WO2022135204A1 - 帧结构的配置方法及装置、电子设备和计算机可读存储介质 - Google Patents

帧结构的配置方法及装置、电子设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2022135204A1
WO2022135204A1 PCT/CN2021/137425 CN2021137425W WO2022135204A1 WO 2022135204 A1 WO2022135204 A1 WO 2022135204A1 CN 2021137425 W CN2021137425 W CN 2021137425W WO 2022135204 A1 WO2022135204 A1 WO 2022135204A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame structure
time slots
base station
terminal
time
Prior art date
Application number
PCT/CN2021/137425
Other languages
English (en)
French (fr)
Inventor
李数林
宫建斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA3205496A priority Critical patent/CA3205496A1/en
Priority to EP21909201.2A priority patent/EP4250844A1/en
Priority to US18/267,525 priority patent/US20240049196A1/en
Publication of WO2022135204A1 publication Critical patent/WO2022135204A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a frame structure configuration method and apparatus, an electronic device, and a computer-readable storage medium.
  • the introduction of large bandwidth, low latency and multi-antenna technology can ensure that the wireless communication network can support the transmission of larger data traffic and wider cell coverage.
  • the frame structure used by the 5th Generation Wireless Systems (5G) for ultra-long-distance coverage is a fixed frame structure. Configuring a frame structure for data transmission by using a fixed frame structure corresponding to a supportable cell coverage distance may lead to a problem that radio resources may be wasted when a terminal (eg, a terminal close to the base station) communicates with the base station.
  • a terminal eg, a terminal close to the base station
  • An embodiment of the present application provides a method for configuring a frame structure, including: acquiring a real-time distance between a base station and a terminal; and determining the number of time slots occupied by a guard period (GP) according to the real-time distance and the propagation speed of a wireless signal ; and determine the adaptive frame structure of the base station and the terminal in the data transmission process according to the number of time slots occupied by the GP, the number of uplink time slots and the number of downlink time slots.
  • GP guard period
  • An embodiment of the present application provides an apparatus for configuring a frame structure, including: a distance determination module configured to obtain a real-time distance between a base station and a terminal; a calculation module configured to determine the distance occupied by a GP according to the real-time distance and the propagation speed of a wireless signal The number of time slots; and the frame structure configuration module, configured to determine the adaptive frame structure of the base station and the terminal in the data transmission process according to the number of time slots occupied by the GP, the number of uplink time slots and the number of downlink time slots.
  • Embodiments of the present application provide an electronic device, including: one or more processors; a memory on which one or more computer programs are stored, when the one or more computer programs are executed by the one or more processors When executed, the one or more processors are caused to implement the frame structure configuration method in the embodiment of the present application.
  • An embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the method for configuring the frame structure in the embodiment of the present application.
  • FIG. 1 shows a schematic flowchart of a method for configuring a frame structure in an embodiment of the present application.
  • FIG. 2 shows another schematic flowchart of a method for configuring a frame structure in an embodiment of the present application.
  • FIG. 3 shows a schematic flowchart of an information transmission method in an embodiment of the present application.
  • FIG. 4 shows a schematic structural diagram of an apparatus for configuring a frame structure in an embodiment of the present application.
  • FIG. 5 shows a schematic structural diagram of an information transmission apparatus in an embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of a base station in an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a system for configuring a frame structure in an embodiment of the present application.
  • FIG. 9 shows a schematic composition diagram of an adaptive frame structure when the distance between the 5G base station and the 5G terminal in the embodiment of the present application is 300 km or 250 km.
  • FIG. 10 shows a schematic composition diagram of an adaptive frame structure when the distance between the 5G base station and the 5G terminal in the embodiment of the present application is 200 km.
  • FIG. 11 shows a schematic composition diagram of an adaptive frame structure when the distance between the 5G base station and the 5G terminal in the embodiment of the present application is 100 km or 150 km.
  • FIG. 12 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing a frame structure configuration method or an information transmission method according to an embodiment of the present application.
  • Time Division Duplexing In Time Division Duplexing (TDD) technology, the occupied time of uplink and downlink can be flexibly configured. For example, for the download service of TDD, the downlink time can be set to 70% and the uplink time can be set to 30%, so that the The spectrum utilization of TDD can be greatly improved.
  • Frequency Division Duplexing FDD
  • spectrum resources configured in pairs for uplink and downlink are used; while in TDD technology, the same segment of spectrum resources can be used for uplink and downlink, and fragmented spectrum resources can be easily used. So that TDD technology has been more widely used.
  • a guard period (Guard Period, GP) needs to be considered.
  • the GP is the guard interval between the transmission time slot and the reception time slot of the base station (or terminal), so as to avoid the confusion of the transmission time slot and the reception time slot.
  • the GP includes the transmission delay and the conversion time of equipment sending and receiving.
  • the length of the GP determines the maximum supportable cell coverage and provides a transition time for the stability of the radio frequency sending and receiving conversion. If the frame structure for data transmission is configured according to the maximum supportable cell coverage radius, radio resources used by terminals (for example, terminals that communicate within a range close to the base station) will be wasted.
  • FIG. 1 shows a schematic flowchart of a method for configuring a frame structure according to an embodiment of the present application.
  • the frame structure configuration method can be applied to a frame structure configuration device, and the frame structure configuration device can be set in the base station or in the terminal.
  • the method for configuring a frame structure in this embodiment of the present application includes the following steps S110 to S130.
  • Step S110 acquiring the real-time distance between the base station and the terminal.
  • the real-time distance is the actual distance between the base station and the terminal, and the distance between the terminal and the base station can be determined according to the real-time movement of the terminal.
  • the base station can be a macro base station or a micro base station in the 5th Generation Wireless Systems (5G) network
  • the terminal can be a smartphone, mobile terminal and other devices in the 5G network
  • the base station and terminal can also be the fourth
  • the 4G base stations and 4G terminals in the generation wireless communication system (4th Generation Wireless Systems, 4G) the above types of base stations and terminals are only examples, and can be specifically limited according to the actual situation, other unspecified types of base stations and terminals are also It is within the protection scope of the present application and will not be repeated here.
  • the above method for obtaining the real-time distance is only an example, and can be set according to specific conditions. Other methods for obtaining the real-time distance that are not described are also within the protection scope of the present application, and will not be repeated here.
  • Step S120 Determine the number of time slots occupied by the GP according to the real-time distance and the propagation speed of the wireless signal.
  • guard time slot GP is the guard time interval during which the transmitting end of the base station side sends information to the receiving end. Adding GP between the downlink time slot and the uplink time slot can ensure that there is no code between the uplink symbol and the downlink symbol. To avoid inter-crosstalk, a cyclic prefix (Cyclic Prefix, CP) can also be added in the GP to ensure the mutual orthogonality of the subcarriers.
  • CP Cyclic Prefix
  • Step S130 Determine the adaptive frame structure of the base station and the terminal in the data transmission process according to the number of time slots occupied by the GP, the number of uplink time slots and the number of downlink time slots.
  • the adaptive frame structure includes at least one radio superframe, the radio superframe includes at least two radio frames, and each radio frame includes at least N time slots, where N is an integer greater than or equal to 1.
  • one radio frame includes 20 time slots
  • one radio superframe includes at least 40 time slots
  • each time slot includes 14 orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) ) symbol
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of time slots occupied by the guard time slot GP is determined by the real-time distance between the base station and the terminal and the propagation speed of the wireless signal; in a communication scenario with ultra-long-distance coverage, the GP can be dynamically adjusted according to the real-time distance
  • the loss of slot resources and the waste of wireless resources are avoided, so that the number of downlink time slots can be dynamically adjusted according to the real-time distance between the terminal and the base station, which improves the performance of the terminal when performing downlink services and improves the user experience.
  • the acquiring the real-time distance between the base station and the terminal in step S110 includes: extracting positioning information from a positioning system; and determining the real-time distance according to the positioning information.
  • the positioning information of the base station and the terminal is obtained by any one or more of the Global Positioning System (Global Positioning System, GPS), Beidou satellite navigation system, Galileo satellite navigation system or the Russian global navigation satellite system, and then the base station is calculated. Real-time distance from the terminal. It should be noted that different positioning systems obtain different positioning information, but the positioning information includes the position of the terminal and the position of the base station, and then the relative position information between the terminal and the base station can be calculated, and then Calculate the real-time distance between the base station and the terminal to ensure the accuracy of the real-time distance.
  • the Global Positioning System Global Positioning System, GPS
  • Beidou satellite navigation system Beidou satellite navigation system
  • Galileo satellite navigation system Galileo satellite navigation system or the Russian global navigation satellite system
  • the acquiring the real-time distance between the base station and the terminal in step S110 includes: acquiring real-time measurement information reported by the terminal in real time; and estimating the real-time distance according to the real-time measurement information.
  • the current time information of the terminal can be extracted from the real-time measurement information reported by the terminal in real time, and the time delay difference between the base station and the terminal can be obtained by comparing the time information with the time information of the base station itself.
  • the real-time data transmission speed can estimate the real-time distance.
  • the real-time distance can be obtained quickly, so that the adaptive frame structure used by the base station can be adjusted in real time, avoiding the waste of time slot resources and improving the terminal. Communication efficiency with base stations.
  • the determining the number of time slots occupied by the GP according to the real-time distance and the propagation speed of the wireless signal in step S120 includes: calculating the duration occupied by the GP according to the real-time distance and the propagation speed of the wireless signal; The duration and the duration corresponding to each Orthogonal Frequency Division Multiplexing (OFDM) symbol determine the number of OFDM symbols corresponding to the GP; and determine the GP according to the number of OFDM symbols corresponding to the GP and the number of OFDM symbols corresponding to each time slot The number of time slots occupied.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Orthogonal Frequency Division Multiplexing (OFDM) symbol is a symbol that realizes parallel transmission of high-speed serial data through frequency division multiplexing. enter.
  • the real-time distance is 300km and the subcarrier spacing is 30KHz (at this time, the number of OFDM symbols in each slot corresponding to the subcarrier spacing is 14)
  • the number of OFDM symbols corresponding to the GP is about 56
  • the number of time slots occupied by the GP is about 4 time slots.
  • the number of time slots occupied by the GP can be adjusted in real time according to the real-time distance between the base station and the terminal to reduce the number of time slots occupied by the GP, increase the number of downlink time slots, improve the real-time processing capability of downlink services, and improve user experience Spend.
  • the configuration method of the frame structure further comprises: updating the configuration information corresponding to the adaptive frame structure, and generating the configuration information of the updated frame structure; generating an update message according to the configuration information of the updated frame structure; and according to the update message , update the adaptive frame structure.
  • the configuration information may include any one or more of the number of uplink time slots, the number of downlink time slots, the number of uplink symbols, the number of downlink symbols, the uplink transmission period and the downlink transmission period.
  • the above configuration information also needs to be updated synchronously.
  • the base station will send the updated configuration information of the frame structure to the terminal, so as to ensure that the terminal can communicate with the base station using the same adaptive frame structure and improve the communication quality.
  • the updated configuration information of the frame structure includes any one or more of the number of uplink time slots, the number of downlink time slots, the number of uplink symbols, the number of downlink symbols, the uplink transmission period and the downlink transmission period. It should be noted that the configuration information of the updated frame structure is not limited to the above information, and the above configuration information of the updated frame structure is only an example, and can be set according to the actual situation. The configuration information of the frame structure also falls within the protection scope of the present application, and will not be repeated here.
  • the base station when there are multiple terminals, the base station will calculate in real time the duration occupied by the GP corresponding to the terminal farthest from the base station in the current cell, update the adaptive frame structure according to the duration occupied by the GP, and update the updated
  • the configuration information corresponding to the adaptive frame structure is delivered to all terminals, so that all terminals in the cell and the base station can communicate using the same frame structure, thereby improving communication efficiency.
  • the updating the adaptive frame structure according to the update message includes: according to the update message, updating the frame structure used by the base station and the terminal to the adaptive frame structure.
  • the base station when it is determined that the adaptive frame structure is generated by the base station, the base station generates a reconfiguration message according to the configuration information corresponding to the adaptive frame structure, and sends the reconfiguration message to the terminal, so that the terminal can Configure the message, update its own frame structure, so that the frame structure used by the base station and the terminal when communicating is consistent, avoid parsing errors in the communication process, improve the communication quality between the base station and the terminal, and improve the user experience.
  • the updating the adaptive frame structure according to the update message includes: according to the update message, updating the frame structure used by the terminal to be the adaptive frame structure; maintaining the frame structure used by the base station as a preset frame structure not change, and make the base station parse the received communication message sent by the terminal according to the update message.
  • the terminal For example, if it is determined that the adaptive frame structure is generated by the terminal, the terminal generates and sends a real-time scheduling message to the base station according to the updated configuration information, and the base station still transmits data according to the preset "initial configuration frame structure"
  • the updated configuration information can be used to parse and check the message sent by the terminal to ensure the correctness of the acquired terminal information.
  • step S130 that is, after the step of determining the adaptive frame structure of the base station and the terminal in the data transmission process according to the number of time slots occupied by the GP, the number of uplink time slots and the number of downlink time slots
  • the method for configuring the frame structure further includes: dynamically updating the adaptive frame structure according to the real-time distance and the preset distance threshold.
  • the adaptive frame structure includes at least one radio superframe, the radio superframe includes at least two radio frames, and each of the radio frames includes at least N time slots, where N is an integer greater than or equal to 1.
