WO2022137735A1 - 表示システム、表示方法及びプログラム - Google Patents

表示システム、表示方法及びプログラム Download PDF

Info

Publication number
WO2022137735A1
WO2022137735A1 PCT/JP2021/037411 JP2021037411W WO2022137735A1 WO 2022137735 A1 WO2022137735 A1 WO 2022137735A1 JP 2021037411 W JP2021037411 W JP 2021037411W WO 2022137735 A1 WO2022137735 A1 WO 2022137735A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
unit
distribution
detection value
estimated
Prior art date
Application number
PCT/JP2021/037411
Other languages
English (en)
French (fr)
Inventor
浩史 久保田
斐 劉
訓明 福本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180084385.2A priority Critical patent/CN116583698A/zh
Priority to US18/256,859 priority patent/US20240027088A1/en
Priority to JP2022571078A priority patent/JPWO2022137735A1/ja
Publication of WO2022137735A1 publication Critical patent/WO2022137735A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2201/00Application of thermometers in air-conditioning systems

Definitions

  • the present disclosure generally relates to a display system, a display method and a program, and more particularly to a display system, a display method and a program having a control unit for controlling the display unit.
  • Patent Document 1 discloses an air conditioner having an infrared sensor that detects a temperature distribution in a room.
  • the air conditioner (ventilation device) described in Patent Document 1 detects the temperature distribution in the room in order to grasp the comfort of a person.
  • the Predicted Mean Vote (PMV) may be used as an index of comfort. Since the measurement of PMV is carried out by, for example, a handy type measuring device, it is difficult to monitor the predicted average temperature and cold feeling report throughout the year because the measurement place and the measurement time are limited.
  • an object of the present invention is to provide a display system, display method, and program that can facilitate monitoring of the predicted average temperature and cold feeling report.
  • the display system includes an acquisition unit, an estimation unit, and a control unit.
  • the acquisition unit acquires the first detection value of the temperature sensor provided in the ventilation device for ventilating the room and the second detection value of the humidity sensor provided in the ventilation device.
  • the estimation unit represents the distribution of the predicted average warm / cold feeling report in the height direction of the room based on the first detected value and the second detected value acquired by the acquisition unit. Estimate the distribution.
  • the control unit causes the display unit to display the predicted average temperature / cold feeling report distribution estimated by the estimation unit.
  • the display method includes an acquisition step, an estimation step, and a display step.
  • the acquisition step the first detection value of the temperature sensor provided in the ventilation device for ventilating the room and the second detection value of the humidity sensor provided in the ventilation device are acquired.
  • the estimation step the predicted average warm / cold feeling report distribution representing the distribution of the predicted average hot / cold feeling report in the height direction of the room based on the first detection value and the second detection value acquired in the acquisition step.
  • the display step the expected average warm / cold feeling report distribution estimated in the estimation step is displayed on the display unit.
  • the program according to one aspect of the present disclosure is a program for causing one or more processors to execute the display method.
  • FIG. 1 is a schematic diagram showing an overall configuration of a display system according to an embodiment.
  • FIG. 2 is a schematic diagram showing an outline of the predicted average warm / cold feeling report distribution in the room estimated by the estimation unit according to the same as above.
  • FIG. 3 is a schematic diagram showing an outline of a screen displayed on the display unit according to the same as above.
  • FIG. 4 is a schematic diagram showing an outline of a screen displayed on the display unit according to the same as above.
  • FIG. 5 is a flowchart showing the operation of the display system according to the above.
  • the display system 1 cooperates with the facility 5 in which the ventilation device 2 is installed.
  • the display system 1 of the present embodiment acquires the first detection value of the temperature sensor 21 and the second detection value of the humidity sensor 22 from the temperature sensor 21 and the humidity sensor 22 of the ventilation device 2 provided in the facility 5. do. Then, the display system 1 estimates the distribution of the predicted average warm / cold feeling report (PMV) in the height direction of the room 50 in the facility 5 based on the first detection value and the second detection value, and estimates the PMV distribution. It is displayed on the display unit 81 of the terminal 8.
  • PMV predicted average warm / cold feeling report
  • the term "facility" as used in the present disclosure includes residential facilities used for residential purposes and non-residential facilities such as stores (tenants), offices, welfare facilities, educational facilities, hospitals and factories. Non-residential facilities include restaurants, amusement parks, hotels, inns, kindergartens, nurseries and public halls. That is, the facility 5 may be a residential facility such as a condominium or a non-residential facility such as an office building. Further, the facility 5 also includes a facility in which residential facilities and non-residential facilities coexist, for example, a store on a lower floor and a dwelling unit on a higher floor. As shown in FIG. 1, in the present embodiment, it is assumed that the facility 5 is a detached house.
  • the facility 5 includes a ventilation device 2, a communication unit 3, and a router 4.
  • the ventilation device 2 is, for example, a ceiling-embedded ventilation fan, and performs at least one of normal ventilation and heat exchange air.
  • the ventilation device 2 is provided on the ceiling 51 of the room 50 in the facility 5.
  • the ventilation device 2 of the present embodiment is a first-class ventilation type ventilation device, and both supply and exhaust are mechanically powered.
  • the ventilation device 2 includes a temperature sensor 21, a humidity sensor 22, an air supply duct 23, and an exhaust duct 24.
  • the temperature sensor 21 is a sensor that detects the temperature (space temperature) of the air inside the ventilation device 2 or around the ventilation device 2 as the first detection value.
  • the inside of the ventilation device 2 includes the inside of the air supply duct 23 and the exhaust duct 24.
  • the temperature sensor 21 of this embodiment is provided inside the exhaust duct 24.
  • the temperature sensor 21 is composed of an infrared sensor, a thermistor, a thermoelectric pair, or the like.
  • the humidity sensor 22 is a sensor that detects the humidity (space humidity) of the air inside the ventilation device 2 or around the ventilation device 2 as a second detection value.
  • the humidity sensor 22 of the present embodiment is provided inside the exhaust duct 24.
  • the humidity sensor 22 is composed of, for example, an electric humidity sensor.
  • the temperature sensor 21 and the humidity sensor 22 may be integrally configured as a temperature / humidity sensor.
  • the air supply duct 23 is an air passage connecting the space outside the facility 5 and the indoor space of the room 50 of the facility 5, and is a duct for taking in the air outside the facility 5 into the room 50.
  • the air supply duct 23 has a first air supply port 231 provided on the indoor 50 side and a second air supply port 232 provided on the outside of the facility 5.
  • the second air supply port 232 is provided with, for example, a fan for air supply.
  • the exhaust duct 24 is an air passage connecting the space outside the facility 5 and the indoor space of the room 50 of the facility 5, and is a duct for discharging the air of the room 50 to the outside of the facility 5.
  • the exhaust duct 24 has a first exhaust port 241 provided on the indoor 50 side and a second exhaust port 242 provided on the outside of the facility 5.
  • the second exhaust port 242 is provided with, for example, an exhaust fan.
  • the communication unit 3 is connected to a network 6 such as the Internet via a router 4.
  • the communication unit 3 transmits the first detection value detected by the temperature sensor 21 and the second detection value detected by the humidity sensor 22 to the display system 1 via the router 4 and the network 6. Further, the communication unit 3 transmits to the display system 1 whether or not the ventilation device 2 is operating, that is, whether or not the air supply fan and the exhaust fan of the ventilation device 2 are driven.
  • the terminal 8 is, for example, a desktop type or laptop type personal computer.
  • the terminal 8 is, for example, a terminal operated by a resident of the facility 5, an employee of a management company that manages the facility 5, and the like.
  • the terminal 8 is configured to be able to communicate with the display system 1 via the network 6.
  • the display unit 81 is, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or the like.
  • the display unit 81 displays the PMV distribution according to the control by the control unit 73 of the server 7, which will be described later.
  • the display system 1 of this embodiment is composed of a server 7.
  • the server 7 mainly comprises a computer system having one or more processors and one or more memories.
  • one or more processors execute the program recorded in the memory, so that the acquisition unit 71, the estimation unit 72, the control unit 73, the determination unit 74, and the calculation unit 75 of the server 7 shown in FIG. 1 are executed.
  • the function is realized.
  • the program may be recorded in advance in a memory, may be provided through a telecommunication line such as the Internet, or may be provided by being recorded in a non-temporary recording medium such as a memory card.
  • the server 7 includes an acquisition unit 71, an estimation unit 72, a control unit 73, a determination unit 74, and a calculation unit 75.
  • the acquisition unit 71 acquires the first detection value and the second detection value from the communication unit 3 via the network 6.
  • the acquisition unit 71 may be configured to be able to directly communicate with the communication unit 3 without going through the network 6.
  • the estimation unit 72 estimates the PMV distribution representing the distribution of PMV in the height direction of the room 50 based on the first detection value and the second detection value acquired by the acquisition unit 71.
  • the "predicted average temperature and cold sensation report (PMV)" as used in the present disclosure refers to the degree of quantitative expression of the temperature and sensation felt by humans, and PMV is a physical quantity of room temperature, radiation temperature, relative humidity, and wind velocity. It is calculated from 4 pieces and 2 pieces of human factors such as the amount of clothes and the amount of work of the occupants. PMV is a numerical value in the range of -3 to +3. The larger the PMV on the minus side, the colder the environment is. On the other hand, the larger the PMV on the plus side, the hotter the environment is. PMV, including the calculation method, conforms to the ISO7730 (Third edition 2005-11-15) standard, for example.
  • the estimation unit 72 of the present embodiment estimates the PMV distribution of the space a3 (see FIG. 1) in the height direction from the ceiling 51 to the floor 52 of the room 50 (see FIG. 2).
  • the estimation unit 72 of the present embodiment estimates only the PMV distribution in the height direction, and assumes that the PMV distribution in the horizontal direction is uniform. Details of the method by which the estimation unit 72 estimates the PMV distribution will be described in the column of "(3) Display method".
  • the determination unit 74 determines whether or not the representative value obtained from the PMV distribution estimated by the estimation unit 72 is outside the preset setting range.
  • the setting range of this embodiment is a comfortable range.
  • the "comfort range" as used in the present disclosure is the range of PMV in which humans can work comfortably.
  • the comfort range is set in the range of ⁇ 0.5 to +0.5. Generally, if the PMV range is within ⁇ 0.5, it is judged to be comfortable.
  • the representative value obtained from the PMV distribution means the maximum value, the minimum value, the average value, etc. in the PMV distribution. Further, the representative value may be the median value.
  • the average value of the PMV distribution is obtained by calculation from the PMV distribution, and is 0 (zero) in the example of FIG.
  • the determination unit 74 determines whether or not the PMV at an arbitrary point in the height direction of the room 50 in the PMV distribution estimated by the estimation unit 72 is out of the comfort range. Any point in the height direction can be arbitrarily set by a resident of the facility 5, an employee of the management company of the facility 5, or the like. In this embodiment, the distribution of PMV exists only in the height direction. In the present embodiment, any point in the height direction in which the determination unit 74 makes a determination is set to a height of 1.2 meters from the floor 52 by the resident of the facility 5.
  • the determination unit 74 determines that the representative value of the PMV distribution or the PMV at an arbitrary point in the height direction of the room 50 is out of the comfortable range, the determination unit 74 notifies the control unit 73.
  • the calculation unit 75 calculates the ratio between the period in which the representative value of the PMV distribution estimated by the estimation unit 72 is within the preset comfort range and the arbitrarily set specific period. Specifically, the ratio of the period during which the representative value of the PMV distribution is within the comfortable range to the specific period is calculated.
  • an arbitrarily set specific period may be referred to as an "evaluation period".
  • the evaluation period is, for example, one day, one week, one month, three months, or one year. In this embodiment, the evaluation period is set to one week by the resident of the facility 5.
  • the calculation unit 75 includes a period in which the PMV at an arbitrary height in the room 50 of the PMV distribution estimated by the estimation unit 72 is within the comfortable range, and a period (evaluation period) arbitrarily set. Calculate the ratio of.
  • the calculation unit 75 notifies the control unit 73 of the calculated ratio.
  • the control unit 73 causes the display unit 81 of the terminal 8 to display the PMV distribution estimated by the estimation unit 72. Further, the control unit 73 of the present embodiment displays a notification image indicating that the representative value of the PMV distribution or the PMV at an arbitrary point is out of the comfortable range based on the notification from the determination unit 74. To display. Further, the control unit 73 of the present embodiment causes the display unit 81 to display the ratio calculated by the calculation unit 75. The control unit 73 of the present embodiment controls the display of the terminal 8 via the network 6.
