WO2022135389A1 - 充电方法、装置及电子设备 - Google Patents

充电方法、装置及电子设备 Download PDF

Info

Publication number
WO2022135389A1
WO2022135389A1 PCT/CN2021/140066 CN2021140066W WO2022135389A1 WO 2022135389 A1 WO2022135389 A1 WO 2022135389A1 CN 2021140066 W CN2021140066 W CN 2021140066W WO 2022135389 A1 WO2022135389 A1 WO 2022135389A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
parameter difference
charging circuit
preset
output voltage
Prior art date
Application number
PCT/CN2021/140066
Other languages
English (en)
French (fr)
Inventor
郭朋飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022135389A1 publication Critical patent/WO2022135389A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a charging method, a device and an electronic device.
  • the fast charging scheme includes a dual integrated circuit (IC) charging scheme.
  • the battery is charged through a charging circuit composed of two ICs. Since the impedance of each charging is different, the current corresponding to each IC is different. A path with a low impedance corresponds to a large current, and a path with a large impedance corresponds to a small current.
  • IC integrated circuit
  • the heating of the two paths is uneven, and one path may generate serious heat, while the other path does not generate heat or generates less heat.
  • the input voltages before the two ICs are different. When the difference between the two input voltages is large, the IC on one of the channels may not work normally.
  • the purpose of the embodiments of the present application is to provide a charging method, device and electronic device, which can solve the problem that one IC cannot work normally due to uneven heating of two ICs during dual IC charging in the related art.
  • an embodiment of the present application provides a charging method, the method comprising:
  • the first charging circuit is turned off, and the at least one charging circuit is used.
  • the second charging circuit performs charging.
  • an embodiment of the present application provides a charging device, the device comprising:
  • a set parameter difference acquisition module configured to acquire the settings between the first charging circuit and the at least one second charging circuit during the charging process using the first charging circuit and the at least one second charging circuit parameter difference;
  • an output voltage reduction module configured to control the charger to reduce the output voltage when the set parameter difference is greater than the preset parameter difference
  • a loop control module configured to cyclically execute the steps of obtaining the set parameter difference and controlling the charger to reduce the output voltage
  • a first charging control module configured to turn off the first charging if the set parameter difference is still greater than the preset parameter difference under the condition that the number or time of cyclically executing the above steps satisfies a preset condition circuit, and the at least one second charging circuit is used for charging.
  • embodiments of the present application provide an electronic device, the electronic device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The processor implements the charging method according to the first aspect when executed.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the charging method according to the first aspect is implemented.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction, and implement the first aspect the described charging method.
  • the set parameter difference between the first charging circuit and the at least one second charging circuit is obtained by using the first charging circuit and the at least one second charging circuit for charging;
  • control the charger to reduce the output voltage cyclically execute the steps of obtaining the difference of the set parameters and control the charger to reduce the output voltage; when the number of times or time of the above steps is satisfied
  • preset conditions if the set parameter difference is still greater than the preset parameter difference, the first charging circuit is turned off, and at least one second charging circuit is used for charging, and when the set parameter difference is greater than the preset parameter difference value, it means that after controlling the charger to reduce the output voltage for the set times, the parameter difference between the first charging circuit and at least one second charging circuit is still large, which may cause the integrated circuit to heat up or fail to work normally.
  • the first charging circuit is turned off, and at least one second charging circuit is used for charging, so as to avoid the uneven heating of the integrated circuit due to the large parameter difference, and the integrated circuit due to different parameters.
  • the damage of the integrated circuit caused by the uniformity improves the stability and service life of the integrated circuit, and further improves the stability and safety of the electronic equipment.
  • FIG. 1 is a flowchart of steps of a charging method provided in Embodiment 1 of the present application;
  • FIG. 2 shows a schematic diagram of an output voltage and current provided by an embodiment of the present application
  • FIG. 3 is a flowchart of steps of a charging method provided in Embodiment 2 of the present application.
  • FIG. 4 shows a current sharing connection diagram of a dual IC fast charging path provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a charging device according to Embodiment 4 of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another electronic device according to an embodiment of the present application.
  • the charging method may specifically include the following steps:
  • Step 101 in the process of using the first charging circuit and the at least one second charging circuit for charging, obtain the set parameter difference between the first charging circuit and the at least one second charging circuit.
  • the difference value of the setting parameters between the first IC and the at least one second IC can be detected in real time, wherein the setting The fixed parameters include input current value, output voltage value or input power value, and the parameter difference value is calculated in real time.
  • the setting parameter is the input current value
  • the input current difference value is calculated.
  • the setting parameter is the output voltage value
  • calculate the output voltage difference calculate the input power difference.
  • step 102 is performed after the set parameter difference between the first charging circuit and the at least one second charging circuit is acquired.
  • Step 102 Control the charger to reduce the output voltage when the set parameter difference is greater than the preset parameter difference.
  • the preset parameter difference includes any one of a preset input current difference, a preset output voltage difference, and a preset input power difference.
  • the specific value of the preset parameter difference value may be set according to business requirements, which is not limited in this embodiment.
  • a control command can be sent through a differential signal (D+/D-) to control the charger to reduce the output voltage.
  • VRequest is the output voltage of the charger requested by the electronic device.
  • V STEP is the step voltage that the electronic device requests the charger to change, that is, after the output voltage of the charger cannot reach the requested voltage of the electronic device, the electronic device needs to increase a step voltage. Before the device reaches the desired voltage, the electronics add another step voltage.
  • the output voltage of the charger is reduced, so that the total current flowing into the electronic device is reduced, and the impedance of the first IC and the at least one second IC path does not change, so that the first IC and the at least one second IC can be made.
  • the difference in current becomes smaller.
  • Fig. 2 shows a schematic diagram of an output voltage and current provided by an embodiment of the present application.
  • 1A, that is, the parameter difference becomes smaller.
  • step 103 is executed after controlling the charger to reduce the output voltage.
  • Step 103 Circularly execute the steps of acquiring the set parameter difference and controlling the charger to reduce the output voltage.
  • the The next step is to obtain the set parameter difference and control the charger to reduce the output voltage.
  • a lower preset parameter difference value may be preset first, and after the output voltage value is reduced to the preset parameter difference value, the cycle step is started to detect the preset parameter difference value.
  • Steps 101 to 102 are executed cyclically to control the charger to reduce the output voltage.
  • the charger is controlled to use the first IC and at least A second IC is charged, and by reducing the output voltage, the currents shared by the first IC and the at least one second IC are as equal as possible, so that the input voltages of the first IC and the at least one second IC are as equal as possible, so that the overall charging scheme
  • the heat is uniform, which can improve the user's charging experience.
  • step 104 is performed.
  • Step 104 In the case that the number of times or the time of cyclically executing the above steps satisfies the preset condition, if the set parameter difference is still greater than the preset parameter difference, turn off the first charging circuit, and use the The at least one second charging circuit performs charging.
  • the first charging circuit is turned off, and the at least one second charging circuit is used for charging.
  • the set number of times may be 2 times, 3 times, or 4 times, etc., which is not specifically limited in this embodiment of the present application, and specific calibration adjustments may be made according to actual application scenarios.
  • the set parameter difference between the first IC and the at least one second IC may be acquired after the control of the charger to reduce the output voltage is performed cyclically for a set number of times.
  • the setting parameters include input current value, output voltage value or input power value.
  • the setting parameter is the input current value
  • the input current difference is calculated
  • the setting parameter is the output voltage value
  • the output voltage is calculated.
  • Difference when the set parameter is the input power value, calculate the input power difference.
  • the set parameter difference is greater than the preset parameter difference, it means that after controlling the charger to reduce the output voltage setting times, the parameter difference between the first IC and the at least one second IC is still large, which may cause If the integrated circuit is hot or cannot work normally, in order to maintain the fast charging experience, turn off the first IC that does not meet the preset charging conditions, and use at least one second IC that meets the preset charging conditions to charge to avoid the occurrence of ICs.
  • the uneven heating caused by the large difference of parameters, and the damage of the IC due to the uneven parameters of the IC improve the stability and service life of the IC, and further improve the stability and safety of the electronic equipment. sex.
