WO2022138532A1 - Sheet set for pressure measurement and method for producing sheet set for pressure measurement - Google Patents

Sheet set for pressure measurement and method for producing sheet set for pressure measurement Download PDF

Info

Publication number
WO2022138532A1
WO2022138532A1 PCT/JP2021/046935 JP2021046935W WO2022138532A1 WO 2022138532 A1 WO2022138532 A1 WO 2022138532A1 JP 2021046935 W JP2021046935 W JP 2021046935W WO 2022138532 A1 WO2022138532 A1 WO 2022138532A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
layer
resin
group
pressure measurement
Prior art date
Application number
PCT/JP2021/046935
Other languages
French (fr)
Japanese (ja)
Inventor
政宏 八田
宏和 鬼頭
匡 山内
悠樹 豊嶋
泰雄 江夏
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020237016599A priority Critical patent/KR20230087596A/en
Priority to CN202180078602.7A priority patent/CN116547509A/en
Priority to JP2022571427A priority patent/JPWO2022138532A1/ja
Publication of WO2022138532A1 publication Critical patent/WO2022138532A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/247Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using distributed sensing elements, e.g. microcapsules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0097Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0038Force sensors associated with force applying means applying a pushing force

Definitions

  • the present invention relates to a pressure measuring sheet set and a method for manufacturing a pressure measuring sheet set.
  • a pressure measuring sheet set is generally used from the viewpoint of convenience.
  • a pressure measurement sheet set using a microcapsule containing a color-developing agent is disclosed.
  • the pressure measurement sheet set usually includes a color-developing sheet having a color-developing agent layer and a coloring sheet. It is composed of a color-developing sheet having an agent layer.
  • the pressure measuring sheet set may be used in processes such as heat pressing, heat pressing, and bonding.
  • a pressure measurement sheet set at a high temperature for example, 180 ° C. or higher.
  • the present inventors have recently examined the pressure measurement sheet sets described in Patent Documents 1 and 2. It has been clarified that the laminated body in which the color sheet (second sheet) is overlapped may be deformed by heat.
  • the color-developing sheet and the color-developing sheet are excessively adhered to each other during pressurization, and when both are peeled off, they are peeled off at the interface between the color-developing layer (first layer) and the color-developing layer (second layer).
  • a first sheet having a first support, an adhesion layer, and a first layer containing microcapsules and a binder containing a color-developing agent in this order.
  • a pressure measuring sheet set comprising a second support and a second sheet comprising a second layer containing a color developer.
  • the first support and the second support are polyethylene naphthalate sheets or aromatic polyimide sheets.
  • the adhesion layer comprises resin X1 having at least one group selected from the group consisting of aromatic groups, ester bonds, and imide bonds.
  • the capsule wall of the microcapsules contains resin Y1 having an aromatic group and contains.
  • the binder in the first layer has an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum, or is crosslinked.
  • [3] The sheet set for pressure measurement according to [1] or [2], wherein the binder in the first layer contains a resin, and the resin has one or more hydroxyl groups and amide bonds.
  • the resin X1 contains an acrylic resin and contains The pressure measurement sheet set according to any one of [1] to [4], wherein the adhesion layer has a thickness of 2 to 10 ⁇ m.
  • the resin X1 has an aromatic group and has an aromatic group.
  • the adhesion layer further has a resin X2 having an amide bond and one or more hydroxyl groups.
  • A) The shrinkage ratio S1 in the longitudinal direction of the first sheet when heated at 220 ° C. for 10 minutes is 1.0 to 3.0%, and the first support is polyethylene naphthalate. It is a sheet containing 70% by mass or more with respect to the total mass of the sheet.
  • B) The first support and the second support are sheets having a thickness of 70 ⁇ m or more and containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet.
  • C) The first support and the second support are aromatic polyimide sheets.
  • the resin Y1 contains at least one resin selected from the group consisting of polyurethane urea having an aromatic group, polyurea having an aromatic group, and a melamine resin.
  • Structure A A structure formed by reacting an aromatic or alicyclic diisocyanate with a compound having three or more active hydrogen groups in one molecule and polymethylenepolyphenylpolyisocyanate.
  • Structure B A structure formed by reacting melamine and formaldehyde.
  • Composition A A composition containing the microcapsules and a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group.
  • Composition B A composition containing the above microcapsules and components for forming a crosslinked binder.
  • the numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. good.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the various components described below may be used alone or in combination of two or more.
  • the polyisocyanate described later may be used alone or in combination of two or more.
  • the description of the constituent elements described below may be based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • “(meth) acrylate” means acrylate and methacrylate
  • “(meth) acrylic acid” means acrylic acid and methacrylic acid
  • (meth) acrylamide means acrylamide. And methacrylamide.
  • substituent T examples include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, a heterocyclic group, and a cyano group.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • acyloxy group carbamoyloxy group, amino group (including alkylamino group and anilino group), acylamino group, aminocarbonylamino Group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl or arylsulfinyl Group, alkyl or arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl or heterocyclic azo group, imide group, phosphin
  • the pressure measurement sheet set of the present invention is A first sheet having a first support, an adhesion layer, and a first layer containing microcapsules and a binder containing a color-developing agent in this order.
  • a pressure measuring sheet set comprising a second support and a second sheet comprising a second layer containing a color developer.
  • the first support and the second support are polyethylene naphthalate sheets or aromatic polyimide sheets.
  • the adhesion layer comprises resin X1 having at least one group selected from the group consisting of aromatic groups, ester bonds, and imide bonds.
  • the capsule wall of the microcapsules contains resin Y1 having an aromatic group and contains.
  • the binder in the first layer has an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum, or is crosslinked.
  • the thickness of the first layer is 0.2 ⁇ m or more.
  • the pressure measuring sheet set of the present invention is less likely to be deformed by heat of the laminated body in which the first sheet and the second sheet are overlapped, even when used at a high temperature (for example, 180 ° C. or higher). Further, when the first sheet and the second sheet are peeled off after pressurization, the first sheet and the second sheet are peeled off at the interface between the first layer and the second layer, and the coating film is less likely to be torn (in other words, the first sheet and the first sheet after pressurization). When the two sheets are peeled off, they are peeled off at the interface between the first layer and the second layer, and a part or all of the second layer adheres to the first layer, and / or the first layer is attached to the second layer. It is unlikely that a failure will occur in which part or all of it adheres).
  • the main features of the pressure measurement sheet set of the present invention and the presumed mechanism of action are as follows.
  • the first feature of the pressure measuring sheet set of the present invention is that, as the supports of the first sheet and the second sheet, a polyethylene naphthalate sheet or an aromatic polyimide sheet, which is a resin sheet having relatively high heat resistance, is used.
  • the point of use, as the binder contained in the first layer of the first sheet, a binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum or a crosslinked binder is used, and The point that the capsule wall of the microcapsule contained in the first layer of the first sheet contains a resin having an aromatic group is mentioned.
  • the binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum is a binder having one or more hydrogen-bonding OH groups and hydrogen-bonding NH groups, as will be described later. That is, a binder having a functional group containing one or more of an OH group and an NH group and forming a network by hydrogen bonding of the OH group and / or the NH group in the functional group) is intended. ..
  • the pressure measuring sheet set of the present invention is provided with the configuration of the first feature point, so that the first sheet and the second sheet can be used even when used at a high temperature (for example, 180 ° C. or higher). Deformation due to heat of the stacked laminates can be suppressed.
  • the capsule wall of the microcapsules and the binder in the first layer are made of a material that does not easily melt at a high temperature (for example, 180 ° C. or higher), the first sheet and the second sheet during pressurization. Excessive sticking to the sheet can be suppressed (in particular, when the first sheet and the second sheet are peeled off after pressurization, a failure in which a part or all of the second layer adheres to the first sheet can be suppressed. ).
  • the first sheet has an adhesion layer between the first support and the color-developing layer, and this adhesion layer has a predetermined functional group.
  • the point that the resin (resin X1) is contained is mentioned.
  • the pressure measuring sheet set of the present invention is provided with the configuration of the second feature point, thereby ensuring the adhesiveness between the first support and the first layer in the first sheet. That is, when the pressure measurement sheet set of the present invention is used at a high temperature (for example, 180 ° C. or higher) due to the synergistic action mechanism based on the first feature point and the second feature point described above.
  • the pressure measuring sheet set of the present invention when used at a high temperature (for example, 180 ° C. or higher), the deformation of the laminated body in which the first sheet and the second sheet are overlapped is further suppressed. And / or when the pressure measurement sheet set of the present invention is used at a high temperature (for example, 180 ° C. or higher) and the first sheet and the second sheet are peeled off after pressurization, the first layer and / or the sheet set for pressure measurement are used.
  • the effect of the present invention is more excellent.
  • FIG. 1 is a cross-sectional view of an embodiment of a pressure measuring sheet set.
  • the pressure measuring sheet set 10 has a first sheet 16 and a second sheet 22.
  • the first sheet 16 has a first support 12, an adhesion layer 13 arranged on the first support 12, and a first layer 14 containing microcapsules 14A and a binder 14B.
  • the second sheet 22 has a second support 18 and a second layer 20 containing a color developer arranged on the second support 18.
  • the first layer 14 in the first sheet 16 and the second layer 20 in the second sheet 22 face each other.
  • the sheet 16 and the second sheet 22 are laminated and used.
  • the microcapsules are broken in the pressurized region. Then, the color-developing agent contained in the microcapsules comes out of the microcapsules, and the color-developing reaction proceeds with the color-developing agent in the second layer 20. As a result, color development progresses in the pressurized region.
  • the second support 18 and the second layer 20 are directly laminated, but the present invention is not limited to this aspect, and as will be described later, between the second support 18 and the second layer 20. May have another layer (eg, an adhesive layer or an easy-adhesive layer) arranged.
  • another layer eg, an adhesive layer or an easy-adhesive layer
  • the first sheet 16 shown in FIG. 1 has a first support 12, an adhesion layer 13, and a first layer 14 containing microcapsules 14A and a binder 14B containing a color former.
  • the first sheet 16 may be a single leaf (single sheet) or a long sheet.
  • both the shrinkage rate S1 in the longitudinal direction of the first sheet 16 and the shrinkage rate S2 in the width direction orthogonal to the longitudinal direction of the first sheet 16 are ⁇ . It is preferably 0.5 to 3.0%, and more preferably 1.0 to 3.0% in that the effect of the present invention is more excellent.
  • the longitudinal direction of the first sheet 16 means the long direction of the first sheet 16, and specifically, when the first sheet 16 is rectangular, it means the direction along the long side.
  • the width direction of the first sheet 16 means a direction orthogonal to the longitudinal direction of the first sheet 16 (short direction), and for example, when the first sheet 16 is rectangular, it is along the short side. Means the direction.
  • the direction along one side arbitrarily selected is the longitudinal direction, and the direction along the side orthogonal to this is the width direction.
  • the method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the first sheet 16 is as shown in the Example column.
  • ) of the difference between the shrinkage rate S1 and the shrinkage rate S2 is preferably 0 to 0.8% in that more precise pressure distribution measurement can be performed. ⁇ 0.6% is more preferable, and 0 to 0.4% is even more preferable.
  • the first support is a member for supporting the first layer.
  • the first support is a polyethylene naphthalate (PEN) sheet or an aromatic polyimide (PI) sheet.
  • PEN polyethylene naphthalate
  • PI aromatic polyimide
  • a polyethylene naphthalate sheet is preferable because it is easy to see when developing a color.
  • the polyethylene naphthalate (PEN) sheet is intended to be a sheet containing polyethylene naphthalate at a ratio of 50% by mass or more with respect to the total mass of the sheet.
  • the content of polyethylene naphthalate is preferably 70% by mass or more, more preferably 90% by mass or more, and more preferably 98% by mass, based on the total mass of the sheet, in that deformation can be further suppressed. % Or more is more preferable.
  • the upper limit is not particularly limited, but is, for example, 100% by mass or less.
  • polyethylene naphthalate may be a homopolymer or a part of a copolymer (in other words, it may be contained as a constituent unit of the copolymer).
  • polyethylene naphthalate is a part of the copolymer
  • the content of polyethylene naphthalate (for example, a constituent unit obtained by polycondensing naphthalenedicarboxylic acid or a derivative thereof and ethylene glycol) in the copolymer is the total. It is preferably 50% by mass or more, and preferably 70% by mass or more with respect to the constituent unit. The upper limit is 100% by mass or less.
  • copolymer containing polyethylene naphthalate as a part examples include polyethylene naphthalate / polyethylene terephthalate copolymer (PEN / PET copolymer).
  • the copolymer containing polyethylene naphthalate as a part may be a random copolymer or a block copolymer, but a random polymer is preferable.
  • Examples of commercially available polyethylene naphthalate films include Theonex (registered trademark) Q51, Q53, Q81, and Q83 (manufactured by Teijin Film Solutions Co., Ltd.).
  • the aromatic polyimide (PI) sheet is intended to be a sheet containing aromatic polyimide in a proportion of 50% by mass or more with respect to the total mass of the sheet.
  • the content of the aromatic polyimide is preferably 70% by mass or more, more preferably 90% by mass or more, and more preferably 98% by mass, based on the total mass of the sheet, in that deformation can be further suppressed. % Or more is more preferable.
  • the upper limit is not particularly limited, but is, for example, 100% by mass or less.
  • the aromatic polyimide may be a homopolymer or a part of a copolymer (in other words, it may be contained as a constituent unit of the copolymer).
  • the content of the aromatic polyimide in the copolymer is preferably 50% by mass or more, preferably 70% by mass or more with respect to all the constituent units. Is preferable.
  • the upper limit is 100% by mass or less.
  • commercially available polyimide films include Kapton (registered trademark) H, V, EN (manufactured by Toray Industries, Inc.), Apical AH, NPI, AF (manufactured by Kaneka Corporation), and the like.
  • the lower limit of the thickness of the first support is preferably 10 ⁇ m or more, more preferably 40 ⁇ m or more, and further preferably 70 ⁇ m or more in that deformation can be further suppressed.
  • the upper limit is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, further preferably 150 ⁇ m or less, and particularly preferably 125 ⁇ m or less.
  • 40 to 120 ⁇ m can be mentioned.
  • both the shrinkage rate S1 in the longitudinal direction and the shrinkage rate S2 in the width direction orthogonal to the longitudinal direction of the first support are ⁇ 0.5 to 3 It is preferably 0.0%, and more preferably 1.0 to 3.0% in that the effect of the present invention is more excellent.
  • the preferred range of the absolute value of the difference between the shrinkage rate S1 and the shrinkage rate S2 in the first support is the same as the absolute value of the difference between the shrinkage rate S1 and the shrinkage rate S2 in the first sheet 16.
  • the method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the first support is the same as the method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the first sheet 16 except that the first support is used instead of the first sheet 16. Is.
  • the definitions of the longitudinal direction and the width direction in the first support are the same as the definitions of the longitudinal direction and the width direction of the first sheet 16 except that the first sheet 16 is read as the first support.
  • the adhesion layer is a layer that improves the adhesion between the first support and the first layer.
  • the adhesion layer is also referred to as at least one group selected from the group consisting of an aromatic group, an ester bond (-CO-O-), and an imide bond (-CO-N-CO-) (hereinafter, also referred to as "specific functional group”).
  • resin X1 having (referred to as "resin X1").
  • the specific functional group may be contained in the main chain or the side chain.
  • the aromatic group may be either an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon ring contained in the aromatic hydrocarbon ring group may have a monocyclic structure or a condensed ring structure (fused ring structure) in which two or more rings are fused.
  • the aromatic hydrocarbon ring may have a substituent (for example, examples of the substituent include the group exemplified for the above-mentioned substituent T).
  • the number of carbon atoms of the aromatic hydrocarbon ring is not particularly limited, but is preferably 6 to 30, more preferably 6 to 18, still more preferably 6, and particularly preferably a benzene ring.
  • hetero atom atom other than carbon atom and hydrogen atom
  • a sulfur atom, an oxygen atom, or a nitrogen atom is preferable, and a nitrogen atom is more preferable.
  • the number of carbon atoms in the aromatic heterocycle is not particularly limited, but is preferably 3 to 30, and more preferably 3 to 18.
  • the number of heteroatoms in the aromatic heterocycle is not particularly limited, and is usually about 1 to 10, preferably 1 to 4, and more preferably 1 to 2.
  • the number of ring members of the aromatic heterocycle is not particularly limited, but is preferably 3 to 8, more preferably 5 to 7, and even more preferably 5 to 6.
  • the aromatic heterocycle contained in the aromatic heterocyclic group may have a monocyclic structure or a condensed ring structure (condensed ring structure) in which two or more rings are fused.
  • a condensed ring structure an aromatic hydrocarbon ring (for example, a benzene ring) having no heteroatom may be contained.
  • the aromatic heterocycle may have a substituent (for example, examples of the substituent include the group exemplified for the above-mentioned substituent T).
  • Examples of the resin X1 having a specific functional group include a styrene-based resin, an acrylic-based resin, a polyester-based resin, a polyimide-based resin, and the like, and the styrene-based resin is particularly effective in that the effect of the present invention is more excellent. Resin or acrylic resin is preferable.
  • the styrene-based resin is intended to be a resin containing a repeating unit derived from styrene.
  • the repeating unit derived from the above styrene may have a substituent (for example, examples of the substituent include the group exemplified for the above-mentioned substituent T).
  • the content of the repeating unit derived from styrene is preferably 20 to 100% by mass with respect to all the repeating units.
  • the styrene resin it is also preferable that it is a copolymer (styrene copolymer) of a repeating unit derived from styrene and other repeating units.
  • the content of the repeating unit derived from styrene is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass, based on all the repeating units. % Or more is more preferable.
  • the upper limit value is preferably less than 100% by mass, more preferably 90% by mass or less, further preferably 80% by mass or less, and particularly preferably 70% by mass or less.
  • styrene copolymer examples include a styrene-butadiene copolymer; a repeating unit derived from styrene, a repeating unit derived from (meth) acrylate, and a repeating unit derived from (meth) acrylic acid.
  • Resin containing examples thereof include a resin containing a repeating unit derived from styrene and a repeating unit derived from (meth) acrylate.
  • the acrylic resin a resin containing a repeating unit derived from (meth) acrylate and / or a repeating unit derived from (meth) acrylic acid is intended.
  • the content of one or more selected from the repeating unit derived from (meth) acrylate and the repeating unit derived from (meth) acrylic acid is 50% by mass or more with respect to all the repeating units. It is preferably 65% by mass or more, more preferably 75% by mass or more, and particularly preferably 85% by mass or more. The upper limit is 100% by mass or less.
  • the carbon number of the alkyl moiety in the poly (meth) acrylate is not particularly limited, but is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 3.
  • the repeating unit derived from the (meth) acrylate and the repeating unit derived from the (meth) acrylic acid are substituents (examples of the substituent include the group exemplified by the above-mentioned substituent T). May have.
  • resin X1 having a specific functional group examples include polystyrene, styrene butadiene rubber (SBR), polyethylene terephthalate (PET), polyethylene glycol (PEG) / caprolactone copolymer, and polypropylene glycol (PPG) / caprolactone co-weight.
  • SBR styrene butadiene rubber
  • PET polyethylene terephthalate
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • the resin X1 has an aromatic group, and further has a resin X2 having an amide bond and one or more hydroxyl groups.
  • the resin X2 include carboxymethyl cellulose, carboxyethyl cellulose, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, methyl hydroxypropyl cellulose, hydroxypropyl methyl cellulose, crystalline cellulose, pectintan gum, guar gum, hydroxyethyl guar gum, carboxymethyl guar gum, and tragant gum.
  • Locust bean gum Locust bean gum, tamarind seed gum, psyllium seed gum, quince seed, carrageenan, galactan, arabic gum, pectin, purulan, mannan, glucomannan, starch, curdran, carrageenan, chondroitin sulfate, dermatane sulfate, glycogen, heparan sulfate, hyalurone Acid, hyaluronic acid, keratane sulfate, chondroitin, mucoitin sulfate, dextran, keratosulfate, succinoglucan, carrageenic acid, alginic acid, propylene glycol alginate, macrogol, chitin, chitosan, carboxymethyl chitin, gelatin, casein, gum arabic, agar , Carrageenan, polyvinyl alcohol and the like.
  • the content of the resin X1 in the close contact layer is preferably 10 to 100% by mass with respect to the total content of the resin contained in the close contact layer.
  • the content of one or more resins selected from the styrene resin and the acrylic resin in the adhesion layer is based on the total mass of the resin contained in the adhesion layer. It is preferably 50 to 100% by mass.
  • the lower limit of the thickness of the adhesion layer is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • 0.01 to 10 ⁇ m is mentioned, and 0.1 to 5 ⁇ m is more preferable.
  • 2 to 10 ⁇ m is mentioned, and 2 to 5 ⁇ m is more preferable.
  • the first layer contains microcapsules containing a color former.
  • the materials constituting the microcapsules will be described in detail.
  • Microcapsules generally have a core portion and a capsule wall for encapsulating a core material (encapsulated material (also referred to as an encapsulating component)) forming the core portion.
  • the microcapsules contain a coloring agent as a core material (encapsulating component). Since the color-developing agent is encapsulated in the microcapsules, the color-developing agent can exist stably until the microcapsules are destroyed by pressure.
  • the microcapsules have a capsule wall that encloses the core material.
  • the capsule wall in the microcapsules contains a resin having an aromatic group (hereinafter, also referred to as “resin Y1”).
  • the aromatic group is synonymous with the "aromatic group” mentioned as the specific functional group of the resin X1 contained in the adhesion layer described above.
  • the capsule wall of the microcapsules is substantially made of resin.
  • Substantially composed of resin means that the content of the resin is 90% by mass or more with respect to the total mass of the capsule wall, and is preferably 100% by mass.
  • the content of the resin Y1 in the resin constituting the microcapsule wall is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more with respect to the total mass of the resin. Is more preferable.
  • the upper limit is 100% by mass or less.
  • a preferred embodiment of the resin Y1 is selected from the group consisting of polyurea having an aromatic group, polyurethane urea having an aromatic group, polyurethane having an aromatic group, and a melamine resin (eg, melamine-formaldehyde resin). It is preferable to contain at least one kind. In that the effect of the present invention is more excellent, it is more preferable to contain at least one selected from the group consisting of polyurethane urea having an aromatic group, polyurethane urea having an aromatic group, and a melamine resin, and poly. It is more preferable to contain a polyurethane urea having a methylenepolyphenylene linking group or a melamine-formaldehyde resin.
  • the polyurethane is a polymer having a plurality of urethane bonds, and is preferably a reaction product formed from a raw material containing a polyol and a polyisocyanate (preferably an aromatic isocyanate).
  • the polyurea is a polymer having a plurality of urea bonds, and is preferably a reaction product formed from a raw material containing a polyamine and a polyisocyanate (preferably an aromatic isocyanate). It is also possible to synthesize polyurea using polyisocyanate without using polyamine by utilizing the fact that a part of polyisocyanate reacts with water to form polyamine.
  • the polyurethane urea is a polymer having a urethane bond and a urea bond, and is preferably a reaction product formed from a raw material containing a polyol, a polyamine, and a polyisocyanate (preferably an aromatic isocyanate).
  • a polyol and the polyisocyanate are reacted, a part of the polyisocyanate reacts with water to form a polyamine, and as a result, polyurethane urea may be obtained.
  • the melamine-formaldehyde resin is preferably a reaction product formed by polycondensation of melamine and formaldehyde.
  • the polyisocyanate is a compound having two or more isocyanate groups, and examples thereof include aromatic polyisocyanates and aliphatic polyisocyanates.
  • Aromatic polyisocyanates can be introduced into the capsule wall of a microcapsule. Isocyanates are preferred.
  • the aromatic polyisocyanate include aromatic diisocyanates, such as m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and the like.
  • aliphatic polyisocyanate examples include aliphatic diisocyanates, such as trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanis, butylene-1,2-diisocyanis, cyclohexylene-1,2-diisocyanis, and cyclohex.
  • aliphatic diisocyanates such as trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanis, butylene-1,2-diisocyanis, cyclohexylene-1,2-diisocyanis, and cyclohex.
  • examples thereof include diisocyanate, lysine diisocyanate, and hydride xylylene diisocyanate.
  • trifunctional or higher functional polyisocyanates may also be used as polyisocyanates.
  • the polyisocyanate is an adduct (addition) of a polyol such as a burette or isocyanurate, which is a trimer of the above bifunctional polyisocyanate, or a polyol such as trimethylolpropane, and a bifunctional polyisocyanate.
  • a trifunctional or higher functional polyisocyanate is preferable.
  • the trifunctional or higher functional polyisocyanate include a trifunctional or higher functional aromatic polyisocyanate and a trifunctional or higher functional aliphatic polyisocyanate.
  • the trifunctional or higher functional polyisocyanate is an adduct of an aromatic or alicyclic diisocyanate and a compound having three or more active hydrogen groups in one molecule (for example, a trifunctional or higher functional polyol, polyamine, polythiol, etc.).
  • a trifunctional or higher polyisocyanate (adduct type trifunctional or higher polyisocyanate) which is a body (additive) and a trimer of an aromatic or alicyclic diisocyanate (biuret type or isocyanurate type) are also preferable.
  • a trifunctional or higher polyisocyanate, which is the adduct body (additive) is more preferable.
  • a trifunctional or higher polyisocyanate which is the adduct body a trifunctional or higher functional polyisocyanate which is an adduct body of an aromatic or alicyclic diisocyanate and a polyol having three or more hydroxylates in one molecule is preferable.
  • the adduct body it is preferable to use an adduct body obtained by using an aromatic diisocyanate because more precise pressure distribution measurement can be performed at a high temperature.
  • a small molecule polyol having trifunctionality or higher, which will be described later, is preferable, and trimethylolpropane is more preferable.
  • Examples of the adduct-type trifunctional or higher-functional polyisocyanate include Takenate (registered trademark) D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, and D-.
  • adduct-type trifunctional or higher polyisocyanate Takenate (registered trademark) D-110N, D-120N, D-140N, D-160N (manufactured by Mitsui Chemicals, Inc.) or DIC Corporation Barnock® D-750 is preferred.
  • isocyanurate-type trifunctional or higher functional isocyanate include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N, and D-204 (manufactured by Mitsui Chemicals, Inc.).
  • Biuret-type trifunctional or higher functional isocyanates include, for example, Takenate (registered trademark) D-165N, NP1100 (manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) N3200 (Sumitomo Bayer Urethane), and Duranate (registered trademark). ) 24A-100 (manufactured by Asahi Kasei Corporation).
  • polymethylene polyphenyl polyisocyanate is also preferable.
  • the polymethylene polyphenyl polyisocyanate is preferably a compound represented by the formula (X).
  • n represents the number of repeating units.
  • the number of repeating units represents an integer of 1 or more, and n is preferably an integer of 1 to 10 and more preferably an integer of 1 to 5 in that more precise pressure distribution measurement can be performed at high temperature.
  • Examples of the polyisocyanate containing polymethylene polyphenyl polyisocyanate include Millionate MR-100, Millionate MR-200, Millionate MR-400 (manufactured by Tosoh Co., Ltd.), WANNAME PM-200, and WANNAME PM-400 (Manhua Japan Co., Ltd.).
  • Cosmonate M-50, Cosmonate M-100, Cosmonate M-200, Cosmonate M-300 (manufactured by Mitsui Chemicals Co., Ltd.), and Boranate M-595 (manufactured by Dow Chemicals Co., Ltd.). Will be.
  • a polyol is a compound having two or more hydroxyl groups, and is, for example, a low molecular weight polyol (eg, an aliphatic polyol, an aromatic polyol), a polyvinyl alcohol, a polyether polyol, a polyester-based polyol, a polylactone-based polyol, or Himashi. Examples thereof include oil-based polyols, polyolefin-based polyols, and hydroxyl group-containing amine-based compounds.
  • the low molecular weight polyol means a polyol having a molecular weight of 400 or less, for example, bifunctional low molecular weight polyols such as ethylene glycol, diethylene glycol, and propylene glycol, as well as glycerin, trimethylolpropane, hexanetriol, and penta. Examples thereof include trifunctional or higher low molecular weight polyols such as erythritol and sorbitol.
  • Examples of the hydroxyl group-containing amine compound include amino alcohols as oxyalkylated derivatives of amino compounds.
  • the amino alcohol include N, N, N', N'-tetrakis [2-hydroxypropyl] ethylenediamine, which are propylene oxides or adducts of ethylene oxide of amino compounds such as ethylenediamine, and N, N, N'. , N'-Tetrakis [2-hydroxyethyl] ethylenediamine and the like.
  • a polyamine is a compound having two or more amino groups (primary amino group or secondary amino group), and is a fat such as diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, and hexamethylenediamine.
  • Group polyvalent amines Epoxy compound adducts of aliphatic polyvalent amines; Alicyclic polyvalent amines such as piperazine; 3,9-bis-aminopropyl-2,4,8,10-tetraoxaspiro- (5, 5) Examples thereof include heterocyclic diamines such as undecane.
  • the resin Y1 is a trifunctional or higher polyisocyanate A (hereinafter, simply “polyisocyanate”) which is an adduct of an aromatic or alicyclic diisocyanate and a compound having three or more active hydrogen groups in one molecule. Also referred to as “A”), and may be formed using polyisocyanate B (hereinafter, also simply referred to as “polyisocyanate B”) selected from the group consisting of aromatic diisocyanates and polymethylene polyphenyl polyisocyanates. preferable. That is, the capsule wall is preferably a capsule wall containing the resin Y1 formed by using the polyisocyanate A and the polyisocyanate B.
  • the temperature dependence of color development is small.
  • the temperature dependence of color development is a characteristic showing the difference in the degree of color development depending on the temperature when pressure is applied to the pressure measurement sheet set.
  • aromatic diisocyanate may be used alone, polymethylene polyphenyl polyisocyanate may be used alone, or both may be used in combination.
  • polyisocyanate B a mixture of aromatic diisocyanate and polymethylene polyphenyl polyisocyanate is preferable.
  • the mass ratio of polymethylene polyphenyl polyisocyanate to aromatic diisocyanate is not particularly limited, but is preferably 0.1 to 10 and 0. .5-2 is more preferable, and 0.75 to 1.5 is even more preferable.
  • the mass ratio of polyisocyanate A to polyisocyanate B is not particularly limited, but is 98/2 to 20/80. Is preferable, 80/20 to 20/80 is more preferable, and 80/20 to 45/55 is even more preferable.
  • mass ratio is within the above range, more precise pressure distribution measurement can be performed at high temperature. In addition, the temperature dependence of color development is small.
  • the resin Y1 has the structure A or the structure B shown below.
  • Structure A An aromatic or alicyclic diisocyanate, a compound having three or more active hydrogen groups in one molecule, a polymethylene polyphenyl polyisocyanate (preferably a compound represented by the formula (X)), and the like. Structure made by reacting.
  • Structure B A structure formed by reacting melamine and formaldehyde.
  • the active hydrogen group is preferably a hydroxyl group or an amino group, and more preferably a hydroxyl group.
  • the thermal decomposition temperature of the capsule wall of the microcapsules is preferably 250 ° C. or higher, more preferably 250 ° C. or higher, more preferably 255 ° C. or higher, still more preferably 260 ° C. or higher.
  • the upper limit is not particularly limited, but is often 500 ° C. or lower.
  • the method for measuring the thermal decomposition temperature of the capsule wall is as follows. 50 sheets of the first layer (microcapsule layer) having a length of 1 cm and a width of 1 cm are prepared, and all of them are immersed in 10 mL of water and allowed to stand for 24 hours to obtain an aqueous dispersion of microcapsules.
  • the first sheet includes the first support
  • 50 sheets of 1 cm in length ⁇ 1 cm in width may be prepared and immersed.
  • the obtained aqueous dispersion of microcapsules is centrifuged at 15,000 rpm for 30 minutes, and the microcapsules are separated. Ethyl acetate is added to the separated microcapsules, and the mixture is further stirred at 25 ° C. for 24 hours. Then, the obtained solution is filtered and the obtained residue is vacuum dried at 60 ° C. for 48 hours to obtain microcapsules containing nothing inside (hereinafter, also simply referred to as “measurement material”). Be done. That is, a capsule wall material of microcapsules, which is an object for measuring the thermal decomposition temperature, can be obtained.
  • thermogravimetric differential thermal analyzer TG-DTA device name: DTG-60, manufactured by Shimadzu Corporation.
  • TGA thermogravimetric differential thermal analyzer
  • the thermal decomposition temperature is the temperature of the measurement material raised from room temperature at a constant temperature rise rate (10 ° C./min) with respect to the mass of the measurement material before heating.
  • the thermogravimetric temperature (° C.) is defined as the temperature at which the weight is reduced by 5% by mass.
  • the particle size of the microcapsules is not particularly limited, but is preferably 1 to 80 ⁇ m, more preferably 5 to 70 ⁇ m, and even more preferably 10 to 50 ⁇ m in terms of volume-based median diameter (D50).
  • the median diameter based on the volume of the microcapsules can be controlled by adjusting the manufacturing conditions of the microcapsules and the like.
  • the volume-based median diameter of microcapsules is the volume of particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold. The diameter at which the total is equal. That is, the median diameter corresponds to the so-called D50.
  • the number average wall thickness of the capsule walls of the microcapsules is not particularly limited, but is preferably 0.01 to 2 ⁇ m, more preferably 0.05 to 1 ⁇ m.
  • the wall thickness of the microcapsules refers to the thickness ( ⁇ m) of the capsule wall forming the capsule particles of the microcapsules, and the number average wall thickness is the thickness ( ⁇ m) of the individual capsule walls of the 20 microcapsules. Is obtained by a scanning electron microscope (SEM) and averaged. More specifically, a cross-sectional section of the first sheet having the first layer containing the microcapsules was prepared, and the cross section was observed at 15,000 times by SEM (value of median diameter based on the volume of the microcapsules) ⁇ .
  • the ratio ( ⁇ / Dm) of the number average wall thickness ⁇ of the microcapsules to the median diameter (Dm) based on the volume of the microcapsules is not particularly limited and is often 0.005 or more. Above all, it is preferable to satisfy the relationship of the equation (1) in that more accurate pressure distribution measurement can be performed at high temperature. Equation (1) ⁇ / Dm> 0.010 That is, the ratio ( ⁇ / Dm) is preferably larger than 0.010. The ratio ( ⁇ / Dm) is preferably 0.015 or more. The upper limit is not particularly limited, but is preferably 0.050 or less.
  • a coloring agent is contained in the microcapsules.
  • the color-developing agent is a compound that develops a color when it comes into contact with a color-developing agent described later from a colorless state.
  • an electron-donating dye precursor precursor of a dye that develops color
  • the color former an electron-donating colorless dye is preferable.
  • the color-developing agent those known in the application of pressure-sensitive copying paper or thermal recording paper can be used.
  • Examples of the color former include triphenylmethanephthalide-based compounds, fluorene-based compounds, phenothiazine-based compounds, indolylphthalide-based compounds, azaindrillphthalide-based compounds, leukooramine-based compounds, rhodamine lactam-based compounds, and triazene. Examples thereof include phenylmethane-based compounds, diphenylmethane-based compounds, triazene-based compounds, spiropyran-based compounds, and fluorene-based compounds. For details of the above compounds, refer to the description in JP-A-5-257272.
  • the color former may be used alone or in combination of two or more.
  • the molecular weight of the color former is not particularly limited and is often 300 or more.
  • the upper limit is not particularly limited, but in many cases it is 1000 or less, and 600 or less is preferable in that the effect of the present invention is more excellent.
  • the color former is preferably one that develops a red color in terms of visibility and heat resistance.
  • the red dye that absorbs short waves (about 600 nm or less) has a shorter conjugation than the blue dye that absorbs long waves (more than about 600 nm), so it is difficult to decompose by heat, or even if it decomposes, the color will change. It is thought that it is difficult to change.
  • a dye that develops a red color and more preferably a rhodamine-based color former.
  • the molecular weight is often 300 or more, and in the case of a rhodamine-based color former, it is often 600 or less, more preferably less than 550.
  • Preferred examples of the color former include 3- (4-diethylamino-2-ethoxyphenyl) -3- (1-ethyl-2-methylindole-3-yl) -4-azaphthalide and 3- (4-diethylamino-2).
  • microcapsules may contain components other than the above-mentioned color former.
  • microcapsules preferably contain a solvent.
  • the solvent is not particularly limited, and for example, an alkylnaphthalene-based compound such as diisopropylnaphthalene, a diarylalkane-based compound such as 1-phenyl-1-xylylethane, an alkylbiphenyl-based compound such as isopropylbiphenyl, a triarylmethane-based compound, and an alkylbenzene-based compound.
  • Aromatic hydrocarbons such as benzylnaphthalene compounds, diarylalkylene compounds, and arylindan compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffin, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, etc. Examples thereof include natural animal and vegetable oils such as coconut oil, castor oil and fish oil, and high boiling point distillates of natural products such as mineral oil.
  • the solvent preferably has an aromatic solvent from the viewpoint of improving the solubility of the color former.
  • the solvent may be used alone or in combination of two or more.
  • the mass ratio of the solvent to the color-developing agent is preferably in the range of 98/2 to 30/70 in terms of color-developing property.
  • the range of 97/3 to 40/60 is more preferable.
  • the microcapsules may contain one or more additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor suppressant, if necessary.
  • an ultraviolet absorber a compound having a benzotriazole structure is preferable.
  • the method for producing microcapsules containing a color former is not particularly limited, and examples thereof include known methods such as an interfacial polymerization method, an internal polymerization method, a phase separation method, an external polymerization method, and a core selvation method. Of these, the interfacial polymerization method is preferable.
  • a raw material containing a color former and a capsule wall material for example, a polyisocyanate and at least one selected from the group consisting of a polyol and a polyamine). A polyisocyanate is reacted with water to form a polyamine.
  • an oil phase containing a polyol and a polyamine may not be used) is dispersed in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step), and a capsule wall material is used.
  • An interface polymerization method including a step of forming a capsule wall by polymerizing at the interface between the oil phase and the aqueous phase to form microcapsules containing a color former (encapsulation step) is preferable.
  • the mass ratio of the total amount of the polyol and the polyamine to the amount of the polyisocyanate (total amount of the polyol and the polyamine / the amount of the polyisocyanate) in the above raw materials is not particularly limited, but is 0.1 / 99.9 to. 30/70 is preferable, and 1/99 to 25/75 is more preferable.
  • the polyisocyanate A and the polyisocyanate B may be used in combination as the polyisocyanate. When both are used in combination, the preferable range of the mixing ratio of both is as described above.
  • the type of emulsifier used in the emulsification step is not particularly limited, and examples thereof include a dispersant and a surfactant.
  • examples of the dispersant include polyvinyl alcohol.
  • the content of the microcapsules in the first layer is not particularly limited, but is preferably 50 to 90% by mass, preferably 55 to 80% by mass, based on the total mass of the first layer, in that a color-developing portion having better gradation can be obtained. More preferably by mass.
  • the content of the color-developing agent in the first layer is not particularly limited, but is preferably 0.1 to 10 g / m 2 and 0.1 to 4 g / m in that a color-developing portion having better gradation is obtained. 2 is more preferable.
  • the first layer contains a binder that supports the above-mentioned microcapsules on the first support.
  • the binder is a binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum, or a crosslinked binder.
  • the binder may be present so as to cover the microcapsules as shown in FIG. 1, or a part or all of the microcapsules may protrude from the binder as shown in FIG.
  • the binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum corresponds to a binder having one or more hydrogen-bonding OH groups and hydrogen-bonding NH groups.
  • a binder having a functional group selected from an OH group and an NH group and forming a network by hydrogen-bonding the functional groups has a hydrogen-bonding OH group and / or a hydrogen-bonding OH group in the infrared absorption spectrum.
  • it has a broad absorption peak (usually an absorption peak having a half-price width of 200 cm -1 or more) having a peak top at 3200 to 3500 cm -1 derived from a hydrogen-bonding NH group.
  • the binder having one or more hydrogen-binding OH groups and hydrogen-binding NH groups has a functional group containing one or more of OH groups and NH groups, and has an OH group in the above functional groups. And / or intended for binders forming a network by hydrogen bonding of NH groups.
  • the peak top of the absorption peak derived from the non-hydrogen-bonding OH group and the non-hydrogen-bonding NH group (that is, the OH group and the NH group that do not contribute to the hydrogen bond) is usually set. It appears between 3650 and 3584 cm -1 and its absorption peak is sharp (usually half-price range less than 200 cm -1 ).
  • the procedure for measuring the infrared absorption spectrum of the binder is as follows. First, the first sheet is immersed in hot water having a temperature of 80 to 95 ° C. for 0.5 to 2 hours to separate the microcapsules and the binder. Next, the water of the hot water extract is removed, and the powder sample is subjected to infrared absorption spectrum measurement by an infrared spectrophotometer (for example, FTS7000, manufactured by Digilab) by the KBr method. Based on the obtained infrared absorption spectrum, it is determined whether or not the absorption peak has a peak top at 3200 to 3500 cm -1 (usually, an absorption peak having a half width of 200 cm -1 or more).
  • an infrared spectrophotometer for example, FTS7000, manufactured by Digilab
  • the binder of the first layer may be a crosslinked binder.
  • the first sheet is immersed in hot water at a temperature of 80 to 95 ° C. for 0.5 to 2 hours, sufficiently dried after the immersion, and then the membrane before and after the immersion. Measure the weight. When the reduction rate of the weight of the membrane is 5% or less, it is judged to be a crosslinked binder.
  • the binder A is a binder having one or more hydrogen-bonding OH groups and hydrogen-bonding NH groups.
  • the binder A one or more resins having a functional group containing one or more of an OH group and an NH group form a network by hydrogen-bonding the OH group and / or the NH group in the functional group. It is preferably configured by forming.
  • the adhesion layer is a resin X1 containing an aromatic group and one or more of an amide bond and a hydroxyl group. It is preferable to contain the resin X2 having the above.
  • the adhesive layer contains both the resin X1 and the resin X2, the resin X1 and the resin X2 may form a mixed layer in the adhesive layer, but in the adhesive layer, the layer containing the resin X1 and the resin.
  • each layer containing X2 is formed (in other words, the adhesion layer may have a layer containing resin X1 and a layer containing resin X2).
  • the first support, the layer containing the resin X1, the adhesion layer containing the resin X2, and the first layer are arranged in this order.
  • the resin having the above functional group is preferably at least one selected from the group consisting of cellulosic resins, polyamides, and polyvinyl alcohols because the effect of the present invention is more excellent.
  • binder A examples include carboxymethyl cellulose, carboxyethyl cellulose, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, methyl hydroxypropyl cellulose, hydroxypropyl methyl cellulose, crystalline cellulose, xanthan gum, guar gum, hydroxyethyl guar gum, carboxymethyl guar gum, and tragant gum.
  • the binder A may have a structure in which a part or the whole thereof is crosslinked by a cross-linking agent.
  • a cross-linking agent examples include water-soluble initial condensates such as N-methylol urea, N-methylol melamine, and urea-formalin; dialdehyde compounds such as glyoxal and glutaraldehyde; and inorganic cross-linking agents such as boric acid and borax.
  • polyamide epichlorohydrin and the like can be mentioned.
  • the peak top height (peak height) of the absorption peak derived from the hydrogen-bonding OH group and the hydrogen-bonding NH group is 3200 to 3500 cm -1 except for the wavenumber region. It is preferably No. 1 to 3 in comparison with the peak heights of other absorption peaks observed in the region of. That is, when the binder A has five absorption peaks in the infrared absorption spectrum, the peaks of the absorption peaks derived from the hydrogen-bonding OH group and the hydrogen-bonding NH group among the peak heights of the five absorption peaks.
  • the height is preferably the highest, the second highest, or the third highest.
  • binder B a crosslinked binder obtained by UV-curing water-soluble (meth) acrylamide or water-soluble (meth) acrylate, a crosslinked binder obtained by cross-linking a water-dispersed isocyanate, and an alkoxysilane are reacted by the Zollugel method.
  • examples thereof include a crosslinked binder and the like.
  • the water-soluble (meth) acrylamide is preferably at least one of monofunctional (meth) acrylamide and polyfunctional (meth) acrylamide.
  • the water-soluble (meth) acrylate is preferably at least one of a monofunctional (meth) acrylate and a polyfunctional (meth) acrylate.
  • the water-dispersed isocyanate is preferably used in combination with a polyol.
  • a photopolymerization initiator preferably a radical polymerization initiator
  • the content of the binder in the first layer is not particularly limited, but is preferably 5 to 40% by mass, more preferably 10 to 20% by mass, based on the total mass of the first layer, in that the effect of the present invention is more excellent. ..
  • the content of the binder in the first layer is not particularly limited, but 0.2 to 3.0 g / m 2 is preferable, and 0.5 to 1.5 g / m 2 is preferable because the effect of the present invention is more excellent. Is more preferable.
  • the melting point (normal pressure) of the binder in the first layer is preferably 180 ° C. or higher, more preferably 200 ° C. or higher.
  • the upper limit is not particularly limited, but is, for example, 600 ° C. or lower.
  • the first layer may contain components other than the above-mentioned microcapsules.
  • Other components include, for example, mold release agents (for example, inorganic fillers such as colloidal silica and silicones), fluorescent whitening agents, defoaming agents, penetrants, ultraviolet absorbers, surfactants, and preservatives. Can be mentioned.
  • the surfactant examples include anionic surfactants, nonionic surfactants, cationic surfactants and the like, and anionic surfactants or nonionic surfactants in terms of maintaining the dispersibility of microcapsules.
  • sexual surfactants are preferred.
  • the surfactant include a fluorine-based surfactant, a silicone-based surfactant, a hydrocarbon-based surfactant, and the like. In terms of maintaining coatability and dispersibility of microcapsules, a hydrocarbon-based surfactant is used. Activators are preferred.
  • the content of the surfactant is not particularly limited, but is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the total mass of the first layer.
  • Inorganic fillers are preferable as the mold release agent, and silica particles or alumina particles are particularly preferable, from the viewpoint of facilitating the peeling of the first sheet and the second sheet.
  • the median diameter of the inorganic filler is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.1 ⁇ m, still more preferably 0.005 to 0.05 ⁇ m.
  • the content of the inorganic filler is preferably 1 to 50% by mass, more preferably 3 to 30% by mass, and more preferably 5 to 20% by mass with respect to the total mass of the first layer.
  • the lower limit of the thickness of the first layer is 0.2 ⁇ m or more, and is preferably 0.3 ⁇ m or more in that the effect of the present invention is more excellent.
  • the upper limit of the thickness of the first layer is preferably, for example, 5 ⁇ m or less, more preferably less than 1.0 ⁇ m, and further preferably 0.7 ⁇ m or less in that the gradation of the color-developing portion formed by pressurization is superior.
  • the thickness of the first layer represents the thickness excluding the microcapsules exposed from the layer surface when the microcapsule diameter is larger than the layer thickness.
  • the layer thickness is intended to be the thickness T1 excluding the microcapsules exposed from the layer surface.
  • the layer thickness is intended to be the thickness T2 excluding the microcapsules exposed from the layer surface.
  • a method for measuring the thickness of the first layer SEM observation of a cross-sectional section is performed, the thickness at any five points in the layer is measured, and the average value thereof is obtained.
  • the thickness of the first layer is preferably smaller than the median diameter (D50) of the microcapsules.
  • the thickness of the first layer is preferably 0.1 to 50%, preferably 0.5 to 25%, based on the median diameter (D50) of the microcapsules.
  • the mass (g / m 2 ) per unit area of the first layer is not particularly limited, but is preferably 0.5 to 20 g / m 2 .
  • the arithmetic mean roughness Ra of the surface of the first layer opposite to the first support is preferably 2 ⁇ m or more, more preferably 4.1 ⁇ m or more, in that it is suitable for pressure measurement under a low pressure region.
  • the upper limit is not particularly limited, but is preferably 10 ⁇ m or less.
  • the arithmetic mean roughness Ra of the first layer in the present embodiment is the arithmetic mean roughness Ra of the surface of the surface of the first layer facing the second sheet (contacting side) when the pressure measuring sheet set is used. Is.
  • the arithmetic mean roughness Ra of the first layer in the present specification means the arithmetic mean roughness Ra defined in JIS B 0681-6: 2014.
  • a scanning white interferometer using an optical interferometry (specifically, NewView5020 manufactured by Zygo: Stich mode; objective lens ⁇ 50 times; intermediate lens ⁇ 0.5 times). Is used.
  • the arithmetic mean roughness Ra of the first layer is at least the above lower limit value, the amount of the color-developing agent is often sufficient, and the microcapsules are easily broken even at low pressure, so that a higher color-developing density is likely to occur.
  • the second layer of the second sheet when the arithmetic mean roughness Ra of the first layer is not more than the above upper limit value, the second layer of the second sheet appropriately absorbs the solvent flowing out together with the color former due to the disintegration of the microcapsules in the pressurized region. Since it can be done, it is easy to obtain good image quality with less bleeding.
  • the arithmetic mean roughness Ra of the first layer can be controlled by adjusting the amount of solid content applied to the composition for forming the first layer and adjusting the amount of microcapsules in the first layer.
  • the manufacturing method of the first sheet is not particularly limited, but for example, a manufacturing method having the following steps 1 and 2 is preferable.
  • Step 1 A composition having a resin X1 having at least one group selected from the group consisting of an aromatic group, an ester bond, and an imide bond on the first support (hereinafter, "composition for forming an adhesive layer”). ”) To form the adhesion layer.
  • step 2 On the adhesion layer, one composition selected from the group consisting of the composition A and the composition B shown below (hereinafter, also referred to as “composition for forming the first layer”) is applied and the thickness is applied.
  • a step of forming the first layer having a thickness of 0.2 ⁇ m or more.
  • Composition A A composition containing microcapsules containing a color-developing agent and a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group.
  • Composition B A composition containing microcapsules containing a color former and components for forming a crosslinked binder.
  • the configurations of the first support, the resin X1, the microcapsules, and the binder used in each of the above steps are as described above.
  • the method of applying the composition for forming the adhesion layer and the composition for forming the first layer is not particularly limited, and examples of the coating machine used at the time of application include an air knife coater, a rod coater, a bar coater, and a curtain coater. , Gravure coater, extrusion coater, die coater, slide bead coater, and blade coater.
  • the coating film may be subjected to a drying treatment, if necessary.
  • the drying treatment include heat treatment.
  • the composition for forming the first layer is the composition B and the component for forming the crosslinked binder contained in the composition B is a photocurable component, the composition for forming the first layer. It is preferable to further expose the coating film (which may be a coating film after the drying treatment).
  • the exposure light source is not particularly limited, and examples thereof include ultraviolet rays.
  • the composition for forming an adhesive layer preferably contains a resin X1 having at least one group selected from the group consisting of an aromatic group, an ester bond, and an imide bond, and a solvent.
  • the composition A preferably contains at least microcapsules, a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group, and a solvent. ..
  • a component for forming a binder having any one or more of a hydrogen-binding OH group and a hydrogen-binding NH group for example, a functional group containing one or more of an OH group and an NH group is used.
  • the resin (the OH group and NH group contained in the resin may be hydrogen-bonding OH group and hydrogen-binding NH group by hydrogen bonding in the resin and / or between the resins). Can be mentioned.
  • a functional group containing one or more of an OH group and an NH group is used as another aspect of the component for forming a binder having any one or more of a hydrogen-binding OH group and a hydrogen-binding NH group.
  • a resin having a group (Note that the OH group and NH group contained in the above resin may become a hydrogen-bonding OH group and a hydrogen-binding NH group by hydrogen bonding in the resin and / or between the resins. ) And a cross-linking agent.
  • the resin having a functional group containing one or more of an OH group and an NH group and a cross-linking agent are as described above.
  • a mixture of the microcapsule dispersion obtained by the above-mentioned interfacial polymerization method and a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group is composed. It may be used as an object A.
  • the composition A may contain other components that may be contained in the first layer described above.
  • the composition B preferably contains at least microcapsules, a component for forming a crosslinked binder, and a solvent.
  • the component for forming the crosslinked binder include water-soluble (meth) acrylamide, water-soluble (meth) acrylate, water-dispersed isocyanate, and alkoxysilane.
  • the composition B preferably further contains a polyol.
  • a mixture of the microcapsule dispersion obtained by the above-mentioned interfacial polymerization method and a component for forming a crosslinked binder may be used as the composition B.
  • composition B When the composition B uses a water-soluble (meth) acrylamide or a water-soluble (meth) acrylate (ultraviolet curable monomer), the composition B further contains a photopolymerization initiator (preferably a radical polymerization initiator). ) Is preferably included.
  • a photopolymerization initiator preferably a radical polymerization initiator.
  • the composition B may contain other components that may be contained in the first layer described above.
  • Examples of the solvent that the composition A and the composition B may contain include water.
  • the second sheet 22 described in FIG. 1 has a second support 18 and a second layer 20 containing a color developer arranged on the second support 18.
  • both the shrinkage rate S1 in the longitudinal direction of the second sheet 22 and the shrinkage rate S2 in the width direction orthogonal to the longitudinal direction of the second sheet 22 are ⁇ . It is preferably 0.5 to 3.0%, and more preferably 1.0 to 3.0% in that the effect of the present invention is more excellent.
  • the preferred range of the absolute value of the difference between the shrinkage rate S1 and the shrinkage rate S2 in the second sheet 22 is the same as the absolute value of the difference between the shrinkage rate S1 and the shrinkage rate S2 in the first sheet 16.
  • the method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the second sheet 22 is the same as the method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the first sheet 16 except that the second sheet 22 is used instead of the first sheet 16.
  • the definitions of the longitudinal direction and the width direction in the second sheet 22 are the same as the definitions of the longitudinal direction and the width direction of the first sheet 16 except that the first sheet 16 is read as the second sheet 22.
  • the second sheet 22 may be a single leaf (single sheet) or a long sheet. In the following, each member will be described in detail.
  • the second support is a member for supporting the second layer. Since the aspect of the second support is the same as the aspect of the first support described above, the description thereof will be omitted.
  • the second layer is a layer containing a color developer.
  • the color developer is a compound that does not have a color-developing function by itself, but has a property of developing a color-developing agent by contact with the color-developing agent.
  • an electron-accepting compound is preferable.
  • the color developer include inorganic compounds and organic compounds.
  • the inorganic compound include clay substances such as acid clay, activated clay, attapargite, zeolite, bentonite, and kaolin.
  • the organic compound include a metal salt of an aromatic carboxylic acid, a phenol formaldehyde resin, a metal salt of a carboxylated terpene phenol resin, and the like.
  • metal salt of the aromatic carboxylic acid examples include 3,5-di-t-butylsalicylic acid, 3,5-di-t-octylsalicylic acid, 3,5-di-t-nonylsalicylic acid, and 3,5-di-t.
  • a clay substance, a metal salt of an aromatic carboxylic acid, or a metal salt of a carboxylated terpenephenol resin is preferable, and a clay substance or a metal salt of an aromatic carboxylic acid is more preferable, and clay.
  • the substance is more preferable, and acidic clay, active clay, or kaolin is particularly preferable.
  • the clay substance is less likely to discolor when the pressure distribution is measured at a high temperature, so that the display quality of the pressure distribution in the pressure measurement sheet set is excellent.
  • the content of the color developer in the second layer is not particularly limited, but 20 to 95% by mass is preferable with respect to the total mass of the second layer, and 30 is preferable in that more accurate pressure distribution measurement can be performed at high temperature. ⁇ 90% by mass is more preferable.
  • the content of the color developer in the second layer is not particularly limited, but is preferably 0.1 to 30 g / m 2 .
  • the content of the developer is preferably 3 to 20 g / m 2 and more preferably 5 to 15 g / m 2 .
  • the content of the developer is preferably 0.1 to 5 g / m 2 , more preferably 0.2 to 3 g / m 2 .
  • the second layer may contain components other than the above-mentioned developer.
  • other components include polymer binders, pigments, fluorescent whitening agents, antifoaming agents, penetrants, ultraviolet absorbers, surfactants, and preservatives.
  • the polymer binder include styrene-butadiene copolymer, polyvinyl acetate, polyacrylic acid ester, polyvinyl alcohol, polyacrylic acid, maleic anhydride-styrene copolymer, starch, casein, gum arabic, gelatin, and carboxy.
  • examples thereof include methyl cellulose and synthetic polymers such as methyl cellulose or natural polymers.
  • the pigment include heavy calcium carbonate, light calcium carbonate, talc, titanium dioxide and the like.
  • the thickness of the second layer is not particularly limited, but 1 to 50 ⁇ m is preferable, and 2 to 30 ⁇ m is more preferable, because more accurate pressure distribution measurement can be performed at a high temperature.
  • the mass (g / m 2 ) per unit area of the second layer is not particularly limited, but is preferably 0.5 to 20 g / m 2 .
  • the method for forming the second layer is not particularly limited, and known methods can be mentioned.
  • a method of applying a composition for forming a second layer containing a color developer on a second support and, if necessary, performing a drying treatment can be mentioned.
  • the composition for forming the second layer may be a dispersion liquid in which a color developer is dispersed in water or the like.
  • the dispersion liquid in which the developer is dispersed can be prepared by mechanically dispersing the inorganic compound in water.
  • the color developer is an organic compound, it can be prepared by mechanically dispersing the organic compound in water or dissolving it in an organic solvent.
  • the composition for forming the second layer may contain other components that may be contained in the second layer described above.
  • the method for applying the composition for forming the second layer is not particularly limited, and examples thereof include a method using a coating machine used for applying the composition for forming the first layer described above.
  • the coating film may be subjected to a drying treatment, if necessary.
  • a drying treatment include heat treatment.
  • the method of forming the second layer on the second support is not limited to the above embodiment.
  • the temporary support is peeled off.
  • a second sheet composed of the second layer may be formed.
  • the temporary support is not particularly limited as long as it is a peelable support.
  • the second sheet may have a member other than the above-mentioned second support and the second layer.
  • the second sheet may have an adhesion layer between the second support and the second layer for enhancing the adhesion between the two.
  • Examples of the aspect of the adhesion layer include the embodiment of the adhesion layer that the first sheet described above may have.
  • the pressure measurement sheet set of the first embodiment preferably satisfies any of the following conditions (A) to (C) in that the effect of the present invention is more excellent.
  • the first sheet is heated at 220 ° C. for 10 minutes, the shrinkage rate S1 in the longitudinal direction of the first sheet is 1.0 to 3.0%, and the first support is made of polyethylene naphthalate. It is a sheet containing 70% by mass or more with respect to the total mass.
  • the first support and the second support are sheets having a thickness of 70 ⁇ m or more and containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet.
  • the first support and the second support are aromatic polyimide sheets.
  • the sheet containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet is as described above.
  • the thickness of the first support and the second support is not particularly limited, and is preferably 50 ⁇ m or more, for example. Further, in the case of the above condition (B), it is preferable that the shrinkage ratio S1 in the longitudinal direction of the first sheet and the second sheet is ⁇ 0.5 to 3.0% when heated at 220 ° C. for 10 minutes.
  • the first sheet and the second sheet are laminated by laminating the first sheet and the second sheet so that the first layer of the first sheet and the second layer of the second sheet face each other. It is used by obtaining a body and applying pressure to the laminate. That is, the first sheet corresponds to the sheet used for measuring the pressure together with the second sheet.
  • the chromaticity in the color system is not particularly limited, but the chromaticity a * from the viewpoint of easy visibility of color development. Is preferably more than 30 and 80 or less, and chromaticity b * is preferably more than -50 and 50 or less.
  • the first sheet and the second sheet of the laminated body after applying pressure are peeled off, and a second sheet is used with a densitometer RD-19 (manufactured by Gretag Macbeth). Measure the chromaticity of the color-developing part of the sheet.
  • the second sheet contains a transparent second support, the chromaticity of the color-developing portion is measured from the second support side.
  • the pressure measuring sheet set of the present invention can be used for various purposes, for example, for verification or control of various manufacturing processes including a high temperature press in a process. More specifically, pressure distribution confirmation in the laminating process in the battery (lithium ion battery, fuel cell) field, pressure distribution confirmation in the laminating process in the printed wiring board (FPC, BWB) field, ACF bonding and laminating of the wiring take-out part, etc.
  • the pressure distribution confirmation in the heat crimping process and the pressure distribution confirmation of the mold tightening portion can be mentioned.
  • the method for manufacturing the pressure measuring sheet is not particularly limited, but a manufacturing method including the above-mentioned manufacturing method for the first sheet is preferable.
  • the method for manufacturing the first sheet is as described above.
  • the above solution C was added to a solution in which 4 parts of polyvinyl alcohol (JP-45, Nippon Vinegar Bi-Poval Co., Ltd.) was dissolved, and the mixture was emulsified and dispersed. 200 parts of water was added to the emulsified solution after emulsification and dispersion. The mixture was heated to 70 ° C. with stirring, stirred for 1 hour, and then cooled. Further, water was added to adjust the concentration to obtain a color-developing agent-encapsulating microcapsule A solution having a solid content concentration of 25%.
  • polyvinyl alcohol JP-45, Nippon Vinegar Bi-Poval Co., Ltd.
  • a liquid color-developing microcapsule B was prepared in the same manner as in [Preparation of color-developing agent-encapsulating microcapsules A] except that the particle size was adjusted by adjusting the stirring conditions.
  • the color-developing agent-encapsulating microcapsule C solution was prepared by the same method as in [Preparation of color-developing agent-encapsulating microcapsules A] except that the materials used for the capsule wall were changed to melamine and formaldehyde to form the capsule wall by a known method. Prepared.
  • Example 1 [Making a sheet set for pressure measurement] ⁇ Preparation of base materials for the first and second sheets> Styrene butadiene latex (SBR) is provided on a 75 ⁇ m-thick polyethylene naphthalate sheet ((PEN), Teijin Film Solutions Co., Ltd., Theonex® Q51 (corresponding to “first support”)).
  • SBR Styrene butadiene latex
  • PEN polyethylene naphthalate sheet
  • Theonex® Q51 corresponding to “first support”.
  • the adhesive layer forming composition was applied and dried to form an adhesive layer having a thickness of 0.1 ⁇ m.
  • the obtained base material support with an adhesive layer
  • the base material of the second sheet the same base material as that of the first sheet was prepared and used.
  • the first layer forming composition was applied to the contact layer surface of the above-mentioned substrate by a bar coater and dried by heating to form a first layer having a size of about 0.2 ⁇ m to prepare a first sheet.
  • ⁇ Preparation of the second sheet> Use a sand grinder with sulfuric acid-treated active white clay (200 parts by mass), sodium hexametaphosphate (1 part by mass), 10% by mass aqueous solution of sodium hydroxide (30 parts by mass), and water (290 parts by mass), which are color developers.
  • the dispersion was prepared by dispersing the particles so that the average particle size of all the particles was 2 ⁇ m.
  • a 19% by mass aqueous dispersion (180 parts by mass) of Nippon Zeon LX-814 (Nippon Zeon Co., Ltd.) and a 3.3% by mass aqueous solution of Polymaron 482 (Arakawa Chemical Industry Co., Ltd.) ( 220 parts by mass), 1% by mass aqueous solution of carboxymethyl cellulose Na (Daiichi Kogyo Seiyaku Co., Ltd., Cellogen EP) (80 parts by mass), 15 parts by mass of sodium alkylbenzene sulfonate (Daiichi Kogyo Seiyaku Co., Ltd., Neogen T) A% aqueous solution (4.7 parts by mass) and a 1% by mass aqueous solution (70 parts by mass) of Neugen LP70 (Daiichi Kogyo Seiyaku Co., Ltd.) were mixed to prepare a coating solution containing a color developer.
  • Examples 2 to 12 The pressure measurement sheet sets of Examples 2 to 11 were produced by the same method as in Example 1 except that the configurations shown in Table 1 were changed.
  • the first support and the second support used in Example 10 are sheets formed of PI (polyimide).
  • the first support and the second support used in Example 11 are sheets formed of a PEN / PET (polyethylene terephthalate) copolymer (mass ratio: 70/30).
  • the first support and the second support used in Example 12 are sheets formed from a PEN / PET copolymer (mass ratio: 50/50).
  • Example 13 [Preparation of base materials for the first and second sheets] Styrene butadiene latex (SBR) is provided on a 75 ⁇ m-thick polyethylene naphthalate sheet ((PEN), Teijin Film Solutions Co., Ltd., Theonex® Q51 (corresponding to “first support”)).
  • the first adhesive layer forming composition was applied and dried to form a first adhesive layer having a thickness of 0.1 ⁇ m.
  • a second adhesion layer forming composition having gelatin was applied onto the obtained first adhesion layer and dried to form a second adhesion layer having a thickness of 0.5 ⁇ m. That is, an adhesive layer containing styrene-butadiene latex (SBR) and gelatin was formed. Further, as for the base material of the second sheet, the same base material as that of the first sheet was prepared and used.
  • a sheet set for pressure measurement was produced by the same method as in Example 5 except that the base materials of the first sheet and the second sheet were changed to the above base materials.
  • Example 14 A sheet set for pressure measurement by the same method as in Example 5 except that the resin in the adhesion layer forming composition was changed to the resin shown in Table 1 and the thickness of the adhesion layer was changed to the thickness shown in Table 1.
  • St / MMA / MAA is a copolymer of 40/40/20 (mass ratio).
  • Example 17 In the preparation of the first sheet, the type of the color-developing agent-encapsulating microcapsules was changed to those shown in Table 1, and 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) in the composition for forming the first layer was made of polyvinyl.
  • a sheet set for pressure measurement was prepared by the same method as in Example 15 except that the alcohol (PVA) (10% by mass aqueous solution) was changed to 24 parts by mass.
  • Example 18 In the preparation of the first sheet, 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) in the composition for forming the first layer was mixed with 22 parts by mass of PVA (10% by mass aqueous solution) and a cross-linking agent (glioxal (39% by mass aqueous solution,). Tokyo Kasei)) A sheet set for pressure measurement was produced by the same method as in Example 15 except that the content was changed to 0.5 parts by mass.
  • Example 19 A sheet set for pressure measurement by the same method as in Example 17 except that the resin in the adhesion layer forming composition was changed to the resin shown in Table 1 and the thickness of the adhesion layer was changed to the thickness shown in Table 1. Was produced.
  • Example 20 A sheet set for pressure measurement by the same method as in Example 18 except that the resin in the adhesion layer forming composition was changed to the resin shown in Table 1 and the thickness of the adhesion layer was changed to the thickness shown in Table 1. Was produced.
  • Example 21 In the preparation of the first sheet, a pressure measurement sheet set was prepared by the same method as in Example 5 except that the types of the color-developing agent-encapsulating microcapsules were changed to those shown in Table 1.
  • Example 22 A sheet set for pressure measurement was produced by the same method as in Example 21 except that the base materials of the first sheet and the second sheet were changed to the same base materials as in Example 13.
  • Example 23 In the preparation of the first sheet, 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) in the composition for forming the first layer was mixed with 22 parts by mass of PVA (10% by mass aqueous solution) and a cross-linking agent (glioxal (39% by mass aqueous solution,). Tokyo Kasei)) The first sheet was prepared by the same method as in Example 21 except that the base material was changed to 0.5 parts by mass and the base material was changed to the same base material as in Example 14.
  • the second sheet was prepared by the same method as in Example 21 except that the base material was changed to the same base material as in Example 14.
  • a sheet set for pressure measurement was produced by the above procedure.
  • Example 24 A sheet set for pressure measurement by the same method as in Example 23, except that the resin in the adhesion layer forming composition was changed to the resin shown in Table 1 and the thickness of the adhesion layer was changed to the thickness shown in Table 1. Was produced.
  • Example 25 The type of the color former-encapsulating microcapsule was changed to that shown in Table 1, and 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) was added to a water-soluble monofunctional monomer (FOM-03010, Fuji Film Wako Pure Chemical Industries, Ltd.). Co., Ltd.) 1.6 parts by mass, water-soluble cross-linking agent (FOM-03006, Fuji Film Wako Pure Chemical Industries, Ltd.) 0.7 parts by mass, water-soluble photoradical initiator (FOM-03011, Fuji Film Wako Pure Chemical Industries, Ltd.) A composition for forming a first layer was obtained in the same manner as in Example 1 except that the composition was changed to 1.5 parts by mass of Yakuhin Co., Ltd.
  • the first layer forming composition was applied to the adhesion layer surface of the same base material as in Example 1 with a bar coater, dried, and then irradiated with a high-pressure mercury lamp (manufactured by Ushio, Inc.) at 3000 mJ / cm 2 .
  • the first layer which is a cured film, was formed to prepare the first sheet.
  • a second sheet similar to that in Example 1 was used to prepare a sheet set for pressure measurement.
  • the thickness of the first layer was 0.5 ⁇ m.
  • Example 26 to 27 The pressure measurement sheet sets of Examples 26 to 27 were produced by the same method as in Example 1 except that the configurations shown in Table 1 were changed.
  • composition for forming the first layer (Composition for forming the first layer)
  • the type of the color-developing agent-encapsulating microcapsule was changed to that shown in Table 1, and 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) in the composition for forming the first layer was changed to 24 parts by weight of polyolefin (10% by mass aqueous solution) 24.
  • a composition for forming a first layer was prepared by the same method as in Example 1 except that the composition was changed to a mass portion.
  • the first layer forming composition was applied to the contact layer surface of the above-mentioned base material with a bar coater and dried to form a first layer of about 3 ⁇ m to prepare a first sheet.
  • a second sheet was prepared in the same manner as in Example 1 except that the coating liquid containing the color developer was changed to the above-mentioned base material.
  • composition for forming a first layer was prepared by the same method as in Example 1 except that the type of the color-developing agent-encapsulating microcapsules was changed to that shown in Table 1.
  • Comparative Example 1 except that the composition for forming the first layer was used as the composition for forming the first layer and the thickness of the first layer was changed to the thickness shown in Table 1.
  • a sheet set for pressure measurement was prepared by the same method as in the above.
  • the presence or absence of a hydrogen-bonding OH group and a hydrogen-bonding NH group was determined by whether or not they had a broad absorption peak having a peak top at 3200 to 3500 cm -1 .
  • the results of the obtained infrared absorption spectrum were evaluated based on the following evaluation criteria. ⁇ Evaluation criteria ⁇ "A": A broad absorption peak is largely observed at 3200 to 3500 cm -1 , and the peak height (peak height) of the peak top is the peak height of other absorption peaks appearing in the wave number region except 3200 to 3500 cm -1 . Nos.
  • C A broad absorption peak does not exist at 3200 to 3500 cm -1 , or even if it exists, its peak height is the same as the peak height of other absorption peaks appearing in the wavenumber region except 3200 to 3500 cm -1 . The smallest in comparison (ie, there are virtually no hydrogen-bonding OH and hydrogen-bonding NH groups).
  • Example 25 The first sheet of Example 25 was immersed in hot water having a temperature of 80 to 95 ° C. for 0.5 to 2 hours, and after the immersion was sufficiently dried, the weight of the film before and after the immersion was measured. The rate of decrease in the weight of the film after immersion was 5% or less.
  • [Measurement of shrinkage rate] [Measurement of shrinkage rate of the first sheet] A sample obtained by cutting the first sheet produced in each Example and Comparative Example so that the length in the direction along the longitudinal direction of the first sheet was 150 mm and the length in the direction along the width direction was 20 mm was prepared. I prepared 3 sheets. Position A, which is about 25 mm ahead from the center point (starting point) of one short side of the sample toward the center point of the other short side along the direction parallel to the long side, and the center point of the other short side of the sample. A marked line was attached to each of the position B, which was advanced by about 25 mm along the direction parallel to the long side from (starting point) toward the center point of one short side.
  • the distance between the position A and the position B was 100 mm ⁇ 2 mm. This was used as a sample for measuring the shrinkage ratio S1 in the longitudinal direction of the first sheet. After heating the obtained measurement sample at 220 ° C. for 10 minutes, the measurement sample is returned to room temperature (23 ° C.), the distance between the marked lines of the measurement sample is measured, and the shrinkage rate S1a is determined according to the following formula. Calculated.
  • Shrinkage rate S1a [%] 100 ⁇ ⁇ (distance between marked lines in the measurement sample before heating)-(distance between marked lines in the measurement sample after heating) ⁇ / (mark in the measurement sample before heating) Distance between lines)
  • the arithmetic mean value of the shrinkage rate S1a of the three measurement samples was obtained and used as the shrinkage rate S1.
  • the distance between the marked lines was measured up to a unit of 0.1 mm.
  • the first sheet produced in each Example and Comparative Example was cut so that the length in the direction along the width direction of the first sheet was 150 mm and the length in the direction along the longitudinal direction was 20 mm. Three samples were prepared. Then, a marked line was added to the surface of each sample in the same manner as the sample for measuring the shrinkage ratio S1. This was used as a sample for measuring the shrinkage ratio S2 in the width direction of the first sheet. After heating the obtained measurement sample at 220 ° C. for 10 minutes, the measurement sample is returned to room temperature (23 ° C.), the distance between the marked lines of the measurement sample is measured, and the shrinkage rate S2a is determined according to the following formula. Calculated.
  • Shrinkage rate S2a [%] 100 ⁇ ⁇ (distance between marked lines in the measurement sample before heating)-(distance between marked lines in the measurement sample after heating) ⁇ / (mark in the measurement sample before heating) Distance between lines)
  • the arithmetic mean value of the shrinkage rate S2a of the three measurement samples was obtained and used as the shrinkage rate S2.
  • the distance between the marked lines was measured up to a unit of 0.1 mm.
  • the pressurized laminate was placed on a flat table, its deformability was observed, and the evaluation was performed according to the following evaluation criteria. "B” or higher is preferable. Further, in the following evaluation criteria, “floating” means that, as shown in FIG. 4, the end portion 40E of the laminated body 40 floats from the standing surface when it is placed on the flat table P.
  • evaluation criteria “A”: No floating or unevenness was confirmed on the laminated body.
  • B Slight floating and unevenness were confirmed on the laminated body.
  • C Floating and unevenness were confirmed on the laminated body.
  • the first sheet and the second sheet produced in each Example and Comparative Example were cut into a size of 5 cm ⁇ 5 cm, respectively, and the first sheet and the second sheet were separated into the surface of the first layer of the first sheet and the second sheet.
  • a laminated body (sheet set) was obtained by superimposing the sheets so that the surfaces of the second layer face each other.
  • Two laminated bodies (sheet sets) were prepared for each Example and Comparative Example.
  • a hot press machine having two heating stages arranged one above the other was prepared, and the heating stages were separated from each other, and one of the laminated bodies was arranged. Then, the pressure was applied at 2.5 MPa for 120 seconds so that the laminate was sandwiched between the two heating stages heated to 220 ° C.
  • the other laminated body was pressurized by the same method except that the pressurizing condition was changed to 5.0 MPa instead of 2.5 MPa.
  • the two sheets constituting the laminated body were peeled off, and it was visually confirmed whether or not the coating film was adhered or peeled off on the surfaces of both sheets, and the evaluation was made according to the following evaluation criteria. "C” or higher is preferable.
  • the first sheet prepared in each Example and the comparative example and the second sheet cut into a size of 5 cm ⁇ 5 cm were obtained from the surface of the first layer of the first sheet and the surface of the second layer of the second sheet.
  • Quantum superpositions were obtained by stacking them so as to face each other.
  • Three laminated bodies were prepared for each Example and Comparative Example.
  • a hot press machine having two heating stages arranged one above the other was prepared, and the heating stages were separated from each other to arrange the laminated body. Then, the sheet was pressed with a pressure of 1.0 MPa, 1.5 MPa, 2.5 MPa and the like by a hot press machine at 200 ° C. to develop a color.
  • both of the overlapped sheets were peeled off, and the density (DA) of the color-developing portion formed on the second sheet was measured using a densitometer RD-19 (manufactured by Gretag Macbeth). Separately from this, the initial concentration (DB) was measured for the unused second sheet by the same method. Then, the initial density DB was subtracted from the density DA to obtain the color development density ⁇ D, and the evaluation was performed according to the following evaluation criteria. "B" is preferable.
  • the pressure measurement sheet set of the example is less likely to be deformed by heat of the laminated body in which the first sheet and the second sheet are overlapped even when used at a high temperature.
  • the first sheet and the second sheet were peeled off after pressurization, it was confirmed that the first sheet and the second sheet were peeled off at the interface between the first layer and the second layer, and the coating film was less likely to be torn.
  • the pressure measurement sheet set of the example was excellent in the gradation property of the color-developing portion formed after heating.
  • the thickness of the first layer was 0.3 ⁇ m or more, the coating film was less likely to be torn.
  • the thickness of the first layer is less than 1 ⁇ m (preferably 0.7 ⁇ m or less), the tonality of the color-developing portion formed after heating is more excellent.
  • the first support and the second support are sheets having a thickness of 70 ⁇ m or more and containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet.
  • the first support and the second support are aromatic polyimide sheets.

