WO2022135543A1 - Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法 - Google Patents

Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法 Download PDF

Info

Publication number
WO2022135543A1
WO2022135543A1 PCT/CN2021/140975 CN2021140975W WO2022135543A1 WO 2022135543 A1 WO2022135543 A1 WO 2022135543A1 CN 2021140975 W CN2021140975 W CN 2021140975W WO 2022135543 A1 WO2022135543 A1 WO 2022135543A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
doped region
silver paste
solar cell
laser
Prior art date
Application number
PCT/CN2021/140975
Other languages
English (en)
French (fr)
Inventor
眭山
何宇
王岚
李忠涌
苏荣
王璞
谢毅
Original Assignee
通威太阳能(成都)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(成都)有限公司 filed Critical 通威太阳能(成都)有限公司
Priority to AU2021406338A priority Critical patent/AU2021406338B2/en
Priority to EP21909538.7A priority patent/EP4084087A4/en
Priority to US17/928,819 priority patent/US20230146692A1/en
Publication of WO2022135543A1 publication Critical patent/WO2022135543A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of solar cells, in particular, to a selective emitter of a PERC solar cell, a PERC solar cell and a manufacturing method thereof.
  • the present application provides a selective emitter of a PERC solar cell, a PERC solar cell and a manufacturing method thereof, which can reduce laser damage to a silicon wafer and improve cell efficiency.
  • a PERC solar cell selective emitter which may include: a silicon wafer and a first lightly doped region, a second lightly doped region and a laser heavily doped region on the front side of the silicon wafer,
  • the laser heavily doped region includes a plurality of doped layers arranged at intervals along a preset direction, each doped layer includes a plurality of doped regions arranged at intervals, and the first lightly doped region is located between the doped regions of each doped layer. and each second lightly doped region is located between two adjacent doped layers.
  • the total area of the laser heavily doped region and the first lightly doped region may be S, and the ratio of the area of the laser heavily doped region to S may be 1:10 to 9:10.
  • the ratio of the area of the laser heavily doped region to S may be 2:5 to 3:5.
  • the doped regions of two adjacent doped layers may be staggered.
  • the resistivity of the silicon wafer may be 0.1 ⁇ *cm to 3.0 ⁇ *cm.
  • a PERC solar cell which may include a PERC solar cell selective emitter according to some embodiments of the present application and a PERC solar cell on the surface of the first lightly doped region and the second lightly doped region.
  • the positive electrode includes a first silver paste layer on the surface of the laser heavily doped region and a second silver paste layer on the surface of the front anti-reflection layer corresponding to the surface of the first lightly doped region, the second silver paste layer and the first silver paste layer electrical contact.
  • the front anti-reflection layer may be a silicon nitride layer, and the front passivation layer may be a silicon dioxide layer.
  • the backside of the PERC solar cell may also have a backside passivation layer and an aluminum backfield
  • the backside passivation layer may be formed on the backside of the silicon wafer
  • the backside passivation layer may have a slot
  • the aluminum back field may be formed on the surface of the backside passivation layer and in the open trench and in contact with the backside of the silicon wafer.
  • Still other embodiments of the present application provide a method of fabricating a PERC solar cell according to other embodiments of the present application, the method may include:
  • Diffusion is performed on the surface of the textured silicon wafer to form a diffusion layer, and laser doping is performed on the diffusion layer to form a laser heavily doped region.
  • the diffusion layer without laser doping is a lightly doped region, and the lightly doped region includes the first a lightly doped region and a second lightly doped region;
  • the front passivation layer and the front anti-reflection layer are sequentially plated on the surface of the laser heavily doped area and the lightly doped area;
  • a first silver paste layer is plated on the surface of the front anti-reflection layer corresponding to the laser heavily doped region, and the front anti-reflection layer and the front passivation layer are burnt through, so that the first silver paste layer is in contact with the laser heavily doped region, and the front surface is reduced
  • a second silver paste layer is plated on the surface of the reverse layer corresponding to the first lightly doped region, and the second silver paste layer is in electrical contact with the first silver paste layer.
  • a backside passivation layer is formed on the backside of the silicon wafer, grooves are performed on the backside passivation layer, an aluminum backfield is formed on the surface of the backside passivation layer and in the opened groove, and the aluminum The back field is in contact with the back side of the silicon wafer.
  • the paste of the first silver paste layer may contain 5wt% to 10wt% oxide
  • the paste of the second silver paste layer may contain 0wt% to 2wt% oxide
  • the oxide At least one of PbO, B 2 O 3 , SiO 2 , BiO 3 and ZnO may be included.
  • both the pastes of the first silver paste layer and the second silver paste layer may contain 60wt% to 90wt% of silver powder.
  • the particle size of the silver powder may be 0.1um to 4um.
  • the pastes of the first silver paste layer and the second silver paste layer may also contain an organic carrier, and the organic carrier may include a thickener, a solvent, a surfactant and a thixotropic agent .
  • the organic vehicle in the paste of the first silver paste layer and the second silver paste layer may be 10wt% to 30wt%.
  • the beneficial effects of the PERC solar cell selective emitter, the PERC solar cell and the manufacturing method thereof of the embodiments of the present application at least include:
  • the laser heavily doped region of the PERC solar cell is the laser-treated part
  • the first lightly doped region and the second lightly doped region are the non-laser-treated part
  • the first lightly doped region is located in each doped layer
  • the first silver paste layer can burn through the front anti-reflection layer and the front passivation layer in contact with the laser heavily doped region to form a good ohmic contact
  • the second silver paste layer will not burn through the front anti-reflection layer
  • the layer and the front passivation layer are thus formed on the surface of the front anti-reflection layer corresponding to the first lightly doped region, and the second silver paste layer is in electrical contact with the first silver paste layer, and plays the role of connecting and conducting current.
  • the laser-doped regions of the embodiments of the present application are relatively small, which can reduce the damage of the silicon wafer by the laser, the surface recombination of the silicon wafer and the damage of the textured surface by the laser.
  • the silver paste layer needs to burn through the front passivation layer and contact the silicon wafer. Only in contact with the first silver paste layer and not in contact with the silicon wafer, the series resistance is low.
  • the arrangement of the laser heavily doped region of the PERC solar cell and the arrangement of the first silver paste layer and the second silver paste layer in the embodiments of the present application improve cell efficiency.
  • FIG. 1 is a schematic structural diagram of a selective emitter of a PERC solar cell according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of one arrangement position of a heavily doped region, a first lightly doped region and a second lightly doped region according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of another arrangement position of the heavily doped region, the first lightly doped region and the second lightly doped region according to an embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a PERC solar cell according to an embodiment of the present application.
  • FIG. 5 is the structure obtained after step S2 of the manufacturing method of the PERC solar cell according to the embodiment of the application;
  • FIG. 6 is a structure obtained after step S3 of the manufacturing method of the PERC solar cell according to the embodiment of the present application.
  • Icons 100-selective emitter; 10-PERC solar cell; 11-silicon wafer; 12-diffusion layer; 121-first lightly doped region; 122-second lightly doped region; 13-heavy doped region; 131-doped layer; 1311-doped region; 14-front passivation layer; 15-front anti-reflection layer; 161-first silver paste layer; 162-second silver paste layer; 17-back passivation layer; 171 - back silicon nitride layer; 172 - back aluminium oxide layer; 18 - aluminium back field.