  • FIG. 3 shows an example of the screen G1 displayed on the display unit 81 under the control of the control unit 73.
  • Image G2 shows the PMV distribution of the room 50 estimated by the estimation unit 72 is displayed.
  • Image G2 includes a PMV bar corresponding to the PMV distribution.
  • the image G2 of the PMV distribution may be displayed so as to be superimposed on the image taken of the room 50.
  • the "image of the room 50" includes a moving image, a still image, and a frame-by-frame still image.
  • the image G2 of the PMV distribution may be displayed superimposed on the illustration / CAD drawing instead of the photographed image of the room 50.
  • the lower region R2 on the screen G1 includes the region R21, the region R22, and the region R23.
  • the image G3 showing the time transition of PMV is displayed in the area R21 arranged on the left side of the area R2.
  • the solid line L1 in FIG. 3 shows the time transition of PMV at an arbitrary point in the room 50.
  • the numerical value L2 in FIG. 3 indicates the upper limit of the comfortable range
  • the numerical value L3 indicates the lower limit of the comfortable range.
  • the image G31 is displayed in the portion of the solid line L1 showing the time transition of the PMV that exceeds the numerical value L2 which is the upper limit of the comfort range.
  • the image G31 is a notification image for notifying that the PMV is out of the comfortable range, and is a portion of the solid line L1 showing the time transition of the PMV that exceeds the numerical value L2 (numerical value L3) which is the upper limit (lower limit) of the comfortable range. It is an image to draw attention to.
  • the solid line L1 may be a line showing a time transition of a representative value such as an average value obtained from PMV.
  • control unit 73 displays the image G6 based on the PMV-Predicted Percentage of Dissatisfied (PPD) graph as shown in FIG. 4 instead of the image G3 showing the time transition of the PMV. It may be displayed in.
  • PPD is an index showing the ratio of unpleasant persons to PMV (see ISO7730).
  • the control unit 73 represents the current PMV by the circle G61 displayed on the line L4 of the PMV-PPD graph.
  • an image G4 showing the time ratio in which the PMV with respect to the evaluation period is within the comfortable range is displayed.
  • the image G4 of the present embodiment is the time ratio during which the PMV is within the comfortable range in one week (evaluation period).
  • the image G5 showing the start date and the end date of the evaluation period is displayed in the area R23 arranged at the lower right side of the area R2.
  • FIG. 5 is a flowchart showing an example of the display method according to the present embodiment.
  • the acquisition unit 71 of the server 7 acquires the first detection value from the temperature sensor 21 and the second detection value from the humidity sensor 22 via the network 6 (S1 in FIG. 5).
  • the estimation unit 72 estimates the space temperature of the space a1 (see FIG. 1) on the ceiling surface 511 of the room 50 (immediately below the ceiling 51) based on the first detection value acquired by the acquisition unit 71.
  • the space a1 in the present embodiment is a space at a height within 1 meter from the ceiling surface 511. Further, the estimation unit 72 estimates the space humidity of the space a1 on the ceiling surface 511 of the room 50 based on the second detection value acquired by the acquisition unit 71 (S2 in FIG. 5).
  • the position where the space temperature is estimated by the estimation unit 72 and the position where the space humidity is estimated are the same positions.
  • the estimation unit 72 of the present embodiment includes the space temperature of the space a2 (see FIG. 1) having a linear distance r1 (see FIG. 1) or less from the first exhaust port 241 provided on the ceiling surface 511. Estimate the space humidity.
  • the estimated space temperature by the estimation unit 72 can be expressed by the equation (1), and the estimated space humidity can be expressed by the equation (2).
  • Tr in the equation (1) is the estimated space temperature [° C.] (in space a2), ⁇ 1 is a coefficient, Ts is the first detected value [° C.], and c1 is a coefficient. ⁇ 1 is, for example, 0.95, and c1 is, for example, 0.2.
  • Hr in the equation (2) is an estimated humidity [%] (in the space a2), ⁇ 2 is a coefficient, Hs is a second detected value [%], and c2 is a coefficient. ⁇ 2 is, for example, 1.05, and c2 is, for example, 5.0.
  • the estimation unit 72 estimates the space temperature and the space humidity for each predetermined height in the space a3 including the space a2 in the room 50 based on the equations (3) and (4) (S3 in FIG. 5). ).
  • h in the equation (3) is the floor height [m]
  • Th is the estimated space temperature at the floor height h [m]
  • ⁇ 3 is a coefficient
  • c3 is a coefficient.
  • ⁇ 3 is, for example, 0.5.
  • Hh in the formula (4) is the estimated space humidity at the height above the floor h [m]
  • ⁇ 4 is a coefficient
  • c4 is a coefficient.
  • ⁇ 4 is, for example, 0.95.
  • c3 can be expressed by the equation (5)
  • c4 can be expressed by the equation (6).
  • Lrf in the formula (3) and the formula (4) is the height [m] of the ceiling 51.
  • the estimation unit 72 estimates the PMV for each predetermined height in the space a3 based on the space temperature and the space humidity for each height estimated in the process of step S3 (S4 in FIG. 5). As shown in the equation (7), the estimation unit 72 estimates the PMV assuming that the average radiation temperature for each height is equal to the space temperature for each height.
  • the values of the metabolic amount (M) and the clothing heat resistance (Icl) are approximated by fixed values according to the season. For example, the seasons are divided into four seasons: summer (June-August), winter (December-February), spring (March- May), and autumn (September-November), and the amount of metabolism and clothing resistance are fixed for each. Calculate by value. At this time, since the thermal environment is similar between spring and autumn, the same value may be used. For example, the amount of metabolism is about 1.0 [W / m2] in the sitting position and 1.2 [W / m2] in the standing position.
  • the thermal resistance of clothes is about 1.0 [m2 ⁇ K / W] for men's summer clothes and about 2.0 [m2 ⁇ K / W] for men's winter clothes.
  • the amount of metabolism and thermal resistance of clothes are described in, for example, a reference (“Evaluation of thermal comfort in a house”, Housing Research Foundation, Annual Research Report No. 23, p19-32, 1996).
  • the estimation unit 72 of the present embodiment assumes that the person stays indoors, and sets the external work (W) to zero.
  • the water vapor partial pressure (Pa) is estimated from the space temperature (Th) and the space humidity (Hh). Further, the estimation unit 72 of the present embodiment estimates the PMV by assuming that the wind speed (Var) is constant because the indoor wind speed is as small as 0.3 [m / s] or less and does not significantly affect the PMV even if it is assumed to be constant. do. For example, the wind speed is 0.1 [m / s].
  • PMV can be calculated only from the first detection value of the temperature sensor 21 and the second detection value of the humidity sensor 22.
  • control unit 73 causes the display unit 81 (see FIG. 3) of the terminal 8 (see FIG. 3) to display the PMV distribution estimated by the estimation unit 72 (S5 in FIG. 5).
  • the server 7 of the present embodiment includes an acquisition unit 71, an estimation unit 72, and a control unit 73.
  • the estimation unit 72 reports the predicted average temperature and cold feeling (PMV) in the height direction of the room 50 based on the first detection value of the temperature sensor 21 and the second detection value of the humidity sensor 22 provided in the ventilation device 2.
  • PMV predicted average temperature and cold feeling
  • the control unit 73 In order for the control unit 73 to display the PMV distribution estimated by the estimation unit 72 in the height direction of the room 50 on the display unit 81 of the terminal 8, the resident of the facility 5, the employee of the management company of the facility 5, and the like can display it. It becomes easy to monitor PMV. Then, residents and employees will be able to take actions such as changing the thermal environment according to the PMV distribution.
  • the estimation unit 72 of the present embodiment can estimate the PMV distribution in the room 50 based on the detection values of only the temperature sensor 21 and the humidity sensor 22 of the ventilation device 2, it is a dedicated handy type measurement. PMV around a person can be estimated without using a device or the like.
  • the estimation unit 72 of the present embodiment estimates the space temperature of the space a1 on the ceiling surface 511 of the room 50 based on the first detection value, and the space a1 on the ceiling surface 511 of the room 50 based on the second detection value. Estimate the spatial humidity of.
  • the estimation unit 72 estimates the PMV distribution in the height direction of the room 50 based on the estimated space temperature and space humidity.
  • the space temperature and the space humidity of the space a1 are the space temperature and the space humidity in the room 50.
  • the first detection value of the temperature sensor 21 and the second detection value of the humidity sensor 22 are the space temperature and the space humidity in the internal space of the ventilation device 2 or the periphery of the ventilation device 2.
  • the estimated temperature of the space a1 and the estimated humidity of the space a1 by the estimation unit 72 of the present embodiment are the estimated temperature and the estimated humidity at the same position. Further, the estimation unit 72 of the present embodiment estimates the space temperature and the space humidity of the space a2 within the linear distance r1 from the first exhaust port 241 provided on the ceiling surface 511 in the space a1. Since the air located close to the first air supply port 231 or the first exhaust port 241 is constantly replaced, the estimation accuracy of the space temperature and the space humidity is improved. The estimation unit 72 estimates the PMV distribution based on the space temperature and the space humidity of the space a2 in which the linear distance from the first air supply port 231 or the first exhaust port 241 is 1 meter or less, for example. The estimation accuracy is improved.
  • the server 7 of the present embodiment further includes a determination unit 74 for determining whether or not the representative value in the PMV distribution deviates from the preset comfort range (setting range).
  • the control unit 73 causes the display unit 81 to display an image G31 (notification image) notifying that the representative value is out of the comfortable range.
  • the notification image is displayed on the display unit 81, for example, a resident of the facility 5 or an employee of the management company of the facility 5 can know that the representative value is out of the comfortable range.
  • the representative value is one of the maximum value in the PMV distribution, the minimum value in the PMV distribution, and the average value obtained from the PMV distribution. As a result, it is possible to increase an index that serves as a reference for determining whether or not the representative value of the PMV distribution is out of the comfortable range.
  • the determination unit 74 of the present embodiment determines whether or not the PMV at an arbitrary point in the height direction of the room 50 is out of the comfort range. By displaying the notification image on the display unit 81, for example, a resident of the facility 5 or an employee of the management company of the facility 5 can know that the PMV at an arbitrary point is out of the comfortable range.
  • the server 7 of the present embodiment calculates the ratio between the period in which the representative value in the PMV distribution is within the preset comfort range and the arbitrarily set period (evaluation period). Is further equipped.
  • the control unit 73 causes the display unit 81 to display the ratio.
  • the employees of the management company of the facility 5 can grasp the ratio between the period in which the representative value is within the comfortable range and the evaluation period.
  • the evaluation period is, for example, one day
  • the obtained data will be an effective index for preventing the onset of sudden diseases such as heat stroke.
  • the evaluation period is, for example, about 3 months
  • the obtained data can be used as the verification data of the optimum ventilation device 2 on a seasonal basis.
  • the evaluation period is, for example, about one year, the obtained data can be used as data for verifying the air-conditioning capacity of the property (facility 2) itself or as data for appealing the attractiveness of the property when attracting tenants.
  • the calculation unit 75 of the present embodiment calculates the ratio between the period during which the PMV at an arbitrary point is within the comfortable range and the evaluation period. As a result, the employees of the management company of the facility 5 can grasp the ratio between the period during which the PMV at any point is within the comfortable range and the evaluation period.
  • the estimation unit 72 of the present embodiment estimates the PMV distribution in the height direction of the room 50 based on the above equations (1) to (7).
  • the estimation unit 72 of the present embodiment can estimate the PMV distribution using an analysis formula. Therefore, the cost of the display system can be reduced because a complicated algorithm such as machine learning that is premised on the use of the cloud is not required.
  • the function equivalent to the display system 1 according to the above embodiment may be embodied by a display method, a (computer) program, a non-temporary recording medium on which the program is recorded, or the like.
  • the display method according to one aspect includes an acquisition step, an estimation step, and a display step.
  • the acquisition step the first detection value of the temperature sensor 21 provided in the ventilation device 2 that ventilates the room 50 and the second detection value of the humidity sensor 22 provided in the ventilation device 2 are acquired.
  • the estimation step based on the first detected value and the second detected value acquired in the acquisition step, the predicted average warm / cold feeling report distribution representing the distribution of the predicted average hot / cold feeling report (PMV) in the height direction of the room 50 is obtained.
  • the display unit 81 displays the predicted average warm / cold feeling report distribution estimated in the estimation step.
  • the program according to one aspect is a program for causing one or more processors to execute the above display method.
  • the display system 1 in the present disclosure includes, for example, a computer system.
  • the computer system mainly consists of a processor and a memory as hardware.
  • the function as the display system 1 in the present disclosure is realized by the processor executing the program recorded in the memory of the computer system.
  • the program may be pre-recorded in the memory of the computer system, may be provided through a telecommunications line, and may be recorded on a non-temporary recording medium such as a memory card, optical disk, hard disk drive, etc. that can be read by the computer system. May be provided.