Abstract

The present invention addresses the problem of providing: a sheet set for pressure measurement, said sheet set being not susceptible to deformation or coating film breakage even if used in a high temperature environment; and a method for producing this sheet set for pressure measurement. A sheet set for pressure measurement according to the present invention is provided with: a first sheet which sequentially comprises, in the following order, a first supporting body, an adhesion layer, and a first layer that contains a binder and microcapsules internally containing a color former; and a second sheet which comprises a second supporting body and a second layer that contains a color developer. With respect to this sheet set for pressure measurement, each of the first supporting body and the second supporting body is composed of a polyethylene naphthalate sheet or an aromatic polyimide sheet; the adhesion layer contains a resin X1 which has at least one group that is selected from the group consisting of an aromatic group, an ester bond and an imide bond; the capsule walls of the microcapsules contain a resin Y1 which has an aromatic group; the binder in the first layer is crosslinked, or has an absorption peak that has a peak top at 3,200 to 3,500 cm-1 in the infrared absorption spectrum; and the first layer has a thickness of 0.2 μm or more.

Description

圧力測定用シートセット、圧力測定用シートセットの製造方法Manufacturing method of pressure measurement sheet set and pressure measurement sheet set
 本発明は、圧力測定用シートセット及び圧力測定用シートセットの製造方法に関する。 The present invention relates to a pressure measuring sheet set and a method for manufacturing a pressure measuring sheet set.
 近年、製品の高機能化及び高精細化により、圧力の分布を測定する必要性が増加している。圧力分布測定をする方法としては、利便性の点から、一般的に圧力測定用シートセットが使用されている。
 例えば、特許文献1及び2においては、発色剤を内包するマイクロカプセルを利用した圧力測定用シートセットが開示されている
 圧力測定用シートセットは、通常、発色剤層を有する発色シートと、顕色剤層を有する顕色シートとから構成されている。
In recent years, there has been an increasing need to measure pressure distribution due to higher functionality and higher definition of products. As a method for measuring the pressure distribution, a pressure measuring sheet set is generally used from the viewpoint of convenience.
For example, in Patent Documents 1 and 2, a pressure measurement sheet set using a microcapsule containing a color-developing agent is disclosed. The pressure measurement sheet set usually includes a color-developing sheet having a color-developing agent layer and a coloring sheet. It is composed of a color-developing sheet having an agent layer.
国際公開第2004/024809号International Publication No. 2004/024809 国際公開第2018/062017号International Publication No. 2018/062017
 ところで、圧力測定用シートセットは、熱プレス、ヒートプレス、及びボンディング等の工程において使用される場合がある。これらの用途においては、高温下(例えば、180℃以上)で圧力測定用シートセットを使用する要望がある。
 本発明者らは、今般、特許文献1及び2に記載された圧力測定用シートセットについて検討したところ、高温下(例えば、180℃以上)で使用した場合、発色シート(第1シート)と顕色シート(第2シート)とを重ね合わせた積層体が熱によって変形する場合があることを明らかとした。また、加圧の際に発色シートと顕色シートとが過度に貼り付いてしまい、両者を剥がした際に発色層(第1層)と顕色層(第2層)との界面で剥離せず、発色層に顕色層の一部若しくは全部が付着する、及び/又は、顕色層に発色層の一部若しくは全部が付着する(以下「塗膜破れが生じる」という場合もある。)等の問題が生じる場合があることを明らかとした。つまり、特許文献1及び2に記載された圧力測定用シートセットでは、高温下(例えば、180℃以上)においては、正確な圧力測定が実施できない場合があることを明らかとした。なお、圧力測定用シートセットを使用して高温に加熱された被測定対象物の圧力測定を実施する場合、例えば、文献1の実施例欄に記載されるように、一旦、温度を圧力測定用シートセットの許容温度(例えば、特許文献1では150℃未満)に下げてから、圧力分布測定を実施しているのが実情である。
By the way, the pressure measuring sheet set may be used in processes such as heat pressing, heat pressing, and bonding. In these applications, there is a demand for using a pressure measurement sheet set at a high temperature (for example, 180 ° C. or higher).
The present inventors have recently examined the pressure measurement sheet sets described in Patent Documents 1 and 2. It has been clarified that the laminated body in which the color sheet (second sheet) is overlapped may be deformed by heat. In addition, the color-developing sheet and the color-developing sheet are excessively adhered to each other during pressurization, and when both are peeled off, they are peeled off at the interface between the color-developing layer (first layer) and the color-developing layer (second layer). Instead, part or all of the color-developing layer adheres to the color-developing layer, and / or part or all of the color-developing layer adheres to the color-developing layer (hereinafter, "coating film tearing may occur"). It was clarified that problems such as the above may occur. That is, it has been clarified that the pressure measurement sheet set described in Patent Documents 1 and 2 may not be able to perform accurate pressure measurement under high temperature (for example, 180 ° C. or higher). When the pressure of the object to be measured heated to a high temperature is measured by using the pressure measurement sheet set, for example, as described in the Example column of Document 1, the temperature is once measured for pressure measurement. The actual situation is that the pressure distribution is measured after the temperature is lowered to the allowable temperature of the sheet set (for example, less than 150 ° C. in Patent Document 1).
 そこで、本発明は、高温下で使用した場合であっても、変形及び塗膜破れが生じにくい圧力測定用シートセット及びその製造方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a pressure measurement sheet set and a method for manufacturing the same, which are less likely to be deformed or torn even when used at a high temperature.
 本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the above problems, the present inventors have found that the above problems can be solved by the following configuration.
 〔1〕 第1支持体と、密着層と、発色剤を内包するマイクロカプセル及びバインダーを含む第1層と、をこの順に有する第1シートと、
 第2支持体と、顕色剤を含む第2層と、を有する第2シートと、を備える圧力測定用シートセットであって、
 上記第1支持体及び上記第2支持体が、ポリエチレンナフタレートシート又は芳香族ポリイミドシートであり、
 上記密着層が、芳香族基、エステル結合、及びイミド結合からなる群から選択される少なくとも1種の基を有する樹脂X1を含み、
 上記マイクロカプセルのカプセル壁が、芳香族基を有する樹脂Y1を含み、
 上記第1層中の上記バインダーが、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有するか、又は、架橋しており、
 上記第1層の厚みが0.2μm以上である、圧力測定用シートセット。
 〔2〕 上記第1層中の上記バインダーが、水素結合性のOH基及び水素結合性のNH基の1種以上を有する、〔1〕に記載の圧力測定用シートセット。
 〔3〕 上記第1層中の上記バインダーが樹脂を含み、上記樹脂が、水酸基及びアミド結合の1種以上を有する、〔1〕又は〔2〕に記載の圧力測定用シートセット。
 〔4〕 上記樹脂X1の含有量が、密着層中に含まれる樹脂の全含有量に対して、50質量%以上である、〔1〕~〔3〕のいずれかに記載の圧力測定用シートセット。
 〔5〕 上記樹脂X1が、アクリル系樹脂を含み、
 上記密着層の厚みが2~10μmである、〔1〕~〔4〕のいずれかに記載の圧力測定用シートセット。
 〔6〕 上記樹脂X1が、アクリル系樹脂及びスチレン共重合体の1種以上を含む、〔1〕~〔4〕のいずれかに記載の圧力測定用シートセット。
 〔7〕 上記第1層中の上記バインダーが、セルロース系樹脂、ポリアミド、及び、ポリビニルアルコールからなる群から選択される少なくとも1種の樹脂を含む、〔1〕~〔6〕のいずれかに記載の圧力測定用シートセット。
 〔8〕 上記樹脂X1が、芳香族基を有し、
 上記密着層が、さらに、アミド結合及び水酸基の1種以上を有する樹脂X2を有し、
 上記第1層中の上記バインダーが樹脂を含み、上記樹脂が、水酸基及びアミド結合の1種以上を有する、〔1〕~〔4〕のいずれかに記載の圧力測定用シートセット。
 〔9〕 上記第1層が、さらに、離型剤を含む、〔1〕~〔8〕のいずれかに記載の圧力測定用シートセット。
 〔10〕 以下に示す(A)~(C)のいずれかの条件を満たす、〔1〕~〔9〕のいずれかに記載の圧力測定用シートセット。
 (A)220℃で10分間加熱した場合における、上記第1シートの長手方向の収縮率S1が1.0~3.0%であって、且つ、上記第1支持体が、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートである。
 (B) 上記第1支持体及び上記第2支持体が、厚みが70μm以上であって、且つ、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートである。
 (C) 上記第1支持体及び上記第2支持体が、芳香族ポリイミドシートである。
 〔11〕 上記カプセル壁の熱分解温度が、250℃以上である、〔1〕~〔10〕のいずれかに記載の圧力測定用シートセット。
 〔12〕 上記樹脂Y1が、芳香族基を有するポリウレタンウレア、芳香族基を有するポリウレア、及び、メラミン樹脂からなる群から選択される少なくとも1種の樹脂を含む、〔1〕~〔11〕のいずれかに記載の圧力測定用シートセット。
 〔13〕 上記樹脂Y1が、以下に示す構造A又は構造Bを有する、〔1〕~〔11〕のいずれかに記載の圧力測定用シートセット。
 構造A:芳香族又は脂環族ジイソシアネートと、1分子中に3つ以上の活性水素基を有する化合物と、ポリメチレンポリフェニルポリイソシアネートとを反応させてなる構造。
 構造B:メラミンとホルムアルデヒドとを反応させてなる構造。
 〔14〕 〔1〕~〔13〕のいずれかに記載の圧力測定用シートセットの製造方法であって、
 上記第1支持体の上に、上記樹脂X1を有する組成物を塗布して上記密着層を形成する工程と、
 上記密着層上に、以下に示す組成物A及び組成物Bからなる群から選ばれる1種の組成物を塗布して厚みが0.2μm以上の上記第1層を形成する工程と、を有する、圧力測定用シートセットの製造方法。
 組成物A:上記マイクロカプセルと、水素結合性のOH基及び水素結合性のNH基のいずれか1種以上を有するバインダーを形成するための成分と、を含む組成物。
 組成物B:上記マイクロカプセルと、架橋バインダーを形成するための成分と、を含む組成物。
[1] A first sheet having a first support, an adhesion layer, and a first layer containing microcapsules and a binder containing a color-developing agent in this order.
A pressure measuring sheet set comprising a second support and a second sheet comprising a second layer containing a color developer.
The first support and the second support are polyethylene naphthalate sheets or aromatic polyimide sheets.
The adhesion layer comprises resin X1 having at least one group selected from the group consisting of aromatic groups, ester bonds, and imide bonds.
The capsule wall of the microcapsules contains resin Y1 having an aromatic group and contains.
The binder in the first layer has an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum, or is crosslinked.
A sheet set for pressure measurement in which the thickness of the first layer is 0.2 μm or more.
[2] The sheet set for pressure measurement according to [1], wherein the binder in the first layer has one or more hydrogen-bonding OH groups and hydrogen-bonding NH groups.
[3] The sheet set for pressure measurement according to [1] or [2], wherein the binder in the first layer contains a resin, and the resin has one or more hydroxyl groups and amide bonds.
[4] The pressure measuring sheet according to any one of [1] to [3], wherein the content of the resin X1 is 50% by mass or more with respect to the total content of the resin contained in the adhesion layer. set.
[5] The resin X1 contains an acrylic resin and contains
The pressure measurement sheet set according to any one of [1] to [4], wherein the adhesion layer has a thickness of 2 to 10 μm.
[6] The sheet set for pressure measurement according to any one of [1] to [4], wherein the resin X1 contains one or more of an acrylic resin and a styrene copolymer.
[7] The binder according to any one of [1] to [6], wherein the binder in the first layer contains at least one resin selected from the group consisting of a cellulosic resin, a polyamide, and polyvinyl alcohol. Sheet set for pressure measurement.
[8] The resin X1 has an aromatic group and has an aromatic group.
The adhesion layer further has a resin X2 having an amide bond and one or more hydroxyl groups.
The pressure measurement sheet set according to any one of [1] to [4], wherein the binder in the first layer contains a resin, and the resin has one or more hydroxyl groups and amide bonds.
[9] The sheet set for pressure measurement according to any one of [1] to [8], wherein the first layer further contains a mold release agent.
[10] The pressure measurement sheet set according to any one of [1] to [9], which satisfies any of the conditions (A) to (C) shown below.
(A) The shrinkage ratio S1 in the longitudinal direction of the first sheet when heated at 220 ° C. for 10 minutes is 1.0 to 3.0%, and the first support is polyethylene naphthalate. It is a sheet containing 70% by mass or more with respect to the total mass of the sheet.
(B) The first support and the second support are sheets having a thickness of 70 μm or more and containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet.
(C) The first support and the second support are aromatic polyimide sheets.
[11] The sheet set for pressure measurement according to any one of [1] to [10], wherein the thermal decomposition temperature of the capsule wall is 250 ° C. or higher.
[12] Of [1] to [11], the resin Y1 contains at least one resin selected from the group consisting of polyurethane urea having an aromatic group, polyurea having an aromatic group, and a melamine resin. The pressure measurement sheet set described in either.
[13] The pressure measurement sheet set according to any one of [1] to [11], wherein the resin Y1 has the structure A or the structure B shown below.
Structure A: A structure formed by reacting an aromatic or alicyclic diisocyanate with a compound having three or more active hydrogen groups in one molecule and polymethylenepolyphenylpolyisocyanate.
Structure B: A structure formed by reacting melamine and formaldehyde.
[14] The method for manufacturing a pressure measurement sheet set according to any one of [1] to [13].
A step of applying the composition having the resin X1 on the first support to form the adhesion layer, and a step of forming the adhesion layer.
It has a step of applying one composition selected from the group consisting of the composition A and the composition B shown below on the adhesion layer to form the first layer having a thickness of 0.2 μm or more. , How to manufacture a sheet set for pressure measurement.
Composition A: A composition containing the microcapsules and a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group.
Composition B: A composition containing the above microcapsules and components for forming a crosslinked binder.
 本発明によれば、変形及び塗膜破れが生じにくい圧力測定用シートセット及びその製造方法を提供できる。 According to the present invention, it is possible to provide a pressure measuring sheet set and a method for manufacturing the same, which are less likely to be deformed or torn.
圧力測定用シートセットの一実施形態の断面図である。It is sectional drawing of one Embodiment of the sheet set for pressure measurement. 圧力測定シートセットの使用形態を説明するための図である。It is a figure for demonstrating the usage form of a pressure measurement sheet set. 圧力測定用シートセットの第1層の厚みを説明するための他の断面図である。It is another cross-sectional view for demonstrating the thickness of the 1st layer of a pressure measurement sheet set. 積層体の「浮き」を説明するための図である。It is a figure for demonstrating the "float" of a laminated body.
 以下、本発明について詳細に説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 後述する各種成分は、1種単独で又は2種以上を混合して用いてもよい。例えば、後述するポリイソシアネートは、1種単独で又は2種以上を混合して用いてもよい。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートを意味し、「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸を意味し、(メタ)アクリルアミドとは、アクリルアミド及びメタクリルアミドを意味する。
Hereinafter, the present invention will be described in detail.
The numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
Further, in the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
The various components described below may be used alone or in combination of two or more. For example, the polyisocyanate described later may be used alone or in combination of two or more.
The description of the constituent elements described below may be based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
Further, in the present specification, "(meth) acrylate" means acrylate and methacrylate, "(meth) acrylic acid" means acrylic acid and methacrylic acid, and (meth) acrylamide means acrylamide. And methacrylamide.
(置換基T)
 置換基Tとしては、ハロゲン原子(フッ素原子、塩素原子、臭素原子及びヨウ素原子等)、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アミノ基(アルキルアミノ基及びアニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル又はアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール又はヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基及び重合性基を含む基が挙げられる。
 上記の置換基の中で、水素原子を有するものは、置換基中の水素原子の部分が、更に、上記いずれかの置換基で置換されていてもよい。
(Substituent T)
Examples of the substituent T include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, a heterocyclic group, and a cyano group. Hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, amino group (including alkylamino group and anilino group), acylamino group, aminocarbonylamino Group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl or arylsulfinyl Group, alkyl or arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl or heterocyclic azo group, imide group, phosphino group, phosphinyl group, phosphinyloxy group, phosphinylamino group , A group containing a silyl group and a polymerizable group.
Among the above-mentioned substituents, those having a hydrogen atom may be further substituted with a portion of the hydrogen atom in the substituent with any of the above-mentioned substituents.
[圧力測定用シートセット]
 本発明の圧力測定用シートセットは、
 第1支持体と、密着層と、発色剤を内包するマイクロカプセル及びバインダーを含む第1層と、をこの順に有する第1シートと、
 第2支持体と、顕色剤を含む第2層と、を有する第2シートと、を備える圧力測定用シートセットであって、
 上記第1支持体及び上記第2支持体が、ポリエチレンナフタレートシート又は芳香族ポリイミドシートであり、
 上記密着層が、芳香族基、エステル結合、及びイミド結合からなる群から選択される少なくとも1種の基を有する樹脂X1を含み、
 上記マイクロカプセルのカプセル壁が、芳香族基を有する樹脂Y1を含み、
 上記第1層中の上記バインダーが、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有するか、又は、架橋しており、
 上記第1層の厚みが0.2μm以上である。
[Sheet set for pressure measurement]
The pressure measurement sheet set of the present invention is
A first sheet having a first support, an adhesion layer, and a first layer containing microcapsules and a binder containing a color-developing agent in this order.
A pressure measuring sheet set comprising a second support and a second sheet comprising a second layer containing a color developer.
The first support and the second support are polyethylene naphthalate sheets or aromatic polyimide sheets.
The adhesion layer comprises resin X1 having at least one group selected from the group consisting of aromatic groups, ester bonds, and imide bonds.
The capsule wall of the microcapsules contains resin Y1 having an aromatic group and contains.
The binder in the first layer has an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum, or is crosslinked.
The thickness of the first layer is 0.2 μm or more.
 本発明の圧力測定用シートセットは、高温下(例えば、180℃以上)で使用した場合であっても、第1シートと第2シートとを重ね合わせた積層体の熱による変形が生じにくい。また、加圧後に第1シートと第2シートとを剥がした際、第1層と第2層との界面で剥離し、塗膜破れが生じにくい(言い換えると、加圧後に第1シートと第2シートとを剥がした際、第1層と第2層との界面で剥離し、第1層に第2層の一部若しくは全部が付着する、及び/又は、第2層に第1層の一部若しくは全部が付着する故障が生じにくい)。 The pressure measuring sheet set of the present invention is less likely to be deformed by heat of the laminated body in which the first sheet and the second sheet are overlapped, even when used at a high temperature (for example, 180 ° C. or higher). Further, when the first sheet and the second sheet are peeled off after pressurization, the first sheet and the second sheet are peeled off at the interface between the first layer and the second layer, and the coating film is less likely to be torn (in other words, the first sheet and the first sheet after pressurization). When the two sheets are peeled off, they are peeled off at the interface between the first layer and the second layer, and a part or all of the second layer adheres to the first layer, and / or the first layer is attached to the second layer. It is unlikely that a failure will occur in which part or all of it adheres).
 本発明の圧力測定用シートセットの主な特徴点と、推測される作用機序は以下のとおりである。
 本発明の圧力測定用シートセットの第1の特徴点としては、第1シート及び第2シートの各支持体として、耐熱性が比較的高い樹脂シートであるポリエチレンナフタレートシート又は芳香族ポリイミドシートを使用している点、第1シートの第1層が含むバインダーとして、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有するバインダー又は架橋バインダーを使用している点、及び、第1シートの第1層が含むマイクロカプセルのカプセル壁が芳香族基を有する樹脂を含んでいる点、が挙げられる。なお、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有するバインダーとは、後述するように、水素結合性のOH基及び水素結合性NH基の1種以上を有するバインダー(つまり、OH基及びNH基の1種以上を含む官能基を有し、且つ、上記官能基中のOH基及び/又はNH基が水素結合することによりネットワークを形成しているバインダー)を意図する。本発明の圧力測定用シートセットは、上記第1の特徴点の構成を備えることで、高温下(例えば、180℃以上)で使用した場合であっても、第1シートと第2シートとを重ね合わせた積層体の熱による変形が抑制され得る。また、第1層中のマイクロカプセルのカプセル壁及びバインダーが高温下(例えば、180℃以上)での溶融が生じにくい材質で構成されていることから、加圧の際の第1シートと第2シートとの過度な貼り付きが抑制され得る(特に、加圧後に第1シートと第2シートとを剥がした際、第1シートに第2層の一部又は全部が付着する故障が抑制され得る)。
 また、本発明の圧力測定用シートセットの第2の特徴点としては、第1シートが、第1支持体と発色層との間に密着層を有し、この密着層が所定の官能基を有する樹脂(樹脂X1)を含んでいる点が挙げられる。本発明の圧力測定用シートセットでは、上記第2の特徴点の構成を備えることで、第1シートにおける第1支持体と第1層との接着性が担保されている。
 つまり、本発明の圧力測定用シートセットは、上述の第1の特徴点及び第2の特徴点に基づく各作用機序が相乗することにより、高温下(例えば、180℃以上)で使用した場合であっても、第1シートと第2シートとを重ね合わせた積層体の熱による変形が抑制され、且つ、加圧後に第1シートと第2シートとを剥がした際、第1層と第2層との界面での剥離が可能となり、塗膜破れが抑制され得る。
The main features of the pressure measurement sheet set of the present invention and the presumed mechanism of action are as follows.
The first feature of the pressure measuring sheet set of the present invention is that, as the supports of the first sheet and the second sheet, a polyethylene naphthalate sheet or an aromatic polyimide sheet, which is a resin sheet having relatively high heat resistance, is used. The point of use, as the binder contained in the first layer of the first sheet, a binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum or a crosslinked binder is used, and The point that the capsule wall of the microcapsule contained in the first layer of the first sheet contains a resin having an aromatic group is mentioned. The binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum is a binder having one or more hydrogen-bonding OH groups and hydrogen-bonding NH groups, as will be described later. That is, a binder having a functional group containing one or more of an OH group and an NH group and forming a network by hydrogen bonding of the OH group and / or the NH group in the functional group) is intended. .. The pressure measuring sheet set of the present invention is provided with the configuration of the first feature point, so that the first sheet and the second sheet can be used even when used at a high temperature (for example, 180 ° C. or higher). Deformation due to heat of the stacked laminates can be suppressed. Further, since the capsule wall of the microcapsules and the binder in the first layer are made of a material that does not easily melt at a high temperature (for example, 180 ° C. or higher), the first sheet and the second sheet during pressurization. Excessive sticking to the sheet can be suppressed (in particular, when the first sheet and the second sheet are peeled off after pressurization, a failure in which a part or all of the second layer adheres to the first sheet can be suppressed. ).
Further, as a second feature of the pressure measurement sheet set of the present invention, the first sheet has an adhesion layer between the first support and the color-developing layer, and this adhesion layer has a predetermined functional group. The point that the resin (resin X1) is contained is mentioned. The pressure measuring sheet set of the present invention is provided with the configuration of the second feature point, thereby ensuring the adhesiveness between the first support and the first layer in the first sheet.
That is, when the pressure measurement sheet set of the present invention is used at a high temperature (for example, 180 ° C. or higher) due to the synergistic action mechanism based on the first feature point and the second feature point described above. Even so, deformation due to heat of the laminated body in which the first sheet and the second sheet are overlapped is suppressed, and when the first sheet and the second sheet are peeled off after pressurization, the first layer and the first layer Peeling at the interface with the two layers is possible, and tearing of the coating film can be suppressed.
 なお、以下において、本発明の圧力測定用シートセットを高温下(例えば、180℃以上)で使用した場合において、第1シートと第2シートとを重ね合わせた積層体の変形がより抑制されること、及び/又は、本発明の圧力測定用シートセットを高温下(例えば、180℃以上)で使用した場合において、加圧後に第1シートと第2シートとを剥がした際、第1層と第2層との界面での剥離性がより優れて、塗膜破れがより抑制されることを、「本発明の効果がより優れる」という場合もある。 In the following, when the pressure measuring sheet set of the present invention is used at a high temperature (for example, 180 ° C. or higher), the deformation of the laminated body in which the first sheet and the second sheet are overlapped is further suppressed. And / or when the pressure measurement sheet set of the present invention is used at a high temperature (for example, 180 ° C. or higher) and the first sheet and the second sheet are peeled off after pressurization, the first layer and / or the sheet set for pressure measurement are used. The fact that the peelability at the interface with the second layer is more excellent and the tearing of the coating film is further suppressed may be referred to as "the effect of the present invention is more excellent".
 本明細書において、「第1層中のバインダーが、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有さない」とは、赤外吸収スペクトルにおいて3200~3500cm-1に吸収ピークが存在しない場合、又は、赤外吸収スペクトルにおいて3200~3500cm-1に吸収ピークを有することが観測されるが、上記吸収ピークのピークトップの高さ(以下「ピーク高さ」ということもある。)が、3200~3500cm-1の波数領域を除くその他の領域において観測される他の吸収ピークのピークトップの高さ(ピーク高さ)と比較して最も小さい場合を意図する。
 また、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークは、通常、ブロードなピーク(半値幅が200cm-1以上)として観測される。
In the present specification, "the binder in the first layer does not have an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum" means 3200 to 3500 cm -1 in the infrared absorption spectrum. It is observed that there is no absorption peak or that the absorption peak has an absorption peak at 3200 to 3500 cm -1 in the infrared absorption spectrum, but the height of the peak top of the absorption peak (hereinafter, also referred to as "peak height"). There is), but it is intended to be the smallest compared to the peak top height (peak height) of other absorption peaks observed in other regions except the wave frequency region of 3200 to 3500 cm -1 .
Further, an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum is usually observed as a broad peak (half width of 200 cm -1 or more).
〔第1実施形態〕
 図1は、圧力測定用シートセットの一実施形態の断面図である。
 圧力測定用シートセット10は、第1シート16と、第2シート22とを有する。第1シート16は、第1支持体12と、第1支持体12上に配置された密着層13並びにマイクロカプセル14A及びバインダー14Bを含む第1層14と、を有する。第2シート22は、第2支持体18と、第2支持体18上に配置された顕色剤を含む第2層20と、を有する。
 圧力測定用シートセット10を使用する際には、図2に示すように、第1シート16中の第1層14と第2シート22中の第2層20とが対向するように、第1シート16と第2シート22とを積層して使用する。得られた積層体中の第1シート16の第1支持体12側及び第2シート22の第2支持体18側の少なくとも一方側から加圧することにより、加圧された領域においてマイクロカプセルが壊れて、マイクロカプセルに内包されている発色剤がマイクロカプセルから出てきて、第2層20中の顕色剤との間で発色反応が進行する。結果として、加圧した領域において、発色が進行する。
[First Embodiment]
FIG. 1 is a cross-sectional view of an embodiment of a pressure measuring sheet set.
The pressure measuring sheet set 10 has a first sheet 16 and a second sheet 22. The first sheet 16 has a first support 12, an adhesion layer 13 arranged on the first support 12, and a first layer 14 containing microcapsules 14A and a binder 14B. The second sheet 22 has a second support 18 and a second layer 20 containing a color developer arranged on the second support 18.
When using the pressure measuring sheet set 10, as shown in FIG. 2, the first layer 14 in the first sheet 16 and the second layer 20 in the second sheet 22 face each other. The sheet 16 and the second sheet 22 are laminated and used. By applying pressure from at least one side of the first support 12 side of the first sheet 16 and the second support 18 side of the second sheet 22 in the obtained laminate, the microcapsules are broken in the pressurized region. Then, the color-developing agent contained in the microcapsules comes out of the microcapsules, and the color-developing reaction proceeds with the color-developing agent in the second layer 20. As a result, color development progresses in the pressurized region.
 図1においては、第2支持体18と第2層20とが直接積層しているが、この態様に制限されず、後述するように、第2支持体18と第2層20との間には他の層(例えば、密着層又は易接着層)が配置されていてもよい。 In FIG. 1, the second support 18 and the second layer 20 are directly laminated, but the present invention is not limited to this aspect, and as will be described later, between the second support 18 and the second layer 20. May have another layer (eg, an adhesive layer or an easy-adhesive layer) arranged.
 以下では、圧力測定用シートセット10を構成する第1シート16及び第2シート22の構成について詳述する。 In the following, the configurations of the first sheet 16 and the second sheet 22 constituting the pressure measurement sheet set 10 will be described in detail.
<<第1シート>>
 図1に記載の第1シート16は、第1支持体12と、密着層13と、発色剤を内包するマイクロカプセル14A及びバインダー14Bを含む第1層14と、を有する。
<< 1st sheet >>
The first sheet 16 shown in FIG. 1 has a first support 12, an adhesion layer 13, and a first layer 14 containing microcapsules 14A and a binder 14B containing a color former.
 第1シート16は、枚葉(単票)であってもよいし、長尺状であってもよい。 The first sheet 16 may be a single leaf (single sheet) or a long sheet.
 第1シート16は、220℃で10分間加熱した場合において、第1シート16の長手方向における収縮率S1、及び、第1シート16の長手方向と直交する幅方向における収縮率S2がいずれも-0.5~3.0%であるのが好ましく、本発明の効果がより優れる点で、1.0~3.0%であるのがより好ましい。
 第1シート16の長手方向とは、第1シート16の長尺方向を意味し、具体的には、第1シート16が長方形である場合には、長辺に沿った方向を意味する。また、第1シート16の幅方向とは、第1シート16の長手方向に直交する方向(短手方向)を意味し、例えば、第1シート16が長方形である場合には、短辺に沿った方向を意味する。ただし、第1シート16が正方形である場合、任意に選択した一辺に沿った方向を長手方向として、これに直交する辺に沿った方向を幅方向とする。
 なお、第1シート16の収縮率S1及び収縮率S2の測定方法は、実施例欄に示す通りである。
When the first sheet 16 is heated at 220 ° C. for 10 minutes, both the shrinkage rate S1 in the longitudinal direction of the first sheet 16 and the shrinkage rate S2 in the width direction orthogonal to the longitudinal direction of the first sheet 16 are −. It is preferably 0.5 to 3.0%, and more preferably 1.0 to 3.0% in that the effect of the present invention is more excellent.
The longitudinal direction of the first sheet 16 means the long direction of the first sheet 16, and specifically, when the first sheet 16 is rectangular, it means the direction along the long side. Further, the width direction of the first sheet 16 means a direction orthogonal to the longitudinal direction of the first sheet 16 (short direction), and for example, when the first sheet 16 is rectangular, it is along the short side. Means the direction. However, when the first sheet 16 is a square, the direction along one side arbitrarily selected is the longitudinal direction, and the direction along the side orthogonal to this is the width direction.
The method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the first sheet 16 is as shown in the Example column.
 第1シート16において、収縮率S1と収縮率S2との差の絶対値(|S1-S2|)は、より精密な圧力分布測定を実施できる点で、0~0.8%が好ましく、0~0.6%がより好ましく、0~0.4%が更に好ましい。 In the first sheet 16, the absolute value (| S1-S2 |) of the difference between the shrinkage rate S1 and the shrinkage rate S2 is preferably 0 to 0.8% in that more precise pressure distribution measurement can be performed. ~ 0.6% is more preferable, and 0 to 0.4% is even more preferable.
 以下では、各部材について詳述する。 Below, each member will be described in detail.
<第1支持体>
 第1支持体は、第1層を支持するための部材である。
 第1支持体は、ポリエチレンナフタレート(PEN)シート、又は、芳香族ポリイミド(PI)シートである。発色時に視認しやすい点で、ポリエチレンナフタレートシートであるのが好ましい。
<First support>
The first support is a member for supporting the first layer.
The first support is a polyethylene naphthalate (PEN) sheet or an aromatic polyimide (PI) sheet. A polyethylene naphthalate sheet is preferable because it is easy to see when developing a color.
 ポリエチレンナフタレート(PEN)シートとは、ポリエチレンナフタレートをシートの全質量に対して50質量%以上の割合で含むシートを意図する。変形をより抑制できる点で、ポリエチレンナフタレート(PEN)シートにおいて、ポリエチレンナフタレートの含有量は、シートの全質量に対して、70質量%以上が好ましく、90質量%以上がより好ましく、98質量%以上が更に好ましい。なお、上限値は特に制限されないが、例えば、100質量%以下である。
 また、上述のポリエチレンナフタレートは、ホモポリマーであってもよいし、共重合体の一部であってもよい(換言すると、共重合体の構成単位として含まれていてもよい)。ポリエチレンナフタレートが共重合体の一部である場合、共重合体中、ポリエチレンナフタレート(例えば、ナフタレンジカルボン酸又はその誘導体とエチレングリコールとを重縮合させてなる構成単位)の含有量が、全構成単位に対して50質量%以上であるのが好ましく、70質量%以上であるのが好ましい。なお、上限値としては、100質量%以下である。
 ポリエチレンナフタレートを一部として含む共重合体としては、例えば、ポリエチレンナフタレート/ポリエチレンテレフタレート共重合体(PEN/PET共重合体)が挙げられる。ポリエチレンナフタレートを一部として含む共重合体は、ランダム共重合体であっても、ブロック共重合体であってもよいが、ランダム重合体であることが好ましい。
 ポリエチレンナフタレートフィルムの市販品としては、テオネックス(登録商標)Q51、Q53、Q81、及びQ83(帝人フィルムソリューション(株)製)等が挙げられる。
The polyethylene naphthalate (PEN) sheet is intended to be a sheet containing polyethylene naphthalate at a ratio of 50% by mass or more with respect to the total mass of the sheet. In the polyethylene naphthalate (PEN) sheet, the content of polyethylene naphthalate is preferably 70% by mass or more, more preferably 90% by mass or more, and more preferably 98% by mass, based on the total mass of the sheet, in that deformation can be further suppressed. % Or more is more preferable. The upper limit is not particularly limited, but is, for example, 100% by mass or less.
Further, the above-mentioned polyethylene naphthalate may be a homopolymer or a part of a copolymer (in other words, it may be contained as a constituent unit of the copolymer). When polyethylene naphthalate is a part of the copolymer, the content of polyethylene naphthalate (for example, a constituent unit obtained by polycondensing naphthalenedicarboxylic acid or a derivative thereof and ethylene glycol) in the copolymer is the total. It is preferably 50% by mass or more, and preferably 70% by mass or more with respect to the constituent unit. The upper limit is 100% by mass or less.
Examples of the copolymer containing polyethylene naphthalate as a part include polyethylene naphthalate / polyethylene terephthalate copolymer (PEN / PET copolymer). The copolymer containing polyethylene naphthalate as a part may be a random copolymer or a block copolymer, but a random polymer is preferable.
Examples of commercially available polyethylene naphthalate films include Theonex (registered trademark) Q51, Q53, Q81, and Q83 (manufactured by Teijin Film Solutions Co., Ltd.).
 芳香族ポリイミド(PI)シートとは、芳香族ポリイミドをシートの全質量に対して50質量%以上の割合で含むシートを意図する。芳香族ポリイミド(PI)シートにおいて、変形をより抑制できる点で、芳香族ポリイミドの含有量は、シートの全質量に対して、70質量%以上が好ましく、90質量%以上がより好ましく、98質量%以上が更に好ましい。なお、上限値は特に制限されないが、例えば、100質量%以下である。
 また、上記芳香族ポリイミドは、ホモポリマーであっても、共重合体の一部であってもよい(換言すると、共重合体の構成単位として含まれていてもよい)。芳香族ポリイミドが共重合体の一部である場合、共重合体中、芳香族ポリイミドの含有量が、全構成単位に対して50質量%以上であるのが好ましく、70質量%以上であるのが好ましい。なお、上限値としては、100質量%以下である。
 ポリイミドフィルムの市販品としては、カプトン(登録商標)H、V、及びEN(東レ(株)製)、並びに、アピカルAH、NPI、及びAF(カネカ(株)製)等が挙げられる。
The aromatic polyimide (PI) sheet is intended to be a sheet containing aromatic polyimide in a proportion of 50% by mass or more with respect to the total mass of the sheet. In the aromatic polyimide (PI) sheet, the content of the aromatic polyimide is preferably 70% by mass or more, more preferably 90% by mass or more, and more preferably 98% by mass, based on the total mass of the sheet, in that deformation can be further suppressed. % Or more is more preferable. The upper limit is not particularly limited, but is, for example, 100% by mass or less.
Further, the aromatic polyimide may be a homopolymer or a part of a copolymer (in other words, it may be contained as a constituent unit of the copolymer). When the aromatic polyimide is a part of the copolymer, the content of the aromatic polyimide in the copolymer is preferably 50% by mass or more, preferably 70% by mass or more with respect to all the constituent units. Is preferable. The upper limit is 100% by mass or less.
Examples of commercially available polyimide films include Kapton (registered trademark) H, V, EN (manufactured by Toray Industries, Inc.), Apical AH, NPI, AF (manufactured by Kaneka Corporation), and the like.
 第1支持体の厚みの下限値としては、10μm以上が好ましく、40μm以上がより好ましく、変形をより抑制できる点で、70μm以上が更に好ましい。また、上限値としては、300μm以下が好ましく、200μm以下がより好ましく、150μm以下が更に好ましく、125μm以下が特に好ましい。第1支持体の厚みの一態様としては、例えば、40~120μmが挙げられる。 The lower limit of the thickness of the first support is preferably 10 μm or more, more preferably 40 μm or more, and further preferably 70 μm or more in that deformation can be further suppressed. The upper limit is preferably 300 μm or less, more preferably 200 μm or less, further preferably 150 μm or less, and particularly preferably 125 μm or less. As one aspect of the thickness of the first support, for example, 40 to 120 μm can be mentioned.