  • embodiments of the present application provide a PERC solar cell selective emitter 100 , a PERC solar cell 10 and a manufacturing method thereof, which can reduce laser damage to the silicon wafer 11 and improve cell efficiency.
  • a PERC solar cell selective emitter 100 which may include a silicon wafer 11, a first lightly doped region 121 on the front side of the silicon wafer 11, a second lightly doped region 122, and a laser heavy Doping region 13 (refer to FIGS. 1-3 ).
  • the laser heavily doped region 13 may include a plurality of doped layers 131 spaced along a preset direction, each doped layer 131 may include a plurality of doped regions 1311 spaced apart, and the first lightly doped region 121 may be located in each Between the doped regions 1311 of the doped layers 131, each of the second lightly doped regions 122 may be located between two adjacent doped layers 131 (refer to FIG. 2 and FIG. 3).
  • the predetermined direction is the longitudinal direction
  • the plurality of doped layers 131 are arranged at intervals along the longitudinal direction
  • the doped regions 1311 of each doped layer 131 are arranged at intervals along the lateral direction.
  • the first lightly doped region 121 , the second lightly doped region 122 and the laser heavily doped region 13 are optionally doped with phosphorus or boron.
  • the laser heavily doped region 13 may be a laser-treated portion, the first lightly doped region 121 and the second lightly doped region 122 may be a portion that has not been laser-treated, and the first lightly doped region 121 may be located in each group. between the doped regions 1311 of the doped layer 131 .
  • the laser-doped region in the embodiment of the present application is relatively small, which can reduce the damage of the laser to the silicon wafer 11, reduce the surface recombination of the silicon wafer 11 and the laser-to-texture effect. damage, thereby improving battery efficiency.
  • the resistivity of the silicon wafer 11 may be 0.1 ⁇ *cm to 3.0 ⁇ *cm.
  • the silicon wafer 11 in this resistivity range is beneficial to increase the cell efficiency of the PERC solar cell 10 .
  • the resistivity of the silicon wafer 11 is 0.1 ⁇ *cm, 0.5 ⁇ *cm, 1 ⁇ *cm, 1.5 ⁇ *cm, 2 ⁇ *cm, 2.5 ⁇ *cm or 3 ⁇ *cm.
  • the total area of the laser heavily doped region 13 and the first lightly doped region 121 may be S, and the ratio of the area of the laser heavily doped region 13 to S may be 1:10 to 9:10. It should be noted that the area of the laser heavily doped region 13 refers to the sum of the areas of all the doped regions 1311 .
  • the total area S refers to the total area of the first lightly doped regions 121 between the plurality of doped layers 131 and the doped regions 1311 of the plurality of doped layers 131 .
  • the ratio of the area of the laser heavily doped region 13 to S can be 1:10 to 9:10, the cell efficiency can be better improved.
  • the ratio of the area of the laser heavily doped region 13 to S may be 1:10, 1:5, 3:10, 2:5, 1:2, 3:5, 7:10, 4:5 and Either 9:10 or a range in between.
  • the ratio of the area of the laser heavily doped region 13 to S may be 2:5 to 3:5.
  • the doped regions 1311 of two adjacent doped layers 131 may be staggered (refer to FIG. 3 ).
  • the dislocation arrangement means that the doped regions 1311 of two adjacent doped layers 131 may not overlap, or may overlap a part, and the overlapping part is less than 50% of the length of the doped regions 1311 .
  • the doped regions 1311 of the adjacent two groups of doped layers 131 may also be arranged in alignment (refer to FIG. 2 ).
  • a PERC solar cell 10 which may include a PERC solar cell selective emitter 100 according to some embodiments of the present application and a positive electrode, a first lightly doped The front passivation layer 14 on the surface of the region 121 and the second lightly doped region 122 , and the front antireflection layer 15 on the surface of the front passivation layer 14 .
  • the positive electrode may include a first silver paste layer 161 on the surface of the laser heavily doped region 13 and a second silver paste layer 162 on the surface of the front anti-reflection layer 15 corresponding to the surface of the first lightly doped region 121 .
  • the paste layer 162 is in electrical contact with the first silver paste layer 161 .
  • the second silver paste layer 162 is in electrical contact with the first silver paste layer 161, and plays the role of connecting and conducting current. Compared with the solution in which all the silver paste layers are in contact with the silicon wafer 11, the second silver paste layer 162 in the embodiment of the present application only contacts the first silver paste layer 161 and does not contact the silicon wafer 11, and the series resistance is relatively low, so that the series resistance is relatively low. Improved battery efficiency.
  • the front anti-reflection layer 15 may be a silicon nitride layer, and the front passivation layer may be a silicon dioxide layer.
  • the backside of the PERC solar cell 10 may also have a backside passivation layer 17 and an aluminum backfield 18, the backside passivation layer 17 may be formed on the backside of the silicon wafer 11, the backside passivation layer 17 may have a slot, and the aluminum backfield 18 It can be formed on the surface of the backside passivation layer 17 and in the open groove and in contact with the backside of the silicon wafer 11 .
  • the backside passivation layer 17 includes a backside silicon nitride layer 171 and a backside aluminum oxide layer 172 .
  • Still other embodiments of the present application provide a method of making a PERC solar cell 10 according to some embodiments of the present application, the method may include:
  • the lightly doped regions include a first lightly doped region 121 and a second lightly doped region 122 .
  • the laser heavily doped region 13 may include a plurality of doped layers 131 spaced along a predetermined direction, each doped layer 131 may include a plurality of doped regions 1311 spaced apart, and the first lightly doped region 121 may be located in Between the doped regions 1311 of each doped layer 131 , each of the second lightly doped regions 122 may be located between two adjacent doped layers 131 (refer to FIGS. 1 to 3 ).
  • the front surface passivation layer 14 and the front surface antireflection layer 15 are sequentially plated on the surfaces of the laser heavily doped region 13 and the lightly doped region (refer to FIG. 5 ).
  • the laser heavily doped region 13 of the PERC solar cell 10 may be a laser-treated portion, the first lightly doped region 121 and the second lightly doped region 122 may be a portion that has not been laser-treated, and the first silver paste layer 161
  • the front anti-reflection layer 15 and the front passivation layer 14 can be burned through in contact with the laser heavily doped region 13 to form a good ohmic contact, and the second silver paste layer 162 will not burn through the front anti-reflection layer 15 and the front passivation layer 14
  • the second silver paste layer 162 is formed on the surface of the front anti-reflection layer 15 corresponding to the first lightly doped region 121 , and the second silver paste layer 162 is in electrical contact with the first silver paste layer 161 , and plays the role of connecting and conducting current.
  • the laser-doped region in the embodiment of the present application is relatively small, which can reduce the damage of the laser to the silicon wafer 11 and improve the cell efficiency.
  • the second silver paste layer 162 in the embodiment of the present application only contacts the first silver paste layer 161 and does not contact the silicon wafer 11 , so the series resistance is lower, and the improved battery efficiency.
  • the laser frequency of the laser doping may be 10KHZ to 1000KHZ, and the laser belt speed may be 1000m/h to 300000m/h.
  • the laser frequency is 10KHZ, 30KHZ, 50KHZ, 100KHZ, 200KHZ, 400KHZ, 500KHZ, 800KHZ or 1000KHZ.
  • the laser belt speed is 1000m/h, 3000m/h, 5000m/h, 8000m/h, 10000m/h, 30000m/h, 50000m/h, 80000m/h, 10000m/h, 200000m/h and 300000m/h Either of h or a range in between. It can be understood that the laser belt speed refers to the length of the laser sweep per unit time.
  • the paste of the first silver paste layer 161 contains 5 wt % to 10 wt % oxide
  • the paste of the second silver paste layer 162 contains 0 wt % to 2 wt % oxide
  • the oxides include PbO, B At least one of 2 O 3 , SiO 2 , BiO 3 and ZnO.
  • the paste of the first silver paste layer 161 contains 5 wt % to 10 wt % oxide, and the oxide may include at least one of PbO, B 2 O 3 , SiO 2 , BiO 3 and ZnO, and these oxides are used in the sintering process.