  • the processor of a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • IC semiconductor integrated circuit
  • LSI large scale integrated circuit
  • the integrated circuit such as IC or LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • an FPGA Field-Programmable Gate Array
  • a plurality of electronic circuits may be integrated on one chip, or may be distributed on a plurality of chips.
  • the plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
  • the computer system referred to here includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
  • the display system 1 It is not an essential configuration for the display system 1 that at least a part of the functions of the display system 1 are integrated in one device (server 7), and the components of the display system 1 are a plurality of devices (housings). ) May be dispersed and provided.
  • some functions of the display system 1 may be provided in a device (housing) different from the server 7, such that some functions of the display system 1 are provided in the terminal 8.
  • the display system 1 may be provided inside the facility 5 instead of outside the facility 5 (detached house).
  • the display system 1 may be provided in the local environment inside the facility 5.
  • at least a part of the functions of the display system 1 may be realized by, for example, a cloud (cloud computing) or the like.
  • the display system 1 may include at least an acquisition unit 71, an estimation unit 72, and a control unit 73.
  • the display system 1 may include not only the server 7 but also the terminal 8.
  • the display system 1 is introduced into a detached house is illustrated, but the display system 1 can also be introduced into various facilities 5 such as an apartment house such as a condominium and an office.
  • the terminal 8 is a mobile terminal such as a smartphone or a tablet, and the display unit 81 may be configured by a touch panel display.
  • the terminal 8 may be provided inside the facility 5 instead of outside the facility 5 (detached house).
  • the estimation unit 72 exemplifies the case where the estimation unit 72 estimates the PMV using a linear expression in the equations (1) to (7), but the estimation unit 72 estimates the PMV by an analysis expression other than the linear expression. You may.
  • the estimation unit 72 may estimate the PMV by using an approximate expression for estimating the PMV according to the indoor environment, such as a high-order polynomial, a logarithmic function, or an exponential function. For example, in a facility where both floor heating and heating are operated, the PMV near the ceiling and the floor is relatively high indoors. In this case, the PMV distribution may be approximated by using a quadratic function, a hyperbola, a trigonometric function, or the like.
  • the algorithm can be easily implemented. Further, the approximate expression for estimating PMV may be obtained by performing regression analysis, for example, at the time of designing the facility 5. Regression analysis may be performed using, for example, temperature / humidity simulation results by airflow simulation and statistical software. Further, an approximate expression may be obtained by statistical processing based on the result of environmental measurement or the like performed after the construction of the facility 5.
  • the ventilation device 2 is a first-class ventilation system ventilation device
  • the ventilation device 2 is a second-class ventilation system ventilation device or a third-class ventilation system ventilation device. You may.
  • the ventilation device 2 is a type 2 ventilation type ventilation device
  • the ventilation device 2 does not have to have a fan in the exhaust duct 24 because only the supply air is mechanically powered.
  • the ventilation device 2 is a type 3 ventilation type ventilation device
  • the ventilation device 2 does not have to have a fan in the air supply duct 23 because only the exhaust is mechanically powered.
  • the temperature sensor 21 and the humidity sensor 22 may be provided inside the air supply duct 23.
  • the estimation unit 72 estimates the space temperature and the space humidity in the space a2 having a linear distance r1 or less from the first air supply port 231 based on the first detection value and the second detection value, and then calculates the PMV distribution. It is preferable to estimate.
  • the notification image is not limited to the aspect of the image G31 shown in FIG. 3, for example, an image in which a portion of the solid line L1 outside the comfortable range (range of numerical values L2 to L3) is blinked, or a comfortable range of the solid line L1.
  • An image in which a portion outside the comfort range is surrounded by a red circle, or an image in which the color of the portion outside the comfort range of the solid line L1 is changed may be used.
  • an image showing characters notifying that the PMV is out of the comfortable range may be used.
  • the control unit 73 controls, for example, a speaker or the like of the terminal 8 or the like to generate a warning sound. You may let me.
  • the determination unit 74 may determine whether or not the representative value of the PMV distribution or the PMV at any point is out of the comfort range. Then, when the determination unit 74 determines that the PMV is out of the comfortable range, the control unit 73 may display a notification image notifying that the PMV is out of the comfortable range on the display unit 81.
  • the display system (1) includes an acquisition unit (71), an estimation unit (72), and a control unit (73).
  • the acquisition unit (71) is the first detection value of the temperature sensor (21) provided in the ventilation device (2) for ventilating the room (50), and the humidity sensor provided in the ventilation device (2).
  • the second detection value of (22) is acquired.
  • the estimation unit (72) is a predicted average representing the distribution of the predicted average temperature and cold feeling report in the height direction of the room (50) based on the first detection value and the second detection value acquired by the acquisition unit (71). Estimate the distribution of hot and cold feelings.
  • the control unit (73) causes the display unit (81) to display the expected average warm / cold feeling report distribution estimated by the estimation unit (72).
  • the display system (1) is indoors (1) based on the first and second detection values of the temperature sensor (21) and the humidity sensor (22) provided in the ventilation device (2).
  • the expected average temperature / cold feeling report distribution in the height direction of 50) can be estimated and displayed on the display unit (81). This makes it possible to easily monitor the expected average temperature and cold feeling report.
  • the estimation unit (72) estimates the space temperature on the ceiling surface (511) of the room (50) based on the first detection value.
  • the space humidity in the ceiling surface (511) of the room (50) is estimated based on the second detected value.
  • the estimation unit (72) estimates the expected average warm / cold feeling report distribution in the height direction of the room (50) based on the estimated space temperature and space humidity.
  • the estimation unit (72) estimates the expected average hot / cold feeling report distribution after estimating the space temperature and the space humidity on the ceiling surface (511). Accuracy is improved.
  • At least one of the air supply port (first air supply port 231) and the exhaust port (first exhaust port 241) of the ventilation device (2) is It is provided on the ceiling surface (511).
  • the space temperature and space humidity estimated by the estimation unit (72) are the space temperature and the space humidity at the same position.
  • the linear distance from the air supply port (first air supply port 231) or the exhaust port (first exhaust port 241) provided on the ceiling surface (511) is a predetermined distance (straight line distance r1) or less. The position.
  • the air at a position close to the air supply port (first air supply port 231) or the exhaust port (first exhaust port 241) of the ventilation device (2) is constantly replaced, so that the space temperature and the space humidity are replaced.
  • the estimation accuracy of is high.
  • the estimation unit (72) has an estimated average temperature based on the space temperature and the space humidity in which the linear distance from the air supply port (first air supply port 231) or the exhaust port (first exhaust port 241) is, for example, 1 meter or less.
  • the display system (1) according to the fourth aspect further includes a determination unit (74) in any one of the first to third aspects.
  • the determination unit (74) determines whether or not the representative value obtained from the predicted average warm / cold feeling report distribution is outside the preset setting range.
  • the control unit (73) displays a notification image notifying that the representative value is out of the set range on the display unit (81). Let me.
  • the notification image is displayed, for example, a monitor or the like monitoring the display unit (81), or a resident. Etc. can know that the representative value is out of the set range.
  • the representative value is one of the maximum value, the minimum value, and the average value in the predicted average warm / cold feeling report distribution.
  • the notification image is displayed, for example, the display unit (81).
  • the observer, etc., who monitors the above, and the resident, etc. can know that any of the maximum value, the minimum value, and the average value of the predicted average temperature / cold feeling report distribution is out of the set range.
  • the display system (1) according to the sixth aspect further includes a determination unit (74) in any one of the first to third aspects.
  • the determination unit (74) determines whether or not the predicted average warm / cold feeling report at any point in the height direction of the room (50) in the predicted average hot / cold feeling report distribution is outside the preset setting range. judge.
  • the control unit (73) determines by the determination unit (74) that the predicted average temperature / cold feeling report at an arbitrary point is out of the set range, the predicted average temperature / cold feeling report at any point is out of the set range.
  • the display unit (81) is displayed with a notification image notifying that the image is in.
  • a monitor or the like who monitors the display unit (81), a resident or the like can know that the expected average warm / cold feeling report at an arbitrary point is out of the set range.
  • the display system (1) according to the seventh aspect further includes a calculation unit (75) in any one of the first to sixth aspects.
  • the calculation unit (75) calculates the ratio between the period in which the representative value obtained from the predicted average warm / cold feeling report distribution is within the preset setting range and the period arbitrarily set.
  • the control unit (73) causes the display unit (81) to display the ratio.
  • the observer or the like can grasp the ratio between the period in which the representative value is within the set range and the period in which the representative value is arbitrarily set.
  • the arbitrarily selected period is, for example, one day
  • the obtained data will be an effective index for preventing the onset of a rapid disease such as heat stroke.
  • the arbitrarily selected period is, for example, about 3 months
  • the obtained data can be used as the verification data of the optimum ventilation device (2) on a seasonal basis.
  • the arbitrarily selected period is, for example, about one year
  • the obtained data can be used as data for verifying the air-conditioning capacity of the property (facility) itself and for attracting tenants to appeal the attractiveness of the property. can.
  • the display system (1) according to the eighth aspect further includes a calculation unit (75) in any one of the first to sixth aspects.
  • the calculation unit (75) determines that the predicted average warm / cold feeling report at any point in the height direction of the room (50) in the predicted average hot / cold feeling report distribution is within the preset range. , Calculate the ratio to the arbitrarily set period.
  • the control unit (73) causes the display unit (81) to display the ratio.
  • the observer or the like can grasp the ratio between the period in which the expected average temperature and cold feeling report at any point is within the set range and the period set arbitrarily.
  • the arbitrarily selected period is, for example, one day
  • the obtained data will be an effective index for preventing the onset of a rapid disease such as heat stroke.
  • the arbitrarily selected period is, for example, about 3 months
  • the obtained data can be used as the verification data of the optimum ventilation device (2) on a seasonal basis.
  • the arbitrarily selected period is, for example, about one year
  • the obtained data can be used as data for verifying the air-conditioning capacity of the property (facility) itself and for attracting tenants to appeal the attractiveness of the property. can.
  • the estimation unit (72) has the expected average temperature based on the following equations (1) to (7). Estimate the cold feeling report distribution.
  • the estimation unit (72) can estimate the predicted average hot / cold feeling report distribution using an analysis formula, and does not require a complicated algorithm such as machine learning that is premised on the use of the cloud, so that the cost is high. Can be reduced.
  • Configurations other than the first aspect are not essential configurations for the display system (1) and can be omitted as appropriate.
  • the display method includes an acquisition step, an estimation step, and a display step.
  • the acquisition step the first detection value of the temperature sensor (21) provided in the ventilation device (2) for ventilating the room (50) and the humidity sensor (22) provided in the ventilation device (2).
  • the second detection value of is acquired.
  • the estimation step the predicted average warm / cold feeling report distribution representing the distribution of the predicted average hot / cold feeling report in the height direction of the room (50) is estimated based on the first detection value and the second detection value acquired in the acquisition step. do.
  • the display unit (81) displays the predicted average warm / cold feeling report distribution estimated in the estimation step.
  • the expected average temperature / cold feeling report distribution can be estimated and displayed on the display unit (81). Costs can be reduced because it is not necessary to install a large number of sensors or dedicated sensors to measure the expected average temperature and cold sensation report distribution.
  • the program according to the eleventh aspect is a program for causing one or more processors to execute the display method according to the tenth aspect.
  • the expected average temperature / cold feeling report distribution can be estimated and displayed on the display unit (81). Costs can be reduced because it is not necessary to install a large number of sensors or dedicated sensors to measure the expected average temperature and cold sensation report distribution.