 第1支持体は、220℃で10分間加熱した場合において、長手方向における収縮率S1、及び、第1支持体の長手方向と直交する幅方向における収縮率S2がいずれも-0.5~3.0%であるのが好ましく、本発明の効果がより優れる点で、1.0~3.0%であるのがより好ましい。
 第1支持体における収縮率S1と収縮率S2との差の絶対値の好適範囲は、第1シート16における収縮率S1と収縮率S2との差の絶対値と同じである。
 第1支持体の収縮率S1及び収縮率S2の測定方法は、第1シート16の代わりに第1支持体を用いる以外は、第1シート16の収縮率S1及び収縮率S2の測定方法と同じである。
 第1支持体における長手方向及び幅方向の定義は、第1シート16を第1支持体に読み替える以外は、第1シート16の長手方向及び幅方向の定義と同じである。
When the first support is heated at 220 ° C. for 10 minutes, both the shrinkage rate S1 in the longitudinal direction and the shrinkage rate S2 in the width direction orthogonal to the longitudinal direction of the first support are −0.5 to 3 It is preferably 0.0%, and more preferably 1.0 to 3.0% in that the effect of the present invention is more excellent.
The preferred range of the absolute value of the difference between the shrinkage rate S1 and the shrinkage rate S2 in the first support is the same as the absolute value of the difference between the shrinkage rate S1 and the shrinkage rate S2 in the first sheet 16.
The method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the first support is the same as the method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the first sheet 16 except that the first support is used instead of the first sheet 16. Is.
The definitions of the longitudinal direction and the width direction in the first support are the same as the definitions of the longitudinal direction and the width direction of the first sheet 16 except that the first sheet 16 is read as the first support.
<密着層>
 密着層は、第1支持体と第1層との密着性を向上させる層である。
 密着層は、芳香族基、エステル結合(-CO-O-)、及びイミド結合(-CO-N-CO-)からなる群から選択される少なくとも1種の基(以下「特定官能基」ともいう。)を有する樹脂X1(以下「樹脂X1」ともいう。)を含む。
<Adhesion layer>
The adhesion layer is a layer that improves the adhesion between the first support and the first layer.
The adhesion layer is also referred to as at least one group selected from the group consisting of an aromatic group, an ester bond (-CO-O-), and an imide bond (-CO-N-CO-) (hereinafter, also referred to as "specific functional group"). Includes resin X1 having (referred to as "resin X1").
 樹脂X1中、特定官能基は、主鎖に含まれていても、側鎖に含まれていてもよい。
 上記芳香族基としては、芳香族炭化水素環基及び芳香族複素環基のいずれであってもよい。
 芳香族炭化水素環基が含む芳香族炭化水素環としては、単環構造であっても、2つ以上の環が縮環した縮環構造(縮合環構造)であってもよい。また、芳香族炭化水素環は、置換基(置換基としては、例えば、上述の置換基Tに例示される基が挙げられる。)を有していてもよい。芳香族炭化水素環の炭素数としては特に制限されないが、6~30が好ましく、6~18がより好ましく、6が更に好ましく、ベンゼン環であるのが特に好ましい。
In the resin X1, the specific functional group may be contained in the main chain or the side chain.
The aromatic group may be either an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
The aromatic hydrocarbon ring contained in the aromatic hydrocarbon ring group may have a monocyclic structure or a condensed ring structure (fused ring structure) in which two or more rings are fused. Further, the aromatic hydrocarbon ring may have a substituent (for example, examples of the substituent include the group exemplified for the above-mentioned substituent T). The number of carbon atoms of the aromatic hydrocarbon ring is not particularly limited, but is preferably 6 to 30, more preferably 6 to 18, still more preferably 6, and particularly preferably a benzene ring.
 芳香族複素環が含むヘテロ原子(炭素原子及び水素原子以外の原子)としては、例えば、硫黄原子、酸素原子、又は窒素原子が好ましく、窒素原子がより好ましい。芳香族複素環中の炭素数は特に制限されないが、3~30が好ましく、3~18がより好ましい。芳香族複素環中のヘテロ原子の数としては特に制限されず、通常、1~10程度であり、1~4が好ましく、1~2がより好ましい。芳香族複素環の環員数は特に制限されないが、3~8が好ましく、5~7がより好ましく、5~6が更に好ましい。
 芳香族複素環基が含む芳香族複素環としては、単環構造であっても、2つ以上の環が縮環した縮環構造(縮合環構造)であってもよい。縮環構造の場合、ヘテロ原子を有さない芳香族炭化水素環(例えば、ベンゼン環)が含まれていてもよい。また、芳香族複素環は、置換基(置換基としては、例えば、上述の置換基Tに例示される基が挙げられる。)を有していてもよい。
As the hetero atom (atom other than carbon atom and hydrogen atom) contained in the aromatic heterocycle, for example, a sulfur atom, an oxygen atom, or a nitrogen atom is preferable, and a nitrogen atom is more preferable. The number of carbon atoms in the aromatic heterocycle is not particularly limited, but is preferably 3 to 30, and more preferably 3 to 18. The number of heteroatoms in the aromatic heterocycle is not particularly limited, and is usually about 1 to 10, preferably 1 to 4, and more preferably 1 to 2. The number of ring members of the aromatic heterocycle is not particularly limited, but is preferably 3 to 8, more preferably 5 to 7, and even more preferably 5 to 6.
The aromatic heterocycle contained in the aromatic heterocyclic group may have a monocyclic structure or a condensed ring structure (condensed ring structure) in which two or more rings are fused. In the case of a condensed ring structure, an aromatic hydrocarbon ring (for example, a benzene ring) having no heteroatom may be contained. Further, the aromatic heterocycle may have a substituent (for example, examples of the substituent include the group exemplified for the above-mentioned substituent T).
 特定官能基を有する樹脂X1の一態様としては、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、及び、ポリイミド系樹脂等が挙げられ、本発明の効果がより優れる点で、なかでも、スチレン系樹脂又はアクリル系樹脂が好ましい。 Examples of the resin X1 having a specific functional group include a styrene-based resin, an acrylic-based resin, a polyester-based resin, a polyimide-based resin, and the like, and the styrene-based resin is particularly effective in that the effect of the present invention is more excellent. Resin or acrylic resin is preferable.
 なお、上記スチレン系樹脂とは、スチレンに由来する繰り返し単位を含む樹脂を意図する。なお、上記スチレンに由来する繰り返し単位は置換基(置換基としては、例えば、上述の置換基Tに例示される基が挙げられる。)を有していてもよい。
 スチレン系樹脂の一態様としては、スチレンに由来する繰り返し単位の含有量が、全繰り返し単位に対して20~100質量%であるのが好ましい。
The styrene-based resin is intended to be a resin containing a repeating unit derived from styrene. The repeating unit derived from the above styrene may have a substituent (for example, examples of the substituent include the group exemplified for the above-mentioned substituent T).
As one aspect of the styrene-based resin, the content of the repeating unit derived from styrene is preferably 20 to 100% by mass with respect to all the repeating units.
 また、スチレン系樹脂の他の一態様としては、スチレンに由来する繰り返し単位と、それ以外の繰り返し単位との共重合体(スチレン共重合体)であるのも好ましい。なお、スチレン共重合体としては、スチレンに由来する繰り返し単位の含有量が、全繰り返し単位に対して、20質量%以上であるのが好ましく、30質量%以上であるのがより好ましく、40質量%以上であるのが更に好ましい。なお、上限値としては、100質量%未満であるのが好ましく、90質量%以下であるのがより好ましく、80質量%以下であるのが更に好ましく、70質量%以下であるのが特に好ましい。
 上記スチレン共重合体の態様としては、例えば、スチレンーブタジエン共重合体;スチレンに由来する繰り返し単位と、(メタ)アクリレートに由来する繰り返し単位と、(メタ)アクリル酸に由来する繰り返し単位とを含む樹脂;スチレンに由来する繰り返し単位と(メタ)アクリレートに由来する繰り返し単位とを含む樹脂等が挙げられる。
Further, as another aspect of the styrene resin, it is also preferable that it is a copolymer (styrene copolymer) of a repeating unit derived from styrene and other repeating units. As the styrene copolymer, the content of the repeating unit derived from styrene is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass, based on all the repeating units. % Or more is more preferable. The upper limit value is preferably less than 100% by mass, more preferably 90% by mass or less, further preferably 80% by mass or less, and particularly preferably 70% by mass or less.
Examples of the styrene copolymer include a styrene-butadiene copolymer; a repeating unit derived from styrene, a repeating unit derived from (meth) acrylate, and a repeating unit derived from (meth) acrylic acid. Resin containing; Examples thereof include a resin containing a repeating unit derived from styrene and a repeating unit derived from (meth) acrylate.
 また、上記アクリル系樹脂としては、(メタ)アクリレートに由来する繰り返し単位及び/又は(メタ)アクリル酸に由来する繰り返し単位を含む樹脂を意図する。アクリル系樹脂の一態様としては、(メタ)アクリレートに由来する繰り返し単位及び(メタ)アクリル酸に由来する繰り返し単位から選ばれる1種以上の含有量が、全繰り返し単位に対して50質量%以上であるのが好ましく、65質量%以上であるのがより好ましく、75質量%以上であるのが更に好ましく、85質量%以上であるのが特に好ましい。なお、上限値としては、100質量%以下である。上記ポリ(メタ)アクリレートにおけるアルキル部位の炭素数としては特に制限されないが、例えば、1~10であるのが好ましく、1~6がより好ましく、1~3が更に好ましい。なお、上記(メタ)アクリレートに由来する繰り返し単位及び(メタ)アクリル酸に由来する繰り返し単位は、置換基(置換基としては、例えば、上述の置換基Tに例示される基が挙げられる。)を有していてもよい。 Further, as the acrylic resin, a resin containing a repeating unit derived from (meth) acrylate and / or a repeating unit derived from (meth) acrylic acid is intended. As one aspect of the acrylic resin, the content of one or more selected from the repeating unit derived from (meth) acrylate and the repeating unit derived from (meth) acrylic acid is 50% by mass or more with respect to all the repeating units. It is preferably 65% by mass or more, more preferably 75% by mass or more, and particularly preferably 85% by mass or more. The upper limit is 100% by mass or less. The carbon number of the alkyl moiety in the poly (meth) acrylate is not particularly limited, but is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 3. The repeating unit derived from the (meth) acrylate and the repeating unit derived from the (meth) acrylic acid are substituents (examples of the substituent include the group exemplified by the above-mentioned substituent T). May have.
 特定官能基を有する樹脂X1の具体例としては、例えば、ポリスチレン、スチレンブタジエンゴム(SBR)、ポリエチレンテレフタレート(PET)、ポリエチレングリコール(PEG)/カプロラクトン共重合体、ポリプロピレングリコール(PPG)/カプロラクトン共重合体、ポリ(メタ)アクリル酸、ポリ(メタ)アクリレート、ポリイミド、スチレン/(メタ)アクリル酸共重合体、スチレン/(メタ)アクリレート共重合体、スチレン/(メタ)アクリル酸/(メタ)アクリレート共重合体、スチレン/ブタジエン/(メタ)アクリル酸共重合体、スチレン/ブタジエン/(メタ)アクリレート共重合体、及び、スチレン/ブタジエン/(メタ)アクリル酸/(メタ)アクリレート共重合体等が挙げられる。 Specific examples of the resin X1 having a specific functional group include polystyrene, styrene butadiene rubber (SBR), polyethylene terephthalate (PET), polyethylene glycol (PEG) / caprolactone copolymer, and polypropylene glycol (PPG) / caprolactone co-weight. Combined, poly (meth) acrylic acid, poly (meth) acrylate, polyimide, styrene / (meth) acrylic acid copolymer, styrene / (meth) acrylate copolymer, styrene / (meth) acrylic acid / (meth) acrylate Polymers, styrene / butadiene / (meth) acrylic acid copolymers, styrene / butadiene / (meth) acrylate copolymers, styrene / butadiene / (meth) acrylic acid / (meth) acrylate copolymers, etc. Can be mentioned.
 密着層の好適な一態様としては、樹脂X1が芳香族基を有し、さらに、アミド結合及び水酸基の1種以上を有する樹脂X2を有するのも好ましい。
 上記樹脂X2としては、例えば、カルボキシメチルセルロース、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、結晶セルロース、キサンタンガム、グァーガム、ヒドロキシエチルグァーガム、カルボキシメチルグァーガム、トラガントガム、ローカストビーンガム、タマリンドシードガム、サイリウムシードガム、クインスシード、カラギーナン、ガラクタン、アラビアガム、ペクチン、プルラン、マンナン、グルコマンナン、デンプン、カードラン、カラギーナン、コンドロイチン硫酸、デルマタン硫酸、グリコーゲン、ヘパラン硫酸、ヒアルロン酸、ヒアルロン酸、ケラタン硫酸、コンドロイチン、ムコイチン硫酸、デキストラン、ケラト硫酸、サクシノグルカン、カロニン酸、アルギン酸、アルギン酸プロピレングリコール、マクロゴール、キチン、キトサン、カルボキシメチルキチン、ゼラチン、カゼイン、アラビアゴム、寒天、カードラン、及び、ポリビニルアルコール等が挙げられる。
As a preferred embodiment of the adhesion layer, it is also preferable that the resin X1 has an aromatic group, and further has a resin X2 having an amide bond and one or more hydroxyl groups.
Examples of the resin X2 include carboxymethyl cellulose, carboxyethyl cellulose, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, methyl hydroxypropyl cellulose, hydroxypropyl methyl cellulose, crystalline cellulose, pectintan gum, guar gum, hydroxyethyl guar gum, carboxymethyl guar gum, and tragant gum. Locust bean gum, tamarind seed gum, psyllium seed gum, quince seed, carrageenan, galactan, arabic gum, pectin, purulan, mannan, glucomannan, starch, curdran, carrageenan, chondroitin sulfate, dermatane sulfate, glycogen, heparan sulfate, hyalurone Acid, hyaluronic acid, keratane sulfate, chondroitin, mucoitin sulfate, dextran, keratosulfate, succinoglucan, carrageenic acid, alginic acid, propylene glycol alginate, macrogol, chitin, chitosan, carboxymethyl chitin, gelatin, casein, gum arabic, agar , Carrageenan, polyvinyl alcohol and the like.
 密着層中、樹脂X1の含有量は、密着層中に含まれる樹脂の全含有量に対して、10~100質量%が好ましい。
 密着層が1層から形成される場合、上記密着層中、スチレン系樹脂及びアクリル系樹脂から選ばれる1種以上の樹脂の含有量が、密着層中に含まれる樹脂の全質量に対して、50~100質量%であるのが好ましい。
The content of the resin X1 in the close contact layer is preferably 10 to 100% by mass with respect to the total content of the resin contained in the close contact layer.
When the adhesion layer is formed from one layer, the content of one or more resins selected from the styrene resin and the acrylic resin in the adhesion layer is based on the total mass of the resin contained in the adhesion layer. It is preferably 50 to 100% by mass.
 密着層の厚みの下限値としては、0.01μm以上が好ましく、0.1μm以上がより好ましい。また、上限値としては、10μm以下が好ましく、5μm以下がより好ましい。
 密着層の厚みの一態様としては、0.01~10μmが挙げられ、0.1~5μmがより好ましい。
 また、密着層の厚みの他の一態様としては、2~10μmが挙げられ、2~5μmがより好ましい。
The lower limit of the thickness of the adhesion layer is preferably 0.01 μm or more, more preferably 0.1 μm or more. The upper limit is preferably 10 μm or less, more preferably 5 μm or less.
As one aspect of the thickness of the adhesion layer, 0.01 to 10 μm is mentioned, and 0.1 to 5 μm is more preferable.
Further, as another aspect of the thickness of the adhesion layer, 2 to 10 μm is mentioned, and 2 to 5 μm is more preferable.
<第1層>
(マイクロカプセル)
 第1層は、発色剤を内包するマイクロカプセルを含む。
 以下、まず、マイクロカプセルを構成する材料について詳述する。
<First layer>
(Microcapsules)
The first layer contains microcapsules containing a color former.
Hereinafter, first, the materials constituting the microcapsules will be described in detail.
 マイクロカプセルは、一般的に、コア部と、コア部をなすコア材(内包されるもの(内包成分ともいう。))を内包するためのカプセル壁と、を有する。
 本発明においては、マイクロカプセルは、コア材(内包成分)として、発色剤を内包する。発色剤がマイクロカプセルに内包されているため、加圧されてマイクロカプセルが破壊されるまで、発色剤は安定的に存在できる。
Microcapsules generally have a core portion and a capsule wall for encapsulating a core material (encapsulated material (also referred to as an encapsulating component)) forming the core portion.
In the present invention, the microcapsules contain a coloring agent as a core material (encapsulating component). Since the color-developing agent is encapsulated in the microcapsules, the color-developing agent can exist stably until the microcapsules are destroyed by pressure.
 マイクロカプセルは、コア材を内包するカプセル壁を有する。
 マイクロカプセルにおけるカプセル壁は、芳香族基を有する樹脂(以下「樹脂Y1」ともいう。)を含む。
 ここで、芳香族基とは、上述した密着層が含む樹脂X1が有する特定官能基として挙げた「芳香族基」と同義である。
The microcapsules have a capsule wall that encloses the core material.
The capsule wall in the microcapsules contains a resin having an aromatic group (hereinafter, also referred to as “resin Y1”).
Here, the aromatic group is synonymous with the "aromatic group" mentioned as the specific functional group of the resin X1 contained in the adhesion layer described above.
 マイクロカプセルのカプセル壁は、実質的に、樹脂で構成されることが好ましい。実質的に樹脂で構成されるとは、カプセル壁全質量に対する、樹脂の含有量が90質量%以上であることを意味し、100質量%であるのが好ましい。
 マイクロカプセル壁を構成する樹脂中、樹脂Y1の含有量としては、樹脂の全質量に対して、80質量%以上であるのが好ましく、90質量%以上であるのがより好ましく、95質量%以上であるのが更に好ましい。なお、上限値としては、100質量%以下である。
It is preferred that the capsule wall of the microcapsules is substantially made of resin. Substantially composed of resin means that the content of the resin is 90% by mass or more with respect to the total mass of the capsule wall, and is preferably 100% by mass.
The content of the resin Y1 in the resin constituting the microcapsule wall is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more with respect to the total mass of the resin. Is more preferable. The upper limit is 100% by mass or less.
 樹脂Y1の好適な一態様としては、芳香族基を有するポリウレア、芳香族基を有するポリウレタンウレア、芳香族基を有するポリウレタン、及びメラミン樹脂(例えば、メラミン-ホルムアルデヒド樹脂)からなる群から選択される少なくとも1種を含むのが好ましい。本発明の効果がより優れる点で、なかでも、芳香族基を有するポリウレタンウレア、芳香族基を有するポリウレタンウレア、及びメラミン樹脂からなる群から選択される少なくとも1種を含むのがより好ましく、ポリメチレンポリフェニレン連結基を有するポリウレタンウレア、又は、メラミン-ホルムアルデヒド樹脂を含むのが更に好ましい。 A preferred embodiment of the resin Y1 is selected from the group consisting of polyurea having an aromatic group, polyurethane urea having an aromatic group, polyurethane having an aromatic group, and a melamine resin (eg, melamine-formaldehyde resin). It is preferable to contain at least one kind. In that the effect of the present invention is more excellent, it is more preferable to contain at least one selected from the group consisting of polyurethane urea having an aromatic group, polyurethane urea having an aromatic group, and a melamine resin, and poly. It is more preferable to contain a polyurethane urea having a methylenepolyphenylene linking group or a melamine-formaldehyde resin.
 なお、ポリウレタンとはウレタン結合を複数有するポリマーであり、ポリオールとポリイソシアネート(好ましくは芳香族イソシアネート)とを含む原料から形成される反応生成物であることが好ましい。
 また、ポリウレアとはウレア結合を複数有するポリマーであり、ポリアミンとポリイソシアネート(好ましくは芳香族イソシアネート)とを含む原料から形成される反応生成物であることが好ましい。なお、ポリイソシアネートの一部が水と反応してポリアミンとなることを利用して、ポリイソシアネートを用いて、ポリアミンを使用せずに、ポリウレアを合成することもできる。
 また、ポリウレタンウレアとはウレタン結合及びウレア結合を有するポリマーであり、ポリオールと、ポリアミンと、ポリイソシアネート(好ましくは芳香族イソシアネート)とを含む原料から形成される反応生成物であることが好ましい。なお、ポリオールとポリイソシアネートとを反応させる際に、ポリイソシアネートの一部が水と反応してポリアミンとなり、結果的にポリウレタンウレアが得られることがある。
 また、メラミン-ホルムアルデヒド樹脂としては、メラミンとホルムアルデヒドとの重縮合から形成される反応生成物であることが好ましい。
The polyurethane is a polymer having a plurality of urethane bonds, and is preferably a reaction product formed from a raw material containing a polyol and a polyisocyanate (preferably an aromatic isocyanate).
Further, the polyurea is a polymer having a plurality of urea bonds, and is preferably a reaction product formed from a raw material containing a polyamine and a polyisocyanate (preferably an aromatic isocyanate). It is also possible to synthesize polyurea using polyisocyanate without using polyamine by utilizing the fact that a part of polyisocyanate reacts with water to form polyamine.
Further, the polyurethane urea is a polymer having a urethane bond and a urea bond, and is preferably a reaction product formed from a raw material containing a polyol, a polyamine, and a polyisocyanate (preferably an aromatic isocyanate). When the polyol and the polyisocyanate are reacted, a part of the polyisocyanate reacts with water to form a polyamine, and as a result, polyurethane urea may be obtained.
The melamine-formaldehyde resin is preferably a reaction product formed by polycondensation of melamine and formaldehyde.
 ポリイソシアネートとは、2つ以上のイソシアネート基を有する化合物であり、芳香族ポリイソシアネート、及び、脂肪族ポリイソシアネートが挙げられ、マイクロカプセルのカプセル壁に芳香環基を導入できる点で、芳香族ポリイソシアネートが好ましい。
 芳香族ポリイソシアネートとしては、芳香族ジイソシアネートが挙げられ、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、及び、4,4’-ジフェニルヘキサフルオロプロパンジイソシアネートが挙げられる。
The polyisocyanate is a compound having two or more isocyanate groups, and examples thereof include aromatic polyisocyanates and aliphatic polyisocyanates. Aromatic polyisocyanates can be introduced into the capsule wall of a microcapsule. Isocyanates are preferred.
Examples of the aromatic polyisocyanate include aromatic diisocyanates, such as m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and the like. Diphenylmethane-4,4'-diisocyanate, 3,3'-dimethoxy-biphenyldiisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, Examples thereof include 4-chloroxylylene-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropanediisocyanate, and 4,4'-diphenylhexafluoropropanediisocyanate.
 脂肪族ポリイソシアネートとしては、脂肪族ジイソシアネートが挙げられ、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、リジンジイソシアネート、及び、水素化キシリレンジイソシアネートが挙げられる。 Examples of the aliphatic polyisocyanate include aliphatic diisocyanates, such as trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanis, butylene-1,2-diisocyanis, cyclohexylene-1,2-diisocyanis, and cyclohex. Silen-1,3-diisethylene, cyclohexamethylene-1,4-diisocyanis, dicyclohexamethylene-4,4'-diisocyanis, 1,4-bis (isocyanismethyl) cyclohexane, 1,3-bis (isocyanismethyl) cyclohexane, isophoron Examples thereof include diisocyanate, lysine diisocyanate, and hydride xylylene diisocyanate.
 なお、上記では2官能の芳香族ポリイソシアネート及び脂肪族ポリイソシアネートを例示したが、ポリイソシアネートとしては、3官能以上のポリイソシアネート(例えば、3官能のトリイソシアネート、及び、4官能のテトライソシアネート)も挙げられる。
 より具体的には、ポリイソシアネートとしては、上記の2官能のポリイソシアネートの3量体であるビューレット体もしくはイソシアヌレート体、トリメチロールプロパン等のポリオールと2官能のポリイソシアネートとのアダクト体(付加体)、ベンゼンイソシアネートのホルマリン縮合物、メタクリロイルオキシエチルイソシアネート等の重合性基を有するポリイソシアネート、及び、リジントリイソシアネートも挙げられる。
 ポリイソシアネートについては「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))に記載されている。
Although bifunctional aromatic polyisocyanates and aliphatic polyisocyanates have been exemplified above, trifunctional or higher functional polyisocyanates (for example, trifunctional triisocyanates and tetrafunctional tetraisocyanates) may also be used as polyisocyanates. Can be mentioned.
More specifically, the polyisocyanate is an adduct (addition) of a polyol such as a burette or isocyanurate, which is a trimer of the above bifunctional polyisocyanate, or a polyol such as trimethylolpropane, and a bifunctional polyisocyanate. (Body), formalin condensate of benzene isocyanate, polyisocyanate having a polymerizable group such as methacryloyloxyethyl isocyanate, and lysine triisocyanate can also be mentioned.
Polyisocyanates are described in the "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
 なかでも、ポリイソシアネートの好適態様の一つとしては、3官能以上のポリイソシアネートが好ましい。
 3官能以上のポリイソシアネートとしては、例えば、3官能以上の芳香族ポリイソシアネート、及び、3官能以上の脂肪族ポリイソシアネートが挙げられる。
 3官能以上のポリイソシアネートとしては、芳香族又は脂環族ジイソシアネートと1分子中に3つ以上の活性水素基を有する化合物(例えば、3官能以上の、ポリオール、ポリアミン、又はポリチオール等)とのアダクト体(付加物)である3官能以上のポリイソシアネート(アダクト型である3官能以上のポリイソシアネート)、及び、芳香族又は脂環族ジイソシアネートの3量体(ビウレット型又はイソシアヌレート型)も好ましく、上記アダクト体(付加物)である3官能以上のポリイソシアネートがより好ましい。
Among them, as one of the preferred embodiments of the polyisocyanate, a trifunctional or higher functional polyisocyanate is preferable.
Examples of the trifunctional or higher functional polyisocyanate include a trifunctional or higher functional aromatic polyisocyanate and a trifunctional or higher functional aliphatic polyisocyanate.
The trifunctional or higher functional polyisocyanate is an adduct of an aromatic or alicyclic diisocyanate and a compound having three or more active hydrogen groups in one molecule (for example, a trifunctional or higher functional polyol, polyamine, polythiol, etc.). A trifunctional or higher polyisocyanate (adduct type trifunctional or higher polyisocyanate) which is a body (additive) and a trimer of an aromatic or alicyclic diisocyanate (biuret type or isocyanurate type) are also preferable. A trifunctional or higher polyisocyanate, which is the adduct body (additive), is more preferable.
 上記アダクト体である3官能以上のポリイソシアネートとしては、芳香族又は脂環族ジイソシアネートと1分子中に3つ以上の水酸基を有するポリオールとのアダクト体である3官能以上のポリイソシアネートが好ましく、芳香族又は脂環族ジイソシアネートと1分子中に3つの水酸基を有するポリオールとのアダクト体である3官能のポリイソシアネートがより好ましい。
 上記アダクト体としては、高温下でより精密な圧力分布測定を実施できる点で、芳香族ジイソシアネートを用いて得られるアダクト体を用いることが好ましい。
 上記ポリオールとしては、例えば、後述する3官能以上の低分子ポリオールが好ましく、トリメチロールプロパンがより好ましい。
As the trifunctional or higher polyisocyanate which is the adduct body, a trifunctional or higher functional polyisocyanate which is an adduct body of an aromatic or alicyclic diisocyanate and a polyol having three or more hydroxylates in one molecule is preferable. A trifunctional polyisocyanate, which is an adduct of a group or alicyclic diisocyanate and a polyol having three hydroxyl groups in one molecule, is more preferable.
As the adduct body, it is preferable to use an adduct body obtained by using an aromatic diisocyanate because more precise pressure distribution measurement can be performed at a high temperature.
As the above-mentioned polyol, for example, a small molecule polyol having trifunctionality or higher, which will be described later, is preferable, and trimethylolpropane is more preferable.
 アダクト型である3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、P49-75S、D-110N、D-120N、D-140N、D-160N(三井化学株式会社製)、デスモジュール(登録商標)L75、UL57SP(住化バイエルウレタン株式会社製)、コロネート(登録商標)HL、HX、L(日本ポリウレタン株式会社製)、P301-75E(旭化成株式会社製)、バーノック(登録商標)D-750(DIC株式会社製)が挙げられる。
 なかでも、アダクト型の3官能以上のポリイソシアネートとしては、タケネート(登録商標)D-110N、D-120N、D-140N、D-160N(三井化学株式会社製)、又は、DIC株式会社製のバーノック(登録商標)D-750が好ましい。
 イソシアヌレート型の3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N、D-204(三井化学株式会社製)、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(住化バイエルウレタン)、コロネート(登録商標)HX、HK(日本ポリウレタン株式会社製)、デュラネート(登録商標)TPA-100、TKA-100、TSA-100、TSS-100、TLA-100、TSE-100(旭化成株式会社製)が挙げられる。
 ビウレット型の3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-165N、NP1100(三井化学株式会社製)、デスモジュール(登録商標)N3200(住化バイエルウレタン)、デュラネート(登録商標)24A-100(旭化成株式会社製)が挙げられる。
Examples of the adduct-type trifunctional or higher-functional polyisocyanate include Takenate (registered trademark) D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, and D-. 140N, D-160N (manufactured by Mitsui Chemicals Co., Ltd.), Death Module (registered trademark) L75, UL57SP (manufactured by Sumika Bayer Urethane Co., Ltd.), Coronate (registered trademark) HL, HX, L (manufactured by Nippon Polyurethane Co., Ltd.), Examples thereof include P301-75E (manufactured by Asahi Kasei Co., Ltd.) and Barnock (registered trademark) D-750 (manufactured by DIC Co., Ltd.).
Among them, as the adduct-type trifunctional or higher polyisocyanate, Takenate (registered trademark) D-110N, D-120N, D-140N, D-160N (manufactured by Mitsui Chemicals, Inc.) or DIC Corporation Barnock® D-750 is preferred.
Examples of the isocyanurate-type trifunctional or higher functional isocyanate include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N, and D-204 (manufactured by Mitsui Chemicals, Inc.). , Sumijour N3300, Death Module (registered trademark) N3600, N3900, Z4470BA (Suika Bayer Urethane), Coronate (registered trademark) HX, HK (manufactured by Nippon Polyurethane Co., Ltd.), Duranate (registered trademark) TPA-100, TKA- 100, TSA-100, TSS-100, TLA-100, TSE-100 (manufactured by Asahi Kasei Co., Ltd.) can be mentioned.
Biuret-type trifunctional or higher functional isocyanates include, for example, Takenate (registered trademark) D-165N, NP1100 (manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) N3200 (Sumitomo Bayer Urethane), and Duranate (registered trademark). ) 24A-100 (manufactured by Asahi Kasei Corporation).
 また、ポリイソシアネートとしては、ポリメチレンポリフェニルポリイソシアネートも好ましい。
 ポリメチレンポリフェニルポリイソシアネートとは、式(X)で表される化合物が好ましい。
Further, as the polyisocyanate, polymethylene polyphenyl polyisocyanate is also preferable.
The polymethylene polyphenyl polyisocyanate is preferably a compound represented by the formula (X).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、nは繰り返し単位数を表す。繰り返し単位数としては、1以上の整数を表し、高温下でより精密な圧力分布測定を実施できる点で、nは1~10の整数が好ましく、1~5の整数がより好ましい。 In equation (1), n represents the number of repeating units. The number of repeating units represents an integer of 1 or more, and n is preferably an integer of 1 to 10 and more preferably an integer of 1 to 5 in that more precise pressure distribution measurement can be performed at high temperature.
 ポリメチレンポリフェニルポリイソシアネートを含むポリイソシアネートとしては、例えば、ミリオネート MR-100、ミリオネート MR-200、ミリオネート MR-400(東ソー株式会社製)、WANNATE PM-200、WANNATE PM-400(万華ジャパン株式会社製)、コスモネート M-50、コスモネート M-100、コスモネートM-200、コスモネート M-300(三井化学株式会社製)、及び、ボラネートM-595(ダウケミカル株式会社製)が挙げられる。 Examples of the polyisocyanate containing polymethylene polyphenyl polyisocyanate include Millionate MR-100, Millionate MR-200, Millionate MR-400 (manufactured by Tosoh Co., Ltd.), WANNAME PM-200, and WANNAME PM-400 (Manhua Japan Co., Ltd.). Cosmonate M-50, Cosmonate M-100, Cosmonate M-200, Cosmonate M-300 (manufactured by Mitsui Chemicals Co., Ltd.), and Boranate M-595 (manufactured by Dow Chemicals Co., Ltd.). Will be.
 ポリオールとは、2つ以上のヒドロキシル基を有する化合物であり、例えば、低分子ポリオール(例:脂肪族ポリオール、芳香族ポリオール)、ポリビニルアルコール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリラクトン系ポリオール、ヒマシ油系ポリオール、ポリオレフィン系ポリオール、及び、水酸基含有アミン系化合物が挙げられる。
 なお、低分子ポリオールとは、分子量が400以下のポリオールを意味し、例えば、エチレングリコール、ジエチレングリコール、及び、プロピレングリコール等の2官能の低分子ポリオール、並びに、グリセリン、トリメチロールプロパン、ヘキサントリオール、ペンタエリスリトール、及び、ソルビトール等の3官能以上の低分子ポリオールが挙げられる。
A polyol is a compound having two or more hydroxyl groups, and is, for example, a low molecular weight polyol (eg, an aliphatic polyol, an aromatic polyol), a polyvinyl alcohol, a polyether polyol, a polyester-based polyol, a polylactone-based polyol, or Himashi. Examples thereof include oil-based polyols, polyolefin-based polyols, and hydroxyl group-containing amine-based compounds.
The low molecular weight polyol means a polyol having a molecular weight of 400 or less, for example, bifunctional low molecular weight polyols such as ethylene glycol, diethylene glycol, and propylene glycol, as well as glycerin, trimethylolpropane, hexanetriol, and penta. Examples thereof include trifunctional or higher low molecular weight polyols such as erythritol and sorbitol.
 なお、水酸基含有アミン系化合物としては、例えば、アミノ化合物のオキシアルキル化誘導体等として、アミノアルコールが挙げられる。アミノアルコールとしては、例えば、エチレンジアミン等のアミノ化合物のプロピレンオキサイド又はエチレンオキサイド付加物である、N,N,N’,N’-テトラキス[2-ヒドロキシプロピル]エチレンジアミン、及び、N,N,N’,N’-テトラキス[2-ヒドロキシエチル]エチレンジアミン等が挙げられる。 Examples of the hydroxyl group-containing amine compound include amino alcohols as oxyalkylated derivatives of amino compounds. Examples of the amino alcohol include N, N, N', N'-tetrakis [2-hydroxypropyl] ethylenediamine, which are propylene oxides or adducts of ethylene oxide of amino compounds such as ethylenediamine, and N, N, N'. , N'-Tetrakis [2-hydroxyethyl] ethylenediamine and the like.
 ポリアミンとは、2つ以上のアミノ基(第1級アミノ基又は第2級アミノ基)を有する化合物であり、ジエチレントリアミン、トリエチレンテトラミン、1,3-プロピレンジアミン、及び、ヘキサメチレンジアミン等の脂肪族多価アミン;脂肪族多価アミンのエポキシ化合物付加物;ピペラジン等の脂環式多価アミン;3,9-ビス-アミノプロピル-2,4,8,10-テトラオキサスピロ-(5,5)ウンデカン等の複素環式ジアミンが挙げられる。 A polyamine is a compound having two or more amino groups (primary amino group or secondary amino group), and is a fat such as diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, and hexamethylenediamine. Group polyvalent amines; Epoxy compound adducts of aliphatic polyvalent amines; Alicyclic polyvalent amines such as piperazine; 3,9-bis-aminopropyl-2,4,8,10-tetraoxaspiro- (5, 5) Examples thereof include heterocyclic diamines such as undecane.
 なかでも、樹脂Y1としては、芳香族又は脂環族ジイソシアネートと1分子中に3つ以上の活性水素基を有する化合物とのアダクト体である3官能以上のポリイソシアネートA(以下、単に「ポリイソシアネートA」ともいう。)、並びに、芳香族ジイソシアネート及びポリメチレンポリフェニルポリイソシアネートからなる群から選択されるポリイソシアネートB(以下、単に「ポリイソシアネートB」ともいう。)を用いて形成されることが好ましい。
 つまり、カプセル壁は、上記ポリイソシアネートA及びポリイソシアネートBを用いて形成される樹脂Y1を含むカプセル壁であることが好ましい。
 上記ポリイソシアネートA及びポリイソシアネートBを使用した場合、発色の温度依存性が小さい。なお、発色の温度依存性とは、圧力測定用シートセットに対して圧力をかける際の温度による発色の程度の違いを表す特性である。
 なお、ポリイソシアネートBとしては、芳香族ジイソシアネートを単独で用いてもよいし、ポリメチレンポリフェニルポリイソシアネートを単独で用いてもよいし、両者を混合して用いてもよい。なかでも、ポリイソシアネートBとしては、芳香族ジイソシアネート及びポリメチレンポリフェニルポリイソシアネートの混合物が好ましい。
 上記混合物においては、芳香族ジイソシアネートに対する、ポリメチレンポリフェニルポリイソシアネートの質量比(ポリメチレンポリフェニルポリイソシアネートの質量/芳香族ジイソシアネートの質量)は特に制限されないが、0.1~10が好ましく、0.5~2がより好ましく、0.75~1.5がさらに好ましい。
Among them, the resin Y1 is a trifunctional or higher polyisocyanate A (hereinafter, simply "polyisocyanate") which is an adduct of an aromatic or alicyclic diisocyanate and a compound having three or more active hydrogen groups in one molecule. Also referred to as "A"), and may be formed using polyisocyanate B (hereinafter, also simply referred to as "polyisocyanate B") selected from the group consisting of aromatic diisocyanates and polymethylene polyphenyl polyisocyanates. preferable.
That is, the capsule wall is preferably a capsule wall containing the resin Y1 formed by using the polyisocyanate A and the polyisocyanate B.
When the above polyisocyanate A and polyisocyanate B are used, the temperature dependence of color development is small. The temperature dependence of color development is a characteristic showing the difference in the degree of color development depending on the temperature when pressure is applied to the pressure measurement sheet set.
As the polyisocyanate B, aromatic diisocyanate may be used alone, polymethylene polyphenyl polyisocyanate may be used alone, or both may be used in combination. Among them, as the polyisocyanate B, a mixture of aromatic diisocyanate and polymethylene polyphenyl polyisocyanate is preferable.
In the above mixture, the mass ratio of polymethylene polyphenyl polyisocyanate to aromatic diisocyanate (mass of polymethylene polyphenyl polyisocyanate / mass of aromatic diisocyanate) is not particularly limited, but is preferably 0.1 to 10 and 0. .5-2 is more preferable, and 0.75 to 1.5 is even more preferable.
 ポリイソシアネートA及びポリイソシアネートBを併用する場合、ポリイソシアネートBに対する、上記ポリイソシアネートAの質量比(ポリイソシアネートAの質量/ポリイソシアネートBの質量)は特に制限されないが、98/2~20/80が好ましく、80/20~20/80がより好ましく、80/20~45/55がさらに好ましい。
 上記質量比が上記範囲内である場合、高温下でより精密な圧力分布測定を実施できる。また、発色の温度依存性が小さい。
When polyisocyanate A and polyisocyanate B are used in combination, the mass ratio of polyisocyanate A to polyisocyanate B (mass of polyisocyanate A / mass of polyisocyanate B) is not particularly limited, but is 98/2 to 20/80. Is preferable, 80/20 to 20/80 is more preferable, and 80/20 to 45/55 is even more preferable.
When the mass ratio is within the above range, more precise pressure distribution measurement can be performed at high temperature. In addition, the temperature dependence of color development is small.
 また、樹脂Y1の好適態様の一例としては、以下に示す構造A又は構造Bを有することも挙げられる。
 構造A:芳香族又は脂環族ジイソシアネートと、1分子中に3つ以上の活性水素基を有する化合物と、ポリメチレンポリフェニルポリイソシアネート(好ましくは、式(X)で表される化合物)と、を反応させてなる構造。
 構造B:メラミンとホルムアルデヒドとを反応させてなる構造。
 上記構造Aにおいて、上記活性水素基としては、水酸基又はアミノ基であるのが好ましく、水酸基であるのがより好ましい。
Moreover, as an example of a preferable embodiment of the resin Y1, it may be mentioned that it has the structure A or the structure B shown below.
Structure A: An aromatic or alicyclic diisocyanate, a compound having three or more active hydrogen groups in one molecule, a polymethylene polyphenyl polyisocyanate (preferably a compound represented by the formula (X)), and the like. Structure made by reacting.
Structure B: A structure formed by reacting melamine and formaldehyde.
In the structure A, the active hydrogen group is preferably a hydroxyl group or an amino group, and more preferably a hydroxyl group.
 マイクロカプセルのカプセル壁の熱分解温度は、250℃以上であるのが好ましく、250℃超が好ましく、255℃以上がより好ましく、260℃以上が更に好ましい。上限は、特に限定されないが、500℃以下であることが多い。
 上記カプセル壁の熱分解温度の測定方法としては、以下のとおりである。
 縦1cm×横1cmの第1層(マイクロカプセル層)を50枚用意し、10mLの水に全て浸漬して24時間静置し、マイクロカプセルの水分散液を得る。なお、第1シートが第1支持体を含む場合、第1シートを50枚の縦1cm×横1cmを用意して浸漬してもよい。
 得られたマイクロカプセルの水分散液を15000rpmにて30分間遠心分離し、マイクロカプセルを分取する。分取されたマイクロカプセルに酢酸エチルを入れて、更に、25℃で24時間撹拌する。その後、得られた溶液をろ過し、得られた残渣を60℃で48時間真空乾燥することで、内部に何も内包されていないマイクロカプセル(以下、単に「測定材料」ともいう。)が得られる。つまり、熱分解温度の測定対象である、マイクロカプセルのカプセル壁材料が得られる。
 次に、熱重量示差熱分析装置TG-DTA(装置名:DTG-60、島津製作所社製)を用いて、得られた測定材料の熱分解温度を測定する。なお、熱分解温度とは、大気雰囲気の熱重量分析(TGA)において、測定材料を一定の昇温速度(10℃/min)で室温から昇温し、加熱前の測定材料の質量に対し、5質量%減量した時の温度をもって熱分解温度(℃)とする。
The thermal decomposition temperature of the capsule wall of the microcapsules is preferably 250 ° C. or higher, more preferably 250 ° C. or higher, more preferably 255 ° C. or higher, still more preferably 260 ° C. or higher. The upper limit is not particularly limited, but is often 500 ° C. or lower.
The method for measuring the thermal decomposition temperature of the capsule wall is as follows.