  • the front passivation layer 14 and the front anti-reflection layer 15 will be burned through, and the passivation effect will be weakened.
  • the regions 13 are in contact and can conduct current.
  • the paste of the second silver paste layer 162 may contain a small amount of oxides or may not contain these oxides.
  • the second silver paste layer 162 will not damage the front passivation layer 14 and the front anti-reflection layer 15, and can not only serve as a connection The function of exporting current, and can improve the function of open voltage.
  • the paste of the first silver paste layer 161 may contain 5 wt %, 6 wt %, 7 wt %, 8 wt %, 9 wt % or 10 wt % of oxides.
  • the paste of the second silver paste layer 162 may contain 0.1 wt %, 0.3 wt %, 0.5 wt %, 0.7 wt %, 1 wt %, 1.2 wt %, 1.5 wt %, 1.7 wt % or 2 wt % oxide.
  • the paste of the second silver paste layer 162 may also not contain the above oxides.
  • both the pastes of the first silver paste layer 161 and the second silver paste layer 162 may contain 60-90 wt % of silver powder.
  • the content of silver powder in the pastes of the first silver paste layer 161 and the second silver paste layer 162 is relatively high, which can play a better conductive role.
  • the paste in the first silver paste layer 161 may contain 60wt%, 65wt%, 70wt%, 75wt%, 80wt%, 85wt% or 90wt% of silver powder.
  • the paste in the second silver paste layer 162 may contain 60wt%, 65wt%, 70wt%, 75wt%, 80wt%, 85wt% or 90wt% of silver powder.
  • the particle size of the silver powder may be 0.1 um to 4 um.
  • the silver powder in this particle size range is favorable for adhering to the surface of the laser heavily doped layer 131 and the surface of the first lightly doped region 121 .
  • the particle size of the silver powder is 0.1um, 0.3um, 0.5um, 0.8um, 1um, 2um, 3um or 4um.
  • the pastes of the first silver paste layer 161 and the second silver paste layer 162 may further contain an organic carrier, and the organic carrier may include a thickener, a solvent, a surfactant and a thixotropic agent.
  • the organic vehicle in the paste of the paste layer 161 and the second silver paste layer 162 may be 10 wt % to 30 wt %.
  • the PERC solar cell selective emitter 100 , the PERC solar cell 10 and the fabrication method thereof of the present application will be further described in detail below with reference to the embodiments.
  • the present embodiment provides a PERC solar cell, and its fabrication process may include:
  • Diffusion is performed on the surface of the textured silicon wafer to form a diffusion layer, and laser doping is performed on the diffusion layer to form a laser heavily doped region.
  • the diffusion layer without laser doping is a lightly doped region, and the lightly doped region includes the first The lightly doped region and the second lightly doped region, the laser heavily doped region includes a plurality of doped layers arranged at vertical intervals, each doped layer includes a plurality of doped regions arranged at horizontal intervals, and the first lightly doped region Between the doped regions of each doped layer, each of the second lightly doped regions is located between two adjacent doped layers.
  • the doped regions of the adjacent two groups of doped layers are arranged in alignment, the total area of the laser heavily doped region and the first lightly doped region is S, and the ratio of the area of the laser heavily doped region to S is 1:2.
  • a front passivation layer and a front anti-reflection layer are sequentially plated on the surfaces of the laser heavily doped region and the lightly doped region.
  • a first silver paste layer is plated on the surface of the front anti-reflection layer corresponding to the laser heavily doped layer area, and the front anti-reflection layer and the front passivation layer are burned through, so that the first silver paste layer is in contact with the laser heavily doped area.
  • a second silver paste layer is plated on the surface of the antireflection layer corresponding to the first lightly doped region, and the second silver paste layer is in electrical contact with the first silver paste layer.
  • a backside passivation layer is formed on the backside of the silicon wafer, the backside passivation layer is grooved, an aluminum backfield is formed on the surface of the backside passivation layer and in the groove, and the aluminum backfield is in contact with the backside of the silicon wafer to form a PERC solar energy
  • the battery is shown in Figure 4.
  • This embodiment provides a PERC solar cell, the fabrication process of which is basically the same as that of Embodiment 1, and the difference is only that the doped regions of the adjacent two groups of doped layers in this embodiment are dislocated (refer to FIG. 3 ).
  • This embodiment provides a PERC solar cell, the manufacturing process of which is basically the same as that of Embodiment 1, and the difference is only that the area of the laser heavily doped region and the ratio of S are different, and the area of the laser heavily doped region in this embodiment is different The ratio to S is 1:9.
  • This embodiment provides a PERC solar cell, the manufacturing process of which is basically the same as that of Embodiment 1, and the difference is only that the area of the laser heavily doped region and the ratio of S are different, and the area of the laser heavily doped region in this embodiment is different
  • the ratio to S is 2:3.
  • This embodiment provides a PERC solar cell, the manufacturing process of which is basically the same as that of Embodiment 1, and the difference is only that the area of the laser heavily doped region and the ratio of S are different, and the area of the laser heavily doped region in this embodiment is different
  • the ratio with S is 0.5:9.5.
  • the comparative example provides a PERC solar cell, the fabrication process of which includes:
  • Diffusion is performed on the surface of the textured silicon wafer to form a diffusion layer, and laser doping is performed on the diffusion layer to form a laser heavily doped region.
  • the diffusion layer without laser doping is a lightly doped region, and the laser heavily doped region includes vertical A plurality of doped layers are arranged at intervals, and each doped layer is composed of continuously arranged doped regions.
  • a front passivation layer and a front anti-reflection layer are sequentially plated on the surfaces of the laser heavily doped region and the lightly doped region.
  • a first silver paste layer is plated on the surface of the front anti-reflection layer corresponding to the laser heavily doped region, and the front anti-reflection layer and the front passivation layer are burned through, so that the first silver paste layer is in contact with the laser heavily doped region.
  • the paste of the first silver paste layer is the same as that of the first silver paste layer of Example 1.
  • a backside passivation layer is formed on the backside of the silicon wafer, grooves are performed on the backside passivation layer, an aluminum backfield is formed on the surface of the backside passivation layer and in the opened groove, and the aluminum backfield is in contact with the backside of the silicon wafer.
  • the present application provides a selective emitter of a PERC solar cell, a PERC solar cell and a manufacturing method thereof.
  • the selective emitter includes a silicon wafer, a first lightly doped region, a second lightly doped region and a laser heavily doped region, the laser heavily doped region includes a plurality of doped layers, and each doped layer includes a plurality of segments arranged at intervals. Doping regions, the first lightly doped regions are located between the doped regions of each doped layer, and each second lightly doped region is located between two adjacent doped layers.
  • a PERC solar cell includes a selective emitter, a front-side antireflection layer on the surface of the front-side passivation layer, and a positive electrode.
  • the positive electrode includes a first silver paste layer on the surface of the laser heavily doped region and a second silver paste layer on the surface of the front anti-reflection layer corresponding to the surface of the first lightly doped region, the second silver paste layer and the first silver paste layer electrical contact. It can reduce the damage of the laser to the silicon wafer, reduce the recombination of the silver paste area, increase the open voltage, and improve the cell efficiency.
  • the PERC solar cell selective emitters of the present application are reproducible and can be used in a variety of industrial applications.
  • the PERC solar cell selective emitter, the PERC solar cell and the fabrication method thereof of the present application can be applied in the field of solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