  • the preset charging conditions for half-voltage fast charging include: the input voltage of the IC must be twice the output voltage, and the embodiments of the present application are not one by one.
  • the set parameter difference between the first charging circuit and the at least one second charging circuit is obtained;
  • the charger is controlled to reduce the output voltage;
  • the steps of obtaining the set parameter difference and controlling the charger to reduce the output voltage are executed cyclically;
  • the time meets the preset conditions, if the set parameter difference is still greater than the preset parameter difference, it means the parameter difference between the first IC and at least one second IC after the charger is controlled to reduce the output voltage setting times. It is still large, which may cause the integrated circuit to heat up or fail to work properly.
  • the charging method may specifically include the following steps:
  • Step 201 In the process of using the first charging circuit and the at least one second charging circuit for charging, obtain the set parameter difference between the first charging circuit and the at least one second charging circuit.
  • the setting parameters of the first IC and the at least one second IC can be detected in real time, wherein the setting parameters include the input current value, output voltage value or input power value, and calculate the parameter difference in real time.
  • the setting parameters include the input current value, output voltage value or input power value, and calculate the parameter difference in real time.
  • step 202 is performed.
  • Step 202 Control the charger to reduce the output voltage when the set parameter difference is greater than the preset parameter difference.
  • the preset parameter difference includes any one of a preset input current difference, a preset output voltage difference, and a preset input power difference.
  • the specific value of the preset parameter difference value may be set according to business requirements, which is not limited in this embodiment.
  • a control command can be sent through a differential signal (D+/D-) to control the charger to reduce the output voltage.
  • VRequest is the output voltage of the charger requested by the electronic device.
  • V STEP is the step voltage that the electronic device requests the charger to change, that is, after the output voltage of the charger cannot reach the requested voltage of the electronic device, the electronic device needs to increase a step voltage. Before the device reaches the desired voltage, the electronics add another step voltage.
  • the output voltage of the charger is reduced, so that the total current flowing into the electronic device is reduced, and the impedance of the first IC and the at least one second IC path does not change, so that the first IC and the at least one second IC can be made.
  • the difference in current becomes smaller.
  • Fig. 2 shows a schematic diagram of an output voltage and current provided by an embodiment of the present application.
  • the resistor RI and IC1 are connected in series, the resistor R2 and IC2 are connected in series, and the resistor RI and the resistor R2 are connected in parallel.
  • the total input current is I
  • the current of its IC1 branch is I1
  • the current of its IC2 branch is I2
  • 2A; then when the total impedance remains unchanged, the output voltage decreases, and the total output current becomes smaller.
  • step 203 may be executed.
  • Step 203 cyclically execute the steps of acquiring the set parameter difference and controlling the charger to reduce the output voltage.
  • Steps 201 to 202 are executed cyclically, and the charger is controlled to reduce the output voltage.
  • the charger is controlled to use the first IC and at least A second IC is charged, and by reducing the output voltage, the currents shared by the first IC and the at least one second IC are as equal as possible, so that the input voltages of the first IC and the at least one second IC are as equal as possible, so that the overall charging scheme
  • the heat is uniform, which can improve the user's charging experience.
  • the acquisition of the set parameter difference between the first charging circuit and the at least one second charging circuit is performed cyclically for a set number of times, until the set parameter difference is greater than the preset parameter difference In the case of the value, the step of reducing the output voltage of the charger is controlled, and then step 204 or step 205 is executed.
  • Step 204 Under the circumstance that the number of times of cyclically executing the above steps is greater than or equal to the set times, or the time of cyclically executing the above steps is greater than or equal to the delay time threshold, if the set parameter difference is still greater than the preset parameter difference value, the first charging circuit is turned off, and the at least one second charging circuit is used for charging.
  • the set parameter difference between the first IC and the at least one second IC may be acquired.
  • the setting parameters include input current value, output voltage value or input power value.
  • the setting parameter is the input current value
  • the input current difference is calculated
  • the setting parameter is the output voltage value
  • the output voltage is calculated.
  • Difference when the set parameter is the input power value, calculate the input power difference.
  • the first charging circuit When the set parameter difference is greater than the preset parameter difference, the first charging circuit is turned off, and the at least one second charging circuit is used for charging.
  • the first charging circuit when the set parameter difference is greater than the preset parameter difference and the current charging mode is the preset charging mode, the first charging circuit is turned off, and the at least one second charging circuit is used.
  • the charging circuit performs charging; different fast charging methods correspond to different preset charging conditions.
  • the preset charging conditions for half-voltage fast charging include: the input voltage of the IC must be twice the output voltage, and the embodiments of the present application are not one by one.
  • the set parameter difference is greater than the preset parameter difference, it means that after controlling the charger to reduce the output voltage setting times, the parameter difference between the first IC and the at least one second IC is still large, which may cause If the integrated circuit is hot or cannot work normally, in order to maintain the fast charging experience, turn off the first IC that does not meet the preset charging conditions, and use at least one second IC that meets the preset charging conditions to charge to avoid the occurrence of ICs.
  • the uneven heating caused by the large difference of parameters, and the damage of the IC due to the uneven parameters of the IC improve the stability and service life of the IC, and further improve the stability and safety of the electronic equipment. sex.
  • the second IC includes two ICs, which are the third IC and the fourth IC, respectively.
  • the first IC does not meet the preset charging conditions and the second IC meets the preset charging conditions, the first IC is turned off, the third IC and the fourth IC are charged, and the third integrated circuit and the fourth IC can be obtained at this time.
  • the charger is controlled to reduce the output voltage, and the set times are executed cyclically
  • the acquisition of the set parameter difference between the third integrated circuit and the fourth integrated circuit in the case that the set parameter difference is greater than the preset parameter difference, control the charger to reduce output voltage steps.
  • the set parameter difference between the third integrated circuit and the fourth integrated circuit is obtained, and the set parameter difference is greater than the preset parameter difference.
  • the dual IC fast charging path includes a charger 01 and an input terminal connected to the input terminal.
  • Parallel fast charging IC103, fast charging IC204, and ordinary IC305 are connected in parallel, and are all connected in series with the input terminal 02, including fast charging IC103, fast charging IC204 and ordinary IC305 Connected control IC06, and battery 07 connected in series with fast charge IC103 and fast charge IC204.
  • the voltage and current flowing into the input terminal are V/I
  • the voltage and current of the front end of the fast charging IC103 are V1/I1
  • the voltage and current of the front end of the fast charging IC204 are V2/I2
  • the input current of the control IC to detect the ordinary IC305 is I2C1
  • the input current of the fast charging IC103 is I2C2
  • the input current of the fast charging IC204 is I2C3.
  • the control IC06 can send a control command through the differential signal (D+/D-) to control the charger to reduce the output voltage.
  • the battery 07 is conventionally charged at 5V2A through the IC305.
  • IC1 and IC2 can be enabled through the control IC, so that IC1 and IC2 can perform fast charging.
  • the input current difference for the set number of times is detected in a loop, until an IC (IC1 or IC2) that does not meet the preset charging conditions appears, then the IC is turned off and single-IC fast charging is performed.
  • the output voltage can be reduced to make the shared current as equal as possible, so that the input voltages of IC1 and IC2 are as equal as possible, so that the overall charging scheme heats up evenly, which can improve the user's charging experience.
  • VRequest is the output voltage of the charger requested by the electronic device.
  • V STEP is the step voltage that the electronic device requests the charger to change, that is, after the output voltage of the charger cannot reach the requested voltage of the electronic device, the electronic device needs to increase a step voltage. Before the device reaches the desired voltage, the electronics add another step voltage.
  • Different charging methods correspond to different preset charging conditions.
  • the preset charging conditions for half-voltage fast charging include: the input voltage of the IC must be twice the output voltage, which are not listed in this embodiment of the present application.
  • the first charging circuit is turned off, and the The charging by the at least one second charging circuit may include the following steps:
  • Sub-step A1 when the duration of charging by using the at least one second charging circuit is greater than a delay time threshold, start the first charging circuit, and control the charger to use the first charging circuit and the At least one second charging circuit performs charging.