50 sheets of the first layer (microcapsule layer) having a length of 1 cm and a width of 1 cm are prepared, and all of them are immersed in 10 mL of water and allowed to stand for 24 hours to obtain an aqueous dispersion of microcapsules. When the first sheet includes the first support, 50 sheets of 1 cm in length × 1 cm in width may be prepared and immersed.
The obtained aqueous dispersion of microcapsules is centrifuged at 15,000 rpm for 30 minutes, and the microcapsules are separated. Ethyl acetate is added to the separated microcapsules, and the mixture is further stirred at 25 ° C. for 24 hours. Then, the obtained solution is filtered and the obtained residue is vacuum dried at 60 ° C. for 48 hours to obtain microcapsules containing nothing inside (hereinafter, also simply referred to as “measurement material”). Be done. That is, a capsule wall material of microcapsules, which is an object for measuring the thermal decomposition temperature, can be obtained.
Next, the thermal decomposition temperature of the obtained measurement material is measured using a thermogravimetric differential thermal analyzer TG-DTA (device name: DTG-60, manufactured by Shimadzu Corporation). In the thermogravimetric analysis (TGA) of the atmospheric atmosphere, the thermal decomposition temperature is the temperature of the measurement material raised from room temperature at a constant temperature rise rate (10 ° C./min) with respect to the mass of the measurement material before heating. The thermogravimetric temperature (° C.) is defined as the temperature at which the weight is reduced by 5% by mass.
 マイクロカプセルの粒径は特に制限されないが、体積基準のメジアン径(D50)で1~80μmが好ましく、5~70μmがより好ましく、10~50μmがさらに好ましい。
 マイクロカプセルの体積基準のメジアン径は、マイクロカプセルの製造条件等を調整することにより制御できる。
 ここで、マイクロカプセルの体積基準のメジアン径とは、マイクロカプセル全体を体積累計が50%となる粒子径を閾値に2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる径をいう。つまり、メジアン径は、いわゆるD50に該当する。
 マイクロカプセルを含む第1層を有する第1シートの第1層の表面を光学顕微鏡により1000倍で撮影し、500μm×500μmの範囲にある全てのマイクロカプセルの大きさを計測して算出される値である。
The particle size of the microcapsules is not particularly limited, but is preferably 1 to 80 μm, more preferably 5 to 70 μm, and even more preferably 10 to 50 μm in terms of volume-based median diameter (D50).
The median diameter based on the volume of the microcapsules can be controlled by adjusting the manufacturing conditions of the microcapsules and the like.
Here, the volume-based median diameter of microcapsules is the volume of particles on the large diameter side and the small diameter side when the entire microcapsule is divided into two with the particle diameter at which the cumulative volume is 50% as a threshold. The diameter at which the total is equal. That is, the median diameter corresponds to the so-called D50.
A value calculated by photographing the surface of the first layer of the first sheet having the first layer containing microcapsules with an optical microscope at 1000 times and measuring the size of all microcapsules in the range of 500 μm × 500 μm. Is.
 マイクロカプセルのカプセル壁の数平均壁厚は特に制限されないが、0.01~2μmが好ましく、0.05~1μmがより好ましい。
 なお、マイクロカプセルの壁厚とは、マイクロカプセルのカプセル粒子を形成するカプセル壁の厚み(μm)を指し、数平均壁厚とは、20個のマイクロカプセルの個々のカプセル壁の厚み(μm)を走査型電子顕微鏡(SEM)により求めて平均した平均値をいう。より具体的には、マイクロカプセルを含む第1層を有する第1シートの断面切片を作製し、その断面をSEMにより15000倍にて観察し、(マイクロカプセルの体積基準のメジアン径の値)×0.9~(マイクロカプセルの体積基準のメジアン径の値)×1.1の範囲の粒径を有する任意の20個のマイクロカプセルを選択の上、選択した個々のマイクロカプセルの断面を観察してカプセル壁の厚みを求めて平均値を算出する。
The number average wall thickness of the capsule walls of the microcapsules is not particularly limited, but is preferably 0.01 to 2 μm, more preferably 0.05 to 1 μm.
The wall thickness of the microcapsules refers to the thickness (μm) of the capsule wall forming the capsule particles of the microcapsules, and the number average wall thickness is the thickness (μm) of the individual capsule walls of the 20 microcapsules. Is obtained by a scanning electron microscope (SEM) and averaged. More specifically, a cross-sectional section of the first sheet having the first layer containing the microcapsules was prepared, and the cross section was observed at 15,000 times by SEM (value of median diameter based on the volume of the microcapsules) ×. Select any 20 microcapsules with a diameter in the range of 0.9 to (value of median diameter based on the volume of microcapsules) × 1.1, and observe the cross section of each selected microcapsule. The thickness of the capsule wall is calculated and the average value is calculated.
 マイクロカプセルの体積基準のメジアン径(Dm)に対する、マイクロカプセルの数平均壁厚δの比(δ/Dm)は特に制限されず、0.005以上の場合が多い。なかでも、高温下でより精密な圧力分布測定を実施できる点で、式(1)の関係を満たすことが好ましい。
 式(1)  δ/Dm>0.010
 つまり、上記比(δ/Dm)は、0.010より大きいことが好ましい。また、上記比(δ/Dm)は、0.015以上であることが好ましい。上限は特に制限されないが、0.050以下が好ましい。
 マイクロカプセルが上記式(1)の関係を満たす場合、カプセルの大きさとカプセル壁の厚みとのバランスが良く、高温環境下においてマイクロカプセルの内包物が漏れる等の懸念がより少ない。
The ratio (δ / Dm) of the number average wall thickness δ of the microcapsules to the median diameter (Dm) based on the volume of the microcapsules is not particularly limited and is often 0.005 or more. Above all, it is preferable to satisfy the relationship of the equation (1) in that more accurate pressure distribution measurement can be performed at high temperature.
Equation (1) δ / Dm> 0.010
That is, the ratio (δ / Dm) is preferably larger than 0.010. The ratio (δ / Dm) is preferably 0.015 or more. The upper limit is not particularly limited, but is preferably 0.050 or less.
When the microcapsules satisfy the relationship of the above formula (1), the size of the capsule and the thickness of the capsule wall are well-balanced, and there is less concern that the inclusions of the microcapsules may leak in a high temperature environment.
 マイクロカプセル内には、発色剤が内包される。
 発色剤とは、無色の状態から、後述する顕色剤と接することにより、発色する化合物である。発色剤としては、電子供与性の色素前駆体(発色する色素の前駆体)が好ましい。つまり、発色剤としては、電子供与性無色染料が好ましい。
 発色剤は、感圧複写紙又は感熱記録紙の用途において公知のものを使用できる。発色剤としては、例えば、トリフェニルメタンフタリド系化合物、フルオラン系化合物、フェノチアジン系化合物、インドリルフタリド系化合物、アザインドリルフタリド系化合物、ロイコオーラミン系化合物、ローダミンラクタム系化合物、トリフェニルメタン系化合物、ジフェニルメタン系化合物、トリアゼン系化合物、スピロピラン系化合物、及び、フルオレン系化合物が挙げられる。
 上記の化合物の詳細については、特開平5-257272号公報の記載を参照できる。
 発色剤は、1種単独で又は2種以上を混合して用いてもよい。
A coloring agent is contained in the microcapsules.
The color-developing agent is a compound that develops a color when it comes into contact with a color-developing agent described later from a colorless state. As the color-developing agent, an electron-donating dye precursor (precursor of a dye that develops color) is preferable. That is, as the color former, an electron-donating colorless dye is preferable.
As the color-developing agent, those known in the application of pressure-sensitive copying paper or thermal recording paper can be used. Examples of the color former include triphenylmethanephthalide-based compounds, fluorene-based compounds, phenothiazine-based compounds, indolylphthalide-based compounds, azaindrillphthalide-based compounds, leukooramine-based compounds, rhodamine lactam-based compounds, and triazene. Examples thereof include phenylmethane-based compounds, diphenylmethane-based compounds, triazene-based compounds, spiropyran-based compounds, and fluorene-based compounds.
For details of the above compounds, refer to the description in JP-A-5-257272.
The color former may be used alone or in combination of two or more.
 発色剤の分子量は特に制限されず、300以上の場合が多い。上限は特に制限されないが、1000以下の場合が多く、本発明の効果がより優れる点で、600以下が好ましい。
 発色剤は、視認性及び耐熱性の点で、赤色に発色するものが好ましい。
 短波(約600nm以下)に吸収を有する赤色色素は、長波(約600nm超)に吸収を有する青色色素と比較して、共役が短いため、熱で分解しにくい、または、分解したとしても色が変化しにくいと考えられる。そのため、高温用途としては、赤色に発色する色素を用いることが好ましく、ローダミン系発色剤であることがより好ましい。
 分子量は300以上であることが多く、ローダミン系発色剤の場合は、600以下であることが多く、550未満がより好ましい。
The molecular weight of the color former is not particularly limited and is often 300 or more. The upper limit is not particularly limited, but in many cases it is 1000 or less, and 600 or less is preferable in that the effect of the present invention is more excellent.
The color former is preferably one that develops a red color in terms of visibility and heat resistance.
The red dye that absorbs short waves (about 600 nm or less) has a shorter conjugation than the blue dye that absorbs long waves (more than about 600 nm), so it is difficult to decompose by heat, or even if it decomposes, the color will change. It is thought that it is difficult to change. Therefore, for high temperature applications, it is preferable to use a dye that develops a red color, and more preferably a rhodamine-based color former.
The molecular weight is often 300 or more, and in the case of a rhodamine-based color former, it is often 600 or less, more preferably less than 550.
 発色剤の好ましい例としては、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-n-オクチル-2-メチルインドール-3-イル)フタリド、3-[2,2-ビス(1-エチル-2-メチルインドール-3-イル)ビニル]-3-(4-ジエチルアミノフェニル)-フタリド、9-[エチル(3-メチルブチル)アミノ]スピロ[12H-ベンゾ[a]キサンテン-12,1’(3’H)イソベンゾフラン]-3’-オン、2-アニリノ-6-ジブチルアミノ-3-メチルフルオラン、6-ジエチルアミノ-3-メチル-2-(2,6-キシリジノ)-フルオラン、2-(2-クロロアニリノ)-6-ジブチルアミノフルオラン、3,3-ビス(4-ジメチルアミノフェニル)-6-ジメチルアミノフタリド、及び、2-アニリノ-6-ジエチルアミノ-3-メチルフルオラン、6’-(ジエチルアミノ)-1’,3’-ジメチルフルオラン、3’,6’-ビス(ジエチルアミノ)-2-(4-ニトロフェニル)スピロ[イソインドール-1,9’-キサンテン]-3-オン、3,3-ビス(2-メチル-1-オクチル-3-インドリル)フタリド、9-(N-エチル-N-イソペンチルアミノ)スピロ[ベンゾ[a]キサンテン-12,3’-フタリド]、2’-メチル-6’-(N-p-トリル-N-エチルアミノ)スピロ[イソベンゾフラン-1(3H),9’-[9H]キサンテン]-3-オン, 6’-(ジブチルアミノ)-2’-ブロモ-3’-メチルスピロ[フタリド-3,9’-キサンテン]等が挙げられる。 Preferred examples of the color former include 3- (4-diethylamino-2-ethoxyphenyl) -3- (1-ethyl-2-methylindole-3-yl) -4-azaphthalide and 3- (4-diethylamino-2). -Ethoxyphenyl) -3- (1-n-octyl-2-methylindol-3-yl) phthalide, 3- [2,2-bis (1-ethyl-2-methylindol-3-yl) vinyl]- 3- (4-Diethylaminophenyl) -phthalide, 9- [ethyl (3-methylbutyl) amino] spiro [12H-benzo [a] xanthene-12,1'(3'H) isobenzofuran] -3'-on, 2-Anilino-6-dibutylamino-3-methylfluorane, 6-diethylamino-3-methyl-2- (2,6-xylidino) -fluorane, 2- (2-chloroanilino) -6-dibutylaminofluorane, 3,3-bis (4-dimethylaminophenyl) -6-dimethylaminophthalide, and 2-anilino-6-diethylamino-3-methylfluorane, 6'-(diethylamino) -1', 3'-dimethyl Fluolan, 3', 6'-bis (diethylamino) -2- (4-nitrophenyl) spiro [isoindole-1,9'-xanthene] -3-one, 3,3-bis (2-methyl-1) -Octyl-3-indrill) Phenylide, 9- (N-ethyl-N-Isopentylamino) Spiro [Benzo [a] Xanthene-12,3'-Phenylide], 2'-Methyl-6'-(N-p) -Trill-N-ethylamino) spiro [isobenzofuran-1 (3H), 9'-[9H] xanthene] -3-one, 6'-(dibutylamino) -2'-bromo-3'-methylspiro [phthalide] -3,9'-xanthene] and the like.
 マイクロカプセルは、上述した発色剤以外の他の成分を内包していてもよい。
 例えば、マイクロカプセルは、溶媒を内包することが好ましい。
 溶媒は特に制限されず、例えば、ジイソプロピルナフタレン等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン等のジアリールアルカン系化合物、イソプロピルビフェニル等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、及び、アリールインダン系化合物等の芳香族炭化水素;フタル酸ジブチル、及び、イソパラフィン等の脂肪族炭化水素、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、及び、魚油等の天然動植物油等、並びに、鉱物油等の天然物高沸点留分等が挙げられる。
 溶媒は、発色剤の溶解性を向上する観点で、芳香族溶媒を有することが好ましい。
 溶媒は、1種単独で又は2種以上を混合して使用してもよい。
The microcapsules may contain components other than the above-mentioned color former.
For example, microcapsules preferably contain a solvent.
The solvent is not particularly limited, and for example, an alkylnaphthalene-based compound such as diisopropylnaphthalene, a diarylalkane-based compound such as 1-phenyl-1-xylylethane, an alkylbiphenyl-based compound such as isopropylbiphenyl, a triarylmethane-based compound, and an alkylbenzene-based compound. , Aromatic hydrocarbons such as benzylnaphthalene compounds, diarylalkylene compounds, and arylindan compounds; aliphatic hydrocarbons such as dibutyl phthalate and isoparaffin, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, etc. Examples thereof include natural animal and vegetable oils such as coconut oil, castor oil and fish oil, and high boiling point distillates of natural products such as mineral oil.
The solvent preferably has an aromatic solvent from the viewpoint of improving the solubility of the color former.
The solvent may be used alone or in combination of two or more.
 マイクロカプセル内に溶媒が内包される場合、溶媒と発色剤との質量比(溶媒の質量/発色剤の質量)としては、発色性の点で、98/2~30/70の範囲が好ましく、97/3~40/60の範囲がより好ましい。 When the solvent is encapsulated in the microcapsules, the mass ratio of the solvent to the color-developing agent (mass of the solvent / mass of the color-developing agent) is preferably in the range of 98/2 to 30/70 in terms of color-developing property. The range of 97/3 to 40/60 is more preferable.
 マイクロカプセルは、上述した成分以外に、必要に応じて、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、及び、臭気抑制剤等の添加剤を1種以上内包していてもよい。
 紫外線吸収剤としては、ベンゾトリアゾール構造を有する化合物が好ましい。
In addition to the above-mentioned components, the microcapsules may contain one or more additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a wax, and an odor suppressant, if necessary.
As the ultraviolet absorber, a compound having a benzotriazole structure is preferable.
(マイクロカプセルの製造方法)
 発色剤を内包するマイクロカプセルの製造方法は特に制限されず、例えば、界面重合法、内部重合法、相分離法、外部重合法、及び、コアセルベーション法等の公知の方法が挙げられる。なかでも、界面重合法が好ましい。
 界面重合法としては、発色剤とカプセル壁材(例えば、ポリイソシアネートと、ポリオール及びポリアミンからなる群から選択される少なくとも1種とを含む原料。なお、ポリイソシアネートと水を反応させてポリアミンを系中で製造する場合、ポリオール及びポリアミンは使用しなくてもよい。)とを含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)と、カプセル壁材を油相と水相との界面で重合させてカプセル壁を形成し、発色剤を内包するマイクロカプセルを形成する工程(カプセル化工程)と、を含む界面重合法が好ましい。
 なお、上記原料中における、ポリオール及びポリアミンの合計量と、ポリイソシアネートの量との質量比(ポリオール及びポリアミンの合計量/ポリイソシアネートの量)は特に制限されないが、0.1/99.9~30/70が好ましく、1/99~25/75がより好ましい。
 なお、上述したように、ポリイソシアネートとしては、上記ポリイソシアネートA、及び、ポリイソシアネートBを併用して用いてもよい。両者を併用する場合、両者の混合比の好適範囲は上述した通りである。
(Manufacturing method of microcapsules)
The method for producing microcapsules containing a color former is not particularly limited, and examples thereof include known methods such as an interfacial polymerization method, an internal polymerization method, a phase separation method, an external polymerization method, and a core selvation method. Of these, the interfacial polymerization method is preferable.
As the interfacial polymerization method, a raw material containing a color former and a capsule wall material (for example, a polyisocyanate and at least one selected from the group consisting of a polyol and a polyamine). A polyisocyanate is reacted with water to form a polyamine. In the case of producing in, an oil phase containing a polyol and a polyamine may not be used) is dispersed in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step), and a capsule wall material is used. An interface polymerization method including a step of forming a capsule wall by polymerizing at the interface between the oil phase and the aqueous phase to form microcapsules containing a color former (encapsulation step) is preferable.
The mass ratio of the total amount of the polyol and the polyamine to the amount of the polyisocyanate (total amount of the polyol and the polyamine / the amount of the polyisocyanate) in the above raw materials is not particularly limited, but is 0.1 / 99.9 to. 30/70 is preferable, and 1/99 to 25/75 is more preferable.
As described above, the polyisocyanate A and the polyisocyanate B may be used in combination as the polyisocyanate. When both are used in combination, the preferable range of the mixing ratio of both is as described above.
 また、上記乳化工程で使用される乳化剤の種類は特に制限されず、例えば、分散剤、及び、界面活性剤が挙げられる。
 分散剤としては、例えば、ポリビニルアルコールが挙げられる。
The type of emulsifier used in the emulsification step is not particularly limited, and examples thereof include a dispersant and a surfactant.
Examples of the dispersant include polyvinyl alcohol.
 第1層中におけるマイクロカプセルの含有量は特に制限されないが、階調性により優れた発色部が得られる点で、第1層全質量に対して、50~90質量%が好ましく、55~80質量%がより好ましい。
 また、第1層中における発色剤の含有量は特に制限されないが、階調性により優れた発色部が得られる点で、0.1~10g/mが好ましく、0.1~4g/mがより好ましい。
The content of the microcapsules in the first layer is not particularly limited, but is preferably 50 to 90% by mass, preferably 55 to 80% by mass, based on the total mass of the first layer, in that a color-developing portion having better gradation can be obtained. More preferably by mass.
The content of the color-developing agent in the first layer is not particularly limited, but is preferably 0.1 to 10 g / m 2 and 0.1 to 4 g / m in that a color-developing portion having better gradation is obtained. 2 is more preferable.
(バインダー)
 第1層は、上述したマイクロカプセルを第1支持体上に支持するバインダーを含む。
 上記バインダーは、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有するバインダーであるか、又は、架橋バインダーである。
 上記バインダーを有することでネットワークを形成し、高温下でも、第1シートと第2シートとの過度な張り付きを抑制できる。バインダーは、図1に示すようにマイクロカプセルを覆うように存在してもよいし、図3に示すようにマイクロカプセルの一部又は全部がバインダーから突出していてもよい。
(binder)
The first layer contains a binder that supports the above-mentioned microcapsules on the first support.
The binder is a binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum, or a crosslinked binder.
By having the binder, a network can be formed, and excessive sticking between the first sheet and the second sheet can be suppressed even at a high temperature. The binder may be present so as to cover the microcapsules as shown in FIG. 1, or a part or all of the microcapsules may protrude from the binder as shown in FIG.
 ここで、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有するバインダーとしては、水素結合性のOH基及び水素結合性NH基の1種以上を有するバインダーが該当する。通常、OH基及びNH基から選ばれる官能基を有し、且つ、上記官能基が水素結合することによりネットワークを形成しているバインダーは、赤外吸収スペクトルにおいて、水素結合性のOH基及び/又は水素結合性NH基に由来する、3200~3500cm-1にピークトップを有するブロードな吸収ピーク(通常、半値幅が200cm-1以上の吸収ピーク)を有する。つまり、水素結合性のOH基及び水素結合性NH基の1種以上を有するバインダーとは、OH基及びNH基の1種以上を含む官能基を有し、且つ、上記官能基中のOH基及び/又はNH基が水素結合することによりネットワークを形成しているバインダーを意図する。
 なお、赤外吸収スペクトルにおいて、非水素結合性のOH基及び非水素結合性NH基(つまり、水素結合に寄与していないOH基及びNH基)に由来する吸収ピークのピークトップは、通常、3650~3584cm-1に現れ、その吸収ピークはシャープ(通常、半値幅が200cm-1未満)である。
Here, the binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum corresponds to a binder having one or more hydrogen-bonding OH groups and hydrogen-bonding NH groups. Usually, a binder having a functional group selected from an OH group and an NH group and forming a network by hydrogen-bonding the functional groups has a hydrogen-bonding OH group and / or a hydrogen-bonding OH group in the infrared absorption spectrum. Alternatively, it has a broad absorption peak (usually an absorption peak having a half-price width of 200 cm -1 or more) having a peak top at 3200 to 3500 cm -1 derived from a hydrogen-bonding NH group. That is, the binder having one or more hydrogen-binding OH groups and hydrogen-binding NH groups has a functional group containing one or more of OH groups and NH groups, and has an OH group in the above functional groups. And / or intended for binders forming a network by hydrogen bonding of NH groups.
In the infrared absorption spectrum, the peak top of the absorption peak derived from the non-hydrogen-bonding OH group and the non-hydrogen-bonding NH group (that is, the OH group and the NH group that do not contribute to the hydrogen bond) is usually set. It appears between 3650 and 3584 cm -1 and its absorption peak is sharp (usually half-price range less than 200 cm -1 ).
 バインダーの赤外吸収スペクトル測定の手順としては、以下のとおりである。
 まず、第1シートを温度80~95℃の熱水に0.5~2時間浸漬して、マイクロカプセルとバインダーを分離する。次いで、熱水抽出物の水を除去し、粉体試料を、KBr法にて赤外分光光度計(例えば、 FTS7000、Digilab社 製)を使用して赤外吸収スペクトル測定を行う。
 得られた赤外吸収スペクトルに基づいて、3200~3500cm-1にピークトップを有する吸収ピーク(通常、半値幅が200cm-1以上の吸収ピーク)を有するか否かを判断する。
The procedure for measuring the infrared absorption spectrum of the binder is as follows.
First, the first sheet is immersed in hot water having a temperature of 80 to 95 ° C. for 0.5 to 2 hours to separate the microcapsules and the binder. Next, the water of the hot water extract is removed, and the powder sample is subjected to infrared absorption spectrum measurement by an infrared spectrophotometer (for example, FTS7000, manufactured by Digilab) by the KBr method.
Based on the obtained infrared absorption spectrum, it is determined whether or not the absorption peak has a peak top at 3200 to 3500 cm -1 (usually, an absorption peak having a half width of 200 cm -1 or more).
 なお、上述した通り、第1層のバインダーは、架橋バインダーであってもよい。
 バインダーが架橋バインダーであるか否かの判断については、第1シートを温度80~95℃の熱水に0.5~2時間浸漬し、浸漬後に十分に乾燥した後、浸漬前後での膜の重さを測定する。膜の重さの減少率が5%以下である場合、架橋バインダーであると判断する。
As described above, the binder of the first layer may be a crosslinked binder.
To determine whether the binder is a crosslinked binder, the first sheet is immersed in hot water at a temperature of 80 to 95 ° C. for 0.5 to 2 hours, sufficiently dried after the immersion, and then the membrane before and after the immersion. Measure the weight. When the reduction rate of the weight of the membrane is 5% or less, it is judged to be a crosslinked binder.
 以下、まず、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有するバインダー(以下「バインダーA」ともいう。)について説明する。
 バインダーAは、上述のとおり、水素結合性のOH基及び水素結合性NH基の1種以上を有するバインダーである。バインダーAとしては、OH基及びNH基の1種以上を含む官能基を有する1種又は2種以上の樹脂が、上記官能基中のOH基及び/又はNH基が水素結合することによりネットワークを形成することによって構成されているのが好ましい。
 上記官能基としては、例えば、-OH、-NH、-NHR(Rは、芳香族又は脂肪族炭化水素を表す。)、-COOH、-CONH、-NHOH、-SOH、-OP(=O)OH、-CO-NH-、-NH-、-CO-NH-CO-、及び-NH-NH-等が挙げられ、本発明の効果がより優れる点で、なかでも、-OH(水酸基)又は-CO-NH-(アミド結合)であるのが好ましい。つまり、バインダーAは、-OH(水酸基)又は-CO-NH-(アミド結合)を有する樹脂を含んでいるのが好ましい。
Hereinafter, a binder having an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum (hereinafter, also referred to as “binder A”) will be described.
As described above, the binder A is a binder having one or more hydrogen-bonding OH groups and hydrogen-bonding NH groups. As the binder A, one or more resins having a functional group containing one or more of an OH group and an NH group form a network by hydrogen-bonding the OH group and / or the NH group in the functional group. It is preferably configured by forming.
Examples of the functional group include -OH, -NH 2 , -NHR (R represents an aromatic or aliphatic hydrocarbon), -COOH, -CONH 2 , -NHOH, -SO 3 H, -OP. (= O) OH 2 , -CO-NH-, -NH-, -CO-NH-CO-, -NH-NH-, etc. are mentioned, and the effect of the present invention is more excellent, and among them,-. It is preferably OH (hydroxyl group) or -CO-NH- (amide bond). That is, the binder A preferably contains a resin having -OH (hydroxyl group) or -CO-NH- (amide bond).
 なお、本発明の効果がより優れる点で、第1層中のバインダーの種類と密着層が含む樹脂X1とは、相溶性が高いほど好ましい。第1シートの好適な一態様として、バインダーAが水酸基及びアミド結合の1種以上を有する樹脂を含む場合、密着層は、芳香族基を含む樹脂X1、及び、アミド結合及び水酸基の1種以上を有する樹脂X2を含むことが好ましい。なお、密着層が樹脂X1及び樹脂X2をいずれも含む場合、樹脂X1と樹脂X2は、密着層内において混合層を形成していてもよいが、密着層内において、樹脂X1を含む層と樹脂X2を含む層とを各々形成していることが好ましい(換言すると、密着層は、樹脂X1を含む層と樹脂X2を含む層とを有していてもよい)。なお、後者の場合、第1支持体、樹脂X1を含む層、樹脂X2を含む密着層、及び第1層の順に配置しているのが好ましい。 In addition, in that the effect of the present invention is more excellent, the higher the compatibility with the type of binder in the first layer and the resin X1 contained in the adhesion layer, the more preferable. As a preferred embodiment of the first sheet, when the binder A contains a resin having at least one of a hydroxyl group and an amide bond, the adhesion layer is a resin X1 containing an aromatic group and one or more of an amide bond and a hydroxyl group. It is preferable to contain the resin X2 having the above. When the adhesive layer contains both the resin X1 and the resin X2, the resin X1 and the resin X2 may form a mixed layer in the adhesive layer, but in the adhesive layer, the layer containing the resin X1 and the resin. It is preferable that each layer containing X2 is formed (in other words, the adhesion layer may have a layer containing resin X1 and a layer containing resin X2). In the latter case, it is preferable that the first support, the layer containing the resin X1, the adhesion layer containing the resin X2, and the first layer are arranged in this order.
 上記官能基を有する樹脂としては、本発明の効果がより優れる点で、セルロース系樹脂、ポリアミド、及び、ポリビニルアルコールからなる群から選択される少なくとも1種であるのが好ましい。 The resin having the above functional group is preferably at least one selected from the group consisting of cellulosic resins, polyamides, and polyvinyl alcohols because the effect of the present invention is more excellent.
 バインダーAの具体例としては、カルボキシメチルセルロース、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、結晶セルロース、キサンタンガム、グァーガム、ヒドロキシエチルグァーガム、カルボキシメチルグァーガム、トラガントガム、ローカストビーンガム、タマリンドシードガム、サイリウムシードガム、クインスシード、カラギーナン、ガラクタン、アラビアガム、ペクチン、プルラン、マンナン、グルコマンナン、デンプン、カードラン、カラギーナン、コンドロイチン硫酸、デルマタン硫酸、グリコーゲン、ヘパラン硫酸、ヒアルロン酸、ヒアルロン酸、ケラタン硫酸、コンドロイチン、ムコイチン硫酸、デキストラン、ケラト硫酸、サクシノグルカン、カロニン酸、アルギン酸、アルギン酸プロピレングリコール、マクロゴール、キチン、キトサン、カルボキシメチルキチン、ゼラチン、カゼイン、アラビアゴム、寒天、カードラン、ポリビニルアルコール、カルボキシビニルポリマー、アルキル変性カルボキシビニルポリマー、ポリ(メタ)アクリル酸、及び、アクリル酸/メタクリル酸アルキル共重合体等が挙げられる。なお、カルボキシル基等の酸性基を有するものは、一部もしくはすべてがナトリウム塩、カリウム塩、又はアンモニウム塩等の塩になっていてもよい。 Specific examples of the binder A include carboxymethyl cellulose, carboxyethyl cellulose, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, methyl hydroxypropyl cellulose, hydroxypropyl methyl cellulose, crystalline cellulose, xanthan gum, guar gum, hydroxyethyl guar gum, carboxymethyl guar gum, and tragant gum. Locust bean gum, tamarind seed gum, psyllium seed gum, quince seed, carrageenan, galactan, arabic gum, pectin, purulan, mannan, glucomannan, starch, curdran, carrageenan, chondroitin sulfate, dermatane sulfate, glycogen, heparan sulfate, hyalurone Acid, hyaluronic acid, keratane sulfate, chondroitin, mucoitin sulfate, dextran, keratosulfate, succinoglucan, carrageenic acid, alginic acid, propylene glycol alginate, macrogol, chitin, chitosan, carboxymethyl chitin, gelatin, casein, gum arabic, agar , Carrageenan, polyvinyl alcohol, carboxyvinyl polymer, alkyl modified carboxyvinyl polymer, poly (meth) acrylic acid, acrylic acid / alkyl methacrylate copolymer and the like. In addition, those having an acidic group such as a carboxyl group may be a salt such as a sodium salt, a potassium salt, or an ammonium salt in part or in whole.
 また、バインダーAは、架橋剤によりその一部又は全部が架橋された構造であってもよい。
 架橋剤としては、例えば、N-メチロール尿素、N-メチロールメラミン、及び、尿素-ホルマリン等の水溶性初期縮合物;グリオキザール及びグルタルアルデヒド等のジアルデヒド化合物類;硼酸及び硼砂等の無機系架橋剤;並びに、ポリアミドエピクロルヒドリン等が挙げられる。
Further, the binder A may have a structure in which a part or the whole thereof is crosslinked by a cross-linking agent.
Examples of the cross-linking agent include water-soluble initial condensates such as N-methylol urea, N-methylol melamine, and urea-formalin; dialdehyde compounds such as glyoxal and glutaraldehyde; and inorganic cross-linking agents such as boric acid and borax. In addition, polyamide epichlorohydrin and the like can be mentioned.
 バインダーAの赤外吸収スペクトルにおいて、水素結合性のOH基及び水素結合性NH基に由来する吸収ピークのピークトップの高さ(ピーク高さ)は、3200~3500cm-1の波数領域を除くその他の領域に観測される他の吸収ピークのピーク高さと比較して1~3番であるのが好ましい。つまり、バインダーAが、赤外吸収スペクトルにおいて5つの吸収ピークを有する場合、5つの吸収ピークの各ピーク高さのうち、水素結合性のOH基及び水素結合性NH基に由来する吸収ピークのピーク高さが、最も高い、2番目に高い、又は、3番目に高いことが好ましい。バインダーAの赤外吸収スペクトルが上記特性を示す場合、本発明の効果がより優れる。 In the infrared absorption spectrum of the binder A, the peak top height (peak height) of the absorption peak derived from the hydrogen-bonding OH group and the hydrogen-bonding NH group is 3200 to 3500 cm -1 except for the wavenumber region. It is preferably No. 1 to 3 in comparison with the peak heights of other absorption peaks observed in the region of. That is, when the binder A has five absorption peaks in the infrared absorption spectrum, the peaks of the absorption peaks derived from the hydrogen-bonding OH group and the hydrogen-bonding NH group among the peak heights of the five absorption peaks. The height is preferably the highest, the second highest, or the third highest. When the infrared absorption spectrum of the binder A exhibits the above characteristics, the effect of the present invention is more excellent.
 次に、架橋バインダー(以下「バインダーB」ともいう。)について説明する。
 バインダーBとしては、水溶性の(メタ)アクリルアミド又は水溶性の(メタ)アクリレートを紫外線硬化させた架橋バインダー、水分散型のイソシアネートを架橋反応させた架橋バインダー、及び、アルコキシシランをゾルーゲル法により反応させた架橋バインダー等が挙げられる。
 水溶性の(メタ)アクリルアミドとしては、単官能(メタ)アクリルアミド及び多官能(メタ)アクリルアミドの少なくとも1種であるのが好ましい。
 水溶性の(メタ)アクリレートとしては、単官能(メタ)アクリレート及び多官能(メタ)アクリレートの少なくとも1種であるのが好ましい。
 水分散型のイソシアネートとしては、ポリオールと併用されるのが好ましい。
 また、紫外線硬化型の架橋バインダーを使用する場合、光重合開始剤(好ましくはラジカル重合開始剤)を併用するのが好ましい。
Next, a crosslinked binder (hereinafter, also referred to as “binder B”) will be described.
As the binder B, a crosslinked binder obtained by UV-curing water-soluble (meth) acrylamide or water-soluble (meth) acrylate, a crosslinked binder obtained by cross-linking a water-dispersed isocyanate, and an alkoxysilane are reacted by the Zollugel method. Examples thereof include a crosslinked binder and the like.
The water-soluble (meth) acrylamide is preferably at least one of monofunctional (meth) acrylamide and polyfunctional (meth) acrylamide.
The water-soluble (meth) acrylate is preferably at least one of a monofunctional (meth) acrylate and a polyfunctional (meth) acrylate.
The water-dispersed isocyanate is preferably used in combination with a polyol.
When an ultraviolet curable crosslinked binder is used, it is preferable to use a photopolymerization initiator (preferably a radical polymerization initiator) in combination.
 第1層中におけるバインダーの含有量は特に制限されないが、本発明の効果がより優れる点で、第1層全質量に対して、5~40質量%が好ましく、10~20質量%がより好ましい。
 また、第1層中におけるバインダーの含有量は特に制限されないが、本発明の効果がより優れる点で、0.2~3.0g/mが好ましく、0.5~1.5g/mがより好ましい。
 また、第1層中におけるバインダーの融点(常圧)としては、180℃以上であるのが好ましく、200℃以上であるのがより好ましい。なお、上限値としては特に制限されないが、例えば、600℃以下である。
The content of the binder in the first layer is not particularly limited, but is preferably 5 to 40% by mass, more preferably 10 to 20% by mass, based on the total mass of the first layer, in that the effect of the present invention is more excellent. ..
The content of the binder in the first layer is not particularly limited, but 0.2 to 3.0 g / m 2 is preferable, and 0.5 to 1.5 g / m 2 is preferable because the effect of the present invention is more excellent. Is more preferable.
The melting point (normal pressure) of the binder in the first layer is preferably 180 ° C. or higher, more preferably 200 ° C. or higher. The upper limit is not particularly limited, but is, for example, 600 ° C. or lower.
(その他の成分)
 第1層は、上述したマイクロカプセル以外の他の成分を含んでいてもよい。
 他の成分としては、例えば、離型剤(例えば、コロイダルシリカ等の無機フィラー及びシリコーン等)、蛍光増白剤、消泡剤、浸透剤、紫外線吸収剤、界面活性剤、及び、防腐剤が挙げられる。
(Other ingredients)
The first layer may contain components other than the above-mentioned microcapsules.
Other components include, for example, mold release agents (for example, inorganic fillers such as colloidal silica and silicones), fluorescent whitening agents, defoaming agents, penetrants, ultraviolet absorbers, surfactants, and preservatives. Can be mentioned.
 界面活性剤としては、例えば、アニオン性界面活性剤、ノニオン性界面活性剤、及びカチオン性界面活性剤等が挙げられるが、マイクロカプセルの分散性を維持する点で、アニオン性界面活性剤又はノニオン性界面活性剤が好ましい。
 また、界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤、炭化水素系界面活性剤等が挙げられるが、塗布性やマイクロカプセルの分散性を維持する点で、炭化水素系界面活性剤が好ましい。
 界面活性剤の含有量は特に制限されないが、第1層全質量に対して、0.01~10質量%が好ましく、0.1~5質量%がより好ましい。
Examples of the surfactant include anionic surfactants, nonionic surfactants, cationic surfactants and the like, and anionic surfactants or nonionic surfactants in terms of maintaining the dispersibility of microcapsules. Sexual surfactants are preferred.
Examples of the surfactant include a fluorine-based surfactant, a silicone-based surfactant, a hydrocarbon-based surfactant, and the like. In terms of maintaining coatability and dispersibility of microcapsules, a hydrocarbon-based surfactant is used. Activators are preferred.
The content of the surfactant is not particularly limited, but is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the total mass of the first layer.
 離型剤は、第1シートと第2シートとを重ねて加熱圧力測定した後に、両者をはがしやすくするために導入することが好ましい。第1シートと第2シートとを剥がしやすくする点で、離型剤は無機フィラーが好ましく、中でも、シリカ粒子又はアルミナ粒子が好ましい。無機フィラーのメジアン径は0.001~1μmが好ましく、0.005~0.1μmがより好ましく、0.005~0.05μmが更に好ましい。
 無機フィラーの含有量は、第1層全質量に対して、1~50質量%が好ましく、3~30質量%が好ましく、5~20質量%がより好ましい。
It is preferable to introduce the release agent after the first sheet and the second sheet are overlapped with each other and the heating pressure is measured, in order to make it easy to peel off both of them. Inorganic fillers are preferable as the mold release agent, and silica particles or alumina particles are particularly preferable, from the viewpoint of facilitating the peeling of the first sheet and the second sheet. The median diameter of the inorganic filler is preferably 0.001 to 1 μm, more preferably 0.005 to 0.1 μm, still more preferably 0.005 to 0.05 μm.
The content of the inorganic filler is preferably 1 to 50% by mass, more preferably 3 to 30% by mass, and more preferably 5 to 20% by mass with respect to the total mass of the first layer.
 第1層の厚みの下限値は、0.2μm以上であり、本発明の効果がより優れる点で、0.3μm以上であるのが好ましい。また、第1層の厚みの上限値は、例えば、5μm以下が好ましく、加圧により形成される発色部の階調性により優れる点で、1.0μm未満がより好ましく、0.7μm以下が更に好ましい。
 ここで、第1層の厚みとは、マイクロカプセル径が層厚より大きい場合は層表面から露出したマイクロカプセルを除く厚みを表す。例えば、図1に示す圧力測定用シートセットの場合、層厚とは、層表面から露出したマイクロカプセルを除く厚みT1を意図する。また、例えば、マイクロカプセルとバインダーとが図3のような配置となっている場合、層厚とは、層表面から露出したマイクロカプセルを除く厚みT2を意図する。
 本明細書においては、第1層の厚みの測定方法としては、断面切片のSEM観察をして、層内の任意の5か所の厚みを測定し、その平均値として求める。
 第1層の厚みは、マイクロカプセルのメジアン径(D50)よりも小さいことが好ましい。第1層の厚みは、マイクロカプセルのメジアン径(D50)に対して、0.1~50%であることが好ましく、0.5~25%であることが好ましい。第1層の厚みがマイクロカプセルに対して薄いほど圧力がバインダーではなく、マイクロカプセルにかかるため、マイクロカプセルが壊れやすくなり、測定する圧力帯に応じて調節できる。
 また、第1層の単位面積当たりの質量(g/m)は特に制限されないが、0.5~20g/mが好ましい。
The lower limit of the thickness of the first layer is 0.2 μm or more, and is preferably 0.3 μm or more in that the effect of the present invention is more excellent. Further, the upper limit of the thickness of the first layer is preferably, for example, 5 μm or less, more preferably less than 1.0 μm, and further preferably 0.7 μm or less in that the gradation of the color-developing portion formed by pressurization is superior. preferable.
Here, the thickness of the first layer represents the thickness excluding the microcapsules exposed from the layer surface when the microcapsule diameter is larger than the layer thickness. For example, in the case of the pressure measurement sheet set shown in FIG. 1, the layer thickness is intended to be the thickness T1 excluding the microcapsules exposed from the layer surface. Further, for example, when the microcapsules and the binder are arranged as shown in FIG. 3, the layer thickness is intended to be the thickness T2 excluding the microcapsules exposed from the layer surface.
In the present specification, as a method for measuring the thickness of the first layer, SEM observation of a cross-sectional section is performed, the thickness at any five points in the layer is measured, and the average value thereof is obtained.