本申请提供了一种PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法,属于太阳能电池领域。选择性发射极包括硅片以及第一轻掺杂区域、第二轻掺杂区域和激光重掺杂区域,激光重掺杂区域包括多个掺杂层,每个掺杂层包括多段间隔设置的掺杂区,第一轻掺杂区域位于每个掺杂层的掺杂区之间,每个第二轻掺杂区域位于相邻设置的两个掺杂层之间。PERC太阳能电池包括选择性发射极、在正面钝化层表面的正面减反层以及正电极。正电极包括在激光重掺杂区域表面的第一银浆层以及在正面减反层的对应第一轻掺杂区域的表面的第二银浆层,第二银浆层与第一银浆层电性接触。其能够减少激光对硅片的损伤,减少银浆区域复合,提升开压,并提升电池效率。

Description

PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法
相关申请的交叉引用
本申请要求于2020年12月25日提交中国国家知识产权局的申请号为202011573167.9、名称为“PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池领域,具体而言,涉及PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法。
背景技术
太阳能电池在制造过程中,使用激光掺杂技术可以在硅片表面形成具有重掺杂和轻掺杂区域的选择性发射极。但是利用激光掺杂的过程中由于激光急剧的热作用会对硅片产生损伤,激光作用处复合比较严重,影响电池开压,同时破坏了正面的绒面结构,减少电流的吸收,进而影响电池效率的提升。
发明内容
本申请提供了一种PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法,其能够减少激光对硅片的损伤,并提升电池效率。
本申请的一些实施例提供了一种PERC太阳能电池选择性发射极,其可以包括:硅片以及在硅片正面的第一轻掺杂区域、第二轻掺杂区域和激光重掺杂区域,激光重掺杂区域包括沿预设方向间隔设置的多个掺杂层,每个掺杂层包括多段间隔设置的掺杂区,第一轻掺杂区域位于每个掺杂层的掺杂区之间,每个第二轻掺杂区域位于相邻设置的两个掺杂层之间。
可选地,所述激光重掺杂区域和所述第一轻掺杂区域的总面积可以为S,所述激光重掺杂区域的面积与S的比例可以为1:10至9:10。
可选地,所述激光重掺杂区域的面积与S的比例可以为2:5至3:5。
可选地,相邻两个的所述掺杂层的所述掺杂区可以错位设置。
可选地,所述硅片的电阻率可以为0.1Ω*cm至3.0Ω*cm。
本申请的另一些实施例提供了一种PERC太阳能电池,其可以包括根据本申请的一些实施例的PERC太阳能电池选择性发射极以及在第一轻掺杂区域和第二轻掺杂区域表面的正面钝化层、在正面钝化层表面的正面减反层和正电极;
正电极包括在激光重掺杂区域表面的第一银浆层以及在正面减反层的对应第一轻掺杂区域的表面的第二银浆层,第二银浆层与第一银浆层电性接触。
可选地,所述正面减反层可以为氮化硅层,所述正面钝化层可以为二氧化硅层。
可选地,所述PERC太阳能电池的背面还可以具有背面钝化层和铝背场,所述背面钝化层可以形成于所述硅片的背面,所述背面钝化层可以具有开槽,所述铝背场可以形成于所述背面钝化层表面和开的槽内并与所述硅片背面接触。
本申请的再一些实施例提供了一种制作根据本申请的另一些实施例的PERC太阳能电池的方法,该方法可以包括:
在制绒后的硅片表面进行扩散形成扩散层,对扩散层进行激光掺杂以形成激光重掺杂区域,未进行激光掺杂的扩散层为轻掺杂区域,轻掺杂区域包括第一轻掺杂区域和第二轻掺杂区域;
在激光重掺杂区域和轻掺杂区域表面依次镀正面钝化层和正面减反层;
在正面减反层的对应激光重掺杂区域的表面镀第一银浆层并烧穿正面减反层和正面钝化层,使得第一银浆层与激光重掺杂区域接触,在正面减反层的对应第一轻掺杂区域的表面镀第二银浆层,第二银浆层与第一银浆层电性接触。
可选地,在所述硅片背面形成背面钝化层,对所述背面钝化层进行开槽,在所述背面钝化层表面和开的槽内形成铝背场,并使得所述铝背场与所述硅片背面接触。
可选地,第一银浆层的浆料中可以含有5wt%至10wt%的氧化物,所述第二银浆层的浆料中可以含有0wt%至2wt%的氧化物,所述氧化物可以包括PbO、B 2O 3、SiO 2、BiO 3和ZnO中的至少一种。
可选地,所述第一银浆层和所述第二银浆层的所述浆料中均可以含有60wt%至90wt%的银粉。
可选地,所述银粉的粒径可以为0.1um至4um。
可选地,所述第一银浆层和所述第二银浆层的所述浆料中还可以含有有机载体,所述有机载体可以包括增稠剂、溶剂、表面活性剂和触变剂。
可选地,所述第一银浆层和所述第二银浆层的所述浆料中的所述有机载体可以为10wt%至30wt%。
本申请实施例的PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法的有益效果至少包括:
PERC太阳能电池的激光重掺杂区域是激光处理过的部分,第一轻掺杂区域和第二轻掺杂区域是未经激光处理过的部分,第一轻掺杂区域位于每个掺杂层的掺杂区之间,第一银浆层能够烧穿正面减反层和正面钝化层与激光重掺杂区域接触以形成良好的欧姆接触,第二银浆层不会烧穿正面减反层和正面钝化层从而形成于正面减反层的对应第一轻掺杂区域的表面,且第二银浆层与第一银浆层电性接触,起到连接导出电流的作用。相较于掺杂区为连续设置的方案,本申请实施例的激光掺杂的区域相对较小,能够减少激光对硅片的损 伤,减少硅片的表面复合以及激光对绒面的破坏。当掺杂区为连续设置时,银浆层需要烧穿正面钝化层与硅片相接触,相较于银浆层全部与硅片相接触的方案,本申请实施例的第二银浆层只与第一银浆层接触,不与硅片接触,串联电阻较低。本申请实施例的PERC太阳能电池的激光重掺杂区域的设置方式以及第一银浆层和第二银浆层的设置方式,提升了电池效率效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施方式的PERC太阳能电池选择性发射极的结构示意图;
图2为本申请实施方式的重掺杂区域、第一轻掺杂区域和第二轻掺杂区域的一种设置位置的示意图;
图3为本申请实施方式的重掺杂区域、第一轻掺杂区域和第二轻掺杂区域的另一种设置位置的示意图;
图4为本申请实施方式的PERC太阳能电池的结构示意图;
图5为本申请实施方式的PERC太阳能电池的制作方法S2步骤后得到的结构;
图6为本申请实施方式的PERC太阳能电池的制作方法S3步骤后得到的结构。
图标:100-选择性发射极;10-PERC太阳能电池;11-硅片;12-扩散层;121-第一轻掺杂区域;122-第二轻掺杂区域;13-重掺杂区域;131-掺杂层;1311-掺杂区;14-正面钝化层;15-正面减反层;161-第一银浆层;162-第二银浆层;17-背面钝化层;171-背面氮化硅层;172-背面氧化铝层;18-铝背场。
具体实施方式