  • the delay time threshold refers to a duration threshold for charging by using at least one second IC, and if the delay time threshold is greater than the delay time threshold, the first IC needs to be fool-proof.
  • the delay time threshold may be 1 minute, may be 0.1 minute, or may be 0.2 minute, which is not specifically limited for comparison in the embodiments of the present application, and may be calibrated and adjusted according to actual application scenarios.
  • the duration of charging by using the at least one second charging circuit is greater than the delay time threshold, it is necessary to start fool-proof processing, that is, start the first IC that has been turned off, and control the charger to use the first IC and the at least one The second IC is charged.
  • sub-step A2 is performed.
  • Sub-step A2 Obtain the set parameter difference between the first charging circuit and the at least one second charging circuit.
  • the set parameter difference includes any one of an input current difference, an output voltage difference, and an input power difference.
  • a fifth parameter of the first IC and the at least one second IC can be detected in real time, where the fifth parameter includes an input current value, an output voltage value or an input power value , and the parameter difference is calculated in real time.
  • the fifth parameter is the input current value
  • the input current difference is calculated
  • the fifth parameter is the output voltage value
  • the output voltage difference is calculated
  • the fifth parameter is the input
  • sub-step A3 After acquiring the set parameter difference between the first charging circuit and the at least one second charging circuit, sub-step A3 is performed.
  • Sub-step A3 in the case that the set parameter difference is greater than the preset parameter difference, control the charger to reduce the output voltage.
  • the preset parameter difference includes any one of a preset input current difference, a preset output voltage difference, and a preset input power difference.
  • the specific value of the preset parameter difference value may be set according to business requirements, which is not limited in this embodiment.
  • a control command can be sent through a differential signal (D+/D-) to control the charger to reduce the output voltage.
  • VRequest is the output voltage of the charger requested by the electronic device.
  • V STEP is the step voltage that the electronic device requests the charger to change, that is, after the output voltage of the charger cannot reach the requested voltage of the electronic device, the electronic device needs to increase a step voltage. Before the device reaches the desired voltage, the electronics add another step voltage.
  • the output voltage of the charger is reduced, so that the total current flowing into the electronic device is reduced, and the impedance of the first IC and the at least one second IC path does not change, so that the first IC and the at least one second IC can be made.
  • the difference in current becomes smaller.
  • Sub-step A4 cyclically execute the acquisition of the set parameter difference between the first charging circuit and the at least one second charging circuit for a set number of times, until the set parameter difference is greater than the In the case of the preset parameter difference, the step of controlling the charger to reduce the output voltage.
  • the set number of times may be 2 times, 3 times, or 4 times, etc., which is not specifically limited in this embodiment of the present application, and specific calibration adjustments may be made according to actual application scenarios.
  • sub-step A5 is executed.
  • Sub-step A5 Obtain the difference between the set parameters between the first charging circuit and the at least one second charging circuit.
  • the set parameter difference between the first IC and the at least one second IC may be acquired after the control charger is cyclically performed for a set number of times to reduce the output voltage.
  • the setting parameters include input current value, output voltage value or input power value.
  • the setting parameter is the input current value
  • the input current difference is calculated
  • the setting parameter is the output voltage value
  • the output voltage is calculated.
  • Difference when the set parameter is the input power value, calculate the input power difference.
  • sub-step A6 After acquiring the set parameter difference between the first charging circuit and the at least one second charging circuit, sub-step A6 is performed.
  • Sub-step A6 when the set parameter difference is greater than the preset parameter difference, turn off the first charging circuit, and use the at least one second charging circuit for charging until the charging is completed.
  • the set parameter difference is greater than the preset parameter difference, it means that after controlling the charger to reduce the output voltage setting times, the parameter difference between the first IC and the at least one second IC is still large, which may cause The integrated circuit heats up or cannot work normally.
  • the first IC that does not meet the preset charging conditions is turned off, and at least one second IC that meets the preset charging conditions is used to charge until the charging is completed. Avoid the uneven heating of the IC due to the large difference in parameters, and the IC damage caused by the uneven parameters of the IC, improve the stability and service life of the IC, and further improve the stability of electronic equipment. sex and safety.
  • Step 205 In the case that the number of times or the time of cyclically executing the above steps meets the preset conditions, if the set parameter difference is less than the preset parameter difference, use the first charging circuit and at least one of the The second charging circuit performs charging.
  • the charger is controlled to use the first IC and at least one second IC for charging , by reducing the output voltage, so that the current shared by the first IC and at least one second IC is as equal as possible, so that the input voltages of the first IC and at least one second IC are as same as possible, so that the overall charging scheme heats evenly, which can improve the user experience. charging experience.
  • the set parameter difference between the first charging circuit and the at least one second charging circuit is obtained;
  • the charger is controlled to reduce the output voltage;
  • the steps of obtaining the set parameter difference and controlling the charger to reduce the output voltage are executed cyclically;
  • the time meets the preset conditions, if the set parameter difference is still greater than the preset parameter difference, it means the parameter difference between the first IC and at least one second IC after the charger is controlled to reduce the output voltage setting times. It is still large, which may cause the integrated circuit to heat up or fail to work properly.
  • the execution body may be a charging device, or a control module in the charging device for executing the loading charging method.
  • the charging method provided by the embodiment of the present application is described by taking the charging method performed by the charging device as an example.
  • FIG. 5 a schematic structural diagram of a charging device provided in Embodiment 4 of the present application is shown.
  • the charging device is applied to electronic equipment.
  • the charging device may specifically include the following modules:
  • the set parameter difference acquisition module 301 is configured to acquire the settings between the first charging circuit and the at least one second charging circuit during the charging process using the first charging circuit and the at least one second charging circuit. set parameter difference;
  • a loop control module 303 configured to loop through the steps of obtaining the set parameter difference and controlling the charger to reduce the output voltage
  • the first charging control module 304 is configured to close the first charging control module 304 if the set parameter difference is still greater than the preset parameter difference under the condition that the number or time of cyclically executing the above steps satisfies a preset condition.
  • a charging circuit, and the at least one second charging circuit is used for charging.
  • the first charging control module includes:
  • the charging control sub-module is used for performing the above steps in cycles greater than or equal to the set number of times, or when the time for performing the steps in cycles is greater than or equal to the delay time threshold, if the set parameter difference is still greater than the If the parameter difference is preset, the first charging circuit is turned off, and the at least one second charging circuit is used for charging.
  • the device further includes:
  • the second charging control module is configured to use the first charging circuit if the set parameter difference is less than the preset parameter difference under the condition that the number or time of cyclically executing the above steps satisfies a preset condition and at least one of the second charging circuits for charging.
  • the circulation control module includes:
  • the cycle control sub-module is used to obtain the setting for the next time when it is detected that the reduced output voltage value reaches the preset voltage value and the corresponding set parameter difference value is greater than the preset parameter difference value parameter difference, and controls the steps by which the charger reduces the output voltage.
  • the preset parameter difference includes any one of an input current difference, an output voltage difference, and an input power difference.
  • the set parameter difference between the first charging circuit and the at least one second charging circuit is obtained;
  • control the charger to reduce the output voltage; cyclically execute the steps of obtaining the set parameter difference and control the charger to reduce the output voltage; the number or time of cyclically executing the above steps When the preset conditions are met, if the set parameter difference is still greater than the preset parameter difference, it means that after controlling the charger to reduce the output voltage setting times, the parameter difference between the first IC and at least one second IC is still If it is too large, it may cause the integrated circuit to heat up or not work properly.
  • the charging device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant (personal digital assistant).
  • assistant, PDA personal digital assistant
  • the non-mobile electronic device can be a server, network attached storage (NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application implements Examples are not specifically limited.
  • the charging device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the charging device provided by the embodiment of the present application can implement each process implemented by the charging method in the method embodiments of FIG. 1 to FIG. 4 , and in order to avoid repetition, details are not described here.
  • an embodiment of the present application further provides an electronic device.
  • the electronic device 400 may include a processor 402 , a memory 401 , and a program stored in the memory 401 and running on the processor 402 or instruction, when the program or instruction is executed by the processor 402, the operation of any one of the embodiments of the above charging method can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the electronic devices in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 7 a schematic structural diagram of another electronic device provided by an embodiment of the present application is shown.