The thickness of the first layer is preferably smaller than the median diameter (D50) of the microcapsules. The thickness of the first layer is preferably 0.1 to 50%, preferably 0.5 to 25%, based on the median diameter (D50) of the microcapsules. The thinner the thickness of the first layer with respect to the microcapsules, the more the pressure is applied to the microcapsules rather than the binder, so that the microcapsules are fragile and can be adjusted according to the pressure band to be measured.
The mass (g / m 2 ) per unit area of the first layer is not particularly limited, but is preferably 0.5 to 20 g / m 2 .
 第1層の第1支持体とは反対側の表面の算術平均粗さRaは、低圧領域下での圧力測定に適する点で、2μm以上が好ましく、4.1μm以上がより好ましい。上限値は特に制限されないが、10μm以下が好ましい。
 本実施形態における第1層の算術平均粗さRaは、圧力測定用シートセットを使用する際に、第1層の第2シートと対向する側(接触する側)の表面の算術平均粗さRaである。
 本明細書における第1層の算術平均粗さRaは、JIS B 0681-6:2014で規定される算術平均粗さRaを意味する。算術平均粗さRaの測定装置としては、光干渉方式を用いた走査型白色干渉計(詳細には、Zygo社製のNewView5020:Stichモード;対物レンズ×50倍;中間レンズ×0.5倍)を用いる。
The arithmetic mean roughness Ra of the surface of the first layer opposite to the first support is preferably 2 μm or more, more preferably 4.1 μm or more, in that it is suitable for pressure measurement under a low pressure region. The upper limit is not particularly limited, but is preferably 10 μm or less.
The arithmetic mean roughness Ra of the first layer in the present embodiment is the arithmetic mean roughness Ra of the surface of the surface of the first layer facing the second sheet (contacting side) when the pressure measuring sheet set is used. Is.
The arithmetic mean roughness Ra of the first layer in the present specification means the arithmetic mean roughness Ra defined in JIS B 0681-6: 2014. As a measuring device for the arithmetic mean roughness Ra, a scanning white interferometer using an optical interferometry (specifically, NewView5020 manufactured by Zygo: Stich mode; objective lens × 50 times; intermediate lens × 0.5 times). Is used.
 第1層の算術平均粗さRaが上記下限値以上である場合、発色剤が十分な量であることが多く、低圧でもマイクロカプセルが壊れやすいため、より高い発色濃度が出やすい。一方、第1層の算術平均粗さRaが上記上限値以下である場合、加圧された領域において、マイクロカプセルの崩壊により発色剤とともに流出する溶媒を第2シートの第2層が適切に吸収できることから、滲みが少ない良好な画質が得られやすい。
 第1層の算術平均粗さRaは、第1層形成用組成物の固形分塗布量を調製して、第1層中のマイクロカプセルの量を調整することにより、制御し得る。
When the arithmetic mean roughness Ra of the first layer is at least the above lower limit value, the amount of the color-developing agent is often sufficient, and the microcapsules are easily broken even at low pressure, so that a higher color-developing density is likely to occur. On the other hand, when the arithmetic mean roughness Ra of the first layer is not more than the above upper limit value, the second layer of the second sheet appropriately absorbs the solvent flowing out together with the color former due to the disintegration of the microcapsules in the pressurized region. Since it can be done, it is easy to obtain good image quality with less bleeding.
The arithmetic mean roughness Ra of the first layer can be controlled by adjusting the amount of solid content applied to the composition for forming the first layer and adjusting the amount of microcapsules in the first layer.
(第1シートの製造方法)
 第1シートの製造方法は特に制限されないが、例えば、以下に示す工程1及び工程2を有する製造方法であるのが好ましい。
 工程1:第1支持体の上に、芳香族基、エステル結合、及びイミド結合からなる群から選択される少なくとも1種の基を有する樹脂X1を有する組成物(以下「密着層形成用組成物」ともいう。)を塗布して上記密着層を形成する工程。
 工程2:上記密着層上に、以下に示す組成物A及び組成物Bからなる群から選ばれる1種の組成物(以下「第1層形成用組成物」ともいう。)を塗布して厚みが0.2μm以上の上記第1層を形成する工程。
 組成物A:発色剤を内包するマイクロカプセルと、水素結合性のOH基及び水素結合性のNH基のいずれか1種以上を有するバインダーを形成するための成分と、を含む組成物。
 組成物B:発色剤を内包するマイクロカプセルと架橋バインダーを形成するための成分とを含む組成物。
(Manufacturing method of the first sheet)
The manufacturing method of the first sheet is not particularly limited, but for example, a manufacturing method having the following steps 1 and 2 is preferable.
Step 1: A composition having a resin X1 having at least one group selected from the group consisting of an aromatic group, an ester bond, and an imide bond on the first support (hereinafter, "composition for forming an adhesive layer"). ”) To form the adhesion layer.
Step 2: On the adhesion layer, one composition selected from the group consisting of the composition A and the composition B shown below (hereinafter, also referred to as “composition for forming the first layer”) is applied and the thickness is applied. A step of forming the first layer having a thickness of 0.2 μm or more.
Composition A: A composition containing microcapsules containing a color-developing agent and a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group.
Composition B: A composition containing microcapsules containing a color former and components for forming a crosslinked binder.
 なお、上記工程各工程で使用される、第1支持体、樹脂X1、マイクロカプセル、バインダーの各構成については、既述のとおりである。 The configurations of the first support, the resin X1, the microcapsules, and the binder used in each of the above steps are as described above.
 密着層形成用組成物及び第1層形成用組成物を塗布する方法は特に制限されず、塗布の際に用いられる塗工機としては、例えば、エアーナイフコーター、ロッドコーター、バーコーター、カーテンコーター、グラビアコーター、エクストルージョンコーター、ダイコーター、スライドビードコーター、及び、ブレードコーターが挙げられる。 The method of applying the composition for forming the adhesion layer and the composition for forming the first layer is not particularly limited, and examples of the coating machine used at the time of application include an air knife coater, a rod coater, a bar coater, and a curtain coater. , Gravure coater, extrusion coater, die coater, slide bead coater, and blade coater.
 密着層形成用組成物及び第1層形成用組成物を密着層上に塗布後、必要に応じて、塗膜に対して乾燥処理を施してもよい。乾燥処理としては、加熱処理が挙げられる。
 また、第1層形成用組成物が組成物Bである場合であって、組成物Bが含む架橋バインダを形成するための成分が光硬化性成分である場合、第1層形成用組成物の塗膜(乾燥処理後の塗膜であってもよい)に更に露光処理を施すのが好ましい。なお、露光光源としては特に制限されないが、例えば、紫外線等が挙げられる。
After the composition for forming the adhesion layer and the composition for forming the first layer are applied on the adhesion layer, the coating film may be subjected to a drying treatment, if necessary. Examples of the drying treatment include heat treatment.
Further, when the composition for forming the first layer is the composition B and the component for forming the crosslinked binder contained in the composition B is a photocurable component, the composition for forming the first layer. It is preferable to further expose the coating film (which may be a coating film after the drying treatment). The exposure light source is not particularly limited, and examples thereof include ultraviolet rays.
 密着層形成用組成物には、少なくとも芳香族基、エステル結合、及びイミド結合からなる群から選択される少なくとも1種の基を有する樹脂X1と溶媒とが含まれることが好ましい。 The composition for forming an adhesive layer preferably contains a resin X1 having at least one group selected from the group consisting of an aromatic group, an ester bond, and an imide bond, and a solvent.
 組成物Aには、少なくともマイクロカプセルと、水素結合性のOH基及び水素結合性のNH基のいずれか1種以上を有するバインダーを形成するための成分と、溶媒と、が含まれることが好ましい。
 水素結合性のOH基及び水素結合性のNH基のいずれか1種以上を有するバインダーを形成するための成分の一態様としては、例えば、OH基及びNH基の1種以上を含む官能基を有する樹脂(なお、上記樹脂中に含まれるOH基及びNH基が、樹脂内及び/又は樹脂間の水素結合によって水素結合性のOH基及び水素結合性のNH基となっていてもよい)が挙げられる。
 また、水素結合性のOH基及び水素結合性のNH基のいずれか1種以上を有するバインダーを形成するための成分の他の一態様としては、OH基及びNH基の1種以上を含む官能基を有する樹脂(なお、上記樹脂中に含まれるOH基及びNH基が、樹脂内及び/又は樹脂間の水素結合によって水素結合性のOH基及び水素結合性のNH基となっていてもよい)と架橋剤との組み合わせが挙げられる。
 OH基及びNH基の1種以上を含む官能基を有する樹脂及び架橋剤しては、既述のとおりである。
 なお、上述した界面重合法によって得られるマイクロカプセル分散液と、水素結合性のOH基及び水素結合性のNH基のいずれか1種以上を有するバインダーを形成するための成分との混合物を、組成物Aとして用いてもよい。
 組成物Aには、上述した第1層に含まれていてもよい他の成分が含まれていてもよい。
The composition A preferably contains at least microcapsules, a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group, and a solvent. ..
As one aspect of the component for forming a binder having any one or more of a hydrogen-binding OH group and a hydrogen-binding NH group, for example, a functional group containing one or more of an OH group and an NH group is used. The resin (the OH group and NH group contained in the resin may be hydrogen-bonding OH group and hydrogen-binding NH group by hydrogen bonding in the resin and / or between the resins). Can be mentioned.
Further, as another aspect of the component for forming a binder having any one or more of a hydrogen-binding OH group and a hydrogen-binding NH group, a functional group containing one or more of an OH group and an NH group is used. A resin having a group (Note that the OH group and NH group contained in the above resin may become a hydrogen-bonding OH group and a hydrogen-binding NH group by hydrogen bonding in the resin and / or between the resins. ) And a cross-linking agent.
The resin having a functional group containing one or more of an OH group and an NH group and a cross-linking agent are as described above.
A mixture of the microcapsule dispersion obtained by the above-mentioned interfacial polymerization method and a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group is composed. It may be used as an object A.
The composition A may contain other components that may be contained in the first layer described above.
 組成物Bには、少なくともマイクロカプセルと、架橋バインダーを形成するための成分と、溶媒と、が含まれることが好ましい。
 架橋バインダーを形成するための成分の一態様としては、水溶性の(メタ)アクリルアミド、水溶性の(メタ)アクリレート、水分散型のイソシアネート、及び、アルコキシシラン等が挙げられる。
 なお、組成物Bが水分散型のイソシアネートを含む場合、組成物Bは、更にポリオールを含むのが好ましい。
 また、上述した界面重合法によって得られるマイクロカプセル分散液と架橋バインダーを形成するための成分との混合物を、組成物Bとして用いてもよい。
 また、組成物Bが、水溶性の(メタ)アクリルアミド、水溶性の(メタ)アクリレート(紫外線硬化型モノマー)を使用する場合、組成物Bは、更に光重合開始剤(好ましくはラジカル重合開始剤)を含むのが好ましい。
 組成物Bには、上述した第1層に含まれていてもよい他の成分が含まれていてもよい。
The composition B preferably contains at least microcapsules, a component for forming a crosslinked binder, and a solvent.
Examples of the component for forming the crosslinked binder include water-soluble (meth) acrylamide, water-soluble (meth) acrylate, water-dispersed isocyanate, and alkoxysilane.
When the composition B contains a water-dispersible isocyanate, the composition B preferably further contains a polyol.
Further, a mixture of the microcapsule dispersion obtained by the above-mentioned interfacial polymerization method and a component for forming a crosslinked binder may be used as the composition B.
When the composition B uses a water-soluble (meth) acrylamide or a water-soluble (meth) acrylate (ultraviolet curable monomer), the composition B further contains a photopolymerization initiator (preferably a radical polymerization initiator). ) Is preferably included.
The composition B may contain other components that may be contained in the first layer described above.
 組成物A及び組成物Bが含んでいてもよい溶媒としては、例えば、水が挙げられる。 Examples of the solvent that the composition A and the composition B may contain include water.
<<第2シート>>
 図1に記載の第2シート22は、第2支持体18と第2支持体18上に配置された顕色剤を含む第2層20とを有する。
<< 2nd sheet >>
The second sheet 22 described in FIG. 1 has a second support 18 and a second layer 20 containing a color developer arranged on the second support 18.
 第2シート22は、220℃で10分間加熱した場合において、第2シート22の長手方向における収縮率S1、及び、第2シート22の長手方向と直交する幅方向における収縮率S2がいずれも-0.5~3.0%であるのが好ましく、本発明の効果がより優れる点で、1.0~3.0%であるのがより好ましい。
 第2シート22における収縮率S1と収縮率S2との差の絶対値の好適範囲は、第1シート16における収縮率S1と収縮率S2との差の絶対値と同じである。
When the second sheet 22 is heated at 220 ° C. for 10 minutes, both the shrinkage rate S1 in the longitudinal direction of the second sheet 22 and the shrinkage rate S2 in the width direction orthogonal to the longitudinal direction of the second sheet 22 are −. It is preferably 0.5 to 3.0%, and more preferably 1.0 to 3.0% in that the effect of the present invention is more excellent.
The preferred range of the absolute value of the difference between the shrinkage rate S1 and the shrinkage rate S2 in the second sheet 22 is the same as the absolute value of the difference between the shrinkage rate S1 and the shrinkage rate S2 in the first sheet 16.
 第2シート22の収縮率S1及び収縮率S2の測定方法は、第1シート16の代わりに第2シート22を用いる以外は、第1シート16の収縮率S1及び収縮率S2の測定方法と同じである。
 第2シート22における長手方向及び幅方向の定義は、第1シート16を第2シート22に読み替える以外は、第1シート16の長手方向及び幅方向の定義と同じである。
 第2シート22は、枚葉(単票)であってもよいし、長尺状であってもよい。
 以下では、各部材について詳述する。
The method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the second sheet 22 is the same as the method for measuring the shrinkage rate S1 and the shrinkage rate S2 of the first sheet 16 except that the second sheet 22 is used instead of the first sheet 16. Is.
The definitions of the longitudinal direction and the width direction in the second sheet 22 are the same as the definitions of the longitudinal direction and the width direction of the first sheet 16 except that the first sheet 16 is read as the second sheet 22.
The second sheet 22 may be a single leaf (single sheet) or a long sheet.
In the following, each member will be described in detail.
<第2支持体>
 第2支持体は、第2層を支持するための部材である。
 第2支持体の態様は、上述した第1支持体の態様と同じであるため、説明を省略する。
<Second support>
The second support is a member for supporting the second layer.
Since the aspect of the second support is the same as the aspect of the first support described above, the description thereof will be omitted.
<第2層>
 第2層は、顕色剤を含む層である。
 顕色剤とは、それ自身では発色機能はないが、発色剤と接触することにより発色剤を発色される性質を有する化合物である。顕色剤としては、電子受容性の化合物が好ましい。
 顕色剤としては、無機化合物及び有機化合物が挙げられる。
 無機化合物としては、例えば、酸性白土、活性白土、アタパルジャイト、ゼオライト、ベントナイト、及び、カオリン等の粘土物質が挙げられる。
 有機化合物としては、例えば、芳香族カルボン酸の金属塩、フェノールホルムアルデヒド樹脂、及び、カルボキシル化テルペンフェノール樹脂の金属塩等が挙げられる。
<Second layer>
The second layer is a layer containing a color developer.
The color developer is a compound that does not have a color-developing function by itself, but has a property of developing a color-developing agent by contact with the color-developing agent. As the color developer, an electron-accepting compound is preferable.
Examples of the color developer include inorganic compounds and organic compounds.
Examples of the inorganic compound include clay substances such as acid clay, activated clay, attapargite, zeolite, bentonite, and kaolin.
Examples of the organic compound include a metal salt of an aromatic carboxylic acid, a phenol formaldehyde resin, a metal salt of a carboxylated terpene phenol resin, and the like.
 芳香族カルボン酸の金属塩としては、3,5-ジ-t-ブチルサリチル酸、3,5-ジ-t-オクチルサリチル酸、3,5-ジ-t-ノニルサリチル酸、3,5-ジ-t-ドデシルサリチル酸、3-メチル-5-t-ドデシルサリチル酸、3-t-ドデシルサリチル酸、5-t-ドデシルサリチル酸、5-シクロヘキシルサリチル酸、3,5-ビス(α,α-ジメチルベンジル)サリチル酸、3-メチル-5-(α-メチルベンジル)サリチル酸、3-(α,α-ジメチルベンジル)-5-メチルサリチル酸、3-(α,α-ジメチルベンジル)-6-メチルサリチル酸、3-(α-メチルベンジル)-5-(α,α-ジメチルベンジル)サリチル酸、3-(α,α-ジメチルベンジル)-6-エチルサリチル酸、3-フェニル-5-(α,α-ジメチルベンジル)サリチル酸、カルボキシ変性テルペンフェノール樹脂、3,5-ビス(α-メチルベンジル)サリチル酸とベンジルクロリドとの反応生成物であるサリチル酸樹脂等の、亜鉛塩、ニッケル塩、アルミニウム塩、又は、カルシウム塩等が好ましい。 Examples of the metal salt of the aromatic carboxylic acid include 3,5-di-t-butylsalicylic acid, 3,5-di-t-octylsalicylic acid, 3,5-di-t-nonylsalicylic acid, and 3,5-di-t. -Dodecylsalicylic acid, 3-methyl-5-t-dodecylsalicylic acid, 3-t-dodecylsalicylic acid, 5-t-dodecylsalicylic acid, 5-cyclohexylsalicylic acid, 3,5-bis (α, α-dimethylbenzyl) salicylic acid, 3 -Methyl-5- (α-methylbenzyl) salicylic acid, 3- (α, α-dimethylbenzyl) -5-methylsalicylic acid, 3- (α, α-dimethylbenzyl) -6-methylsalicylic acid, 3- (α-) Methylbenzyl) -5- (α, α-dimethylbenzyl) salicylic acid, 3- (α, α-dimethylbenzyl) -6-ethylsalicylic acid, 3-phenyl-5- (α, α-dimethylbenzyl) salicylic acid, carboxy-modified Zinc salts, nickel salts, aluminum salts, calcium salts and the like, such as terpenphenol resin and salicylic acid resin which is a reaction product of 3,5-bis (α-methylbenzyl) salicylic acid and benzyl chloride, are preferable.
 なかでも、顕色剤としては、粘土物質、芳香族カルボン酸の金属塩、又は、カルボキシル化テルペンフェノール樹脂の金属塩が好ましく、粘土物質、又は、芳香族カルボン酸の金属塩がより好ましく、粘土物質が更に好ましく、酸性白土、活性白土、又は、カオリンが特に好ましい。
 特に、顕色剤として粘土物質を用いた場合は、高温下における圧力分布測定の際に粘土物質が変色しにくいので、圧力測定用シートセットにおける圧力分布の表示品質に優れる。
Among them, as the color developer, a clay substance, a metal salt of an aromatic carboxylic acid, or a metal salt of a carboxylated terpenephenol resin is preferable, and a clay substance or a metal salt of an aromatic carboxylic acid is more preferable, and clay. The substance is more preferable, and acidic clay, active clay, or kaolin is particularly preferable.
In particular, when a clay substance is used as a color developer, the clay substance is less likely to discolor when the pressure distribution is measured at a high temperature, so that the display quality of the pressure distribution in the pressure measurement sheet set is excellent.
 第2層中における顕色剤の含有量は特に制限されないが、高温下でより精密な圧力分布測定を実施できる点で、第2層全質量に対して、20~95質量%が好ましく、30~90質量%がより好ましい。 The content of the color developer in the second layer is not particularly limited, but 20 to 95% by mass is preferable with respect to the total mass of the second layer, and 30 is preferable in that more accurate pressure distribution measurement can be performed at high temperature. ~ 90% by mass is more preferable.
 第2層中における顕色剤の含有量は特に制限されないが、0.1~30g/mが好ましい。顕色剤が無機化合物である場合には顕色剤の含有量は、3~20g/mが好ましく、5~15g/mがより好ましい。顕色剤が有機化合物である場合には顕色剤の含有量は、0.1~5g/mが好ましく、0.2~3g/mがより好ましい。 The content of the color developer in the second layer is not particularly limited, but is preferably 0.1 to 30 g / m 2 . When the developer is an inorganic compound, the content of the developer is preferably 3 to 20 g / m 2 and more preferably 5 to 15 g / m 2 . When the developer is an organic compound, the content of the developer is preferably 0.1 to 5 g / m 2 , more preferably 0.2 to 3 g / m 2 .
 第2層は、上述した顕色剤以外の他の成分を含んでいてもよい。
 他の成分としては、例えば、高分子バインダー、顔料、蛍光増白剤、消泡剤、浸透剤、紫外線吸収剤、界面活性剤、及び、防腐剤が挙げられる。
 高分子バインダーとしては、例えば、スチレン-ブタジエン共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、ポリビニルアルコール、ポリアクリル酸、無水マレイン酸-スチレン共重合体、デンプン、カゼイン、アラビアゴム、ゼラチン、カルボキシメチルセルロース、及び、メチルセルロース等の合成高分子又は天然高分子が挙げられる。
 顔料としては、例えば、重質炭酸カルシウム、軽質炭酸カルシウム、タルク、及び、二酸化チタン等が挙げられる。
The second layer may contain components other than the above-mentioned developer.
Examples of other components include polymer binders, pigments, fluorescent whitening agents, antifoaming agents, penetrants, ultraviolet absorbers, surfactants, and preservatives.
Examples of the polymer binder include styrene-butadiene copolymer, polyvinyl acetate, polyacrylic acid ester, polyvinyl alcohol, polyacrylic acid, maleic anhydride-styrene copolymer, starch, casein, gum arabic, gelatin, and carboxy. Examples thereof include methyl cellulose and synthetic polymers such as methyl cellulose or natural polymers.
Examples of the pigment include heavy calcium carbonate, light calcium carbonate, talc, titanium dioxide and the like.
 第2層の厚みは特に制限されないが、高温下でより精密な圧力分布測定を実施できる点で、1~50μmが好ましく2~30μmがより好ましい。
 また、第2層の単位面積当たりの質量(g/m)は特に制限されないが、0.5~20g/mが好ましい。
The thickness of the second layer is not particularly limited, but 1 to 50 μm is preferable, and 2 to 30 μm is more preferable, because more accurate pressure distribution measurement can be performed at a high temperature.
The mass (g / m 2 ) per unit area of the second layer is not particularly limited, but is preferably 0.5 to 20 g / m 2 .
<第2層の形成方法>
 上記第2層の形成方法は特に制限されず、公知の方法が挙げられる。
 例えば、顕色剤を含む第2層形成用組成物を第2支持体上に塗布して、必要に応じて、乾燥処理を施す方法が挙げられる。
 第2層形成用組成物は、顕色剤を水等に分散した分散液でもよい。顕色剤を分散した分散液は、顕色剤が無機化合物である場合は無機化合物を機械的に水に分散処理させることにより調製できる。また、顕色剤が有機化合物である場合は、有機化合物を機械的に水に分散処理するか、又は有機溶媒に溶解することにより調製できる。
 第2層形成用組成物には、上述した第2層に含まれていてもよい他の成分が含まれていてもよい。
<Method of forming the second layer>
The method for forming the second layer is not particularly limited, and known methods can be mentioned.
For example, a method of applying a composition for forming a second layer containing a color developer on a second support and, if necessary, performing a drying treatment can be mentioned.
The composition for forming the second layer may be a dispersion liquid in which a color developer is dispersed in water or the like. When the developer is an inorganic compound, the dispersion liquid in which the developer is dispersed can be prepared by mechanically dispersing the inorganic compound in water. When the color developer is an organic compound, it can be prepared by mechanically dispersing the organic compound in water or dissolving it in an organic solvent.
The composition for forming the second layer may contain other components that may be contained in the second layer described above.
 第2層形成用組成物を塗布する方法は特に制限されず、上述した第1層形成用組成物を塗布する際に用いる塗工機を用いる方法が挙げられる。 The method for applying the composition for forming the second layer is not particularly limited, and examples thereof include a method using a coating machine used for applying the composition for forming the first layer described above.
 第2層形成用組成物を第2支持体上に塗布後、必要に応じて、塗膜に対して乾燥処理を施してもよい。乾燥処理としては、加熱処理が挙げられる。 After applying the composition for forming the second layer on the second support, the coating film may be subjected to a drying treatment, if necessary. Examples of the drying treatment include heat treatment.
 なお、上記では第2支持体上に第2層を形成する方法について述べたが、上記態様に制限されず、例えば、仮支持体上に第2層を形成した後、仮支持体を剥離して、第2層からなる第2シートを形成してもよい。
 仮支持体としては、剥離性の支持体であれば特に制限されない。
Although the method of forming the second layer on the second support has been described above, the method is not limited to the above embodiment. For example, after the second layer is formed on the temporary support, the temporary support is peeled off. Alternatively, a second sheet composed of the second layer may be formed.
The temporary support is not particularly limited as long as it is a peelable support.
<他の部材>
 第2シートは上述した第2支持体及び第2層以外の他の部材を有していてもよい。
 例えば、第2シートは、第2支持体と第2層との間に、両者の密着性を高めるための密着層を有していてもよい。
 密着層の態様は、上述した第1シートが有していてもよい密着層の態様が挙げられる。
<Other members>
The second sheet may have a member other than the above-mentioned second support and the second layer.
For example, the second sheet may have an adhesion layer between the second support and the second layer for enhancing the adhesion between the two.
Examples of the aspect of the adhesion layer include the embodiment of the adhesion layer that the first sheet described above may have.
<<第1実施形態の圧力用測定シートセットの好適態様1>>
 第1実施形態の圧力用測定シートセットは、本発明の効果がより優れる点で、以下に示す(A)~(C)のいずれかの条件を満たすのが好ましい。
 (A)220℃で10分間加熱した場合における、第1シートの長手方向の収縮率S1が1.0~3.0%であって、且つ、第1支持体が、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートである。
 (B) 第1支持体及び第2支持体が、厚みが70μm以上であって、且つ、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートである。
 (C) 第1支持体及び第2支持体が、芳香族ポリイミドシートである。
<< Preferable mode 1 of the pressure measurement sheet set of the first embodiment >>
The pressure measurement sheet set of the first embodiment preferably satisfies any of the following conditions (A) to (C) in that the effect of the present invention is more excellent.
(A) When the first sheet is heated at 220 ° C. for 10 minutes, the shrinkage rate S1 in the longitudinal direction of the first sheet is 1.0 to 3.0%, and the first support is made of polyethylene naphthalate. It is a sheet containing 70% by mass or more with respect to the total mass.
(B) The first support and the second support are sheets having a thickness of 70 μm or more and containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet.
(C) The first support and the second support are aromatic polyimide sheets.
 なお、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートについては既述のとおりである。 The sheet containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet is as described above.
 また、上記条件(A)の場合、第1支持体及び第2支持体の厚みとしては特に制限されず、例えば、50μm以上であるのが好ましい。
 また、上記条件(B)の場合、220℃で10分間加熱した場合における、第1シート及び第2シートの長手方向の収縮率S1が-0.5~3.0%であるのが好ましい。
Further, in the case of the above condition (A), the thickness of the first support and the second support is not particularly limited, and is preferably 50 μm or more, for example.
Further, in the case of the above condition (B), it is preferable that the shrinkage ratio S1 in the longitudinal direction of the first sheet and the second sheet is −0.5 to 3.0% when heated at 220 ° C. for 10 minutes.
<<第1実施形態の圧力用測定シートセットの好適態様2>>
 上述したように、第1シートと第2シートとは、第1シートの第1層と第2シートの第2層とが対向するように、第1シートと第2シートとを積層させて積層体を得て、その積層体に対して加圧することにより使用される。つまり、第1シートは、上記第2シートと共に圧力を測定するために用いられるシートに該当する。
 上記積層体に対して圧力をかけて発色させた際の発色部のL表色系における色度は特に制限されないが、発色の視認しやすさの点から、色度aが30超80以下であることが好ましく、色度bが-50超50以下であることが好ましい。
 なお、上記色度を測定する際には、圧力をかけた後の積層体の第1シートと第2シートとを剥離して、濃度計RD-19(グレタグマクベス社製)を用いて第2シートの発色部の色度を測定する。第2シートが透明な第2支持体を含む場合は、第2支持体側から上記発色部の色度の測定を行う。
<< Preferable aspect 2 of the pressure measurement sheet set of the first embodiment >>
As described above, the first sheet and the second sheet are laminated by laminating the first sheet and the second sheet so that the first layer of the first sheet and the second layer of the second sheet face each other. It is used by obtaining a body and applying pressure to the laminate. That is, the first sheet corresponds to the sheet used for measuring the pressure together with the second sheet.
L * a * b * of the color-developing part when pressure is applied to the laminate to develop color The chromaticity in the color system is not particularly limited, but the chromaticity a * from the viewpoint of easy visibility of color development. Is preferably more than 30 and 80 or less, and chromaticity b * is preferably more than -50 and 50 or less.
When measuring the chromaticity, the first sheet and the second sheet of the laminated body after applying pressure are peeled off, and a second sheet is used with a densitometer RD-19 (manufactured by Gretag Macbeth). Measure the chromaticity of the color-developing part of the sheet. When the second sheet contains a transparent second support, the chromaticity of the color-developing portion is measured from the second support side.
[用途]
 本発明の圧力測定用シートセットは、種々の用途に使用でき、例えば、高温プレスをプロセスに含む様々な製造工程の検証又は管理に使用される。より具体的には、電池(リチウムイオン電池、燃料電池)分野における積層工程における圧力分布確認、プリント配線板(FPC、BWB)分野における積層工程における圧力分布確認、配線取り出し部のACFボンディング及びラミネート等の熱圧着工程における圧力分布確認、並びに、金型締め付け部の圧力分布確認が挙げられる。
[Use]
The pressure measuring sheet set of the present invention can be used for various purposes, for example, for verification or control of various manufacturing processes including a high temperature press in a process. More specifically, pressure distribution confirmation in the laminating process in the battery (lithium ion battery, fuel cell) field, pressure distribution confirmation in the laminating process in the printed wiring board (FPC, BWB) field, ACF bonding and laminating of the wiring take-out part, etc. The pressure distribution confirmation in the heat crimping process and the pressure distribution confirmation of the mold tightening portion can be mentioned.
[圧力測定用シートの製造方法]
 圧力測定用シートの製造方法は特に制限されないが、上述した第1シートの製造方法を含む製造方法であるのが好ましい。なお、第1シートの製造方法については既述のとおりである。
[Manufacturing method of pressure measurement sheet]
The method for manufacturing the pressure measuring sheet is not particularly limited, but a manufacturing method including the above-mentioned manufacturing method for the first sheet is preferable. The method for manufacturing the first sheet is as described above.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 なお、以下において、「部」及び「%」は、特に断りのない限り、質量基準である。
Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.
In the following, "part" and "%" are based on mass unless otherwise specified.
 なお、以下の実施例欄における略語は以下の通りである。
 St:スチレン
 MMA:メタクリル酸メチル
 MAA:メタクリル酸
 PMMA:ポリメタクリル酸メチル
The abbreviations in the following example columns are as follows.
St: Styrene MMA: Methyl Methacrylate MAA: Methacrylic Acid PMMA: Polymethyl Methacrylate
[発色剤内包マイクロカプセルの調製]
 以下の手順により、実施例及び比較例で使用する各発色剤内包マイクロカプセルを調製した。なお、発色剤内包マイクロカプセルA~Cのカプセル壁の熱分解温度は、いずれも250℃以上であった。なお、熱分解温度の測定方法は既述のとおりである。
[Preparation of color-developing agent-encapsulating microcapsules]
By the following procedure, each color-developing agent-encapsulating microcapsule used in Examples and Comparative Examples was prepared. The thermal decomposition temperature of the capsule walls of the color-developing agent-encapsulating microcapsules A to C was 250 ° C. or higher. The method for measuring the thermal decomposition temperature is as described above.
〔発色剤内包マイクロカプセルAの調製〕
 1,1-ジフェニルエタン(JXTGエネルギー社製、SAS-296)50部に、発色剤として3’,6’-ビス(ジエチルアミノ)-2-(4-ニトロフェニル)スピロ[イソインドール-1,9’-キサンテン]-3-オン(保土谷化学工業(株)製、Pink-DCF)3部、6’-(ジエチルアミノ)-1’,3’-ジメチルフルオラン(保土谷化学工業(株)製、Orange-DCF)4部、及び、紫外線吸収剤として2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(城北化学工業、JF-77-P)3部を溶解し、溶液Aを得た。
 次に、合成イソパラフィン(出光興産(株)、IPソルベント1620)13部を、撹拌している溶液Aに加えて溶液Bを得た。さらに、酢酸エチル6部に溶解したトリレンジイソシアナートのトリメチロールプロパン付加物(DIC(株)、バーノックD-750、固形分濃度75質量%)1.6部とミリオネートMR-200(東ソー(株)3.7部を、撹拌している溶液Bに加えて溶液Cを得た。なお、ミリオネートMR-200は、ジフェニルメタンジイソシアネートと、ポリメチレンポリフェニルポリイソシアネートとの混合物である。そして、水140部にポリビニルアルコール(JP-45、日本酢ビ・ポバール(株))4部を溶解した溶液中に上記の溶液Cを加えて、乳化分散した。乳化分散後の乳化液に水200部を加え、撹拌しながら70℃まで加温し、1時間撹拌後、冷却した。さらに、水を加えて濃度を調整し、固形分濃度25%の発色剤内包マイクロカプセルA液を得た。
[Preparation of color-developing agent-encapsulating microcapsules A]
In 50 parts of 1,1-diphenylethane (manufactured by JXTG Energy Co., Ltd., SAS-296), 3', 6'-bis (diethylamino) -2- (4-nitrophenyl) spiro [isoindole-1,9] as a coloring agent '-Xanthene] -3-one (manufactured by Hodoya Chemical Industry Co., Ltd., Pink-DCF) 3 parts, 6'-(diethylamino) -1', 3'-dimethylfluorane (manufactured by Hodoya Chemical Industry Co., Ltd.) , Orange-DCF) and 3 parts of 2- (2'-hydroxy-5'-methylphenyl) benzotriazole (Johoku Kagaku Kogyo, JF-77-P) as an ultraviolet absorber to dissolve Solution A. Obtained.
Next, 13 parts of synthetic isoparaffin (IP Solvent 1620, Idemitsu Kosan Co., Ltd.) was added to the stirring solution A to obtain a solution B. Furthermore, 1.6 parts of trimethylolpropane adduct of tolylene diisocyanate dissolved in 6 parts of ethyl acetate (DIC Co., Ltd., Burnock D-750, solid content concentration 75% by mass) and Millionate MR-200 (Tosoh Co., Ltd.) ) 3.7 parts was added to the stirring solution B to obtain solution C. Millionate MR-200 is a mixture of diphenylmethane diisocyanate and polymethylene polyphenyl polyisocyanate, and water 140. The above solution C was added to a solution in which 4 parts of polyvinyl alcohol (JP-45, Nippon Vinegar Bi-Poval Co., Ltd.) was dissolved, and the mixture was emulsified and dispersed. 200 parts of water was added to the emulsified solution after emulsification and dispersion. The mixture was heated to 70 ° C. with stirring, stirred for 1 hour, and then cooled. Further, water was added to adjust the concentration to obtain a color-developing agent-encapsulating microcapsule A solution having a solid content concentration of 25%.
〔発色剤内包マイクロカプセルBの調製〕
 攪拌条件を調整することで粒径を調整した以外は、〔発色剤内包マイクロカプセルAの調製〕と同様の方法で、発色剤内包マイクロカプセルB液を調製した。
[Preparation of color-developing agent-encapsulating microcapsules B]
A liquid color-developing microcapsule B was prepared in the same manner as in [Preparation of color-developing agent-encapsulating microcapsules A] except that the particle size was adjusted by adjusting the stirring conditions.
〔発色剤内包マイクロカプセルCの調製〕
 カプセル壁に使用する材料をメラミンとホルムアルデヒドに変更して公知の方法でカプセル壁を形成した以外は、〔発色剤内包マイクロカプセルAの調製〕と同様の方法により、発色剤内包マイクロカプセルC液を調製した。
[Preparation of color-developing agent-encapsulating microcapsules C]
The color-developing agent-encapsulating microcapsule C solution was prepared by the same method as in [Preparation of color-developing agent-encapsulating microcapsules A] except that the materials used for the capsule wall were changed to melamine and formaldehyde to form the capsule wall by a known method. Prepared.
〔発色剤内包マイクロカプセルDの調製〕
 WO2020/149410Aの[0153]を参考にして、トリレンジイソシアナートのトリメチロールプロパン付加物(DIC(株)、バーノックD-750)と、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミンとでカプセル壁が形成された発色剤内包マイクロカプセルD液を作製した。なお、発色剤内包マイクロカプセルDのカプセル壁は、表1中のポリウレタンウレア2に該当する。
[Preparation of color-developing agent-encapsulating microcapsules D]
With reference to [0153] of WO2020 / 149410A, a trimethylolpropane adduct of tolylene diisocyanate (DIC Corporation, Barnock D-750) and N, N, N', N'-tetrakis (2-hydroxy) A color-developing agent-encapsulating microcapsule D solution having a capsule wall formed of propyl) ethylenediamine was prepared. The capsule wall of the color former-encapsulating microcapsule D corresponds to polyurethane urea 2 in Table 1.
〔発色剤内包マイクロカプセルEの調製〕
 WO2018/062017Aの[0091]を参考にして、トリレンジイソシアナートのトリメチロールプロパン付加物(DIC(株)、バーノックD-750)と、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミンとでカプセル壁が形成された発色剤内包マイクロカプセルE液を作製した。なお、発色剤内包マイクロカプセルEのカプセル壁は、表1中のポリウレタンウレア3に該当する。
[Preparation of color-developing agent-encapsulating microcapsules E]
With reference to [0091] of WO2018 / 062017A, a trimethylolpropane adduct of tolylenediisocyanate (DIC Corporation, Barnock D-750) and N, N, N', N'-tetrakis (2-hydroxy) A color-developing agent-encapsulating microcapsule E solution in which a capsule wall was formed with propyl) ethylenediamine was prepared. The capsule wall of the color former-encapsulating microcapsule E corresponds to polyurethane urea 3 in Table 1.
[実施例1]
〔圧力測定用シートセットの作製〕
<第1シート及び第2シートの基材の作製>
 厚み75μmのポリエチレンナフタレートシート((PEN)、帝人フィルムソリューション(株)、テオネックス(登録商標)Q51(「第1支持体」に該当する。))の上に、スチレンブタジエンラテックス(SBR)を有する密着層形成組成物を塗布し、乾燥させて、厚み0.1μmの密着層を形成した。得られた基材(密着層付き支持体)を、後述する実施例1の第1シートの作製に使用した。また、第2シートの基材についても、第1シートの基材と同じものを作製して使用した。
 なお、表2の各実施例及び比較例の圧力測定用シートセットでは、第1シートの基材及び第2シートの基材は同じものを使用している。したがって、第1シートの基材中の支持体及び密着層、並びに、第2シートの基材中の支持体及び密着層は、各々同一である。
[Example 1]
[Making a sheet set for pressure measurement]
<Preparation of base materials for the first and second sheets>
Styrene butadiene latex (SBR) is provided on a 75 μm-thick polyethylene naphthalate sheet ((PEN), Teijin Film Solutions Co., Ltd., Theonex® Q51 (corresponding to “first support”)). The adhesive layer forming composition was applied and dried to form an adhesive layer having a thickness of 0.1 μm. The obtained base material (support with an adhesive layer) was used for producing the first sheet of Example 1 described later. Further, as for the base material of the second sheet, the same base material as that of the first sheet was prepared and used.
In the pressure measurement sheet sets of Examples and Comparative Examples in Table 2, the same base material of the first sheet and the base material of the second sheet are used. Therefore, the support and the adhesive layer in the base material of the first sheet and the support and the adhesive layer in the base material of the second sheet are the same.
<第1シートの作製>
 発色剤内包マイクロカプセルA液(43質量部)、水(15質量部)、離型剤として、コロイダルシリカ(日産化学(株)、スノーテックス(登録商標)30、固形分含有量30%)(5.7質量部)、ポリマロン482(荒川化学工業(株))の10質量%水溶液(1.8質量部)、カルボキシメチルセルロースNaの10質量%水溶液(24質量部)、ラピゾールA-90(日油(株))の1質量%水溶液(0.7質量部)、及び、ノイゲンLP-70(第一工業製薬(株)、ポリオキシアルキレンアルキルエーテル系界面活性剤)の1質量%水溶液(0.7質量部)を混合し、2時間撹拌することにより、第1層形成用組成物を得た。
 上述した基材の密着層面に、第1層形成組成物をバーコーターにより塗布し、加熱乾燥させて、約0.2μmの第1層を形成し、第1シートを作製した。
<Preparation of the first sheet>