Abstract

本開示の課題は、予想平均温冷感申告のモニタリングを容易にすることである。表示システム(1)は、取得部(71)と、推定部(72)と、制御部(73)と、を備える。取得部(71)は、室内(50)の換気を行う換気機器(2)に備えられている温度センサ(21)の第1検出値、及び、換気機器(2)に備えられている湿度センサ(22)の第2検出値を取得する。推定部(72)は、取得部(71)により取得される第1検出値及び第2検出値に基づいて、室内(50)の高さ方向における予想平均温冷感申告の分布を表す予想平均温冷感申告分布を推定する。制御部(73)は、推定部(72)によって推定された予想平均温冷感申告分布を、表示部(81)に表示させる。

Description

表示システム、表示方法及びプログラム
 本開示は、一般に表示システム、表示方法及びプログラムに関し、より詳細には、表示部を制御する制御部を備える表示システム、表示方法及びプログラムに関する。
 特許文献1には、室内の温度分布を検知する赤外線センサを有する空気調和機が開示されている。
 特許文献1に記載の空気調和機(換気機器)は、人の快適性を把握するために、室内の温度分布を検知している。ここで、快適性の指標として予測平均温冷感申告(PMV:Predicted Mean Vote)が用いられることがある。PMVの測定は、例えば、ハンディ型の測定機器で実施されるため、測定場所及び測定時間が限定されてしまい年間を通して予測平均温冷感申告をモニタリングすることは難しい。
特許第6678748号公報
 本開示は上記事由に鑑みてなされており、予測平均温冷感申告のモニタリングを容易にすることができる表示システム、表示方法及びプログラムを提供することを目的とする。
 上記の課題を解決するために、本開示の一態様に係る表示システムは、取得部と、推定部と、制御部と、を備える。前記取得部は、室内の換気を行う換気機器に備えられている温度センサの第1検出値、及び、前記換気機器に備えられている湿度センサの第2検出値を取得する。前記推定部は、前記取得部により取得される前記第1検出値及び前記第2検出値に基づいて、前記室内の高さ方向における予想平均温冷感申告の分布を表す予想平均温冷感申告分布を推定する。前記制御部は、前記推定部によって推定された前記予想平均温冷感申告分布を、表示部に表示させる。
 本開示の一態様に係る表示方法は、取得ステップと、推定ステップと、表示ステップと、を有する。前記取得ステップでは、室内の換気を行う換気機器に備えられている温度センサの第1検出値、及び、前記換気機器に備えられている湿度センサの第2検出値を取得する。前記推定ステップでは、前記取得ステップにおいて取得する前記第1検出値及び前記第2検出値に基づいて、前記室内の高さ方向における予想平均温冷感申告の分布を表す予想平均温冷感申告分布を推定する。前記表示ステップでは、前記推定ステップにおいて推定した前記予想平均温冷感申告分布を、表示部に表示させる。
 本開示の一態様に係るプログラムは、前記表示方法を、1以上のプロセッサに実行させるためのプログラムである。
図1は、一実施形態に係る表示システムの全体構成を示す概略図である。 図2は、同上に係る推定部によって推定される室内の予想平均温冷感申告分布の概略を示す概略図である。 図3は、同上に係る表示部に表示される画面の概略を示す概略図である。 図4は、同上に係る表示部に表示される画面の概略を示す概略図である。 図5は、同上に係る表示システムの動作を示すフローチャートである。
 以下、本開示に関する好ましい実施形態について図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態において互いに共通する要素には同一符号を付しており、共通する要素についての重複する説明は省略する。以下の実施形態は、本開示の様々な実施形態の一つに過ぎない。実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。本開示において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さのそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (1)概要
 まず、本実施形態に係る表示システム1の概要について、図1を参照しつつ説明する。
 図1に示すように、本実施形態に係る表示システム1は、換気機器2が設置された施設5と連携している。
 本実施形態の表示システム1は、施設5に設けられている換気機器2の温度センサ21及び湿度センサ22から、温度センサ21の第1検出値と、湿度センサ22の第2検出値とを取得する。そして、表示システム1は、第1検出値及び第2検出値に基づいて、施設5における室内50の高さ方向における予想平均温冷感申告(PMV)の分布を推定し、推定したPMV分布を端末8の表示部81に表示させる。
 (2)詳細
 以下、本実施形態に係る表示システム1と、表示システム1と連携する施設5及び端末8の構成の詳細について、図1~4を参照して説明する。
 (2.1)施設の構成
 まず、施設5の詳細について図1を参照しつつ説明する。本開示でいう「施設」は、居住用途で用いられる住宅施設、並びに店舗(テナント)、オフィス、福祉施設、教育施設、病院及び工場等の非住宅施設を含む。非住宅施設には、飲食店、遊技場、ホテル、旅館、幼稚園、保育所及び公民館等も含む。つまり、施設5は、マンション等の住宅施設であってもよいし、オフィスビル等の非住宅施設であってもよい。さらに、施設5は、例えば、低層階が店舗で高層階が住戸というように、住宅施設と非住宅施設とが混在する態様の施設も含む。図1に示すように、本実施形態では、施設5が、戸建住宅である場合を想定する。
 図1に示すように、施設5は、換気機器2と、通信部3と、ルータ4とを備えている。
 換気機器2は、例えば、天井埋込形換気扇であり、通常換気及び熱交換気の少なくとも一方を行う。換気機器2は、施設5における室内50の天井51に設けられている。本実施形態の換気機器2は、第1種換気方式の換気機器であり、給気も排気も機械動力により行う。換気機器2は、温度センサ21と、湿度センサ22と、給気ダクト23と、排気ダクト24とを備えている。
 温度センサ21は、換気機器2の内部、又は、換気機器2の周囲の空気の温度(空間温度)を第1検出値として検出するセンサである。換気機器2の内部とは、給気ダクト23及び排気ダクト24の内部を含む。本実施形態の温度センサ21は、排気ダクト24の内部に設けられている。温度センサ21は、赤外線センサ、サーミスタ、又は熱電対等で構成されている。湿度センサ22は、換気機器2の内部、又は、換気機器2の周囲の空気の湿度(空間湿度)を第2検出値として検出するセンサである。本実施形態の湿度センサ22は、排気ダクト24の内部に設けられている。湿度センサ22は、例えば電気式湿度センサで構成されている。なお、温度センサ21及び湿度センサ22は、温湿度センサとして一体的に構成されていてもよい。
 給気ダクト23は、施設5の外の空間と、施設5の室内50の室内空間とを繋ぐ空気の通り道であり、施設5の外の空気を室内50に取り込むためのダクトである。給気ダクト23は、室内50側に設けられている第1給気口231と、施設5の外側に設けられている第2給気口232とを有している。第2給気口232には、例えば給気用のファンが設けられる。
 排気ダクト24は、施設5の外の空間と、施設5の室内50の室内空間とを繋ぐ空気の通り道であり、室内50の空気を施設5の外に排出するためのダクトである。排気ダクト24は、室内50側に設けられている第1排気口241と、施設5の外側に設けられている第2排気口242とを有している。第2排気口242には、例えば排気用のファンが設けられる。
 通信部3は、ルータ4を介してインターネット等のネットワーク6に接続されている。通信部3は、温度センサ21が検出した第1検出値と、湿度センサ22が検出した第2検出値とを、ルータ4及びネットワーク6を介して表示システム1に送信する。また、通信部3は、換気機器2が稼働しているか否か、すなわち換気機器2の給気用ファン及び排気用ファンが駆動しているか否かの稼働状況を表示システム1に送信する。
 (2.2)端末の構成
 次に、端末8の詳細について図1を参照しつつ説明する。
 端末8は、例えばデスクトップ型又はラップトップ型のパーソナルコンピュータ等である。端末8は、例えば、施設5の居住者や、施設5を管理する管理会社の従業員等によって操作される端末である。端末8は、ネットワーク6を介して、表示システム1と通信可能に構成されている。
 表示部81は、例えば、液晶ディスプレイ、又は有機EL(Electro Luminescence)ディスプレイ等である。表示部81は、後述するサーバ7の制御部73による制御に応じて、PMV分布を表示する。
 (2.3)表示システムの構成
 次に、表示システム1の詳細について図1~図4を参照しつつ説明する。
 本実施形態の表示システム1は、サーバ7で構成されている。サーバ7は、1以上のプロセッサ及び1以上のメモリを有するコンピュータシステムを主構成とする。サーバ7では、1以上のプロセッサがメモリに記録されているプログラムを実行することにより、図1に示すサーバ7の取得部71、推定部72、制御部73、判定部74、及び算出部75の機能が実現される。プログラムはメモリに予め記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。
 サーバ7は、取得部71と、推定部72と、制御部73と、判定部74と、算出部75と、を備えている。
 取得部71は、ネットワーク6を介して、通信部3から第1検出値及び第2検出値を取得する。なお、取得部71は、ネットワーク6を介さずに、直接的に通信部3と通信可能に構成されていてもよい。
 推定部72は、取得部71によって取得される第1検出値及び第2検出値に基づいて、室内50の高さ方向におけるPMVの分布を表すPMV分布を推定する。本開示でいう「予想平均温冷感申告(PMV)」とは、人間が感じる温冷感を定量的に表した度合いのことをいい、PMVは、室温、放射温度、相対湿度、風速の物理量4個と、在室者の着衣量と作業量という人的要素量2個から算出される。PMVは、-3~+3の範囲の数値である。PMVがマイナス側に大きい程人間が寒いと感じる環境であることを示す。一方、PMVがプラス側に大きい程人間が暑いと感じる環境であることを示す。PMVは算出方法も含めて、例えばISO7730(Third edition2005-11-15)の規格に準拠している。