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在太阳能电池在制造过程中,利用激光掺杂在硅片表面形成重掺杂区域和轻掺杂区域时,激光容易对硅片产生损伤,且容易影响电池效率。申请人研究发现,在进行激光掺杂时,一般是对应栅线区域的位置采用连续的激光光斑进行激光掺杂形成重掺杂区域,并且,在后续印刷银浆时,为了将电流导出,银浆层一般是与硅片的整个中掺杂区域接触,接触电阻较大。申请人在对这种处理方式进行研究时发现,由于激光掺杂的激光光斑是连续的, 激光对硅片和绒面的损伤较大,同时会减少电流的吸收,且硅片的表面复合较高,影响电池开压,会影响电池效率;并且,这种处理方式会造成接触电阻较大,也会影响电池效率。
基于此,本申请实施例提供一种PERC太阳能电池选择性发射极100、PERC太阳能电池10及其制作方法,其能够减少激光对硅片11的损伤,并提升电池效率。
以下针对本申请实施例的PERC太阳能电池选择性发射极100、PERC太阳能电池10及其制作方法进行具体说明:
本申请的一些实施例提供了一种PERC太阳能电池选择性发射极100,其可以包括硅片11、在硅片11正面的第一轻掺杂区域121、第二轻掺杂区域122和激光重掺杂区域13(参照图1-图3)。
激光重掺杂区域13可以包括沿预设方向间隔设置的多个掺杂层131,每个掺杂层131可以包括多段间隔设置的掺杂区1311,第一轻掺杂区域121可以位于每个掺杂层131的掺杂区1311之间,每个第二轻掺杂区域122可以位于相邻设置的两个掺杂层131之间(参照图2和图3)。示例性地,如图2和图3所示,预设方向为纵向方向,多个掺杂层131沿纵向方向间隔设置,每个掺杂层131的掺杂区1311沿横向方向间隔设置。示例性地,第一轻掺杂区域121、第二轻掺杂区域122和激光重掺杂区域13可选地为磷掺杂或硼掺杂。
激光重掺杂区域13可以是激光处理过的部分,第一轻掺杂区域121和第二轻掺杂区域122可以是未经激光处理过的部分,第一轻掺杂区域121可以位于每组掺杂层131的掺杂区1311之间。相较于掺杂区1311为连续设置的方案,本申请实施例的激光掺杂的区域相对较小,能够减少激光对硅片11的损伤,减少硅片11的表面复合以及激光对绒面的破坏,从而提升电池效率。
示例性地,硅片11的电阻率可以为0.1Ω*cm至3.0Ω*cm。该电阻率范围内的硅片11有利于增加PERC太阳能电池10的电池效率。可选地,硅片11的电阻率为0.1Ω*cm、0.5Ω*cm、1Ω*cm、1.5Ω*cm、2Ω*cm、2.5Ω*cm或3Ω*cm。
可选地,激光重掺杂区域13和第一轻掺杂区域121的总面积可以为S,激光重掺杂区域13的面积与S的比例可以为1:10至9:10。需要说明的是,激光重掺杂区域13的面积指的是所有的掺杂区1311的面积的总和。总面积S指的是多个掺杂层131与多个掺杂层131的掺杂区1311之间的第一轻掺杂区域121的总面积。
经申请人研究发现,激光重掺杂区域13的面积与S的比例可以为1:10至9:10时,能够更好地提升电池效率。示例性地,激光重掺杂区域13的面积与S的比例可以为1:10、1:5、3:10、2:5、1:2、3:5、7:10、4:5和9:10中的任一者或者任意两者之间的范围。示例性地,激光重掺杂区域13的面积与S的比例可以为2:5至3:5。
可选地,相邻两个的掺杂层131的掺杂区1311可以错位设置(参照图3)。经申请人研 究发现,该种设置方式能够更好地增加电池效率。可以理解的是,错位设置指的是相邻两个掺杂层131的掺杂区1311可以不重叠,也可以重叠一部分,重叠的部分小于掺杂区1311长度的50%。可以理解的是,相邻两组的掺杂层131的掺杂区1311也可以对位设置(参照图2)。
请参照图4,本申请的另一些实施例提供了一种PERC太阳能电池10,其可以包括根据本申请的一些实施例的PERC太阳能电池选择性发射极100以及正电极、在第一轻掺杂区域121和第二轻掺杂区域122表面的正面钝化层14、在正面钝化层14表面的正面减反层15。
其中,正电极可以包括在激光重掺杂区域13表面的第一银浆层161以及在正面减反层15的对应第一轻掺杂区域121的表面的第二银浆层162,第二银浆层162与第一银浆层161电性接触。
第二银浆层162与第一银浆层161电性接触,起到连接导出电流的作用。相较于银浆层全部与硅片11相接触的方案,本申请实施例的第二银浆层162只与第一银浆层161接触,不与硅片11接触,串联电阻较低,从而提升了电池效率效率。
示例性地,正面减反层15可以为氮化硅层,正面钝化层可以为二氧化硅层。
其中,PERC太阳能电池10的背面还可以具有背面钝化层17和铝背场18,背面钝化层17可以形成于硅片11的背面,背面钝化层17可以具有开槽,铝背场18可以形成于背面钝化层17表面和开的槽内并与硅片11背面接触。可选地,背面钝化层17包括背面氮化硅层171和背面氧化铝层172,背面氧化铝层172形成于硅片11背面,背面氮化硅层171形成于背面氧化铝层172表面。
本申请的再一些实施例提供了一种制作根据本申请的一些实施例的PERC太阳能电池10的方法,该方法可以包括:
S1:在制绒后的硅片11表面进行扩散形成扩散层12,对扩散层12进行激光掺杂以形成激光重掺杂区域13,未进行激光掺杂的扩散层12为轻掺杂区域,轻掺杂区域包括第一轻掺杂区域121和第二轻掺杂区域122。其中,激光重掺杂区域13可以包括沿预设方向间隔设置的多个掺杂层131,每个掺杂层131可以包括多段间隔设置的掺杂区1311,第一轻掺杂区域121可以位于每个掺杂层131的掺杂区1311之间,每个第二轻掺杂区域122可以位于相邻设置的两个掺杂层131之间(参照图1至图3)。
S2:在激光重掺杂区域13和轻掺杂区域表面依次镀正面钝化层14和正面减反层15(参照图5)。
S3:在正面减反层15的对应激光重掺杂层131区域的表面镀第一银浆层161并烧穿正面减反层15和正面钝化层14,使得第一银浆层161与激光重掺杂层131区域接触,在正 面减反层15的对应第一轻掺杂区域121的表面镀第二银浆层162,第二银浆层162与第一银浆层161电性接触(参照图6)。
PERC太阳能电池10的激光重掺杂区域13可以是激光处理过的部分,第一轻掺杂区域121和第二轻掺杂区域122可以是未经激光处理过的部分,第一银浆层161能够烧穿正面减反层15和正面钝化层14与激光重掺杂区域13接触以形成良好的欧姆接触,第二银浆层162不会烧穿正面减反层15和正面钝化层14而形成于正面减反层15的对应第一轻掺杂区域121的表面,且第二银浆层162与第一银浆层161电性接触,起到连接导出电流的作用。相较于掺杂区1311为连续设置的方案,本申请实施例的激光掺杂的区域相对较小,能够减少激光对硅片11的损伤,提升电池效率。相较于银浆层全部与硅片11相接触的方案,本申请实施例的第二银浆层162只与第一银浆层161接触,不与硅片11接触,串联电阻较低,提升了电池效率效率。
示例性地,激光掺杂的激光频率可以为10KHZ至1000KHZ,激光带速为1000m/h至300000m/h。可选地,激光频率为10KHZ、30KHZ、50KHZ、100KHZ、200KHZ、400KHZ、500KHZ、800KHZ或1000KHZ。可选地,激光带速为1000m/h、3000m/h、5000m/h、8000m/h、10000m/h、30000m/h、50000m/h、80000m/h、10000m/h、200000m/h和300000m/h中的任一者或者任意两者之间的范围。可以理解的是,激光带速指的是激光在单位时间内扫过的长度。