Microcapsule A containing color former (43 parts by mass), water (15 parts by mass), colloidal silica as a release agent (Nissan Chemical Co., Ltd., Snowtex (registered trademark) 30, solid content 30%) ( 5.7 parts by mass), Polymaron 482 (Arakawa Chemical Industry Co., Ltd.) 10% by mass aqueous solution (1.8 parts by mass), 10% by mass aqueous solution of carboxymethyl cellulose Na (24 parts by mass), Lapizol A-90 (Japan) 1% by mass aqueous solution (0.7 parts by mass) of Oil Co., Ltd. and 1% by mass aqueous solution of Neugen LP-70 (Daiichi Kogyo Seiyaku Co., Ltd., polyoxyalkylene alkyl ether-based surfactant) .7 parts by mass) was mixed and stirred for 2 hours to obtain a composition for forming a first layer.
The first layer forming composition was applied to the contact layer surface of the above-mentioned substrate by a bar coater and dried by heating to form a first layer having a size of about 0.2 μm to prepare a first sheet.
<第2シートの作製>
 顕色剤である硫酸処理活性白土(200質量部)、ヘキサメタリン酸ナトリウム(1質量部)、水酸化ナトリウム10質量%水溶液(30質量部)、及び、水(290質量部)を、サンドグラインダーを用いて、全粒子の平均粒子径が2μmになるように分散して分散液を調製した。
 次いで、調製した分散液に、ニッポールLX-814(日本ゼオン(株))の19質量%水分散液(180質量部)、ポリマロン482(荒川化学工業(株))の3.3質量%水溶液(220質量部)、カルボキシメチルセルロースNa(第一工業製薬(株)、セロゲンEP)の1質量%水溶液(80質量部)、アルキルベンゼンスルホン酸ナトリウム(第一工業製薬(株)、ネオゲンT)の15質量%水溶液(4.7質量部)、及び、ノイゲンLP70(第一工業製薬(株))の1質量%水溶液(70質量部)を混合し、顕色剤を含む塗布液を調製した。
 顕色剤を含む塗布液を、上述した基材の密着層面の上に固形分塗布量が12.0g/mになるように塗布し、乾燥させて第2層を形成し、第2シートを得た。
<Preparation of the second sheet>
Use a sand grinder with sulfuric acid-treated active white clay (200 parts by mass), sodium hexametaphosphate (1 part by mass), 10% by mass aqueous solution of sodium hydroxide (30 parts by mass), and water (290 parts by mass), which are color developers. The dispersion was prepared by dispersing the particles so that the average particle size of all the particles was 2 μm.
Next, in the prepared dispersion, a 19% by mass aqueous dispersion (180 parts by mass) of Nippon Zeon LX-814 (Nippon Zeon Co., Ltd.) and a 3.3% by mass aqueous solution of Polymaron 482 (Arakawa Chemical Industry Co., Ltd.) ( 220 parts by mass), 1% by mass aqueous solution of carboxymethyl cellulose Na (Daiichi Kogyo Seiyaku Co., Ltd., Cellogen EP) (80 parts by mass), 15 parts by mass of sodium alkylbenzene sulfonate (Daiichi Kogyo Seiyaku Co., Ltd., Neogen T) A% aqueous solution (4.7 parts by mass) and a 1% by mass aqueous solution (70 parts by mass) of Neugen LP70 (Daiichi Kogyo Seiyaku Co., Ltd.) were mixed to prepare a coating solution containing a color developer.
A coating liquid containing a color developer is applied onto the adhesion layer surface of the above-mentioned substrate so that the solid content coating amount is 12.0 g / m 2 , and dried to form a second layer to form a second sheet. Got
[実施例2~12]
 表1に記載の構成に変更した以外は、実施例1と同様の方法により、実施例2~11の圧力測定用シートセットを作製した。
 なお、実施例10で使用する第1支持体及び第2支持体は、PI(ポリイミド)から形成されたシートである。また、実施例11で使用する第1支持体及び第2支持体は、PEN/PET(ポリエチレンテレフタレート)共重合体(質量比:70/30)から形成されたシートである。また、実施例12で使用する第1支持体及び第2支持体は、PEN/PET共重合体(質量比:50/50)から形成されたシートである。
[Examples 2 to 12]
The pressure measurement sheet sets of Examples 2 to 11 were produced by the same method as in Example 1 except that the configurations shown in Table 1 were changed.
The first support and the second support used in Example 10 are sheets formed of PI (polyimide). The first support and the second support used in Example 11 are sheets formed of a PEN / PET (polyethylene terephthalate) copolymer (mass ratio: 70/30). Further, the first support and the second support used in Example 12 are sheets formed from a PEN / PET copolymer (mass ratio: 50/50).
[実施例13]
〔第1シート及び第2シートの基材の作製〕
 厚み75μmのポリエチレンナフタレートシート((PEN)、帝人フィルムソリューション(株)、テオネックス(登録商標)Q51(「第1支持体」に該当する。))の上に、スチレンブタジエンラテックス(SBR)を有する第1密着層形成組成物を塗布し、乾燥させて、厚み0.1μmの第1密着層を形成した。次いで、得られた第1密着層上に、ゼラチンを有する第2密着層形成組成物を塗布し、乾燥させて、厚み0.5μmの第2密着層を形成した。つまり、スチレンブタジエンラテックス(SBR)とゼラチンとを含む密着層を形成した。また、第2シートの基材についても、第1シートの基材と同じものを作製して使用した。
[Example 13]
[Preparation of base materials for the first and second sheets]
Styrene butadiene latex (SBR) is provided on a 75 μm-thick polyethylene naphthalate sheet ((PEN), Teijin Film Solutions Co., Ltd., Theonex® Q51 (corresponding to “first support”)). The first adhesive layer forming composition was applied and dried to form a first adhesive layer having a thickness of 0.1 μm. Next, a second adhesion layer forming composition having gelatin was applied onto the obtained first adhesion layer and dried to form a second adhesion layer having a thickness of 0.5 μm. That is, an adhesive layer containing styrene-butadiene latex (SBR) and gelatin was formed. Further, as for the base material of the second sheet, the same base material as that of the first sheet was prepared and used.
 第1シート及び第2シートの基材を上記基材に変更した以外は、実施例5と同様の方法により圧力測定用シートセットを作製した。 A sheet set for pressure measurement was produced by the same method as in Example 5 except that the base materials of the first sheet and the second sheet were changed to the above base materials.
[実施例14~16]
 密着層形成組成物中の樹脂を表1に記載の樹脂に変更し、且つ、密着層の厚みを表1に示す厚みに変更した以外は、実施例5と同様の方法により圧力測定用シートセットを作製した。
 なお、実施例14において、St/MMA/MAAは、40/40/20(質量比)の共重合体である。
[Examples 14 to 16]
A sheet set for pressure measurement by the same method as in Example 5 except that the resin in the adhesion layer forming composition was changed to the resin shown in Table 1 and the thickness of the adhesion layer was changed to the thickness shown in Table 1. Was produced.
In Example 14, St / MMA / MAA is a copolymer of 40/40/20 (mass ratio).
[実施例17]
 第1シートの作製において、発色剤内包マイクロカプセルの種類を表1に記載のものに変更し、且つ、第1層形成用組成物中のカルボキシメチルセルロースNa(10質量%水溶液)24質量部をポリビニルアルコール(PVA)(10質量%水溶液)24質量部に変更した以外は、実施例15と同様の方法により圧力測定用シートセットを作製した。
[Example 17]
In the preparation of the first sheet, the type of the color-developing agent-encapsulating microcapsules was changed to those shown in Table 1, and 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) in the composition for forming the first layer was made of polyvinyl. A sheet set for pressure measurement was prepared by the same method as in Example 15 except that the alcohol (PVA) (10% by mass aqueous solution) was changed to 24 parts by mass.
[実施例18]
 第1シートの作製において、第1層形成用組成物中のカルボキシメチルセルロースNa(10質量%水溶液)24質量部をPVA(10質量%水溶液)22質量部と架橋剤(グリオキザール(39質量%水溶液、東京化成))0.5質量部に変更した以外は、実施例15と同様の方法により圧力測定用シートセットを作製した。
[Example 18]
In the preparation of the first sheet, 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) in the composition for forming the first layer was mixed with 22 parts by mass of PVA (10% by mass aqueous solution) and a cross-linking agent (glioxal (39% by mass aqueous solution,). Tokyo Kasei)) A sheet set for pressure measurement was produced by the same method as in Example 15 except that the content was changed to 0.5 parts by mass.
[実施例19]
 密着層形成組成物中の樹脂を表1に記載の樹脂に変更し、且つ、密着層の厚みを表1に示す厚みに変更した以外は、実施例17と同様の方法により圧力測定用シートセットを作製した。
[Example 19]
A sheet set for pressure measurement by the same method as in Example 17 except that the resin in the adhesion layer forming composition was changed to the resin shown in Table 1 and the thickness of the adhesion layer was changed to the thickness shown in Table 1. Was produced.
[実施例20]
 密着層形成組成物中の樹脂を表1に記載の樹脂に変更し、且つ、密着層の厚みを表1に示す厚みに変更した以外は、実施例18と同様の方法により圧力測定用シートセットを作製した。
[Example 20]
A sheet set for pressure measurement by the same method as in Example 18 except that the resin in the adhesion layer forming composition was changed to the resin shown in Table 1 and the thickness of the adhesion layer was changed to the thickness shown in Table 1. Was produced.
[実施例21]
 第1シートの作製において、発色剤内包マイクロカプセルの種類を表1に記載のものに変更した以外は、実施例5と同様の方法により圧力測定用シートセットを作製した。
[Example 21]
In the preparation of the first sheet, a pressure measurement sheet set was prepared by the same method as in Example 5 except that the types of the color-developing agent-encapsulating microcapsules were changed to those shown in Table 1.
[実施例22]
 第1シート及び第2シートの基材を実施例13と同様の基材に変更した以外は、実施例21と同様の方法により圧力測定用シートセットを作製した。
[Example 22]
A sheet set for pressure measurement was produced by the same method as in Example 21 except that the base materials of the first sheet and the second sheet were changed to the same base materials as in Example 13.
[実施例23]
 第1シートの作製において、第1層形成用組成物中のカルボキシメチルセルロースNa(10質量%水溶液)24質量部をPVA(10質量%水溶液)22質量部と架橋剤(グリオキザール(39質量%水溶液、東京化成))0.5質量部に変更し、且つ基材を実施例14と同様の基材に変更した以外は、実施例21と同様の方法により第1シートを作製した。
[Example 23]
In the preparation of the first sheet, 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) in the composition for forming the first layer was mixed with 22 parts by mass of PVA (10% by mass aqueous solution) and a cross-linking agent (glioxal (39% by mass aqueous solution,). Tokyo Kasei)) The first sheet was prepared by the same method as in Example 21 except that the base material was changed to 0.5 parts by mass and the base material was changed to the same base material as in Example 14.
 第2シートの作製において、基材を実施例14と同様の基材に変更した以外は、実施例21と同様の方法により第2シートを作製した。
 上記手順により、圧力測定用シートセットを作製した。
In the preparation of the second sheet, the second sheet was prepared by the same method as in Example 21 except that the base material was changed to the same base material as in Example 14.
A sheet set for pressure measurement was produced by the above procedure.
[実施例24]
 密着層形成組成物中の樹脂を表1に記載の樹脂に変更し、且つ、密着層の厚みを表1に示す厚みに変更した以外は、実施例23と同様の方法により圧力測定用シートセットを作製した。
[Example 24]
A sheet set for pressure measurement by the same method as in Example 23, except that the resin in the adhesion layer forming composition was changed to the resin shown in Table 1 and the thickness of the adhesion layer was changed to the thickness shown in Table 1. Was produced.
[実施例25]
 発色剤内包マイクロカプセルの種類を表1に記載のものに変更し、且つ、カルボキシメチルセルロースNa(10質量%水溶液)24質量部を、水溶性単官能モノマー(FOM-03010、富士フィルム和光純薬(株))1.6質量部と、水溶性架橋剤(FOM-03006、富士フィルム和光純薬(株))0.7質量部と、水溶性光ラジカル開始剤(FOM-03011、富士フィルム和光純薬(株)、5%水溶液)1.5質量部と、に変更した以外は実施例1と同様にして、第1層形成用組成物を得た。
 実施例1と同様の基材の密着層面に、第1層形成組成物をバーコーターにより塗布して乾燥させたのち、高圧水銀灯(ウシオ電機(株)製)にて3000mJ/cm照射して硬化膜である第1層を形成し、第1シートを作製した。
 実施例1と同様の第2シートを使用し、圧力測定用シートセットを作製した。第1層の厚みは0.5μmであった。
[Example 25]
The type of the color former-encapsulating microcapsule was changed to that shown in Table 1, and 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) was added to a water-soluble monofunctional monomer (FOM-03010, Fuji Film Wako Pure Chemical Industries, Ltd.). Co., Ltd.) 1.6 parts by mass, water-soluble cross-linking agent (FOM-03006, Fuji Film Wako Pure Chemical Industries, Ltd.) 0.7 parts by mass, water-soluble photoradical initiator (FOM-03011, Fuji Film Wako Pure Chemical Industries, Ltd.) A composition for forming a first layer was obtained in the same manner as in Example 1 except that the composition was changed to 1.5 parts by mass of Yakuhin Co., Ltd. (5% aqueous solution).
The first layer forming composition was applied to the adhesion layer surface of the same base material as in Example 1 with a bar coater, dried, and then irradiated with a high-pressure mercury lamp (manufactured by Ushio, Inc.) at 3000 mJ / cm 2 . The first layer, which is a cured film, was formed to prepare the first sheet.
A second sheet similar to that in Example 1 was used to prepare a sheet set for pressure measurement. The thickness of the first layer was 0.5 μm.
[実施例26~27]
 表1に記載の構成に変更した以外は、実施例1と同様の方法により、実施例26~27の圧力測定用シートセットを作製した。
[Examples 26 to 27]
The pressure measurement sheet sets of Examples 26 to 27 were produced by the same method as in Example 1 except that the configurations shown in Table 1 were changed.
[比較例1]
〔圧力測定用シートセットの作製〕
<第1シート及び第2シートの基材の作製>
 厚み75μmのポリエチレンテレフタレートシート(PET)に、特開2017-171904号公報の実施例1を参考に合成したウレタンラテックスを有する密着層形成組成物を塗布し、乾燥させて、厚み0.1μmの密着層を形成した。得られた基材(密着層付き支持体)を、後述する比較例1の第1シート及び第2シートの作製に使用した。
[Comparative Example 1]
[Making a sheet set for pressure measurement]
<Preparation of base materials for the first and second sheets>
A close contact layer forming composition having a urethane latex synthesized with reference to Example 1 of JP-A-2017-171904 is applied to a polyethylene terephthalate sheet (PET) having a thickness of 75 μm, dried, and adhered to a thickness of 0.1 μm. Formed a layer. The obtained base material (support with an adhesive layer) was used for producing the first sheet and the second sheet of Comparative Example 1 described later.
<第1シートの作製>
(第1層形成用組成物)
 発色剤内包マイクロカプセルの種類を表1に記載のものに変更し、且つ、第1層形成用組成物中のカルボキシメチルセルロースNa(10質量%水溶液)24質量部をポリオレフィン(10質量%水溶液)24質量部に変更した以外は、実施例1と同様の方法により第1層形成用組成物を作製した。
<Preparation of the first sheet>
(Composition for forming the first layer)
The type of the color-developing agent-encapsulating microcapsule was changed to that shown in Table 1, and 24 parts by mass of carboxymethyl cellulose Na (10% by mass aqueous solution) in the composition for forming the first layer was changed to 24 parts by weight of polyolefin (10% by mass aqueous solution) 24. A composition for forming a first layer was prepared by the same method as in Example 1 except that the composition was changed to a mass portion.
 上述した基材の密着層面に、第1層形成組成物をバーコーターにより塗布し、乾燥させて、約3μmの第1層を形成し、第1シートを作製した。 The first layer forming composition was applied to the contact layer surface of the above-mentioned base material with a bar coater and dried to form a first layer of about 3 μm to prepare a first sheet.
<第2シートの作製>
 顕色剤を含む塗布液を、基材を上述した基材に変更した以外は実施例1と同様にして、第2シートを作製した。
<Preparation of the second sheet>
A second sheet was prepared in the same manner as in Example 1 except that the coating liquid containing the color developer was changed to the above-mentioned base material.
[比較例2]
 第1シートの作製において、第1層形成用組成物中の樹脂の種類及び第1層の厚みを表1に記載のバインダーの種類及び第1層の厚みに変更した以外は、比較例1と同様の方法により圧力測定用シートセットを作製した。
[Comparative Example 2]
In the preparation of the first sheet, the type of the resin in the composition for forming the first layer and the thickness of the first layer were changed to the type of the binder and the thickness of the first layer shown in Table 1, except that the thickness of the first layer was changed to that of Comparative Example 1. A sheet set for pressure measurement was prepared by the same method.
[比較例3]
(第1層形成用組成物)
 発色剤内包マイクロカプセルの種類を表1に記載のものに変更した以外は、実施例1と同様の方法により第1層形成用組成物を作製した。
 第1シートの作製において、第1層形成用組成物として上記第1層形成用組成物を使用し、且つ、第1層の厚みを表1に記載の厚みに変更した以外は、比較例1と同様の方法により圧力測定用シートセットを作製した。
[Comparative Example 3]
(Composition for forming the first layer)
A composition for forming a first layer was prepared by the same method as in Example 1 except that the type of the color-developing agent-encapsulating microcapsules was changed to that shown in Table 1.
In the production of the first sheet, Comparative Example 1 except that the composition for forming the first layer was used as the composition for forming the first layer and the thickness of the first layer was changed to the thickness shown in Table 1. A sheet set for pressure measurement was prepared by the same method as in the above.
[水素結合性のOH基及び水素結合性NH基の確認、架橋バインダーの確認]
〔水素結合性のOH基及び水素結合性NH基の確認:実施例1~24、26~27、比較例1~3〕
 第1シートを温度80~95℃の熱水に0.5~2時間浸漬して、マイクロカプセルとバインダーを分離した。次いで、熱水抽出物の水を除去し、粉体試料を、KBr法にて赤外分光光度計(FTS7000、Digilab社 製)を使用して赤外吸収スペクトル測定を実施した。
 なお、水素結合性のOH基及び水素結合性NH基の有無は、3200~3500cm-1にピークトップを有するブロードな吸収ピークを有するか否かによって判断した。また、以下の評価基準に基づいて、得られた赤外吸収スペクトルの結果を評価した。
≪評価基準≫
 「A」:3200~3500cm-1にブロードな吸収ピークが大きく観測され、そのピークトップの高さ(ピーク高さ)が、3200~3500cm-1を除く波数領域に現れる他の吸収ピークのピーク高さと比較して、1~3番である(つまり、バインダー中に水素結合性のOH基及び/又は水素結合性NH基が存在し、バインダー中の水素結合性のOH基及び水素結合性NH基の含有量が、他の官能基の含有量と比較して多い)。
 「B」:3200~3500cm-1にブロードな吸収ピークが観測され、そのピーク高さが、3200~3500cm-1を除く波数領域に現れる他の吸収ピークのピーク高さと比較して、4番目以降である(つまり、バインダー中に水素結合性のOH基及び/又は水素結合性NH基は存在するが、その含有量が、他の官能基の含有量と比較して少ない)。
 「C」:3200~3500cm-1にブロードな吸収ピークが存在しない、又は、存在するとしても、そのピーク高さが、3200~3500cm-1を除く波数領域に現れる他の吸収ピークのピーク高さと比較して最も小さい(つまり、水素結合性のOH基及び水素結合性NH基が実質的に存在しない)。
[Confirmation of hydrogen-bonding OH group and hydrogen-bonding NH group, confirmation of cross-linking binder]
[Confirmation of hydrogen-bonding OH group and hydrogen-bonding NH group: Examples 1 to 24, 26 to 27, Comparative Examples 1 to 3]
The first sheet was immersed in hot water at a temperature of 80 to 95 ° C. for 0.5 to 2 hours to separate the microcapsules and the binder. Then, the water of the hot water extract was removed, and the powder sample was subjected to infrared absorption spectrum measurement using an infrared spectrophotometer (FTS7000, manufactured by Digilab) by the KBr method.
The presence or absence of a hydrogen-bonding OH group and a hydrogen-bonding NH group was determined by whether or not they had a broad absorption peak having a peak top at 3200 to 3500 cm -1 . In addition, the results of the obtained infrared absorption spectrum were evaluated based on the following evaluation criteria.
≪Evaluation criteria≫
"A": A broad absorption peak is largely observed at 3200 to 3500 cm -1 , and the peak height (peak height) of the peak top is the peak height of other absorption peaks appearing in the wave number region except 3200 to 3500 cm -1 . Nos. 1 to 3 (that is, hydrogen-bonding OH groups and / or hydrogen-bonding NH groups are present in the binder, and hydrogen-bonding OH groups and hydrogen-bonding NH groups in the binder. Content is higher than that of other functional groups).
"B": A broad absorption peak is observed at 3200 to 3500 cm -1 , and the peak height is the fourth and subsequent peak heights compared to the peak heights of other absorption peaks appearing in the wave number region except 3200 to 3500 cm -1 . (That is, hydrogen-bonding OH groups and / or hydrogen-bonding NH groups are present in the binder, but their content is low compared to the content of other functional groups).
"C": A broad absorption peak does not exist at 3200 to 3500 cm -1 , or even if it exists, its peak height is the same as the peak height of other absorption peaks appearing in the wavenumber region except 3200 to 3500 cm -1 . The smallest in comparison (ie, there are virtually no hydrogen-bonding OH and hydrogen-bonding NH groups).
〔架橋バインダーの確認:実施例25〕
 実施例25の第1シートを温度80~95℃の熱水に0.5~2時間浸漬し、浸漬後に十分に乾燥した後、浸漬前後での膜の重さを測定した。浸漬後の膜の重さの減少率は5%以下であった。
[Confirmation of crosslinked binder: Example 25]
The first sheet of Example 25 was immersed in hot water having a temperature of 80 to 95 ° C. for 0.5 to 2 hours, and after the immersion was sufficiently dried, the weight of the film before and after the immersion was measured. The rate of decrease in the weight of the film after immersion was 5% or less.
[収縮率の測定]
〔第1シートの収縮率の測定〕
 各実施例及び比較例にて作製した第1シートを、第1シートの長手方向に沿った方向の長さが150mm、幅方向に沿った方向の長さが20mmとなるように裁断したサンプルを3枚準備した。
 サンプルの一方の短辺の中央点(起点)から他方の短辺の中央点に向かって、長辺に平行な方向に沿って約25mm進んだ位置Aと、サンプルの他方の短辺の中央点(起点)から一方の短辺の中央点に向かって、長辺に平行な方向に沿って約25mm進んだ位置Bと、のそれぞれに標線を付した。このとき、位置Aと位置Bとの間の距離(標線間の距離)は、100mm±2mmであった。
 これを第1シートの長手方向における収縮率S1の測定用サンプルとして用いた。
 得られた測定用サンプルを220℃で10分間加熱した後、測定用サンプルを室温(23℃)に戻して、測定用サンプルの標線間の距離を測定し、以下の式に従って収縮率S1aを算出した。
 収縮率S1a[%]=100×{(加熱前の測定用サンプルにおける標線間の距離)-(加熱後の測定用サンプルにおける標線間の距離)}/(加熱前の測定用サンプルにおける標線間の距離)
 3枚の測定用サンプルの収縮率S1aの算術平均値を求め、これを収縮率S1とした。なお、標線間の距離は、0.1mmの単位まで測定した。
[Measurement of shrinkage rate]
[Measurement of shrinkage rate of the first sheet]
A sample obtained by cutting the first sheet produced in each Example and Comparative Example so that the length in the direction along the longitudinal direction of the first sheet was 150 mm and the length in the direction along the width direction was 20 mm was prepared. I prepared 3 sheets.
Position A, which is about 25 mm ahead from the center point (starting point) of one short side of the sample toward the center point of the other short side along the direction parallel to the long side, and the center point of the other short side of the sample. A marked line was attached to each of the position B, which was advanced by about 25 mm along the direction parallel to the long side from (starting point) toward the center point of one short side. At this time, the distance between the position A and the position B (distance between the marked lines) was 100 mm ± 2 mm.
This was used as a sample for measuring the shrinkage ratio S1 in the longitudinal direction of the first sheet.
After heating the obtained measurement sample at 220 ° C. for 10 minutes, the measurement sample is returned to room temperature (23 ° C.), the distance between the marked lines of the measurement sample is measured, and the shrinkage rate S1a is determined according to the following formula. Calculated.
Shrinkage rate S1a [%] = 100 × {(distance between marked lines in the measurement sample before heating)-(distance between marked lines in the measurement sample after heating)} / (mark in the measurement sample before heating) Distance between lines)
The arithmetic mean value of the shrinkage rate S1a of the three measurement samples was obtained and used as the shrinkage rate S1. The distance between the marked lines was measured up to a unit of 0.1 mm.
 また、各実施例及び比較例にて作製した第1シートを、第1シートの幅方向に沿った方向の長さが150mm、長手方向に沿った方向の長さが20mmとなるように裁断したサンプルを3枚準備した。そして、収縮率S1の測定用サンプルと同様にして、各サンプルの表面に標線を付した。
 これを第1シートの幅方向における収縮率S2の測定用サンプルとして用いた。
 得られた測定用サンプルを220℃で10分間加熱した後、測定用サンプルを室温(23℃)に戻して、測定用サンプルの標線間の距離を測定し、以下の式に従って収縮率S2aを算出した。
 収縮率S2a[%]=100×{(加熱前の測定用サンプルにおける標線間の距離)-(加熱後の測定用サンプルにおける標線間の距離)}/(加熱前の測定用サンプルにおける標線間の距離)
 3枚の測定用サンプルの収縮率S2aの算術平均値を求め、これを収縮率S2とした。なお、標線間の距離は、0.1mmの単位まで測定した。
Further, the first sheet produced in each Example and Comparative Example was cut so that the length in the direction along the width direction of the first sheet was 150 mm and the length in the direction along the longitudinal direction was 20 mm. Three samples were prepared. Then, a marked line was added to the surface of each sample in the same manner as the sample for measuring the shrinkage ratio S1.
This was used as a sample for measuring the shrinkage ratio S2 in the width direction of the first sheet.
After heating the obtained measurement sample at 220 ° C. for 10 minutes, the measurement sample is returned to room temperature (23 ° C.), the distance between the marked lines of the measurement sample is measured, and the shrinkage rate S2a is determined according to the following formula. Calculated.
Shrinkage rate S2a [%] = 100 × {(distance between marked lines in the measurement sample before heating)-(distance between marked lines in the measurement sample after heating)} / (mark in the measurement sample before heating) Distance between lines)
The arithmetic mean value of the shrinkage rate S2a of the three measurement samples was obtained and used as the shrinkage rate S2. The distance between the marked lines was measured up to a unit of 0.1 mm.
〔第1支持体及び第2支持体の収縮率の測定〕
 各実施例及び比較例にて作製した第1シートの代わりに、第1シートの作製に使用した第1支持体及び第2シートの作製に使用した第2支持体を使用した以外は、第1シートにおける収縮率S1及び収縮率S2の測定方法と同様にして、第1支持体における収縮率S1及び収縮率S2及び第2支持体における収縮率S1及び収縮率S2を算出した。
[Measurement of shrinkage rate of first support and second support]
First, except that the first support used for producing the first sheet and the second support used for producing the second sheet were used instead of the first sheet produced in each Example and Comparative Example. The shrinkage rate S1 and the shrinkage rate S2 in the first support and the shrinkage rate S1 and the shrinkage rate S2 in the second support were calculated in the same manner as in the method for measuring the shrinkage rate S1 and the shrinkage rate S2 in the sheet.
[各種評価]
〔変形性〕
 各実施例及び比較例にて作製した第1シート及び第2シートをそれぞれ5cm×5cmのサイズに裁断し、第1シートと第2シートとを、第1シートの第1層の表面と第2シートの第2層の表面とが向き合うようにして重ね合わせて、積層体(シートセット)を得た。
 次に、上下に配置された2枚の加熱ステージを有するホットプレス機を用意し、加熱ステージ同士を離して、積層体を配置した。その後、220℃に加熱した2枚の加熱ステージで積層体を挟むように、120秒間5.0MPaで加圧した。加圧終了後、加圧された積層体を平坦な台の上に置いて、その変形性を観察し、以下の評価基準に従って評価した。「B」以上が好ましい。
 また、以下の評価基準において、「浮き」とは、図4に示すとおり、平面台Pに静置した際に積層体40の端部40Eが静置面から浮くことを意味する。
≪評価基準≫
 「A」:積層体に、浮きや凹凸が確認されなかった。
 「B」:積層体に、僅かに浮きや凹凸が確認された。
 「C」:積層体に、浮きや凹凸が確認された。
[Various evaluations]
[Deformability]
The first sheet and the second sheet produced in each Example and Comparative Example were cut into a size of 5 cm × 5 cm, respectively, and the first sheet and the second sheet were separated into the surface of the first layer of the first sheet and the second sheet. A laminated body (sheet set) was obtained by superimposing the sheets so that the surfaces of the second layer face each other.
Next, a hot press machine having two heating stages arranged one above the other was prepared, and the heating stages were separated from each other to arrange the laminated body. Then, the pressure was applied at 5.0 MPa for 120 seconds so that the laminate was sandwiched between the two heating stages heated to 220 ° C. After the pressurization was completed, the pressurized laminate was placed on a flat table, its deformability was observed, and the evaluation was performed according to the following evaluation criteria. "B" or higher is preferable.
Further, in the following evaluation criteria, "floating" means that, as shown in FIG. 4, the end portion 40E of the laminated body 40 floats from the standing surface when it is placed on the flat table P.
≪Evaluation criteria≫
"A": No floating or unevenness was confirmed on the laminated body.
"B": Slight floating and unevenness were confirmed on the laminated body.
"C": Floating and unevenness were confirmed on the laminated body.
〔塗膜剥がれ〕
 各実施例及び比較例にて作製した第1シート及び第2シートをそれぞれ5cm×5cmのサイズに裁断し、第1シートと第2シートとを、第1シートの第1層の表面と第2シートの第2層の表面とが向き合うようにして重ね合わせて、積層体(シートセット)を得た。各実施例及び比較例毎に、積層体(シートセット)を2枚ずつ準備した。
 次に、上下に配置された2枚の加熱ステージを有するホットプレス機を用意し、加熱ステージ同士を離して、一方の積層体を配置した。その後、220℃に加熱した2枚の加熱ステージで積層体を挟むように、120秒間2.5MPaで加圧した。
 次いで、加圧条件を2.5MPaにかえて5.0MPaとした以外は同様の方法により、他方の積層体を加圧した。
 加圧終了後、積層体を構成する2枚のシートを剥離して、両シートの表面に塗膜の接着・剥がれがないかを目視で確認し、以下の評価基準に従って評価した。「C」以上が好ましい。
≪評価基準≫
 「A」:加圧条件が5.0MPaの場合であっても、塗膜の接着や剥がれが確認されなかった。
 「B」:加圧条件が2.5MPaの場合には塗膜の接着や剥がれが確認されなかったが、加圧条件が5.0MPaの場合には塗膜の接着や剥がれが僅かに確認された。
 「C」:加圧条件が2.5MPaの場合には塗膜の接着や剥がれが確認されなかったが、加圧条件が5.0MPaの場合には塗膜の接着や剥がれがやや多く確認された。
 「D」:加圧条件が2.5MPaの場合であっても、接着や剥がれが確認された。
[Peeling of coating film]
The first sheet and the second sheet produced in each Example and Comparative Example were cut into a size of 5 cm × 5 cm, respectively, and the first sheet and the second sheet were separated into the surface of the first layer of the first sheet and the second sheet. A laminated body (sheet set) was obtained by superimposing the sheets so that the surfaces of the second layer face each other. Two laminated bodies (sheet sets) were prepared for each Example and Comparative Example.
Next, a hot press machine having two heating stages arranged one above the other was prepared, and the heating stages were separated from each other, and one of the laminated bodies was arranged. Then, the pressure was applied at 2.5 MPa for 120 seconds so that the laminate was sandwiched between the two heating stages heated to 220 ° C.
Then, the other laminated body was pressurized by the same method except that the pressurizing condition was changed to 5.0 MPa instead of 2.5 MPa.
After the pressurization was completed, the two sheets constituting the laminated body were peeled off, and it was visually confirmed whether or not the coating film was adhered or peeled off on the surfaces of both sheets, and the evaluation was made according to the following evaluation criteria. "C" or higher is preferable.
≪Evaluation criteria≫
"A": Adhesion and peeling of the coating film were not confirmed even when the pressurizing condition was 5.0 MPa.
"B": Adhesion or peeling of the coating film was not confirmed when the pressure condition was 2.5 MPa, but adhesion or peeling of the coating film was slightly confirmed when the pressure condition was 5.0 MPa. rice field.
"C": Adhesion and peeling of the coating film were not confirmed when the pressure condition was 2.5 MPa, but adhesion and peeling of the coating film were confirmed to be slightly more when the pressure condition was 5.0 MPa. rice field.
"D": Adhesion and peeling were confirmed even when the pressurizing condition was 2.5 MPa.
〔階調〕
 各実施例及び比較例にて作製した第1シートと、5cm×5cmのサイズに裁断した第2シートとを、第1シートの第1層の表面と第2シートの第2層の表面とが向き合うようにして重ね合わせて、積層体(シートセット)を得た。各実施例及び比較例毎に、積層体(シートセット)を3枚ずつ準備した。
 次に、上下に配置された2枚の加熱ステージを有するホットプレス機を用意し、加熱ステージ同士を離して、積層体を配置した。その後、200℃のホットプレス機によって1.0MPa、1.5MPa、2.5MPa及びの圧力でシートを加圧し、発色させた。その後、重ね合わせた両シートを剥離し、濃度計RD-19(グレタグマクベス社製)を用いて、第2シートに形成された発色部の濃度(DA)を測定した。
 また、これとは別に、未使用の第2シートについて同様の方法で初期濃度(DB)を測定した。そして、濃度DAから初期濃度DBを減算し、発色濃度ΔDを求め、以下の評価基準に従って評価した。「B」が好ましい。
≪評価基準≫
 「A」:0.5MPaと1.5MPaと2.5MPaとで、3点ともΔDが0.4以上である
 「B」:0.5MPaと1.5MPaと2.5MPaとで、いずれか2点はΔDが0.1以上0.4未満である
 「C」:0.5MPaと1.5MPaと2.5MPaとで、いずれか2点はΔDが0.1未満である
〔tone〕
The first sheet prepared in each Example and the comparative example and the second sheet cut into a size of 5 cm × 5 cm were obtained from the surface of the first layer of the first sheet and the surface of the second layer of the second sheet. Quantum superpositions (sheet sets) were obtained by stacking them so as to face each other. Three laminated bodies (sheet sets) were prepared for each Example and Comparative Example.
Next, a hot press machine having two heating stages arranged one above the other was prepared, and the heating stages were separated from each other to arrange the laminated body. Then, the sheet was pressed with a pressure of 1.0 MPa, 1.5 MPa, 2.5 MPa and the like by a hot press machine at 200 ° C. to develop a color. Then, both of the overlapped sheets were peeled off, and the density (DA) of the color-developing portion formed on the second sheet was measured using a densitometer RD-19 (manufactured by Gretag Macbeth).
Separately from this, the initial concentration (DB) was measured for the unused second sheet by the same method. Then, the initial density DB was subtracted from the density DA to obtain the color development density ΔD, and the evaluation was performed according to the following evaluation criteria. "B" is preferable.
≪Evaluation criteria≫
"A": 0.5 MPa, 1.5 MPa and 2.5 MPa, and ΔD of 0.4 or more at all three points "B": 0.5 MPa, 1.5 MPa and 2.5 MPa, any 2 Points have ΔD of 0.1 or more and less than 0.4. “C”: 0.5 MPa, 1.5 MPa, and 2.5 MPa, and any two points have ΔD of less than 0.1.
〔テープ剥がれ〕
 第1シートの第1層の表面に、テープ(セロハンテープ)の粘着面をローラーで押し付けて貼り付けた。次いで、このテープを第1シートから剥がし、基材(密着層付き第1支持体)から第1層が剥がれるか否かを評価した。評価基準は以下のとおりである。
 「A」:剥がれない。
 「B」:剥がれる。
[Tape peeling]
The adhesive surface of the tape (cellophane tape) was pressed against the surface of the first layer of the first sheet with a roller to be attached. Next, this tape was peeled off from the first sheet, and it was evaluated whether or not the first layer was peeled off from the base material (first support with an adhesive layer). The evaluation criteria are as follows.
"A": Does not come off.
"B": Peel off.
 以下、表1を示す。 Table 1 is shown below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、実施例の圧力測定用シートセットは、高温下で使用した場合であっても、第1シートと第2シートとを重ね合わせた積層体の熱による変形が生じにくく、また、加圧後に第1シートと第2シートとを剥がした際、第1層と第2層との界面で剥離し、塗膜破れが生じにくいことが確認された。更に、実施例の圧力測定用シートセットは、加熱後に形成される発色部の階調性にも優れることが確認された。
 また、実施例1~4の対比から、第1層の厚みが0.3μm以上の場合、塗膜破れがより生じにくいことが確認された。また、第1層の厚みが1μm未満(好ましくは、0.7μm以下)の場合、加熱後に形成される発色部の階調性がより優れることが確認された。
From the results in Table 1, the pressure measurement sheet set of the example is less likely to be deformed by heat of the laminated body in which the first sheet and the second sheet are overlapped even when used at a high temperature. When the first sheet and the second sheet were peeled off after pressurization, it was confirmed that the first sheet and the second sheet were peeled off at the interface between the first layer and the second layer, and the coating film was less likely to be torn. Further, it was confirmed that the pressure measurement sheet set of the example was excellent in the gradation property of the color-developing portion formed after heating.
Further, from the comparison of Examples 1 to 4, it was confirmed that when the thickness of the first layer was 0.3 μm or more, the coating film was less likely to be torn. Further, it was confirmed that when the thickness of the first layer is less than 1 μm (preferably 0.7 μm or less), the tonality of the color-developing portion formed after heating is more excellent.
 また、実施例5~12及び実施例26~27の対比から、圧力用測定シートセットが以下に示す(A)~(C)のいずれかの条件を満たす場合、第1シートと第2シートとを重ね合わせた積層体の熱による変形が生じにくく、且つ、加熱後に形成される発色部の階調性がより優れることが確認された。
 (A)220℃で10分間加熱した場合における、第1シートの長手方向の収縮率S1が1.0~3.0%であって、且つ、第1支持体が、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートである。
 (B) 第1支持体及び第2支持体が、厚みが70μm以上であって、且つ、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートである。
 (C) 第1支持体及び第2支持体が、芳香族ポリイミドシートである。
Further, from the comparison of Examples 5 to 12 and Examples 26 to 27, when the pressure measurement sheet set satisfies any of the following conditions (A) to (C), the first sheet and the second sheet are used. It was confirmed that the laminates obtained by superimposing the above layers are less likely to be deformed by heat, and that the tonality of the color-developing portion formed after heating is more excellent.
(A) When the first sheet is heated at 220 ° C. for 10 minutes, the shrinkage rate S1 in the longitudinal direction of the first sheet is 1.0 to 3.0%, and the first support is made of polyethylene naphthalate. It is a sheet containing 70% by mass or more with respect to the total mass.
(B) The first support and the second support are sheets having a thickness of 70 μm or more and containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet.
(C) The first support and the second support are aromatic polyimide sheets.
 また、実施例15と実施例16の対比から、密着層中の樹脂Xがアクリル系樹脂であるとき、密着層の厚みが2μm以上である場合、塗膜破れが生じにくく、且つ、テープ剥がれがより生じにくいことが確認された。 Further, from the comparison between Examples 15 and 16, when the resin X in the adhesion layer is an acrylic resin, when the thickness of the adhesion layer is 2 μm or more, the coating film is less likely to be torn and the tape is not peeled off. It was confirmed that it was less likely to occur.
 10  圧力測定用シートセット
 12  第1支持体
 13  密着層
 14  第1層
 14A マイクロカプセル
 14B バインダー
 16  第1シート
 18  第2支持体
 20  第2層
 22  第2シート
 T1、T2 第1層の厚み
 P 平台
 40 積層体
 40E 積層体の端部
10 Pressure measurement sheet set 12 1st support 13 Adhesive layer 14 1st layer 14A Microcapsule 14B Binder 16 1st sheet 18 2nd support 20 2nd layer 22 2nd sheet T1, T2 1st layer thickness P flatbed 40 Laminated body 40E The end of the laminated body