 本実施形態の推定部72は、室内50の天井51から床52までの高さ方向における空間a3(図1参照)のPMV分布を推定する(図2参照)。なお、本実施形態の推定部72は、高さ方向におけるPMV分布のみを推定し、水平方向のPMV分布は均一であるとする。推定部72がPMV分布を推定する方法の詳細は、「(3)表示方法」の欄で説明する。
 判定部74は、推定部72によって推定されるPMV分布から得られる代表値があらかじめ設定された設定範囲外にあるか否かを判定する。本実施形態の設定範囲は、快適範囲である。本開示でいう「快適範囲」とは、人間が快適に活動できるPMVの範囲である。本実施形態では、快適範囲は、-0.5~+0.5の範囲に設定されている。一般にPMV範囲が±0.5以内であれば快適と判断される。また、PMV分布から得られる代表値とは、PMV分布における最大値、最小値、平均値等のことをいう。また、代表値は中央値であってもよい。PMV分布の平均値は、PMV分布から演算によって求められ、図2の例では0(ゼロ)である。
 また、判定部74は、推定部72が推定するPMV分布のうち室内50の高さ方向における任意の点のPMVが、快適範囲から外れるか否かを判定する。高さ方向における任意の点は、施設5の居住者や、施設5の管理会社の従業者等が任意に設定できる。本実施形態では、PMVの分布は、高さ方向にのみ存在する。本実施形態では、判定部74が判定を下す高さ方向の任意の点は、施設5の居住者によって床52から1.2メートルの高さに設定されている。
 判定部74は、PMV分布の代表値、又は、室内50の高さ方向における任意の点のPMVが快適範囲から外れていると判定したとき、制御部73に通知を行う。
 算出部75は、推定部72によって推定されるPMV分布の代表値があらかじめ設定された快適範囲の範囲内にある期間と、任意に設定された特定期間と、の割合を算出する。具体的には、PMV分布の代表値が快適範囲の範囲内にある期間が、特定期間に占める割合を算出する。なお、以下の説明において、任意に設定された特定期間のことを「評価期間」ということがある。評価期間は、例えば、1日、1週間、1ヶ月、3ヶ月、あるいは1年といった期間である。本実施形態では、評価期間は施設5の居住者によって1週間に設定されている。
 また、算出部75は、推定部72によって推定されるPMV分布のうち室内50の任意の高さにおけるPMVが、快適範囲の範囲内にある期間と、任意に設定された期間(評価期間)との割合を算出する。
 算出部75は、算出した割合を、制御部73に通知する。
 制御部73は、推定部72によって推定されたPMV分布を、端末8の表示部81に表示させる。また、本実施形態の制御部73は、判定部74からの通知に基づいて、PMV分布の代表値、又は、任意の点のPMVが快適範囲から外れたことを通知する通知画像を表示部81に表示させる。また、本実施形態の制御部73は、算出部75が算出した割合を、表示部81に表示させる。本実施形態の制御部73は、ネットワーク6を介して端末8の表示制御を行う。
 図3は、制御部73の制御によって表示部81に表示される画面G1の一例を示している。画面G1における上部の領域R1には、推定部72が推定した室内50のPMV分布を示す画像G2が表示されている。画像G2には、PMV分布に対応するPMVバーが含まれている。なお、PMV分布の画像G2は、室内50を撮影した画像と重ねて表示されていてもよい。ここで、「室内50を撮影した画像」とは、動画、静止画、コマ送りの静止画を含む。また、PMV分布の画像G2が、室内50の撮影画像でなくイラスト・CAD図面と重ねて表示されていても良い。
 また、画面G1における下部の領域R2は、領域R21と領域R22と領域R23とを含んでいる。
 領域R2の左側に配置されている領域R21には、PMVの時間推移を表す画像G3が表示されている。図3中の実線L1は、室内50の任意の点におけるPMVの時間推移を示している。また、図3中の数値L2は、快適範囲の上限を示しており、数値L3は、快適範囲の下限を示している。図3の例では、PMVの時間推移を示す実線L1のうち、快適範囲の上限である数値L2を超えた部分に画像G31が表示されている。画像G31は、PMVが快適範囲から外れたことを通知する通知画像であり、PMVの時間推移を示す実線L1のうち、快適範囲の上限(下限)である数値L2(数値L3)を超えた部分に注目させるための画像である。なお、実線L1は、PMVから得られる平均値等の代表値の時間推移を示す線であってもよい。
 また、制御部73は、PMVの時間推移を表す画像G3に代えて、図4に示すようなPMV-予測不快者率(PPD:Predicted Percentage of Dissatisfied)グラフをベースにした画像G6を表示部81に表示させてもよい。ここで、PPDとは、PMVに対する不快者の割合を表す指標である(ISO7730参照)。図4の例では、制御部73は、PMV-PPDグラフの線L4上に表示させている丸印G61で現在のPMVを表している。
 領域R2のうち右側上部に配置されている領域R22には、評価期間に対するPMVが快適範囲の範囲内にある時間割合を示す画像G4が表示されている。本実施形態の画像G4は、1週間(評価期間)のうちのPMVが快適範囲の範囲内にある時間割合である。
 領域R2のうち右側下部に配置されている領域R23には、評価期間の開始日及び終了日を示す画像G5が表示されている。
 (3)表示方法
 次に、図1~図5を参照して表示方法(表示システム1の動作)の説明をする。図5は、本実施形態に係る表示方法の一例を示すフローチャートである。
 まず、サーバ7の取得部71は、ネットワーク6を介して、温度センサ21から第1検出値を取得し、湿度センサ22から第2検出値を取得する(図5のS1)。次に、推定部72は、取得部71が取得した第1検出値に基づいて、室内50の天井面511における(天井51の直下における)空間a1(図1参照)の空間温度を推定する。本実施形態における空間a1は、天井面511から1メートル以内の高さにある空間である。また、推定部72は、取得部71が取得した第2検出値に基づいて、室内50の天井面511における空間a1の空間湿度を推定する(図5のS2)。ここで、推定部72によって空間温度が推定される位置と、空間湿度が推定される位置とは同一の位置である。より具体的には、本実施形態の推定部72は、天井面511に設けられている第1排気口241から直線距離r1(図1参照)以下の空間a2(図1参照)の空間温度及び空間湿度を推定する。推定部72による推定空間温度は式(1)で表すことができ、推定空間湿度は式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで、式(1)中のTrは(空間a2の)推定空間温度[℃]であり、α1は係数であり、Tsは第1検出値[℃]であり、c1は係数である。α1は例えば0.95、c1は例えば0.2である。また、式(2)中のHrは(空間a2の)推定湿度[%]であり、α2は係数であり、Hsは第2検出値[%]であり、c2は係数である。α2は例えば1.05であり、c2は例えば5.0である。
 次に、推定部72は、式(3)及び式(4)に基づいて、室内50の空間a2を含む空間a3における所定の高さ毎の空間温度及び空間湿度を推定する(図5のS3)。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 ここで、式(3)中のhは床上高さ[m]であり、Thは、床上高さh[m]における推定空間温度であり、α3は係数であり、c3は係数である。α3は例えば0.5である。式(4)中のHhは、床上高さh[m]における推定空間湿度であり、α4は係数であり、c4は係数である。α4は例えば0.95である。そして、c3は式(5)で表すことができ、c4は式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 ここで、式(3)及び式(4)中のLrfは、天井51の高さ[m]である。式(5)、式(6)により、天井付近(h=Lrfを代入)でThが推定空間温度Trと一致し、Hhが推定空間湿度Hrと一致する。
 次に、推定部72は、ステップS3の処理で推定した、高さ毎の空間温度及び空間湿度に基づいて、空間a3における所定の高さ毎のPMVを推定する(図5のS4)。なお、推定部72は、式(7)に示すように、高さ毎の平均輻射温度と、高さ毎の空間温度とが等しいものとしてPMVを推定する。
Figure JPOXMLDOC01-appb-M000014
 ここで、本実施形態の推定部72は、代謝量(M)及び衣服熱抵抗(Icl)の値は季節に応じた固定値で近似している。季節は例えば、夏(6~8月)、冬(12~2月)、春(3~5月)、秋(9~11月)の4個に分け、それぞれ代謝量と衣服抵抗値を固定値で計算する。このとき、春と秋は温熱環境が類似のため同じ値を用いても良い。例えば代謝量は、座位で1.0[W/m2]、起立で1.2[W/m2]程度である。また、例えば衣服熱抵抗は男性夏服で1.0[m2・K/W]、男性冬服で2.0[m2・K/W]程度である。代謝量及び衣服熱抵抗については、例えば、参考文献(「住宅における温熱快適性の評価」住宅総合研究財団、研究年報No23、p19-32、1996)に記載されている。
 また、本実施形態の推定部72は、人は室内に滞在するものと仮定し、外部仕事(W)をゼロとする。また、水蒸気分圧(Pa)は、空間温度(Th)と空間湿度(Hh)から推定する。また、本実施形態の推定部72は、室内風速は概ね0.3[m/s]以下と小さく、一定と仮定してもPMVに大きく影響しないため、風速(Var)を一定としてPMVを推定する。例えば風速は、0.1[m/s]である。
 上述の仮定を行うことで、温度センサ21の第1検出値及び湿度センサ22の第2検出値のみからPMVの算出が可能となる。