  • the real-time distance will change in real time according to the real-time movement of the terminal. For example, within a preset time period (for example, the preset time period is 5 seconds), the real-time distance between the terminal and the base station changes from 300 kilometers to 250 kilometers, and the change value of the real-time distance reaches or exceeds the preset distance threshold. (For example, the preset distance threshold is 50 kilometers), the base station and the terminal will automatically update the adaptive frame structure, that is, update the adaptive frame structure from the frame structure corresponding to 300 kilometers to the frame structure corresponding to 250 kilometers, so as to Reduce the number of time slots occupied by GP and increase the number of time slots occupied by downlink time slots, avoid waste of radio resources, and improve downlink service processing capability.
  • a preset time period for example, the preset time period is 5 seconds
  • the base station and the terminal will automatically update the adaptive frame structure, that is, update the adaptive frame structure from the frame structure corresponding to 300 kilometers to the frame structure corresponding to 250 kilometers, so as to Reduce the number of time slots
  • FIG. 2 shows another schematic flowchart of a method for configuring a frame structure in an embodiment of the present application.
  • the frame structure configuration method can be applied to a frame structure configuration device, and the frame structure configuration device can be set in the base station or in the terminal.
  • the method for configuring a frame structure in this embodiment of the present application may include the following steps S210 to S260.
  • Step S210 acquiring the real-time distance between the base station and the terminal.
  • Step S220 Determine the number of time slots occupied by the GP according to the real-time distance and the propagation speed of the wireless signal.
  • Step S230 Determine the adaptive frame structure of the base station and the terminal in the data transmission process according to the number of time slots occupied by the GP, the number of uplink time slots and the number of downlink time slots.
  • steps S210 to S230 in this embodiment are respectively the same as steps S110 to S130 in the previous embodiment, and are not repeated here.
  • Step S240 according to the number of downlink time slots and the number of uplink time slots in the adaptive frame structure, determine the number of processes of hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ).
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest
  • the adaptive frame structure can include downlink time slots, uplink time slots and special time slots. Due to the time-varying characteristics and multipath fading of wireless channels, as well as some unpredictable interference, the transmission of wireless signals will fail. Forward Error Correction (FEC) coding technology and Automatic Repeat -reQuest, ARQ) and other methods to carry out error control, so as to ensure the quality of service in the communication process.
  • FEC Forward Error Correction
  • ARQ Automatic Repeat -reQuest
  • ARQ and FEC are used in combination, that is, a hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) system.
  • HARQ Hybrid Automatic Repeat reQuest
  • FEC is used to reduce the number of retransmissions and bit error rate
  • ARQ retransmission and Cyclic Redundancy Check (CRC) are used to ensure the bit error rate requirement of packet data transmission.
  • CRC Cyclic Redundancy Check
  • the HARQ mechanism automatically corrects errors within the range of error correction capability, increases the reliability of the communication system, and improves the transmission efficiency of the communication system.
  • the number of HARQ processes may include the number of uplink HARQ processes and the number of downlink HARQ processes. When a terminal is processing downlink services, the number of its downlink HARQ processes will affect the downlink processing capability of the terminal.
  • the number of HARQ processes when the number of downlink time slots and the number of uplink time slots in the adaptive frame structure remain unchanged, the number of HARQ processes also remains unchanged, and the number of HARQ processes is the current adaptive frame.
  • the maximum number of HARQ processes that the structure can support For example, when it is determined that the number of HARQ processes is 16, it means that in the current adaptive frame structure, a 4-bit space needs to be used to represent the number of HARQ processes, and the 4-bit space needs to be performed between the base station and the terminal. It is reflected in the configuration information during data transmission to ensure the consistency of the base station and the terminal during data transmission.
  • Step S250 Determine the feedback delay according to the time interval between the downlink time slot and the uplink time slot.
  • the average method will be used to compare each uplink time slot with each The downlink time slot corresponds. For example, if 1 uplink time slot corresponds to 6 downlink time slots, the feedback delay is the time length corresponding to 6 time slots.
  • the feedback delay can also be represented by the index value of the default time domain resource indication K1 list in the 5G communication protocol.
  • Step S260 according to the number of HARQ processes and/or the feedback delay, update the configuration information of the base station and the terminal during data transmission.
  • the number of HARQ processes and the feedback delay need to be written into the configuration information using binary numbers. For example, if the number of HARQ processes is 16, a space of 4 bits is required to represent the number of HARQ processes; If the delay is 32 milliseconds, a space of 5 bits is needed to represent the feedback delay, so as to reduce the data transmission capacity.
  • the configuration information of the base station and the terminal during data transmission needs to be updated synchronously to ensure that the configuration of the terminal and the base station is the same, and to avoid errors in message parsing, which may affect the communication quality.
  • the number of time slots occupied by the GP is determined by the real-time distance between the base station and the terminal and the propagation speed of the wireless signal; in a communication scenario with ultra-long-distance coverage, the occupied by the GP can be dynamically adjusted according to the real-time distance and the number of time slots occupied by the GP, the number of uplink time slots and the number of downlink time slots, determine the adaptive frame structure of the base station and the terminal in the data transmission process, which can reduce the time slots brought by the GP
  • the loss of resources is avoided, the waste of wireless resources is avoided, the number of downlink time slots can be dynamically adjusted according to the real-time distance between the terminal and the base station, and the performance of the terminal when performing downlink services is improved.
  • the configuration information of the base station and the terminal during data transmission is updated, which increases the reliability of the communication system and improves the transmission efficiency of the communication system.
  • the step S240 determining the number of processes of the hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ) according to the number of downlink time slots and the number of uplink time slots in the adaptive frame structure includes: Determine the number of downlink HARQ processes according to the number of downlink time slots; determine the number of uplink HARQ processes according to the transmission delay correspondence between uplink time slots and downlink time slots; and determine the number of processes of downlink HARQ and uplink HARQ processes according to the number of downlink time slots Quantity, which determines the number of HARQ processes.
  • each wireless superframe includes 40 time slots. If there are 30 downlink time slots in each wireless superframe, At this time, the maximum number of HARQ processes that can be supported in the downlink is 30.
  • the number of time slots occupied by the GP can be dynamically adjusted through the real-time distance between the terminal and the base station; usually, one uplink time slot corresponds to 6 downlink time slots , when the adaptive frame structure includes 30 downlink time slots and 4 special (F) time slots (that is, the time slots occupied by the GP), the corresponding number of uplink time slots is 6, that is, the first uplink time slot Corresponding to the 0th to 5th downlink time slots of the first radio frame, the second uplink time slot corresponds to the 6th to 11th downlink time slots of the first radio frame, and the 3rd uplink time slot corresponds to the first The 12th to 17th downlink time slots of the radio frame correspond, and the 4th uplink time slot corresponds to the 18th to 19th downlink time slots of the first radio frame and the 0th to 3rd downlink time slots of the second radio frame.
  • F special
  • the 5th uplink time slot corresponds to the 4th to 9th downlink time slots of the second radio frame
  • the 6th uplink time slot corresponds to the 0F to 3F time slots, so as to ensure the synchronization of the uplink and downlink time slots.
  • the number of downlink HARQ processes is determined according to the number of downlink time slots; the number of uplink HARQ processes is determined according to the transmission delay correspondence between uplink time slots and downlink time slots, so that the number of uplink and downlink HARQ processes can be determined according to the base station and the downlink time slot.
  • the real-time distance between terminals is adjusted in real time, and errors are automatically corrected within the range of error correction capability. If the error correction range is exceeded, the sender is required to re-send, which not only increases the reliability of the communication system, but also improves the transmission efficiency of the communication system.
  • the updating of the configuration information of the base station and the terminal during data transmission according to the number of HARQ processes and/or the feedback delay in step S260 includes: according to the number of HARQ processes and/or the feedback delay, generating Downlink Control Information (Downlink Control Information, DCI); update the configuration information of the uplink control channel (Physical Uplink Control Channel, PUCCH) according to the DCI, and generate the updated configuration information of the PUCCH, and the updated configuration information of the PUCCH is used to enable the The base station and the terminal perform data transmission.
  • DCI Downlink Control Information
  • PUCCH Physical Uplink Control Channel
  • the feedback delay K1 of the 5G low-frequency communication can be represented by the index value of the default time domain resource indication K1 list in the 5G communication protocol.
  • the index value may be configured in the PDSCH-to-HARQ_feedback timing indicator (PDSCH-to-HARQ_feedback timing indicator) in the configuration information.
  • the feedback delay K1 into the feedback delay indicator (PDSCH-to-HARQ_feedback timing indicator), and then combining the number of HARQ processes to generate DCI; then update the DCI to the Uplink Control Channel (Physical Uplink Control Channel, PUCCH) ) configuration information to ensure normal data transmission between the base station and the terminal and avoid data transmission errors.
  • PUCCH Physical Uplink Control Channel
  • the above configuration information needs to occupy a space of 8 bits in the configuration information of the PUCCH.
  • a wireless superframe is used as the configuration unit of the adaptive frame structure. The number of bits occupied by the feedback delay K1 and the number of processes of HARQ information has exceeded 8 bits, and idle bits in other fields need to be occupied to ensure normal communication.
  • the generating DCI according to the number of HARQ processes and/or the feedback delay includes: calculating the length of bytes to be filled occupied by the number of HARQ processes and/or the feedback delay; The preset information fills the byte length, increases the transmission byte length occupied by the DCI, and generates a new DCI; and fills the number of HARQ processes and/or the feedback delay into the new DCI.
  • set the length of the preset information padding byte to 8 bits, according to the number of real-time HARQ processes and the number of bytes to be occupied by the feedback delay, change the length of the bytes used to represent the number of HARQ processes in the DCI from the original
  • the length of the byte used to characterize the feedback delay in the DCI is increased from the original 4 bits to 6 bits, the length of the byte to be filled is 12 bits, and it is necessary to increase the length of the byte occupied by the DCI.
  • a new DCI is generated; the number of HARQ processes and/or feedback delay is filled into the new DCI, which can ensure the integrity of the DCI information and avoid the omission and error of transmission information, Ensure the accuracy of communication between the base station and the terminal.
  • the generating the downlink control information DCI according to the number of HARQ processes and/or the feedback delay includes: calculating the length of bytes to be filled occupied by the number of HARQ processes and/or the feedback delay; The byte length, the idle field length of the DCI and the preset padding byte length are used to fill the number of HARQ processes and/or the feedback delay into the DCI.
  • the length of the idle field in DCI is 8 bits
  • the length of the preset padding byte is 8 bits (that is, during normal communication, the sum of the length of 4 bits of the number of HARQ processes and the length of 4 bits of the feedback delay) , through the real-time distance between the base station and the terminal, dynamically adjust the length of the time slot occupied by the GP in the adaptive frame structure, thereby changing the number of HARQ processes and/or the feedback delay, for example, the word to be filled
  • the section length is changed to 12 bits, 4 bits in the idle field in the DCI need to be occupied to ensure the integrity of the number of HARQ processes and/or the feedback delay information.
  • the number of HARQ processes can also be represented by means of identification. For example, when the number of HARQ processes is 32, 1 bit in the idle field in the DCI is used to represent the number of HARQ processes, that is, when the number of HARQ processes is 32 When the idle bit identifier is 0, it means that the current number of HARQ processes is a normal number (for example, 12 or 13 is less than 16); when the idle bit identifier is 1, it means that the current number of HARQ processes is a normal number Add 16 to get the sum (ie, 12+16, or 13+16, etc.).
  • the idle field in the DCI By occupying the idle field in the DCI to transmit the number of HARQ processes and/or the feedback delay, the waste of resources in the idle field is avoided, the integrity of the transmitted data is ensured, and the data transmission efficiency is improved.
  • FIG. 3 shows a schematic flowchart of an information transmission method in an embodiment of the present application.
  • the information transmission method can be applied to a base station or a terminal.
  • the information transmission method may include the following steps S310 and S320.
  • step S310 an adaptive frame structure is used to carry the data to be transmitted, and a message to be transmitted is generated.
  • the adaptive frame structure may be any of the adaptive frame structures in the embodiments of the present application.
  • the data to be transmitted may be service data of a certain service. For example, when a user downloads a video file, the data to be transmitted is the downloaded video file.
  • the above data to be transmitted are only examples, and specific settings can be made according to the actual situation. Other data to be transmitted that are not described are also within the protection scope of this application, and are not repeated here.
  • the adaptive frame structure carrying the data to be transmitted may include: Occupies 2 special time slots GP, 32 downlink time slots and 6 uplink time slots.
  • the GP in the adaptive frame structure carrying the data to be transmitted needs at least 19 OFDM symbols, that is, the GP occupies one complete F slot (the first F slot),
  • 5 OFDM symbols in the second F time slot need to be occupied, and the remaining 9 OFDM symbols in the second F time slot can be used for transmitting uplink symbols or downlink symbols.
  • the adaptive frame structure also includes 32 downlink time slots and 6 uplink time slots. At this time, since the real-time distance between the base station and the terminal is shortened compared with that of 150 kilometers, 9 OFDM symbols are freed to transmit uplink data or downlink data, which improves the efficiency of data transmission.
  • step S320 the message to be transmitted is transmitted to the peer device.
  • the peer device may be a base station or a terminal.
  • the peer device is a device that communicates with this device. For example, when the device executing the information transmission method is a base station, the peer device is the corresponding terminal; when the device executing the information transmission method is a terminal, the peer device is the corresponding terminal. base station.
  • the peer device described above is only an example, and specific settings can be made according to the actual situation. Other peer devices that are not described are also within the protection scope of the present application, and will not be repeated here.
  • any adaptive frame structure in the embodiments of the present application is used to carry data to be transmitted, and a message to be transmitted is generated; the message to be transmitted is transmitted to the opposite end device, so that the adaptive frame structure can follow
  • the real-time distance between the terminal and the base station is dynamically adjusted, which can avoid the waste of wireless resources, improve the performance of the terminal when performing downlink services, and improve the user experience.
  • FIG. 4 shows a schematic structural diagram of an apparatus for configuring a frame structure in an embodiment of the present application.
  • the frame structure configuration apparatus may include a distance determination module 401 , a calculation module 402 and a frame structure configuration module 403 .