Claims (14)

  1.  第1支持体と、密着層と、発色剤を内包するマイクロカプセル及びバインダーを含む第1層と、をこの順に有する第1シートと、
     第2支持体と、顕色剤を含む第2層と、を有する第2シートと、を備える圧力測定用シートセットであって、
     前記第1支持体及び前記第2支持体が、ポリエチレンナフタレートシート又は芳香族ポリイミドシートであり、
     前記密着層が、芳香族基、エステル結合、及びイミド結合からなる群から選択される少なくとも1種の基を有する樹脂X1を含み、
     前記マイクロカプセルのカプセル壁が、芳香族基を有する樹脂Y1を含み、
     前記第1層中の前記バインダーが、赤外吸収スペクトルにおいて3200~3500cm-1にピークトップを有する吸収ピークを有するか、又は、架橋しており、
     前記第1層の厚みが0.2μm以上である、圧力測定用シートセット。
    A first sheet having a first support, an adhesion layer, and a first layer containing microcapsules and a binder containing a color-developing agent in this order.
    A pressure measuring sheet set comprising a second support and a second sheet comprising a second layer containing a color developer.
    The first support and the second support are polyethylene naphthalate sheets or aromatic polyimide sheets.
    The adhesion layer comprises resin X1 having at least one group selected from the group consisting of aromatic groups, ester bonds, and imide bonds.
    The capsule wall of the microcapsules contains resin Y1 having an aromatic group.
    The binder in the first layer has an absorption peak having a peak top at 3200 to 3500 cm -1 in the infrared absorption spectrum, or is crosslinked.
    A pressure measurement sheet set having a thickness of 0.2 μm or more for the first layer.
  2.  前記第1層中の前記バインダーが、水素結合性のOH基及び水素結合性のNH基の1種以上を有する、請求項1に記載の圧力測定用シートセット。 The pressure measurement sheet set according to claim 1, wherein the binder in the first layer has one or more hydrogen-bonding OH groups and hydrogen-bonding NH groups.
  3.  前記第1層中の前記バインダーが樹脂を含み、前記樹脂が、水酸基及びアミド結合の1種以上を有する、請求項1又は2に記載の圧力測定用シートセット。 The pressure measurement sheet set according to claim 1 or 2, wherein the binder in the first layer contains a resin, and the resin has one or more hydroxyl groups and amide bonds.
  4.  前記樹脂X1の含有量が、密着層中に含まれる樹脂の全含有量に対して、50質量%以上である、請求項1~3のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 1 to 3, wherein the content of the resin X1 is 50% by mass or more with respect to the total content of the resin contained in the adhesion layer.
  5.  前記樹脂X1が、アクリル系樹脂を含み、
     前記密着層の厚みが2~10μmである、請求項1~4のいずれか1項に記載の圧力測定用シートセット。
    The resin X1 contains an acrylic resin and contains
    The pressure measurement sheet set according to any one of claims 1 to 4, wherein the adhesion layer has a thickness of 2 to 10 μm.
  6.  前記樹脂X1が、アクリル系樹脂及びスチレン共重合体の1種以上を含む、請求項1~4のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 1 to 4, wherein the resin X1 contains one or more of an acrylic resin and a styrene copolymer.
  7.  前記第1層中の前記バインダーが、セルロース系樹脂、ポリアミド、及び、ポリビニルアルコールからなる群から選択される少なくとも1種の樹脂を含む、請求項1~6のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement according to any one of claims 1 to 6, wherein the binder in the first layer contains at least one resin selected from the group consisting of a cellulosic resin, a polyamide, and polyvinyl alcohol. Sheet set for.
  8.  前記樹脂X1が、芳香族基を有し、
     前記密着層が、さらに、アミド結合及び水酸基の1種以上を有する樹脂X2を有し、
     前記第1層中の前記バインダーが樹脂を含み、前記樹脂が、水酸基及びアミド結合の1種以上を有する、請求項1~4のいずれか1項に記載の圧力測定用シートセット。
    The resin X1 has an aromatic group and has an aromatic group.
    The close contact layer further has a resin X2 having an amide bond and one or more hydroxyl groups.
    The pressure measurement sheet set according to any one of claims 1 to 4, wherein the binder in the first layer contains a resin, and the resin has one or more hydroxyl groups and amide bonds.
  9.  前記第1層が、さらに、離型剤を含む、請求項1~8のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 1 to 8, wherein the first layer further contains a mold release agent.
  10.  以下に示す(A)~(C)のいずれかの条件を満たす、請求項1~9のいずれか1項に記載の圧力測定用シートセット。
     (A)220℃で10分間加熱した場合における、前記第1シートの長手方向の収縮率S1が1.0~3.0%であって、且つ、前記第1支持体が、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートである。
     (B) 前記第1支持体及び前記第2支持体が、厚みが70μm以上であって、且つ、ポリエチレンナフタレートをシートの全質量に対して70質量%以上の割合で含むシートである。
     (C) 前記第1支持体及び前記第2支持体が、芳香族ポリイミドシートである。
    The pressure measurement sheet set according to any one of claims 1 to 9, which satisfies any of the conditions (A) to (C) shown below.
    (A) When heated at 220 ° C. for 10 minutes, the shrinkage ratio S1 in the longitudinal direction of the first sheet is 1.0 to 3.0%, and the first support is polyethylene naphthalate. It is a sheet containing 70% by mass or more with respect to the total mass of the sheet.
    (B) The first support and the second support are sheets having a thickness of 70 μm or more and containing polyethylene naphthalate at a ratio of 70% by mass or more with respect to the total mass of the sheet.
    (C) The first support and the second support are aromatic polyimide sheets.
  11.  前記カプセル壁の熱分解温度が、250℃以上である、請求項1~10のいずれか1項に記載の圧力測定用シートセット。 The pressure measurement sheet set according to any one of claims 1 to 10, wherein the thermal decomposition temperature of the capsule wall is 250 ° C. or higher.
  12.  前記樹脂Y1が、芳香族基を有するポリウレタンウレア、芳香族基を有するポリウレア、及び、メラミン樹脂からなる群から選択される少なくとも1種の樹脂を含む、請求項1~11のいずれか1項に記載の圧力測定用シートセット。 The one according to any one of claims 1 to 11, wherein the resin Y1 contains at least one resin selected from the group consisting of a polyurethane urea having an aromatic group, a polyurea having an aromatic group, and a melamine resin. The described sheet set for pressure measurement.
  13.  前記樹脂Y1が、以下に示す構造A又は構造Bを有する、請求項1~11のいずれか1項に記載の圧力測定用シートセット。
     構造A:芳香族又は脂環族ジイソシアネートと、1分子中に3つ以上の活性水素基を有する化合物と、ポリメチレンポリフェニルポリイソシアネートとを反応させてなる構造。
     構造B:メラミンとホルムアルデヒドとを反応させてなる構造。
    The pressure measurement sheet set according to any one of claims 1 to 11, wherein the resin Y1 has the structure A or the structure B shown below.
    Structure A: A structure formed by reacting an aromatic or alicyclic diisocyanate with a compound having three or more active hydrogen groups in one molecule and polymethylenepolyphenylpolyisocyanate.
    Structure B: A structure formed by reacting melamine and formaldehyde.
  14.  請求項1~13のいずれか1項に記載の圧力測定用シートセットの製造方法であって、
     前記第1支持体の上に、前記樹脂X1を有する組成物を塗布して前記密着層を形成する工程と、
     前記密着層上に、以下に示す組成物A及び組成物Bからなる群から選ばれる1種の組成物を塗布して厚みが0.2μm以上の前記第1層を形成する工程と、を有する、圧力測定用シートセットの製造方法。
     組成物A:前記マイクロカプセルと、水素結合性のOH基及び水素結合性のNH基のいずれか1種以上を有するバインダーを形成するための成分と、を含む組成物。
     組成物B:前記マイクロカプセルと、架橋バインダーを形成するための成分と、を含む組成物。
    The method for manufacturing a pressure measurement sheet set according to any one of claims 1 to 13.
    A step of applying the composition having the resin X1 on the first support to form the adhesion layer, and a step of forming the adhesion layer.
    It has a step of applying one composition selected from the group consisting of the composition A and the composition B shown below on the adhesion layer to form the first layer having a thickness of 0.2 μm or more. , How to manufacture a sheet set for pressure measurement.
    Composition A: A composition comprising the microcapsules and a component for forming a binder having at least one of a hydrogen-bonding OH group and a hydrogen-bonding NH group.
    Composition B: A composition containing the microcapsules and components for forming a crosslinked binder.
PCT/JP2021/046935 2020-12-25 2021-12-20 Sheet set for pressure measurement and method for producing sheet set for pressure measurement WO2022138532A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237016599A KR20230087596A (en) 2020-12-25 2021-12-20 Sheet set for pressure measurement, manufacturing method for sheet set for pressure measurement
CN202180078602.7A CN116547509A (en) 2020-12-25 2021-12-20 Sheet set for pressure measurement and method for manufacturing sheet set for pressure measurement
JP2022571427A JPWO2022138532A1 (en) 2020-12-25 2021-12-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-217664 2020-12-25
JP2020217664 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138532A1 true WO2022138532A1 (en) 2022-06-30