 次に、制御部73は、推定部72によって推定されたPMV分布を、端末8(図3参照)の表示部81(図3参照)に表示させる(図5のS5)。
 (4)作用効果
 上述したように、本実施形態のサーバ7は、取得部71と、推定部72と、制御部73とを備えている。推定部72は、換気機器2に備えられている温度センサ21の第1検出値及び湿度センサ22の第2検出値に基づいて、室内50の高さ方向における予想平均温冷感申告(PMV)分布を推定する。制御部73は、推定部72が推定した室内50の高さ方向におけるPMV分布を、端末8の表示部81に表示させるため、施設5の居住者や、施設5の管理会社の従業員等がPMVをモニタリングすることが容易となる。そして、居住者や従業員等はPMV分布に応じて、温熱環境を変更する等の行動をとることができるようになる。また、本実施形態の推定部72は、換気機器2が有する温度センサ21及び湿度センサ22のみの検出値に基づいて、室内50のPMV分布を推定することができるため、専用のハンディ型の測定機器等を用いることなく人周辺のPMVを推定することができる。
 また、本実施形態の推定部72は、第1検出値に基づいて室内50の天井面511における空間a1の空間温度を推定し、第2検出値に基づいて室内50の天井面511における空間a1の空間湿度を推定する。推定部72は、推定した空間温度及び空間湿度に基づいて、室内50の高さ方向におけるPMV分布を推定する。空間a1の空間温度及び空間湿度は、室内50内の空間温度及び空間湿度である。一方、温度センサ21の第1検出値及び湿度センサ22の第2検出値は、換気機器2の内部空間又は換気機器2の周辺の空間温度及び空間湿度である。このため、換気機器2に内蔵されている温度センサ21及び湿度センサ22の値を直接的に用いて室内50のPMV分布を推定するより、いったん、室内50の空間温度と空間湿度に換算(式(1)、式(2))した後で、PMV分布を計算した方が、PMVの推定精度が向上する。
 また、本実施形態の推定部72による空間a1の推定温度と、空間a1の推定湿度は、同一の位置における推定温度及び推定湿度である。さらに、本実施形態の推定部72は、空間a1のうち、天井面511に設けられている第1排気口241から直線距離r1以内の空間a2の空間温度及び空間湿度を推定する。第1給気口231又は第1排気口241から近い位置の空気は絶えず入れ替わっているため、空間温度及び空間湿度の推定精度が高くなる。推定部72が、例えば第1給気口231又は第1排気口241からの直線距離が1メートル以下である空間a2の空間温度及び空間湿度に基づいてPMV分布を推定することで、PMV分布の推定精度が向上する。
 また、本実施形態のサーバ7は、PMV分布における代表値があらかじめ設定された快適範囲(設定範囲)から外れるか否かを判定する判定部74を更に備えている。制御部73は、代表値が快適範囲から外れると判定部74によって判定された場合に、代表値が快適範囲から外れたことを通知する画像G31(通知画像)を表示部81に表示させる。通知画像が表示部81に表示されると、例えば、施設5の居住者や、施設5の管理会社の従業員は、代表値が快適範囲から外れたことを知ることができる。代表値は、PMV分布における最大値、PMV分布における最小値、及びPMV分布から得られる平均値のいずれかである。これにより、PMV分布の代表値が快適範囲から外れたか否かの判定条件の基準となる指標を増やすことができる。
 また、本実施形態の判定部74は、室内50の高さ方向における任意の点のPMVが快適範囲から外れるか否かを判定する。通知画像が表示部81に表示されることにより、例えば、施設5の居住者や、施設5の管理会社の従業員は、任意の点のPMVが快適範囲から外れたことを知ることができる。
 また、本実施形態のサーバ7は、PMV分布における代表値があらかじめ設定された快適範囲の範囲内にある期間と、任意に設定された期間(評価期間)と、の割合を算出する算出部75を更に備えている。制御部73は、表示部81に当該割合を表示させる。これにより、施設5の管理会社の従業員等は、代表値が快適範囲内にある期間と、評価期間との割合を把握することができる。評価期間が例えば1日であれば、得られたデータは、熱中症など急激な疾患の発症予防に有効な指標となる。また、評価期間が例えば3か月程度であれば、得られたデータは、季節単位で最適な換気機器2の検証用のデータとして使うことができる。また、評価期間が例えば1年程度であれば、得られたデータは、物件(施設2)自体の空調能力の検証や、テナント誘致の際に物件の魅力アピールのデータとして使うことができる。
 また、本実施形態の算出部75は、任意の点のPMVが、快適範囲の範囲内にある期間と、評価期間と、の割合を算出する。これにより、施設5の管理会社の従業員等は、任意の点のPMVが快適範囲内にある期間と、評価期間との割合を把握することができる。
 また、本実施形態の推定部72は、上述の式(1)~式(7)に基づいて、室内50の高さ方向におけるPMV分布を推定する。本実施形態の推定部72は、解析式を用いてPMV分布を推定することができる。そのため、機械学習等クラウドの利用を前提とした複雑なアルゴリズムが不要となるため表示システムのコストを低減することができる。
 (変形例)
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
 また、上記実施形態に係る表示システム1と同等の機能は、表示方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体等で具現化されてもよい。一態様に係る表示方法は、取得ステップと、推定ステップと、表示ステップと、を有する。取得ステップでは、室内50の換気を行う換気機器2に備えられている温度センサ21の第1検出値、及び、換気機器2に備えられている湿度センサ22の第2検出値を取得する。推定ステップでは、取得ステップにおいて取得する第1検出値及び第2検出値に基づいて、室内50の高さ方向における予想平均温冷感申告(PMV)の分布を表す予想平均温冷感申告分布を推定する。表示ステップでは、推定ステップにおいて推定した予想平均温冷感申告分布を、表示部81に表示させる。一態様に係るプログラムは、上記の表示方法を、1以上のプロセッサに実行させるためのプログラムである。
 本開示における表示システム1は、例えば、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における表示システム1としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。
 以下、上記実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 表示システム1の少なくとも一部の機能が、1つの装置(サーバ7)内に集約されていることは表示システム1に必須の構成ではなく、表示システム1の構成要素は、複数の装置(筐体)に分散されて設けられていてもよい。
 例えば、表示システム1の一部の機能が端末8に設けられる等、表示システム1の一部の機能がサーバ7とは別の装置(筐体)に設けられていてもよい。また、表示システム1が、施設5(戸建住宅)外ではなく、施設5の内部に設けられていてもよい。言い換えると、表示システム1は、施設5の内部のローカル環境に設けられていてもよい。また、表示システム1の少なくとも一部の機能は、例えば、クラウド(クラウドコンピューティング)等によって実現されてもよい。
 表示システム1は、少なくとも、取得部71と、推定部72と、制御部73とを備えていればよい。
 また、表示システム1は、サーバ7だけでなく、端末8を含んでいてもよい。
 上記実施形態では、表示システム1が戸建住宅に導入される場合を例示したが、表示システム1は、マンション等の集合住宅やオフィス等の様々な施設5にも導入可能である。
 端末8は、スマートフォンやタブレット等の携帯端末であって、表示部81はタッチパネルディスプレイで構成されていてもよい。端末8は、施設5(戸建住宅)外ではなく、施設5の内部に設けられていてもよい。
 上記実施形態では、推定部72が、式(1)~式(7)では一次式を用いてPMVを推定する場合を例示したが、推定部72は、一次式以外の解析式でPMVを推定してもよい。推定部72は、例えば、高次多項式、対数関数、指数関数等、室内環境に応じてPMVを推定するための近似式を用いてPMVを推定してもよい。例えば、床暖房と暖房を共に運転した施設では、天井と床付近のPMVが室内で相対的に高くなる。この場合は2次関数、双曲線、三角関数などを用いてPMV分布を近似しても良い。PMVを推定する近似式が解析式であれば、アルゴリズムの実装が容易である。また、PMVを推定する近似式は、例えば施設5の設計時等に、回帰解析を行うことで求めてもよい。回帰解析は、例えば、気流シミュレーションによる温度・湿度のシミュレーション結果と、統計ソフトと、を用いて行ってもよい。また、施設5の建設後に行われる環境測定等の結果を元に統計処理で近似式を求めてもよい。
 上記実施形態では、換気機器2が第1種換気方式の換気機器である場合を例示したが、換気機器2は、第2種換気方式の換気機器や、第3種換気方式の換気機器であってもよい。換気機器2が第2種換気方式の換気機器である場合、換気機器2は、給気のみ機械動力により行うため、排気ダクト24にファンを有さなくともよい。また、換気機器2が第3種換気方式の換気機器である場合、換気機器2は、排気のみ機械動力により行うため、給気ダクト23にファンを有さなくともよい。
 温度センサ21及び湿度センサ22は、給気ダクト23の内部に設けられていてもよい。この場合、推定部72は、第1検出値及び第2検出値に基づいて、第1給気口231から直線距離r1以下の空間a2における空間温度及び空間湿度を推定したうえで、PMV分布を推定することが好ましい。
 通知画像は図3に示す画像G31の態様に限定されず、例えば、実線L1のうち快適範囲(数値L2~数値L3の範囲)から外れた部分を点滅させた画像や、実線L1のうち快適範囲から外れた部分を赤丸で囲う画像や、実線L1のうち快適範囲から外れた部分の色を変更した画像でもよい。また、PMVが快適範囲から外れたことを通知する文字が表された画像でもよい。