  • the distance determination module 401 is configured to obtain the real-time distance between the base station and the terminal; the calculation module 402 is configured to determine the number of time slots occupied by the GP according to the real-time distance and the propagation speed of the wireless signal; and the frame structure configuration module 403 is configured to occupy according to the GP
  • the number of time slots, the number of uplink time slots and the number of downlink time slots determine the adaptive frame structure of the base station and the terminal in the data transmission process.
  • the real-time distance between the base station and the terminal is obtained through the distance determination module 401; then the calculation module 402 is used to determine the number of time slots occupied by the GP according to the real-time distance and the propagation speed of the wireless signal Under the communication scenario of ultra-long distance coverage, the number of time slots occupied by the GP can be dynamically adjusted according to the real-time distance between the base station and the terminal; the frame structure configuration module 403 is based on the number of time slots occupied by the GP, the number of uplink time slots and the number of downlink time slots to determine the adaptive frame structure of the base station and the terminal in the data transmission process, which can reduce the loss of time slot resources caused by GP, avoid the waste of radio resources, and make the number of downlink time slots change with the terminal.
  • the real-time distance between the base station and the base station is dynamically adjusted, which improves the performance of the terminal when performing downlink services and improves the user experience.
  • FIG. 5 shows a schematic structural diagram of an information transmission apparatus in an embodiment of the present application.
  • the information transmission apparatus may include a generation module 501 and a transmission module 502 .
  • the generating module 501 is configured to use any adaptive frame structure in the embodiments of the present application to carry the data to be transmitted, and generate a message to be transmitted; and the transmission module 502 is configured to transmit the message to be transmitted to the peer device.
  • the generation module 501 uses any of the adaptive frame structures in the embodiments of the present application to carry the data to be transmitted, and generates a message to be transmitted; the transmission module 502 transmits the message to be transmitted to the peer device, which can avoid
  • the waste of wireless resources enables the adaptive frame structure to be dynamically adjusted according to the real-time distance between the terminal and the base station, improving the performance of the terminal when performing downlink services and improving the user experience.
  • FIG. 6 shows a schematic structural diagram of a base station in an embodiment of the present application.
  • the base station 610 may include a frame structure configuration device 611, and the frame structure configuration device 611 may be configured to implement the frame structure configuration method in this embodiment of the present application.
  • the base station 610 dynamically adjusts the adaptive frame structure between the terminal and the base station through the frame structure configuration device 611 according to the real-time distance between the terminal and the base station, and generates a reconfiguration message according to the adaptive frame structure, and sends a reconfiguration message.
  • the configuration message is sent to the terminal, so that the terminal can update the frame structure used by itself to the adaptive frame structure, so as to ensure that the frame structure between the terminal and the base station is the same.
  • the frame structure configuration device 611 in the base station 610 can adjust the adaptive frame structure required for communication in real time, dynamically adjust the number of OFDM symbols occupied by the GP, and reduce the time caused by the GP.
  • the loss of slot resources and the waste of wireless resources are avoided, so that the number of downlink time slots can be dynamically adjusted according to the real-time distance between the terminal and the base station, which improves the performance of the terminal when performing downlink services and improves the user experience.
  • FIG. 7 shows a schematic structural diagram of a terminal in an embodiment of the present application.
  • the terminal 710 may include a frame structure configuration device 711, and the frame structure configuration device 711 is configured to implement the frame structure configuration method in this embodiment of the present application.
  • the terminal 710 dynamically adjusts the adaptive frame structure between the terminal and the base station through the frame structure configuration device 711 according to the real-time distance between the terminal and the base station, and generates a report message according to the adaptive frame structure, and sends the report
  • the message is sent to the base station, so that the base station can parse the message sent by the terminal 710 according to the adaptive frame structure, so as to avoid communication obstacles caused by error parsing of the message, and improve user experience.
  • the frame structure configuration device 711 in the terminal 710 can dynamically adjust the adaptive frame structure required for communication, dynamically adjust the number of OFDM symbols occupied by the GP, and reduce the number of OFDM symbols occupied by the GP.
  • the loss of time slot resources and the waste of radio resources are avoided; at the same time, the base station can parse the message sent by the terminal according to the adaptive frame structure, so as to avoid communication obstacles caused by error parsing of the message, and improve the user experience.
  • FIG. 8 shows a schematic structural diagram of a system for configuring a frame structure in an embodiment of the present application.
  • the configuration system of the frame structure includes a 5G base station 810 and a 5G terminal 820 in a 5G network.
  • the configuration system of the frame structure can be applied to an aircraft route or an ocean route, for example, in an ultra-long-distance coverage scenario where the distance between the 5G base station 810 and the 5G terminal 820 is greater than or equal to 100 kilometers.
  • the following steps S801 to S804 may be used to implement a method for configuring the frame structure of the 5G base station 810 and the 5G terminal 820 during long-distance communication.
  • Step S801 acquiring the real-time distance between the 5G base station 810 and the 5G terminal 820 .
  • the real-time distance between the 5G base station 810 and the 5G terminal 820 can be obtained through the Global Positioning System (GPS), or the time information can be extracted from the measurement information obtained by the 5G base station 810 and reported in real time by the 5G terminal 820 . , and then combined with the propagation speed of the wireless signal to calculate the real-time distance between the 5G base station 810 and the 5G terminal 820 .
  • GPS Global Positioning System
  • the above method for obtaining the real-time distance between the 5G base station 810 and the 5G terminal 820 is only an example, and can be set according to specific conditions. Other unexplained methods for obtaining the real-time distance are also within the protection scope of this application. It is not repeated here.
  • Step S802 according to the acquired real-time distance and the propagation speed of the wireless signal, calculate the time length occupied by the guard time slot (GP).
  • the following formula can be used to calculate the duration T occupied by the GP:
  • T represents the time occupied by the GP
  • d represents the real-time distance between the 5G base station 810 and the 5G terminal 820
  • C represents the propagation speed of the wireless signal.
  • the propagation speed of the wireless signal is the speed of light, which is about 300,000 kilometers per second.
  • Step S803 according to the real-time distance between the 5G base station 810 and the 5G terminal 820, determine a specific adaptive frame structure to be used.
  • the 5G base station 810 and the 5G terminal 820 are configured according to the first frame structure (5 milliseconds per frame) or the second frame structure (10 milliseconds per frame) used in common application scenarios
  • the frame structure during communication will cause the number of downlink subframes in one radio frame to be too small to meet the service requirements of the 5G terminal 820 .
  • two wireless frames are combined into one wireless superframe (the duration of each frame is 20 milliseconds), and the wireless superframe is used to configure the frame structure when the 5G base station 810 communicates with the 5G terminal 820, so as to The occupation ratio of downlink subframes is increased to meet the service requirements of users.
  • the adaptive frame structure can be dynamically implemented according to the real-time distance. Adjustment to avoid waste of radio resources, improve the performance of the terminal when performing downlink services, and improve user experience.
  • FIG. 9 shows a schematic composition diagram of an adaptive frame structure when the distance between the 5G base station and the 5G terminal in the embodiment of the present application is 300 kilometers or 250 kilometers.
  • the adaptive frame structure shown in FIG. 9 can be used to configure the frame structure.
  • Each time slot occupies 14 OFDM symbols, and the GP needs to occupy at least 56 OFDM symbols (that is, 4 special (F) time slots are all occupied by the GP), between the downlink time slot (D) and the uplink time slot (U) Four F time slots are spaced apart to ensure that the adaptive frame structure can meet the communication requirements between the 5G base station 810 and the 5G terminal 820 .
  • the adaptive frame structure shown in FIG. 9 can be used to configure the frame structure.
  • Each time slot occupies 14 OFDM symbols, and the GP needs to occupy at least 47 OFDM symbols, that is, the GP occupies 3 complete F time slots (ie the first F time slot to the third F time slot), and also needs Occupies 5 OFDM symbols in the fourth F slot, and the remaining 9 OFDM symbols in the fourth F slot can be used to transmit uplink (U) symbols or downlink (D) symbols to ensure the adaptive frame
  • the structure can meet the communication requirements between the 5G base station 810 and the 5G terminal 820 .
  • FIG. 10 shows a schematic composition diagram of an adaptive frame structure when the distance between the 5G base station and the 5G terminal in the embodiment of the present application is 200 kilometers.
  • the adaptive frame structure shown in FIG. 10 can be used to configure the frame structure.
  • Each slot occupies 14 OFDM symbols, and the GP needs at least 37.3 (about 38) symbols, that is, the GP occupies 2 complete F slots (ie the first F slot and the second F slot), and also It needs to occupy 10 OFDM symbols in the third F slot, and the remaining 4 OFDM symbols in the third F slot can be used for transmitting U symbols or D symbols.
  • FIG. 11 shows a schematic composition diagram of an adaptive frame structure when the distance between the 5G base station and the 5G terminal in the embodiment of the present application is 100 kilometers or 150 kilometers.
  • the adaptive frame structure shown in FIG. 11 can be used to configure the frame structure.
  • Each slot occupies 14 OFDM symbols, and the GP needs at least 28 OFDM symbols, that is, the GP occupies 2 complete F slots (the first F slot and the second F slot).
  • the adaptive frame structure shown in FIG. 11 can be used to configure the frame structure.
  • Each time slot occupies 14 OFDM symbols, and the GP needs at least 19 OFDM symbols, that is, the GP occupies a complete F time slot (ie, the first F time slot), and also needs to occupy the second F time slot. 5 OFDM symbols, the remaining 9 OFDM symbols in the second F slot can be used to transmit U symbols or D symbols.
  • the adaptive frame structure shown in FIG. 9 can be used for communication.
  • the The adaptive frame structure is updated to the adaptive frame structure shown in FIG. 10 or FIG. 11 to meet the real-time service requirements of the user.
  • step S804 the 5G base station 810 generates a reconfiguration message according to the dynamically adjusted adaptive frame structure, and sends the reconfiguration message to the 5G terminal 820 to synchronize the frame structure used by the 5G base station 810 and the 5G terminal 820 .
  • the adaptive frame structure can be updated to the frame structure shown in FIG. 11 .
  • the 5G terminal 820 performs uplink and downlink data transmission according to the updated adaptive frame structure.
  • the adjusted adaptive frame structure may be reported to the 5G base station 810, so that the 5G base station 810 can adjust the adaptive frame structure according to the adjusted adaptive frame structure.
  • the real-time analysis of the message sent by the 5G terminal 820 ensures normal communication and reduces the consumption of time slot resources.
  • the 5G base station 810 still uses the initially configured frame structure (as shown in FIG. 11 ) for framing, but the 5G base station 810 uses The adaptive frame structure (for example, the frame structure shown in FIG. 9 ) corresponding to the 5G terminal 820 communicates with the 5G terminal 820 to ensure that other terminals within the coverage of the cell can communicate with the 5G base station 810 normally. communication.
  • the adaptive frame structure for example, the frame structure shown in FIG. 9
  • the reconfiguration message may include parameters such as the number of GPs (or the number of OFDM symbols that the GPs need to occupy), the number of downlink OFDM symbols in the F time slot, the number of uplink OFDM symbols, and any one or more of the uplink and downlink transmission periods. kind. For example, when the real-time distance is 100 kilometers, the number of OFDM symbols occupied by the GP is 19, the uplink and downlink transmission period is changed to 4 milliseconds, and the sum of the number of downlink OFDM symbols and uplink OFDM symbols in the F time slot is 9 .
  • the number of time slots occupied by the GP is determined by the real-time distance between the 5G base station and the 5G terminal and the propagation speed of the wireless signal.
  • the GP can be dynamically adjusted according to the real-time distance.
  • the number of time slots occupied; according to the number of time slots occupied by the GP, the number of uplink time slots and the number of downlink time slots, determine the adaptive frame structure of the base station and the terminal in the data transmission process, which can reduce the time caused by the GP.
  • the loss of slot resources and the waste of wireless resources are avoided, so that the number of downlink time slots can be dynamically adjusted with the real-time distance between the 5G terminal and the 5G base station, which improves the performance of the 5G terminal when performing downlink services and improves the user experience.
  • FIG. 12 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing a frame structure configuration method or an information transmission method according to an embodiment of the present application.
  • the computing device 1200 includes an input device 1201 , an input interface 1202 , a central processing unit 1203 , a memory 1204 , an output interface 1205 , an output device 1206 and a bus 1207 .
  • the input interface 1202, the central processing unit 1203, the memory 1204, and the output interface 1205 are connected to each other through the bus 1207.
  • the input device 1201 and the output device 1206 are respectively connected to the bus 1207 through the input interface 1202 and the output interface 1205, and then to other components of the computing device 1200. Component connection.
  • the input device 1201 receives input information from the outside, and transmits the input information to the central processing unit 1203 through the input interface 1202; the central processing unit 1203 processes the input information based on the computer-executable instructions stored in the memory 1204 to generate output information, temporarily or permanently store the output information in the memory 1204, and then transmit the output information to the output device 1206 through the output interface 1205; the output device 1206 outputs the output information to the outside of the computing device 1200 for the user to use.
  • the computing device shown in FIG. 12 can be implemented as an electronic device that can include: a memory configured to store a computer program; and a processor configured to execute the computer program stored in the memory, In order to implement the frame structure configuration method or the information transmission method described in the above embodiments.
  • the computing device shown in FIG. 12 can be implemented as a frame-structured configuration system, and the frame-structured configuration system can include: a memory configured to store a computer program; and a processor configured to execute the memory
  • the computer program stored in the above-mentioned embodiment can execute the configuration method of the frame structure described in the above embodiment.
  • the computing device shown in FIG. 12 can be implemented as an information transfer system that can include: a memory configured to store a computer program; and a processor configured to execute a computer stored in the memory A program to execute the information transmission method described in the above embodiment.
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the frame structure configuration method or information transmission described in the foregoing embodiments method.
  • Embodiments of the present application may be implemented by a data processor of a mobile device executing computer program instructions, eg, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or object code.
  • ISA instruction set architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology such as, but not limited to, read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). DVD or CD disc) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (FGPA) and processors based on multi-core processor architectures.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FGPA programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种帧结构的配置方法及装置、一种电子设备和一种计算机可读存储介质,所述帧结构的配置方法包括:获取基站与终端之间的实时距离;依据实时距离和无线信号的传播速度,确定保护时隙(GP)占用的时隙数量;以及依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构。

Description

帧结构的配置方法及装置、电子设备和计算机可读存储介质
相关申请的交叉引用
本申请要求于2020年12月24日提交的中国专利申请NO.202011545239.9的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本申请涉及无线通信技术领域,具体涉及帧结构的配置方法及装置、电子设备和计算机可读存储介质。
背景技术
随着无线通信技术的高速发展,大带宽、低时延和多天线技术的引入,可保证无线通信网络能够支持更大的数据流量的传输,以及更广阔的小区覆盖范围。
对于超远距离覆盖的小区,由于基站与终端之间的距离较远,第五代无线通信系统(5th Generation Wireless Systems,5G)用于超远覆盖的帧结构是固定的帧结构,若按照最大可支持的小区覆盖距离对应的固定的帧结构来对传输数据的帧结构进行配置,则会导致终端(例如,距离基站较近的终端)在与基站进行通信时,无线资源可能浪费的问题。
公开内容
本申请实施例提供一种帧结构的配置方法,包括:获取基站与终端之间的实时距离;依据实时距离和无线信号的传播速度,确定保护时隙(Guard Period,GP)占用的时隙数量;以及依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构。
本申请实施例提供一种帧结构的配置装置,包括:距离确定模块,配置为获取基站与终端之间的实时距离;计算模块,配置为依据实时距离和无线信号的传播速度,确定GP占用的时隙数量;以及帧结构配置模块,配置为依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构。
本申请实施例提供一种电子设备,包括:一个或多个处理器;存储器,其上存储有一个或多个计算机程序,当所述一个或多个计算机程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现本申请实施例中的帧结构的配置方法。
本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的帧结构的配置方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1示出本申请实施例中的帧结构的配置方法的一种流程示意图。
图2示出本申请实施例中的帧结构的配置方法的另一种流程示意图。
图3示出本申请实施例中的信息传输方法的流程示意图。
图4示出本申请实施例中的帧结构的配置装置的结构示意图。
图5示出本申请实施例中的信息传输装置的结构示意图。
图6示出本申请实施例中的基站的结构示意图。
图7示出本申请实施例中的终端的结构示意图。
图8示出本申请实施例中的帧结构的配置系统的结构示意图。
图9示出本申请实施例中的5G基站和5G终端之间相距300km或250km时的自适应的帧结构的组成示意图。
图10示出本申请实施例中的5G基站和5G终端之间相距200km 时的自适应的帧结构的组成示意图。
图11示出本申请实施例中的5G基站和5G终端之间相距100km或150km时的自适应的帧结构的组成示意图。
图12示出能够实现根据本申请实施例的帧结构的配置方法或信息传输方法的计算设备的示例性硬件架构的结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的各实施例及实施例中的各特征可以相互任意组合。
在时分双工(Time Division Duplexing,TDD)技术中,由于上下行的占用时长可以灵活配置,例如,对于TDD的下载业务,可以把下行时间设为70%,上行时间设为30%,可使TDD的频谱利用率得以大幅度的提升。在频分双工(Frequency Division Duplexing,FDD)技术中,采用上下行成对配置的频谱资源;而在TDD技术中,上下行可以使用同一段频谱资源,可以很方便地利用零碎的频谱资源,使TDD技术得到了更广泛的应用。
但是,对于超远距离覆盖的小区,如果采用TDD方式中的上下行帧结构,需要考虑保护时隙(Guard Period,GP)。GP是基站(或终端)的发送时隙与接收时隙之间的保护间隔,以避免发送时隙和接收时隙的混淆。GP包括传输时延和设备收发转换时间,GP的长度决定了最大可支持的小区覆盖范围,为射频收发转换的稳定性提供了过渡时间。如果按照最大可支持的小区覆盖半径对传输数据的帧结构进行配置,会导致终端(例如,在距离基站较近的范围内进行通信的终端)所使用的无线资源的浪费。
图1示出本申请实施例的帧结构的配置方法的一种流程示意图。该帧结构的配置方法可应用于帧结构的配置装置,该帧结构的配置装置可以设置于基站中,也可以设置在终端中。如图1所示,本申请实施例中的帧结构的配置方法包括以下步骤S110至S130。
步骤S110,获取基站与终端之间的实时距离。
实时距离是基站与终端之间的实际距离,可根据终端的实时移动情况来确定终端与基站之间的距离。基站可以是第五代无线通信系统(5th Generation Wireless Systems,5G)网络中的宏基站或微基站等,终端可以是5G网络中的智能手机、移动终端等设备,基站和终端也可以是第四代无线通信系统(4th Generation Wireless Systems,4G)中的4G基站和4G终端,以上对于基站和终端的类型仅是举例说明,可根据实际情况进行具体限定,其他未说明的基站和终端的类型也在本申请的保护范围之内,在此不再赘述。
例如,可实时测量基站与终端之间的实时距离,也可以根据获取到的数据传输时间(例如,终端上报的测量信息的时间差值)和终端的数据传输速度,计算获得实时距离。例如,若终端上报的第一实时测量信息中的时间信息和第二实时测量信息中的时间信息的差值为1毫秒;无线信号的传播速度为光速(约300000千米/秒),则可计算出基站与终端之间的实时距离为约(0.001*300000)=300千米。以上对于实时距离的获取方法仅是举例说明,可根据具体情况进行具体设定,其他未说明的实时距离的获取方法也在本申请的保护范围之内,在此不再赘述。
步骤S120,依据实时距离和无线信号的传播速度,确定GP占用的时隙数量。
需要说明的是,保护时隙GP是由基站侧的发送端向其接收端发送信息的保护时间间隔,在下行时隙与上行时隙之间添加GP,可保证上行符号与下行符号之间无码间串扰,还可以在GP内添加循环前缀(Cyclic Prefix,CP),以保证子载波的相互正交。
步骤S130,依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构。
在一些实施方式中,所述自适应的帧结构至少包括一个无线超帧,无线超帧至少包括两个无线帧,每个无线帧至少包括N个时隙,N为大于或等于1的整数。
例如,当子载波间隔30KHz时,一个无线帧包括20个时隙,则 一个无线超帧至少包括40个时隙,每个时隙包括14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,通过以一个无线超帧为单位,调整一个无线超帧中的GP所占用的时隙数量,能够使更多的时隙用于下行数据传输,提升用户的下行处理能力。
在本实施例中,通过基站与终端之间的实时距离和无线信号的传播速度,确定保护时隙GP占用的时隙数量;在超远距离覆盖的通信场景下,能够根据实时距离动态调整GP所占用的时隙数量;依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构,可减少GP带来的时隙资源的损失,避免无线资源的浪费,使下行时隙的数量能够随终端与基站之间的实时距离而动态调整,提升终端进行下行业务时的性能,提升用户体验度。
在一些实施方式中,步骤S110中的所述获取基站与终端之间的实时距离包括:从定位系统中提取定位信息;依据定位信息,确定实时距离。
例如,通过全球定位系统(Global Positioning System,GPS)、北斗卫星导航系统、伽利略卫星导航系统或俄罗斯全球导航卫星系统中的任意一种或几种来获得基站和终端的定位信息,进而计算出基站与终端之间的实时距离。需要说明的是,不同的定位系统,所获得的定位信息不同,但该定位信息都包括终端所处的位置和基站所处的位置,进而可以计算出终端与基站之间的相对位置信息,进而计算获得基站与终端之间的实时距离,以保证实时距离的准确性。
在一些实施方式中,步骤S110中的所述获取基站与终端之间的实时距离包括:获取终端实时上报的实时测量信息;依据实时测量信息,估算实时距离。
例如,可以从终端实时上报的实时测量信息中提取出终端当前的时间信息,通过将该时间信息与基站本身的时间信息进行对比,可获得基站与终端之间的时延差值,再结合终端的实时数据传输速度,即可估算出实时距离。
通过依据实时测量信息,估算基站与终端之间的实时距离,可快速地获取到实时距离,从而可及时对基站所使用的自适应的帧结构进行实时调整,避免时隙资源的浪费,提升终端与基站之间的通信效率。
在一些实施方式中,步骤S120中的所述依据实时距离和无线信号的传播速度确定GP占用的时隙数量包括:依据实时距离和无线信号的传播速度,计算GP占用的时长;依据GP占用的时长和每个正交频分复用(OFDM)符号对应的时长,确定GP对应的OFDM符号的数量;以及依据GP对应的OFDM符号的数量和每个时隙对应的OFDM符号的数量,确定GP占用的时隙数量。
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号是通过频分复用实现高速串行数据的并行传输的符号,该符号具有较好的抗多径衰弱的能力,能够支持多用户接入。
例如,依据实时距离与无线信号的传播速度之间的比值,确定GP占用的时长;然后根据每个OFDM符号对应的时长,可确定GP占用的时长中具体包括的OFDM符号的数量。例如,GP占用的时长为140ms,而每个OFDM符号对应的时长为10ms,则GP中包括的OFDM符号的数量为140/10=14个。
例如,当实时距离为300km,子载波间隔为30KHz时(此时,与子载波间隔对应的每个时隙的OFDM符号的数量为14),可确定GP对应的OFDM符号的数量约为56个,GP占用的时隙数量约为4个时隙。可以实时地根据基站与终端之间的实时距离对GP占用的时隙数量进行调整,以减少GP所占用的时隙数量,增加下行时隙的数量,提升下行业务的实时处理能力,提升用户体验度。
在一些实施方式中,在步骤S130之后,即依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量确定基站与终端在数据传输过程中的自适应的帧结构的步骤之后,所述帧结构的配置方法还包括:对自适应的帧结构对应的配置信息进行更新,生成更新后的帧结构的配置信息;依据更新后的帧结构的配置信息生成更新消息;以及依据更新消息,更新自适应的帧结构。
配置信息可以包括上行时隙数量、下行时隙数量、上行符号数量、下行符号数量、上行的传输周期和下行的传输周期中的任意一种或几种。当自适应的帧结构发生变化时,以上配置信息也需要同步更新。基站会将更新后的帧结构的配置信息发送给终端,以保证终端能够与基站使用相同的自适应的帧结构来进行通信,提升通信质量。
更新后的帧结构的配置信息包括:上行时隙数、下行时隙数、上行符号数、下行符号数、上行的传输周期和下行的传输周期中的任意一种或几种。需要说明的是,更新后的帧结构的配置信息并不只限于以上信息,以上对于更新后的帧结构的配置信息仅是举例说明,可根据实际情况进行具体设定,其他未说明的更新后的帧结构的配置信息也在本申请的保护范围之内,在此不再赘述。
在一些实施方式中,当有多个终端时,基站会实时计算当前小区中距离基站最远的终端对应的GP占用的时长,依据该GP占用的时长更新自适应的帧结构,并将更新后的自适应的帧结构对应的配置信息下发给所有终端,以使小区中所有终端与基站能够使用相同的帧结构进行通信,提高通信效率。
在一些实施方式中,所述依据更新消息更新自适应的帧结构包括:依据更新消息,将基站和终端使用的帧结构,均更新为自适应的帧结构。
例如,在确定自适应的帧结构由基站生成的情况下,基站依据该自适应的帧结构对应的配置信息,生成重配置消息,并发送该重配置消息给终端,以使终端能够根据该重配置消息,更新自己的帧结构,使基站和终端在进行通信时所使用的帧结构保持一致,避免通信过程中的解析错误,提升基站与终端之间的通信质量,提升用户体验度。
在一些实施方式中,所述依据更新消息更新自适应的帧结构包括:依据更新消息,更新终端所使用的帧结构为自适应的帧结构;保持基站所使用的帧结构为预设帧结构不变,并使基站依据更新消息对接收到的终端发送的通信消息进行解析。
例如,在确定自适应的帧结构由终端生成的情况下,终端依据更新后的配置信息,生成并发送实时调度消息给基站,基站仍然按照 预设的“初始配置帧结构”来进行数据的传输,但对于该终端发送的通信消息,可采用更新后的配置信息对该终端发送来的消息进行解析和检查,以保证获取到的终端信息的正确性。
在一些实施方式中,在步骤S130之后,即依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量确定基站与终端在数据传输过程中的自适应的帧结构的步骤之后,所述帧结构的配置方法还包括:依据实时距离和预设距离阈值,动态更新自适应的帧结构。
例如,所述自适应的帧结构至少包括一个无线超帧,所述无线超帧至少包括两个无线帧,每个所述无线帧至少包括N个时隙,N为大于或等于1的整数。
实时距离会根据终端的实时运动情况而实时变化。例如,在预设时长(例如,预设时长为5秒)内,终端与基站之间的实时距离由300千米变化至250千米,该实时距离的变化值达到或超过了预设距离阈值(例如,预设距离阈值为50千米),基站和终端会自动更新自适应的帧结构,即将自适应的帧结构由300千米对应的帧结构更新至250千米对应的帧结构,以减少GP所占用的时隙数量,增加下行时隙所占用的时隙数量,避免无线资源的浪费,提升下行业务处理能力。
图2示出本申请实施例中的帧结构的配置方法的另一种流程示意图。如图2所示,该帧结构的配置方法可应用于帧结构的配置装置,该帧结构的配置装置可以设置于基站中,也可以设置在终端中。如图2所示,本申请实施例中的帧结构的配置方法可以包括以下步骤S210至S260。
步骤S210,获取基站与终端之间的实时距离。
步骤S220,依据实时距离和无线信号的传播速度,确定GP占用的时隙数量。
步骤S230,依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构。
需要说明的是,本实施例中的步骤S210至步骤S230,分别与上一实施例中的步骤S110至步骤S130相同,在此不再赘述。
步骤S240,依据自适应的帧结构中的下行时隙的数量和上行时隙的数量,确定混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的进程数量。
自适应的帧结构可以包括下行时隙、上行时隙和特殊时隙。由于无线信道的时变特性和多径衰落,以及一些不可预测的干扰会导致无线信号的传输失败,通常采用前向纠错(Forward Error Correction,FEC)编码的技术和自动重传请求(Automatic Repeat-reQuest,ARQ)等方法来进行差错控制,从而确保通信过程中的服务质量。
在大多数无线分组传输系统中,都会将ARQ和FEC结合使用,即混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)体制。在HARQ中采用FEC减少重传的次数,降低误码率;使用ARQ的重传和循环冗余校验(Cyclic Redundancy Check,CRC)来保证分组数据传输的误码率要求。该HARQ机制在纠错能力范围内自动纠正错误,增加通信系统的可靠性,提高通信系统的传输效率。HARQ的进程数量可以包括上行HARQ进程数量和下行HARQ进程数量。当终端在进行下行业务的处理时,其下行HARQ进程数量会影响该终端的下行处理能力。
需要说明的是,当自适应的帧结构中的下行时隙的数量和上行时隙的数量保持不变时,HARQ的进程数量也保持不变,该HARQ的进程数量是当前的自适应的帧结构能够支持的最大的HARQ的进程数量。例如,当确定HARQ的进程数量为16时,表示在当前的自适应的帧结构中,需要采用4个比特的空间来表征该HARQ的进程数量,且该4比特的空间需要在基站与终端进行数据传输时的配置信息中体现出来,以保证基站和终端在进行数据传输时的一致性。
步骤S250,依据下行时隙和上行时隙之间的时间间隔,确定反馈时延。
例如,第1上行时隙与第1下行时隙之间相距33个时隙(包括29个下行时隙和4个特殊时隙),则会采用平均的方式,将每一个上行时隙与各个下行时隙相对应。例如,1个上行时隙对应6个下行时隙,则反馈时延为6个时隙对应的时长。也可以采用5G通信协议 中默认的时域资源指示K1列表的索引值来表征该反馈时延。
步骤S260,依据HARQ的进程数量和/或反馈时延,更新基站与终端在进行数据传输时的配置信息。
HARQ的进程数量和反馈时延,都需要采用二进制数写入到配置信息中,例如,若HARQ的进程数量为16,则需要采用4个比特的空间来表征该HARQ的进程数量;若反馈时延为32毫秒,则需要采用5个比特的空间来表征该反馈时延,以减少数据的传输容量。在HARQ的进程数量和/或反馈时延发生变化的情况下,需要将基站与终端在进行数据传输时的配置信息做同步更新,以保证终端和基站的配置相同,避免消息解析的错误,影响通信质量。
在本实施例中,通过基站与终端之间的实时距离和无线信号的传播速度,确定GP占用的时隙数量;在超远距离覆盖的通信场景下,能够根据实时距离来动态调整GP所占用的时隙数量;以及依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构,可减少GP带来的时隙资源的损失,避免无线资源的浪费,使下行时隙的数量能够随终端与基站之间的实时距离而动态调整,提升终端进行下行业务时的性能。并且,依据HARQ的进程数量和/或反馈时延,更新基站与终端在进行数据传输时的配置信息,增加了通信系统的可靠性,提高了通信系统的传输效率。
在一些实施方式中,步骤S240中的所述依据自适应的帧结构中的下行时隙的数量和上行时隙的数量确定混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)的进程数量包括:依据下行时隙的数量,确定下行HARQ的进程数量;依据上行时隙和下行时隙之间的传输时延对应关系,确定上行HARQ的进程数量;以及依据下行HARQ的进程数量和上行HARQ的进程数量,确定HARQ的进程数量。
例如,5G低频通信场景下,由于采用的是一个无线超帧作为自适应的帧结构,每个无线超帧中包括40个时隙,若每个无线超帧中有30个下行时隙时,则此时下行可支持的HARQ进程的最大数量为30,通过终端与基站之间的实时距离,可动态调整GP所占用的时隙 数量;通常情况下,一个上行时隙对应6个下行时隙,当自适应的帧结构中包括30个下行时隙和4个特殊(F)时隙(即GP占用的时隙)时,其对应的上行时隙的数量为6,即第1上行时隙与第一个无线帧的第0至第5下行时隙相对应,第2上行时隙与第一个无线帧的第6至第11下行时隙相对应,第3上行时隙与第一个无线帧的第12至第17下行时隙相对应,第4上行时隙与第一个无线帧的第18至第19下行时隙和第二个无线帧的第0至第3下行时隙相对应,第5上行时隙与第二个无线帧的第4至第9下行时隙相对应,第6上行时隙与第0F至第3F时隙相对应,以保证上下行时隙的同步。
通过依据下行时隙的数量,确定下行HARQ的进程数量;依据上行时隙和下行时隙之间的传输时延对应关系,确定上行HARQ的进程数量,使上下行HARQ的进程数量能够依据基站与终端之间的实时距离做实时调整,在纠错能力范围内自动纠正错误,超出纠错范围则要求发送端重新发送,既增加了通信系统的可靠性,又提高了通信系统的传输效率。
在一些实施方式中,步骤S260中的所述依据HARQ的进程数量和/或反馈时延更新基站与终端在进行数据传输时的配置信息包括:依据HARQ的进程数量和/或反馈时延,生成下行控制信息(Downlink Control Information,DCI);依据DCI更新上行链路控制信道(Physical Uplink Control Channel,PUCCH)的配置信息,生成更新后的PUCCH的配置信息,更新后的PUCCH的配置信息用于使基站与终端进行数据传输。
5G低频通信的反馈时延K1可采用5G通信协议中默认的时域资源指示K1列表的索引值来表征。例如,可将该索引值配置在配置信息中的物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH)至HARQ的反馈时延指示(PDSCH-to-HARQ_feedback timing indicator)中。
通过将反馈时延K1配置到反馈时延指示(PDSCH-to-HARQ_feedback timing indicator)中,然后结合HARQ的进程数量,生成DCI;再将DCI更新至上行链路控制信道(Physical  Uplink Control Channel,PUCCH)的配置信息中,保证基站与终端之间数据传输的正常进行,避免数据的传输错误。
需要说明的是,正常通信(即,非超远覆盖的应用场景中)的情况下,上述配置信息需要在PUCCH的配置信息中占用8个比特的空间,但本实施例中,由于采用的是一个无线超帧作为自适应的帧结构的配置单位,反馈时延K1和HARQ的进程数量信息所占用的比特数量已经超过8比特,还需要占用其他字段的空闲比特,以保证通信的正常进行。
在一些实施方式中,所述依据HARQ的进程数量和/或反馈时延生成DCI包括:计算HARQ的进程数量和/或反馈时延所占用的待填充字节长度;依据待填充字节长度和预设信息填充字节长度,增加DCI所占用的传输字节长度,生成新的DCI;以及将HARQ的进程数量和/或反馈时延填充至新的DCI中。
例如,设定预设信息填充字节长度为8比特,根据实时的HARQ的进程数量和反馈时延需要占用的字节数量,将DCI中的用于表征HARQ的进程数量的字节长度由原来的4比特增加至6比特,同时,将DCI中的用于表征反馈时延的字节长度由原来的4比特增加至6比特,则待填充字节长度为12比特,需要增加DCI所占用的传输字节长度为12-8=4比特,即需要额外增加4比特,以生成新的DCI。
通过增加DCI所占用的传输字节长度,生成新的DCI;将HARQ的进程数量和/或反馈时延填充至新的DCI中,可保证DCI信息的完整性,避免传输信息的遗漏和错误,保证基站和终端之间的通信的准确性。
在一些实施方式中,所述依据HARQ的进程数量和/或反馈时延生成下行控制信息DCI包括:计算HARQ的进程数量和/或反馈时延所占用的待填充字节长度;以及依据待填充字节长度、DCI的空闲字段长度和预设填充字节长度,将HARQ的进程数量和/或反馈时延填充至DCI中。
例如,DCI中的空闲字段长度为8比特,预设填充字节长度为8比特(即正常通信时,HARQ的进程数量的字节长度4比特与反馈时 延的字节长度4比特之和),通过基站和终端之间的实时距离,对自适应的帧结构中的GP所占用的时隙长度进行动态调整,进而使HARQ的进程数量和/或反馈时延发生变更,例如,待填充字节长度变更为12比特,则需要占用DCI中的空闲字段中的4个比特,以保证HARQ的进程数量和/或反馈时延的信息的完整性。
在一些实施方式中,还可以采用标识的方式来表征HARQ的进程数量,例如,当HARQ的进程数量为32时,采用DCI中的空闲字段中的1个比特来表征HARQ的进程数量,即当空闲比特标识为0时,表示当前的HARQ的进程数量为正常的数量(例如,12或13等小于16的数值);当空闲比特标识为1时,表示当前的HARQ的进程数量为正常的数量加上16得到的和(即,12+16,或13+16等)。
通过占用DCI中的空闲字段来传输HARQ的进程数量和/或反馈时延,避免了空闲字段的资源浪费,同时保证了传输数据的完整性,提升了数据的传输效率。
图3示出本申请实施例中的信息传输方法的流程示意图。该信息传输方法可应用于基站或终端。如图3所示,该信息传输方法可包括如下步骤S310和S320。
步骤S310,采用自适应的帧结构承载待传输数据,生成待传输消息。
自适应的帧结构可以是本申请实施例中的任意一种的自适应的帧结构。待传输数据可以是某种业务的业务数据,例如,当用户下载视频文件时,该待传输数据即是下载的视频文件。以上对于待传输数据仅是举例说明,可根据实际情况进行具体设定,其他未说明的待传输数据也在本申请的保护范围之内,在此不再赘述。
例如,设定子载波间隔为30KHz时,每个时隙占用14个OFDM符号,在基站与终端之间的实时距离为150千米的情况下,承载待传输数据的自适应的帧结构可以包括占用2个特殊时隙的GP、32个下行时隙和6个上行时隙。在实时距离为100千米的情况下,承载待传输数据的自适应的帧结构中的GP至少需要19个OFDM符号,即GP占用1个完整的F时隙(第一个F时隙),且还需要占用第二个F 时隙中的5个OFDM符号,第二个F时隙中的剩余9个OFDM符号可用作传输上行符号或下行符号。并且,该自适应的帧结构还包括32个下行时隙和6个上行时隙。此时,由于基站与终端之间的实时距离相对于150千米时缩短了,空闲出9个OFDM符号,用以传输上行数据或下行数据,提高了数据传输的效率。
步骤S320,将待传输消息传输至对端设备。
对端设备可以是基站,也可以是终端。对端设备是与本设备进行通信的设备,例如,当执行信息传输方法的设备是基站时,对端设备是对应的终端;当执行信息传输方法的设备是终端时,对端设备是对应的基站。以上对于对端设备仅是举例说明,可根据实际情况进行具体设定,其他未说明的对端设备也在本申请的保护范围之内,在此不再赘述。
在本实施例中,通过采用本申请实施例中的任意一种自适应的帧结构承载待传输数据,生成待传输消息;将待传输消息传输至对端设备,使自适应的帧结构能够随终端与基站之间的实时距离而动态调整,可避免无线资源的浪费,提升终端在进行下行业务时的性能,提升用户体验度。
下面结合附图,详细介绍根据本申请实施例的帧结构的配置装置。图4示出本申请实施例中的帧结构的配置装置的结构示意图。如图4所示,所述帧结构的配置装置可以包括距离确定模块401、计算模块402和帧结构配置模块403。
距离确定模块401配置为获取基站与终端之间的实时距离;计算模块402配置为依据实时距离和无线信号的传播速度,确定GP占用的时隙数量;以及帧结构配置模块403配置为依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构。
根据本申请实施例的帧结构的配置装置,通过距离确定模块401获取基站与终端之间的实时距离;然后采用计算模块402依据该实时距离和无线信号的传播速度,确定GP占用的时隙数量;在超远距离覆盖的通信场景下,能够根据基站与终端之间的实时距离来动态调整 GP所占用的时隙数量;帧结构配置模块403依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构,可减少GP带来的时隙资源的损失,避免无线资源的浪费,使下行时隙的数量能够随终端与基站之间的实时距离而动态调整,提升终端进行下行业务时的性能,提升用户体验度。
图5示出本申请实施例中的信息传输装置的结构示意图。如图5所示,所述信息传输装置可以包括生成模块501和传输模块502。
生成模块501配置为采用本申请实施例中的任意一种自适应的帧结构承载待传输数据,生成待传输消息;以及传输模块502配置为将待传输消息传输至对端设备。
在本实施例中,通过生成模块501采用本申请实施例中的任意一种自适应的帧结构承载待传输数据,生成待传输消息;传输模块502将待传输消息传输至对端设备,可避免无线资源的浪费,使自适应的帧结构能够随终端与基站之间的实时距离而动态调整,提升终端在进行下行业务时的性能,提升用户体验度。
图6示出本申请实施例中的基站的结构示意图。如图6所示,基站610可以包括帧结构的配置装置611,帧结构的配置装置611可配置为实现本申请实施例中的帧结构的配置方法。
例如,基站610通过帧结构的配置装置611依据终端与基站之间的实时距离,动态调整终端与基站之间的自适应的帧结构,并依据该自适应的帧结构生成重配置消息,发送重配置消息给终端,以使终端能够将自己所使用的帧结构更新为该自适应的帧结构,保证终端和基站之间的帧结构相同。
根据本申请实施例的基站610,通过基站610中的帧结构的配置装置611可实时调整通信所需的自适应的帧结构,动态调整GP所占用的OFDM符号的数量,减少GP带来的时隙资源的损失,避免无线资源的浪费,使下行时隙的数量能够随终端与基站之间的实时距离而动态调整,提升终端进行下行业务时的性能,提升用户体验度。
图7示出本申请实施例中的终端的结构示意图。如图7所示,该终端710可以包括帧结构的配置装置711,帧结构的配置装置711 配置为实现本申请实施例中的帧结构的配置方法。
例如,终端710通过帧结构的配置装置711依据终端与基站之间的实时距离,动态调整终端与基站之间的自适应的帧结构,并依据该自适应的帧结构生成上报消息,发送该上报消息给基站,以使基站能够根据该自适应的帧结构对终端710发送的消息进行解析,避免因消息的解析错误所带来的通信障碍,提升用户体验度。
根据本申请实施例的终端710,通过终端710中的帧结构的配置装置711来实现动态调整通信所需的自适应的帧结构,动态调整GP所占用的OFDM符号的数量,减少GP带来的时隙资源的损失,避免无线资源的浪费;同时,使基站能够根据该自适应的帧结构对终端发送的消息进行解析,避免因消息的解析错误所带来的通信障碍,提升用户体验度。
需要明确的是,本申请并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的模块、装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图8示出本申请实施例中的帧结构的配置系统的结构示意图。如图8所示,所述帧结构的配置系统包括5G网络中的5G基站810和5G终端820。该帧结构的配置系统可应用于飞机航线或海洋航线中,例如,5G基站810与5G终端820之间的距离大于或等于100千米的超远距离覆盖场景中。可采用如下步骤S801至S804实现5G基站810与5G终端820在进行远距离通信时的帧结构的配置方法。
步骤S801,获取5G基站810与5G终端820之间的实时距离。
例如,可通过全球定位系统(Global Positioning System,GPS)来获取5G基站810与5G终端820之间的实时距离,也可以从5G基站810获取到的5G终端820实时上报的测量信息中提取时间信息,再结合无线信号的传播速度,来推算出5G基站810与5G终端820之间的实时距离。以上对于5G基站810与5G终端820之间的实时距离的获取方法仅是举例说明,可根据具体情况进行具体设定,其他未说明的实时距离的获取方法也在本申请的保护范围之内,在此不再赘 述。
步骤S802,根据获取到的实时距离和无线信号的传播速度,计算获得保护时隙(GP)所占用的时长。
例如,可采用如下公式计算获得GP占用的时长T:
Figure PCTCN2021137425-appb-000001
T表示GP占用的时长,d表示5G基站810与5G终端820之间的实时距离,C表示无线信号的传播速度,例如,无线信号的传播速度为光速,即约300000千米/秒。
步骤S803,根据5G基站810与5G终端820之间的实时距离,确定具体采用的自适应的帧结构。
需要说明的是,在飞机航线或海洋航线等超远距离覆盖的场景中,由于大部分用户所进行的业务都是以下载业务为主,且GP所占用的时长相对于普通应用场景中的时长会长很多,如果按照普通应用场景中所使用的第一帧结构(每帧占用时长为5毫秒)或第二帧结构(每帧占用时长为10毫秒)来配置5G基站810与5G终端820进行通信时的帧结构,会导致在一个无线帧内的下行子帧的数量太少,无法满足5G终端820的业务需求。在本实施例中,是将两个无线帧合并为一个无线超帧(每帧占用时长为20毫秒),使用该无线超帧来配置5G基站810与5G终端820进行通信时的帧结构,以提高下行子帧的占用比例,满足用户的业务需求。
通过依据基站与终端两者之间的实时距离,来确定GP占用的时长,并根据该GP占用的时长确定具体采用的自适应的帧结构,保证自适应的帧结构能够动态地根据实时距离进行调整,避免无线资源的浪费,提升终端进行下行业务时的性能,提升用户体验度。
图9示出本申请实施例中的5G基站和5G终端之间相距300千米或250千米时的自适应的帧结构的组成示意图。
在实时距离为300千米且子载波间隔为30KHz的情况下,不考虑设备转换时延,可采用如图9所示的自适应的帧结构来配置5G基站810与5G终端820进行通信时的帧结构。每个时隙占用14个OFDM符号,而GP至少需要占用56个OFDM符号(即4个特殊(F)时隙被 GP全部占用),下行时隙(D)和上行时隙(U)之间间隔4个F时隙,以保证该自适应的帧结构能够满足5G基站810和5G终端820之间的通信需求。
在实时距离为250千米且子载波间隔为30KHz的情况下,不考虑设备转换时延,可采用如图9所示的自适应的帧结构来配置5G基站810与5G终端820进行通信时的帧结构。每个时隙占用14个OFDM符号,而GP至少需要占用47个OFDM符号,即GP占用3个完整的F时隙(即第一个F时隙至第三个F时隙),且还需要占用第四个F时隙中的5个OFDM符号,第四个F时隙中的剩余9个OFDM符号可用作传输上行(U)符号或下行(D)符号,以保证该自适应的帧结构能够满足5G基站810和5G终端820之间的通信需求。
图10示出本申请实施例中的5G基站和5G终端之间相距200千米时的自适应的帧结构的组成示意图。
在实时距离为200千米且子载波间隔为30KHz的情况下,不考虑设备转换时延,可采用如图10所示的自适应的帧结构来配置5G基站810与5G终端820进行通信时的帧结构。每个时隙占用14个OFDM符号,GP至少需要37.3(约38)个符号,即GP占用2个完整的F时隙(即第一个F时隙和第二个F时隙),且还需要占用第三个F时隙中的10个OFDM符号,第三个F时隙中的剩余4个OFDM符号可用作传输U符号或D符号。
图11示出本申请实施例中的5G基站和5G终端之间相距100千米或150千米时的自适应的帧结构的组成示意图。
在实时距离为150千米且子载波间隔为30KHz的情况下,不考虑设备转换时延,可采用如图11所示的自适应的帧结构来配置5G基站810与5G终端820进行通信时的帧结构。每个时隙占用14个OFDM符号,GP至少需要28个OFDM符号,即GP占用2个完整的F时隙(第一个F时隙和第二个F时隙)。
在实时距离为100千米且子载波间隔为30KHz的情况下,不考虑设备转换时延,可采用如图11所示的自适应的帧结构来配置5G基站810与5G终端820进行通信时的帧结构。每个时隙占用14个 OFDM符号,GP至少需要19个OFDM符号,即GP占用1个完整的F时隙(即第一个F时隙),且还需要占用第二个F时隙中的5个OFDM符号,第二个F时隙中的剩余9个OFDM符号可用作传输U符号或D符号。
在5G基站810和5G终端820初始进行通信时,可采用如图9所示的自适应的帧结构进行通信,随着5G基站810与5G终端820之间的实时距离的不断变化,可将该自适应的帧结构更新为图10所示或图11所示的自适应的帧结构,用以满足用户的实时业务需求。
步骤S804,5G基站810依据动态调整后的自适应的帧结构,生成重配置消息,并下发该重配置消息给5G终端820,以使5G基站810与5G终端820所使用的帧结构同步。
例如,如果5G基站810与5G终端820之间的实时距离为100千米时,可将自适应的帧结构更新为图11所示的帧结构。5G终端820在接收到5G基站810下发的重配置消息时,根据更新后的自适应的帧结构进行上下行的数据传输。
在一些实施方式中,如果5G终端820实时调整了自适应的帧结构,可将调整后的自适应的帧结构上报给5G基站810,以使5G基站810能够根据调整后的自适应的帧结构,对该5G终端820发送的消息进行实时解析,保证了通信的正常进行,同时,减少了时隙资源的消耗。
需要说明的是,在5G终端820实时调整自适应的帧结构的情况下,5G基站810依然使用初始配置的帧结构(如图11所示的帧结构)进行组帧,但5G基站810会使用5G终端820对应的自适应的帧结构(例如,如图9所示的帧结构)与5G终端820进行通信,以保证在该小区的覆盖范围内的其他终端能够与该5G基站810进行正常的通信。
重配置消息可以包括GP的数量(或GP需要占用的OFDM符号的数量)、F时隙中的下行OFDM符号的数量及上行OFDM符号的数量等参数和上下行传输周期中的任意一种或几种。例如,当实时距离为100千米时,GP需要占用的OFDM符号的数量为19个,上下行传输周 期变更为4毫秒,F时隙中的下行OFDM符号与上行OFDM符号的数量总和为9个。
在本实施例中,通过5G基站与5G终端之间的实时距离和无线信号的传播速度,确定GP占用的时隙数量,在超远距离覆盖的通信场景下,能够根据实时距离来动态调整GP所占用的时隙数量;依据GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定基站与终端在数据传输过程中的自适应的帧结构,可减少GP带来的时隙资源的损失,避免无线资源的浪费,使下行时隙的数量能够随5G终端与5G基站之间的实时距离而动态调整,提升5G终端进行下行业务时的性能,提升用户体验度。
图12示出能够实现根据本申请实施例的帧结构的配置方法或信息传输方法的计算设备的示例性硬件架构的结构图。
如图12所示,计算设备1200包括输入设备1201、输入接口1202、中央处理器1203、存储器1204、输出接口1205、输出设备1206和总线1207。输入接口1202、中央处理器1203、存储器1204、以及输出接口1205通过总线1207相互连接,输入设备1201和输出设备1206分别通过输入接口1202和输出接口1205与总线1207连接,进而与计算设备1200的其他组件连接。
具体地,输入设备1201接收来自外部的输入信息,并通过输入接口1202将输入信息传送到中央处理器1203;中央处理器1203基于存储器1204中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器1204中,然后通过输出接口1205将输出信息传送到输出设备1206;输出设备1206将输出信息输出到计算设备1200的外部,供用户使用。
在一些实施方式中,图12所示的计算设备可以被实现为一种电子设备,该电子设备可以包括:存储器,配置为存储计算机程序;以及处理器,配置为运行存储器中存储的计算机程序,以执行上述实施例描述的帧结构的配置方法或信息传输方法。
在一些实施方式中,图12所示的计算设备可以被实现为一种帧结构的配置系统,该帧结构的配置系统可以包括:存储器,配置为存 储计算机程序;以及处理器,配置为运行存储器中存储的计算机程序,以执行上述实施例描述的帧结构的配置方法。
在一些实施方式中,图12所示的计算设备可以被实现为一种信息传输系统,该信息传输系统可以包括:存储器,配置为存储计算机程序;以及处理器,配置为运行存储器中存储的计算机程序,以执行上述实施例描述的信息传输方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述实施例描述的帧结构的配置方法或信息传输方法。
以上仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中、或者通过硬件、或者通过软件和硬件的组合实现。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者是以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处 理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (14)

  1. 一种帧结构的配置方法,包括:
    获取基站与终端之间的实时距离;
    依据所述实时距离和无线信号的传播速度,确定保护时隙(GP)占用的时隙数量;以及
    依据所述GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定所述基站与所述终端在数据传输过程中的自适应的帧结构。
  2. 根据权利要求1所述的方法,其中,所述依据所述实时距离和无线信号的传播速度确定GP占用的时隙数量包括:
    依据所述实时距离和所述无线信号的传播速度,计算所述GP占用的时长;
    依据所述GP占用的时长和每个正交频分复用(OFDM)符号对应的时长,确定所述GP对应的OFDM符号的数量;以及
    依据所述GP对应的OFDM符号的数量和每个时隙对应的OFDM符号的数量,确定所述GP占用的时隙数量。
  3. 根据权利要求1所述的方法,还包括:
    在所述依据所述GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定所述基站与所述终端在数据传输过程中的自适应的帧结构的步骤之后,依据所述自适应的帧结构中的下行时隙的数量和上行时隙的数量,确定混合自动重传请求(HARQ)的进程数量;
    依据所述下行时隙和所述上行时隙之间的时间间隔,确定反馈时延;以及
    依据所述HARQ的进程数量或所述反馈时延中的至少一个,更新所述基站与所述终端在进行数据传输时的配置信息。
  4. 根据权利要求3所述的方法,其中,所述依据所述自适应的帧结构中的下行时隙的数量和上行时隙的数量确定HARQ的进程数量 包括:
    依据所述下行时隙的数量,确定下行HARQ的进程数量;
    依据所述上行时隙和所述下行时隙之间的传输时延对应关系,确定上行HARQ的进程数量;以及
    依据所述下行HARQ的进程数量和所述上行HARQ的进程数量,确定所述HARQ的进程数量。
  5. 根据权利要求3所述的方法,其中,所述依据所述HARQ的进程数量或所述反馈时延中的至少一个更新所述基站与所述终端在进行数据传输时的配置信息包括:
    依据所述HARQ的进程数量或所述反馈时延中的至少一个,生成DCI;以及
    依据所述DCI更新PUCCH的配置信息,生成更新后的所述PUCCH的配置信息,所述更新后的PUCCH的配置信息用于使所述基站与所述终端进行数据传输。
  6. 根据权利要求5所述的方法,其中,所述依据所述HARQ的进程数量或所述反馈时延中的至少一个生成DCI包括:
    计算所述HARQ的进程数量或所述反馈时延中的至少一个所占用的待填充字节长度;
    依据所述待填充字节长度和预设信息填充字节长度,增加所述DCI所占用的传输字节长度,生成新的所述DCI;以及
    将所述HARQ的进程数量或所述反馈时延中的至少一个填充至所述新的DCI中。
  7. 根据权利要求5所述的方法,其中,所述依据所述HARQ的进程数量或中的至少一个所述反馈时延生成DCI包括:
    计算所述HARQ的进程数量或所述反馈时延中的至少一个所占用的待填充字节长度;以及
    依据所述待填充字节长度、所述DCI的空闲字段长度和预设填 充字节长度,将所述HARQ的进程数量或所述反馈时延中的至少一个填充至所述DCI中。
  8. 根据权利要求1所述的方法,还包括:
    在所述依据所述GP占用的时隙数量、上行时隙的数量和下行时隙的数量确定所述基站与所述终端在数据传输过程中的自适应的帧结构的步骤之后,对所述自适应的帧结构对应的配置信息进行更新,生成更新后的帧结构的配置信息;
    依据所述更新后的帧结构的配置信息生成更新消息;以及
    依据所述更新消息,更新所述自适应的帧结构。
  9. 根据权利要求8所述的方法,其中,所述依据所述更新消息更新所述自适应的帧结构包括:
    依据所述更新消息,将所述基站和所述终端使用的帧结构,均更新为所述自适应的帧结构。
  10. 根据权利要求8所述的方法,其中,所述依据所述更新消息更新所述自适应的帧结构包括:
    依据所述更新消息,更新所述终端所使用的帧结构为所述自适应的帧结构;以及
    保持所述基站所使用的帧结构为预设帧结构不变,并使所述基站依据所述更新消息对接收到的所述终端发送的通信消息进行解析。
  11. 根据权利要求1所述的方法,还包括:
    在所述依据所述GP占用的时隙数量、上行时隙的数量和下行时隙的数量确定所述基站与所述终端在数据传输过程中的自适应的帧结构的步骤之后,依据所述实时距离和预设距离阈值,动态更新所述自适应的帧结构;
    其中,所述自适应的帧结构至少包括一个无线超帧,所述无线超帧至少包括两个无线帧,每个所述无线帧至少包括N个时隙,N为 大于或等于1的整数。
  12. 一种帧结构的配置装置,包括:
    距离确定模块,配置为获取基站与终端之间的实时距离;
    计算模块,配置为依据所述实时距离和无线信号的传播速度,确定GP占用的时隙数量;以及
    帧结构配置模块,配置为依据所述GP占用的时隙数量、上行时隙的数量和下行时隙的数量,确定所述基站与所述终端在数据传输过程中的自适应的帧结构。
  13. 一种电子设备,包括:
    一个或多个处理器;以及
    存储器,其上存储有一个或多个计算机程序,当所述一个或多个计算机程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至11中任一项所述的帧结构的配置方法。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述的帧结构的配置方法。
PCT/CN2021/137425 2020-12-24 2021-12-13 帧结构的配置方法及装置、电子设备和计算机可读存储介质 WO2022135204A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3205496A CA3205496A1 (en) 2020-12-24 2021-12-13 Frame structure configuration method and apparatus, electronic device and computer-readable storage medium
EP21909201.2A EP4250844A1 (en) 2020-12-24 2021-12-13 Frame structure configuration method and apparatus, and electronic device and computer-readable storage medium
US18/267,525 US20240049196A1 (en) 2020-12-24 2021-12-13 Frame structure configuration method and apparatus, electronic device and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011545239.9A CN113543332B (zh) 2020-12-24 2020-12-24 帧结构的配置方法、装置、电子设备和可读存储介质
CN202011545239.9 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022135204A1 true WO2022135204A1 (zh) 2022-06-30