Family

ID=82157896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046935 WO2022138532A1 (en) 2020-12-25 2021-12-20 Sheet set for pressure measurement and method for producing sheet set for pressure measurement

Country Status (5)

Country Link
JP (1) JPWO2022138532A1 (en)
KR (1) KR20230087596A (en)
CN (1) CN116547509A (en)
TW (1) TW202235282A (en)
WO (1) WO2022138532A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328837A (en) * 1993-05-20 1994-11-29 Fuji Photo Film Co Ltd Self color-developing pressure-sensitive recording sheet
WO2004024809A1 (en) * 2002-09-13 2004-03-25 Asahi Kasei Kabushiki Kaisha Microporous film and method for production thereof
WO2018062017A1 (en) * 2016-09-29 2018-04-05 富士フイルム株式会社 Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement
CN108398199A (en) * 2017-09-30 2018-08-14 上海净极防护用品有限公司 A kind of pressure sensitive test film and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328837A (en) * 1993-05-20 1994-11-29 Fuji Photo Film Co Ltd Self color-developing pressure-sensitive recording sheet
WO2004024809A1 (en) * 2002-09-13 2004-03-25 Asahi Kasei Kabushiki Kaisha Microporous film and method for production thereof
WO2018062017A1 (en) * 2016-09-29 2018-04-05 富士フイルム株式会社 Material composition for pressure measurement, material for pressure measurement, and material set for pressure measurement
CN108398199A (en) * 2017-09-30 2018-08-14 上海净极防护用品有限公司 A kind of pressure sensitive test film and preparation method thereof

Also Published As

Publication number Publication date
TW202235282A (en) 2022-09-16
KR20230087596A (en) 2023-06-16
JPWO2022138532A1 (en) 2022-06-30
CN116547509A (en) 2023-08-04

Similar Documents

Publication Publication Date Title
CN107531069A (en) Thermal recording medium and its manufacture method
WO2022138532A1 (en) Sheet set for pressure measurement and method for producing sheet set for pressure measurement
WO2022137893A1 (en) Sheet set for pressure measurement and pressure measurement method
WO2020262532A1 (en) Sheet set for pressure measurement and sheet for pressure measurement
WO2022137951A1 (en) Sheet set for pressure measurement, sheet for pressure measurement, microcapsules, dispersion, method for producing sheet set for pressure measurement, method for producing sheet for pressure measurement
WO2022044653A1 (en) Pressure measurement sheet set
WO2020262148A1 (en) Pressure measurement sheet set and pressure measurement sheet
WO2022044656A1 (en) Sheet set for pressure measurement
JP7212159B2 (en) Sheet set for pressure measurement, sheet for pressure measurement, dispersion liquid
JP7404498B2 (en) Pressure measurement sheet set, pressure measurement sheet, pressure measurement sheet set manufacturing method, pressure measurement sheet manufacturing method, sheet, dispersion liquid, dispersion liquid set, microcapsule
WO2021200612A1 (en) Pressure measurement sheet set, method for manufacturing same, pressure measurement sheet, and sheet
JP7163514B2 (en) Sheet set for pressure measurement and manufacturing method thereof, sheet for pressure measurement and manufacturing method thereof, dispersion liquid, and microcapsules
CN116670479A (en) Sheet set for pressure measurement and pressure measurement method
WO2021117496A1 (en) Pressure measurement sheet set, pressure measurement sheet, method for manufacturing pressure measurement sheet set, and method for manufacturing pressure measurement sheet
TW202200382A (en) Assembly, pressure measurement sheet set, sheet
TW202146322A (en) Assembly, pressure measurement sheet set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571427

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237016599

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180078602.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910677

Country of ref document: EP

Kind code of ref document: A1