 判定部74によって、PMV分布の代表値又は任意の点のPMVが、快適範囲から外れると判定された場合、制御部73は、例えば端末8等が有するスピーカ等を制御して、警告音を発生させてもよい。
 判定部74は、PMV分布の代表値又は任意の点のPMVが、快適範囲から外れるか否かを判定してもよい。そして、PMVが快適範囲から外れると判定部74によって判定された場合、制御部73は、PMVが快適範囲から外れたことを通知する通知画像を表示部81に表示させてもよい。
 (まとめ)
 以上説明したように、第1の態様に係る表示システム(1)は、取得部(71)と、推定部(72)と、制御部(73)と、を備える。取得部(71)は、室内(50)の換気を行う換気機器(2)に備えられている温度センサ(21)の第1検出値、及び、換気機器(2)に備えられている湿度センサ(22)の第2検出値を取得する。推定部(72)は、取得部(71)により取得される第1検出値及び第2検出値に基づいて、室内(50)の高さ方向における予想平均温冷感申告の分布を表す予想平均温冷感申告分布を推定する。制御部(73)は、推定部(72)によって推定された予想平均温冷感申告分布を、表示部(81)に表示させる。
 この態様によれば、表示システム(1)は、換気機器(2)に備えられている温度センサ(21)及び湿度センサ(22)の第1検出値及び第2検出値に基づいて、室内(50)の高さ方向における予想平均温冷感申告分布を推定して表示部(81)に表示させることができる。これにより、予想平均温冷感申告のモニタリングを容易に行うことができる。
 第2の態様に係る表示システム(1)では、第1の態様において、推定部(72)は、第1検出値に基づいて室内(50)の天井面(511)における空間温度を推定し、第2検出値に基づいて室内(50)の天井面(511)における空間湿度を推定する。推定部(72)は、推定した空間温度及び空間湿度に基づいて、室内(50)の高さ方向における予想平均温冷感申告分布を推定する。
 この態様によれば、推定部(72)は天井面(511)における空間温度及び空間湿度を推定した後で、予想平均温冷感申告分布を推定するため、予想平均温冷感申告分布の推定精度が向上する。
 第3の態様に係る表示システム(1)では、第2の態様において、換気機器(2)の給気口(第1給気口231)及び排気口(第1排気口241)の少なくとも一方は天井面(511)に設けられている。推定部(72)によって推定される空間温度と空間湿度とは、同一の位置における空間温度及び空間湿度である。同一の位置は、天井面(511)に設けられている給気口(第1給気口231)又は排気口(第1排気口241)との直線距離が所定距離(直線距離r1)以下の位置である。
 この態様によれば、換気機器(2)の給気口(第1給気口231)又は排気口(第1排気口241)から近い位置の空気は絶えず入れ替わっているため、空間温度及び空間湿度の推定精度が高くなる。推定部(72)が、例えば給気口(第1給気口231)又は排気口(第1排気口241)からの直線距離が1メートル以下である空間温度及び空間湿度に基づいて予想平均温冷感申告分布を推定することで、予想平均温冷感申告分布の推定精度が向上する。
 第4の態様に係る表示システム(1)は、第1から第3のいずれかの態様において、判定部(74)を更に備える。判定部(74)は、予想平均温冷感申告分布から得られる代表値があらかじめ設定された設定範囲外にあるか否かを判定する。制御部(73)は、代表値が設定範囲外にあると判定部(74)によって判定された場合に、代表値が設定範囲外にあることを通知する通知画像を表示部(81)に表示させる。
 この態様によれば、予想平均温冷感申告分布の代表値が設定範囲から外れたときに、通知画像を表示させることで、例えば、表示部(81)を監視する監視者等や、居住者等は代表値が設定範囲から外れたことを知ることができる。
 第5の態様に係る表示システム(1)は、第4の態様において、代表値は、予想平均温冷感申告分布における最大値、最小値、及び平均値のうちのいずれかである。
 この態様によれば、予想平均温冷感申告分布の最大値、最小値、及び平均値のいずれかが設定範囲から外れたときに、通知画像を表示させることで、例えば、表示部(81)を監視する監視者等や、居住者等は予想平均温冷感申告分布の最大値、最小値、及び平均値のいずれかが設定範囲から外れたことを知ることができる。
 第6の態様に係る表示システム(1)は、第1から第3のいずれかの態様において、判定部(74)を更に備える。判定部(74)は、予想平均温冷感申告分布のうち室内(50)の高さ方向における任意の点の予想平均温冷感申告が、あらかじめ設定された設定範囲外にあるか否かを判定する。制御部(73)は、任意の点の予想平均温冷感申告が設定範囲外にあると判定部(74)によって判定された場合に、任意の点の予想平均温冷感申告が設定範囲外にあることを通知する通知画像を表示部(81)に表示させる。
 この態様によれば、例えば、表示部(81)を監視する監視者等や、居住者等は任意の点の予想平均温冷感申告が設定範囲から外れたことを知ることができる。
 第7の態様に係る表示システム(1)は、第1から第6のいずれかの態様において、算出部(75)を更に備える。算出部(75)は、予想平均温冷感申告分布から得られる代表値があらかじめ設定された設定範囲の範囲内にある期間と、任意に設定された期間との割合を算出する。制御部(73)は、表示部(81)に割合を表示させる。
 この態様によれば、監視者等は、代表値が設定範囲内にある期間と、任意に設定された期間との割合を把握することができる。任意に選択された期間が例えば1日であれば、得られたデータは、熱中症など急激な疾患の発症予防に有効な指標となる。また、任意に選択された期間が例えば3か月程度であれば、得られたデータは、季節単位で最適な換気機器(2)の検証用のデータとして使うことができる。また、任意に選択された期間が例えば1年程度であれば、得られたデータは、物件(施設)自体の空調能力の検証や、テナント誘致の際に物件の魅力アピールのデータとして使うことができる。
 第8の態様に係る表示システム(1)は、第1から第6のいずれかの態様において、算出部(75)を更に備える。算出部(75)は、予想平均温冷感申告分布のうち室内(50)の高さ方向における任意の点の予想平均温冷感申告が、あらかじめ設定された設定範囲の範囲内にある期間と、任意に設定された期間との割合を算出する。制御部(73)は、表示部(81)に割合を表示させる。
 この態様によれば、監視者等は、任意の点の予想平均温冷感申告が設定範囲内にある期間と、任意に設定された期間との割合を把握することができる。任意に選択された期間が例えば1日であれば、得られたデータは、熱中症など急激な疾患の発症予防に有効な指標となる。また、任意に選択された期間が例えば3か月程度であれば、得られたデータは、季節単位で最適な換気機器(2)の検証用のデータとして使うことができる。また、任意に選択された期間が例えば1年程度であれば、得られたデータは、物件(施設)自体の空調能力の検証や、テナント誘致の際に物件の魅力アピールのデータとして使うことができる。
 第9の態様に係る表示システム(1)では、第1から第8のいずれかの態様において、推定部(72)は、以下の式(1)から式(7)に基づいて、予想平均温冷感申告分布を推定する。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 ここで、
  α1:係数
  α2:係数
  α3:係数
  α4:係数
  c1:係数
  c2:係数
  c3:係数
  c4:係数
  h:床上高さ[m]
  Lrf:天井高さ[m]
  V:風速[m/s]
  Ts:温度センサの第1検出値[℃]
  Tr:天井面における推定空間温度[℃]
  Th:床上高さhにおける推定空間温度[℃]
  Tmrt:平均輻射温度[℃]
  Hs:湿度センサの第2検出値[%]
  Hr:天井面における推定湿度[%]
  Hh:床上高さhにおける推定湿度[%]
である。
 この態様によれば、推定部(72)は解析式を用いて予想平均温冷感申告分布を推定することができ、機械学習等クラウドの利用を前提とした複雑なアルゴリズムが不要となるためコストを低減することができる。
 第1の態様以外の構成については、表示システム(1)に必須の構成ではなく、適宜省略可能である。
 第10の態様に係る表示方法は、取得ステップと、推定ステップと、表示ステップと、を有する。取得ステップでは、室内(50)の換気を行う換気機器(2)に備えられている温度センサ(21)の第1検出値、及び、換気機器(2)に備えられている湿度センサ(22)の第2検出値を取得する。推定ステップでは、取得ステップにおいて取得する第1検出値及び第2検出値に基づいて、室内(50)の高さ方向における予想平均温冷感申告の分布を表す予想平均温冷感申告分布を推定する。表示ステップでは、推定ステップにおいて推定した予想平均温冷感申告分布を、表示部(81)に表示させる。
 この態様によれば、換気機器(2)に備えられている温度センサ(21)及び湿度センサ(22)の第1検出値及び第2検出値に基づいて、室内(50)の高さ方向における予想平均温冷感申告分布を推定して表示部(81)に表示させることができる。予想平均温冷感申告分布を測定するために多数のセンサや専用のセンサを設置する必要がなくなるため、コストを抑えることができる。
 第11の態様に係るプログラムは、第10の態様に係る表示方法を、1以上のプロセッサに実行させるためのプログラムである。
 この態様によれば、換気機器(2)に備えられている温度センサ(21)及び湿度センサ(22)の第1検出値及び第2検出値に基づいて、室内(50)の高さ方向における予想平均温冷感申告分布を推定して表示部(81)に表示させることができる。予想平均温冷感申告分布を測定するために多数のセンサや専用のセンサを設置する必要がなくなるため、コストを抑えることができる。
1 表示システム
2 換気機器
21 温度センサ
22 湿度センサ
231 第1給気口(給気口)
241 第1排気口(排気口)
50 室内
51 天井
511 天井面
71 取得部
72 推定部
73 制御部
74 判定部
75 算出部
81 表示部
G31 画像(通知画像)
r1 直線距離(所定距離)

Claims (11)

  1.  室内の換気を行う換気機器に備えられている温度センサの第1検出値、及び、前記換気機器に備えられている湿度センサの第2検出値を取得する取得部と、
     前記取得部により取得される前記第1検出値及び前記第2検出値に基づいて、前記室内の高さ方向における予想平均温冷感申告の分布を表す予想平均温冷感申告分布を推定する推定部と、
     前記推定部によって推定された前記予想平均温冷感申告分布を表示部に表示させる制御部と、
    を備える、
     表示システム。
  2.  前記推定部は、
      前記第1検出値に基づいて前記室内の天井面における空間温度を推定し、前記第2検出値に基づいて前記室内の前記天井面における空間湿度を推定し、
      推定した前記空間温度及び前記空間湿度に基づいて、前記室内の高さ方向における前記予想平均温冷感申告分布を推定する、
     請求項1に記載の表示システム。
  3.  前記換気機器の給気口及び排気口の少なくとも一方は前記天井面に設けられており、
     前記推定部によって推定される前記空間温度と前記空間湿度とは、同一の位置における空間温度及び空間湿度であって、
     前記同一の位置は、前記天井面に設けられている前記給気口又は前記排気口との直線距離が所定距離以下の位置である、
     請求項2に記載の表示システム。
  4.  前記予想平均温冷感申告分布から得られる代表値があらかじめ設定された設定範囲外にあるか否かを判定する判定部を更に備え、
     前記制御部は、前記代表値が前記設定範囲外にあると前記判定部によって判定された場合に、前記代表値が前記設定範囲外にあることを通知する通知画像を前記表示部に表示させる、
     請求項1から3のいずれか1項に記載の表示システム。
  5.  前記代表値は、前記予想平均温冷感申告分布における最大値、最小値、及び平均値のうちのいずれかである、
     請求項4に記載の表示システム。
  6.  前記予想平均温冷感申告分布のうち前記室内の高さ方向における任意の点の予想平均温冷感申告が、あらかじめ設定された設定範囲外にあるか否かを判定する判定部を更に備え、
     前記制御部は、前記任意の点の前記予想平均温冷感申告が前記設定範囲外にあると前記判定部によって判定された場合に、前記任意の点の前記予想平均温冷感申告が前記設定範囲外にあることを通知する通知画像を前記表示部に表示させる、
     請求項1から3のいずれか1項に記載の表示システム。
  7.  前記予想平均温冷感申告分布から得られる代表値があらかじめ設定された設定範囲の範囲内にある期間と、任意に設定された期間との割合を算出する算出部を更に備え、
     前記制御部は、前記表示部に前記割合を表示させる、
     請求項1から6のいずれか1項に記載の表示システム。
  8.  前記予想平均温冷感申告分布のうち前記室内の高さ方向における任意の点の予想平均温冷感申告が、あらかじめ設定された設定範囲の範囲内にある期間と、任意に設定された期間との割合を算出する算出部を更に備え、
     前記制御部は、前記表示部に前記割合を表示させる、
     請求項1から6のいずれか1項に記載の表示システム。
  9.  前記推定部は、以下の式(1)から式(7)に基づいて、前記予想平均温冷感申告分布を推定する、
     請求項1から8のいずれか1項に記載の表示システム。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    Figure JPOXMLDOC01-appb-M000007
      ここで、
      α1:係数
      α2:係数
      α3:係数
      α4:係数
      c1:係数
      c2:係数
      c3:係数
      c4:係数
      h:床上高さ[m]
      Lrf:天井高さ[m]
      V:風速[m/s]
      Ts:温度センサの第1検出値[℃]
      Tr:天井面における推定空間温度[℃]
      Th:床上高さhにおける推定空間温度[℃]
      Tmrt:平均輻射温度[℃]
      Hs:湿度センサの第2検出値[%]
      Hr:天井面における推定湿度[%]
      Hh:床上高さhにおける推定湿度[%]
  10.  室内の換気を行う換気機器に備えられている温度センサの第1検出値、及び、前記換気機器に備えられている湿度センサの第2検出値を取得する取得ステップと、
     前記取得ステップにおいて取得する前記第1検出値及び前記第2検出値に基づいて、前記室内の高さ方向における予想平均温冷感申告の分布を表す予想平均温冷感申告分布を推定する推定ステップと、
     前記推定ステップにおいて推定した前記予想平均温冷感申告分布を、表示部に表示させる表示ステップと、
    を有する、
     表示方法。
  11.  請求項10に記載の表示方法を、1以上のプロセッサに実行させるためのプログラム。
PCT/JP2021/037411 2020-12-25 2021-10-08 表示システム、表示方法及びプログラム WO2022137735A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180084385.2A CN116583698A (zh) 2020-12-25 2021-10-08 显示系统、显示方法和程序
US18/256,859 US20240027088A1 (en) 2020-12-25 2021-10-08 Display system, display method, and program
JP2022571078A JPWO2022137735A1 (ja) 2020-12-25 2021-10-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-217935 2020-12-25
JP2020217935 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022137735A1 true WO2022137735A1 (ja) 2022-06-30

Family

ID=82158962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037411 WO2022137735A1 (ja) 2020-12-25 2021-10-08 表示システム、表示方法及びプログラム

Country Status (4)

Country Link
US (1) US20240027088A1 (ja)
JP (1) JPWO2022137735A1 (ja)
CN (1) CN116583698A (ja)
WO (1) WO2022137735A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183032A (ja) * 2006-01-05 2007-07-19 Toshiba Corp 環境制御用ロボット装置及びシステム
JP2008075973A (ja) * 2006-09-21 2008-04-03 Toshiba Corp 空調用センサーシステム
JP2017116129A (ja) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 情報提示システム、及び、プログラム
WO2020075244A1 (ja) * 2018-10-10 2020-04-16 三菱電機株式会社 空気調和機、空気調和機制御方法及びプログラム
JP2021004680A (ja) * 2019-06-25 2021-01-14 アズビル株式会社 解析装置および解析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183032A (ja) * 2006-01-05 2007-07-19 Toshiba Corp 環境制御用ロボット装置及びシステム
JP2008075973A (ja) * 2006-09-21 2008-04-03 Toshiba Corp 空調用センサーシステム
JP2017116129A (ja) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 情報提示システム、及び、プログラム
WO2020075244A1 (ja) * 2018-10-10 2020-04-16 三菱電機株式会社 空気調和機、空気調和機制御方法及びプログラム
JP2021004680A (ja) * 2019-06-25 2021-01-14 アズビル株式会社 解析装置および解析方法

Also Published As

Publication number Publication date
CN116583698A (zh) 2023-08-11
JPWO2022137735A1 (ja) 2022-06-30
US20240027088A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
Kwong et al. Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review
Zhang et al. Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving
Zhang et al. Acceptable temperature steps for transitional spaces in the hot-humid area of China
Shahzad et al. Advanced personal comfort system (APCS) for the workplace: A review and case study
Li et al. Climatic strategies of indoor thermal environment for residential buildings in Yangtze River Region, China
US7839275B2 (en) Methods, systems and computer program products for controlling a climate in a building
JP2014153030A (ja) 空気調和システム、指示装置
JP2011127782A (ja) 空調制御装置、空調制御方法及び輻射温度計測装置
JP2013088105A (ja) 空調制御システム
Tartarini et al. Thermal environment and thermal sensations of occupants of nursing homes: a field study
JP3214317B2 (ja) 空調装置
Antoun et al. Coaxial personalized ventilation system and window performance for human thermal comfort in asymmetrical environment
Forcada et al. Field study on adaptive thermal comfort models for nursing homes in the Mediterranean climate
JP2017027434A (ja) 冷暖房機器選定支援システム
Krajčík et al. Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation
Sansaniwal et al. Impact assessment of air velocity on thermal comfort in composite climate of India
Kalmár et al. Study of human response in conditions of surface heating, asymmetric radiation and variable air jet direction
WO2022137735A1 (ja) 表示システム、表示方法及びプログラム
WO2022137734A1 (ja) 表示システム、表示方法及びプログラム
Adekunle et al. Estimation of Thermal Comfort Parameters of Building Occupants Based on Comfort Index, Predicted Mean Vote and Predicted Percent of Dissatisfied People in the North-West Zone of Nigeria
Shan et al. An integrated approach to evaluate thermal comfort in air-conditioned large-space office
US20220341617A1 (en) Methods, Systems and Computer Program Products for Measuring, Verifying and Controlling the Energy Efficiency of Residential and Light Commercial Heating, Ventilation and Air-Conditioning (HVAC) Systems
Coakley et al. Validation of Simulated thermal comfort using a calibrated building energy simulation (BES) model in the context of building performance evaluation & optimisation
US20220221828A1 (en) Methods, Systems and Computer Program Products for Measuring, Verifying and Controlling the Energy Efficiency of a Building
Ghanta Meta-modeling and Optimization of Computational Fluid Dynamics (CFD) analysis in thermal comfort for energy-efficient Chilled Beams-based Heating, Ventilation and Air-Conditioning (HVAC) systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571078

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2301003552

Country of ref document: TH

Ref document number: 18256859

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180084385.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909893

Country of ref document: EP

Kind code of ref document: A1