  • the electronic device 500 includes but is not limited to: a radio frequency unit 501 , a network module 502 , an audio output unit 503 , an input unit 504 , a sensor 505 , a display unit 506 , a user input unit 507 , an interface unit 508 , and a memory 509 , and components such as the processor 510 .
  • the electronic device 500 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power management through the power management system. consumption management and other functions.
  • a power supply such as a battery
  • the structure of the electronic device shown in FIG. 6 does not constitute a limitation on the electronic device, and the electronic device may include more or less components than those shown in the figure, or combine some components, or arrange different components, which will not be repeated here. .
  • the processor 510 is configured to acquire the set parameter difference between the first charging circuit and the at least one second charging circuit in the process of charging by using the first charging circuit and the at least one second charging circuit value;
  • the first charging circuit is turned off, and the at least one charging circuit is used.
  • the second charging circuit performs charging.
  • the set parameter difference between the first charging circuit and the at least one second charging circuit is obtained during the charging process using the first charging circuit and the at least one second charging circuit;
  • control the charger to reduce the output voltage cyclically execute the steps of obtaining the set parameter difference and control the charger to reduce the output voltage; the number of times or time of cyclically executing the above steps meets the preset conditions If the set parameter difference is still larger than the preset parameter difference, it means that after controlling the charger to reduce the output voltage setting times, the parameter difference between the first IC and at least one second IC is still large, which may be It will cause the integrated circuit to heat up or fail to work properly.
  • the processor 510 is further configured to execute the above steps cyclically for a number of times greater than or equal to a set number of times, or when the time for cyclically executing the above steps is greater than or equal to a delay time threshold, if the set parameters are poor If the value is still greater than the preset parameter difference, the first charging circuit is turned off, and the at least one second charging circuit is used for charging.
  • the processor 510 is further configured to adopt the set parameter difference if the set parameter difference is less than the preset parameter difference under the condition that the number or time of cyclically executing the above steps satisfies a preset condition.
  • the first charging circuit and at least one of the second charging circuits are charged.
  • the processor 510 is further configured to perform the next time when it is detected that the reduced output voltage value reaches the preset voltage value and the corresponding set parameter difference value is greater than the preset parameter difference value. The steps of acquiring the set parameter difference and controlling the charger to reduce the output voltage.
  • the preset parameter difference includes any one of an input current difference, an output voltage difference, and an input power difference.
  • the input unit 504 may include a graphics processor (Graphics Processing Unit, GPU) 5041 and a microphone 5042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 506 may include a display panel 5061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072 .
  • the touch panel 5071 is also called a touch screen.
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • Memory 509 may be used to store software programs as well as various data, including but not limited to application programs and operating systems.
  • the processor 510 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, and the like, and the modem processor mainly processes wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 510.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the operation of any one of the foregoing charging methods is implemented, and can To achieve the same technical effect, in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • Examples of such readable storage media include tangible (non-transitory) computer-readable storage media such as electronic circuits, semiconductor memory devices, computer read-only memory (ROM), erasable ROM (EROM), Random Access Memory (RAM), flash memory, floppy disk, CD-ROM, hard disk, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running a program or an instruction to implement any one of the above charging methods
  • the operation of the embodiment can achieve the same technical effect, and in order to avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.

Abstract

本申请公开了一种充电方法、装置及电子设备,属于通信技术领域。在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取第一充电电路和至少一个第二充电电路之间的设定参数差值;在设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;循环执行获取设定参数差值,并控制充电器降低输出电压的步骤;在循环执行上述步骤的次数或时间满足预设条件的情况下,若设定参数差值仍大于预设参数差值,则关闭第一充电电路,并采用至少一个第二充电电路进行充电。

