樹脂フィルムのガラス転移温度が150℃以上であるか、又は、前記樹脂フィルムがガラス転移温度を示さない、請求項1~5のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 1 to 5, wherein the glass transition temperature of the resin film is 150 ° C. or higher, or the resin film does not show the glass transition temperature.
  7.  前記保護シートの表面の算術平均粗さRaが、0.1μm以下である、請求項1~6のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 1 to 6, wherein the arithmetic mean roughness Ra of the surface of the protective sheet is 0.1 μm or less.
  8.  前記第1層の前記第1支持体とは反対側の表面の算術平均粗さRaが、4.1μm以上である、請求項1~7のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 1 to 7, wherein the arithmetic mean roughness Ra of the surface of the first layer opposite to the first support is 4.1 μm or more.
  9.  請求項1~8のいずれか1項に記載の圧力測定用シートセットを用いて圧力を測定する圧力測定方法であって、
     前記第1シート、前記第2シート、及び、前記保護シートを、前記第1層と前記第2層とが対向するように積層して、圧力測定用シートを作製する工程A1と、
     前記圧力測定用シートの両面側に配置された2つの部材により、前記圧力測定用シートを加圧する工程Bと、を有し、
     前記工程Bにおいて、前記2つの部材の少なくとも一方が熱源により加熱されており、
     前記保護シートは、少なくとも前記圧力測定用シートの前記加熱された部材と接する表面側に配置されている、方法。
    A pressure measuring method for measuring pressure using the pressure measuring sheet set according to any one of claims 1 to 8.
    A step A1 for producing a pressure measurement sheet by laminating the first sheet, the second sheet, and the protective sheet so that the first layer and the second layer face each other.
    It has a step B of pressurizing the pressure measuring sheet by two members arranged on both sides of the pressure measuring sheet.
    In the step B, at least one of the two members is heated by the heat source.
    The method, wherein the protective sheet is arranged at least on the surface side of the pressure measuring sheet in contact with the heated member.
  10.  第1支持体と、顕色剤を含む第2層と、発色剤を内包するマイクロカプセルを含む第1層と、を有する積層体と、
     保護シートと、
     を備える圧力測定用シートセットであって、
     前記保護シートが、樹脂フィルム又は紙であり、
     前記樹脂フィルムは、ガラス転移温度が100℃以上であるか、又は、ガラス転移温度を示さず、
     前記第1支持体の厚みT1、及び、前記保護シートの厚みT4が、下記式(a)、(e)及び(f)をすべて満たす、圧力測定用シートセット。
     (a) 15μm≦T1≦200μm
     (e) T4-T1×0.4≧0μm
     (f) 60μm≦T1+T4≦300μm
    A laminate having a first support, a second layer containing a color developer, and a first layer containing microcapsules containing a color former.
    With a protective sheet
    It is a sheet set for pressure measurement equipped with
    The protective sheet is a resin film or paper.
    The resin film has a glass transition temperature of 100 ° C. or higher, or does not show a glass transition temperature.
    A pressure measuring sheet set in which the thickness T1 of the first support and the thickness T4 of the protective sheet satisfy all of the following formulas (a), (e) and (f).
    (A) 15 μm ≤ T1 ≤ 200 μm
    (E) T4-T1 × 0.4 ≧ 0 μm
    (F) 60 μm ≤ T1 + T4 ≤ 300 μm
  11.  前記保護シートが、ポリエチレンナフタレートフィルム、ポリイミドフィルム又は紙である、請求項10に記載の圧力測定用シートセット。 The pressure measurement sheet set according to claim 10, wherein the protective sheet is a polyethylene naphthalate film, a polyimide film, or paper.
  12.  前記T1、及び、前記T4が、下記式(f1)を満たす、請求項10又は11に記載の圧力測定用シートセット。
     (f1) 100μm≦T1+T4≦250μm
    The pressure measurement sheet set according to claim 10 or 11, wherein the T1 and the T4 satisfy the following formula (f1).
    (F1) 100 μm ≤ T1 + T4 ≤ 250 μm
  13.  前記T1、及び、前記T4が、下記式(e1)を満たす、請求項10~12のいずれか1項に記載の圧力測定用シートセット。
     (e1) T4-T1×0.4≧10
    The pressure measurement sheet set according to any one of claims 10 to 12, wherein the T1 and the T4 satisfy the following formula (e1).
    (E1) T4-T1 × 0.4 ≧ 10
  14.  前記T1が下記式(a1)を満たす、請求項10~13のいずれか1項に記載の圧力測定用シートセット。
     (a1) 50μm≦T1≦150μm
    The pressure measurement sheet set according to any one of claims 10 to 13, wherein the T1 satisfies the following formula (a1).
    (A1) 50 μm ≤ T1 ≤ 150 μm
  15.  前記樹脂フィルムのガラス転移温度が150℃以上であるか、又は、前記樹脂フィルムがガラス転移温度を示さない、請求項10~14のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 10 to 14, wherein the resin film has a glass transition temperature of 150 ° C. or higher, or the resin film does not show a glass transition temperature.
  16.  前記保護シートの表面の算術平均粗さRaが、0.1μm以下である、請求項10~15のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 10 to 15, wherein the arithmetic mean roughness Ra of the surface of the protective sheet is 0.1 μm or less.
  17.  前記第1層の前記第2層とは反対側の表面の算術平均粗さRaが、4.1μm以上である、請求項10~16のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 10 to 16, wherein the arithmetic mean roughness Ra of the surface of the first layer opposite to the second layer is 4.1 μm or more.
  18.  請求項10~17のいずれか1項に記載の圧力測定用シートセットを用いて圧力を測定する圧力測定方法であって、
     前記積層体と前記保護シートとを積層して、圧力測定用シートを作製する工程A2と、
     前記圧力測定用シートの両面側に配置された2つの部材により、前記圧力測定用シートを加圧する工程Bと、を有し、
     前記工程Bにおいて、前記2つの部材の少なくとも一方が熱源により加熱されており、
     前記保護シートは、少なくとも前記圧力測定用シートの前記加熱された部材と接する表面側に配置されている、方法。
    A pressure measuring method for measuring pressure using the pressure measuring sheet set according to any one of claims 10 to 17.
    Step A2 for producing a pressure measurement sheet by laminating the laminate and the protective sheet,
    It has a step B of pressurizing the pressure measuring sheet by two members arranged on both sides of the pressure measuring sheet.
    In the step B, at least one of the two members is heated by the heat source.
    The method, wherein the protective sheet is arranged at least on the surface side of the pressure measuring sheet in contact with the heated member.
PCT/JP2021/042071 2020-12-24 2021-11-16 Sheet set for pressure measurement and pressure measurement method WO2022137893A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180086925.0A CN116670479A (en) 2020-12-24 2021-11-16 Sheet set for pressure measurement and pressure measurement method
KR1020237020764A KR20230106693A (en) 2020-12-24 2021-11-16 Sheet set for pressure measurement, pressure measurement method
JP2022571961A JPWO2022137893A1 (en) 2020-12-24 2021-11-16