可选地,第一银浆层161的浆料中含有5wt%至10wt%的氧化物,第二银浆层162的浆料中含有0wt%至2wt%的氧化物,氧化物包括PbO、B 2O 3、SiO 2、BiO 3和ZnO中的至少一种。
第一银浆层161的浆料中含有5wt%至10wt%的氧化物,氧化物可以包括PbO、B 2O 3、SiO 2、BiO 3和ZnO中的至少一种,这些氧化物在烧结过程中会烧穿正面钝化层14和正面减反层15,钝化作用减弱,通过这些氧化物烧穿正面钝化层14和正面减反层15使得第一银浆层161与激光重掺杂区域13接触,能够导出电流。第二银浆层162的浆料中可以含有少量的氧化物或者可以不含有这些氧化物,第二银浆层162不会破坏正面钝化层14和正面减反层15,不仅能够起到连接导出电流的作用,而且能够提升开压的作用。
示例性地,第一银浆层161的浆料中可以含有5wt%、6wt%、7wt%、8wt%、9wt%或10wt%的氧化物。示例性地,第二银浆层162的浆料中可以含有0.1wt%、0.3wt%、0.5wt%、0.7wt%、1wt%、1.2wt%、1.5wt%、1.7wt%或2wt%的氧化物。可选地,第二银浆层162的浆料中也可以不含上述氧化物。
可选地,第一银浆层161和第二银浆层162的浆料中均可以含有60~90wt%的银粉。第一银浆层161和第二银浆层162的浆料中银粉的含量较高,能够起到较好的导电作用。示 例性地,第一银浆层161中的浆料中可以含有60wt%、65wt%、70wt%、75wt%、80wt%、85wt%或90wt%的银粉。示例性地,第二银浆层162中的浆料中可以含有60wt%、65wt%、70wt%、75wt%、80wt%、85wt%或90wt%的银粉。
示例性地,银粉的粒径可以为0.1um至4um。该粒径范围的银粉有利于附着在激光重掺杂层131区域表面和第一轻掺杂区域121的表面。可选地,银粉的粒径为0.1um、0.3um、0.5um、0.8um、1um、2um、3um或4um。
其中,第一银浆层161和第二银浆层162的浆料中还可以含有有机载体,有机载体可以包括增稠剂、溶剂、表面活性剂和触变剂,示例性地,第一银浆层161和第二银浆层162的浆料中的有机载体可以为10wt%至30wt%。
以下结合实施例对本申请的PERC太阳能电池选择性发射极100、PERC太阳能电池10及其制作方法作进一步的详细描述。
实施例1
本实施例提供一种PERC太阳能电池,其制作工艺可以包括:
在制绒后的硅片表面进行扩散形成扩散层,对扩散层进行激光掺杂以形成激光重掺杂区域,未进行激光掺杂的扩散层为轻掺杂区域,轻掺杂区域包括第一轻掺杂区域和第二轻掺杂区域,激光重掺杂区域包括竖向间隔设置的多个掺杂层,每个掺杂层包括多段横向间隔设置的掺杂区,第一轻掺杂区域位于每个掺杂层的掺杂区之间,每个第二轻掺杂区域位于相邻设置的两个掺杂层之间。相邻两组的掺杂层的掺杂区对位设置,激光重掺杂区域和第一轻掺杂区域的总面积为S,激光重掺杂区域的面积与S的比例为1:2。
在激光重掺杂区域和轻掺杂区域表面依次镀正面钝化层和正面减反层。
在正面减反层的对应激光重掺杂层区域的表面镀第一银浆层并烧穿正面减反层和正面钝化层,使得第一银浆层与激光重掺杂区域接触,在正面减反层的对应第一轻掺杂区域的表面镀第二银浆层,第二银浆层与第一银浆层电性接触。
在硅片背面形成背面钝化层,对背面钝化层进行开槽,在背面钝化层表面和开的槽内形成铝背场,并使得铝背场与硅片背面接触,形成的PERC太阳能电池如图4所示。
实施例2
本实施例提供一种PERC太阳能电池,其制作工艺与实施例1基本相同,其不同之处仅在于本实施例的相邻两组的掺杂层的掺杂区错位设置(参照图3)。
实施例3
本实施例提供一种PERC太阳能电池,其制作工艺与实施例1基本相同,其不同之处仅在于激光重掺杂区域的面积与S的比例不同,本实施例的激光重掺杂区域的面积与S的比例为1:9。
实施例4
本实施例提供一种PERC太阳能电池,其制作工艺与实施例1基本相同,其不同之处仅在于激光重掺杂区域的面积与S的比例不同,本实施例的激光重掺杂区域的面积与S的比例为2:3。
实施例5
本实施例提供一种PERC太阳能电池,其制作工艺与实施例1基本相同,其不同之处仅在于激光重掺杂区域的面积与S的比例不同,本实施例的激光重掺杂区域的面积与S的比例为0.5:9.5。
对比例1
对比例提供一种PERC太阳能电池,其制作工艺包括:
在制绒后的硅片表面进行扩散形成扩散层,对扩散层进行激光掺杂以形成激光重掺杂区域,未进行激光掺杂的扩散层为轻掺杂区域,激光重掺杂区域包括竖向间隔设置的多个掺杂层,每个掺杂层由连续设置的掺杂区组成。
在激光重掺杂区域和轻掺杂区域表面依次镀正面钝化层和正面减反层。
在正面减反层的对应激光重掺杂区域的表面镀第一银浆层并烧穿正面减反层和正面钝化层,使得第一银浆层与激光重掺杂区域接触。其中,第一银浆层的浆料与实施例1的第一银浆层的浆料相同。
在硅片背面形成背面钝化层,对背面钝化层进行开槽,在背面钝化层表面和开的槽内形成铝背场,并使得铝背场与硅片背面接触。
试验例1
选用halm在线I-V测试系统,在25℃、AM 1.5、1个标准太阳的条件下测试实施例1~实施例5以及对比例1制得的PERC太阳能电池10的开路电压、短路电流、填充因子和转换效率,其结果如表1所示。
表1.实施例1至实施例5以及对比例1的PERC太阳能电池10的性能测试结果
Figure PCTCN2021140975-appb-000001
从表1的结果可以看出,实施例1的PERC太阳能电池的开路电压、短路电流、填充因子和电池效率均优于对比例1的PERC太阳能电池。实施例1至实施例4与实施例5的结果进行比较,实施例1至实施例4的PERC太阳能电池的转换效率优于实施例5,说明本申请实施例1至实施例4的激光重掺杂区域的面积与S的比例更有利于提高PERC太阳能电池的转换效率。
以上所述仅为本申请的具体实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供了一种PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法。选择性发射极包括硅片以及第一轻掺杂区域、第二轻掺杂区域和激光重掺杂区域,激光重掺杂区域包括多个掺杂层,每个掺杂层包括多段间隔设置的掺杂区,第一轻掺杂区域位于每个掺杂层的掺杂区之间,每个第二轻掺杂区域位于相邻设置的两个掺杂层之间。PERC太阳能电池包括选择性发射极、在正面钝化层表面的正面减反层以及正电极。正电极包括在激光重掺杂区域表面的第一银浆层以及在正面减反层的对应第一轻掺杂区域的表面的第二银浆层,第二银浆层与第一银浆层电性接触。其能够减少激光对硅片的损伤,减少银浆区域复合,提升开压,并提升电池效率。
此外,可以理解的是,本申请的PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法是可以重现的,并且可以用在多种工业应用中。例如,本申请的PERC太阳能电池选择性发射极、PERC太阳能电池及其制作方法可以应用在太阳能电池领域。