Description

充电方法、装置及电子设备
相关申请的交叉引用
本申请要求享有于2020年12月24日提交的中国专利申请202011555978.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于通信技术领域,具体涉及一种充电方法、装置及电子设备。
背景技术
目前,随着电子设备(如手机、平板电脑等)功能的逐渐扩充,电子设备的待机时长逐渐变短。而随着用户越来越重视电子设备待机时长的情况下,快速充电方案得到了发展。
目前,快速充电方案包括双集成电路(Integrated circuit,IC)的充电方案,通过两路IC组成的充电回路对电池进行充电,由于每路充电的阻抗不同,则每个IC对应通路的电流不同,阻抗小的通路对应的电流大,阻抗大的通路对应的电流小。
由于每个IC对应通路的电流不同,导致两路通路的发热不均匀,可能出现一条通路发热严重,另一条通路不发热或者少发热的情况。并且,由于两路通路的电流不同,导致两路IC前的输入电压不同,在两路输入电压差距较大时,可能导致其中一个通路上的IC无法正常工作的情况。
发明内容
本申请实施例的目的是提供一种充电方法、装置及电子设备,能够解决相关技术中双IC充电时两路IC发热不均匀导致的一个IC无法正常工作的问题。
第一方面,本申请实施例提供了一种充电方法,该方法包括:
在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值;
在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;
循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤;
在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
第二方面,本申请实施例提供了一种充电装置,该装置包括:
设定参数差值获取模块,用于在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值;
输出电压降低模块,用于在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;
循环控制模块,用于循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤;
第一充电控制模块,用于在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的充电方法。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的充电方法。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的充电方法。
在本申请实施例中,通过在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取第一充电电路和至少一个第二充电电路之间的设定参数差值;在设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;循环执行获取设定参数差值,并控制充电器降低输出电压的步骤;在循环执行上述步骤的次数或时间满足预设条件的情况下,若设定参数差值仍大于预设参数差值,则关闭第一充电电路,并采用至少一个第二充电电路进行充电,在设定参数差值大于预设参数差值的情况下,说明控制充电器降低输出电压设定次数后,第一充电电路和至少一个第二充电电路之间的参数差值仍然较大,可能会导致集成电路发热或无法正常工作,此时为了保持快充的充电体验,则关闭第一充电电路,并采用至少一个第二充电电路进行充电,避免出现集成电路由于参数差值较大而出现的发热不均,以及集成电路由于参数不均而导致的集成电路损坏的情况,提高了集成电路的使用稳定性和使用寿命,进一步的,提高了电子设备的稳定性和安全性。
附图说明
图1为本申请实施例一提供的一种充电方法的步骤流程图;
图2示出了本申请实施例提供的一种输出电压和电流的示意图;
图3为本申请实施例二提供的一种充电方法的步骤流程图;
图4示出了本申请实施例提供的一种双IC快充通路的均流连接图;
图5为本申请实施例四提供的一种充电装置的结构示意图;
图6为本申请实施例提供的一种电子设备的结构示意图;
图7为本申请实施例提供的另一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的参数调整方案进行详细地说明。
参照图1,示出了本申请实施例一提供的一种充电方法的步骤流程图,如图1所示,该充电方法具体可以包括如下步骤:
步骤101:在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值。
其中,在采用第一充电电路(Integrated circuit,IC)和至少一个第二IC进行充电的过程中,可以实时检测第一IC和至少一个第二IC之间的设定参数的差值,其中设定参数包括输入电流值、输出电压值或输入功率值,并且实时计算参数差值,在设定参数为输入电流值的情况下,计算输入电流差值,在设定参数为输出电压值的情况下,计算输出电压差值,在设定参数为输入功率值的情况下,计算输入功率差值。
在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值之后,执行步骤102。
步骤102:在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压。
其中,预设参数差值包括预设输入电流差值、预设输出电压差值、预设输入功率差值中的任一种。具体地,关于预设参数差值的具体数值,可以根据业务需求进行设置,本实施例对此不加以限制。
在设定参数差值大于预设参数差值时,说明第一IC和至少一个第二IC之间的参数差值较大,可能会导致集成电路发热或无法正常工作,因此,在本申请中,可以通过差分信号(D+/D-)发送控制命令,以控制充电器降低输出电压。
具体地,可以控制充电器降低输出电压(V 请求)一个步进电压(V STEP),以得到的输出电压(V),也即是,V=V 请求—V STEP
其中,V 请求是电子设备请求充电器的输出电压。V STEP是电子设备请求充电器改变的步进电压,也即是充电器的输出电压达不到电子设备的请求电压后,电子设备需要增加一个步进电压,如果增加一个步进电压后,电子设备还未达到所需电压,电子设备就再增加一个步进电压。
降低了充电器的输出电压,则使得流入电子设备的总电流就减小,而第一IC和至少一个第二IC通路的阻抗不会发生变化,则可以使得第一IC和至少一个第二IC电流的差值变小。
图2示出了本申请实施例提供的一种输出电压和电流的示意图,如图2所示,在总输入电流为I,电阻RI和IC1串联,其IC1支路的电流为I1,电阻R2和IC2串联,其IC2支路的电流为I2,电阻RI和电阻R2并联,则示例的,在总电流I为6安培(A),I1为4A,I2为2A,可以得到RI:R2=2:1,|I1-I2|=2A;则在总阻抗不变的情况下,输出电压降低,则总输出电流变小,示例的,当总输出电流变为3A,R1:R2=2:1可得I1=2AI2=1A此时|I1-I2|=1A,也即是,使得参数差值变小。
可以理解地,上述示例仅是为了更好地理解本申请实施例的技术方案而列举的示例,不作为对本实施例的唯一限制。
在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电 压之后,执行步骤103。
步骤103:循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤。
进一步的,在一种可选的实施例中,可以在检测到降低后的输出电压值达到预设电压值,且对应的所述设定参数差值大于预设参数差值的情况下,进行下一次获取所述设定参数差值,并控制充电器降低输出电压的步骤。
具体地,可以先预先设置一个较低的预设参数差值,在输出电压值降低至该预设参数差值之后,才启动循环步骤,对设定参数差值进行检测。
循环执行步骤101至步骤102,控制充电器降低输出电压,在该过程中,如果检测到设定参数差值小于或者等于预设参数差值的情况下,则控制充电器使用第一IC和至少一个第二IC进行充电,通过降低输出电压,使得第一IC和至少一个第二IC分到的电流尽量相同,使得,第一IC和至少一个第二IC的输入电压尽量相同,使得整体充电方案发热均匀,可以提高用户的充电体验。
在循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤之后,执行步骤104。
步骤104:在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
在本申请中,在循环执行上述步骤的次数大于或者等于设定次数,或者循环执行上述步骤的时间大于或者等于延迟时间阈值的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
设定次数可以是2次,还可以是3次,也可以是4次等,本申请实施例对此不作具体限定,可以根据实际应用场景做具体的标定调整。
在循环执行设定次数的控制充电器降低输出电压之后,可以获取第一IC和至少一个第二IC之间的设定参数差值。其中设定参数包括输入电流值、输 出电压值或输入功率值,在设定参数为输入电流值的情况下,计算输入电流差值,在设定参数为输出电压值的情况下,计算输出电压差值,在设定参数为输入功率值的情况下,计算输入功率差值。在设定参数差值大于预设参数差值的情况下,说明控制充电器降低输出电压设定次数后,第一IC和至少一个第二IC之间的参数差值仍然较大,可能会导致集成电路发热或无法正常工作,此时为了保持快充的充电体验,则关闭不满足预设充电条件的第一IC,并采用至少一个满足预设充电条件的第二IC进行充电,避免出现IC由于参数差值较大而出现的发热不均,以及IC由于参数不均而导致的IC损坏的情况,提高了IC的使用稳定性和使用寿命,进一步的,提高了电子设备的稳定性和安全性。
其中,不同的充电方式对应有不用的预设充电条件,示例的,半压快充的预设充电条件包括:IC的输入电压必须是输出电压的两倍,本申请实施例在此不一一举例。
本申请实施例提供的充电方法,通过在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取第一充电电路和至少一个第二充电电路之间的设定参数差值;在设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;循环执行获取设定参数差值,并控制充电器降低输出电压的步骤;在循环执行上述步骤的次数或时间满足预设条件的情况下,若设定参数差值仍大于预设参数差值,说明控制充电器降低输出电压设定次数后,第一IC和至少一个第二IC之间的参数差值仍然较大,可能会导致集成电路发热或无法正常工作,此时为了保持快充的充电体验,则关闭第一IC,并采用至少一个第二IC进行充电,避免出现IC由于参数差值较大而出现的发热不均,以及IC由于参数不均而导致的IC损坏的情况,提高了IC的使用稳定性和使用寿命,进一步的,提高了电子设备的稳定性和安全性。
参照图3,示出了本申请实施例二提供的一种充电方法的步骤流程图,如图3所示,该充电方法具体可以包括如下步骤:
步骤201:在采用第一充电电路和至少一个第二充电电路进行充电的过程 中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值。
其中,在采用第一充电电路(Integrated circuit,IC)和至少一个第二IC进行充电的过程中,可以实时检测第一IC和至少一个第二IC的设定参数,其中设定参数包括输入电流值、输出电压值或输入功率值,并且实时计算参数差值,在设定参数为输入电流值的情况下,计算输入电流差值,在设定参数为输出电压值的情况下,计算输出电压差值,在设定参数为输入功率值的情况下,计算输入功率差值。
在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值之后,执行步骤202。
步骤202:在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压。
其中,预设参数差值包括预设输入电流差值、预设输出电压差值、预设输入功率差值中的任一种。具体地,关于预设参数差值的具体数值,可以根据业务需求进行设置,本实施例对此不加以限制。
在设定参数差值大于预设参数差值时,说明第一IC和至少一个第二IC之间的参数差值较大,可能会导致集成电路发热或无法正常工作,因此,在本申请中,可以通过差分信号(D+/D-)发送控制命令,以控制充电器降低输出电压。
具体地,可以控制充电器降低输出电压(V 请求)一个步进电压(V STEP),以得到的输出电压(V),也即是,V=V 请求—V STEP
其中,V 请求是电子设备请求充电器的输出电压。V STEP是电子设备请求充电器改变的步进电压,也即是充电器的输出电压达不到电子设备的请求电压后,电子设备需要增加一个步进电压,如果增加一个步进电压后,电子设备还未达到所需电压,电子设备就再增加一个步进电压。
降低了充电器的输出电压,则使得流入电子设备的总电流就减小,而第一IC和至少一个第二IC通路的阻抗不会发生变化,则可以使得第一IC和至少一个第二IC电流的差值变小。
图2示出了本申请实施例提供的一种输出电压和电流的示意图,如图2所示,电阻RI和IC1串联,电阻R2和IC2串联,电阻RI和电阻R2并联,在总输入电流为I,其IC1支路的电流为I1,其IC2支路的电流为I2,则示例的,在总电流I为6安培(A),I1为4A,I2为2A,可以得到RI:R2=2:1,|I1-I2|=2A;则在总阻抗不变的情况下,输出电压降低,则总输出电流变小,示例的,当总输出电流变为3A,R1:R2=2:1可得I1=2AI2=1A此时|I1-I2|=1A,也即是,使得参数差值变小。
可以理解地,上述示例仅是为了更好地理解本申请实施例的技术方案而列举的示例,不作为对本实施例的唯一限制。
在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压之后,可以执行步骤203。
步骤203:循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤。
在检测到降低后的输出电压值达到预设电压值,且对应的所述设定参数差值大于预设参数差值的情况下,进行下一次获取所述设定参数差值,并控制充电器降低输出电压的步骤。
循环执行步骤201至步骤202,控制充电器降低输出电压,在该过程中,如果检测到设定参数差值小于或者等于预设参数差值的情况下,则控制充电器使用第一IC和至少一个第二IC进行充电,通过降低输出电压,使得第一IC和至少一个第二IC分到的电流尽量相同,使得,第一IC和至少一个第二IC的输入电压尽量相同,使得整体充电方案发热均匀,可以提高用户的充电体验。
在循环执行设定次数的所述获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值,至所述在所述设定参数差值大于预设参数差值 的情况下,控制充电器降低输出电压的步骤,进而,执行步骤204或步骤205。
步骤204:在循环执行上述步骤的次数大于或者等于设定次数,或者循环执行上述步骤的时间大于或者等于延迟时间阈值的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
可选地,在循环执行设定次数的控制充电器降低输出电压之后,可以获取第一IC和至少一个第二IC之间的设定参数差值。其中设定参数包括输入电流值、输出电压值或输入功率值,在设定参数为输入电流值的情况下,计算输入电流差值,在设定参数为输出电压值的情况下,计算输出电压差值,在设定参数为输入功率值的情况下,计算输入功率差值。
在所述设定参数差值大于所述预设参数差值的情况下,关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
可选地,在所述设定参数差值大于所述预设参数差值,且当前充电方式为预设充电方式的情况下,关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电;不同的快充方式对应有不同的所述预设充电条件。
其中,不同的充电方式对应有不用的预设充电条件,示例的,半压快充的预设充电条件包括:IC的输入电压必须是输出电压的两倍,本申请实施例在此不一一举例。
在设定参数差值大于预设参数差值的情况下,说明控制充电器降低输出电压设定次数后,第一IC和至少一个第二IC之间的参数差值仍然较大,可能会导致集成电路发热或无法正常工作,此时为了保持快充的充电体验,则关闭不满足预设充电条件的第一IC,并采用至少一个满足预设充电条件的第二IC进行充电,避免出现IC由于参数差值较大而出现的发热不均,以及IC由于参数不均而导致的IC损坏的情况,提高了IC的使用稳定性和使用寿命,进一步的,提高了电子设备的稳定性和安全性。
在本申请中,在至少两个第二充电电路包括第三集成电路和第四集成电路 的情况下,也即是第二IC包括两个IC,分别为第三IC和第四IC。在第一IC不满足预设充电条件、第二IC满足预设充电条件时,第一IC关闭,第三IC和第四IC进行充电,此时可以获取所述第三集成电路和所述第四集成电路之间的设定参数差值;
在所述设定参数差值大于所述预设参数差值的情况下,说明第三IC和第四IC之前的参数差值较大,此时控制充电器降低输出电压,循环执行设定次数的所述获取所述第三集成电路和所述第四集成电路之间的设定参数差值,在所述设定参数差值大于所述预设参数差值的情况下,控制充电器降低输出电压的步骤。并在执行完设定次数的降低输出电压的步骤后,获取所述第三集成电路和所述第四集成电路之间的设定参数差值,在所述设定参数差值大于所述预设参数差值,且所述第三集成电路和所述第四集成电路中存在不满足预设充电条件的集成电路的情况下,关闭所述不满足所述预设充电条件的所述第三集成电路或所述第四集成电路,并采用满足所述预设充电条件的所述第四集成电路或所述第三集成电路进行充电,也即是将双IC快充调整为单IC快充。
参见图4,示出了本申请实施例提供的一种双IC快充通路的均流连接图,如图4所示,双IC快充通路包括充电器01,以及和输入端连接的输入端02,并联的快充IC103,快充IC204,普通IC305,其中,快充IC103、快充IC204和普通IC305并联,并均与输入端02串联,还包括和快充IC103、快充IC204和普通IC305连接的控制IC06,以及和快充IC103和快充IC204串联的电池07。其中,流入输入端的电压和电流为V/I,快充IC103前端的电压和电流为V1/I1,快充IC204前端的电压和电流为V2/I2,控制IC检测普通IC305的输入电流为I2C1,检测快充IC103的输入电流为I2C2,检测快充IC204的输入电流为I2C3,其中,控制IC06可以通过差分信号(D+/D-)发送控制命令,以控制充电器降低输出电压。
具体的,参见图3,在默认状态,通过IC305对电池07进行5V2A的常规充电。在快充IC1和快充IC2满足预设充电条件后,可以通过控制IC对IC1 和IC2使能,使得IC1和IC2进行快充充电,在参数为输入电流的情况下,通过控制IC的I2C实时检测IC1和IC2的输入电流I1和I2,并实时计算输入电流差值,如果输入电流差值大于预设输入电流差值,则通过控制IC通过D+/D-发送控制命令,以控制充电器降低输出电压,V=V 请求—V STEP。并且循环多次检测设定次数的输入电流差值,直至出现不满足预设充电条件的IC(IC1或IC2),则关闭该IC,进行单IC快充。在检测过程中,可以通过降低输出电压使得分到的电流尽量相同,使得,IC1和IC2的输入电压尽量相同,使得整体充电方案发热均匀,可以提高用户的充电体验。
其中,V 请求是电子设备请求充电器的输出电压。V STEP是电子设备请求充电器改变的步进电压,也即是充电器的输出电压达不到电子设备的请求电压后,电子设备需要增加一个步进电压,如果增加一个步进电压后,电子设备还未达到所需电压,电子设备就再增加一个步进电压。不同的充电方式对应有不用的预设充电条件,示例的,半压快充的预设充电条件包括:IC的输入电压必须是输出电压的两倍,本申请实施例在此不一一举例。
可选地,在循环执行上述步骤的时间大于或者等于延迟时间阈值的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电,可以包括以下步骤:
子步骤A1:在采用所述至少一个第二充电电路进行充电的持续时间大于延迟时间阈值的情况下,启动所述第一充电电路,控制所述充电器使用所述第一充电电路和所述至少一个第二充电电路进行充电。
其中,延迟时间阈值指的是采用至少一个第二IC进行充电的持续时间阈值,大于该延迟时间阈值,则需要对第一IC进行防呆处理。延迟时间阈值可以是1分钟,可以是0.1分钟,还可以是0.2分钟,本申请实施例对比不作具体限定,可以根据实际应用场景去标定调整。
在采用所述至少一个第二充电电路进行充电的持续时间大于延迟时间阈值的情况下,需要启动防呆处理,也即是启动已经关闭的第一IC,控制充电器 使用第一IC和至少一个第二IC进行充电。
在启动所述第一充电电路,控制所述充电器使用所述第一充电电路和所述至少一个第二充电电路进行充电之后,执行子步骤A2。
子步骤A2:获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值。
在启动防呆处理,也即是启动已经关闭的第一IC,控制充电器使用第一IC和至少一个第二IC进行充电后,需要获取第一IC和至少一个第二IC之间的设定参数差值。
其中,设定参数差值包括输入电流差值、输出电压差值、输入功率差值中的任一种。
在采用第一IC和至少一个第二IC进行充电的过程中,可以实时检测第一IC和至少一个第二IC的第五参数,其中第五参数包括输入电流值、输出电压值或输入功率值,并且实时计算参数差值,在第五参数为输入电流值的情况下,计算输入电流差值,在第五参数为输出电压值的情况下,计算输出电压差值,在第五参数为输入功率值的情况下,计算输入功率差值。
在获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值之后,执行子步骤A3。
子步骤A3:在所述设定参数差值大于所述预设参数差值的情况下,控制所述充电器降低输出电压。
其中,预设参数差值包括预设输入电流差值、预设输出电压差值、预设输入功率差值中的任一种。具体地,关于预设参数差值的具体数值,可以根据业务需求进行设置,本实施例对此不加以限制。
在设定参数差值大于预设参数差值时,说明第一IC和至少一个第二IC之间的参数差值较大,可能会导致集成电路发热或无法正常工作,因此,在本申请中,可以通过差分信号(D+/D-)发送控制命令,以控制充电器降低输出电压。
具体地,可以控制充电器降低输出电压(V 请求)一个步进电压(V STEP),以得到的输出电压(V),也即是,V=V 请求—V STEP
其中,V 请求是电子设备请求充电器的输出电压。V STEP是电子设备请求充电器改变的步进电压,也即是充电器的输出电压达不到电子设备的请求电压后,电子设备需要增加一个步进电压,如果增加一个步进电压后,电子设备还未达到所需电压,电子设备就再增加一个步进电压。
降低了充电器的输出电压,则使得流入电子设备的总电流就减小,而第一IC和至少一个第二IC通路的阻抗不会发生变化,则可以使得第一IC和至少一个第二IC电流的差值变小。
在所述设定参数差值大于所述预设参数差值的情况下,控制所述充电器降低输出电压之后,执行子步骤A4。
子步骤A4:循环执行设定次数的所述获取所述第一充电电路和所述至少一个第二充电电路中间的设定参数差值,至所述在所述设定参数差值大于所述预设参数差值的情况下,控制充电器降低输出电压的步骤。
设定次数可以是2次,还可以是3次,也可以是4次等,本申请实施例对此不作具体限定,可以根据实际应用场景做具体的标定调整。
循环执行控制充电器降低输出电压,在该过程中,如果检测到设定参数差值小于或者等于预设参数差值的情况下,则控制充电器使用第一IC和至少一个第二IC进行充电,通过降低输出电压,使得第一IC和至少一个第二IC分到的电流尽量相同,使得,第一IC和至少一个第二IC的输入电压尽量相同,使得整体充电方案发热均匀,可以提高用户的充电体验。
在循环执行设定次数控制充电器降低输出电压的步骤之后,执行子步骤A5。
子步骤A5:获取所述第一充电电路和所述至少一个第二充电电路中间的设定参数差值。
在循环执行设定次数的控制充电器降低输出电压之后,可以获取第一IC 和至少一个第二IC之间的设定参数差值。其中设定参数包括输入电流值、输出电压值或输入功率值,在设定参数为输入电流值的情况下,计算输入电流差值,在设定参数为输出电压值的情况下,计算输出电压差值,在设定参数为输入功率值的情况下,计算输入功率差值。
在获取所述第一充电电路和所述至少一个第二充电电路中间的设定参数差值之后,执行子步骤A6。
子步骤A6:在所述设定参数差值大于所述预设参数差值的情况下,关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电直至充电完成。
在设定参数差值大于预设参数差值的情况下,说明控制充电器降低输出电压设定次数后,第一IC和至少一个第二IC之间的参数差值仍然较大,可能会导致集成电路发热或无法正常工作,此时为了保持快充的充电体验,则关闭不满足预设充电条件的第一IC,并采用至少一个满足预设充电条件的第二IC进行充电直至充电完成,避免出现IC由于参数差值较大而出现的发热不均,以及IC由于参数不均而导致的IC损坏的情况,提高了IC的使用稳定性和使用寿命,进一步的,提高了电子设备的稳定性和安全性。
步骤205:在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值小于所述预设参数差值,则采用所述第一充电电路和至少一个所述第二充电电路进行充电。
在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值小于所述预设参数差值,则控制充电器使用第一IC和至少一个第二IC进行充电,通过降低输出电压,使得第一IC和至少一个第二IC分到的电流尽量相同,使得,第一IC和至少一个第二IC的输入电压尽量相同,使得整体充电方案发热均匀,可以提高用户的充电体验。
本申请实施例提供的充电方法,通过在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取第一充电电路和至少一个第二充电电路之间 的设定参数差值;在设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;循环执行获取设定参数差值,并控制充电器降低输出电压的步骤;在循环执行上述步骤的次数或时间满足预设条件的情况下,若设定参数差值仍大于预设参数差值,说明控制充电器降低输出电压设定次数后,第一IC和至少一个第二IC之间的参数差值仍然较大,可能会导致集成电路发热或无法正常工作,此时为了保持快充的充电体验,则关闭第一IC,并采用至少一个第二IC进行充电,避免出现IC由于参数差值较大而出现的发热不均,以及IC由于参数不均而导致的IC损坏的情况,提高了IC的使用稳定性和使用寿命,进一步的,提高了电子设备的稳定性和安全性。
需要说明的是,本申请实施例提供的充电方法,执行主体可以为充电装置,或者该充电装置中的用于执行加载充电方法的控制模块。本申请实施例中以充电装置执行加载充电方法为例,说明本申请实施例提供的充电方法。
参照图5,示出了本申请实施例四提供的一种充电装置的结构示意图,该充电装置应用于电子设备,如图5所示,该充电装置具体可以包括如下模块:
设定参数差值获取模块301,用于在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值;
输出电压降低模块302,用于在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;
循环控制模块303,用于循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤;
第一充电控制模块304,用于在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
可选地,所述第一充电控制模块,包括:
充电控制子模块,用于在循环执行上述步骤的次数大于或者等于设定次 数,或者循环执行上述步骤的时间大于或者等于延迟时间阈值的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
可选地,所述装置还包括:
第二充电控制模块,用于在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值小于所述预设参数差值,则采用所述第一充电电路和至少一个所述第二充电电路进行充电。
可选地,所述循环控制模块包括:
循环控制子模块,用于在检测到降低后的输出电压值达到预设电压值,且对应的所述设定参数差值大于预设参数差值的情况下,进行下一次获取所述设定参数差值,并控制充电器降低输出电压的步骤。
可选地,所述预设参数差值包括输入电流差值、输出电压差值和输入功率差值中的任一种。
本申请实施例提供的充电装置,在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取第一充电电路和至少一个第二充电电路之间的设定参数差值;在设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;循环执行获取设定参数差值,并控制充电器降低输出电压的步骤;在循环执行上述步骤的次数或时间满足预设条件的情况下,若设定参数差值仍大于预设参数差值,说明控制充电器降低输出电压设定次数后,第一IC和至少一个第二IC之间的参数差值仍然较大,可能会导致集成电路发热或无法正常工作,此时为了保持快充的充电体验,则关闭第一IC,并采用至少一个第二IC进行充电,避免出现IC由于参数差值较大而出现的发热不均,以及IC由于参数不均而导致的IC损坏的情况,提高了IC的使用稳定性和使用寿命,进一步的,提高了电子设备的稳定性和安全性。
本申请实施例中的充电装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性 的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(NetworkAttached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的充电装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的充电装置能够实现图1至图4的方法实施例中充电方法实现的各个过程,为避免重复,这里不再赘述。
可选地,本申请实施例还提供一种电子设备,如图6所示,电子设备400可以包括处理器402,存储器401,存储在存储器401上并可在所述处理器402上运行的程序或指令,该程序或指令被处理器402执行时实现上述充电方法的任意一种实施例的操作,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要注意的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
参照图7,示出了本申请实施例提供的另一种电子设备的结构示意图。
如图7所示,该电子设备500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、以及处理器510等部件。
本领域技术人员可以理解,电子设备500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少 的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器510,用于在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值;
在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;
循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤;
在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
本申请实施例通过在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取第一充电电路和至少一个第二充电电路之间的设定参数差值;在设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;循环执行获取设定参数差值,并控制充电器降低输出电压的步骤;在循环执行上述步骤的次数或时间满足预设条件的情况下,若设定参数差值仍大于预设参数差值,说明控制充电器降低输出电压设定次数后,第一IC和至少一个第二IC之间的参数差值仍然较大,可能会导致集成电路发热或无法正常工作,此时为了保持快充的充电体验,则关闭第一IC,并采用至少一个第二IC进行充电,避免出现IC由于参数差值较大而出现的发热不均,以及IC由于参数不均而导致的IC损坏的情况,提高了IC的使用稳定性和使用寿命,进一步的,提高了电子设备的稳定性和安全性。
可选地,所述处理器510还用于在循环执行上述步骤的次数大于或者等于设定次数,或者循环执行上述步骤的时间大于或者等于延迟时间阈值的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
可选地,所述处理器510还用于在循环执行上述步骤的次数或时间满足预 设条件的情况下,若所述设定参数差值小于所述预设参数差值,则采用所述第一充电电路和至少一个所述第二充电电路进行充电。
可选地,所述处理器510还用于在检测到降低后的输出电压值达到预设电压值,且对应的所述设定参数差值大于预设参数差值的情况下,进行下一次获取所述设定参数差值,并控制充电器降低输出电压的步骤。
可选地,所述预设参数差值包括输入电流差值、输出电压差值和输入功率差值中的任一种。
应理解的是,本申请实施例中,输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。存储器509可用于存储软件程序以及各种数据,包括但不限于应用程序和操作系统。处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述充电方法的任意一种实施例的操作,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质的示例包括有形(非暂态)计算机可读存储介质,如电子电路、半导体存储器设备、计算机只读存储器(Read-Only Memory,ROM)、可擦除ROM (EROM)、随机存取存储器(Random Access Memory,RAM)、闪存、软盘、CD-ROM、硬盘、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述充电方法的任意一种实施例的操作,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述 的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (14)

  1. 一种充电方法,包括:
    在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值;
    在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;
    循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤;
    在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
  2. 根据权利要求1所述的方法,其中,所述在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电,包括:
    在循环执行上述步骤的次数大于或者等于设定次数,或者循环执行上述步骤的时间大于或者等于延迟时间阈值的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
  3. 根据权利要求1所述的方法,其中,在所述循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤之后,还包括:
    在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值小于所述预设参数差值,则采用所述第一充电电路和至少一个所述第二充电电路进行充电。
  4. 根据权利要求1所述的方法,其中,所述循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤,包括:
    在检测到降低后的输出电压值达到预设电压值,且对应的所述设定参数差值大于预设参数差值的情况下,进行下一次获取所述设定参数差值,并控制充 电器降低输出电压的步骤。
  5. 根据权利要求1所述的方法,其中,所述预设参数差值包括输入电流差值、输出电压差值和输入功率差值中的任一种。
  6. 根据权利要求1所述的方法,其中,在关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电时,所述第一充电电路为不满足预设充电条件的充电电路,所述第二充电电路为满足预设充电条件的充电电路。
  7. 一种充电装置,包括:
    设定参数差值获取模块,用于在采用第一充电电路和至少一个第二充电电路进行充电的过程中,获取所述第一充电电路和所述至少一个第二充电电路之间的设定参数差值;
    输出电压降低模块,用于在所述设定参数差值大于预设参数差值的情况下,控制充电器降低输出电压;
    循环控制模块,用于循环执行获取所述设定参数差值,并控制充电器降低输出电压的步骤;
    第一充电控制模块,用于在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
  8. 根据权利要求7所述的装置,其中,所述第一充电控制模块,包括:
    充电控制子模块,用于在循环执行上述步骤的次数大于或者等于设定次数,或者循环执行上述步骤的时间大于或者等于延迟时间阈值的情况下,若所述设定参数差值仍大于所述预设参数差值,则关闭所述第一充电电路,并采用所述至少一个第二充电电路进行充电。
  9. 根据权利要求7所述的装置,还包括:
    第二充电控制模块,用于在循环执行上述步骤的次数或时间满足预设条件的情况下,若所述设定参数差值小于所述预设参数差值,则采用所述第一充电电路和至少一个所述第二充电电路进行充电。
  10. 一种电子设备,包括处理器,存储器及存储在所述存储器上并可在所 述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现权利要求1至6任一项所述的充电方法。
  11. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现权利要求1至6任一项所述的充电方法。
  12. 一种芯片,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至6任一项所述的充电方法。
  13. 一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至6任一项所述的充电方法。
  14. 一种充电设备,所述充电设备被配置成用于执行如权利要求1至6任一项所述的充电方法。
PCT/CN2021/140066 2020-12-24 2021-12-21 充电方法、装置及电子设备 WO2022135389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011555978.6 2020-12-24
CN202011555978.6A CN112713629A (zh) 2020-12-24 2020-12-24 充电方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022135389A1 true WO2022135389A1 (zh) 2022-06-30

Family

ID=75545529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140066 WO2022135389A1 (zh) 2020-12-24 2021-12-21 充电方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN112713629A (zh)
WO (1) WO2022135389A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713629A (zh) * 2020-12-24 2021-04-27 维沃移动通信有限公司 充电方法、装置及电子设备
CN113178913A (zh) * 2021-04-30 2021-07-27 南京维沃软件技术有限公司 充电座供电控制方法、装置、电子设备和可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730924A (zh) * 2013-12-16 2014-04-16 深圳市金立通信设备有限公司 一种充电的方法、组件及终端
CN106532882A (zh) * 2016-11-21 2017-03-22 珠海市魅族科技有限公司 一种充电控制方法及装置
US20180191171A1 (en) * 2017-01-03 2018-07-05 Phihong Technology Co., Ltd. Charging System on Constant Current Mode and Method thereof
CN108964163A (zh) * 2017-05-24 2018-12-07 北京小米移动软件有限公司 电池充电的管理方法及装置
CN110048492A (zh) * 2019-05-29 2019-07-23 努比亚技术有限公司 充电电路、移动终端、移动终端的控制方法及存储介质
CN111293736A (zh) * 2018-12-07 2020-06-16 青岛海信移动通信技术股份有限公司 一种控制温度的方法和设备
CN111628554A (zh) * 2020-06-30 2020-09-04 联想(北京)有限公司 一种电子设备及充电方法
CN112713629A (zh) * 2020-12-24 2021-04-27 维沃移动通信有限公司 充电方法、装置及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293744B (zh) * 2020-01-22 2022-08-02 维沃移动通信有限公司 充电方法、装置、电子设备及介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730924A (zh) * 2013-12-16 2014-04-16 深圳市金立通信设备有限公司 一种充电的方法、组件及终端
CN106532882A (zh) * 2016-11-21 2017-03-22 珠海市魅族科技有限公司 一种充电控制方法及装置
US20180191171A1 (en) * 2017-01-03 2018-07-05 Phihong Technology Co., Ltd. Charging System on Constant Current Mode and Method thereof
CN108964163A (zh) * 2017-05-24 2018-12-07 北京小米移动软件有限公司 电池充电的管理方法及装置
CN111293736A (zh) * 2018-12-07 2020-06-16 青岛海信移动通信技术股份有限公司 一种控制温度的方法和设备
CN110048492A (zh) * 2019-05-29 2019-07-23 努比亚技术有限公司 充电电路、移动终端、移动终端的控制方法及存储介质
CN111628554A (zh) * 2020-06-30 2020-09-04 联想(北京)有限公司 一种电子设备及充电方法
CN112713629A (zh) * 2020-12-24 2021-04-27 维沃移动通信有限公司 充电方法、装置及电子设备

Also Published As

Publication number Publication date
CN112713629A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2022135389A1 (zh) 充电方法、装置及电子设备
US20170344096A1 (en) Methods and apparatuses to wake computer systems from sleep states
US10491003B2 (en) Multiple input single inductor multiple output regulator
US8539273B2 (en) Electronic device for detecting a type of a charger device during a sleep mode
WO2018082412A1 (zh) 电子设备控制方法、装置及电子设备
JP5961767B2 (ja) シャットダウン閾値電圧を調整するための方法、スタートアップ方法、およびそれらの電子デバイス
CN112737022A (zh) 充电电路、方法、装置及电子设备
US9378700B2 (en) Device and method for adjusting a power supply voltage for a display panel, and display device
US9099881B2 (en) Method and apparatus for charging over-discharged battery in booting process
WO2023061333A1 (zh) 泄放电路的控制方法及装置、泄放器件及电子设备
KR102282808B1 (ko) 휴대 컴퓨팅 디바이스 내의 전력 소비를 감소시키기 위해 코어 전압 레벨 및 개개의 서브컴포넌트들의 동작 주파수를 최적화하기 위한 방법 및 시스템
US20190086994A1 (en) Transition of an input / output port in a suspend mode from a high-current mode
CN109661649B (zh) 用于支持优先系统事件的增强的功率管理
EP2765824A1 (en) Mobile terminal boot control method and mobile terminal
WO2022089478A1 (zh) 补光方法、装置和电子设备
WO2022063067A1 (zh) 电源适配器、终端设备、电子设备及其充电控制方法
JP2015170292A (ja) 半導体装置
WO2020134566A1 (zh) 移动终端的Doze模式的控制方法、存储介质及移动终端
US20230359244A1 (en) Docking stations
WO2022222918A1 (zh) 反向充电方法、装置和电子设备
TWI568134B (zh) 充電控制方法
TWI579686B (zh) 具有電源控制功能之電子裝置
CN109687922B (zh) 无线网络的信号监控方法、装置、存储介质及移动终端
TW201232246A (en) Portable electronic device and method for adjusting system performance thereof
WO2022166698A1 (zh) 充电控制方法、装置、电子设备及充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909385

Country of ref document: EP

Kind code of ref document: A1