Family

ID=78124222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137425 WO2022135204A1 (zh) 2020-12-24 2021-12-13 帧结构的配置方法及装置、电子设备和计算机可读存储介质

Country Status (5)

Country Link
US (1) US20240049196A1 (zh)
EP (1) EP4250844A1 (zh)
CN (1) CN113543332B (zh)
CA (1) CA3205496A1 (zh)
WO (1) WO2022135204A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116074960A (zh) * 2023-03-06 2023-05-05 天地信息网络研究院(安徽)有限公司 一种多波束定向自组网的时隙收发状态分配方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543332B (zh) * 2020-12-24 2022-10-28 中兴通讯股份有限公司 帧结构的配置方法、装置、电子设备和可读存储介质
CN114995985B (zh) * 2022-08-02 2023-01-17 阿里巴巴(中国)有限公司 资源调度方法、设备和存储介质
CN115396063B (zh) * 2022-08-10 2023-06-30 中国联合网络通信集团有限公司 帧结构配置方法、装置、存储介质及设备
CN117998601A (zh) * 2022-11-04 2024-05-07 中兴通讯股份有限公司 一种数据传输方法、装置及存储介质
CN115913342B (zh) * 2023-02-23 2023-05-09 成都星联芯通科技有限公司 数据帧处理方法、装置、本端基站、系统及存储介质
CN115988662B (zh) * 2023-03-13 2023-07-25 新华三技术有限公司 一种数据反馈方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107124384A (zh) * 2016-02-25 2017-09-01 中国移动通信集团公司 一种保护间隔设置的方法、装置及基站
CN107306450A (zh) * 2016-04-20 2017-10-31 中国移动通信有限公司研究院 一种确定保护时隙的方法及设备、终端
CN110868722A (zh) * 2018-08-28 2020-03-06 大唐移动通信设备有限公司 一种增加信号覆盖距离的方法和装置
CN113543332A (zh) * 2020-12-24 2021-10-22 中兴通讯股份有限公司 帧结构的配置方法、装置、电子设备和可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499889B (zh) * 2008-02-03 2011-09-07 电信科学技术研究院 一种获取时分双工系统上下行时隙比例信息的方法及装置
CN102811191B (zh) * 2011-05-31 2016-06-08 华为技术有限公司 一种数据传输方法和装置
US10091810B2 (en) * 2016-11-04 2018-10-02 Qualcomm Incorporated Network configured uplink control feedback for 5G new radio (NR)
US11290987B2 (en) * 2017-08-04 2022-03-29 Qualcomm Incorporated Slot structure linkage in wireless systems
CN110035521B (zh) * 2018-01-12 2023-04-18 中国信息通信研究院 一种移动通信多时隙调度方法和系统
WO2020041978A1 (zh) * 2018-08-28 2020-03-05 北京小米移动软件有限公司 保护间隔的配置方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107124384A (zh) * 2016-02-25 2017-09-01 中国移动通信集团公司 一种保护间隔设置的方法、装置及基站
CN107306450A (zh) * 2016-04-20 2017-10-31 中国移动通信有限公司研究院 一种确定保护时隙的方法及设备、终端
CN110868722A (zh) * 2018-08-28 2020-03-06 大唐移动通信设备有限公司 一种增加信号覆盖距离的方法和装置
CN113543332A (zh) * 2020-12-24 2021-10-22 中兴通讯股份有限公司 帧结构的配置方法、装置、电子设备和可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Guard period setting in TDD based NR frame structure", 3GPP DRAFT; R1-1611459 GUARD PERIOD FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20161114 - 20161118, 4 November 2016 (2016-11-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051189072 *
ZTE: "PUSCH enhancements for NR URLLC", 3GPP DRAFT; R1-1904145 PUSCH ENHANCEMENTS FOR NR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051707145 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116074960A (zh) * 2023-03-06 2023-05-05 天地信息网络研究院(安徽)有限公司 一种多波束定向自组网的时隙收发状态分配方法
CN116074960B (zh) * 2023-03-06 2023-06-02 天地信息网络研究院(安徽)有限公司 一种多波束定向自组网的时隙收发状态分配方法

Also Published As

Publication number Publication date
US20240049196A1 (en) 2024-02-08
CN113543332B (zh) 2022-10-28
EP4250844A1 (en) 2023-09-27
CA3205496A1 (en) 2022-06-30
CN113543332A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2022135204A1 (zh) 帧结构的配置方法及装置、电子设备和计算机可读存储介质
US11290227B2 (en) Methods and nodes for determining a transmission data block size
CA2979089C (en) Apparatus and method for link adaptation in uplink grant-less random access
CN111935773B (zh) 用于自适应发送时间间隔(tti)结构的系统和方法
JP6034485B2 (ja) Harqをサポートする、ワイヤレス通信方法、ユーザ装置および基地局
WO2014110974A1 (zh) Csi测量方法和装置
US20150016432A1 (en) Retransmission Protocol Feedback Handling with Multiple Feedback Times
US20190124680A1 (en) Signaling of tdd subframe use to short tti ues
US20140289580A1 (en) Method and system to improve link budget of a wireless system
WO2021022976A1 (zh) Uci的传输方法、装置、终端及基站
KR102231454B1 (ko) 적응적 변조 및 코딩 방법 및 기지국
JP6538207B2 (ja) Csi−rsによって生成される干渉の予測を用いたアウターループリンク適応
US20160255579A1 (en) Base station, processor and terminal
WO2019219190A1 (en) Scheduling in wireless communication networks
EP2907254B1 (en) Communication system with flexible repeat-response mechanism and method of operation thereof
WO2017075770A1 (zh) 一种传输上行数据的方法、装置和系统
US11399309B2 (en) Transmission block size determination
CN115362647A (zh) Sr和harq-ack之间的优先化
WO2022090783A1 (en) Congestion control based inter-gnb carrier aggregation
JP6751180B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
JP6505269B2 (ja) Harqをサポートする、ワイヤレス通信方法、ユーザ装置および基地局
WO2022198643A1 (zh) 信息报告方法、装置、设备及存储介质
JP6280972B2 (ja) Harqをサポートする、ワイヤレス通信方法、ユーザ装置および基地局
JP2009290618A (ja) 無線通信装置および無線通信方法
WO2021062880A1 (en) Harq for long propagation delay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18267525

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3205496

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021909201

Country of ref document: EP

Effective date: 20230620

NENP Non-entry into the national phase

Ref country code: DE