Claims (15)

  1. 一种PERC太阳能电池选择性发射极,其特征在于,包括:
    硅片;以及
    在所述硅片正面的第一轻掺杂区域、第二轻掺杂区域和激光重掺杂区域,所述激光重掺杂区域包括沿预设方向间隔设置的多个掺杂层,每个所述掺杂层包括多段间隔设置的掺杂区,所述第一轻掺杂区域位于每个所述掺杂层的所述掺杂区之间,每个所述第二轻掺杂区域位于相邻设置的两个所述掺杂层之间。
  2. 根据权利要求1所述的PERC太阳能电池选择性发射极,其特征在于,所述激光重掺杂区域和所述第一轻掺杂区域的总面积为S,所述激光重掺杂区域的面积与S的比例为1:10至9:10。
  3. 根据权利要求2所述的PERC太阳能电池选择性发射极,其特征在于,所述激光重掺杂区域的面积与S的比例为2:5至3:5。
  4. 根据权利要求1至3中的任一项所述的PERC太阳能电池选择性发射极,其特征在于,相邻两个的所述掺杂层的所述掺杂区错位设置。
  5. 根据权利要求1至3中的任一项所述的PERC太阳能电池选择性发射极,其特征在于,所述硅片的电阻率为0.1Ω*cm至3.0Ω*cm。
  6. 一种PERC太阳能电池,其特征在于,包括权利要求1至5中的任一项所述的PERC太阳能电池选择性发射极;以及
    在所述第一轻掺杂区域和所述第二轻掺杂区域表面的正面钝化层;
    在所述正面钝化层表面的正面减反层;
    正电极,所述正电极包括在所述激光重掺杂区域表面的第一银浆层以及在所述正面减反层的对应所述第一轻掺杂区域的表面的第二银浆层,所述第二银浆层与所述第一银浆层电性接触。
  7. 根据权利要求6所述的PERC太阳能电池,其特征在于,所述第一银浆层和所述第二银浆层的浆料中含有有机载体,所述有机载体包括增稠剂、溶剂、表面活性剂和触变剂。
  8. 根据权利要求7所述的PERC太阳能电池,其特征在于,所述第一银浆层和所述第二银浆层的所述浆料中的所述有机载体为10wt%至30wt%。
  9. 根据权利要求6至8中的任一项所述的PERC太阳能电池,其特征在于,所述正面减反层为氮化硅层,所述正面钝化层为二氧化硅层。
  10. 根据权利要求6至9中的任一项所述的PERC太阳能电池,其特征在于,所述PERC太阳能电池的背面还具有背面钝化层和铝背场,所述背面钝化层形成于所述硅片的背面, 所述背面钝化层具有开槽,所述铝背场形成于所述背面钝化层表面和开的槽内并与所述硅片背面接触。
  11. 一种用于制作根据权利要求6所述的PERC太阳能电池的方法,其特征在于,所述方法包括:
    在制绒后的硅片表面进行扩散形成扩散层,对所述扩散层进行激光掺杂以形成所述激光重掺杂区域,未进行所述激光掺杂的所述扩散层为轻掺杂区域,所述轻掺杂区域包括所述第一轻掺杂区域和所述第二轻掺杂区域;
    在所述激光重掺杂区域和所述轻掺杂区域表面依次镀正面钝化层和正面减反层;
    在所述正面减反层的对应所述激光重掺杂区域的表面镀第一银浆层并烧穿所述正面减反层和所述正面钝化层,使得所述第一银浆层与所述激光重掺杂区域接触,在所述正面减反层的对应所述第一轻掺杂区域的表面镀第二银浆层,所述第二银浆层与所述第一银浆层电性接触。
  12. 根据权利要求11所述的方法,其特征在于,在所述硅片背面形成背面钝化层,对所述背面钝化层进行开槽,在所述背面钝化层表面和开的槽内形成铝背场,并使得所述铝背场与所述硅片背面接触。
  13. 根据权利要求11或12所述的方法,其特征在于,第一银浆层的浆料中含有5wt%至10wt%的氧化物,所述第二银浆层的浆料中含有0wt%至2wt%的氧化物,所述氧化物包括PbO、B 2O 3、SiO 2、BiO 3和ZnO中的至少一种。
  14. 根据权利要求13所述的方法,其特征在于,所述第一银浆层和所述第二银浆层的所述浆料中均含有60wt%至90wt%的银粉。
  15. 根据权利要求14所述的方法,其特征在于,所述银粉的粒径为0.1um至4um。
PCT/CN2021/140975 2020-12-25 2021-12-23 Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法 WO2022135543A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021406338A AU2021406338B2 (en) 2020-12-25 2021-12-23 PERC solar cell selective emitter, PERC solar cell and manufacturing method therefor
EP21909538.7A EP4084087A4 (en) 2020-12-25 2021-12-23 SELECTIVE TRANSMITTER OF PERC SOLAR CELL, PERC SOLAR CELL AND METHOD FOR MAKING THE SAME
US17/928,819 US20230146692A1 (en) 2020-12-25 2021-12-23 Perc solar cell selective emitter, perc solar cell and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011573167.9 2020-12-25
CN202011573167.9A CN112563347A (zh) 2020-12-25 2020-12-25 Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法