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-214872 2020-12-24
JP2020214872 2020-12-24
JP2021113545 2021-07-08
JP2021-113545 2021-07-08

Publications (1)

Publication Number Publication Date
WO2022137893A1 true WO2022137893A1 (en) 2022-06-30

Family

ID=82159030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042071 WO2022137893A1 (en) 2020-12-24 2021-11-16 Sheet set for pressure measurement and pressure measurement method

Country Status (4)

Country Link
JP (1) JPWO2022137893A1 (en)
KR (1) KR20230106693A (en)
TW (1) TW202244471A (en)
WO (1) WO2022137893A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140351A (en) * 1991-11-18 1993-06-08 Toray Ind Inc Pressure-sensitive film
US20170241849A1 (en) * 2016-02-23 2017-08-24 International Business Machines Corporation Pressure indicator films for high temperature applications
JP2017181155A (en) * 2016-03-29 2017-10-05 富士フイルム株式会社 Stress display member and stress measurement method
JP2019532289A (en) * 2016-09-23 2019-11-07 クロマティック テクノロジーズ インコーポレイテッドChromatic Technologies, Inc. High pressure processing pressure sensor
JP2020148687A (en) * 2019-03-14 2020-09-17 Nissha株式会社 Capacitance detector and capacitance detector group

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004024809A1 (en) 2002-09-13 2006-01-05 旭化成ケミカルズ株式会社 Microporous membrane and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140351A (en) * 1991-11-18 1993-06-08 Toray Ind Inc Pressure-sensitive film
US20170241849A1 (en) * 2016-02-23 2017-08-24 International Business Machines Corporation Pressure indicator films for high temperature applications
JP2017181155A (en) * 2016-03-29 2017-10-05 富士フイルム株式会社 Stress display member and stress measurement method
JP2019532289A (en) * 2016-09-23 2019-11-07 クロマティック テクノロジーズ インコーポレイテッドChromatic Technologies, Inc. High pressure processing pressure sensor
JP2020148687A (en) * 2019-03-14 2020-09-17 Nissha株式会社 Capacitance detector and capacitance detector group

Also Published As

Publication number Publication date
TW202244471A (en) 2022-11-16
KR20230106693A (en) 2023-07-13
JPWO2022137893A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
EP2169372B1 (en) Material for pressure measurement
US8314050B2 (en) Material for pressure measurement
WO2022137893A1 (en) Sheet set for pressure measurement and pressure measurement method
JP7212159B2 (en) Sheet set for pressure measurement, sheet for pressure measurement, dispersion liquid
WO2022137951A1 (en) Sheet set for pressure measurement, sheet for pressure measurement, microcapsules, dispersion, method for producing sheet set for pressure measurement, method for producing sheet for pressure measurement
WO2022044653A1 (en) Pressure measurement sheet set
JP5258236B2 (en) Material for pressure measurement
WO2020262532A1 (en) Sheet set for pressure measurement and sheet for pressure measurement
WO2022138532A1 (en) Sheet set for pressure measurement and method for producing sheet set for pressure measurement
JP7124219B2 (en) Sheet set for pressure measurement, sheet for pressure measurement
WO2022044656A1 (en) Sheet set for pressure measurement
CN116670479A (en) Sheet set for pressure measurement and pressure measurement method
JP7163514B2 (en) Sheet set for pressure measurement and manufacturing method thereof, sheet for pressure measurement and manufacturing method thereof, dispersion liquid, and microcapsules
WO2021200612A1 (en) Pressure measurement sheet set, method for manufacturing same, pressure measurement sheet, and sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571961

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237020764

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086925.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910046

Country of ref document: EP

Kind code of ref document: A1