WO2022135334A1 - 用于平衡压缩机负荷的直冷式制冰系统及其控制方法 - Google Patents

用于平衡压缩机负荷的直冷式制冰系统及其控制方法 Download PDF

Info

Publication number
WO2022135334A1
WO2022135334A1 PCT/CN2021/139623 CN2021139623W WO2022135334A1 WO 2022135334 A1 WO2022135334 A1 WO 2022135334A1 CN 2021139623 W CN2021139623 W CN 2021139623W WO 2022135334 A1 WO2022135334 A1 WO 2022135334A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ice
control valve
liquid
return
Prior art date
Application number
PCT/CN2021/139623
Other languages
English (en)
French (fr)
Inventor
李囿桦
隋佳辰
Original Assignee
李囿桦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李囿桦 filed Critical 李囿桦
Publication of WO2022135334A1 publication Critical patent/WO2022135334A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • F25C5/10Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice using hot refrigerant; using fluid heated by refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Definitions

  • the invention relates to a direct cooling ice making system and a control method thereof.
  • a direct cooling ice making system that is, a refrigerant direct evaporation ice making system.
  • Another method is the indirect ice-making method, that is, the intermediate cooling medium is cooled by the refrigerant, and then the cooling medium is used to cool and make ice.
  • the indirect ice-making system is an indirect ice-making system.
  • the main disadvantage of the indirect ice-making method is that the cold energy required for ice-making needs to be subjected to secondary heat exchange. Therefore, the refrigeration efficiency of the refrigeration compressor is low. It also has the phenomenon of unbalanced ice making.
  • the ice-making water is first filled with the combined ice mold, and then the compression condensing unit is turned on to cool the combined ice mold and start ice making.
  • the water temperature in the ice mold is relatively high, generally around 20°C. In some areas, the water temperature is as high as 24°C or more, and in some special cases it reaches 30°C or more.
  • the compressor load is too high, the operating conditions are bad, and the suction steam pressure and exhaust steam pressure are too high, which affects the service life of the compressor.
  • the cooling load is small, the refrigeration compressor is difficult to control, and the phenomenon of liquid backflow occurs. In severe cases, the service life of the refrigerator will be affected.
  • the freezing speed of each ice mold varies greatly.
  • the technical problem to be solved by the present invention is to provide a direct cooling ice-making system for balancing the compressor load and a control method thereof, so that the operating conditions of the refrigeration compressor are in a more controllable balance state, and the refrigeration is more stable. Ice making is more efficient.
  • a direct-cooling ice-making system for balancing compressor loads includes an ice-making device, the ice-making device includes a set of composite ice molds, the composite ice molds include an ice mold side plate with a first heat exchange tube built in, and the ice making device includes a set of composite ice molds.
  • the ice system further includes a compression condensing unit, the compression condensing unit is connected to a first refrigerant liquid supply header through a compressor liquid supply pipe, and the first refrigerant liquid supply header is connected to the first refrigerant liquid supply manifold through a first refrigerant liquid supply branch pipe.
  • the liquid inlet end of the heat pipe and the liquid outlet end of the first heat exchange tube are connected with a refrigerant gas return header through a refrigerant gas return branch pipe, and the refrigerant gas return header is connected to the compression condensing unit through the compressor gas return pipe, which is characterized in that :
  • the ice making system also includes a second heat exchange tube built into the side plate of the composite ice mold, and the liquid inlet end of the second heat exchange tube is connected with a second refrigerant liquid supply collector through a second refrigerant liquid supply branch pipe
  • the second refrigerant liquid supply header is connected to a liquid supply main pipe, and the liquid supply main pipe is connected to a refrigerant tank through a pipeline with a refrigerant liquid supply control valve and a refrigerant water pump; the liquid outlet end of the second heat exchange pipe passes through the refrigerant.
  • the liquid return branch pipe is connected with a refrigerant liquid return header, the refrigerant return liquid header is connected with a liquid return main pipe, and the liquid return main pipe is connected to the refrigerant tank through a refrigerant return liquid control valve;
  • the ice making device also includes an upper cover plate and a movable bottom plate .
  • the liquid supply main pipe is connected to a hot water tank through a pipeline with a hot water supply control valve and a hot water pump; the liquid return main pipe is connected to the hot water tank through a hot water return control valve.
  • both the first heat exchange tube and the second heat exchange tube abut against the side plate of the ice mold, and the first heat exchange tube and the second heat exchange tube abut against each other, so as to facilitate efficient heat exchange.
  • the refrigerant return control valve, refrigerant water pump and refrigerant supply control valve are opened, the compression condensing unit is closed, and the water that is successively added is pre-cooled by low-temperature refrigerant;
  • the compression condensing unit In the later stage of ice making, the compression condensing unit is turned off, and the refrigerant water pump alone supplies cooling until the end of ice making.
  • the refrigerant water pump is turned off, and after the refrigerant returns to the refrigerant tank, the refrigerant return control valve and the refrigerant supply control valve are closed; the hot water return control valve, the hot water supply control valve and the hot water are opened. Pump, start melting ice and demoulding.
  • the positive effect of the present invention is that the present invention belongs to a double-effect ice making method. It not only has the advantages of high heat exchange efficiency of direct cooling, but also has the advantages of load balance of indirect ice-making compressors.
  • the cooling supply of the compression condensing unit and the cooling supply of the refrigerant box cooperate with each other to provide ice-making cooling energy, which belongs to the double-effect ice-making method.
  • the refrigerant in the refrigerant box also has the function of balancing the cooling capacity during the ice making process.
  • the operation condition of the refrigeration compressor is in a controllable ideal working state.
  • the cooling is stable and the cooling efficiency is high.
  • the refrigerant is in a flowing state in the side plate of the ice mold, the supply of cold energy of the whole set of ice-making ice molds is relatively uniform, and the overall ice-making efficiency is improved.
  • the compressor can be stopped, and the unit can be cooled by the refrigerant water pump. The compressor is protected, the service life of the compressor is prolonged, and the overall ice-making efficiency is improved.
  • FIG. 1 is a schematic diagram of the structure and working principle of an ice making system according to an embodiment of the present invention.
  • an embodiment of the direct cooling ice making system for balancing compressor load includes an ice making device 1, and the ice making device 1 includes a set of composite ice molds.
  • the embodiment of the direct cooling ice making system further includes a compression condensing unit 5, and the compressor liquid supply pipe 12 of the compression condensing unit 5 is connected with a first refrigerant liquid supply header 6, and the first refrigerant liquid supply header 6 is connected.
  • the liquid inlet end of the first heat exchange tube is connected through the first refrigerant liquid supply branch pipe 9 , and the liquid outlet end of the first heat exchange tube is connected to the refrigerant gas return header 3 through the refrigerant gas return branch pipe 2 .
  • the return air header 3 is connected to the compression condensing unit 5 through the compressor return air pipe 4 .
  • the ice making device 1 further includes an upper cover plate 1-1 located at the upper end of the ice mold and a movable bottom plate 1-2 located at the lower end of the ice mold, wherein the upper cover plate 1-1 is used for heat preservation and is usually installed on the upper cover plate 1-1
  • the water injection pipe can also be installed without the water injection pipe, and the upper cover plate 1-1 can be removed to inject water. Cover with water after filling.
  • the function of the movable bottom plate 1-2 is to open the movable bottom plate 1-2 after the ice making is completed and the side walls of the ice cubes are melted, and the ice cubes are released by gravity.
  • the movable bottom plate 1-2 can also be replaced by a fixed bottom plate. In this case, the ice cubes after the side walls are melted need to be lifted upwards.
  • the movable bottom plate 1-2 is selected.
  • the embodiment of the direct cooling ice making system further includes a refrigerant tank 16 and a hot water tank 21 .
  • the embodiment of the direct cooling ice making system further includes a second heat exchange tube built in the side plate of the composite ice mold, and the liquid inlet end of the second heat exchange tube is connected to the second refrigeration pipe through the second refrigerant liquid supply branch pipe 10.
  • the refrigerant supply header 11, the second refrigerant supply header 11 is connected with a liquid supply header 13, and the liquid supply header 13 is connected to the refrigerant tank 16 through a pipeline with a refrigerant supply control valve 18 and a refrigerant water pump 17,
  • the liquid supply main 13 is also connected to the hot water tank 21 through a pipeline with a hot water supply control valve 19 and a hot water pump 20 .
  • the liquid outlet end of the second heat exchange tube is connected to the refrigerant liquid return header 7 through the refrigerant liquid return branch pipe 8 , and the refrigerant liquid return header 7 is connected to the liquid return header 22 , and the liquid return header 22 passes through the refrigerant liquid return control valve 15 .
  • the liquid return main pipe 22 is also connected to the hot water tank 21 through the hot water return control valve 14 .
  • the side plate of the ice mold is generally a double-layer metal plate, the first heat exchange tube and the second heat exchange tube are against the metal plate, and the first heat exchange tube and the second heat exchange tube abut each other, so as to facilitate high efficiency heat exchange.
  • the compression condensing unit 5 is turned on for cooling, and the refrigerant return control valve 15, the refrigerant water pump 17 and the refrigerant supply control valve 18 are in an open state, and the refrigerant water pump 17 is also in a running state.
  • the compressor condensing unit 5 In the late stage of ice making (for example, 2 hours before the end of ice making), the compressor condensing unit 5 is turned off, and the refrigerant water pump 17 alone supplies cooling until the end of ice making.
  • the refrigerant water pump 17 is turned off, and after the refrigerant returns to the refrigerant tank 16, the refrigerant return control valve 15 and the refrigerant supply control valve 18 are closed. Open the hot water return control valve 14, the hot water supply control valve 19 and the hot water water pump 20, and start the ice melting and demoulding.
  • the system can also set the upper limit temperature and lower limit temperature of the refrigerant medium.
  • the compressor is turned on at the upper limit temperature and stopped at the lower limit temperature, while the refrigerant water pump 17 is normally turned on. Under this condition, the compressor always operates within the economical and efficient cooling range, which is more economical and energy-saving.
  • the heat energy of the water in the hot water tank 21 can be derived from the compression condensing unit 5, or can be obtained in other ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种用于平衡压缩机负荷的直冷式制冰系统及其控制方法,复合冰模侧板中增设有第二换热管,它的进液端连接有供液总管(13),供液总管(13)通过带有冷媒供液控制阀(18)和冷媒水泵(17)的管路连接有冷媒箱(16);第二换热管的出液端连接有回液总管(22),回液总管(22)通过冷媒回液控制阀(15)连接冷媒箱(16)。在制冰过程中压缩冷凝机组(5)供冷与冷媒箱(16)供冷互相配合提供制冰冷能,属于双效制冰方式。同时在制冰过程中冷媒箱(16)的冷媒还具有均衡冷量的功能。

Description

用于平衡压缩机负荷的直冷式制冰系统及其控制方法 技术领域
本发明涉及一种直冷式制冰系统及其控制方法。
背景技术
作为现有技术的制冰系统,一种方式是直冷式制冰,即制冷剂直接蒸发式制冰系统。另一种方式是间接制冰方式,即由制冷剂冷却中间冷媒介质,再由冷媒介质进行冷却制冰,比如公开号为CN105674654A的中国发明专利申请所公开的“一种节能蓄冷制冰系统”,就是一种间接制冰系统。间接制冰方式的主要缺点是,制冰所需要的冷量均需要经过二次换热。因此制冷压缩机制冷效率低。其还存在制冰不均衡的现象。
现有的直冷式制冰系统,一般先将制冰的水注满组合冰模,然后开启压缩冷凝机组,对组合冰模制冷,开始制冰。制冰开始时,冰模中的水温较高,一般为20℃左右,有的地区的水温高达24℃以上,个别特殊情况达到30℃以上。制冰初期压缩机负荷过高,运行工况恶劣,吸汽压力和排汽压力过高,影响到压缩机的使用寿命。而在制冰的后期阶段,用冷负荷小,制冷压缩机控制困难,有回液现象发生。严重时影响制冷机的使用寿命。另外,制冰过程中,由于供冷不均匀,各冰模中的冻结速度差异较大。
技术问题
本发明所要解决的技术问题是,提供一种用于平衡压缩机负荷的直冷式制冰系统及其控制方法,使制冷压缩机的运行工况处于更加可控的平衡状态,制冷更稳定,制冰效率更高。
技术解决方案
用于平衡压缩机负荷的直冷式制冰系统,包括制冰装置,制冰装置包括一组复合冰模,所述的复合冰模包括内置有第一换热管的冰模侧板,制冰系统还包括压缩冷凝机组,压缩冷凝机组通过压缩机供液管连接有第一制冷剂供液集管,第一制冷剂供液集管通过第一制冷剂供液支管连接所述第一换热管的进液端,第一换热管的出液端通过制冷剂回气支管连接有制冷剂回气集管,制冷剂回气集管通过压缩机回气管连接压缩冷凝机组,其特征在于:所述的制冰系统还包括内置于复合冰模侧板中的第二换热管,第二换热管的进液端通过第二制冷剂供液支管连接有第二制冷剂供液集管,第二制冷剂供液集管连接有供液总管,供液总管通过带有冷媒供液控制阀和冷媒水泵的管路连接有冷媒箱;第二换热管的出液端通过制冷剂回液支管连接有制冷剂回液集管,制冷剂回液集管连接有回液总管,回液总管通过冷媒回液控制阀连接所述冷媒箱;制冰装置还包括上盖板和活动底板。
优选地,供液总管通过带有热水供水控制阀和热水水泵的管路连接有热水箱;回液总管通过热水回水控制阀连接所述热水箱。
优选地,所述的第一换热管和第二换热管均靠在所述冰模侧板上,并且第一换热管和第二换热管互相抵靠,以便于高效换热。
所述的制冰系统的控制方法,其特征在于:
第一批制冰的全过程或者第一批制冰前期,开启压缩冷凝机组,并开启冷媒回液控制阀、冷媒水泵和冷媒供液控制阀,边制冰边蓄冷,使冷媒箱中液体达到设定温度;
自第二批制冰开始,每一批制冰的注水阶段开启冷媒回液控制阀、冷媒水泵和冷媒供液控制阀,关闭压缩冷凝机组,通过低温冷媒对陆续加注的水进行预冷却;
然后开启压缩冷凝机组制冷,并使冷媒回液控制阀、冷媒水泵和冷媒供液控制阀处于开启状态;
在制冰后期阶段,关闭压缩冷凝机组,单独由冷媒水泵供冷至制冰结束。
优选地,制冰结束后,关闭冷媒水泵,等冷媒回流到冷媒箱后,再关闭冷媒回液控制阀和冷媒供液控制阀;开启热水回水控制阀、热水供水控制阀和热水水泵,开始融冰脱模。
有益效果
本发明的积极效果在于:本发明属于双效制冰方式。既具备直冷式换热效率高的优点,又具备间接制冰压缩机负荷均衡的优点。在制冰过程中压缩冷凝机组供冷与冷媒箱供冷互相配合提供制冰冷能,属于双效制冰方式。同时在制冰过程中冷媒箱的冷媒还具有均衡冷量的功能。
本发明系统开启压缩机制冷时,由于冷媒水泵也处于运行状态,所以制冷压缩机的运行工况处于可控的理想工作状态。制冷稳定,制冷效率高。制冷过程中,由于冷媒在冰模侧板内处于流动状态,使整套制冰冰模冷量供给处于相对均匀状态,提高了整体制冰效率。在制冰后期阶段,由于冷媒箱中的冷媒也达到了温度很低的情况,同时蓄冷冷媒水箱具有蓄冷功能。所以,可以停止压缩机,单位由冷媒水泵运行制冷即可。保护了压缩机,延长压缩机的使用寿命,提高整体制冰效率。
附图说明
图1是本发明实施例制冰系统的结构和工作原理示意图。
本发明的实施方式
下面结合实施例及其附图进一步说明本发明。
如图1,本发明用于平衡压缩机负荷的直冷式制冰系统实施例包括制冰装置1,制冰装置1包括一组复合冰模,所述的复合冰模包括内置有第一换热管的冰模侧板以及冰模上盖板和冰模活动式底板。所述的直冷式制冰系统实施例还包括压缩冷凝机组5,压缩冷凝机组5的压缩机供液管12连接有第一制冷剂供液集管6,第一制冷剂供液集管6通过第一制冷剂供液支管9连接所述第一换热管的进液端,第一换热管的出液端通过制冷剂回气支管2连接有制冷剂回气集管3,制冷剂回气集管3通过压缩机回气管4连接压缩冷凝机组5。
制冰装置1还包括位于冰模上端的上盖板1-1和位于冰模下端的活动底板1-2,其中上盖板1-1用于保温,通常在上盖板1-1上安装注水管,还可以不安装注水管,取下上盖板1-1注水。注满水后再盖上。其中活动底板1-2的作用是,制冰结束并且冰块侧壁融化后,打开该活动底板1-2,冰块靠重力脱出。活动底板1-2也可以被固定底板代替,这种情况下需要将侧壁融化后的冰块向上吊出。本实施例选择活动底板1-2。
所述的直冷式制冰系统实施例还包括冷媒箱16和热水箱21。
所述的直冷式制冰系统实施例还包括内置于复合冰模侧板中的第二换热管,第二换热管的进液端通过第二制冷剂供液支管10连接第二制冷剂供液集管11,第二制冷剂供液集管11连接有供液总管13,供液总管13通过带有冷媒供液控制阀18和冷媒水泵17的管路连接所述冷媒箱16,供液总管13还通过带有热水供水控制阀19和热水水泵20的管路连接所述热水箱21。第二换热管的出液端通过制冷剂回液支管8连接制冷剂回液集管7,制冷剂回液集管7连接有回液总管22,回液总管22通过冷媒回液控制阀15连接所述冷媒箱16,回液总管22还通过热水回水控制阀14连接所述热水箱21。
冰模侧板一般为双层金属板,第一换热管和第二换热管均靠在所述金属板上,并且第一换热管和第二换热管互相抵靠,以便于高效换热。
本发明实施例的控制方法如下:
第一批制冰的全过程或者第一批制冰前期(比如自第一批制冰开始至结束之前2个小时的期间),开启压缩冷凝机组5,并开启冷媒回液控制阀15、冷媒水泵17和冷媒供液控制阀18,边制冰边蓄冷,使冷媒箱16中液体达到设定温度。
自第二批制冰开始,每一批制冰的注水阶段(此阶段一般持续30分钟左右)仅开启冷媒回液控制阀15、冷媒水泵17和冷媒供液控制阀18,通过低温冷媒对陆续加注的水进行预冷却。此时,压缩冷凝机组5、热水回水控制阀14、热水供水控制阀19和热水水泵20均处于关闭状态。等水注满时,一般情况下水温能降低5℃左右。
然后开启压缩冷凝机组5制冷,并使冷媒回液控制阀15、冷媒水泵17和冷媒供液控制阀18处于开启状态,使冷媒水泵17也处于运行状态。
在制冰后期阶段(比如距离制冰结束2小时时),关闭压缩冷凝机组5,单独由冷媒水泵17供冷至制冰结束。
制冰结束后,关闭冷媒水泵17,等冷媒回流到冷媒箱16后,再关闭冷媒回液控制阀15和冷媒供液控制阀18。开启热水回水控制阀14、热水供水控制阀19和热水水泵20,开始融冰脱模。
该系统还可以将冷媒介质设定上限温度和下限温度。压缩机在上限温度开,到下限温度停,而冷媒水泵17是常开的。此工况下压缩机始终在经济高效的制冷范围内运行,更加经济节能。
热水箱21中水的热能可以来源于压缩冷凝机组5,也可以通过其他方式获取。

Claims (5)

  1. 用于平衡压缩机负荷的直冷式制冰系统,包括制冰装置(1),制冰装置(1)包括一组复合冰模,所述的复合冰模包括内置有第一换热管的冰模侧板,制冰系统还包括压缩冷凝机组(5),压缩冷凝机组(5)通过压缩机供液管(12)连接有第一制冷剂供液集管(6),第一制冷剂供液集管(6)通过第一制冷剂供液支管(9)连接所述第一换热管的进液端,第一换热管的出液端通过制冷剂回气支管(2)连接有制冷剂回气集管(3),制冷剂回气集管(3)通过压缩机回气管(4)连接压缩冷凝机组(5),其特征在于:所述的制冰系统还包括内置于复合冰模侧板中的第二换热管,第二换热管的进液端通过第二制冷剂供液支管(10)连接有第二制冷剂供液集管(11),第二制冷剂供液集管(11)连接有供液总管(13),供液总管(13)通过带有冷媒供液控制阀(18)和冷媒水泵(17)的管路连接有冷媒箱(16);第二换热管的出液端通过制冷剂回液支管(8)连接有制冷剂回液集管(7),制冷剂回液集管(7)连接有回液总管(22),回液总管(22)通过冷媒回液控制阀(15)连接所述冷媒箱(16);制冰装置(1)还包括上盖板(1-1)和活动底板(1-2)。
  2. 如权利要求1所述的用于平衡压缩机负荷的直冷式制冰系统,其特征在于:供液总管(13)通过带有热水供水控制阀(19)和热水水泵(20)的管路连接有热水箱(21);回液总管(22)通过热水回水控制阀(14)连接所述热水箱(21)。
  3. 如权利要求1或2所述的用于平衡压缩机负荷的直冷式制冰系统,其特征在于:所述的第一换热管和第二换热管均靠在所述冰模侧板上,并且第一换热管和第二换热管互相抵靠,以便于高效换热。
  4. 权利要求1或2或3所述的制冰系统的控制方法,其特征在于:
    第一批制冰的全过程或者第一批制冰前期,开启压缩冷凝机组,并开启冷媒回液控制阀、冷媒水泵和冷媒供液控制阀,边制冰边蓄冷,使冷媒箱中液体达到设定温度;
    自第二批制冰开始,每一批制冰的注水阶段开启冷媒回液控制阀、冷媒水泵和冷媒供液控制阀,关闭压缩冷凝机组,通过低温冷媒对陆续加注的水进行预冷却;
    然后开启压缩冷凝机组制冷,并使冷媒回液控制阀、冷媒水泵和冷媒供液控制阀处于开启状态;
    在制冰后期阶段,关闭压缩冷凝机组,单独由冷媒水泵供冷至制冰结束。
  5. 如权利要求4所述的控制方法,其特征在于:制冰结束后,关闭冷媒水泵,等冷媒回流到冷媒箱后,再关闭冷媒回液控制阀和冷媒供液控制阀;开启热水回水控制阀、热水供水控制阀和热水水泵,开始融冰脱模。
PCT/CN2021/139623 2020-12-24 2021-12-20 用于平衡压缩机负荷的直冷式制冰系统及其控制方法 WO2022135334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011550946.7 2020-12-24
CN202011550946 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022135334A1 true WO2022135334A1 (zh) 2022-06-30

Family

ID=75812490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139623 WO2022135334A1 (zh) 2020-12-24 2021-12-20 用于平衡压缩机负荷的直冷式制冰系统及其控制方法

Country Status (2)

Country Link
CN (1) CN112797686B (zh)
WO (1) WO2022135334A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117287862B (zh) * 2023-11-27 2024-02-13 佛山市宏成新材料科技有限公司 一种蔬菜冷链冰块制冰系统及制冰工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202040916U (zh) * 2011-03-15 2011-11-16 上海弗格森制冷设备有限公司 动态冰蓄冷制冷设备
CN202709539U (zh) * 2012-04-25 2013-01-30 上禾谷能源科技(北京)有限公司 复叠式溴化锂制冷和蓄冷系统
CN202734383U (zh) * 2012-06-26 2013-02-13 上海理工大学 一种小型双温蓄冷水冷柜
CN204006861U (zh) * 2014-07-29 2014-12-10 江苏天舒电器有限公司 一种工业用冷热平衡机组系统
CN105674654A (zh) * 2016-04-05 2016-06-15 周航 一种节能蓄冷制冰系统
CN211739594U (zh) * 2020-01-14 2020-10-23 宜兴市冰源制冷设备有限公司 一种直冷式块冰机的制冷系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104085B2 (ja) * 1991-03-28 1995-11-13 清水建設株式会社 氷蓄熱用製氷装置
CN101216235A (zh) * 2008-01-21 2008-07-09 河南新飞电器有限公司 蓄能冰箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202040916U (zh) * 2011-03-15 2011-11-16 上海弗格森制冷设备有限公司 动态冰蓄冷制冷设备
CN202709539U (zh) * 2012-04-25 2013-01-30 上禾谷能源科技(北京)有限公司 复叠式溴化锂制冷和蓄冷系统
CN202734383U (zh) * 2012-06-26 2013-02-13 上海理工大学 一种小型双温蓄冷水冷柜
CN204006861U (zh) * 2014-07-29 2014-12-10 江苏天舒电器有限公司 一种工业用冷热平衡机组系统
CN105674654A (zh) * 2016-04-05 2016-06-15 周航 一种节能蓄冷制冰系统
CN211739594U (zh) * 2020-01-14 2020-10-23 宜兴市冰源制冷设备有限公司 一种直冷式块冰机的制冷系统

Also Published As

Publication number Publication date
CN112797686A (zh) 2021-05-14
CN112797686B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN201852386U (zh) 一种冷风机热氟融霜制冷系统
CN107345718A (zh) 蓄冷式多压缩机制冷系统、压缩机组和压缩冷凝机组
WO2022135334A1 (zh) 用于平衡压缩机负荷的直冷式制冰系统及其控制方法
CN109737657A (zh) 一种自动直冻式透明冰块制冰机
CN201666706U (zh) 一种制冷系统
CN109883079B (zh) 一种吸收压缩交互再冷式复合制冷系统及方法
CN209326129U (zh) 一种节能制冷系统
CN211739598U (zh) 一种直冷式块冰机节能高效快速融冰系统
CN107819140B (zh) 全钒液流电池系统及其冷却方法
CN101858689B (zh) 节能冻干机及其控制方法
US4970869A (en) Tube type freezing unit and in-tube freezing method
CN214307732U (zh) 用于平衡压缩机负荷的直冷式制冰系统
CN206861968U (zh) 一种双介质果蔬快速预冷装置
CN116293978A (zh) 一种基于四氢呋喃水合物技术的一体式家用空调装置及方法
CN214371330U (zh) 一种蓄冷冻干机系统
CN104315635A (zh) 中小型大温差双工况动态流态冰冰蓄冷空调
CN213514536U (zh) 一种应用于直冷块冰机上的桶泵供液制冷系统
CN109059327A (zh) 一种使复叠式低温制冷机长周期稳定运行的装置和方法
CN204176831U (zh) 中小型大温差双工况动态流态冰冰蓄冷空调
CN107192202A (zh) 一种双介质果蔬快速预冷装置及控制方法
CN114017943A (zh) 一种新型热驱动吸收式制冰机组及其方法
CN208907690U (zh) 一种氨制冷系统
CN2611840Y (zh) 蓄冷式压缩空气冷冻干燥机
CN219494436U (zh) 一种二级制冷水冷机组
CN115371292B (zh) 回气油分离纯化和排液化霜回液制冷的满液式制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909330

Country of ref document: EP

Kind code of ref document: A1