Publications (1)

Publication Number Publication Date
WO2022135543A1 true WO2022135543A1 (zh) 2022-06-30

Family

ID=75033510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140975 WO2022135543A1 (zh) 2020-12-25 2021-12-23 Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法

Country Status (5)

Country Link
US (1) US20230146692A1 (zh)
EP (1) EP4084087A4 (zh)
CN (1) CN112563347A (zh)
AU (1) AU2021406338B2 (zh)
WO (1) WO2022135543A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148856A (zh) * 2022-07-14 2022-10-04 上饶捷泰新能源科技有限公司 一种太阳能电池选择性掺杂方法和制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563347A (zh) * 2020-12-25 2021-03-26 通威太阳能(成都)有限公司 Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法
CN115249751B (zh) * 2022-07-27 2023-08-29 浙江晶科能源有限公司 改善选择性发射极与金属印刷对位的方法
CN117276377A (zh) * 2023-11-22 2023-12-22 天合光能股份有限公司 太阳能电池及其制作方法、光伏组件及光伏系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015104649A1 (de) * 2015-03-26 2016-09-29 Hanwha Q Cells Gmbh Solarzellenherstellungsverfahren
CN106876491A (zh) * 2017-03-24 2017-06-20 乐叶光伏科技有限公司 一种无正面栅线的p型晶体硅背接触电池结构及制作方法
CN106997910A (zh) * 2017-03-24 2017-08-01 乐叶光伏科技有限公司 无正面栅线的p型晶体硅背接触双面电池结构及制作方法
CN112563347A (zh) * 2020-12-25 2021-03-26 通威太阳能(成都)有限公司 Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法
CN214226918U (zh) * 2020-12-25 2021-09-17 通威太阳能(成都)有限公司 Perc太阳能电池选择性发射极以及perc太阳能电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368655B2 (en) * 2010-12-27 2016-06-14 Lg Electronics Inc. Solar cell and method for manufacturing the same
CN102760778A (zh) * 2011-04-29 2012-10-31 无锡尚德太阳能电力有限公司 太阳电池、太阳电池组件及其制备方法
WO2013090562A2 (en) * 2011-12-13 2013-06-20 Dow Corning Corporation Photovoltaic cell and method of forming the same
KR101956734B1 (ko) * 2012-09-19 2019-03-11 엘지전자 주식회사 태양 전지 및 그의 제조 방법
CN103440897B (zh) * 2013-08-06 2017-03-01 浙江光达电子科技有限公司 一种高方阻硅太阳能电池正面银电极浆料及其制备方法
US9966479B2 (en) * 2014-06-12 2018-05-08 E I Du Pont De Nemours And Company Aluminum-tin paste and its use in manufacturing solderable electrical conductors
CN105702758A (zh) * 2016-04-14 2016-06-22 泰州中来光电科技有限公司 背结n型太阳能电池的制备方法及其电池和组件、系统
CN208970517U (zh) * 2018-09-30 2019-06-11 江苏顺风新能源科技有限公司 点接触式激光掺杂选择性发射极太阳能电池
CN111613686A (zh) * 2019-02-25 2020-09-01 泰州隆基乐叶光伏科技有限公司 一种太阳电池
CN110854240A (zh) * 2019-12-09 2020-02-28 通威太阳能(眉山)有限公司 Perc电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015104649A1 (de) * 2015-03-26 2016-09-29 Hanwha Q Cells Gmbh Solarzellenherstellungsverfahren
CN106876491A (zh) * 2017-03-24 2017-06-20 乐叶光伏科技有限公司 一种无正面栅线的p型晶体硅背接触电池结构及制作方法
CN106997910A (zh) * 2017-03-24 2017-08-01 乐叶光伏科技有限公司 无正面栅线的p型晶体硅背接触双面电池结构及制作方法
CN112563347A (zh) * 2020-12-25 2021-03-26 通威太阳能(成都)有限公司 Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法
CN214226918U (zh) * 2020-12-25 2021-09-17 通威太阳能(成都)有限公司 Perc太阳能电池选择性发射极以及perc太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084087A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148856A (zh) * 2022-07-14 2022-10-04 上饶捷泰新能源科技有限公司 一种太阳能电池选择性掺杂方法和制作方法

Also Published As

Publication number Publication date
EP4084087A1 (en) 2022-11-02
EP4084087A4 (en) 2023-07-26
AU2021406338A1 (en) 2023-01-05
US20230146692A1 (en) 2023-05-11
AU2021406338B2 (en) 2024-06-13
CN112563347A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022135543A1 (zh) Perc太阳能电池选择性发射极、perc太阳能电池及其制作方法
TWI845484B (zh) 具p-型導電性的指叉式背接觸式太陽能電池及其製造方法和光伏打模組
JP5541370B2 (ja) 太陽電池の製造方法、太陽電池及び太陽電池モジュール
RU2571167C2 (ru) Солнечный элемент и модуль солнечного элемента
JP5883116B2 (ja) 太陽電池の電極用導電性ペースト、太陽電池および太陽電池の製造方法
CN101203961A (zh) 用于硅太阳能电池的透明导体
RU2636405C2 (ru) Способ изготовления солнечного элемента
JP2003533029A (ja) 太陽電池の製造方法、及び該方法により製造される太陽電池
CN105826428A (zh) 一种钝化接触n型晶体硅电池及制备方法和组件、系统
WO2023184955A1 (zh) 太阳能电池及其制备方法
JP4373774B2 (ja) 太陽電池素子の製造方法
CN103299492A (zh) 用于太阳能电池的非接触式汇流条和制造非接触式汇流条的方法
JP5555509B2 (ja) 太陽電池及びその製造方法
CN115939254A (zh) 太阳能电池的制备方法
CN112117334A (zh) 选择性发射极的制备方法及太阳能电池的制备方法
JP2014239150A (ja) 太陽電池および太陽電池モジュール
CN103489499A (zh) 一种纳米硅银浆及其制备方法以及应用
JPS62156881A (ja) 太陽電池素子
CN101217159A (zh) 微波功率晶体管动态发射极镇流电阻结构及生产方法
CN214226918U (zh) Perc太阳能电池选择性发射极以及perc太阳能电池
KR102405082B1 (ko) 저온 소성 도전성 페이스트를 이용한 태양전지의 전극 제조 방법
JP2016164969A (ja) 太陽電池素子およびその製造方法
CN117238998A (zh) 一种N型TOPCon电池及新型背面结构制备方法
JP2018147910A (ja) 高効率太陽電池及びその製造方法
CN109041583B (zh) 太阳能电池元件以及太阳能电池模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021909538

Country of ref document: EP

Effective date: 20220728

ENP Entry into the national phase

Ref document number: 2021406338

Country of ref document: AU

Date of ref document: 20211223

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE